Производство элементов пельтье: Термоэлектрические модули и агрегаты НПО Кристалл

Содержание

Термоэлектрические модули и агрегаты НПО Кристалл

ООО НПО «Кристалл» — инновационная компания, специализирующаяся на массовом производстве и исследованиях высококачественных термоэлектрических материалов, модулей Пельтье, термоэлектрических сборок на их основе и систем для промышленных, специальных применений. Продукция создается на основе твердых растворов теллурида висмута, полученных уникальным способом кристаллизации (кристаллизация методом Бриджмена). Наша уникальная технология защищена многочисленными патентами.

Наша миссия — непрерывное развитие исследований, массового производства и продвижения конкурентоспособной продукции в целях:
- укрепления репутации надежного и ответственного поставщика;
- повышения благосостояния каждого сотрудника компании;
- достижения наибольшей прибыли за счет максимального удовлетворения требований заказчиков;
- улучшения экологии;
- развития волонтёрской деятельности.

Сегодня компания обеспечивает полный цикл создания инновационной охлаждающей продукции, начиная с разработки термоэлектрических материалов и заканчивая продвижением своей продукции на рынке.

Доступным является широкий спектр серийно производимой термоэлектрической продукции:

  • термоэлектрический модуль стандартный (модуль Пельтье),
  • термоэлектрический модуль миниатюрный (мини модуль Пельтье),
  • термоэлектрический модуль многокаскадный (каскадный модуль Пельтье),
  • специальный термоэлектрический модуль (модуль Пельтье круглой формы, с встроенным терморезистором и др.),
  • генераторный термоэлектрический модуль,
  • термоэлектрическая сборка (термоэлектрический агрегат на элементах Пельтье) воздух-воздух,
  • термоэлектрическая сборка (OUTDOOR термоэлектрический агрегат) воздух-воздух для уличного применения,
  • термоэлектрическая сборка (термоэлектрический агрегат на элементах Пельтье) жидкость-воздух,
  • термоэлектрическая сборка (термоэлектрический агрегат на элементах Пельтье) контакт-воздух,
  • термоэлектрическая сборка (термоэлектрический агрегат на элементах Пельтье) жидкость-жидкость,
  • чиллеры,
  • контроллеры.

Преимуществом сотрудничества с компанией ООО НПО «Кристалл» является доступность инженерных разработок в области теплового менеджмента, включая сложные решения в области термоэлектрического охлаждения и разработки систем теплового контроля на основе термоэлектрических модулей Пельтье (TEM). В наших термоэлектрических сборках мы используем модули Пельтье с высокой эффективностью, надежностью и производимые только компанией ООО НПО Кристалл на своем серийном заводе в городе Богородицк, Тульской области.

С 1998 года ООО НПО «Кристалл» имеет репутацию надежного поставщика термоэлектрических изделий. Огромный опыт международных продаж и сильная техническая поддержка являются ключевыми преимуществами продвижения термоэлектрической продукции в Европе, Азии, Ближнем Востоке, Северной Америке и внутреннем рынке.

Термоэлектрические устройства, производимые компанией Кристалл, выгодно отличаются высокими рабочими параметрами, большим ресурсом, привлекательной ценой и конкурентными сроками поставки.

Производство термоэлектрических модулей – Портфельная компания РОСНАНО

Термоэлектричество — это совокупность явлений, в которых электрический потенциал возникает из-за разницы температур, или же разница температур создается электрическим потенциалом.

Термоэлектрический модуль — устройство, состоящее из твердотельных полупроводниковых элементов, преобразующих тепловую энергию в электричество (эффект Зеебека), либо выполняющих перенос тепловой энергии т.е. охлаждение и нагревание разных сторон термоэлектрического модуля, с помощью электрической энергии (эффект Пельтье). Эти свойства термоэлектрического модуля (эффект Зеебека) используются в термоэлектрических генераторах (ТЭГ) и в термоэлектрических охлаждающих установках (эффект Пельтье).

Основным элементом термоэлектрического модуля является активная структура, которая представляет собой совокупность термопар, электрически соединенных, как правило, последовательно. Наиболее распространенным полупроводниковым материалом для активной структуры (термопар) является теллурид висмута.

Активная структура помещается между двумя электроизолированными пластинами — теплопроводами. Термоэлектрическая система (ТЭС) представляет собой устройство, выполненное в виде нескольких скрепленных между собой теплообменников, между которыми установлены термоэлектрические модули. В зависимости от назначения различают охлаждающие, термостабилизирующие и генерирующие ТЭС.

Термоэлектрические устройства, производимые по технологии CERATOM®, выполнены с применением наноструктурированных композитных материалов и лишены недостатков, присущих керамическим аналогам, обладая при этом высоким коэффициентом полезного действия и конкурентоспособной стоимостью. К примеру, уникальная система прямого принудительного охлаждения корпуса твердотельного лазера позволяет снизить ее вес на 15–30%, уменьшить температурный перегрев активных элементов и дополнительно увеличить мощность твердотельных полупроводниковых приборов на 50%.

Охлаждающие и генерирующие термоэлектрические системы

Схема охлаждающего модуля на основе элемента Пельтье нового поколения — CERATOM® (TERMIONA).

Сравнение элементов Пельтье, созданных по классической технологии и технологии CERATOM®.

Преимущества технологии CERATOM®:

  • идеальный тепловой контакт с радиатором,
  • высокая тепловая и механическая прочность слоев,
  • стала возможна полная автоматизация производства.

Ключевую роль в достижении уникальных качеств ТЭС CERATOM® с наноструктурными теплопроводами и тонкими высококачественными барьерно-коммутационными слоями, играют используемые нанотехнологические решения. К ним относятся технология микродугового оксидирования, вакуумно-плазменные технологии (PVD) и управление параметрами этих процессов.

Техническая иллюстрация принципа работы охлаждающих термоэлектрических систем

До настоящего времени в производстве термоэлектрических модулей и ТЭС использовался ряд дорогостоящих материалов. Выполняя достаточно утилитарную функцию, а именно обеспечивая конструкционную прочность термоэлектрического модуля, эти материалы так же оказывали и негативное влияние на модули: — существенно увеличивали себестоимость; — снижали КПД; — не позволяли варьировать форму и размер модуля в широких пределах; — снижали характеристики, надежность, тем самым ограничивая область применения модулей.

Также данные материалы создавали технологические препятствия для автоматизации производства, поэтому на сегодняшний день большая часть керамических модулей в мире собирается вручную. Термоэлектрические системы, произведенные по технологии CERATOM, лишены этих недостатков. Новая технология предусматривает полную автоматизацию как производственного процесса получения наноструктурированных композитов, так термоэлектрических систем и конечной продукции.

  • Схема охлаждения модуля на основе элемента Пельте нового поколения — CERATOM (TERMIONA)

Продукцией проекта являются устройства охлаждения, термостатирования и генерации. В частности, речь идет о производстве систем охлаждения для твердотельных лазеров, систем термостатирования «cold plate» для диодных лазеров, термостатированных шкафов для телекоммуникационной аппаратуры, торгового охладительного оборудования, термоэлектрических электрогенераторах для индивидуального жилья. Использование термоэлектричества позволяет осуществлять активное охлаждение, термостатирование и генерацию электроэнергии в тех случаях, когда невозможно использовать традиционные методы (компрессионные холодильники, абсорбционные холодильники, утилизация паразитного тепла в промышленности и быту).

ТЭМ используются для охлаждения различной аппаратуры в транспорте, космических аппаратах, для охлаждения лазерной и телекоммуникационной техники, электроники, для охлаждения в производственных процессах и быту. Применение термоэлектрических систем в качестве генераторов, преобразующих паразитное тепло в электричество, сильно ограничено ввиду низкого КПД керамических термоэлектрических систем, высокой стоимости и конструкционных недостатков, связанных с использованием керамики в качестве теплопроводов.

По материалам пресс-релиза ГК «Роснанотех»

  • Сравнение элементов Пельтье, созданных по классической технологии и технологии CERATOM

О проектах Visual Science для РОСНАНО

Компания Visual Science сотрудничает с группой компаний РОСНАНО, создавая графические информационные материалы с 2008 года. Инфографика предназначена для демонстрации технологий, разрабатываемых и внедряемых проектными компаниями РОСНАНО. Целью проекта в каждом случае является демонстрация ключевого принципа, нанотехнологической составляющей проекта и преимуществах избранного решения по сравнению с аналогами.

Материалы подготовлены a формате одного слайда-листа. Модульная структура инфографики позволяет использовать ее как в презентациях целиком так и отдельными фрагментами, что упрощает подготовку иллюстраций для сайта, отчетов и публикаций. Таким образом, один материал позволяет решить практически все задачи иллюстрирования информации о проекте.

В целевую аудиторию изготавливаемой графики входят как профессионалы данной области, так и широкий круг специалистов других направлений без технического бэкграунда. Научная достоверность в сочетании с оптимальной степенью обобщения позволяют эффективно строить коммуникацию с разными по уровню подготовки целевыми группами, включая широкую аудиторию.

Вся подготовленная графика используется ГК РОСНАНО на протяжении 5 и более лет. Как обычно, особенность работы с Visual Science заключается в решении всего спектра задач от изучения научной литературы по проекту до подготовки конечной визуализации на стороне компании, что позволяет существенно сэкономить время высококвалифицированных специалистов заказчика.

TEC1-03108 от 979 рублей в наличии 25 шт производства STONECOLD PM-20X20-17.6

Главная Каталог Полупроводники Оснащение для полупроводников Модули Пельтье всего в наличии 25 шт
Количество Цена ₽/шт
+1 1 026
+4 979
Минимально 1 шт и кратно 1 шт
  • Условия

    Срок поставки 5-10 рабочих дней
    Цена включает НДС Cрок поставки и цену сообщим по вашему запросу
  • Артикул

    PM-20X20-17. 6
  • Производитель

    STONECOLD
  • Техническое описание:

Вы можете запросить у нас любое количество TEC1-03108, просто отправьте нам запрос на поставку.
Мы работаем с частными и юридическими лицами.

Купить TEC1-03108 от 1 шт с помощью банковской карты можно прямо сейчас на нашем сайте.
Работаем с частными и юридическими лицами.

PM-20X20-17.6 описание и характеристики

Модуль: элемент Пельтье; 3,75В; 8,5А; 20x20x3,5мм; 17,6Вт; 16AWG

  • Производитель

    STONECOLD

  • Длина провода

    150мм

  • Производительность макс.

    17,6Вт

  • Материал контакта

    BiSn

  • Материал изоляции

    тефлон

  • Материал

    Al<sub>2</sub>O<sub>3</sub>

  • Сопротивление

    360мОм

  • Размер провода

    16AWG

  • Внешние размеры

    20x20x3,5мм

  • Рабочая температура

    макс. 90°C

  • Рабочее напряжение макс.

    3,75В

  • Тип модуля

    элемент Пельтье

  • Рабочий ток макс.

    8,5А

  • Разница температур макс.

    68°C

Бесплатная доставка
заказов от 5000 ₽

Доставим прямо в руки или в ближайший пункт выдачи


Зарядная станция на базе Элемента Пельтье

Актуальность

Изучить физику работы элемента Пельтье, проверить на опыте реальность эффекта Зеебека. 

Цель

Собрать установку для преобразования тепловой энергии в электрическую. 

Задачи

1. Собрать установку.

2. Проверить работоспособность.

3. Провести замер выходных данных.

4. Проанализировать выходные данные.

5. Спрогнозировать использование технологии и рациональность её применения. 

Оснащение и оборудование, использованное при создании работы

Элемент Пельтье

Установка, закрепляющая все части проекта

Источник тепла, топливо

Источник холода, вода

Контроллер напряжения для выравнивания нестабильного постоянного тока

 USB-выход для подсоединения к аккумулятору телефона 

Описание

Из подручных материалов изготовлен скелет (фонарь для свечей), к его крышке прикреплён элемент Пельтье. Конструкция проверена на отсутствие мест возможного прямого контакта с огнём. Сверху на элемент прикреплена металлическая кружка с холодной водой. В качестве прослойки использованы термопаста, термоклей и металлические пластины, хорошо проводящие тепло, но не очень массивные, чтобы исключить большие потери энергии. Провода от элемента выведены к контроллеру напряжения, который соединён с кабелем USB. 

 

Результаты работы/выводы

Подобное устройство не рассчитано на большой КПД, так как изначально рассматривалось как побочный преобразователь энергии. Поэтому использование его в быту достаточно рационально, так как Пельтье не привередлив к источникам тепла и охлаждения. Главное – поддерживать разницу температур, достаточную для получения напряжения и тока, необходимых для подключаемого устройства. Такая установка достаточно актуальна, проста в сборке и использовании, а также довольно дешёвая.

 Перспективы использования результатов работы

Усовершенствовать устройство для повышения КПД, продумать внешний вид и способы снижения себестоимости. Запустить в серийное производство.

Охлаждающий кожух TPCC ISD400 Core (элемент Пельтье)

Охлаждающий кожух TPCC ISD400 Core (элемент Пельтье) | SICK

Тип:Охлаждающий кожух TPCC ISD400 Core (элемент Пельтье)

Артикул: 6036994

Технический паспорт изделия Русский Cesky Dansk Deutsch English Español Suomi Français Italiano 日本語 – Японский 한국어 – Корейский Nederlands Polski Portugues Svenska Türkçe Traditional Chinese Китайский

Copy shortlink
  • Технические характеристики

  • Загрузки

  • Сценарии применения

  • Таможенные данные

  • Охлаждающий кожух TPCC работает с использованием эффекта Пельтье и дает возможность эксплуатировать датчики длительное время при температуре окружающей среды до +75 °C. Кроме того, с помощью ТРСС может существенно увеличиваться срок службы лазерных датчиков. Физически обусловлено снижение срока службы лазерного датчика наполовину на каждые 10 °C повышения температуры. При применении в условиях высоких температур, связанных с климатом или технологией, TPCC предлагает оптимальную защиту датчика, снижает риск неожиданных поломок и, соответственно, простои оборудования. Целенаправленное продление срока службы датчиков позволяет снизить расходы на их замену и сократить простои производства. Инновационный охлаждающий кожух TPCC надежно защищает датчики, повышает производительность и снижает расходы.

    Краткий обзор
    • Эффективная защита для датчиков при повышенных температурах окружающей среды
    • Не требующая техобслуживания система охлаждения с использованием эффекта Пельтье
    • Прочный корпус из полиамида-6 с передним защитным стеклом
    • Термостатическое регулирование внутренней температуры
    • Контроль температуры с автоматическим отключением при превышении температуры
    • Юстировочное крепление для простого монтажа
    Ваши преимущества
    • Активное охлаждение датчиков с использованием эффекта Пельтье увеличивает их срок службы на 15 % при температуре окружающей среды 25 °C и на 400 % при температуре окружающей среды 45 °C. Благодаря более редкой замене датчиков значительно снижаются расходы на их замену.
    • Повышенная доступность датчиков исключает неожиданные поломки и связанные с этим простои оборудования. Тем самым исключаются затраты вследствие поломки оборудования и повышается производительность.
    • Постоянная внутренняя температура гарантирует высокую точность измеряемых значений и, соответственно, обеспечивает получение прецизионных результатов измерения
    • Электрическое охлаждение с использованием эффекта Пельтье не требует техобслуживания, необходимо лишь обеспечить подключение напряжения 24 В вместо затратного водяного охлаждения

    Технические чертежи

    Dimensional drawing

Наверх

Пожалуйста, подождите...

Ваш запрос обрабатывается, это может занять несколько секунд.

Элемент Пельтье он же термоэлектрический модуль

Чуть чуть теории.

Единичным элементом термоэлектрического модуля (ТЭМ)  является термопара, состоящая из двух разнородных элементов с p- и n- типом проводимости. Элементы соединяются между собой при помощи коммутационной пластины из меди. В качестве материала элементов традиционно используются полупроводники на основе висмута, теллура, сурьмы и селена.

Термоэлектрический модуль (Элемент Пельтье) представляет собой совокупность термопар, электрически соединенных, как правило, последовательно. В стандартном термоэлектрическом модуле термопары помещаются между двух плоских керамических пластин на основе оксида или нитрида алюминия. Количество термопар может изменяться в широких пределах - от единиц до сотен пар, что позволяет создавать ТЭМ практически любой холодильной мощности - от десятых долей до сотен ватт.

При прохождении через термоэлектрический модуль постоянного электрического тока между его сторонами образуется перепад температур -одна сторона (холодная) охлаждается, а другая (горячая) нагревается. Если с горячей стороны ТЭМ обеспечить эффективный отвод тепла, например, с помощью радиатора, то на холодной стороне можно получить температуру, которая будет на десятки градусов ниже температуры окружающей среды. Степень охлаждения будет пропорциональной величине тока. При смене полярности тока горячая и холодная стороны меняются местами.

Практика.

Элементы Пельте широко используются в системах охлаждения. Но не многие знают об их другом свойстве – вырабатывать энергию. Изучению этих их возможностей и посвящена данная лабораторная работа. 

50*50 мм элемент, установлен между двумя алюминиевыми брусками. Предварительно их поверхности притёрты и смазаны пастой КПТ. В одном из брусков просверлены сквозные отверстия, через которые пропущена медная трубка, для водяного охлаждения. Вот, что получилось:

   Подключаем воду к охладителю  к одной стороне элемента Пельтье, а другую ставим на конфорку.  К выходу элемента подключаем 10Вт 6 вольтовою лампочку. Результат - наш генератор работает !

  Опыт доказывает, что элемент Пельтье хорошо вырабатывает электричество. Лампочка горит достаточно ярко, напряжение около 4.5 вольта. 

Нагрев до 160 градусов оказался не оптималенлен, при 120 градусах результат был хуже всего на 10%. 

   Температура охлаждающей жидкости на выходе десять градусов, на входе на один градус меньше. Судя по таким результатам, вода, для охлаждения, не так уж необходима…

При помощи элементов Пельтье можно добывать электричество в экспедиции, в турпоходе, на охотничьем зимовье, словом в любом месте, где это может понадобиться. Естественно, при наличии дров или яркого солнца, ну и обязательно смекалки.

Использование термоэлектрического модуля.

Такой термоэлектрический генератор прекрасно помнят те, кто помнит советские совхозы и колхозы. Говорят, в войну немцы не могли понять, как партизаны могут подолгу вести радиопередачи из осажденного леса.

Да, как говорится - если бы нашим ученым платили деньги, то они бы iphone  ещё в `85 изобрели бы ! 🙂

Термоэлектрический холодильник

Термоэлектрический холодильник (вариант 2)

Термоэлектрический холодильник (вариант 3)

Автомобильный охладитель для баночных напитков

Кулер для питьевой воды

Термоэлектрический кондиционер для кабины КАМАЗа

В такой "ковшик" наливается вода, ставится на огонь и, пожалуйста, подзаряжай мобильник. Весь секрет в дне, там "зарыт" Пельтье

Давайте поподробней об этой конструкции.

В настоящее время растет интерес к использованию термоэлектрических генераторных модулей в бытовых устройствах. В первую очередь это касается возможности питания маломощных потребителей электроэнергии - радиоприемники, сотовые и спутниковые телефоны, переносные компьютеры, устройства автоматики и т.п. от имеющихся источников тепла. Термоэлектрический генератор, в котором отсутствуют вращающиеся, трущиеся и какие-либо другие изнашиваемые части, позволяет непосредственно получать электричество из любого источника тепла: выхлопных газов двигателей внутреннего сгорания, горячей воды геотермальных источников, "бросового" тепла ТЭЦ и т.п. Руководствуясь опытом, полученным при создании промышленных термоэлектрических генераторов (ТЭГ) различной мощности - от нескольких Ватт до нескольких килоВатт ИПФ КРИОТЕРМ приступила к серийному производству бытового ТЭГ номинальной мощностью 8 Вт. Конструктивно генератор выполнен в виде алюминиевого ковшика с внутренним объемом около 1 л в донной части которого установлены генераторные модули производства ИПФ Криотерм.

 

Необходимый для работы генератора перепад температур достигается при разогреве ковшика, например, пламенем костра. Вода, нагреваемая внутри ковшика может идти на приготовление пищи или на другие цели. Данный генератор в первую очередь предназначен для использования в глухих, труднодоступных местах для подзарядки элементов питания индивидуальных средств связи и навигации, освещения и т.п. Он незаменим для охотников, туристов, моряков, сотрудников спасательных и специальных служб, вынужденных долгое время находится вдали от источников центрального энергоснабжения.

Преимуществом генератора является малый вес и объем, высокая удельная генерируемая мощность, функциональность и высокая надежность. Конструкция генератора исключает возможность его перегрева при правильном использовании. В качестве дополнительной опции к генератору предлагается ступенчатый стабилизатор напряжения с диапазонами 3 В - 6 В - 9В -12В и переходники для зарядных устройств.

БЫТОВОЙ ГЕНЕРАТОР ТЕРМОЭЛЕКТРИЧЕСКИЙ 1TG-8

Техническая спецификация

Масса без жидкости , кг, не более 0,55

Габаритные размеры, мм

с ручкой

без ручки 250х130х110 ? 123, h=100

Внутренний объем, дм3 1,0

Номинальная генерируемая мощность, Вт, не менее 8,0

Выходное напряжение, В 3,0 ? 12,0

Ток, мА 660 ? 2660

А вот ещё один пример использования .

Из таких небольших термоэлектрических конденсаторов и состоит генератор.

Уже сейчас термоэлектрические генераторы (TEG) благодаря применению новейших материалов способны вырабатывать электроэнергию мощностью до 1000 Вт.

Термогенератор особенно порадует любителей динамичной езды: ведь чем выше обороты мотора, тем больше вырабатывается электроэнергии, которая в будущем может использоваться в гибридных силовых установках, например, для еще лучшей разгонной динамики.

Почти две трети энергии топлива в современных ДВС «улетает» в атмосферу вместе с теплом. Поэтому инженеры BMW вместе со специалистами американского аэрокосмического агентства NASA активно работают над технологиями превращения тепловой энергии выхлопных газов в электрическую. Такие установки имеют еще один позитивный эффект: дополнительное нагревание непрогретого мотора. Пока TEG «окутывает» отрезок выхлопной трубы, но в будущем планируется интегрировать эту систему в катализатор, используя тем самым его тепловой режим. Для более масштабного внедрения данной технологии в автомобиле придется модернизировать днище, расширив в некоторых местах центральный тоннель. Ожидается, что подобная система уже совсем скоро сможет давать 5-процентную экономию топлива, повышая КПД двигателя внутреннего сгорания.

Вот такой он Элемент Пельтье или термоэлектрический модуль!

Руководство по проектированию элементов ТЕС / Пельтье

Контроллеры ТЕС используются для термоэлектрического охлаждения и нагрева в сочетании с элементами Пельтье или резистивными нагревателями. Элементы Пельтье - это тепловые насосы, которые передают тепло от одной стороны к другой в зависимости от направления электрического тока. Контроллеры TEC используются для управления элементами Пельтье.
В данном руководстве по проектированию системы содержится информация о том, как разработать простую систему термоэлектрического охлаждения с использованием контроллеров ТЕС и элементов Пельтье.При разработке термоэлектрического устройства охлаждение является критически важной частью. Итак, мы возьмем случай охлаждения объекта в качестве примера для руководства по дизайну.

TEC Controller Обзор продукта

Содержание

Проектирование полной термоэлектрической системы может быть большой сложной задачей. Однако для более простой системы не следует теряться в деталях. Это руководство является отправной точкой для оценки проектных параметров с некоторыми упрощениями для нового приложения термоэлектрического охлаждения.
Шаг за шагом мы проходим все необходимые этапы проектирования, выделяем важные моменты и, наконец, рассчитываем пример приложения. Мы обрабатываем систему одноступенчатым элементом Пельтье. Многоступенчатые элементы Пельтье достигают более низких температур, но их сложнее проектировать.

Консультации по сложным тепловым расчетам

Мы сотрудничаем с Elinter AG, поставщиком полных, более сложных решений в области теплового проектирования. Elinter может помочь вам в разработке вашего термоэлектрического приложения. Это включает моделирование, проектирование, механическое строительство, а также выбор подходящей электроники, радиаторов и тепловых трубок.

Видео с термоэлектрическим охлаждением

Это видео объясняет основы термоэлектрического охлаждения. Мы приводим примеры важных шагов проектирования для успешного проектирования термоэлектрического приложения с использованием контроллеров TEC и элементов Пельтье.

Справочная информация

Термоэлектрическое охлаждение и обогрев используется для различных целей, даже при активном охлаждении ниже температуры окружающей среды или высокой точности (стабильность <0.01 ° C). Контроллер TEC - источник тока для элемента Пельтье - в сочетании с элементом Пельтье активно регулирует температуру данного объекта. Это делается без акустических и электрических шумов, вибраций и механических движущихся частей. Переход от охлаждения к нагреву возможен путем изменения направления тока без внесения каких-либо механических изменений.

При работе с элементами Пельтье существуют температурные ограничения. Они доступны с максимальной рабочей температурой 200 ° C, где этот предел определяется температурой оплавления припоя и уплотнения.Другой предел - максимальная температура между горячей и холодной сторонами элемента Пельтье. В общих приложениях разница примерно в 50 К может быть реализована с помощью одноступенчатого элемента.
При использовании элемента Пельтье в качестве термоэлектрического охладителя существует предел, при котором температура снова будет повышаться при увеличении подачи тока. Это происходит из-за рассеивания мощности (I 2 R) внутри элемента Пельтье при потреблении большего тока, чем I max .

Типовая термоэлектрическая система

Основными частями термоэлектрической системы охлаждения, которые имеют отношение к нашему процессу проектирования, являются следующие:

  • Контроллер ТЕС
  • Элемент Пельтье
  • Радиатор

Другая важная деталь, напарник радиатора, не видна напрямую. Это окружающий воздух с его температурой, где рассеивается тепло.
Помимо вышеупомянутых частей, для всего приложения важны и другие компоненты. Это, например, датчики температуры, программное обеспечение для настройки и контроля контроллера ТЕС, вентилятор и, конечно же, источник питания.

Пожалуйста, посмотрите следующее видео, чтобы получить обзор контроллеров семейства TEC и их функций.

Тепловая схема

На этой схеме простой термоэлектрической системы показаны объекты, участвующие в пути теплового потока от объекта к окружающему воздуху.Это упрощенная схема, в которой мы предполагаем идеальную теплоизоляцию объектов, например на температуру объектов не влияет конвекция. (Q - теплоемкость каждой детали.)


Упрощенная схема системы охлаждения


Следующая - еще более упрощенная схема - представляет систему охлаждения и соответствующую температурную диаграмму справа. В этом случае объект охлаждается до -5 ° C холодной стороной элемента Пельтье.Горячая сторона элемента Пельтье имеет температуру 35 ° C. Радиатор отводит тепло в окружающий воздух, имеющий температуру 25 ° C.


Более упрощенная схема процесса проектирования и соответствующая температурная диаграмма

Процесс проектирования

При проектировании термоэлектрического охлаждающего устройства необходимо выполнить следующие шаги:

  1. Оценить тепловую нагрузку охлаждаемого объекта
  2. Определить рабочий диапазон температуры объекта и радиатора
  3. Выберите элемент Пельтье, соответствующий требованиям
  4. Выберите контроллер ТЕС с подходящим диапазоном мощности
  5. Выбрать радиатор для элемента Пельтье
  6. Выберите вентилятор для вентиляции радиатора (дополнительно)
  7. Выберите датчик температуры объекта и дополнительный датчик раковины
  8. Выберите источник питания для контроллера ТЕС

Это итеративный процесс. Протестируйте свою экспериментальную установку, улучшите ее, повторите вышеуказанные шаги.

1. Оценка тепловых нагрузок

Важным параметром является количество тепла, которое должно быть поглощено от объекта холодной поверхностью ПЭМ или элемента Пельтье. (Q C [Вт])
В зависимости от области применения необходимо учитывать различные типы тепловой нагрузки:

  • Рассеиваемая мощность
  • Радиация
  • Конвективный
  • Проводящий
  • динамический (dQ / dT)

Эти нагрузки суммированы в тепловой нагрузке Q C , которая передается с холодной стороны на горячую, где расположен радиатор.

2. Определение температуры

Обычно задача состоит в том, чтобы охладить объект до заданной температуры. Если охлаждаемый объект находится в контакте с холодной поверхностью термоэлектрического модуля, температуру объекта можно считать равной температуре холодной стороны элемента Пельтье через определенное время.

При описании применения термоэлектрического охлаждения важны два конструктивных параметра.

  • T O Температура объекта (температура холодной стороны) [° C]
  • T HS температура радиатора (температура горячей стороны) [° C] = T окр. + ΔT HS
    См. Раздел 5.Радиатор для получения дополнительной информации.

Разница между T O и T HS известна как dT (ΔT или deltaT) [K]:
dT = T HS - T O = T amb + ΔT HS - Т О

3. Выбор элемента Пельтье / ТЕМ-модуля

Элемент Пельтье создает разницу температур между его обеими сторонами из-за протекания тока. Этот раздел основан на справочной информации со следующих страниц:

Одним из важных критериев при выборе элемента Пельтье является коэффициент полезного действия (COP).Определение COP - это тепло, поглощенное на холодной стороне, деленное на входную мощность элемента Пельтье: COP = Q C / P el
Результатом максимального COP является минимальная входная мощность Пельтье, таким образом, минимальная общая тепло отводится радиатором. (Q h = Q C + P el ) Следовательно, мы пытаемся найти рабочий ток, который в сочетании с определенным dT приводит к оптимальному COP.

Наконец, мы получаем оценку Q max , которая позволяет нам выбрать элемент Пельтье.

Добавляем расчетную маржу на

  • выбор элемента Пельтье с мощностью теплового насоса выше требуемой,
  • путем разработки системы с рабочим током значительно ниже I max элемента Пельтье,
  • или в качестве третьего варианта, увеличив размер радиатора или добавив к нему вентилятор, чтобы поддерживать низкую температуру горячей стороны.

При применении этих мер изменение температуры окружающей среды или активной тепловой нагрузки не приводит к тепловому разгоне.

Список дистрибьюторов см. На странице Элементы Пельтье.

4. Выбор контроллера ТЕС

Контроллер ТЕС регулирует ток, подаваемый на элемент Пельтье, в соответствии с желаемой температурой объекта и фактической измеренной температурой объекта.

Мы выбираем рабочий ток для достижения оптимального COP. На основе этого тока мы выбираем контроллер TEC, а не на основе I max .

Пожалуйста, обратитесь к странице продукта контроллера TEC для обзора наших устройств.

5. Радиатор

Радиатор поглощает тепловую нагрузку с горячей стороны элемента Пельтье и отводит ее в окружающий воздух.

При подборе радиатора необходимо добавить некоторый запас, чтобы его температура не стала слишком высокой. На следующей диаграмме показано, что тепло Q h , отклоняемое элементом Пельтье, может быть в 2,6 раза больше Q max . Это происходит из-за внутреннего тепла в элементе Пельтье во время теплового насоса.Следовательно, общее тепло, которое должно рассеиваться на радиаторе, состоит из тепла объекта и тепла, производимого внутри элемента Пельтье.

На графике ниже показано соотношение между теплотой, отклоняемой элементом Пельтье, от тока для различных dT. Используйте графики, предоставленные производителем элемента Пельтье, чтобы оценить тепло, рассеиваемое радиатором.

Поскольку радиатор должен вписываться в приложение по форме и размерам, эффективность контроллера ТЕС также играет решающую роль, поскольку размер радиатора зависит от него.В зависимости от ваших требований решением может быть изготовленный на заказ радиатор или тепловая трубка.

Тепловое сопротивление рассчитывается по формуле: R thHS = ΔT HS / Q h [K / W]
ΔT HS = разница температур между радиатором и температурой окружающего воздуха [K]
Q h = Общая тепловая нагрузка (объект + потеря элемента Пельтье) [Вт]

Чтобы оценить ΔT HS , примите во внимание максимально возможную температуру окружающей среды, чтобы ваши расчеты в этом случае были верны.

Зависимость отклоненного тепла от dT

На следующем графике показано соотношение между Q h и Q C для различных dT. Отношение экспоненциально растет с каждым увеличением dT. Это означает, что при большом dT большое количество тепла рассеивается радиатором, а на холодной стороне элемента Пельтье поглощается сравнительно небольшое количество тепла.

Мы также можем использовать этот график для оценки результирующего теплоотвода на основе количества переносимого тепла Q C , даже до выбора элемента Пельтье.

Для расчета теплового сопротивления мы принимаем реальное значение для dT HS . Поскольку нам еще неизвестен реальный Q h , мы оцениваем его по приведенному выше графику.

Найдите отношение Q h / Q C при заданном токе и dT.

Выберите желаемую разницу температур между радиатором и температурой окружающего воздуха ΔT HS .

Теперь мы можем заменить в приведенной выше формуле для R thHS Q h нашим соотношением Q h / Q C .

R thHS = ΔT HS / (отношение * Q C )

Конечно, размеры сохраняются только в том случае, если мы позже задействуем элемент Пельтье в выбранной рабочей точке (т. Е. С выбранным током).

Выбор теплового сопротивления радиатора может влиять на dT = T amb + ΔT HS - T O .
(ΔT HS = Q h / R thHS )

Дистрибьюторы / производители

6.Вентилятор

Вентиляторное охлаждение радиатора снижает тепловое сопротивление радиатора окружающему воздуху.

Следовательно, вентилятор увеличивает тепловую производительность. Это уменьшает разницу температур dT или позволяет использовать радиаторы меньшего размера.

Контроллеры TEC позволяют управлять максимум двумя вентиляторами, которые поддерживают следующие функции:

  • Входной сигнал управления ШИМ для управления скоростью вентилятора. TEC генерирует ШИМ-сигнал 1 кГц или 25 кГц в диапазоне от 0 до 100%.
  • Выходной сигнал генератора частоты, который представляет скорость вращения. Выход должен быть выходным сигналом с открытым коллектором.

Рекомендуется использовать вентилятор с таким же напряжением питания, что и напряжение питания контроллера ТЕС.

Рекомендации по вентиляторам

Для получения подробной информации о функциях вентилятора, предложениях вентилятора и оптимальных настройках, пожалуйста, обратитесь к Руководству пользователя TEC Family, глава 6.3 (PDF).

Подключение вентилятора к контроллеру ТЕС

См. Страницу с примечаниями к контроллеру TEC, чтобы узнать, как подключить вентилятор.

7. Примеры расчетов

Рассчитаем для примера расчетные параметры термоэлектрической системы охлаждения.

Для выбора элемента Пельтье необходимы два тепловых параметра .

  • Максимальная холодопроизводительность Q max
  • Разница температур dT
Оценка тепловых нагрузок и определение температуры

Мы предполагаем, что объект с тепловой нагрузкой Q C = 10 Вт должен быть охлажден до нуля градусов Цельсия.(T O = 0 ° C) Предположим, что температура в помещении составляет 25 ° C, а температура радиатора T S ожидается на уровне 30 ° C. Таким образом, разница температур между холодной и горячей сторонами элемента Пельтье dT составляет 30 К. Важно помнить, что было бы неправильно рассчитывать dT как разницу между температурой окружающего воздуха и заданной температурой объекта.

Выбор модуля Пельтье / ТЕМ

Наша цель - найти Q max , который был бы достаточно большим, чтобы покрыть необходимый Q C и дать лучший COP.

На графике зависимости производительности от тока мы находим максимум кривой dT = 30 K при токе I / I max = 0,45 . Как правило, это соотношение не должно быть выше 0,7.

Используя этот коэффициент для тока, мы находим на графике тепловой насос в зависимости от тока значение Q C / Q max = 0,25 для данной разницы температур dT = 30 K и относительного тока 0,45.

Теперь мы можем рассчитать Q max для элемента Пельтье. Q макс = Q C / 0,25 = 10 Вт / 0,25 = 40 Вт

На графике зависимости производительности от тока мы находим COP = 0,6 для нашего ранее считанного I / I max . Это позволяет нам рассчитать P el = Q C / COP = 10 Вт / 0,6 = 16,7 Вт .

Производители элементов Пельтье предлагают широкий ассортимент элементов. В их линейке продуктов мы ищем элемент с Q max 40 Вт.Поскольку у нас разница температур dT = 30 K, достаточно одноступенчатого элемента Пельтье.

В качестве примера мы выбираем элемент Пельтье с Q max = 41 Вт, dT max = 68 K, I max = 5 A и V max = 15,4 В.

Рабочий ток и напряжение рассчитываются следующим образом:
I = I max * (I / I max ) = 5 A * 0,45 = 2,25 A
V = P el / I = 16,7 Вт / 3. 83A = 7,42 В

Выбор контроллера ТЕС

Исходя из рассчитанных значений, мы выбираем TEC-контроллер TEC-1091 с выходным током 4 А и выходным напряжением 21 В. Хорошо добавить некоторый расчетный запас, выбрав контроллер ТЕС с более высоким, чем требуется, выходным током. Позже, когда производительность системы станет общеизвестной, может быть достаточно другого контроллера с меньшей производительностью.

Радиатор

Чтобы найти радиатор для элемента Пельтье, нам нужно знать необходимое термическое сопротивление радиатора.На графике отклонения тепла от тока мы находим Q h / Q max = 0,6 для выбранного нами тока и dT. Таким образом, Q h = Q max * 0,6 = 41 Вт * 0,6 = 24,6 Вт.

Расчет теплового сопротивления радиатора:
R thHS = ΔT HS / Q h = 5 K / 24,6 Вт = 0,2 K / Вт
Нам нужен радиатор с меньшим тепловым сопротивлением чем 0,2 К / Вт.

Приведенные выше расчеты являются первой оценкой параметров термоэлектрической системы охлаждения.Для определения оптимальных параметров системы необходимо тестирование реальной системы и повторение этапов проектирования.

8. Датчики температуры

Датчики температуры используются контроллером ТЕС для измерения температуры объектов и температуры радиатора.

Измерение температуры объекта

Чтобы иметь возможность контролировать температуру объекта, необходимо разместить на объекте температурный зонд (датчик). Обратите внимание, что важно разместить датчик как можно ближе к критической точке на объекте, где вам нужна желаемая температура.

Поскольку измерение температуры объекта требует более высокой точности и большего диапазона, мы предлагаем использовать датчики Pt100. Чтобы иметь возможность измерять температуру намного ниже 0 ° C, необходимы зонды Pt100 / 1000. Это потому, что, если температура становится слишком низкой, датчики NTC не могут использоваться, поскольку значение сопротивления становится слишком большим. Значение сопротивления датчика должно быть меньше эталонного сопротивления в контроллере ТЕС.

При использовании датчиков Pt100 / 1000 температура объекта измеряется с использованием метода четырехконтактного измерения (4-проводное измерение) для достижения более высокой точности при низких сопротивлениях.Для измерения NTC используется двухпроводная технология.

Термин «4-проводной» не означает, что необходим датчик с четырьмя контактами. Используются отдельные пары токоведущих и чувствительных электродов. (Подробнее о четырехконтактном считывании)

Диапазон измерения температуры контроллера ТЕС зависит как от датчика температуры, так и от конфигурации оборудования. Пожалуйста, обратитесь к соответствующему техническому описанию для получения подробной информации.

Подключение датчика температуры

См. Страницу примечаний к контроллеру TEC, чтобы узнать, как подключить датчик температуры.

9. Требования к источникам питания

Блок питания является источником питания для контроллера ТЕС.

В зависимости от выбранного контроллера ТЕС необходимо выбрать источник питания. Убедитесь, что источник питания может обеспечить питание, необходимое для управления контроллером ТЕС с элементом Пельтье. (Как правило, вы можете добавить 10% резерва. Умножьте необходимую выходную мощность ТЕС на 1,1). Информацию о соотношении входного и выходного напряжения см. В таблице данных контроллера.

Рекомендации по источникам питания

10. Проверьте свою настройку

Теперь, когда вы выбрали системные компоненты, вы настраиваете приложение и начинаете тестирование и оптимизацию. Чтобы упростить сборку и первоначальную настройку с использованием нашего сервисного программного обеспечения, пожалуйста, обратитесь к нашему пошаговому руководству по установке контроллера TEC.
Комплексное сервисное программное обеспечение можно загрузить и использовать бесплатно.

11. Узлы термоэлектрического охлаждения

Существуют также универсальные предварительно собранные термоэлектрические охлаждающие узлы, если вы не хотите строить систему с нуля. Эти модули обычно содержат металлическую пластину для крепления объекта, элемент Пельтье, радиатор и вентилятор. Использование таких сборок представляет интерес на этапе создания прототипа для первых экспериментов.

Руководство по проектированию элементов TEC / Пельтье

Контроллеры ТЕС используются для термоэлектрического охлаждения и нагрева в сочетании с элементами Пельтье или резистивными нагревателями. Элементы Пельтье - это тепловые насосы, которые передают тепло от одной стороны к другой в зависимости от направления электрического тока.Контроллеры TEC используются для управления элементами Пельтье.
В данном руководстве по проектированию системы содержится информация о том, как разработать простую систему термоэлектрического охлаждения с использованием контроллеров ТЕС и элементов Пельтье. При разработке термоэлектрического устройства охлаждение является критически важной частью. Итак, мы возьмем случай охлаждения объекта в качестве примера для руководства по дизайну.

TEC Controller Обзор продукта

Содержание

Проектирование полной термоэлектрической системы может быть большой сложной задачей.Однако для более простой системы не следует теряться в деталях. Это руководство является отправной точкой для оценки проектных параметров с некоторыми упрощениями для нового приложения термоэлектрического охлаждения.
Шаг за шагом мы проходим все необходимые этапы проектирования, выделяем важные моменты и, наконец, рассчитываем пример приложения. Мы обрабатываем систему одноступенчатым элементом Пельтье. Многоступенчатые элементы Пельтье достигают более низких температур, но их сложнее проектировать.

Консультации по сложным тепловым расчетам

Мы сотрудничаем с Elinter AG, поставщиком полных, более сложных решений в области теплового проектирования.Elinter может помочь вам в разработке вашего термоэлектрического приложения. Это включает моделирование, проектирование, механическое строительство, а также выбор подходящей электроники, радиаторов и тепловых трубок.

Видео с термоэлектрическим охлаждением

Это видео объясняет основы термоэлектрического охлаждения. Мы приводим примеры важных шагов проектирования для успешного проектирования термоэлектрического приложения с использованием контроллеров TEC и элементов Пельтье.

Справочная информация

Термоэлектрическое охлаждение и обогрев используется для различных целей, даже при активном охлаждении ниже температуры окружающей среды или высокой точности (стабильность <0.01 ° C). Контроллер TEC - источник тока для элемента Пельтье - в сочетании с элементом Пельтье активно регулирует температуру данного объекта. Это делается без акустических и электрических шумов, вибраций и механических движущихся частей. Переход от охлаждения к нагреву возможен путем изменения направления тока без внесения каких-либо механических изменений.

При работе с элементами Пельтье существуют температурные ограничения. Они доступны с максимальной рабочей температурой 200 ° C, где этот предел определяется температурой оплавления припоя и уплотнения.Другой предел - максимальная температура между горячей и холодной сторонами элемента Пельтье. В общих приложениях разница примерно в 50 К может быть реализована с помощью одноступенчатого элемента.
При использовании элемента Пельтье в качестве термоэлектрического охладителя существует предел, при котором температура снова будет повышаться при увеличении подачи тока. Это происходит из-за рассеивания мощности (I 2 R) внутри элемента Пельтье при потреблении большего тока, чем I max .

Типовая термоэлектрическая система

Основными частями термоэлектрической системы охлаждения, которые имеют отношение к нашему процессу проектирования, являются следующие:

  • Контроллер ТЕС
  • Элемент Пельтье
  • Радиатор

Другая важная деталь, напарник радиатора, не видна напрямую. Это окружающий воздух с его температурой, где рассеивается тепло.
Помимо вышеупомянутых частей, для всего приложения важны и другие компоненты. Это, например, датчики температуры, программное обеспечение для настройки и контроля контроллера ТЕС, вентилятор и, конечно же, источник питания.

Пожалуйста, посмотрите следующее видео, чтобы получить обзор контроллеров семейства TEC и их функций.

Тепловая схема

На этой схеме простой термоэлектрической системы показаны объекты, участвующие в пути теплового потока от объекта к окружающему воздуху.Это упрощенная схема, в которой мы предполагаем идеальную теплоизоляцию объектов, например на температуру объектов не влияет конвекция. (Q - теплоемкость каждой детали.)


Упрощенная схема системы охлаждения


Следующая - еще более упрощенная схема - представляет систему охлаждения и соответствующую температурную диаграмму справа. В этом случае объект охлаждается до -5 ° C холодной стороной элемента Пельтье.Горячая сторона элемента Пельтье имеет температуру 35 ° C. Радиатор отводит тепло в окружающий воздух, имеющий температуру 25 ° C.


Более упрощенная схема процесса проектирования и соответствующая температурная диаграмма

Процесс проектирования

При проектировании термоэлектрического охлаждающего устройства необходимо выполнить следующие шаги:

  1. Оценить тепловую нагрузку охлаждаемого объекта
  2. Определить рабочий диапазон температуры объекта и радиатора
  3. Выберите элемент Пельтье, соответствующий требованиям
  4. Выберите контроллер ТЕС с подходящим диапазоном мощности
  5. Выбрать радиатор для элемента Пельтье
  6. Выберите вентилятор для вентиляции радиатора (дополнительно)
  7. Выберите датчик температуры объекта и дополнительный датчик раковины
  8. Выберите источник питания для контроллера ТЕС

Это итеративный процесс. Протестируйте свою экспериментальную установку, улучшите ее, повторите вышеуказанные шаги.

1. Оценка тепловых нагрузок

Важным параметром является количество тепла, которое должно быть поглощено от объекта холодной поверхностью ПЭМ или элемента Пельтье. (Q C [Вт])
В зависимости от области применения необходимо учитывать различные типы тепловой нагрузки:

  • Рассеиваемая мощность
  • Радиация
  • Конвективный
  • Проводящий
  • динамический (dQ / dT)

Эти нагрузки суммированы в тепловой нагрузке Q C , которая передается с холодной стороны на горячую, где расположен радиатор.

2. Определение температуры

Обычно задача состоит в том, чтобы охладить объект до заданной температуры. Если охлаждаемый объект находится в контакте с холодной поверхностью термоэлектрического модуля, температуру объекта можно считать равной температуре холодной стороны элемента Пельтье через определенное время.

При описании применения термоэлектрического охлаждения важны два конструктивных параметра.

  • T O Температура объекта (температура холодной стороны) [° C]
  • T HS температура радиатора (температура горячей стороны) [° C] = T окр. + ΔT HS
    См. Раздел 5.Радиатор для получения дополнительной информации.

Разница между T O и T HS известна как dT (ΔT или deltaT) [K]:
dT = T HS - T O = T amb + ΔT HS - Т О

3. Выбор элемента Пельтье / ТЕМ-модуля

Элемент Пельтье создает разницу температур между его обеими сторонами из-за протекания тока. Этот раздел основан на справочной информации со следующих страниц:

Одним из важных критериев при выборе элемента Пельтье является коэффициент полезного действия (COP).Определение COP - это тепло, поглощенное на холодной стороне, деленное на входную мощность элемента Пельтье: COP = Q C / P el
Результатом максимального COP является минимальная входная мощность Пельтье, таким образом, минимальная общая тепло отводится радиатором. (Q h = Q C + P el ) Следовательно, мы пытаемся найти рабочий ток, который в сочетании с определенным dT приводит к оптимальному COP.

Наконец, мы получаем оценку Q max , которая позволяет нам выбрать элемент Пельтье.

Добавляем расчетную маржу на

  • выбор элемента Пельтье с мощностью теплового насоса выше требуемой,
  • путем разработки системы с рабочим током значительно ниже I max элемента Пельтье,
  • или в качестве третьего варианта, увеличив размер радиатора или добавив к нему вентилятор, чтобы поддерживать низкую температуру горячей стороны.

При применении этих мер изменение температуры окружающей среды или активной тепловой нагрузки не приводит к тепловому разгоне.

Список дистрибьюторов см. На странице Элементы Пельтье.

4. Выбор контроллера ТЕС

Контроллер ТЕС регулирует ток, подаваемый на элемент Пельтье, в соответствии с желаемой температурой объекта и фактической измеренной температурой объекта.

Мы выбираем рабочий ток для достижения оптимального COP. На основе этого тока мы выбираем контроллер TEC, а не на основе I max .

Пожалуйста, обратитесь к странице продукта контроллера TEC для обзора наших устройств.

5. Радиатор

Радиатор поглощает тепловую нагрузку с горячей стороны элемента Пельтье и отводит ее в окружающий воздух.

При подборе радиатора необходимо добавить некоторый запас, чтобы его температура не стала слишком высокой. На следующей диаграмме показано, что тепло Q h , отклоняемое элементом Пельтье, может быть в 2,6 раза больше Q max . Это происходит из-за внутреннего тепла в элементе Пельтье во время теплового насоса.Следовательно, общее тепло, которое должно рассеиваться на радиаторе, состоит из тепла объекта и тепла, производимого внутри элемента Пельтье.

На графике ниже показано соотношение между теплотой, отклоняемой элементом Пельтье, от тока для различных dT. Используйте графики, предоставленные производителем элемента Пельтье, чтобы оценить тепло, рассеиваемое радиатором.

Поскольку радиатор должен вписываться в приложение по форме и размерам, эффективность контроллера ТЕС также играет решающую роль, поскольку размер радиатора зависит от него.В зависимости от ваших требований решением может быть изготовленный на заказ радиатор или тепловая трубка.

Тепловое сопротивление рассчитывается по формуле: R thHS = ΔT HS / Q h [K / W]
ΔT HS = разница температур между радиатором и температурой окружающего воздуха [K]
Q h = Общая тепловая нагрузка (объект + потеря элемента Пельтье) [Вт]

Чтобы оценить ΔT HS , примите во внимание максимально возможную температуру окружающей среды, чтобы ваши расчеты в этом случае были верны.

Зависимость отклоненного тепла от dT

На следующем графике показано соотношение между Q h и Q C для различных dT. Отношение экспоненциально растет с каждым увеличением dT. Это означает, что при большом dT большое количество тепла рассеивается радиатором, а на холодной стороне элемента Пельтье поглощается сравнительно небольшое количество тепла.

Мы также можем использовать этот график для оценки результирующего теплоотвода на основе количества переносимого тепла Q C , даже до выбора элемента Пельтье.

Для расчета теплового сопротивления мы принимаем реальное значение для dT HS . Поскольку нам еще неизвестен реальный Q h , мы оцениваем его по приведенному выше графику.

Найдите отношение Q h / Q C при заданном токе и dT.

Выберите желаемую разницу температур между радиатором и температурой окружающего воздуха ΔT HS .

Теперь мы можем заменить в приведенной выше формуле для R thHS Q h нашим соотношением Q h / Q C .

R thHS = ΔT HS / (отношение * Q C )

Конечно, размеры сохраняются только в том случае, если мы позже задействуем элемент Пельтье в выбранной рабочей точке (т. Е. С выбранным током).

Выбор теплового сопротивления радиатора может влиять на dT = T amb + ΔT HS - T O .
(ΔT HS = Q h / R thHS )

Дистрибьюторы / производители

6.Вентилятор

Вентиляторное охлаждение радиатора снижает тепловое сопротивление радиатора окружающему воздуху.

Следовательно, вентилятор увеличивает тепловую производительность. Это уменьшает разницу температур dT или позволяет использовать радиаторы меньшего размера.

Контроллеры TEC позволяют управлять максимум двумя вентиляторами, которые поддерживают следующие функции:

  • Входной сигнал управления ШИМ для управления скоростью вентилятора. TEC генерирует ШИМ-сигнал 1 кГц или 25 кГц в диапазоне от 0 до 100%.
  • Выходной сигнал генератора частоты, который представляет скорость вращения. Выход должен быть выходным сигналом с открытым коллектором.

Рекомендуется использовать вентилятор с таким же напряжением питания, что и напряжение питания контроллера ТЕС.

Рекомендации по вентиляторам

Для получения подробной информации о функциях вентилятора, предложениях вентилятора и оптимальных настройках, пожалуйста, обратитесь к Руководству пользователя TEC Family, глава 6.3 (PDF).

Подключение вентилятора к контроллеру ТЕС

См. Страницу с примечаниями к контроллеру TEC, чтобы узнать, как подключить вентилятор.

7. Примеры расчетов

Рассчитаем для примера расчетные параметры термоэлектрической системы охлаждения.

Для выбора элемента Пельтье необходимы два тепловых параметра .

  • Максимальная холодопроизводительность Q max
  • Разница температур dT
Оценка тепловых нагрузок и определение температуры

Мы предполагаем, что объект с тепловой нагрузкой Q C = 10 Вт должен быть охлажден до нуля градусов Цельсия.(T O = 0 ° C) Предположим, что температура в помещении составляет 25 ° C, а температура радиатора T S ожидается на уровне 30 ° C. Таким образом, разница температур между холодной и горячей сторонами элемента Пельтье dT составляет 30 К. Важно помнить, что было бы неправильно рассчитывать dT как разницу между температурой окружающего воздуха и заданной температурой объекта.

Выбор модуля Пельтье / ТЕМ

Наша цель - найти Q max , который был бы достаточно большим, чтобы покрыть необходимый Q C и дать лучший COP.

На графике зависимости производительности от тока мы находим максимум кривой dT = 30 K при токе I / I max = 0,45 . Как правило, это соотношение не должно быть выше 0,7.

Используя этот коэффициент для тока, мы находим на графике тепловой насос в зависимости от тока значение Q C / Q max = 0,25 для данной разницы температур dT = 30 K и относительного тока 0,45.

Теперь мы можем рассчитать Q max для элемента Пельтье. Q макс = Q C / 0,25 = 10 Вт / 0,25 = 40 Вт

На графике зависимости производительности от тока мы находим COP = 0,6 для нашего ранее считанного I / I max . Это позволяет нам рассчитать P el = Q C / COP = 10 Вт / 0,6 = 16,7 Вт .

Производители элементов Пельтье предлагают широкий ассортимент элементов. В их линейке продуктов мы ищем элемент с Q max 40 Вт.Поскольку у нас разница температур dT = 30 K, достаточно одноступенчатого элемента Пельтье.

В качестве примера мы выбираем элемент Пельтье с Q max = 41 Вт, dT max = 68 K, I max = 5 A и V max = 15,4 В.

Рабочий ток и напряжение рассчитываются следующим образом:
I = I max * (I / I max ) = 5 A * 0,45 = 2,25 A
V = P el / I = 16,7 Вт / 3. 83A = 7,42 В

Выбор контроллера ТЕС

Исходя из рассчитанных значений, мы выбираем TEC-контроллер TEC-1091 с выходным током 4 А и выходным напряжением 21 В. Хорошо добавить некоторый расчетный запас, выбрав контроллер ТЕС с более высоким, чем требуется, выходным током. Позже, когда производительность системы станет общеизвестной, может быть достаточно другого контроллера с меньшей производительностью.

Радиатор

Чтобы найти радиатор для элемента Пельтье, нам нужно знать необходимое термическое сопротивление радиатора.На графике отклонения тепла от тока мы находим Q h / Q max = 0,6 для выбранного нами тока и dT. Таким образом, Q h = Q max * 0,6 = 41 Вт * 0,6 = 24,6 Вт.

Расчет теплового сопротивления радиатора:
R thHS = ΔT HS / Q h = 5 K / 24,6 Вт = 0,2 K / Вт
Нам нужен радиатор с меньшим тепловым сопротивлением чем 0,2 К / Вт.

Приведенные выше расчеты являются первой оценкой параметров термоэлектрической системы охлаждения.Для определения оптимальных параметров системы необходимо тестирование реальной системы и повторение этапов проектирования.

8. Датчики температуры

Датчики температуры используются контроллером ТЕС для измерения температуры объектов и температуры радиатора.

Измерение температуры объекта

Чтобы иметь возможность контролировать температуру объекта, необходимо разместить на объекте температурный зонд (датчик). Обратите внимание, что важно разместить датчик как можно ближе к критической точке на объекте, где вам нужна желаемая температура.

Поскольку измерение температуры объекта требует более высокой точности и большего диапазона, мы предлагаем использовать датчики Pt100. Чтобы иметь возможность измерять температуру намного ниже 0 ° C, необходимы зонды Pt100 / 1000. Это потому, что, если температура становится слишком низкой, датчики NTC не могут использоваться, поскольку значение сопротивления становится слишком большим. Значение сопротивления датчика должно быть меньше эталонного сопротивления в контроллере ТЕС.

При использовании датчиков Pt100 / 1000 температура объекта измеряется с использованием метода четырехконтактного измерения (4-проводное измерение) для достижения более высокой точности при низких сопротивлениях.Для измерения NTC используется двухпроводная технология.

Термин «4-проводной» не означает, что необходим датчик с четырьмя контактами. Используются отдельные пары токоведущих и чувствительных электродов. (Подробнее о четырехконтактном считывании)

Диапазон измерения температуры контроллера ТЕС зависит как от датчика температуры, так и от конфигурации оборудования. Пожалуйста, обратитесь к соответствующему техническому описанию для получения подробной информации.

Подключение датчика температуры

См. Страницу примечаний к контроллеру TEC, чтобы узнать, как подключить датчик температуры.

9. Требования к источникам питания

Блок питания является источником питания для контроллера ТЕС.

В зависимости от выбранного контроллера ТЕС необходимо выбрать источник питания. Убедитесь, что источник питания может обеспечить питание, необходимое для управления контроллером ТЕС с элементом Пельтье. (Как правило, вы можете добавить 10% резерва. Умножьте необходимую выходную мощность ТЕС на 1,1). Информацию о соотношении входного и выходного напряжения см. В таблице данных контроллера.

Рекомендации по источникам питания

10. Проверьте свою настройку

Теперь, когда вы выбрали системные компоненты, вы настраиваете приложение и начинаете тестирование и оптимизацию. Чтобы упростить сборку и первоначальную настройку с использованием нашего сервисного программного обеспечения, пожалуйста, обратитесь к нашему пошаговому руководству по установке контроллера TEC.
Комплексное сервисное программное обеспечение можно загрузить и использовать бесплатно.

11. Узлы термоэлектрического охлаждения

Существуют также универсальные предварительно собранные термоэлектрические охлаждающие узлы, если вы не хотите строить систему с нуля. Эти модули обычно содержат металлическую пластину для крепления объекта, элемент Пельтье, радиатор и вентилятор. Использование таких сборок представляет интерес на этапе создания прототипа для первых экспериментов.

(PDF) Обзор производства электроэнергии с использованием модуля Пельтье

Аналогичным образом, их приложения также различаются по принципу работы

. ТЭГ в основном состоят из теллурида висмута

или теллурида свинца. Но оба отличаются свойствами

, такими как теплостойкость и КПД.Bi2Te3 TEG

является высокоэффективным, но не выдерживает таких высоких температур, как

PbTe. Итак, изменение стоимости происходит из-за этих свойств

[21]. Gou X, Xiao H сосредоточился на моделировании

TEG. Интегрированные в большом количестве ТЭГ обеспечивают максимальную выходную мощность и напряжение

. Он легко вырабатывает достаточную мощность при достаточно высоком напряжении

для питания различных маломощных датчиков

даже при накоплении энергии из разницы температур

до 5 ° C. Таким образом, с увеличением количества модулей

увеличивается и стоимость системы. Кроме того,

μTEG более эффективны для приложений, использующих для сбора

электрической энергии при высокой разнице температур из-за

соображений их размера и материала композиции.

Различные комбинации последовательного и параллельного подключения

скомпонованы для достижения достаточной мощности [22-23].

Sarinee et al.Выявлено, что напряжение увеличивается 2

в 4 раза, когда модули соединены последовательно, а

на ток не сильно влияет [3].

ПРЕИМУЩЕСТВА ТЕХНОЛОГИИ

Следующие технологические преимущества

могут быть использованы при проектировании генератора энергии на основе ТЭГ.

 Твердотельная конструкция (без движущихся частей)

 Диффузионные барьеры (стандарт для всех устройств MI)

обеспечивают превосходную долгосрочную термическую стабильность

и высокую надежность.

 Точный контроль температуры.

 Работа без вибрации.

 Не содержит хлор-фторуглеродов, для применений

, где использование газов запрещено.

 Отсутствие акустических или электрических шумов.

 Выполняется в любой физической или гравитационной ориентации

, в том числе в перевернутом положении или

боком.

 Работает в условиях невесомости.

 Выдерживает высокие перегрузки в космосе и

военных приложений.

 Масштабируемость размеров и производительности.

VII. ЗАКЛЮЧЕНИЕ

Термоэлектрические устройства имеют преимущество перед традиционными источниками

, несмотря на их низкую эффективность.

Более того, их универсальность в применении охлаждения и выработки энергии

также делает их значительными по сравнению с

устройствами с электрическим приводом. Поскольку напряжение, получаемое от термоэлектрического генератора

, является крошечным, определенные комбинации модулей

, включенных последовательно и параллельно, делают выработку электроэнергии

сравнительно эффективной. Исходя из соображений стоимости

, термоэлектрики дороже, чем другие методы выработки энергии

, но всегда можно найти компромисс между стоимостью

и традиционными энергетическими ресурсами

. Наш прототип генерирует 3,05 вольт и 2,68

вольт из промышленных отходов тепла и

автомобилей соответственно.

ССЫЛКИ

[1] Суреш Балпанде, Раджеш С. Панде, Раджендра М.Патрикар, Дизайн

и низкозатратное производство сборщика энергии зеленой вибрации,

Elsevier, Датчики и исполнительные механизмы, A: Physical, Volume 251, 1

ноябрь 2016 г., страницы 134-141, ISSN 0924-4247,

http: //dx.doi.org/10.1016/j.sna.2016.10.012

[2] Сураш Балпанде, Маниш Бхайя, доктор, Раджеш С. Панде, Low

Стоимость изготовления пьезоэлектрического генератора на основе полимерной подложки

С PPE, IDE и ME, принятая рукопись, IET

Electronics Letter, ISSN 1350-911XPrint ISSN 0013-5194 DOI:

10.1049 / el.2016.4099

[3] Сарини Уитракул, Предварительный эксперимент для электроэнергии

Генерация с использованием модулей Пельтье, 78-1-4799-2993-1 / 14 / 31,00 долл. США

© 2014 IEEE

[4] Интернет-источник: www.reuk.co.uk/wordpress/thermoelectric/what-is-

a-peltier-cooler /

[5] PMSolanki, Dr. DS Deshmukh, Dr. VR Diware, A Review

о факторах, которые необходимо рассматривается для термоэлектрического

Проектирование систем выработки электроэнергии, Международная конференция по

Глобальные тенденции в проектировании, технологиях и менеджменте

(ICGTETM-2016), ISSN: 2231-5381

[6] Аллвин Хосе, Алан Д'суза, Сарвеш Дандекар, Джитеш

Карамчандани, Паван Кулкарни, Кондиционер с использованием модуля Пельтье

, Международная конференция по технологиям для устойчивого развития

2015 г. (ICTSD-2015), 978-1-4799-8187-

8/15 / $ 31 .00 © 2015 IEEE

[7] Такафуми Хатано, Мингконг Денг и Шин Вакитани, A

Система охлаждения и удержания тепла, управляемая устройством Пельтье

С учетом управления двигателем вентилятора, 2014 IEEE International

Конференция по науке об автоматизации и Engineering (CASE)

Тайбэй, Тайвань, 18-22 августа 2014 г., 978-1-4799-5283-

0/14 / $ 31,00 © 2014 IEEE

[8] Д-р Стивен О'Халлоран, г-н Мэтью Родригес, Power and

Измерение эффективности термоэлектрического генератора, AC

2012-3976

[9] Сигенао Маруяма, Ацуки Комия, Хироки Такеда и Сетсуя

Айба, Разработка охлаждающего устройства с точным контролем температуры для

Медицинское применение с использованием эффекта Пельтье-2008

Международная конференция по биомедицинской инженерии и

Информатика - Институт гидродинамики, Университет Тохоку - 2008

Международная конференция по биомедицинской инженерии и

информатике, 978-0-7695-3118-2 / 08 $ 25.00 © 2008 IEEE / DOI

10.1109 / BMEI.2008.239

[10] Мохак Гупта, Обзор блока рекуперации тепла с термоэлектрическими генераторами

, Международный журнал инженерии

и инновационных технологий (IJEIT), том 4, выпуск 4, Октябрь

2014, ISSN: 2277-3754

[11] Оскар Анхелес Фрагосо, Фернандо Адан Серрано Ороско, Хесус

Одело Гонсалес и Георгий Логвинов, Линейная теория

Thermoelectric Cooling

, основанная на 2-м эффекте термоэлектрического охлаждения

Международная конференция по электротехнике и электронике

Engineering (ICEEE) и XI конференция по электротехнике

Engineering (CIE 2005) - - Номер в каталоге IEEE: 05EX1097

ISBN: 0-7803-9230-2 / 05 / $ 20.00 © 2005 IEEE.

[12] Рашит Ахыска, Хаяти Мамур, Обзор: Термоэлектрические генераторы

в возобновляемых источниках энергии, Международный журнал

Исследования возобновляемой энергии, Том 4, № 1, 2014 г.

[13] Фанкай Мэн, Линген Чен , Фенжуй Сан, Влияние температурной зависимости термоэлектрических свойств

на мощность

и КПД многоэлементного термоэлектрического генератора

, Международный журнал энергетики и

Окружающая среда, Том 3, Выпуск 1, 2012 стр.137-150.

[14] DCTalele, доктор DS Deshmukh, PM Solanki опубликовали статью

на тему «Конструктивные соображения для термоэлектрического генератора

Performance Improvement: A Critical Review», PRATIBHA:

International Journal of Science, Spirituality, Business and

Технология (IJSSBT), Vol. 3, No. 2, июнь 2015 ISSN (Print)

2277–7261.

[15] Сакет Кумар, Ашутош Гупта, Гаурав Ядав, Хемендер Пал

Сингх, Модуль Пельтье для охлаждения и отопления с использованием встроенной системы

, Международная конференция 2015 года по последним достижениям в области управления, автоматизации и энергетики

( RDCAPE), 78-1-4799-7247-0 / 15/31 $.00 © 2015 IEEE

Международный журнал инженерных исследований и технологий (IJERT)

ISSN: 2278-0181 http://www.ijert.org

IJERTV6IS010308

Vol. 6 Выпуск 01, январь-2017

(Эта работа находится под лицензией Creative Commons Attribution 4.0 International License.)

Издатель:

www.ijert.org 456

Power Generation - Thermoelectric

Выходная мощность (P o ) модуля в ваттах составляет:

P o = R L x

Возможно, но маловероятно, что в рамках данного применения генератора будут существовать точные условия, при которых один модуль будет обеспечивать точную желаемую выходную мощность.В результате большинство термоэлектрических генераторов содержат ряд отдельных модулей, которые могут быть электрически соединены последовательно, параллельно или последовательно / параллельно. Типичная конфигурация генератора показана на рисунке (13.2). Этот генератор имеет общее количество модулей NT с количеством модулей, подключенных последовательно, и количеством модулей, подключенных параллельно. Общее количество модулей в системе:

NT = NS x NP


Рисунок (13-2)

Типовой термоэлектрический генератор

с последовательно-параллельным расположением модулей

Ток (I), проходящий через сопротивление нагрузки R L , составляет:

NS x S M x DT
I = __________________
NS x R M
_____________ + R L
НП

Выходное напряжение (В O ) от генератора в вольтах составляет:

Выходная мощность (P O ) генератора в ваттах составляет:

NT x (S M x DT) 2
_________________
4 x R M

P O = V O x I =

Общая тепловая нагрузка (Qh) на генератор в ваттах составляет:

КПД (E g ) генератора:

P O
E г = ——— x 100%
Qh

Максимальный КПД достигается, когда внутреннее сопротивление генератора (R GEN ) равно сопротивлению нагрузки (R L ).Сопротивление генератора:

NS x R M
R GEN = —————
NP

13.3 ПРИМЕР КОНСТРУКЦИИ: Чтобы проиллюстрировать типичный процесс проектирования, давайте проанализируем потребность в термоэлектрическом генераторе на 12 В, 1,5 А. Генератор необходим для питания телеметрической электроники на удаленном нефтепроводе, где горячая, непрерывно текущая нефть создает температуру кожуха трубы 130 ° C.Проточная вода (имеющая температуру 10 ° C) также доступна на удаленном участке, и было определено, что эффективный радиатор с водяным охлаждением может поддерживать температуру +30 ° C на холодной стороне генератора TE. используйте уравнения из раздела 11, чтобы получить значения SM, RM и KM для наших расчетов.

Чтобы начать процесс проектирования, мы рассмотрим параметры системы и сделаем некоторые предварительные расчеты.

Дано:

T h = + 130 ° C = 403.2 ° K
T c = + 30 ° C = 303,2 ° K
V o = 12 вольт
I = 1,5 ампер

Для этого:

T ср = (T h + T c ) / 2 = (403,2 + 303,2) / 2 = 353,2 ° K
R L = V o / I = 12 / 1,5 = 8,0 Ом
P o = V o x I = 12 x 1,5 = 18 Вт
DT = T h -T c = 403.2 - 303,2 = 100 ° К

Обычно желательно выбирать термоэлектрический модуль с относительно «высокой мощностью» для генераторов, чтобы минимизировать общую стоимость системы. По этой причине мы выберем модуль на 127 пар, 6 ампер, который будет использоваться в нашем дизайне.

При расчете SM, RM и KM для выбранного нами модуля на 127 пар, 6 ампер, при Tav = 353,2 ° K получены следующие значения:

S M = 0,05544 вольт / ° K
R M = 3.0994 Ом
K M = 0,6632 Вт / ° K

Требуемая мощность для нагрузки была рассчитана как 18 Вт. Теперь необходимо определить минимальное количество модулей, необходимых для удовлетворения этого требования к нагрузке. Максимальная выходная мощность от одного модуля:

(S M x DT) 2

(0.05544 x 100) 2

P макс =

____________ =

______________ = 2,479 Вт

4 x R M

4 х 3.0994

Минимальное количество необходимых модулей:

P o
——
P макс

18
= ——— =
2,479

NT мин = 7.3 »8

Поскольку максимальная эффективность генератора достигается, когда R GEN = R L , для большинства приложений желательно выбрать конфигурацию последовательного / параллельного модуля, которая наилучшим образом приблизит этот баланс сопротивлений. Одним из возможных исключений для выравнивания R GEN с R L является ситуация, когда требуется относительно низкий ток (в миллиамперном диапазоне) и умеренное напряжение. В этом случае соединение всех модулей электрически последовательно может дать наилучшие результаты.Однако имейте в виду, что максимальное выходное напряжение от генератора будет получено от группы модулей с прямым последовательным соединением только тогда, когда сопротивление нагрузки значительно превышает внутреннее сопротивление генератора.

В качестве отправной точки при оценке любого термоэлектрического генератора часто бывает полезно сначала изучить конфигурацию с прямым последовательным соединением. Сопротивление последовательной цепочки из восьми модулей составляет:

R GEN = NS x R M
————— =
NP
8 х 3.0994
—————
1
= 24,8 Ом

Видно, что сопротивление генератора 24,8 Ом значительно выше, чем сопротивление нагрузки 8,0 Ом, что указывает на то, что прямое последовательное соединение модулей, вероятно, не лучший вариант. Для условий всех серий, где NS = 8 и NP = 1, выходное напряжение составляет:

В группе из восьми модулей следующая наиболее логичная конфигурация соединения - это две параллельные цепочки по четыре модуля, т.е.е., NS = 4 и NP = 2. Сопротивление генератора для этой конфигурации, таким образом, составляет:

R GEN = NS x R M
———— =
NP
4 x 3,0994
————
2
= 6,2 Ом

В то время как значение R GEN 6,2 Ом не совсем соответствует 8.Сопротивление нагрузки 0 Ом, это значение обычно считается находящимся в удовлетворительном диапазоне. В любом случае, это наиболее близкое соответствие сопротивления, которое может быть получено с выбранным типом модуля. Напряжение для этой схемы (12,49 В) рассчитывается следующим образом:

Теперь мы можем видеть, что Vo довольно близко к желаемому значению, и очевидно, что мы получили оптимальную последовательную / параллельную конфигурацию. Если требуется «точная настройка» Vo, это необходимо будет выполнить либо с помощью некоторой формы электронного регулирования напряжения, либо путем внешнего изменения применяемого перепада температур (DT).В некоторых случаях будет обнаружено, что выходное напряжение значительно выходит за пределы допустимого диапазона, несмотря на попытку всех возможных последовательностей / параллельных комбинаций. В этом случае может потребоваться использовать альтернативный термоэлектрический модуль, имеющий другой номинальный ток и / или количество пар.

Теперь можно завершить анализ конструкции, определив уровни мощности и КПД. Поскольку мы установили Vo, выходную мощность (Po) можно просто вычислить:

(V o ) 2 (12.49) 2
P o = ——— = ——— = 19,5 Вт
RL 8,0


Общая тепловая нагрузка (Qh) на генератор составляет:


КПД генератора (Eg) составляет:

E г = P o
——
Q h
х 100% = 19.5
———
657,5
x 100% = 2,97%

Тепло, передаваемое радиатору холодной стороны (Qc), составляет:

Q c = Q h - P o = 657,7 - 19,5 = 638,2 Вт

Максимально допустимое тепловое сопротивление (Qs) радиатора холодной стороны составляет:

(Qs) = T подъем
————— =
Q c
30–10 ° C
—————— =
638.2
0,031 ° C / Вт

Для любой конструкции термоэлектрического генератора всегда желательно максимизировать применяемую разность температур, чтобы минимизировать общее количество модулей в системе. Эта ситуация хорошо видна на рисунке (13.3). Требования к модулям для типичного 12-вольтового генератора мощностью 1 ампер показаны при нескольких фиксированных значениях Th, основанных на использовании 127-парных 6-амперных модулей TE.Из этого графика видно, что требуется очень большое количество модулей, когда температура холодной стороны (Tc) высока, а разница температур, следовательно, мала. Производительность радиатора с холодной стороны имеет первостепенное значение, и его тепловое сопротивление должно быть чрезвычайно низким. Во многих случаях конструкция теплоотвода с холодной стороны оказывается самой сложной инженерной проблемой.


Рисунок (13-3)

Общее количество 127 пар модулей по 6 ампер, необходимых для 12-вольтового термоэлектрического генератора мощностью 1 ампер

13.4 ИСПОЛЬЗОВАНИЕ ТЕРМОЭЛЕКТРИЧЕСКИХ МОДУЛЕЙ В КАЛОРИМЕТРЕ : Менее, но жизнеспособное применение термоэлектрических модулей, работающих в режиме выработки электроэнергии, заключается в создании калориметров. В обычном калориметре для измерения тепла используются обычные термопары, основанные исключительно на эффекте Зеебека. За счет использования термоэлектрического охлаждающего модуля с несколькими парами можно изготовить калориметр, имеющий чувствительность (выходное напряжение на единицу плотности теплового потока) в 10–200 раз большую чувствительность стандартной термопары медь-константин.При использовании в калориметре термоэлектрический модуль часто называют термобатареей. Выходное напряжение холостого хода (В) одной термоэлектрической пары, как описано в параграфе 13.2 и показано на рисунке (13.1), составляет:

В = S x DT

Где :

В = выходное напряжение пары в вольтах
S = средний коэффициент Зеебека в вольтах / ° K
DT = разница температур в паре в ° K, где DT = Th-Tc

Для реального модуля TE, имеющего несколько пар и коэффициент Зеебека SM, выходное напряжение (Vo) составляет:

В o = S M x DT

Тепловой поток через ТЭ или «термобатарею» составляет:

K M x V o
—————
S M

Q = K M x DT =

Где :

Q = тепловой поток в ваттах
KM = теплопроводность модуля в ваттах / ° K

Суммарная площадь поперечного сечения (AM) всех элементов в модуле составляет:

A M = A x N

Где :

AM = общая площадь всех элементов модуля в см 2
A = площадь поперечного сечения одного элемента в см 2
N = общее количество элементов в модуле

Плотность теплового потока (q) в Вт / см 2 составляет:

q = K M x DT
————— =
A M
K M x V o
—————
S M x A M

Большинство стандартных термоэлектрических охлаждающих модулей могут использоваться в калориметрах, но улучшенная чувствительность может быть реализована путем изменения отношения длины к площади (L / A) элементов ТЕ.Относительно большое отношение L / A, приводящее к высокому и «тощему» элементу, обеспечивает наилучшую чувствительность калориметра. Чтобы проиллюстрировать эту ситуацию, рассмотрим следующее:

Чувствительность модуля как калориметра (Sc):

S c = V o
—————
q
S M x A M
= —————
K M

Было замечено, что чувствительность (Sc) прямо пропорциональна коэффициенту Зеебека (SM) и общей площади поперечного сечения (AM) и обратно пропорциональна теплопроводности (KM).Переписав приведенное выше уравнение относительно теплопроводности (k) вместо теплопроводности (KM), мы получим:

S c = S M x A M
—————
k x N x A / L

Поскольку N x A = AM, выражение можно переформулировать как:

S c = S M x L
—————
к

Из этого уравнения очевидно, что чувствительность калориметра напрямую связана с длиной (L) элемента, и поэтому желательно выбирать термоэлектрический модуль с максимально возможным соотношением сторон элемента.Имейте в виду, что существуют практические ограничения на геометрию элемента из-за хрупкости кристаллического материала теллурида висмута. Однако, работая в этих пределах, можно изготавливать специальные модули, которые особенно подходят для использования в калориметрах.

Конструкция ТЭМ (конструкция термоэлектрического охладителя)

Термоэлектрический охладитель (ТЭО) конструкция

Первое термоэлектрическое явление было открыто французским физиком и метеорологом Жан Пельтье (1785-1845) .Основная идея эффекта Пельтье заключается в том, что всякий раз, когда постоянный ток проходит через цепь разнородных проводников, тепло выделяется или поглощается на стыках проводников, что зависит от полярности тока. Количество тепла пропорционально току, который проходит через проводники.

В результате работ российского академика А.Ф. Иоффе и его коллег были синтезированы полупроводниковые сплавы, что позволило применить этот эффект на практике и начать серийное производство термоэлектрических холодильных устройств для широкого использования в различных сферах жизнедеятельности человека. .

Базовый термоэлектрический охладитель (Пельтье) представляет собой термопару, которая состоит из полупроводниковых элементов или таблеток p-типа и n-типа. Медные коммутационные пластины используются для соединения таблеток, которые традиционно изготавливаются из сплава на основе теллурида висмута.

Таким образом, типичный термоэлектрический охладитель (ТЕС) состоит из термопар, соединенных последовательно и зажатых между двумя керамическими пластинами из оксида алюминия. Количество термопар может сильно варьироваться - от нескольких элементов до сотен единиц.Это позволяет создать ТЕС с желаемой холодопроизводительностью от долей ватт до сотен ватт.

Когда постоянный ток проходит через охладитель Пельтье , это вызывает разницу температур между сторонами ТЕС. В результате одна поверхность термоэлектрического охладителя, называемая холодной, будет охлаждаться, в то время как ее противоположная поверхность, называемая горячей, одновременно нагревается. Если тепло, генерируемое на горячей стороне ТЭО, эффективно рассеивается в радиаторах и далее в окружающую среду, то температура на холодной стороне термоэлектрического охладителя будет намного ниже, чем температура окружающей среды на десятки градусов.Холодопроизводительность термоэлектрического охладителя пропорциональна протекающему через него току. Следовательно, холодная сторона ТЭО будет нагрета, а ее горячая сторона будет охлаждаться после изменения полярности ТЕС.

Одноступенчатые термоэлектрические охладители Kryotherm позволяют получить перепад температур до 74-76К. Для получения более низких температур используются многоступенчатые ТЭО. Например, максимальная разница температур одного из серийных четырехступенчатых ТЭО Kryotherm составляет 140 К.

Пельтье - термоэлектрический охладитель Модули

eyJkZXNrdG9wIjp7Im51bWJlciI6NCwib3B0aW9ucyI6e30sImNvbnRlbnQiOlt7IngiOiIwIiwieSI6IjAiLCJ3aWR0aCI6IjIwMGVtIiwiaGVpZ2h0IjoiMTkuOTMwMDY5OTMwMDY5OTNlbSIsImlkIjowLCJ6X2luZGV4Ijo5OSwiaHRtbCI6IjxpbWcgc3JjPVwiaHR0cHM6Ly90ZXRlY2guY29tL3dwLWNvbnRlbnQvdXBsb2Fkcy8yMDE5LzA3L2NvbGRwbGF0ZTEuanBnXCIgPiIsImh5cGVybGluayI6IiIsImh5cGVybGlua1RhcmdldCI6Il9zZWxmIiwiYmFja2dyb3VuZCI6Im5vbmUiLCJhbGlnbiI6ImxlZnQiLCJvdGhlcnMiOnsiaW1nX3NpemVfb3B0aW9uIjoiPHNlbGVjdD48b3B0aW9uIHVybD1cImh0dHBzOi8vdGV0ZWNoLmNvbS93cC1jb250ZW50L3VwbG9hZHMvMjAxOS8wNy9jb2xkcGxhdGUxLTE1MHgxNTAuanBnXCIgd2lkdGg9XCIxNTBcIiBoZWlnaHQ9XCIxNTBcIiB2YWx1ZT1cInRodW1ibmFpbFwiPlRodW1ibmFpbCDigJMgMTUwIMOXIDE1MDwvb3B0aW9uPjxvcHRpb24gc2VsZWN0ZWQ9XCJcIiB1cmw9XCJodHRwczovL3RldGVjaC5jb20vd3AtY29udGVudC91cGxvYWRzLzIwMTkvMDcvY29sZHBsYXRlMS0zMDB4MzAuanBnXCIgd2lkdGg9XCIzMDBcIiBoZWlnaHQ9XCIzMFwiIHZhbHVlPVwibWVkaXVtXCI + TWVkaXVtIOKAkyAzMDAgw5cgMzA8L29wdGlvbj48b3B0aW9uIHVybD1cImh0dHBzOi8vdGV0ZWNoLmNvbS93cC1jb 250ZW50L3VwbG9hZHMvMjAxOS8wNy9jb2xkcGxhdGUxLTEwMjR4MTAyLmpwZ1wiIHdpZHRoPVwiMTAyNFwiIGhlaWdodD1cIjEwMlwiIHZhbHVlPVwibGFyZ2VcIj5MYXJnZSDigJMgMTAyNCDDlyAxMDI8L29wdGlvbj48b3B0aW9uIHVybD1cImh0dHBzOi8vdGV0ZWNoLmNvbS93cC1jb250ZW50L3VwbG9hZHMvMjAxOS8wNy9jb2xkcGxhdGUxLmpwZ1wiIHdpZHRoPVwiMjAwMFwiIGhlaWdodD1cIjIwMFwiIHZhbHVlPVwiZnVsbFwiPkZ1bGwg4oCTIDIwMDAgw5cgMjAwPC9vcHRpb24 + PC9zZWxlY3Q + IiwiaW1nX3NpemUiOiJmdWxsIiwiaW1nX3NyYyI6Imh0dHBzOi8vdGV0ZWNoLmNvbS93cC1jb250ZW50L3VwbG9hZHMvMjAxOS8wNy9jb2xkcGxhdGUxLTMwMHgzMC5qcGciLCJoeXBlcmxpbmsiOiIiLCJoeXBlcmxpbmtUYXJnZXQiOiJfc2VsZiIsInlvdXR1YmVfcG9wdXAiOmZhbHNlLCJ5b3V0dWJlX3NvdXJjZSI6IiJ9LCJjb250ZW50VHlwZSI6ImltYWdlIiwiYW5pbWF0aW9uIjoiZGlzYWJsZSJ9LHsieCI6IjI2LjE2ODA0NTM0MzEzNzI1JSIsInkiOiI0LjA5ODM2MDY1NTczNzcwNSUiLCJ3aWR0aCI6IjM3LjU4NzQxMjU4NzQxMjU5ZW0iLCJoZWlnaHQiOiI1LjA2OTkzMDA2OTkzMDA3ZW0iLCJpZCI6MSwiel9pbmRleCI6MTAwLCJodG1sIjoiPGRpdiBzdHlsZT0ncG9zaXRpb246YWJzb2x1dGU7dG9wOjA7cmlnaHQ6MDtib3R0b206MDtsZWZ0OjA7b3ZlcmZsb3c6aGlkZGVuO3RleHQtYWxpZ246IGxlZnQ7cGFkZ GluZzogMC41ZW0gMC43NWVtOycgPjxwIHN0eWxlPSdtYXJnaW46IDBweDtsaW5lLWhlaWdodDogMS41O2ZvbnQtc2l6ZTogM2VtO2NvbG9yOiAjZmZmZmZmO2ZvbnQtd2VpZ2h0OiBib2xkO3RleHQtdHJhbnNmb3JtOiBub25lO3RleHQtZGVjb3JhdGlvbjogbm9uZTtmb250LXN0eWxlOiBub3JtYWw7Jz5DT0xEIFBMQVRFIENPT0xFUlM8L3A + PC9kaXY + IiwiaHlwZXJsaW5rIjoiIiwiaHlwZXJsaW5rVGFyZ2V0IjoiX3NlbGYiLCJiYWNrZ3JvdW5kIjoibm9uZSIsImFsaWduIjoibGVmdCIsIm90aGVycyI6eyJ0ZXh0IjoiQ09MRCBQTEFURSBDT09MRVJTIiwiYWxpZ24iOiJsZWZ0Iiwic2l6ZSI6IjMiLCJjb2xvciI6IiNmZmZmZmYiLCJsaW5lX2hlaWdodCI6IiIsImZvbnRfdHlwZSI6IiIsImZvbnRfd2VpZ2h0IjoiYm9sZCIsInRleHRfdHJhbnNmb3JtIjoibm9uZSIsInRleHRfZGVjb3JhdGlvbiI6Im5vbmUiLCJmb250X3N0eWxlIjoibm9ybWFsIiwibGV0dGVyX3NwYWNpbmciOiIiLCJ0ZXh0X3NoYWRvdyI6IiIsImJhY2tncm91bmQiOiIiLCJib3JkZXJfcG9zaXRpb24iOiJib3JkZXIiLCJib3JkZXJfc2l6ZSI6IiIsImJvcmRlcl9jb2xvciI6IiIsImJvcmRlcl9yYWRpdXMiOiIiLCJwYWRkaW5nIjoic21hbGwiLCJwYWRkaW5nX2N1c3RvbSI6IjIuNWVtIDIuNWVtIDIuNWVtIDIuNWVtIn0sImNvbnRlbnRUeXBlIjoidGV4dCIsImFuaW1hdGlvbiI6ImVuYWJsZSJ9LHsieCI6IjE5Ljg0OTEwMTkyMTQ3MDM0MyUiL CJ5IjoiMzcuNzIxMzU0MTY2NjY2NjY0JSIsIndpZHRoIjoiNTAuMzQ5NjUwMzQ5NjUwMzU0ZW0iLCJoZWlnaHQiOiI2LjY0MzM1NjY0MzM1NjY0M2VtIiwiaWQiOjIsInpfaW5kZXgiOjEwMCwiaHRtbCI6IjxkaXYgc3R5bGU9J3Bvc2l0aW9uOmFic29sdXRlO3RvcDowO3JpZ2h0OjA7Ym90dG9tOjA7bGVmdDowO292ZXJmbG93OmhpZGRlbjt0ZXh0LWFsaWduOiBjZW50ZXI7cGFkZGluZzogMC41ZW0gMC43NWVtOycgPjxwIHN0eWxlPSdtYXJnaW46IDBweDtsaW5lLWhlaWdodDogMS41O2ZvbnQtc2l6ZTogMmVtO2NvbG9yOiAjMjYzMjQ4O2ZvbnQtd2VpZ2h0OiBib2xkO3RleHQtdHJhbnNmb3JtOiBub25lO3RleHQtZGVjb3JhdGlvbjogbm9uZTtmb250LXN0eWxlOiBub3JtYWw7Jz5Db2xkIFBsYXRlIENvb2xlcnMgZm9yIGRpcmVjdCBjb250YWN0IGNvb2xpbmcuXG5cbkNhbGwgb3VyIGVuZ2luZWVycyBmb3IgaGVscCB3aXRoIHNpemluZyBhbmQgc2VsZWN0aW9uLjwvcD48L2Rpdj4iLCJoeXBlcmxpbmsiOiIiLCJoeXBlcmxpbmtUYXJnZXQiOiJfc2VsZiIsImJhY2tncm91bmQiOiJub25lIiwiYWxpZ24iOiJsZWZ0Iiwib3RoZXJzIjp7InRleHQiOiJDb2xkIFBsYXRlIENvb2xlcnMgZm9yIGRpcmVjdCBjb250YWN0IGNvb2xpbmcuXG5cbkNhbGwgb3VyIGVuZ2luZWVycyBmb3IgaGVscCB3aXRoIHNpemluZyBhbmQgc2VsZWN0aW9uLiIsImFsaWduIjoiY2VudGVyIiwic2l6ZSI6IjIiLCJjb2xvciI6IiMyNjMyNDgiL CJsaW5lX2hlaWdodCI6IiIsImZvbnRfdHlwZSI6IiIsImZvbnRfd2VpZ2h0IjoiYm9sZCIsInRleHRfdHJhbnNmb3JtIjoibm9uZSIsInRleHRfZGVjb3JhdGlvbiI6Im5vbmUiLCJmb250X3N0eWxlIjoibm9ybWFsIiwibGV0dGVyX3NwYWNpbmciOiIiLCJ0ZXh0X3NoYWRvdyI6IiIsImJhY2tncm91bmQiOiIiLCJib3JkZXJfcG9zaXRpb24iOiJib3JkZXIiLCJib3JkZXJfc2l6ZSI6IiIsImJvcmRlcl9jb2xvciI6IiIsImJvcmRlcl9yYWRpdXMiOiIiLCJwYWRkaW5nIjoic21hbGwiLCJwYWRkaW5nX2N1c3RvbSI6IjIuNWVtIDIuNWVtIDIuNWVtIDIuNWVtIn0sImNvbnRlbnRUeXBlIjoidGV4dCIsImFuaW1hdGlvbiI6ImVuYWJsZSJ9LHsieCI6IjI0LjIyMDcwODAyMDA1MDEyNSUiLCJ5IjoiNzIuMzY5NzkxNjY2NjY2NjclIiwid2lkdGgiOiIzMi42OTIzMDc2OTIzMDc2OWVtIiwiaGVpZ2h0IjoiNC43MjAyNzk3MjAyNzk3MjFlbSIsImlkIjozLCJ6X2luZGV4IjoxMDAsImh0bWwiOiI8YSBocmVmPScvcHJvZHVjdC1jYXRlZ29yeS9jb2xkLXBsYXRlLWNvb2xlcnMvJyBjbGFzcz0nc2FuZ2FyLWJ0bi1zcXVhcmUnIHRhcmdldD0nX3NlbGYnIHN0eWxlPSd3aGl0ZS1zcGFjZTogbm93cmFwOyBwYWRkaW5nOiAxLjBlbSAyLjVlbTtiYWNrZ3JvdW5kOiByZ2IoMjU1LCAxNTIsIDApOycgb25Nb3VzZU92ZXI9XCJcIiBvbk1vdXNlT3V0PVwidGhpcy5nZXRFbGVtZW50c0J5VGFnTmFtZSgnc3BhbicpWzBdLnN0eWxlLmNvb G9yPScjMDAwMDAwJzt0aGlzLnN0eWxlLmJhY2tncm91bmQ9J3JnYigyNTUsIDE1MiwgMCknO1wiPjxzcGFuIHN0eWxlPSdmb250LXNpemU6IDEuN2VtO2NvbG9yOiAjMDAwMDAwO2ZvbnQtd2VpZ2h0OiBcImJvbGRcIjsnPlZpZXcgQ29sZCBQbGF0ZSBDb29sZXIgUHJvZHVjdHM8L3NwYW4 + PC9hPiIsImh5cGVybGluayI6IiIsImh5cGVybGlua1RhcmdldCI6Il9zZWxmIiwiYmFja2dyb3VuZCI6Im5vbmUiLCJhbGlnbiI6ImxlZnQiLCJvdGhlcnMiOnsiYnV0dG9uX2NsYXNzIjoic2FuZ2FyLWJ0bi1zcXVhcmUiLCJ0ZXh0IjoiVmlldyBDb2xkIFBsYXRlIENvb2xlciBQcm9kdWN0cyIsImh5cGVybGluayI6Ii9wcm9kdWN0LWNhdGVnb3J5L2NvbGQtcGxhdGUtY29vbGVycy8iLCJoeXBlcmxpbmtUYXJnZXQiOiJfc2VsZiIsInRleHRfc2l6ZSI6IjEuNyIsInRleHRfY29sb3IiOiIjMDAwMDAwIiwidGV4dF9mb250IjoiIiwidGV4dF93ZWlnaHQiOiJib2xkIiwiYmFja2dyb3VuZCI6InJnYigyNTUsIDE1MiwgMCkiLCJob3Zlcl90ZXh0X2NvbG9yIjoiIiwiaG92ZXJfYmFja2dyb3VuZCI6IiIsImJvcmRlcl9jb2xvciI6IiIsInBhZGRpbmciOiJzbWFsbCIsInBhZGRpbmdfY3VzdG9tIjoiMS41ZW0gNGVtIDEuNWVtIDRlbSIsInlvdXR1YmVfcG9wdXAiOmZhbHNlLCJ5b3V0dWJlX3NvdXJjZSI6IiJ9LCJjb250ZW50VHlwZSI6ImJ1dHRvbiIsImFuaW1hdGlvbiI6ImVuYWJsZSJ9XX0sIm1vYmlsZSI6eyJudW1iZXIiOjAsI m9wdGlvbnMiOnt9LCJjb250ZW50IjpbXX19

eyJkZXNrdG9wIjp7Im51bWJlciI6NCwib3B0aW9ucyI6e30sImNvbnRlbnQiOlt7IngiOiIwIiwieSI6IjAiLCJ3aWR0aCI6IjIwMGVtIiwiaGVpZ2h0IjoiMTkuODY1MzE5ODY1MzE5ODY1ZW0iLCJpZCI6MCwiel9pbmRleCI6OTksImh0bWwiOiI8aW1nIHNyYz1cImh0dHBzOi8vdGV0ZWNoLmNvbS93cC1jb250ZW50L3VwbG9hZHMvMjAxOS8wNy9haXJjb29sZXIxLmpwZ1wiID4iLCJoeXBlcmxpbmsiOiIiLCJoeXBlcmxpbmtUYXJnZXQiOiJfc2VsZiIsImJhY2tncm91bmQiOiJub25lIiwiYWxpZ24iOiJsZWZ0Iiwib3RoZXJzIjp7ImltZ19zaXplX29wdGlvbiI6IjxzZWxlY3Q + PG9wdGlvbiB1cmw9XCJodHRwczovL3RldGVjaC5jb20vd3AtY29udGVudC91cGxvYWRzLzIwMTkvMDcvYWlyY29vbGVyMS0xNTB4MTUwLmpwZ1wiIHdpZHRoPVwiMTUwXCIgaGVpZ2h0PVwiMTUwXCIgdmFsdWU9XCJ0aHVtYm5haWxcIj5UaHVtYm5haWwg4oCTIDE1MCDDlyAxNTA8L29wdGlvbj48b3B0aW9uIHNlbGVjdGVkPVwiXCIgdXJsPVwiaHR0cHM6Ly90ZXRlY2guY29tL3dwLWNvbnRlbnQvdXBsb2Fkcy8yMDE5LzA3L2FpcmNvb2xlcjEtMzAweDMwLmpwZ1wiIHdpZHRoPVwiMzAwXCIgaGVpZ2h0PVwiMzBcIiB2YWx1ZT1cIm1lZGl1bVwiPk1lZGl1bSDigJMgMzAwIMOXIDMwPC9vcHRpb24 + PG9wdGlvbiB1cmw9XCJodHRwczovL3RldGVjaC5jb20vd3AtY29udGVudC9 1cGxvYWRzLzIwMTkvMDcvYWlyY29vbGVyMS0xMDI0eDEwMi5qcGdcIiB3aWR0aD1cIjEwMjRcIiBoZWlnaHQ9XCIxMDJcIiB2YWx1ZT1cImxhcmdlXCI + TGFyZ2Ug4oCTIDEwMjQgw5cgMTAyPC9vcHRpb24 + PG9wdGlvbiB1cmw9XCJodHRwczovL3RldGVjaC5jb20vd3AtY29udGVudC91cGxvYWRzLzIwMTkvMDcvYWlyY29vbGVyMS5qcGdcIiB3aWR0aD1cIjIwMDBcIiBoZWlnaHQ9XCIyMDBcIiB2YWx1ZT1cImZ1bGxcIj5GdWxsIOKAkyAyMDAwIMOXIDIwMDwvb3B0aW9uPjwvc2VsZWN0PiIsImltZ19zaXplIjoiZnVsbCIsImltZ19zcmMiOiJodHRwczovL3RldGVjaC5jb20vd3AtY29udGVudC91cGxvYWRzLzIwMTkvMDcvYWlyY29vbGVyMS0zMDB4MzAuanBnIiwiaHlwZXJsaW5rIjoiIiwiaHlwZXJsaW5rVGFyZ2V0IjoiX3NlbGYiLCJ5b3V0dWJlX3BvcHVwIjpmYWxzZSwieW91dHViZV9zb3VyY2UiOiIifSwiY29udGVudFR5cGUiOiJpbWFnZSIsImFuaW1hdGlvbiI6ImRpc2FibGUifSx7IngiOiIyNi4xNjgwNDUzNDMxMzcyNSUiLCJ5IjoiNC4wOTgzNjA2NTU3Mzc3MDUlIiwid2lkdGgiOiIzNy41NDIwODc1NDIwODc1MzZlbSIsImhlaWdodCI6IjUuMjE4ODU1MjE4ODU1MjE5ZW0iLCJpZCI6MSwiel9pbmRleCI6MTAwLCJodG1sIjoiPGRpdiBzdHlsZT0ncG9zaXRpb246YWJzb2x1dGU7dG9wOjA7cmlnaHQ6MDtib3R0b206MDtsZWZ0OjA7b3ZlcmZsb3c6aGlkZGVuO3RleHQtYWxpZ246IGxlZnQ7cGFkZGluZzo gMC41ZW0gMC43NWVtOycgPjxwIHN0eWxlPSdtYXJnaW46IDBweDtsaW5lLWhlaWdodDogMS41O2ZvbnQtc2l6ZTogM2VtO2NvbG9yOiAjZmZmZmZmO2ZvbnQtd2VpZ2h0OiBib2xkO3RleHQtdHJhbnNmb3JtOiBub25lO3RleHQtZGVjb3JhdGlvbjogbm9uZTtmb250LXN0eWxlOiBub3JtYWw7Jz5BSVIgQ09PTEVSUzwvcD48L2Rpdj4iLCJoeXBlcmxpbmsiOiIiLCJoeXBlcmxpbmtUYXJnZXQiOiJfc2VsZiIsImJhY2tncm91bmQiOiJub25lIiwiYWxpZ24iOiJsZWZ0Iiwib3RoZXJzIjp7InRleHQiOiJBSVIgQ09PTEVSUyIsImFsaWduIjoibGVmdCIsInNpemUiOiIzIiwiY29sb3IiOiIjZmZmZmZmIiwibGluZV9oZWlnaHQiOiIiLCJmb250X3R5cGUiOiIiLCJmb250X3dlaWdodCI6ImJvbGQiLCJ0ZXh0X3RyYW5zZm9ybSI6Im5vbmUiLCJ0ZXh0X2RlY29yYXRpb24iOiJub25lIiwiZm9udF9zdHlsZSI6Im5vcm1hbCIsImxldHRlcl9zcGFjaW5nIjoiIiwidGV4dF9zaGFkb3ciOiIiLCJiYWNrZ3JvdW5kIjoiIiwiYm9yZGVyX3Bvc2l0aW9uIjoiYm9yZGVyIiwiYm9yZGVyX3NpemUiOiIiLCJib3JkZXJfY29sb3IiOiIiLCJib3JkZXJfcmFkaXVzIjoiIiwicGFkZGluZyI6InNtYWxsIiwicGFkZGluZ19jdXN0b20iOiIyLjVlbSAyLjVlbSAyLjVlbSAyLjVlbSJ9LCJjb250ZW50VHlwZSI6InRleHQiLCJhbmltYXRpb24iOiJlbmFibGUifSx7IngiOiIxOC42ODYwMzgwMTE2OTU5MDYlIiwieSI6IjM2LjY1MzY0NTgzMzM zMzMzJSIsIndpZHRoIjoiNTUuNzIzOTA1NzIzOTA1NzJlbSIsImhlaWdodCI6IjYuNTY1NjU2NTY1NjU2NTY1ZW0iLCJpZCI6Miwiel9pbmRleCI6MTAwLCJodG1sIjoiPGRpdiBzdHlsZT0ncG9zaXRpb246YWJzb2x1dGU7dG9wOjA7cmlnaHQ6MDtib3R0b206MDtsZWZ0OjA7b3ZlcmZsb3c6aGlkZGVuO3RleHQtYWxpZ246IGNlbnRlcjtwYWRkaW5nOiAwLjVlbSAwLjc1ZW07JyA + PHAgc3R5bGU9J21hcmdpbjogMHB4O2xpbmUtaGVpZ2h0OiAxLjU7Zm9udC1zaXplOiAyZW07Y29sb3I6ICMyNjMyNDg7Zm9udC13ZWlnaHQ6IGJvbGQ7dGV4dC10cmFuc2Zvcm06IG5vbmU7dGV4dC1kZWNvcmF0aW9uOiBub25lO2ZvbnQtc3R5bGU6IG5vcm1hbDsnPkFpciBDb29sZXJzIGZvciBlbGVjdHJpY2FsIGVuY2xvc3VyZXMgYW5kIHJlZnJpZ2VyYXRlZCBjYWJpbmV0cy5cblF1YWxpdHkgY29vbGVycyBtYW51ZmFjdHVyZWQgaGVyZSBpbiB0aGUgVVNBLjwvcD48L2Rpdj4iLCJoeXBlcmxpbmsiOiIiLCJoeXBlcmxpbmtUYXJnZXQiOiJfc2VsZiIsImJhY2tncm91bmQiOiJub25lIiwiYWxpZ24iOiJsZWZ0Iiwib3RoZXJzIjp7InRleHQiOiJBaXIgQ29vbGVycyBmb3IgZWxlY3RyaWNhbCBlbmNsb3N1cmVzIGFuZCByZWZyaWdlcmF0ZWQgY2FiaW5ldHMuXG5RdWFsaXR5IGNvb2xlcnMgbWFudWZhY3R1cmVkIGhlcmUgaW4gdGhlIFVTQS4iLCJhbGlnbiI6ImNlbnRlciIsInNpemUiOiIyIiwiY29sb3IiOiIjMjYzMjQ4IiwibGluZV9 oZWlnaHQiOiIiLCJmb250X3R5cGUiOiIiLCJmb250X3dlaWdodCI6ImJvbGQiLCJ0ZXh0X3RyYW5zZm9ybSI6Im5vbmUiLCJ0ZXh0X2RlY29yYXRpb24iOiJub25lIiwiZm9udF9zdHlsZSI6Im5vcm1hbCIsImxldHRlcl9zcGFjaW5nIjoiIiwidGV4dF9zaGFkb3ciOiIiLCJiYWNrZ3JvdW5kIjoiIiwiYm9yZGVyX3Bvc2l0aW9uIjoiYm9yZGVyIiwiYm9yZGVyX3NpemUiOiIiLCJib3JkZXJfY29sb3IiOiIiLCJib3JkZXJfcmFkaXVzIjoiIiwicGFkZGluZyI6InNtYWxsIiwicGFkZGluZ19jdXN0b20iOiIyLjVlbSAyLjVlbSAyLjVlbSAyLjVlbSJ9LCJjb250ZW50VHlwZSI6InRleHQiLCJhbmltYXRpb24iOiJlbmFibGUifSx7IngiOiIyNS41NTczODMwNDA5MzU2NzIlIiwieSI6IjcwLjcwMzEyNSUiLCJ3aWR0aCI6IjI1LjU4OTIyNTU4OTIyNTU4OGVtIiwiaGVpZ2h0IjoiNS4yMTg4NTUyMTg4NTUyMTllbSIsImlkIjozLCJ6X2luZGV4IjoxMDAsImh0bWwiOiI8YSBocmVmPScvcHJvZHVjdC1jYXRlZ29yeS9haXItY29vbGVycy8nIGNsYXNzPSdzYW5nYXItYnRuLXNxdWFyZScgdGFyZ2V0PSdfc2VsZicgc3R5bGU9J3doaXRlLXNwYWNlOiBub3dyYXA7IHBhZGRpbmc6IDEuMGVtIDIuNWVtO2JhY2tncm91bmQ6IHJnYigyNTUsIDE1MiwgMCk7JyBvbk1vdXNlT3Zlcj1cIlwiIG9uTW91c2VPdXQ9XCJ0aGlzLmdldEVsZW1lbnRzQnlUYWdOYW1lKCdzcGFuJylbMF0uc3R5bGUuY29sb3I9JyMwMDAwMDAnO3RoaXMuc3R 5bGUuYmFja2dyb3VuZD0ncmdiKDI1NSwgMTUyLCAwKSc7XCI + PHNwYW4gc3R5bGU9J2ZvbnQtc2l6ZTogMS43ZW07Y29sb3I6ICMwMDAwMDA7Zm9udC13ZWlnaHQ6IFwiYm9sZFwiOyc + VmlldyBBaXIgQ29vbGVyIFByb2R1Y3RzPC9zcGFuPjwvYT4iLCJoeXBlcmxpbmsiOiIiLCJoeXBlcmxpbmtUYXJnZXQiOiJfc2VsZiIsImJhY2tncm91bmQiOiJub25lIiwiYWxpZ24iOiJsZWZ0Iiwib3RoZXJzIjp7ImJ1dHRvbl9jbGFzcyI6InNhbmdhci1idG4tc3F1YXJlIiwidGV4dCI6IlZpZXcgQWlyIENvb2xlciBQcm9kdWN0cyIsImh5cGVybGluayI6Ii9wcm9kdWN0LWNhdGVnb3J5L2Fpci1jb29sZXJzLyIsImh5cGVybGlua1RhcmdldCI6Il9zZWxmIiwidGV4dF9zaXplIjoiMS43IiwidGV4dF9jb2xvciI6IiMwMDAwMDAiLCJ0ZXh0X2ZvbnQiOiIiLCJ0ZXh0X3dlaWdodCI6ImJvbGQiLCJiYWNrZ3JvdW5kIjoicmdiKDI1NSwgMTUyLCAwKSIsImhvdmVyX3RleHRfY29sb3IiOiIiLCJob3Zlcl9iYWNrZ3JvdW5kIjoiIiwiYm9yZGVyX2NvbG9yIjoiIiwicGFkZGluZyI6InNtYWxsIiwicGFkZGluZ19jdXN0b20iOiIxLjVlbSA0ZW0gMS41ZW0gNGVtIiwieW91dHViZV9wb3B1cCI6ZmFsc2UsInlvdXR1YmVfc291cmNlIjoiIn0sImNvbnRlbnRUeXBlIjoiYnV0dG9uIiwiYW5pbWF0aW9uIjoiZW5hYmxlIn1dfSwibW9iaWxlIjp7Im51bWJlciI6MCwib3B0aW9ucyI6e30sImNvbnRlbnQiOltdfX0 =

eyJkZ XNrdG9wIjp7Im51bWJlciI6NCwib3B0aW9ucyI6e30sImNvbnRlbnQiOlt7IngiOiIwIiwieSI6IjAiLCJ3aWR0aCI6IjIwMGVtIiwiaGVpZ2h0IjoiMTkuOTMwMDY5OTMwMDY5OTNlbSIsImlkIjowLCJ6X2luZGV4Ijo5OSwiaHRtbCI6IjxpbWcgc3JjPVwiaHR0cHM6Ly90ZXRlY2guY29tL3dwLWNvbnRlbnQvdXBsb2Fkcy8yMDE5LzA3L2N1c3RvbTEuanBnXCIgPiIsImh5cGVybGluayI6IiIsImh5cGVybGlua1RhcmdldCI6Il9zZWxmIiwiYmFja2dyb3VuZCI6Im5vbmUiLCJhbGlnbiI6ImxlZnQiLCJvdGhlcnMiOnsiaW1nX3NpemVfb3B0aW9uIjoiPHNlbGVjdD48b3B0aW9uIHVybD1cImh0dHBzOi8vdGV0ZWNoLmNvbS93cC1jb250ZW50L3VwbG9hZHMvMjAxOS8wNy9jdXN0b20xLTE1MHgxNTAuanBnXCIgd2lkdGg9XCIxNTBcIiBoZWlnaHQ9XCIxNTBcIiB2YWx1ZT1cInRodW1ibmFpbFwiPlRodW1ibmFpbCDigJMgMTUwIMOXIDE1MDwvb3B0aW9uPjxvcHRpb24gc2VsZWN0ZWQ9XCJcIiB1cmw9XCJodHRwczovL3RldGVjaC5jb20vd3AtY29udGVudC91cGxvYWRzLzIwMTkvMDcvY3VzdG9tMS0zMDB4MzAuanBnXCIgd2lkdGg9XCIzMDBcIiBoZWlnaHQ9XCIzMFwiIHZhbHVlPVwibWVkaXVtXCI + TWVkaXVtIOKAkyAzMDAgw5cgMzA8L29wdGlvbj48b3B0aW9uIHVybD1cImh0dHBzOi8vdGV0ZWNoLmNvbS93cC1jb250ZW50L3VwbG9hZHMvMjAxOS8wNy9jdXN0b20xLTEwMjR4MTAyLmpwZ1wiIHdpZHRoPVwiMTAyN FwiIGhlaWdodD1cIjEwMlwiIHZhbHVlPVwibGFyZ2VcIj5MYXJnZSDigJMgMTAyNCDDlyAxMDI8L29wdGlvbj48b3B0aW9uIHVybD1cImh0dHBzOi8vdGV0ZWNoLmNvbS93cC1jb250ZW50L3VwbG9hZHMvMjAxOS8wNy9jdXN0b20xLmpwZ1wiIHdpZHRoPVwiMjAwMFwiIGhlaWdodD1cIjIwMFwiIHZhbHVlPVwiZnVsbFwiPkZ1bGwg4oCTIDIwMDAgw5cgMjAwPC9vcHRpb24 + PC9zZWxlY3Q + IiwiaW1nX3NpemUiOiJmdWxsIiwiaW1nX3NyYyI6Imh0dHBzOi8vdGV0ZWNoLmNvbS93cC1jb250ZW50L3VwbG9hZHMvMjAxOS8wNy9jdXN0b20xLTMwMHgzMC5qcGciLCJoeXBlcmxpbmsiOiIiLCJoeXBlcmxpbmtUYXJnZXQiOiJfc2VsZiIsInlvdXR1YmVfcG9wdXAiOmZhbHNlLCJ5b3V0dWJlX3NvdXJjZSI6IiJ9LCJjb250ZW50VHlwZSI6ImltYWdlIiwiYW5pbWF0aW9uIjoiZGlzYWJsZSJ9LHsieCI6IjI2LjE2ODA0NTM0MzEzNzI1JSIsInkiOiI0LjA5ODM2MDY1NTczNzcwNSUiLCJ3aWR0aCI6IjM3LjU4NzQxMjU4NzQxMjU5ZW0iLCJoZWlnaHQiOiI1LjA2OTkzMDA2OTkzMDA3ZW0iLCJpZCI6MSwiel9pbmRleCI6MTAwLCJodG1sIjoiPGRpdiBzdHlsZT0ncG9zaXRpb246YWJzb2x1dGU7dG9wOjA7cmlnaHQ6MDtib3R0b206MDtsZWZ0OjA7b3ZlcmZsb3c6aGlkZGVuO3RleHQtYWxpZ246IGxlZnQ7cGFkZGluZzogMC41ZW0gMC43NWVtOycgPjxwIHN0eWxlPSdtYXJnaW46IDBweDtsaW5lLWhlaWdodDogMS41O2ZvbnQtc 2l6ZTogM2VtO2NvbG9yOiAjZmZmZmZmO2ZvbnQtd2VpZ2h0OiBib2xkO3RleHQtdHJhbnNmb3JtOiBub25lO3RleHQtZGVjb3JhdGlvbjogbm9uZTtmb250LXN0eWxlOiBub3JtYWw7Jz5DVVNUT00gQ09PTEVSUzwvcD48L2Rpdj4iLCJoeXBlcmxpbmsiOiIiLCJoeXBlcmxpbmtUYXJnZXQiOiJfc2VsZiIsImJhY2tncm91bmQiOiJub25lIiwiYWxpZ24iOiJsZWZ0Iiwib3RoZXJzIjp7InRleHQiOiJDVVNUT00gQ09PTEVSUyIsImFsaWduIjoibGVmdCIsInNpemUiOiIzIiwiY29sb3IiOiIjZmZmZmZmIiwibGluZV9oZWlnaHQiOiIiLCJmb250X3R5cGUiOiIiLCJmb250X3dlaWdodCI6ImJvbGQiLCJ0ZXh0X3RyYW5zZm9ybSI6Im5vbmUiLCJ0ZXh0X2RlY29yYXRpb24iOiJub25lIiwiZm9udF9zdHlsZSI6Im5vcm1hbCIsImxldHRlcl9zcGFjaW5nIjoiIiwidGV4dF9zaGFkb3ciOiIiLCJiYWNrZ3JvdW5kIjoiIiwiYm9yZGVyX3Bvc2l0aW9uIjoiYm9yZGVyIiwiYm9yZGVyX3NpemUiOiIiLCJib3JkZXJfY29sb3IiOiIiLCJib3JkZXJfcmFkaXVzIjoiIiwicGFkZGluZyI6InNtYWxsIiwicGFkZGluZ19jdXN0b20iOiIyLjVlbSAyLjVlbSAyLjVlbSAyLjVlbSJ9LCJjb250ZW50VHlwZSI6InRleHQiLCJhbmltYXRpb24iOiJlbmFibGUifSx7IngiOiIxOC45MzAxMzc4NDQ2MTE1MyUiLCJ5IjoiMzguNTU0Njg3NSUiLCJ3aWR0aCI6IjU0Ljg5NTEwNDg5NTEwNDllbSIsImhlaWdodCI6IjYuNjQzMzU2NjQzMzU2NjQzZ W0iLCJpZCI6Miwiel9pbmRleCI6MTAwLCJodG1sIjoiPGRpdiBzdHlsZT0ncG9zaXRpb246YWJzb2x1dGU7dG9wOjA7cmlnaHQ6MDtib3R0b206MDtsZWZ0OjA7b3ZlcmZsb3c6aGlkZGVuO3RleHQtYWxpZ246IGNlbnRlcjtwYWRkaW5nOiAwLjVlbSAwLjc1ZW07JyA + PHAgc3R5bGU9J21hcmdpbjogMHB4O2xpbmUtaGVpZ2h0OiAxLjU7Zm9udC1zaXplOiAyZW07Y29sb3I6ICMyNjMyNDg7Zm9udC13ZWlnaHQ6IGJvbGQ7dGV4dC10cmFuc2Zvcm06IG5vbmU7dGV4dC1kZWNvcmF0aW9uOiBub25lO2ZvbnQtc3R5bGU6IG5vcm1hbDsnPkN1c3RvbSBDb29sZXJzIG9wdGltaXplZCBmb3IgeW91ciBleGFjdCByZXF1aXJlbWVudHMuXG5DYWxsIG91ciBlbmdpbmVlcnMgdG8gZGlzY3VzcyB0aGUgcG9zc2liaWxpdGllcy48L3A ​​+ PC9kaXY + IiwiaHlwZXJsaW5rIjoiIiwiaHlwZXJsaW5rVGFyZ2V0IjoiX3NlbGYiLCJiYWNrZ3JvdW5kIjoibm9uZSIsImFsaWduIjoibGVmdCIsIm90aGVycyI6eyJ0ZXh0IjoiQ3VzdG9tIENvb2xlcnMgb3B0aW1pemVkIGZvciB5b3VyIGV4YWN0IHJlcXVpcmVtZW50cy5cbkNhbGwgb3VyIGVuZ2luZWVycyB0byBkaXNjdXNzIHRoZSBwb3NzaWJpbGl0aWVzLiIsImFsaWduIjoiY2VudGVyIiwic2l6ZSI6IjIiLCJjb2xvciI6IiMyNjMyNDgiLCJsaW5lX2hlaWdodCI6IiIsImZvbnRfdHlwZSI6IiIsImZvbnRfd2VpZ2h0IjoiYm9sZCIsInRleHRfdHJhbnNmb3JtIjoibm9uZSIsInRleHRfZGVjb 3JhdGlvbiI6Im5vbmUiLCJmb250X3N0eWxlIjoibm9ybWFsIiwibGV0dGVyX3NwYWNpbmciOiIiLCJ0ZXh0X3NoYWRvdyI6IiIsImJhY2tncm91bmQiOiIiLCJib3JkZXJfcG9zaXRpb24iOiJib3JkZXIiLCJib3JkZXJfc2l6ZSI6IiIsImJvcmRlcl9jb2xvciI6IiIsImJvcmRlcl9yYWRpdXMiOiIiLCJwYWRkaW5nIjoic21hbGwiLCJwYWRkaW5nX2N1c3RvbSI6IjIuNWVtIDIuNWVtIDIuNWVtIDIuNWVtIn0sImNvbnRlbnRUeXBlIjoidGV4dCIsImFuaW1hdGlvbiI6ImVuYWJsZSJ9LHsieCI6IjI1LjA1NjEyOTkwODEwMzU5MyUiLCJ5IjoiNzIuMzY5NzkxNjY2NjY2NjclIiwid2lkdGgiOiIyOS43MjAyNzk3MjAyNzk3MmVtIiwiaGVpZ2h0IjoiNS4yNDQ3NTUyNDQ3NTUyNDVlbSIsImlkIjozLCJ6X2luZGV4IjoxMDAsImh0bWwiOiI8YSBocmVmPScvcHJvZHVjdC1jYXRlZ29yeS9jb2xkLXBsYXRlLWNvb2xlcnMvJyBjbGFzcz0nc2FuZ2FyLWJ0bi1zcXVhcmUnIHRhcmdldD0nX3NlbGYnIHN0eWxlPSd3aGl0ZS1zcGFjZTogbm93cmFwOyBwYWRkaW5nOiAxLjBlbSAyLjVlbTtiYWNrZ3JvdW5kOiByZ2IoMjU1LCAxNTIsIDApOycgb25Nb3VzZU92ZXI9XCJcIiBvbk1vdXNlT3V0PVwidGhpcy5nZXRFbGVtZW50c0J5VGFnTmFtZSgnc3BhbicpWzBdLnN0eWxlLmNvbG9yPScjMDAwMDAwJzt0aGlzLnN0eWxlLmJhY2tncm91bmQ9J3JnYigyNTUsIDE1MiwgMCknO1wiPjxzcGFuIHN0eWxlPSdmb250LXNpemU6IDEuN2VtO 2NvbG9yOiAjMDAwMDAwO2ZvbnQtd2VpZ2h0OiBcImJvbGRcIjsnPlZpZXcgQ3VzdG9tIENvb2xlciBQcm9kdWN0czwvc3Bhbj48L2E + IiwiaHlwZXJsaW5rIjoiIiwiaHlwZXJsaW5rVGFyZ2V0IjoiX3NlbGYiLCJiYWNrZ3JvdW5kIjoibm9uZSIsImFsaWduIjoibGVmdCIsIm90aGVycyI6eyJidXR0b25fY2xhc3MiOiJzYW5nYXItYnRuLXNxdWFyZSIsInRleHQiOiJWaWV3IEN1c3RvbSBDb29sZXIgUHJvZHVjdHMiLCJoeXBlcmxpbmsiOiIvcHJvZHVjdC1jYXRlZ29yeS9jb2xkLXBsYXRlLWNvb2xlcnMvIiwiaHlwZXJsaW5rVGFyZ2V0IjoiX3NlbGYiLCJ0ZXh0X3NpemUiOiIxLjciLCJ0ZXh0X2NvbG9yIjoiIzAwMDAwMCIsInRleHRfZm9udCI6IiIsInRleHRfd2VpZ2h0IjoiYm9sZCIsImJhY2tncm91bmQiOiJyZ2IoMjU1LCAxNTIsIDApIiwiaG92ZXJfdGV4dF9jb2xvciI6IiIsImhvdmVyX2JhY2tncm91bmQiOiIiLCJib3JkZXJfY29sb3IiOiIiLCJwYWRkaW5nIjoic21hbGwiLCJwYWRkaW5nX2N1c3RvbSI6IjEuNWVtIDRlbSAxLjVlbSA0ZW0iLCJ5b3V0dWJlX3BvcHVwIjpmYWxzZSwieW91dHViZV9zb3VyY2UiOiIifSwiY29udGVudFR5cGUiOiJidXR0b24iLCJhbmltYXRpb24iOiJlbmFibGUifV19LCJtb2JpbGUiOnsibnVtYmVyIjowLCJvcHRpb25zIjp7fSwiY29udGVudCI6W119fQ ==

eyJkZXNrdG9wIjp7Im51bWJlciI6NCwib3B0aW9ucyI6e30sImNvbnRlbnQiOlt7IngiOiIwIiw ieSI6IjAiLCJ3aWR0aCI6IjIwMGVtIiwiaGVpZ2h0IjoiMTkuOTMwMDY5OTMwMDY5OTNlbSIsImlkIjowLCJ6X2luZGV4Ijo5OSwiaHRtbCI6IjxpbWcgc3JjPVwiaHR0cHM6Ly90ZXRlY2guY29tL3dwLWNvbnRlbnQvdXBsb2Fkcy8yMDE5LzA3L2xpcXVpZDEuanBnXCIgPiIsImh5cGVybGluayI6IiIsImh5cGVybGlua1RhcmdldCI6Il9zZWxmIiwiYmFja2dyb3VuZCI6Im5vbmUiLCJhbGlnbiI6ImxlZnQiLCJvdGhlcnMiOnsiaW1nX3NpemVfb3B0aW9uIjoiPHNlbGVjdD48b3B0aW9uIHVybD1cImh0dHBzOi8vdGV0ZWNoLmNvbS93cC1jb250ZW50L3VwbG9hZHMvMjAxOS8wNy9saXF1aWQxLTE1MHgxNTAuanBnXCIgd2lkdGg9XCIxNTBcIiBoZWlnaHQ9XCIxNTBcIiB2YWx1ZT1cInRodW1ibmFpbFwiPlRodW1ibmFpbCDigJMgMTUwIMOXIDE1MDwvb3B0aW9uPjxvcHRpb24gc2VsZWN0ZWQ9XCJcIiB1cmw9XCJodHRwczovL3RldGVjaC5jb20vd3AtY29udGVudC91cGxvYWRzLzIwMTkvMDcvbGlxdWlkMS0zMDB4MzAuanBnXCIgd2lkdGg9XCIzMDBcIiBoZWlnaHQ9XCIzMFwiIHZhbHVlPVwibWVkaXVtXCI + TWVkaXVtIOKAkyAzMDAgw5cgMzA8L29wdGlvbj48b3B0aW9uIHVybD1cImh0dHBzOi8vdGV0ZWNoLmNvbS93cC1jb250ZW50L3VwbG9hZHMvMjAxOS8wNy9saXF1aWQxLTEwMjR4MTAyLmpwZ1wiIHdpZHRoPVwiMTAyNFwiIGhlaWdodD1cIjEwMlwiIHZhbHVlPVwibGFyZ2VcIj5MYXJnZSDigJMgMTAyNCDDlyA xMDI8L29wdGlvbj48b3B0aW9uIHVybD1cImh0dHBzOi8vdGV0ZWNoLmNvbS93cC1jb250ZW50L3VwbG9hZHMvMjAxOS8wNy9saXF1aWQxLmpwZ1wiIHdpZHRoPVwiMjAwMFwiIGhlaWdodD1cIjIwMFwiIHZhbHVlPVwiZnVsbFwiPkZ1bGwg4oCTIDIwMDAgw5cgMjAwPC9vcHRpb24 + PC9zZWxlY3Q + IiwiaW1nX3NpemUiOiJmdWxsIiwiaW1nX3NyYyI6Imh0dHBzOi8vdGV0ZWNoLmNvbS93cC1jb250ZW50L3VwbG9hZHMvMjAxOS8wNy9saXF1aWQxLTMwMHgzMC5qcGciLCJoeXBlcmxpbmsiOiIiLCJoeXBlcmxpbmtUYXJnZXQiOiJfc2VsZiIsInlvdXR1YmVfcG9wdXAiOmZhbHNlLCJ5b3V0dWJlX3NvdXJjZSI6IiJ9LCJjb250ZW50VHlwZSI6ImltYWdlIiwiYW5pbWF0aW9uIjoiZGlzYWJsZSJ9LHsieCI6IjI2LjE2ODA0NTM0MzEzNzI1JSIsInkiOiI0LjA5ODM2MDY1NTczNzcwNSUiLCJ3aWR0aCI6IjM3LjU4NzQxMjU4NzQxMjU5ZW0iLCJoZWlnaHQiOiI1LjA2OTkzMDA2OTkzMDA3ZW0iLCJpZCI6MSwiel9pbmRleCI6MTAwLCJodG1sIjoiPGRpdiBzdHlsZT0ncG9zaXRpb246YWJzb2x1dGU7dG9wOjA7cmlnaHQ6MDtib3R0b206MDtsZWZ0OjA7b3ZlcmZsb3c6aGlkZGVuO3RleHQtYWxpZ246IGxlZnQ7cGFkZGluZzogMC41ZW0gMC43NWVtOycgPjxwIHN0eWxlPSdtYXJnaW46IDBweDtsaW5lLWhlaWdodDogMS41O2ZvbnQtc2l6ZTogM2VtO2NvbG9yOiAjZmZmZmZmO2ZvbnQtd2VpZ2h0OiBib2xkO3RleHQtdHJhbnN mb3JtOiBub25lO3RleHQtZGVjb3JhdGlvbjogbm9uZTtmb250LXN0eWxlOiBub3JtYWw7Jz5MSVFVSUQgQ09PTEVSUzwvcD48L2Rpdj4iLCJoeXBlcmxpbmsiOiIiLCJoeXBlcmxpbmtUYXJnZXQiOiJfc2VsZiIsImJhY2tncm91bmQiOiJub25lIiwiYWxpZ24iOiJsZWZ0Iiwib3RoZXJzIjp7InRleHQiOiJMSVFVSUQgQ09PTEVSUyIsImFsaWduIjoibGVmdCIsInNpemUiOiIzIiwiY29sb3IiOiIjZmZmZmZmIiwibGluZV9oZWlnaHQiOiIiLCJmb250X3R5cGUiOiIiLCJmb250X3dlaWdodCI6ImJvbGQiLCJ0ZXh0X3RyYW5zZm9ybSI6Im5vbmUiLCJ0ZXh0X2RlY29yYXRpb24iOiJub25lIiwiZm9udF9zdHlsZSI6Im5vcm1hbCIsImxldHRlcl9zcGFjaW5nIjoiIiwidGV4dF9zaGFkb3ciOiIiLCJiYWNrZ3JvdW5kIjoiIiwiYm9yZGVyX3Bvc2l0aW9uIjoiYm9yZGVyIiwiYm9yZGVyX3NpemUiOiIiLCJib3JkZXJfY29sb3IiOiIiLCJib3JkZXJfcmFkaXVzIjoiIiwicGFkZGluZyI6InNtYWxsIiwicGFkZGluZ19jdXN0b20iOiIyLjVlbSAyLjVlbSAyLjVlbSAyLjVlbSJ9LCJjb250ZW50VHlwZSI6InRleHQiLCJhbmltYXRpb24iOiJlbmFibGUifSx7IngiOiIxNy40NjA0NzQzMDgzMDAzOTUlIiwieSI6IjM3LjY3MjI0NDA5NDQ4ODE4NSUiLCJ3aWR0aCI6IjU5Ljc5MDIwOTc5MDIwOTc5ZW0iLCJoZWlnaHQiOiI2LjQ2ODUzMTQ2ODUzMTQ2OWVtIiwiaWQiOjIsInpfaW5kZXgiOjEwMCwiaHRtbCI6IjxkaXYgc3R5bGU 9J3Bvc2l0aW9uOmFic29sdXRlO3RvcDowO3JpZ2h0OjA7Ym90dG9tOjA7bGVmdDowO292ZXJmbG93OmhpZGRlbjt0ZXh0LWFsaWduOiBsZWZ0O3BhZGRpbmc6IDAuNWVtIDAuNzVlbTsnID48cCBzdHlsZT0nbWFyZ2luOiAwcHg7bGluZS1oZWlnaHQ6IDEuNTtmb250LXNpemU6IDJlbTtjb2xvcjogIzI2MzI0ODtmb250LXdlaWdodDogYm9sZDt0ZXh0LXRyYW5zZm9ybTogbm9uZTt0ZXh0LWRlY29yYXRpb246IG5vbmU7Zm9udC1zdHlsZTogbm9ybWFsOyc + TGlxdWlkIENvb2xlcnMgZGVsaXZlciBjb25jZW50cmF0ZWQgY29vbGluZyB0byByZW1vdGUgaGVhdCBzb3VyY2VzLiBPdXIgZXhwZXJ0cyBjYW4gaGVscCB3aXRoIHNpemluZyBhbmQgc2VsZWN0aW9uLjwvcD48L2Rpdj4iLCJoeXBlcmxpbmsiOiIiLCJoeXBlcmxpbmtUYXJnZXQiOiJfc2VsZiIsImJhY2tncm91bmQiOiJub25lIiwiYWxpZ24iOiJsZWZ0Iiwib3RoZXJzIjp7InRleHQiOiJMaXF1aWQgQ29vbGVycyBkZWxpdmVyIGNvbmNlbnRyYXRlZCBjb29saW5nIHRvIHJlbW90ZSBoZWF0IHNvdXJjZXMuIE91ciBleHBlcnRzIGNhbiBoZWxwIHdpdGggc2l6aW5nIGFuZCBzZWxlY3Rpb24uIiwiYWxpZ24iOiJsZWZ0Iiwic2l6ZSI6IjIiLCJjb2xvciI6IiMyNjMyNDgiLCJsaW5lX2hlaWdodCI6IiIsImZvbnRfdHlwZSI6IiIsImZvbnRfd2VpZ2h0IjoiYm9sZCIsInRleHRfdHJhbnNmb3JtIjoibm9uZSIsInRleHRfZGVjb3JhdGlvbiI6Im5vbmUiLCJmb250X3N 0eWxlIjoibm9ybWFsIiwibGV0dGVyX3NwYWNpbmciOiIiLCJ0ZXh0X3NoYWRvdyI6IiIsImJhY2tncm91bmQiOiIiLCJib3JkZXJfcG9zaXRpb24iOiJib3JkZXIiLCJib3JkZXJfc2l6ZSI6IiIsImJvcmRlcl9jb2xvciI6IiIsImJvcmRlcl9yYWRpdXMiOiIiLCJwYWRkaW5nIjoic21hbGwiLCJwYWRkaW5nX2N1c3RvbSI6IjIuNWVtIDIuNWVtIDIuNWVtIDIuNWVtIn0sImNvbnRlbnRUeXBlIjoidGV4dCIsImFuaW1hdGlvbiI6ImVuYWJsZSJ9LHsieCI6IjI3LjU2Mjk5NDA3MTE0NjI0NiUiLCJ5IjoiNzIuNTYzOTc2Mzc3OTUyNzYlIiwid2lkdGgiOiIzMi44NjcxMzI4NjcxMzI4N2VtIiwiaGVpZ2h0IjoiNS40MTk1ODA0MTk1ODA0MmVtIiwiaWQiOjMsInpfaW5kZXgiOjEwMCwiaHRtbCI6IjxhIGhyZWY9Jy9wcm9kdWN0LWNhdGVnb3J5L2NvbGQtcGxhdGUtY29vbGVycy8nIGNsYXNzPSdzYW5nYXItYnRuLXNxdWFyZScgdGFyZ2V0PSdfc2VsZicgc3R5bGU9J3doaXRlLXNwYWNlOiBub3dyYXA7IHBhZGRpbmc6IDEuMGVtIDIuNWVtO2JhY2tncm91bmQ6IHJnYigyNTUsIDE1MiwgMCk7JyBvbk1vdXNlT3Zlcj1cIlwiIG9uTW91c2VPdXQ9XCJ0aGlzLmdldEVsZW1lbnRzQnlUYWdOYW1lKCdzcGFuJylbMF0uc3R5bGUuY29sb3I9JyMwMDAwMDAnO3RoaXMuc3R5bGUuYmFja2dyb3VuZD0ncmdiKDI1NSwgMTUyLCAwKSc7XCI + PHNwYW4gc3R5bGU9J2ZvbnQtc2l6ZTogMS43ZW07Y29sb3I6ICMwMDAwMDA7Zm9udC13ZWl naHQ6IFwiYm9sZFwiOyc + VmlldyBMaXF1aWQgQ29vbGVyIFByb2R1Y3RzPC9zcGFuPjwvYT4iLCJoeXBlcmxpbmsiOiIiLCJoeXBlcmxpbmtUYXJnZXQiOiJfc2VsZiIsImJhY2tncm91bmQiOiJub25lIiwiYWxpZ24iOiJsZWZ0Iiwib3RoZXJzIjp7ImJ1dHRvbl9jbGFzcyI6InNhbmdhci1idG4tc3F1YXJlIiwidGV4dCI6IlZpZXcgTGlxdWlkIENvb2xlciBQcm9kdWN0cyIsImh5cGVybGluayI6Ii9wcm9kdWN0LWNhdGVnb3J5L2NvbGQtcGxhdGUtY29vbGVycy8iLCJoeXBlcmxpbmtUYXJnZXQiOiJfc2VsZiIsInRleHRfc2l6ZSI6IjEuNyIsInRleHRfY29sb3IiOiIjMDAwMDAwIiwidGV4dF9mb250IjoiIiwidGV4dF93ZWlnaHQiOiJib2xkIiwiYmFja2dyb3VuZCI6InJnYigyNTUsIDE1MiwgMCkiLCJob3Zlcl90ZXh0X2NvbG9yIjoiIiwiaG92ZXJfYmFja2dyb3VuZCI6IiIsImJvcmRlcl9jb2xvciI6IiIsInBhZGRpbmciOiJzbWFsbCIsInBhZGRpbmdfY3VzdG9tIjoiMS41ZW0gNGVtIDEuNWVtIDRlbSIsInlvdXR1YmVfcG9wdXAiOmZhbHNlLCJ5b3V0dWJlX3NvdXJjZSI6IiJ9LCJjb250ZW50VHlwZSI6ImJ1dHRvbiIsImFuaW1hdGlvbiI6ImVuYWJsZSJ9XX0sIm1vYmlsZSI6eyJudW1iZXIiOjAsIm9wdGlvbnMiOnt9LCJjb250ZW50IjpbXX19

eyJkZXNrdG9wIjp7Im51bWJlciI6NCwib3B0aW9ucyI6e30sImNvbnRlbnQiOlt7IngiOiIwIiwieSI6IjAiLCJ3aWR0aCI6IjIwMC4wMDAwM DAwMDAwMDAwM2VtIiwiaGVpZ2h0IjoiMTkuOTE2MTQyNTU3NjUxOTk1ZW0iLCJpZCI6MCwiel9pbmRleCI6OTksImh0bWwiOiI8aW1nIHNyYz1cImh0dHBzOi8vdGV0ZWNoLmNvbS93cC1jb250ZW50L3VwbG9hZHMvMjAxOS8wNy90ZW1wMS5qcGdcIiA + IiwiaHlwZXJsaW5rIjoiIiwiaHlwZXJsaW5rVGFyZ2V0IjoiX3NlbGYiLCJiYWNrZ3JvdW5kIjoibm9uZSIsImFsaWduIjoibGVmdCIsIm90aGVycyI6eyJpbWdfc2l6ZV9vcHRpb24iOiI8c2VsZWN0PjxvcHRpb24gdXJsPVwiaHR0cHM6Ly90ZXRlY2guY29tL3dwLWNvbnRlbnQvdXBsb2Fkcy8yMDE5LzA3L3RlbXAxLTE1MHgxNTAuanBnXCIgd2lkdGg9XCIxNTBcIiBoZWlnaHQ9XCIxNTBcIiB2YWx1ZT1cInRodW1ibmFpbFwiPlRodW1ibmFpbCDigJMgMTUwIMOXIDE1MDwvb3B0aW9uPjxvcHRpb24gc2VsZWN0ZWQ9XCJcIiB1cmw9XCJodHRwczovL3RldGVjaC5jb20vd3AtY29udGVudC91cGxvYWRzLzIwMTkvMDcvdGVtcDEtMzAweDMwLmpwZ1wiIHdpZHRoPVwiMzAwXCIgaGVpZ2h0PVwiMzBcIiB2YWx1ZT1cIm1lZGl1bVwiPk1lZGl1bSDigJMgMzAwIMOXIDMwPC9vcHRpb24 + PG9wdGlvbiB1cmw9XCJodHRwczovL3RldGVjaC5jb20vd3AtY29udGVudC91cGxvYWRzLzIwMTkvMDcvdGVtcDEtMTAyNHgxMDIuanBnXCIgd2lkdGg9XCIxMDI0XCIgaGVpZ2h0PVwiMTAyXCIgdmFsdWU9XCJsYXJnZVwiPkxhcmdlIOKAkyAxMDI0IMOXIDEwMjwvb3B0aW9uPjxvcHRpb 24gdXJsPVwiaHR0cHM6Ly90ZXRlY2guY29tL3dwLWNvbnRlbnQvdXBsb2Fkcy8yMDE5LzA3L3RlbXAxLmpwZ1wiIHdpZHRoPVwiMjAwMFwiIGhlaWdodD1cIjIwMFwiIHZhbHVlPVwiZnVsbFwiPkZ1bGwg4oCTIDIwMDAgw5cgMjAwPC9vcHRpb24 + PC9zZWxlY3Q + IiwiaW1nX3NpemUiOiJmdWxsIiwiaW1nX3NyYyI6Imh0dHBzOi8vdGV0ZWNoLmNvbS93cC1jb250ZW50L3VwbG9hZHMvMjAxOS8wNy90ZW1wMS0zMDB4MzAuanBnIiwiaHlwZXJsaW5rIjoiIiwiaHlwZXJsaW5rVGFyZ2V0IjoiX3NlbGYiLCJ5b3V0dWJlX3BvcHVwIjpmYWxzZSwieW91dHViZV9zb3VyY2UiOiIifSwiY29udGVudFR5cGUiOiJpbWFnZSIsImFuaW1hdGlvbiI6ImRpc2FibGUifSx7IngiOiIyNS4zMDMzMzI2MTQzMjI2OSUiLCJ5IjoiNS43OTIwMjU4NjIwNjg5NjUlIiwid2lkdGgiOiI0OC4wMDgzODU3NDQyMzQ4MWVtIiwiaGVpZ2h0IjoiNC44MjE4MDI5MzUwMTA0ODJlbSIsImlkIjoxLCJ6X2luZGV4IjoxMDAsImh0bWwiOiI8ZGl2IHN0eWxlPSdwb3NpdGlvbjphYnNvbHV0ZTt0b3A6MDtyaWdodDowO2JvdHRvbTowO2xlZnQ6MDtvdmVyZmxvdzpoaWRkZW47dGV4dC1hbGlnbjogbGVmdDtwYWRkaW5nOiAwLjVlbSAwLjc1ZW07JyA + PHAgc3R5bGU9J21hcmdpbjogMHB4O2xpbmUtaGVpZ2h0OiAxLjU7Zm9udC1zaXplOiAyLjdlbTtjb2xvcjogI2ZmZmZmZjtmb250LXdlaWdodDogYm9sZDt0ZXh0LXRyYW5zZm9ybTogbm9uZTt0ZXh0LWRlY 29yYXRpb246IG5vbmU7Zm9udC1zdHlsZTogbm9ybWFsOyc + VEVNUEVSQVRVUkUgQ09OVFJPTExFUlM8L3A + PC9kaXY + IiwiaHlwZXJsaW5rIjoiIiwiaHlwZXJsaW5rVGFyZ2V0IjoiX3NlbGYiLCJiYWNrZ3JvdW5kIjoibm9uZSIsImFsaWduIjoibGVmdCIsIm90aGVycyI6eyJ0ZXh0IjoiVEVNUEVSQVRVUkUgQ09OVFJPTExFUlMiLCJhbGlnbiI6ImxlZnQiLCJzaXplIjoiMi43IiwiY29sb3IiOiIjZmZmZmZmIiwibGluZV9oZWlnaHQiOiIiLCJmb250X3R5cGUiOiIiLCJmb250X3dlaWdodCI6ImJvbGQiLCJ0ZXh0X3RyYW5zZm9ybSI6Im5vbmUiLCJ0ZXh0X2RlY29yYXRpb24iOiJub25lIiwiZm9udF9zdHlsZSI6Im5vcm1hbCIsImxldHRlcl9zcGFjaW5nIjoiIiwidGV4dF9zaGFkb3ciOiIiLCJiYWNrZ3JvdW5kIjoiIiwiYm9yZGVyX3Bvc2l0aW9uIjoiYm9yZGVyIiwiYm9yZGVyX3NpemUiOiIiLCJib3JkZXJfY29sb3IiOiIiLCJib3JkZXJfcmFkaXVzIjoiIiwicGFkZGluZyI6InNtYWxsIiwicGFkZGluZ19jdXN0b20iOiIyLjVlbSAyLjVlbSAyLjVlbSAyLjVlbSJ9LCJjb250ZW50VHlwZSI6InRleHQiLCJhbmltYXRpb24iOiJlbmFibGUifSx7IngiOiIxNi44MTkzOTIyMzA1NzY0NCUiLCJ5IjoiMzYuOTY2MTQ1ODMzMzMzMzM2JSIsIndpZHRoIjoiNjAuNTg3MDAyMDk2NDM2MDY2ZW0iLCJoZWlnaHQiOiI2LjkxODIzODk5MzcxMDY5MmVtIiwiaWQiOjIsInpfaW5kZXgiOjEwMCwiaHRtbCI6IjxkaXYgc3R5b GU9J3Bvc2l0aW9uOmFic29sdXRlO3RvcDowO3JpZ2h0OjA7Ym90dG9tOjA7bGVmdDowO292ZXJmbG93OmhpZGRlbjt0ZXh0LWFsaWduOiBjZW50ZXI7cGFkZGluZzogMC41ZW0gMC43NWVtOycgPjxwIHN0eWxlPSdtYXJnaW46IDBweDtsaW5lLWhlaWdodDogMS41O2ZvbnQtc2l6ZTogMmVtO2NvbG9yOiAjMjYzMjQ4O2ZvbnQtd2VpZ2h0OiBib2xkO3RleHQtdHJhbnNmb3JtOiBub25lO3RleHQtZGVjb3JhdGlvbjogbm9uZTtmb250LXN0eWxlOiBub3JtYWw7Jz5UZW1wZXJhdHVyZSBDb250cm9sbGVycyBmb3IgcHJlY2lzZSB0aGVybWFsIG1hbmFnZW1lbnQuXG5Db21wbGV0ZSBlbmdpbmVlcmluZyBhc3Npc3RhbmNlIGZyb20gY29vbGVycyB0byBjb250cm9scy48L3A ​​+ PC9kaXY + IiwiaHlwZXJsaW5rIjoiIiwiaHlwZXJsaW5rVGFyZ2V0IjoiX3NlbGYiLCJiYWNrZ3JvdW5kIjoibm9uZSIsImFsaWduIjoibGVmdCIsIm90aGVycyI6eyJ0ZXh0IjoiVGVtcGVyYXR1cmUgQ29udHJvbGxlcnMgZm9yIHByZWNpc2UgdGhlcm1hbCBtYW5hZ2VtZW50LlxuQ29tcGxldGUgZW5naW5lZXJpbmcgYXNzaXN0YW5jZSBmcm9tIGNvb2xlcnMgdG8gY29udHJvbHMuIiwiYWxpZ24iOiJjZW50ZXIiLCJzaXplIjoiMiIsImNvbG9yIjoiIzI2MzI0OCIsImxpbmVfaGVpZ2h0IjoiIiwiZm9udF90eXBlIjoiIiwiZm9udF93ZWlnaHQiOiJib2xkIiwidGV4dF90cmFuc2Zvcm0iOiJub25lIiwidGV4dF9kZWNvcmF0aW9uIjoibm9uZSIsImZvb nRfc3R5bGUiOiJub3JtYWwiLCJsZXR0ZXJfc3BhY2luZyI6IiIsInRleHRfc2hhZG93IjoiIiwiYmFja2dyb3VuZCI6IiIsImJvcmRlcl9wb3NpdGlvbiI6ImJvcmRlciIsImJvcmRlcl9zaXplIjoiIiwiYm9yZGVyX2NvbG9yIjoiIiwiYm9yZGVyX3JhZGl1cyI6IiIsInBhZGRpbmciOiJzbWFsbCIsInBhZGRpbmdfY3VzdG9tIjoiMi41ZW0gMi41ZW0gMi41ZW0gMi41ZW0ifSwiY29udGVudFR5cGUiOiJ0ZXh0IiwiYW5pbWF0aW9uIjoiZW5hYmxlIn0seyJ4IjoiMjQuMzg3NzkyMzk3NjYwODE3JSIsInkiOiI3Mi4zNjk3OTE2NjY2NjY2NyUiLCJ3aWR0aCI6IjI5LjU1OTc0ODQyNzY3Mjk1N2VtIiwiaGVpZ2h0IjoiNS4yNDEwOTAxNDY3NTA1MjRlbSIsImlkIjozLCJ6X2luZGV4IjoxMDAsImh0bWwiOiI8YSBocmVmPScvcHJvZHVjdC1jYXRlZ29yeS90ZW1wZXJhdHVyZS1jb250cm9sbGVycy8nIGNsYXNzPSdzYW5nYXItYnRuLXNxdWFyZScgdGFyZ2V0PSdfc2VsZicgc3R5bGU9J3doaXRlLXNwYWNlOiBub3dyYXA7IHBhZGRpbmc6IDEuMGVtIDIuNWVtO2JhY2tncm91bmQ6IHJnYigyNTUsIDE1MiwgMCk7JyBvbk1vdXNlT3Zlcj1cIlwiIG9uTW91c2VPdXQ9XCJ0aGlzLmdldEVsZW1lbnRzQnlUYWdOYW1lKCdzcGFuJylbMF0uc3R5bGUuY29sb3I9JyMwMDAwMDAnO3RoaXMuc3R5bGUuYmFja2dyb3VuZD0ncmdiKDI1NSwgMTUyLCAwKSc7XCI + PHNwYW4gc3R5bGU9J2ZvbnQtc2l6ZTogMS43ZW07Y29sb3I6ICMwMDAwM DA7Zm9udC13ZWlnaHQ6IFwiYm9sZFwiOyc + VmlldyBUZW1wZXJhdHVyZSBDb250cm9sbGVyczwvc3Bhbj48L2E + IiwiaHlwZXJsaW5rIjoiIiwiaHlwZXJsaW5rVGFyZ2V0IjoiX3NlbGYiLCJiYWNrZ3JvdW5kIjoibm9uZSIsImFsaWduIjoibGVmdCIsIm90aGVycyI6eyJidXR0b25fY2xhc3MiOiJzYW5nYXItYnRuLXNxdWFyZSIsInRleHQiOiJWaWV3IFRlbXBlcmF0dXJlIENvbnRyb2xsZXJzIiwiaHlwZXJsaW5rIjoiL3Byb2R1Y3QtY2F0ZWdvcnkvdGVtcGVyYXR1cmUtY29udHJvbGxlcnMvIiwiaHlwZXJsaW5rVGFyZ2V0IjoiX3NlbGYiLCJ0ZXh0X3NpemUiOiIxLjciLCJ0ZXh0X2NvbG9yIjoiIzAwMDAwMCIsInRleHRfZm9udCI6IiIsInRleHRfd2VpZ2h0IjoiYm9sZCIsImJhY2tncm91bmQiOiJyZ2IoMjU1LCAxNTIsIDApIiwiaG92ZXJfdGV4dF9jb2xvciI6IiIsImhvdmVyX2JhY2tncm91bmQiOiIiLCJib3JkZXJfY29sb3IiOiIiLCJwYWRkaW5nIjoic21hbGwiLCJwYWRkaW5nX2N1c3RvbSI6IjEuNWVtIDRlbSAxLjVlbSA0ZW0iLCJ5b3V0dWJlX3BvcHVwIjpmYWxzZSwieW91dHViZV9zb3VyY2UiOiIifSwiY29udGVudFR5cGUiOiJidXR0b24iLCJhbmltYXRpb24iOiJlbmFibGUifV19LCJtb2JpbGUiOnsibnVtYmVyIjowLCJvcHRpb25zIjp7fSwiY29udGVudCI6W119fQ ==

eyJkZXNrdG9wIjp7Im51bWJlciI6NCwib3B0aW9ucyI6e30sImNvbnRlbnQiOlt7IngiOiIwIiwieSI6IjA iLCJ3aWR0aCI6IjIwMGVtIiwiaGVpZ2h0IjoiMTkuOTMwMDY5OTMwMDY5OTNlbSIsImlkIjowLCJ6X2luZGV4Ijo5OSwiaHRtbCI6IjxpbWcgc3JjPVwiaHR0cHM6Ly90ZXRlY2guY29tL3dwLWNvbnRlbnQvdXBsb2Fkcy8yMDE5LzA3L3RoZXJtbzEuanBnXCIgPiIsImh5cGVybGluayI6IiIsImh5cGVybGlua1RhcmdldCI6Il9zZWxmIiwiYmFja2dyb3VuZCI6Im5vbmUiLCJhbGlnbiI6ImxlZnQiLCJvdGhlcnMiOnsiaW1nX3NpemVfb3B0aW9uIjoiPHNlbGVjdD48b3B0aW9uIHVybD1cImh0dHBzOi8vdGV0ZWNoLmNvbS93cC1jb250ZW50L3VwbG9hZHMvMjAxOS8wNy90aGVybW8xLTE1MHgxNTAuanBnXCIgd2lkdGg9XCIxNTBcIiBoZWlnaHQ9XCIxNTBcIiB2YWx1ZT1cInRodW1ibmFpbFwiPlRodW1ibmFpbCDigJMgMTUwIMOXIDE1MDwvb3B0aW9uPjxvcHRpb24gc2VsZWN0ZWQ9XCJcIiB1cmw9XCJodHRwczovL3RldGVjaC5jb20vd3AtY29udGVudC91cGxvYWRzLzIwMTkvMDcvdGhlcm1vMS0zMDB4MzAuanBnXCIgd2lkdGg9XCIzMDBcIiBoZWlnaHQ9XCIzMFwiIHZhbHVlPVwibWVkaXVtXCI+TWVkaXVtIOKAkyAzMDAgw5cgMzA8L29wdGlvbj48b3B0aW9uIHVybD1cImh0dHBzOi8vdGV0ZWNoLmNvbS93cC1jb250ZW50L3VwbG9hZHMvMjAxOS8wNy90aGVybW8xLTEwMjR4MTAyLmpwZ1wiIHdpZHRoPVwiMTAyNFwiIGhlaWdodD1cIjEwMlwiIHZhbHVlPVwibGFyZ2VcIj5MYXJnZSDigJMgMTAyNCDDlyAxMDI8L29 wdGlvbj48b3B0aW9uIHVybD1cImh0dHBzOi8vdGV0ZWNoLmNvbS93cC1jb250ZW50L3VwbG9hZHMvMjAxOS8wNy90aGVybW8xLmpwZ1wiIHdpZHRoPVwiMjAwMFwiIGhlaWdodD1cIjIwMFwiIHZhbHVlPVwiZnVsbFwiPkZ1bGwg4oCTIDIwMDAgw5cgMjAwPC9vcHRpb24+PC9zZWxlY3Q+IiwiaW1nX3NpemUiOiJmdWxsIiwiaW1nX3NyYyI6Imh0dHBzOi8vdGV0ZWNoLmNvbS93cC1jb250ZW50L3VwbG9hZHMvMjAxOS8wNy90aGVybW8xLTMwMHgzMC5qcGciLCJoeXBlcmxpbmsiOiIiLCJoeXBlcmxpbmtUYXJnZXQiOiJfc2VsZiIsInlvdXR1YmVfcG9wdXAiOmZhbHNlLCJ5b3V0dWJlX3NvdXJjZSI6IiJ9LCJjb250ZW50VHlwZSI6ImltYWdlIiwiYW5pbWF0aW9uIjoiZGlzYWJsZSJ9LHsieCI6IjI1LjkxODI2OTIzMDc2OTIzJSIsInkiOiI1Ljc4MTI1JSIsIndpZHRoIjoiNDcuOTAyMDk3OTAyMDk3OTFlbSIsImhlaWdodCI6IjQuODk1MTA0ODk1MTA0ODk1ZW0iLCJpZCI6MSwiel9pbmRleCI6MTAwLCJodG1sIjoiPGRpdiBzdHlsZT0ncG9zaXRpb246YWJzb2x1dGU7dG9wOjA7cmlnaHQ6MDtib3R0b206MDtsZWZ0OjA7b3ZlcmZsb3c6aGlkZGVuO3RleHQtYWxpZ246IGxlZnQ7cGFkZGluZzogMC41ZW0gMC43NWVtOycgPjxwIHN0eWxlPSdtYXJnaW46IDBweDtsaW5lLWhlaWdodDogMS41O2ZvbnQtc2l6ZTogMi43ZW07Y29sb3I6ICNmZmZmZmY7Zm9udC13ZWlnaHQ6IGJvbGQ7dGV4dC10cmFuc2Zvcm06IG5vbmU7dGV 4dC1kZWNvcmF0aW9uOiBub25lO2ZvbnQtc3R5bGU6IG5vcm1hbDsnPlRIRVJNT0VMRUNUUklDIE1PRFVMRVM8L3A+PC9kaXY+IiwiaHlwZXJsaW5rIjoiIiwiaHlwZXJsaW5rVGFyZ2V0IjoiX3NlbGYiLCJiYWNrZ3JvdW5kIjoibm9uZSIsImFsaWduIjoibGVmdCIsIm90aGVycyI6eyJ0ZXh0IjoiVEhFUk1PRUxFQ1RSSUMgTU9EVUxFUyIsImFsaWduIjoibGVmdCIsInNpemUiOiIyLjciLCJjb2xvciI6IiNmZmZmZmYiLCJsaW5lX2hlaWdodCI6IiIsImZvbnRfdHlwZSI6IiIsImZvbnRfd2VpZ2h0IjoiYm9sZCIsInRleHRfdHJhbnNmb3JtIjoibm9uZSIsInRleHRfZGVjb3JhdGlvbiI6Im5vbmUiLCJmb250X3N0eWxlIjoibm9ybWFsIiwibGV0dGVyX3NwYWNpbmciOiIiLCJ0ZXh0X3NoYWRvdyI6IiIsImJhY2tncm91bmQiOiIiLCJib3JkZXJfcG9zaXRpb24iOiJib3JkZXIiLCJib3JkZXJfc2l6ZSI6IiIsImJvcmRlcl9jb2xvciI6IiIsImJvcmRlcl9yYWRpdXMiOiIiLCJwYWRkaW5nIjoic21hbGwiLCJwYWRkaW5nX2N1c3RvbSI6IjIuNWVtIDIuNWVtIDIuNWVtIDIuNWVtIn0sImNvbnRlbnRUeXBlIjoidGV4dCIsImFuaW1hdGlvbiI6ImVuYWJsZSJ9LHsieCI6IjE5LjUxNTgxMDI3NjY3OTg0NCUiLCJ5IjoiMzcuODMyMTg1MDM5MzcwMDglIiwid2lkdGgiOiI0OC4yNTE3NDgyNTE3NDgyNWVtIiwiaGVpZ2h0IjoiNi42NDMzNTY2NDMzNTY2NDNlbSIsImlkIjoyLCJ6X2luZGV4IjoxMDAsImh0bWwiOiI8ZGl2IHN 0eWxlPSdwb3NpdGlvbjphYnNvbHV0ZTt0b3A6MDtyaWdodDowO2JvdHRvbTowO2xlZnQ6MDtvdmVyZmxvdzpoaWRkZW47dGV4dC1hbGlnbjogbGVmdDtwYWRkaW5nOiAwLjVlbSAwLjc1ZW07JyA+PHAgc3R5bGU9J21hcmdpbjogMHB4O2xpbmUtaGVpZ2h0OiAxLjU7Zm9udC1zaXplOiAyZW07Y29sb3I6ICMyNjMyNDg7Zm9udC13ZWlnaHQ6IGJvbGQ7dGV4dC10cmFuc2Zvcm06IG5vbmU7dGV4dC1kZWNvcmF0aW9uOiBub25lO2ZvbnQtc3R5bGU6IG5vcm1hbDsnPkxhcmdlIGludmVudG9yeSBvZiBwcmVtaXVtIHF1YWxpdHkgUGVsdGllciBtb2R1bGVzLlxuT25saW5lIGNhbGN1bGF0b3JzIHRvIGhlbHAgeW91IHNlbGVjdC48L3A+PC9kaXY+IiwiaHlwZXJsaW5rIjoiIiwiaHlwZXJsaW5rVGFyZ2V0IjoiX3NlbGYiLCJiYWNrZ3JvdW5kIjoibm9uZSIsImFsaWduIjoibGVmdCIsIm90aGVycyI6eyJ0ZXh0IjoiTGFyZ2UgaW52ZW50b3J5IG9mIHByZW1pdW0gcXVhbGl0eSBQZWx0aWVyIG1vZHVsZXMuXG5PbmxpbmUgY2FsY3VsYXRvcnMgdG8gaGVscCB5b3Ugc2VsZWN0LiIsImFsaWduIjoibGVmdCIsInNpemUiOiIyIiwiY29sb3IiOiIjMjYzMjQ4IiwibGluZV9oZWlnaHQiOiIiLCJmb250X3R5cGUiOiIiLCJmb250X3dlaWdodCI6ImJvbGQiLCJ0ZXh0X3RyYW5zZm9ybSI6Im5vbmUiLCJ0ZXh0X2RlY29yYXRpb24iOiJub25lIiwiZm9udF9zdHlsZSI6Im5vcm1hbCIsImxldHRlcl9zcGFjaW5nIjoiIiwidGV4dF9zaGF kb3ciOiIiLCJiYWNrZ3JvdW5kIjoiIiwiYm9yZGVyX3Bvc2l0aW9uIjoiYm9yZGVyIiwiYm9yZGVyX3NpemUiOiIiLCJib3JkZXJfY29sb3IiOiIiLCJib3JkZXJfcmFkaXVzIjoiIiwicGFkZGluZyI6InNtYWxsIiwicGFkZGluZ19jdXN0b20iOiIyLjVlbSAyLjVlbSAyLjVlbSAyLjVlbSJ9LCJjb250ZW50VHlwZSI6InRleHQiLCJhbmltYXRpb24iOiJlbmFibGUifSx7IngiOiIyNy41NjI5OTQwNzExNDYyNDYlIiwieSI6IjcyLjU2Mzk3NjM3Nzk1Mjc2JSIsIndpZHRoIjoiMzIuODY3MTMyODY3MTMyODdlbSIsImhlaWdodCI6IjUuNTk0NDA1NTk0NDA1NTk1ZW0iLCJpZCI6Mywiel9pbmRleCI6MTAwLCJodG1sIjoiPGEgaHJlZj0nL3Byb2R1Y3QtY2F0ZWdvcnkvY29sZC1wbGF0ZS1jb29sZXJzLycgY2xhc3M9J3Nhbmdhci1idG4tc3F1YXJlJyB0YXJnZXQ9J19zZWxmJyBzdHlsZT0nd2hpdGUtc3BhY2U6IG5vd3JhcDsgcGFkZGluZzogMS4wZW0gMi41ZW07YmFja2dyb3VuZDogcmdiKDI1NSwgMTUyLCAwKTsnIG9uTW91c2VPdmVyPVwiXCIgb25Nb3VzZU91dD1cInRoaXMuZ2V0RWxlbWVudHNCeVRhZ05hbWUoJ3NwYW4nKVswXS5zdHlsZS5jb2xvcj0nIzAwMDAwMCc7dGhpcy5zdHlsZS5iYWNrZ3JvdW5kPSdyZ2IoMjU1LCAxNTIsIDApJztcIj48c3BhbiBzdHlsZT0nZm9udC1zaXplOiAxLjdlbTtjb2xvcjogIzAwMDAwMDtmb250LXdlaWdodDogXCJib2xkXCI7Jz5WaWV3IFBlbHRpZXIgTW9kdWxlczwvc3Bhbj4 8L2E+IiwiaHlwZXJsaW5rIjoiIiwiaHlwZXJsaW5rVGFyZ2V0IjoiX3NlbGYiLCJiYWNrZ3JvdW5kIjoibm9uZSIsImFsaWduIjoibGVmdCIsIm90aGVycyI6eyJidXR0b25fY2xhc3MiOiJzYW5nYXItYnRuLXNxdWFyZSIsInRleHQiOiJWaWV3IFBlbHRpZXIgTW9kdWxlcyIsImh5cGVybGluayI6Ii9wcm9kdWN0LWNhdGVnb3J5L2NvbGQtcGxhdGUtY29vbGVycy8iLCJoeXBlcmxpbmtUYXJnZXQiOiJfc2VsZiIsInRleHRfc2l6ZSI6IjEuNyIsInRleHRfY29sb3IiOiIjMDAwMDAwIiwidGV4dF9mb250IjoiIiwidGV4dF93ZWlnaHQiOiJib2xkIiwiYmFja2dyb3VuZCI6InJnYigyNTUsIDE1MiwgMCkiLCJob3Zlcl90ZXh0X2NvbG9yIjoiIiwiaG92ZXJfYmFja2dyb3VuZCI6IiIsImJvcmRlcl9jb2xvciI6IiIsInBhZGRpbmciOiJzbWFsbCIsInBhZGRpbmdfY3VzdG9tIjoiMS41ZW0gNGVtIDEuNWVtIDRlbSIsInlvdXR1YmVfcG9wdXAiOmZhbHNlLCJ5b3V0dWJlX3NvdXJjZSI6IiJ9LCJjb250ZW50VHlwZSI6ImJ1dHRvbiIsImFuaW1hdGlvbiI6ImVuYWJsZSJ9XX0sIm1vYmlsZSI6eyJudW1iZXIiOjAsIm9wdGlvbnMiOnt9LCJjb250ZW50IjpbXX19

Peltier Modules in Thermoleectric | Ferrotec-Nord

Peltier module is a device that uses physical phenomenon known as Peltier effect to produce cooling or heating effect from conducting electric current through the contact of two different conducting materials.Модули Пельтье также могут называться термоэлектрическими охладителями, хотя их функции выходят далеко за рамки охлаждения на основе энергии.

Модули

Пельтье также могут использоваться для выработки электроэнергии. Такого эффекта (известного как эффект Зеебека или термоэлектрический эффект) можно достичь, нагревая «горячую» часть модуля Пельтье.

Первоначально в модулях Пельтье использовались две пластины, сделанные из разных металлов, но в настоящее время в усовершенствованных модулях Пельтье используются различные полупроводниковые материалы, что делает их более эффективными и обеспечивает большую точность регулирования температуры и потребления или выработки электроэнергии.

Преимущества

Модули

Пельтье имеют ряд преимуществ по сравнению с традиционными технологиями, которые используются для преобразования электроэнергии для охлаждения / обогрева или наоборот:

  • Прочная конструкция без движущихся частей снижает предрасположенность модулей Пельтье к механическим повреждениям и снижает потребность в техническом обслуживании.
  • Безопасная конструкция, не содержащая жидкостей, газов или опасных материалов, делает модули Пельтье более безопасными и надежными, чем традиционные технологии охлаждения или нагрева.
  • Способность работать как нагреватели, так и охладители позволяет использовать эти модули для различных приложений
  • Модули Пельтье
  • обеспечивают эффективное «точечное охлаждение», а также быстрые циклы охлаждения-нагрева, позволяющие обеспечить точное поддержание температуры или использовать их для целей тестирования.
  • Идеально подходит для точной калибровки температуры
  • Гибкие форм-факторы и масштабируемость, а также возможности миниатюризации

Технологические ограничения

Модули Пельтье

используются, когда энергоэффективность преобразования тепла в электричество и наоборот не является решающим фактором, поскольку их уровень эффективности составляет от 5 до 8 процентов, но преимущества технологии и ее гибкость по-прежнему многочисленны.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *