Как осуществляется пуск электродвигателя методом переключения со звезды на треугольник. Какие преимущества дает данный способ запуска. Как реализуется схема пуска звезда-треугольник на практике.
Что такое пуск электродвигателя звезда-треугольник
Пуск электродвигателя методом переключения со звезды на треугольник — это способ запуска асинхронных электродвигателей, позволяющий снизить пусковые токи. Суть метода заключается в следующем:
- В начальный момент обмотки статора двигателя соединяются звездой
- После разгона двигателя обмотки переключаются на соединение треугольником
- Это позволяет снизить пусковой ток в 3 раза по сравнению с прямым пуском
Данный способ пуска применяется для мощных асинхронных двигателей, у которых высокие пусковые токи могут вызвать проблемы в электросети.
Преимущества пуска звезда-треугольник
Метод пуска электродвигателя переключением со звезды на треугольник имеет ряд важных преимуществ:
- Снижение пускового тока в 3 раза по сравнению с прямым пуском
- Уменьшение просадки напряжения в сети при запуске
- Снижение механических нагрузок на двигатель и приводной механизм
- Увеличение срока службы двигателя за счет снижения пусковых токов
- Возможность запуска мощных двигателей от сетей с ограниченной мощностью
При этом данный способ пуска достаточно прост в реализации и не требует сложного оборудования.

Как работает схема пуска звезда-треугольник
Рассмотрим принцип работы схемы пуска асинхронного двигателя переключением со звезды на треугольник:
- В начальный момент обмотки статора соединяются звездой через контактор KM2
- Подается питание и двигатель начинает разгоняться
- Через заданное время срабатывает реле времени KT1
- Отключается контактор KM2 (звезда) и включается KM3 (треугольник)
- Обмотки переключаются на соединение треугольником
- Двигатель выходит на номинальный режим работы
Таким образом обеспечивается плавный разгон двигателя с ограничением пусковых токов.
Особенности реализации схемы пуска звезда-треугольник
При реализации схемы пуска электродвигателя переключением со звезды на треугольник необходимо учитывать следующие особенности:
- Требуется трехфазный двигатель с возможностью переключения обмоток
- Необходимо использовать три контактора — сетевой и для каждой схемы соединения
- Применяется реле времени для задания длительности пуска
- Важно правильно выбрать время переключения с учетом характеристик двигателя
- Нужна электрическая и механическая блокировка контакторов
При соблюдении этих требований обеспечивается надежный пуск двигателя с минимальными пусковыми токами.

Область применения пуска звезда-треугольник
Пуск электродвигателей методом переключения со звезды на треугольник эффективно применяется в следующих случаях:
- Запуск мощных асинхронных двигателей (свыше 15 кВт)
- Пуск двигателей от сетей с ограниченной мощностью
- Запуск механизмов с большим моментом инерции
- Частые пуски и остановы двигателей
- Необходимость снижения механических нагрузок при пуске
Данный метод пуска позволяет решить проблему высоких пусковых токов для многих промышленных механизмов.
Недостатки метода пуска звезда-треугольник
Наряду с преимуществами, пуск электродвигателя переключением со звезды на треугольник имеет определенные недостатки:
- Снижение пускового момента примерно на 33%
- Возможность применения только для двигателей с выведенными концами обмоток
- Необходимость дополнительной аппаратуры (контакторы, реле времени)
- Вероятность ошибок при монтаже и настройке схемы
- Возможны броски тока при переключении со звезды на треугольник
Однако в большинстве случаев преимущества данного метода пуска перевешивают его недостатки.

Сравнение с другими способами пуска двигателей
Рассмотрим, как пуск звезда-треугольник соотносится с другими методами запуска асинхронных двигателей:
Способ пуска | Снижение пускового тока | Снижение момента | Сложность реализации |
---|---|---|---|
Прямой пуск | Нет | Нет | Простая |
Звезда-треугольник | В 3 раза | На 33% | Средняя |
Устройства плавного пуска | До 5 раз | До 70% | Высокая |
Частотный привод | До 10 раз | Нет | Очень высокая |
Как видно, пуск звезда-треугольник занимает промежуточное положение, обеспечивая хороший баланс между эффективностью и сложностью.
Практические рекомендации по применению
При использовании метода пуска электродвигателя переключением со звезды на треугольник рекомендуется:
- Правильно подобрать время переключения (обычно 2-5 секунд)
- Обеспечить надежную блокировку контакторов звезды и треугольника
- Использовать контакторы с категорией применения AC-3
- Применять тепловую защиту, настроенную на рабочий ток двигателя
- Проверить возможность пуска под нагрузкой при соединении звездой
- Использовать реле контроля фаз для защиты от обрыва фазы
Соблюдение этих рекомендаций обеспечит надежную и эффективную работу системы пуска.

Пуск асинхронного двигателя переключением со звезды на треугольник
Кроме реостатного и прямого способов пуска асинхронных двигателей существует другой распространенный способ – переключением со звезды на треугольник.
Способ переключения со звезды на треугольник используется в двигателях, которые рассчитаны на работу при соединении обмоток треугольником. Этот способ осуществляется в три этапа. В начале, двигатель запускают при соединении обмоток звездой, на этом этапе двигатель разгоняется. Затем переключают на рабочую схему соединения треугольник, причем при при переключении нужно учитывать пару нюансов. Во-первых, нужно правильно рассчитать время переключения, потому что если слишком рано замкнуть контакты, то не успеет погаснуть электрическая дуга, а также может возникнуть короткое замыкание. Если переключение будет слишком долгим, то это может привести к потери скорости двигателя, а в следствии к увеличению броска тока. В общем, нужно четко скорректировать время переключения.
Смысл этого способа в том что, при соединении обмоток статора звездой, фазное напряжение в них понижается в 1,73 раз. В такое же количество раз уменьшается и фазный ток, который протекает в обмотках статора. При соединении обмоток статора треугольником фазное напряжение равно линейному, а фазный ток в 1,73 раза меньше линейного. Получается, что соединяя обмотки звездой, мы уменьшаем линейный ток в 3 раза.
Чтобы не запутаться в цифрах, давайте рассмотрим пример.
Допустим, рабочей схемой обмотки асинхронного двигателя является треугольник, а линейное напряжение питающей сети 380 В. Сопротивление обмотки статора Z=20 Ом. Подключив обмотки в момент пуска звездой, уменьшим напряжение и ток в фазах.
Ток в фазах равен линейному току и равен
После разгона двигателя, переключаем со звезды на треугольник и получаем уже другие значения напряжений и токов.
Как видите линейный ток при соединении треугольником больше в 3 раза линейного тока при соединении звездой.
Данный способ запуска асинхронного двигателя применяется в тех случаях, когда присутствует небольшая нагрузка, либо когда двигатель работает на холостом ходу. Это связано с тем, что при уменьшении фазного напряжения в 1,73 раза, согласно формуле для пускового момента которая предоставлена ниже, момент уменьшается в три раза, а этого недостаточно, чтобы совершить пуск с нагрузкой на валу.
Где m – количество фаз, U – фазное напряжение обмотки статора,f – частота тока питающей сети, r1,r2,x1,x2-параметры схемы замещения асинхронного двигателя,p – число пар полюсов.
Рекомендуем прочесть статью — торможение асинхронного двигателя.
Запуск электродвигателя по схеме «звезда-треугольник»
Практически любое производство в наши дни не обходится без мощного асинхронного электродвигателя. При запуске такого двигателя пусковой ток в 3-8 раз превышает значение номинального тока, необходимого для работы в нормально-устойчивом режиме.
Большой пусковой ток необходим для того, чтобы раскрутить ротор из состояния покоя. Для этого необходимо приложить гораздо больше усилий, чем для дальнейшего поддержания постоянного числа оборотов в заданный промежуток времени. Значительные величины пусковых токов у асинхронных двигателей являются весьма нежелательным явлением, поскольку это может приводить к кратковременной нехватке энергии для другого подключенного к этой же сети оборудования (падению напряжения). Масса примеров такого влияния встречается как на производстве, так и в быту. Первое, что вспоминается — это «мигание» электрической лампочки при работе сварочного аппарата, но бывают случаи серьезнее: просадка напряжения может стать причиной бракованной партии товара на производстве, что ведет к большим финансовым и трудовым затратам. Большой пусковой ток также может вызвать ощутимые тепловые перегрузки обмотки электродвигателя, в результате чего происходит старение изоляции, ее повреждение и в конечном итоге может произойти сгорание двигателя.
Все это послужило мотивом для поиска решения по минимизации токов пуска. Одним из таких решений является метод запуска двигателя по схеме «звезда-треугольник». Для начала разберемся что же такое «звезда», а что — «треугольник», и чем они отличаются друг от друга. Звезда и треугольник являются самыми распространенными и применяемыми на практике схемами подключения трехфазных электродвигателей. При включении трехфазного электродвигателя «звездой» (см. Рисунок 1) концы обмоток статора соединяются вместе, соединение происходит в одной точке, называемой нулевой точкой или нейтралью. Трехфазное напряжение подается на начало обмоток.
Рисунок 1 — Схема подключения «звезда»где:
Uл — напряжение между двумя фазами;
Uф — напряжение между фазой и нейтральным проводом;
Значения линейного и фазного токов совпадают, т. е. Iл = Iф.
При включении трехфазного электродвигателя по схеме «треугольник» (см. Рисунок 2) обмотки статора электродвигателя соединяются последовательно. Таким образом, конец одной обмотки соединяется с началом следующей, напряжение в этом случае подается на точки соединения обмоток. При соединеии обмоток статора «треугольником» напряжение на фазе равно линейному напряжению между двумя проводами: Uл = Uф.
Рисунок 2 — Схема подключения «треугольник»Однако ток в линии (сети) больше, чем ток в фазе, что описывается формулой:
Iл=Iф⋅3I _л=I _ф cdot sqrt{3}где:
Iл — линейный ток;
Iф — фазный ток.
Получается, что соединяя обмотки «звездой», мы уменьшаем линейный ток, чего изначально и добивались. Но есть и обратная сторона этой схемы: как мы видим из формулы, пусковой момент двигателя прямо пропорционален фазному напряжению:
Mn=m⋅U2⋅r2´⋅p2⋅π⋅f((r1+r2´)2+(x1+x2´)2)M _n = { m cdot U^2 cdot acute r_2 cdot p } over { 2 cdot %pi cdot f( ( r _1 + acute r _2 )^2 + ( x_1 + acute x_2 )^2 )}где:
U — фазное напряжение обмотки статора;
r1 — активное сопротивление фазы обмотки статора
r2 — приведенное значение активного сопротивления фазы обмотки ротора;
x1 — индуктивное сопротивление фазы обмотки статора;
x2 — приведенное значение индуктивного сопротивления фазы обмотки неподвижного ротора;
m — количество фаз;
p — число пар полюсов.
Чтобы было нагляднее, давайте рассмотрим пример: предположим, что рабочей схемой обмотки асинхронного электродвигателя является «треугольник», а линейное напряжение питающей сети равно 380 В, сопротивление обмотки статора Z = 10 Ом. Если обмотки во время пуска подключены «звездой», то уменьшатся напряжение и ток в фазах:
Uф=Uл3=3803=220ВU _ф= {U _л} over { sqrt{3} } = {380} over {sqrt{3}} =220ВФазный ток равен линейному току и равен:
Iф=Iл=UфZ=22010=22AI _ф=I _л= {U _ф} over {Z } = {220} over {10} =22AПосле того, как двигатель набрал необходимые обороты, т. е. разогнался, переключаем обмотки со «звезды» на «треугольник», в этом случае получаем совершенно другие значения тока и напряжения:
Uф=Uл=380BU _ф=U _л =380B Iф=UфZ=38010=38AI _ф = {U _ф} over {Z} = {380} over {10}=38A Iл=3⋅Iф=3⋅38=65,8AI _л= sqrt{3} cdot I _ф=sqrt{3} cdot38=65,8AСоответственно, при пуске двигателя по схеме «звезда», фазное напряжение в √3 раз меньше линейного, а по схеме «треугольник» — они равны. Отсюда следует, что момент при пуске по схеме «звезда» в 3 раза меньше, а значит, запуская двигатель по этой схеме, мы не сможем добиться выхода двигателя на номинальную мощность. Решая одну проблему возникает вторая, не менее острая, чем повышенные пусковые токи. Но единое решение все-таки есть: необходимо скомбинировать схемы подключения двигателя так, чтобы при пуске мощного двигателя не было больших токов в сети, а после того, как двигатель выйдет на необходимые для его работы обороты, происходит переключение на схему «треугольник», что позволяет работать со 100% нагрузкой без каких-либо проблем.
С поставленной задачей прекрасно справляется реле времени Finder 80.82. При подаче питания на реле, мгновенно замыкается контакт, который отвечает за подключение по схеме «звезда». После заданного промежутка времени, на котором обороты двигателя достигают рабочей частоты, контакт схемы «звезда» размыкается и замыкается контакт, который отвечает за подключение по схеме «треугольник». Контакты останутся в таком положении до снятия питания с реле. Наглядная диаграмма работы данного реле представлена на Рисунке 3.
Рисунок 3 — Временная диаграмма реле времени 80.82Рассмотрим более подробно реализацию данной схемы на практике. Она применима только для двигателей, у которых на шильдике указано «Δ/Y 380/660В». На Рисунке 4 представлена силовая часть схемы «звезда-треугольник», в которой используется три электромагнитных пускателя.
Рисунок 4 — Силовая часть схемы «звезда-треугольник»Как было описано ранее, для управления переключением со схемы «звезда» на схему «треугольник» необходимо воспользоваться реле Finder 80.82. На Рисунке 5 представлена схема управления с помощью данного реле.
Рисунок 5 — Управление схемой «звезда-треугольник»Разберем алгоритм работы данной схемы:
После нажатия кнопки S1.1, запитывается катушка пускателя КМ1, в результате чего, замыкаются силовые контакты КМ1 и при помощи дополнительного контакта КМ1.1 реализуется самоподхват пускателя. Одновременно подается напряжение на реле времени U1. Замыкаются контакты реле времени 17-18 и включается пускатель КМ2. Таким образом, происходит запуск двигателя по схеме «звезда». По истечении времени Т (см. Рисунок 3), контакт реле времени 17-18 мгновенно разомкнется, пройдет задержка времени Tu, и замкнется контакт 17-28. Вследствие чего, сработает пускатель КМ3, который осуществляет переключение на схему «треугольник». Нормально замкнутые контакты пускателей КМ2.2 и КМ3.2 используется для предотвращения одновременного включения пускателей КМ2 и КМ3. Чтобы защитить двигатель от перегрузки, в силовой цепи установлено тепловое реле КК1. В случае перегрузки, тепловое реле разомкнет силовую цепь и цепь управления через контакт КК1.1. Остановка двигателя происходит при нажатии кнопки S1.2, которая разрывает цепь самоподхвата и обесточит катушку пускателя КМ1.
Обобщая написанное, можно сделать вывод, что для облегчения пуска мощного электродвигателя, рекомендуется изначально запускать его по схеме «звезда», что позволяет значительно снизить пусковые токи, уменьшить просадку напряжения в сети, но не позволяет двигателю выйти на номинальный режим работы. Для выхода двигателя на номинальный режим необходимо осуществить переключение обмоток статора на схему «треугольник». Схема переключения обмоток со «звезды» в «треугольник» реализована с помощью реле времени Finder 80.82, в котором устанавливается время разгона электродвигателя.
Список использованной литературы:
- ГОСТ 11828-86 «Определение вращающих моментов и пусковых токов».
- Вешеневский С. Н. Характеристики двигателей в электроприводе. // Издание 6-е, исправленное — Москва, Издательство «Энергия», 1977
- Войнаровский П. Д. Электродвигатели // Энциклопедический словарь Брокгауза и Ефрона: в 86 т. (82 т. и 4 доп.) — СПб., 1890—1907
Читайте также:
Пуск трехфазного асинхронного двигателя по схеме переключение «звезда – треугольник» ~ Электропривод
С помощью снижения пускового момента и ограничения пускового тока используют метод пуска асинхронного двигателя переключение «звезда – треугольник». В первый момент пуска, напряжение к статорным обмоткам подключается по схеме «звезда» (Y). Как только двигатель разгоняется, его питание включается по схеме «треугольник» (∆).
Преимущества
Некоторые трехфазные двигатели на низкое напряжение с мощностью выше 5 кВт рассчитывают на напряжение 400 В при включении по схеме «треугольник» (∆) или на 690 В при включении по схеме «звезда» (Y). Такая схема включения дает возможность производить пуск двигателя при меньшем напряжении. При пуске двигателя по схеме «звезда – треугольник» удается уменьшить пусковой ток, до 1/3 от тока прямого пуска от сети. Пуск по схеме «звезда – треугольник» особенно подходит для механизмов с большими маховыми массами, когда нагрузка набрасывается уже после разгона двигателя до номинальной скорости.
Недостатки пуска асинхронного двигателя переключением «звезда – треугольник»
При пуске двигателя переключением «звезда – треугольник» происходит также снижение пускового момента, приблизительно на 33%. Данный метод можно использовать только для трехфазных асинхронных двигателей, которые имеют возможность подключения по схеме «треугольник». В таком варианте существует опасность переключения на «треугольник» при слишком низкой частоте вращения, что вызовет рост тока до такого же уровня, что и ток при «прямом» пуске DOL.
Во время переключения со «звезды» на «треугольник» асинхронный электродвигатель может быстро снизить скорость вращения, для увеличения которой также потребуется резкое увеличение тока. На рисунке показана схема запуска двигателя с помощью пускателей KM1, KM2, KM3. Пускатель KM1,КМ2 включает электродвигатель по схеме «звезда». Через время, отведенное на запуск и выход двигателя на 50% номинальной скорости, отключается пускатель КМ2 и включается КМ3, переключая двигатель на «треугольник».
Пусковой момент и ток при пуске переключением «звезда – треугольник» значительно ниже, чем при прямом пуске.
Сравнение способа прямого пуска DOL и пуска с переключением «звезда – треугольник»
В данных диаграммах показаны пусковые токи для насоса, с трехфазным асинхронным двигателем мощностью 7,5 кВт методом прямого пуска (DOL) и пуска переключением «звезда – треугольник», соответственно. На рисунке видно, что способ прямого пуска DOL отличается большими пусковыми токами, но который через некоторое время уменьшается и становится постоянным.
Способ пуска переключением «звезда – треугольник» отличается меньшими низким пусковыми токами. Однако, в момент запуска при переходе от «звезды» к «треугольнику» происходят скачки токов. Во время пуска по схеме «звезда», через (t = 0,3 с), величина тока снижается. Однако, во время переключения со «звезды» на «треугольнику», через время t = 1,7 с, величина тока достигает уровня пускового тока при прямом пуске. Более того, скачок тока может стать ещё больше, так как во время переключения на двигатель не подаётся напряжение и двигатель теряет скорость перед подачей полного напряжения.
Пуск двигателя звезда треугольник — Help for engineer
Пуск двигателя звезда треугольник
Для того чтобы осуществить пуск звезда-треугольник нам потребуется:
1. 3-х полюсный автоматический выключатель QF1, с номинальным током, который зависит от мощности электродвигателя (выбор автомата см. здесь) | ||
2. Контакторы с доп. контактами в количестве 3 шт. (KM1, KM2, KM3) | ||
3. Кнопки 2 шт.: красная SB1 с нормально замкнутым контактом, черная SB2 – с нормально разомкнутым контактом | ||
4. Тепловое реле (если оно не предусмотрено в комплекте с автоматическим выключателем) | ||
5. Асинхронный трёхфазный электродвигатель М1 | ||
6. Клемма с предохранителем, которая устанавливается в цепь управления | ||
7. Реле времени KT1 |
Зачем нужна схема звезда-треугольник?
Необходимость применения данной схемы пуска асинхронного электродвигателя вызвана высокими пусковыми токами. Для снижения этих самых токов, применяется пуск звезда-треугольник. Фактически, запуск двигателя происходит по схеме «звезда», для которой в начальный момент токи низкие. По истечению времени, заданному на реле KT1, происходит переключение в схему «треугольник», в которой стартовые токи были бы больше.
Рисунок 1 – Схема пуска звезда-треугольник
Один из вариантов временной диаграммы реле KT1 для реализации вышеприведенной схемы:
Рисунок 2 – Временная диаграмма реле времени
Описание принципа работы пуска двигателя «звездой», с переходом на «треугольник»
После нажатия кнопки “Start” SB2, запитывается катушка контактора KM1, в результате чего, замыкаются силовые контакты KM1 и доп. контактом КМ1.1 реализуется самоподхват кнопки пуска. Так же подаётся напряжение на реле времени KТ1, и замыкается контактор KM3. Таким образом, происходит запуск двигателя по схеме «звезда». А по истечении времени реле t1 контакт KТ1.1 мгновенно разомкнётся, пройдет задержка времени t2 в 50 мс, и замкнется контакт KТ1.2. В следствии, сработает контактор KM2, который осуществляет переключение на «треугольник».
Контакты НЗ (нормально замкнутые) KM2.1 и KM3.1 существуют для предотвращения одновременного включения контакторов KM1 и KM2.
Чтобы защитить двигатель от перегрузки, в силовой цепи должно быть установлено тепловое реле. Как мы можем видеть на схеме, оно уже включено в автоматический выключатель, и в случае чрезмерной нагрузки, теплушка разомкнёт силовую цепь и цепь управления через контакт QF1.1.
Рисунок 3 — Наглядный пример соединения обмоток в звезду
Рисунок 4 — Наглядный пример соединения обмоток в треугольник
Н — начало обмотки; | ||
К — конец обмотки. |
Недостаточно прав для комментирования
Пуск электродвигателя способом звезда, треугольник
Просмотров 1.5k. Опубликовано Обновлено
Пуск короткозамкнутого электродвигателя с переключением со звезды в треугольник применяют для снижения пускового тока. Пусковой ток при запуске может превышать рабочий ток электродвигателя в 5-7 раз. У двигателей большой мощности пусковой ток бывает настолько велик, что может вызвать перегорание различных предохранителей, отключение автоматического выключателя и привести к значительному снижению напряжения. Уменьшение напряжения снижает накал ламп, уменьшает вращающий момент электродвигателей, может вызвать отключение контакторов и магнитных пускателей. Поэтому многие стремятся уменьшить пусковой ток. Это достигается несколькими способами, но все они в итоге сводятся к понижению напряжения в цепи статора электродвигателя на период пуска . Для этого в цепь статора на период пуска вводят реостат, дроссель, автотрансформатор, либо переключают обмотку со звезды в треугольник.
Действительно, перед пуском и в первый период пуска обмотки соединены в звезду, поэтому к каждой из них подводится напряжение, в 1,73 раза меньшее номинального, и, следовательно, ток будет значительно меньше, чем при включении обмоток на полное напряжение сети. В процессе пуска электродвигатель увеличивает частоту вращения и ток снижается. После этого обмотки переключают в треугольник.
Схема управления
Подключение оперативного напряжения, через контакт реле времени К1 и контакт К2, в цепи катушки контактора К3. Включение контактора К3, размыкает контакт К3 в цепи катушки контактора К2 (блокировка ошибочного включения), замыкается контакт К3, в цепи катушки контактора К1 совмещенного с пневматическим реле времени.
Включение контактора К1, замыкает контакт К1 в цепи катушки контактора К1 (самоподпитка), одновременно включается пневматическое реле времени, которое размыкает через определенное время свой контакт К1 в цепи катушки контактора К3, а также замыкает свой контакт К1 в цепи катушки контактора К2. Отключение контактора К3, замыкается контакт К3 в цепи катушки контактора К2. Включение контактора К2, размыкает контакт К2 в цепи катушки контактора К3 (блокировка ошибочного включения).
Схема питания
На начала обмоток U1, V1 и W1 через силовые контакты магнитного пускателя К1 подаётся трехфазное напряжение. При срабатывании магнитного пускателя К3 с помощью его контактов К3, происходит замыкание, соединяя концы обмоток U2, V2 и W2 между собой обмотки двигателя соединены звездой.
Через некоторое время срабатывает реле времени, совмещённое с пускателем К1, отключая пускатель К3 и одновременно включая К2, замыкаются силовые контакты К2 и происходит подача напряжение на концы обмоток электродвигателя U2, V2 и W2. Таким образом электродвигатель включается по схеме треугольник.
Предупреждения
- Переключение со звезды в треугольник допустимо лишь для двигателей с легким режимом пуска, так как при соединении в звезду пусковой момент примерно вдвое меньше момента, который был бы при прямом пуске. Значит, этот способ снижения пускового тока не всегда пригоден, и если нужно снизить пусковой ток и одновременно добиться большого пускового момента, то берут электродвигатель с фазным ротором, а в цепь ротора вводят пусковой реостат.
- Переключать со звезды в треугольник можно только те электродвигатели, которые предназначены для работы при соединении в треугольник, т. е. имеющие обмотки, рассчитанные на линейное напряжение сети.
Переключение с треугольника в звезду
Известно, что недогруженные электродвигатели работают с очень низким коэффициентом мощности cos§. Поэтому рекомендуется недогруженные электродвигатели заменять менее мощными. Если, однако, выполнить замену нельзя, а запас мощности велик, то не исключено повышение cos? переключением с треугольника в звезду. Нужно при этом измерить ток в цепи статора и убедиться в том, что он при соединении в звезду не превышает при нагрузке номинального тока, в противном случае электродвигатель перегреется.
Схема подключения электродвигателя «звезда-треугольник»
Существует два способа пуска асинхронного электродвигателя (схема подключения электродвигателя):
1) Прямой пуск (на обмотки статора подается полное напряжение сети)
2) Пуск при пониженном напряжении (на обмотки статора подается напряжение меньше полного сетевого напряжения)
Прямой пуск проще реализовать, он мене затратен, но обладает большим недостатком: при прямом пуске пусковой ток асинхронного электродвигателя с короткозамкнутым ротором превышает в 5-7 раз номинальный рабочий ток двигателя.
Схема включения обмоток статора “звездой” и “треугольником”
Поэтому на практике для уменьшения пусковых токов асинхронных двигателей различными способами стараются понизить подводимое к обмоткам статора питающее напряжение. Одни из способов снижения напряжения на обмотке статора — переключение обмоток статора со “звезды” на “треугольник”.
Что это дает?
При подключении обмоток статора соединенных в “звезду” (схема подключения электродвигателя «звезда») к источнику с линейным напряжением 380 В фазное напряжение буде в √3 меньше, т.е. равно 220 В.. Зная сопротивление обмотки статора и приложенное напряжение нетрудно рассчитать по закону Ома:
При соединении “звездой”:
Если же обмотки статора соединены “треугольником” (схема подключения электродвигателя «треугольник») и подключены к линейному напряжению 380 В, то фазное напряжение будет 380 В, следовательно:
В результате пуск асинхронного двигателя со схемой подключения обмоток статора “звезда” (схема подключения электродвигателя «звезда») с дальнейшим переходом на схему “треугольник” (схема подключения электродвигателя «треугольник»), позволяет уменьшить пусковой ток в 3 раза по сравнению с пусковым током при прямом пуске. Пуск асинхронных двигателей с короткозамкнутым ротором по схеме звезда-треугольник находит особо широкое распространение в тех случаях, когда нагрузка на валу двигателя изменяется после разгона.
Но тут необходимо помнить, что схема пуска двигателя с переключением “звезда-треугольник” имеет и свой недостаток: уменьшение пускового момента приблизительно на 30 процентов.
Схема переключения обмоток статора
Пуск «Звезда — Треугольник»
Если асинхронный двигатель Вашего насоса (или другого механизма) запускается в режиме «
Звезда — треугольник«, то: — на первом этапе пуска обмотки двигателя, ротор которого еще неподвижен, коммутируются на питающую сеть таким образом, чтобы получить конфигурацию «Звезда»;
— затем, через небольшой временной интервал, автоматически производится переключение обмоток в конфигурацию «треугольник».
Это наиболее часто применяемый способ снижения пусковых токов. При пуске в положении «звезда», у двигателя, специально используемого для таких пусков, ток на треть ниже, чем при пуске путем прямого включения общепромышленного двигателя. Такой метод относительно дешев, прост и надежен.
Для механизмов с небольшим моментом инерции, например погружных насосов, пуск по методу «звезда-треугольник» не очень эффективен либо даже неэкономичен. Дело в том, что диаметр погружных насосов и их приводных электродвигателей невелик. Поэтому масса рабочего колеса насоса мала, вследствие чего мал и момент инерции. В результате погружным насосам для разгона от 0 до номинальной скорости об/мин. требуется не более пары десятков периодов напряжения сети. Это означает также, что насос при отключении конфигурации «звезда» и перед переходом к «треугольнику» (переключении тока) очень быстро, практически сразу же, останавливается.
Сравнение пусковых токов, возникающих при прямом включении и при включении по методу «звезда-треугольник», на первом этапе показывает заметное уменьшение величины тока. При переключении со «звезды» на «треугольник» механизм быстро останавливается, ЭДС вращения исчезает и во второй раз должен запускаться напрямую.
Из диаграммы на рисунке видно, что на втором этапе значительного сокращения амплитуды пускового тока уже не происходит. Уменьшается лишь длительность этой перегрузки. Поэтому можно заключить, что пуск «Звезда-треугольник» неэффективен для механизмов с малыми моментами инерции.
Несколько иначе складывается ситуация у центробежных насосов, имеющих больший диаметр и большую массу и обладающих соответственно более продолжительным моментом инерции. У электродвигателей мощностью свыше 45 кВт можно, как правило, достигнуть значительного снижения второго пика тока. Следует отметить, что слишком долгая эксплуатация электродвигателя в режиме «треугольник» приводит к его перегреву (вспоминаем курс «Электрические машины» и «ТОЭ», циркуляцию паразитной третьей и кратных ей гармоник внутри «треугольника» никому еще отменить не удалось) и, следовательно, сокращает срок службы.
Установки, содержащие погружные насосы с электродвигателями, включаемыми по этому методу, часто бывают дороже, чем с общепромышленными, поскольку для электродвигателя требуется два соединительных кабеля (вместо обычно необходимого одного).
Плавный пуск электродвигателя.
Устройство для плавного пуска электродвигателя представляет собой электронный прибор, снижающий напряжение и соответственно пусковой ток путем фазового управления тиристорными или симисторными сборками, включаемыми последовательно со статорными обмотками. Электронный прибор УПП содержит регулировочный блок, где настраиваются различные эксплуатационные и защитные параметры, и силовой блок с встречно-параллельно включенными тиристорами/симисторами. С его помощью пусковой ток ограничивают, как правило, величиной, в 2–3 раза превышающей номинальный ток. Наличие значительного момента инерции в процессе пуска может привести к увеличению теплообразования в электродвигателе и, тем самым, к снижению его срока службы.
Поэтому рекомендуется заменять схемы пуска «звезда-треугольник» на плавные электронные пускатели.
Тем более, что технически эта задача не представляет никакой сложности и асинхронный двигатель менять не нужно! При проведении такой замены, рекомендуется соблюдать в первую очередь «Правила облаштування електроустановок» приведенные здесь времена ускорения/ замедления для плавного пуска. В том случае, если требуется особенно высокий пусковой момент, пусковое напряжение можно повысить на 50%. Однако при нормальных условиях эксплуатации для электродвигателей, которыми оснащают насосы ведущие фирмы, этого не требуется .
При плавном пуске электродвигателя тиристорный силовой блок обеспечивает подачу тока несинусоидальной формы и создает высшие гармоники. В связи с очень коротким временем ускорения/торможения с практической точки зрения (и в нормах, касающихся высших гармоник) это не имеет продолжительного отрицательного влияния на питающую сеть. Однако может вносить помехи в работу контроллеров. Для исключения влияния помех желательна установка противопомеховых фильтров** на входе устройства плавного пуска.
Как показано, устройство плавного пуска рекомендуется устанавливать вместе с обходным контактором, чтобы электродвигатель в процессе эксплуатации работал в режиме прямого присоединения к питающей сети. Тем самым обеспечивается минимальный износ и потеря мощности в устройстве для плавного пуска.
** этому вопросу вскоре будет посвящен отдельный раздел, хотя вопрос сам по себе дискуссионный!
Подробное описание пускателя электродвигателя звезда-треугольник
Введение в устройство пуска электродвигателя звезда-треугольник
Большинство асинхронных электродвигателей запускаются непосредственно от сети, но когда очень большие электродвигатели запускаются таким образом, они вызывают нарушение напряжения в линиях питания из-за к большим скачкам пускового тока.
Панель пускателя электродвигателя звезда-треугольникЧтобы ограничить скачок пускового тока, большие асинхронные двигатели запускаются при пониженном напряжении, а затем снова подключаются к полному напряжению питания, когда они набирают скорость, близкую к скорости вращения.
Панель пускателя со звезды на треугольникДля снижения пускового напряжения используются два метода: Пуск по схеме звезда-треугольник и Пуск с автотрансформатора .
Принцип работы пускателя со звезды на треугольник
Это метод пуска при пониженном напряжении. Снижение напряжения при пуске со звезды на треугольник достигается путем физического изменения конфигурации обмоток двигателя, как показано на рисунке ниже. Во время пуска обмотки двигателя соединяются звездой, что снижает напряжение на каждой обмотке 3.Это также снижает крутящий момент в три раза. Схема
— Принцип работы пускателя звезда-треугольникЧерез некоторое время обмотка переконфигурируется как треугольник, и двигатель работает нормально. Пускатели звезда / треугольник, вероятно, являются наиболее распространенными пускателями пониженного напряжения. Они используются в попытке уменьшить пусковой ток, подаваемый на двигатель во время пуска, как средство уменьшения помех и помех в электроснабжении.
Традиционно во многих регионах поставок существует требование устанавливать пускатель пониженного напряжения на все двигатели мощностью более 5 л.с. (4 кВт).Пускатель звезда / треугольник (или звезда / треугольник) является одним из самых дешевых электромеханических пускателей пониженного напряжения, которые могут быть применены.
Пускатель звезда / треугольник состоит из трех контакторов, таймера и устройства защиты от тепловой перегрузки. Контакторы меньше, чем одиночный контактор, используемый в пускателях прямого включения, поскольку они регулируют только токи обмоток. Токи в обмотке составляют 1 / корень 3 (58%) тока в линии.
Есть два контактора, которые замыкаются во время работы, часто называемые главным подрядчиком и контактором треугольника.Это AC3, рассчитанный на 58% номинального тока двигателя. Третий контактор — это контактор звезды, который пропускает ток звезды только при подключении двигателя звездой.
Ток в схеме звезды составляет одну треть тока в треугольнике, поэтому этот контактор может быть рассчитан на AC3 на одну треть (33%) номинала двигателя.
Пускатель звезда-треугольник Состоит из следующих блоков:
- Контакторы (главные, звездообразные и треугольные контакторы) 3 НР (для пускателя с разомкнутым состоянием) или 4 НР (пускатель с переходным замкнутым режимом).
- Реле времени (с задержкой срабатывания) 1 №
- Трехполюсный тепловой расцепитель максимального тока 1 №
- Плавкие элементы или автоматические выключатели для главной цепи 3 №
- Плавкий элемент или автоматический выключатель для цепь управления 1
Цепь питания стартера звезда-треугольник
Главный автоматический выключатель служит главным выключателем источника питания, который подает электричество в силовую цепь.
Главный контактор подключает источник опорного напряжения R , Y , B к первичной клемме двигателя U1 , V1 , W1 .
В процессе работы главный контактор ( KM3 ) и контактор звезды ( KM1 ) сначала замыкаются, а затем, через некоторое время, размыкается контактор звезды, а затем контактор треугольника ( KM2 ) закрыто. Управление контакторами осуществляется таймером ( K1T ), встроенным в пускатель. Звезды и треугольники связаны электрически и, предпочтительно, механически.
Силовая цепь пускателя звезда-треугольникФактически, есть четыре состояния:
Контактор звезды служит для первоначального замыкания вторичной клеммы двигателя U2, V2, W2 для последовательности запуска во время начального запуска двигателя. мотор с места.Это обеспечивает одну треть прямого прямого тока на двигатель, тем самым снижая высокий пусковой ток, свойственный двигателям большой мощности при запуске.
Управление переключаемым соединением звезды и треугольника асинхронного двигателя переменного тока достигается с помощью схемы управления звезда-треугольник или звезда-треугольник. Схема управления состоит из кнопочных переключателей, вспомогательных контактов и таймера.
Цепь управления пускателем звезда-треугольник (открытый переход)
Схема — цепь управления пускателем звезда-треугольник (разомкнутый переход)Кнопка ON запускает цепь путем первоначального включения катушки контактора звезды (KM1) цепи звезды и цепь катушки таймера (KT).Когда на катушку контактора звезды (KM1) подается питание, главный и вспомогательный контакторы звезды меняют свое положение с NO на NC.
Когда вспомогательный контактор звезды (1) (который находится в цепи катушки главного контактора) становится нормально разомкнутым на нормально замкнутый, это завершается. Цепь катушки главного контактора (KM3) включается, поэтому на катушку главного контактора подается напряжение, а главный и вспомогательный контакторы главного контактора меняют свое положение с НЕТ в НЗ. Эта последовательность происходит во времени.
После нажатия кнопочного переключателя ON вспомогательный контакт катушки главного контактора (2), который подключен параллельно к кнопке ВКЛ, станет нормально разомкнутым на нормально замкнутый, тем самым обеспечивая защелку для удержания катушки главного контактора в активном состоянии. что в конечном итоге поддерживает цепь управления в активном состоянии даже после отпускания кнопочного переключателя ON.
Когда главный контактор звезды (KM1) замыкает свое соединение, двигатель подключается к STAR, а он подключается к STAR, пока вспомогательный контакт KT (3) с выдержкой времени не перейдет в состояние NC на NO.
По достижении заданного времени задержки вспомогательные контакты таймера (KT) (3) в цепи звездообразной катушки изменят свое положение с NC на NO и одновременно с этим вспомогательный контактор (KT) в цепи катушки Delta (4 ) измените свое положение с NO на NC, чтобы катушка Delta была под напряжением, а главный контактор Delta стал NO на NC.Теперь клеммы двигателя меняются со звезды на треугольник.
Нормально замкнутый вспомогательный контакт от контакторов звезды и треугольника (5 и 6) также размещается напротив катушек контакторов как звезды, так и треугольника, эти контакты блокировки служат в качестве предохранительных выключателей для предотвращения одновременной активации катушек контакторов как звезды, так и треугольника, так что одна не может быть активирован, если сначала не будут деактивированы другие. Таким образом, катушка контактора треугольником не может быть активна, когда катушка контактора звезды активна, и аналогично катушка контактора звезды не может быть активной, пока активна катушка контактора треугольника.
В приведенной выше схеме управления также есть два прерывающих контакта для отключения двигателя. Кнопочный переключатель OFF при необходимости отключает цепь управления и двигатель. Контакт тепловой перегрузки представляет собой защитное устройство, которое автоматически размыкает цепь управления STOP в случае, когда ток перегрузки двигателя обнаруживается тепловым реле перегрузки, это необходимо для предотвращения возгорания двигателя в случае чрезмерной нагрузки, превышающей номинальную мощность двигатель обнаружен тепловым реле перегрузки.
В какой-то момент во время пуска необходимо переключиться с обмотки, соединенной звездой, на обмотку, соединенную треугольником. Цепи питания и управления могут быть организованы для этого одним из двух способов — открытый переход или закрытый переход.
Что такое открытый или закрытый переходный запуск
1. Открытые запускающие переходы
Обсудите, что упомянутое выше называется переключением с открытым переходом, потому что существует открытое состояние между состоянием звезды и состоянием треугольника.
При разомкнутом переходе питание двигателя отключается, а конфигурация обмотки изменяется с помощью внешнего переключения.
Когда двигатель приводится в действие источником питания на полной или частичной скорости, в статоре возникает вращающееся магнитное поле. Это поле вращается с линейной частотой. Поток от поля статора индуцирует ток в роторе, что, в свою очередь, приводит к магнитному полю ротора.
Когда двигатель отключен от источника питания (открытый переход), внутри статора находится вращающийся ротор, и ротор имеет магнитное поле. Из-за низкого импеданса цепи ротора постоянная времени довольно велика, и действие поля вращающегося ротора внутри статора является действием генератора, который генерирует напряжение с частотой, определяемой скоростью ротора.
Когда двигатель снова подключается к источнику питания, он переключается на несинхронизированный генератор, и это приводит к очень высоким переходным процессам по току и крутящему моменту. Величина переходного процесса зависит от соотношения фаз между генерируемым напряжением и линейным напряжением в точке замыкания. может быть намного выше, чем прямой ток и крутящий момент, и может привести к электрическим и механическим повреждениям.
Запуск открытого перехода является наиболее простым для реализации с точки зрения стоимости и схемотехники, и если время переключения хорошее, этот метод может работать хорошо.На практике, однако, сложно установить необходимое время для правильной работы, и отключение / повторное включение источника питания может вызвать значительные переходные процессы напряжения / тока.
В открытом переходе есть четыре состояния:
- Состояние ВЫКЛ. : Все контакторы разомкнуты.
- Состояние звезды: Главный контактор [KM3] и контактор звезды [KM1] замкнуты, а контактор треугольника [KM2] разомкнут. Двигатель подключен по схеме звезды и будет производить одну треть крутящего момента прямого тока при одной трети прямого тока.
- Открытое состояние: Этот тип операции называется переключением с открытым переходом, потому что существует открытое состояние между состоянием звезды и состоянием треугольника. Главный подрядчик закрыт, а контакторы Delta и Star разомкнуты. На одном конце обмотки двигателя есть напряжение, но другой конец открыт, поэтому ток не может течь. Двигатель имеет вращающийся ротор и ведет себя как генератор.
- Delta State: Главный и треугольный контакторы замкнуты. Контактор звезды разомкнут.Двигатель подключен к полному сетевому напряжению, и доступны полная мощность и крутящий момент.
2. Пускатель звезда / треугольник с замкнутым переходом
Существует методика уменьшения величины переходных процессов переключения. Это требует использования четвертого контактора и набора из трех резисторов. Резисторы должны иметь такие размеры, чтобы в обмотках двигателя мог протекать значительный ток, пока они включены в цепь.
Вспомогательный контактор и резисторы подключаются через контактор треугольника.Во время работы, непосредственно перед размыканием контактора звездой, вспомогательный контактор замыкается, в результате чего ток через резисторы протекает через звезду. Как только контактор звезды размыкается, ток может течь через обмотки двигателя к источнику питания через резисторы. Затем эти резисторы замыкаются контактором треугольником.
Если сопротивление резисторов слишком велико, они не будут подавлять напряжение, генерируемое двигателем, и не будут служить никакой цели.
При закрытом переходе питание на двигатель поддерживается все время.
Это достигается за счет установки резисторов, компенсирующих ток во время переключения обмотки. Четвертый подрядчик должен вставить резистор в цепь перед размыканием контактора звезды и затем удалить резисторы после замыкания контактора треугольником.
Эти резисторы должны быть такого размера, чтобы выдерживать ток двигателя. В дополнение к необходимости большего количества переключающих устройств, схема управления более сложна из-за необходимости выполнять переключение резистора
При закрытом переходе есть четыре состояния:
- Состояние ВЫКЛ. Все контакторы разомкнуты
- Состояние звезды. Главный контактор [KM3] и контактор звезды [KM1] замкнуты, а контактор треугольника [KM2] разомкнут. Двигатель подключен по схеме звезды и будет производить одну треть крутящего момента прямого тока при одной трети прямого тока.
- Звездное переходное состояние. Двигатель подключается звездой, а резисторы подключаются к контактору треугольником через вспомогательный контактор [KM4].
- Закрытое переходное состояние. Главный контактор [KM3] замкнут, а контакторы треугольника [KM2] и звезды [KM1] разомкнуты.Ток протекает через обмотки двигателя и переходные резисторы через KM4.
- Штат Дельта. Контакторы Main и Delta замкнуты. Закорочены переходные резисторы. Контактор звезды разомкнут. Двигатель подключен к полному линейному напряжению, и доступны полная мощность и крутящий момент.
Эффект переходного процесса в пускателе (разомкнутый пускатель переходного процесса)
Важно, чтобы пауза между выключением контактора звезды и переключателем контактора треугольником была правильной.Это связано с тем, что контактор звезды должен быть надежно отключен до включения контактора треугольника. Также важно, чтобы пауза переключения была не слишком длинной.
Для 415 В звездное напряжение эффективно снижено до 58% или 240 В. Эквивалент 33%, который получается при запуске Direct Online (DOL).
Если соединение звездой имеет достаточный крутящий момент для работы до 75% или 80% от скорости полной нагрузки, то двигатель можно подключить в режиме треугольника.
При подключении по схеме «треугольник» фазное напряжение увеличивается на V3 или на 173%.Фазные токи увеличиваются в таком же соотношении. Линейный ток увеличивается в три раза по сравнению с его значением при соединении звездой.
Во время переходного периода переключения двигатель должен работать свободно с небольшим замедлением. Пока это происходит «выбегом», он может генерировать собственное напряжение, и при подключении к источнику питания это напряжение может произвольно складываться или вычитаться из приложенного сетевого напряжения. Это называется переходным током . Всего несколько миллисекунд он вызывает скачки и скачки напряжения.Известен как переходный процесс переключения.
Размер каждой части пускателя звезда-треугольник
1. Размер реле перегрузки
Для пускателя звезда-треугольник есть возможность разместить защиту от перегрузки в двух положениях: в строке или в обмоток .
Реле перегрузки в линии:
В линии аналогично установке перегрузки перед двигателем, как с прямым пускателем.
Рейтинг перегрузки (линейный) = FLC двигателя.
Недостаток: Если перегрузка установлена на FLC, то она не защищает двигатель, пока он находится в треугольнике (значение x1,732 слишком велико).
Реле перегрузки в обмотке:
В обмотках означает, что перегрузка находится после точки, где проводка к контакторам разделена на основную и треугольную. В этом случае перегрузка всегда измеряет ток внутри обмоток.
Настройка реле перегрузки (в обмотке) = 0,58 X FLC (линейный ток).
Недостаток: мы должны использовать отдельные защиты от короткого замыкания и перегрузки.
2. Размер главного подрядчика и подрядчика треугольника
Есть два контактора, которые замыкаются во время работы, часто называемые основным подрядчиком и контактором треугольника. Это AC3, рассчитанный на 58% номинального тока двигателя.
Размер главного контактора = IFL x 0,58
3. Размер Star Contractor
Третий контактор — это контактор звезды, который передает ток звезды только тогда, когда двигатель подключен звездой.Ток в звездочке составляет 1 / √3 = (58%) тока в треугольнике, поэтому этот контактор может быть рассчитан на AC3 на одну треть (33%) номинала двигателя.
Размер контактора звезды = IFL x 0,33
Пусковые характеристики двигателя пускателя звезда-треугольник
- Доступный пусковой ток: 33% тока полной нагрузки.
- Пиковый пусковой ток: от 1,3 до 2,6 тока полной нагрузки.
- Пиковый пусковой крутящий момент: 33% крутящего момента при полной нагрузке.
Преимущества пускателя со звезды на треугольник
- Метод звезда-треугольник прост и надежен.
- Это относительно дешево по сравнению с другими методами пониженного напряжения.
- Хорошие характеристики крутящего момента / тока.
- Он потребляет пусковой ток в 2 раза превышающий ток полной нагрузки подключенного двигателя.
Недостатки пускателя звезда-треугольник
- Низкий пусковой крутящий момент (крутящий момент = (квадрат напряжения) также уменьшается).
- Обрыв питания — возможные переходные процессы
- Требуется шестиконтактный двигатель (соединение треугольником).
- Требуется 2 комплекта кабелей от стартера к двигателю.
. - Он обеспечивает только 33% пускового момента, и если нагрузка, подключенная к рассматриваемому двигателю, требует более высокого пускового момента во время пуска, возникают очень тяжелые переходные процессы и напряжения при переключении со звезды на треугольник, и из-за этих переходных процессов и напряжений. происходит много электрических и механических поломок.
. - При этом способе пуска сначала двигатель подключается по схеме «звезда», а затем после переключения двигатель подключается по схеме «треугольник». Дельта двигателя формируется в пускателе, а не на клеммах двигателя.
. - Высокая передача и пики тока: Например, при запуске насосов и вентиляторов крутящий момент нагрузки низкий в начале пуска и увеличивается пропорционально квадрату скорости. При достижении прибл. 80-85% номинальной скорости двигателя, момент нагрузки равен крутящему моменту двигателя, и ускорение прекращается.Для достижения номинальной скорости необходимо переключение в положение «треугольник», и это очень часто приводит к высоким токам передачи и пикам. В некоторых случаях текущий пик может достигать даже большего значения, чем при прямом пуске.
. - Приложения с крутящим моментом нагрузки выше 50% от номинального крутящего момента двигателя не смогут запускаться с использованием пускателя по схеме треугольник.
. - Низкий пусковой момент: Метод пуска звезда-треугольник (звезда-треугольник) определяет, будут ли выводы электродвигателя настроены на электрическое соединение звездой или треугольником.Первоначальное соединение должно быть выполнено по схеме звезды, что приведет к уменьшению сетевого напряжения на коэффициент 1 / √3 (57,7%) на двигателе, а ток уменьшится до 1/3 тока при полном напряжении, но пусковой крутящий момент также уменьшается с 1/3 до 1/5 пускового момента прямого тока.
. - Переход от звезды к треугольнику обычно происходит при достижении номинальной скорости, но иногда выполняется на уровне 50% от номинальной скорости, что вызывает кратковременные искры.
Особенности пуска со звезды на треугольник
- Для трехфазных двигателей малой и большой мощности.
- Пониженный пусковой ток
- Шесть соединительных кабелей
- Пониженный пусковой момент
- Пик тока при переключении со звезды на треугольник
- Механическая нагрузка при переключении со звезды на треугольник
Применение пускателя звезда-треугольник
Звезда- Дельта-метод обычно применяется только к двигателям с низким и средним напряжением и малым пусковым моментом .
Полученный пусковой ток составляет примерно 30% пускового тока при прямом пуске от сети, а пусковой крутящий момент снижается примерно до 25% крутящего момента, доступного при D.О.Л. старт. Этот метод запуска работает только тогда, когда приложение слегка загружено во время запуска.
Если двигатель слишком нагружен, крутящего момента не хватит для разгона двигателя до скорости перед переключением в треугольное положение.
Пускатель звезда треугольник— (Y-Δ) питание, управление и схема подключения пускателя
Автоматический пускатель звезда / треугольник с таймером для трехфазных двигателей переменного токаВ этом руководстве мы покажем устройство звезда-треугольник ( Y-Δ) Метод пуска трехфазного асинхронного двигателя переменного тока с помощью автоматического пускателя со звезды на треугольник с таймером со схемой, схемой питания, управления и подключением, а также с описанием того, как работает пускатель со звезды на треугольник, а также с их преимуществами и недостатками.
Автоматический пускатель звезда треугольник с таймером Схема подключения и установка Автоматический пускатель звезда треугольник с таймером для трехфазного двигателяОбъяснение работы и работы автоматического пускателя звезда треугольник с таймером Монтаж проводки:
Слева вы иметь главный контактор с пневматическим таймером, потому что ваш главный контактор всегда находится под напряжением, в середине у вас есть контактор Delta с тепловой перегрузкой для защиты двигателя в случае, если двигатель превышает номинальный ток, установленный для тепловой перегрузки, справа у вас есть контактор звезды, который является первым контактором, который активируется с помощью главного контактора, затем, когда таймер достигает своего предельного времени, контактор звезды отключается, а контактор Delta включается, и двигатель работает с полной нагрузкой.
Сопутствующие схемы управления двигателем и мощности:
Работа и работа автоматического пускателя звезда-треугольникОт L1 Фазный ток течет к контакту тепловой перегрузки через предохранитель, затем на кнопку ВЫКЛ, на кнопку включения Блокирующий контакт 2, а затем C3. Таким образом, в результате цепь замыкается;
- Катушка контактора C3 и катушка таймера (I1) запитываются одновременно, и обмотка двигателя затем подключается в звезду. Когда C3 находится под напряжением, его вспомогательные открытые звенья будут замкнуты, и наоборот (т.е. закрыть ссылки будут открыты). Таким образом, контактор C1 также находится под напряжением, и трехфазное питание поступает на двигатель. Поскольку обмотка соединена звездой, каждая фаза будет в √3 раза меньше, чем линейное напряжение, т. Е. 230 В. Следовательно, мотор запускается безопасно.
- Замыкающий контакт C3 в линии Delta размыкается, из-за чего не было бы шанса активировать контактор 2 (C2).
- После отпускания кнопки катушка таймера и катушка 3 получат питание через контакт таймера (Ia), удерживающий контакт 3 и замыкающий контакт 2 C2.
- Когда контактор 1 (C1) находится под напряжением, два открытых контакта в цепи C1 и C2 замыкаются.
- В течение определенного времени (обычно 5-10 секунд), в течение которого двигатель будет подключен по схеме звезды, после этого контакт таймера (Ia) будет разомкнут (мы можем изменить, повернув ручку таймера, чтобы снова настроить время) и как результат;
- Контактор 3 (C3) будет выключен, из-за чего разомкнутая перемычка C3 будет замкнута (которая находится в линии C2), таким образом, C2 также будет под напряжением.Точно так же, когда C3 выключен, соединение обмотки звездой также будет разомкнуто. И C2 будет закрыт. Следовательно, обмотка двигателя будет подключена в треугольник. Кроме того, контакт 2 (который находится в линии C3) откроется, в результате чего не будет никакой возможности активировать катушку 3 (C3)
- Поскольку двигатель теперь подключен в треугольник, поэтому каждая фаза двигатель получит полное линейное напряжение (400 В), и двигатель начнет работать в полную силу.
Связанное сообщение:
Схема питания стартера треугольникЩелкните изображение, чтобы увеличить
Схема цепи питания стартера треугольник Схема управления пускателем звезда треугольник с таймеромЩелкните изображение, чтобы увеличить
Пускатель звезда треугольник с Схема управления Схема подключения пускателя звезда-треугольник с таймеромЩелкните изображение, чтобы увеличить
Автоматический пускатель звезда-треугольник (Y-Δ) с таймером для трехфазного асинхронного двигателяСокращения : Пускатель треугольником с таймером)
- R, Y, B = красный, желтый, синий (3-фазные линии)
- C.B = Общий автоматический выключатель
- Главный = Главный источник питания
- Y = Звезда
- Δ = Дельта
- 1a = Таймер
- C1, C2, C3 = Контакторы (для силовых и Схема управления)
- O / L = реле перегрузки
- NO = нормально разомкнутый
- NC = нормально замкнутый
- K1 = контактор (катушка контактора)
- K1 / NO = контактор Удерживающая катушка (нормально разомкнутая)
Связанные сообщения:
Преимущества и недостатки пускателя со звезды на треугольник с таймером
Преимущества:
- Простая конструкция и работа
- Сравнительно дешевле, чем другие методы управления напряжением
- Крутящий момент и ток Стартер звезда-треугольник работает хорошо.
- Он потребляет пусковой ток, в два раза превышающий FLA (ампер полной нагрузки) подключенного двигателя.
- Он снизил пусковой ток до одной трети (приблизительно) по сравнению с DOL (Direct ON Line Starter)
Также прочтите:
Недостатки
- Пусковой крутящий момент также снижен до одной трети из-за уменьшения стартера пусковой ток до одной трети номинального тока [поскольку линейное напряжение также снижено до 57% (1 / √3)]
- Требуется Шесть выводов или клемм Двигатель (соединение треугольником)
- Для соединения треугольником напряжение питания должно быть таким же, как номинальное напряжение двигателя.
- Во время переключения (со звезды на треугольник), если двигатель не достигает как минимум 90% своей номинальной скорости, тогда пик тока может быть таким же высоким, как и в пускателе с прямым включением (DOL), таким образом, это может вызвать вред воздействия на контакты контакторов, поэтому это было бы ненадежно.
- Мы не можем использовать пускатель звезда-треугольник, если требуемый (приложение или нагрузка) крутящий момент превышает 50% номинального крутящего момента трехфазных асинхронных двигателей. И схемы управления Характеристики и характеристики пускателя звезда-треугольник
- Пусковой ток составляет 33% от тока полной нагрузки для пускателя звезда-треугольник.
- Пиковый пусковой крутящий момент составляет 33% крутящего момента при полной нагрузке.
- Пиковый пусковой ток составляет от 1,3 до 2,6 тока полной нагрузки.
- Пускатель звезда-треугольник может использоваться только для трехфазных асинхронных двигателей малой и большой мощности.
- Имеет пониженный пусковой ток и крутящий момент.
- Для клеммной коробки двигателя необходимо 6 соединительных кабелей.
- Пускатель звезда-треугольник, пиковая нагрузка по току и механическая нагрузка при переключении со звезды на треугольник
Как мы знаем, основная цель пускателя звезда-треугольник — запуск трехфазного асинхронного двигателя при подключении звездой во время работы в Delta Connection.
Помните, что пускатель звезда-треугольник может использоваться только для асинхронных двигателей с низким и средним напряжением и малым пусковым моментом. В случае прямого пуска от сети (D.O.L) принимаемый ток на двигателе составляет около 33%, в то время как пусковой крутящий момент снижается примерно на 25-30%. Таким образом, пускатель звезда-треугольник может использоваться только при небольшой нагрузке во время пуска двигателя. В противном случае двигатель с большой нагрузкой не запустится из-за низкого крутящего момента, который должен разогнать двигатель до номинальной скорости при переходе на соединение треугольником.
Вы также можете ознакомиться с другими схемами питания и управления, приведенными ниже:
Объяснение пускателей со звезды на треугольник — Инженерное мышление
Стартеры звезда-треугольник. В этом руководстве мы собираемся обсудить, как пускатели со звезды на треугольник работают с трехфазными асинхронными двигателями. Затем мы рассмотрим, почему и где они используются, и, наконец, расскажем о том, как они работают, чтобы помочь вам понять.
Прокрутите вниз, чтобы просмотреть обучающее видео на YouTube о том, как работают стартеры Star-Delta.
ПРЕДУПРЕЖДЕНИЕ:
Помните, что электричество опасно и может быть смертельным, вы должны быть квалифицированными и компетентными для выполнения любых электромонтажных работ.
Ниже приведены два примера схем подключения пускателей со звезды на треугольник от промышленных поставщиков. К концу этого урока вы поймете, как это работает.
Всегда уточняйте у производителя, как и можно ли подключить двигатель к пускателю со звезды на треугольник.
Схема подключения звезда-треугольник от СименсЯ собираюсь использовать старую цветовую кодировку Red Yellow Blue для фаз просто потому, что я думаю, что это легче увидеть. Однако мы кратко рассмотрим другие цветовые коды позже в статье.
Трехфазные двигатели используются почти во всех коммерческих и промышленных зданиях. Внутри трехфазного асинхронного двигателя есть 3 отдельные катушки, которые используются для создания вращающегося магнитного поля. Когда мы пропускаем переменный ток через каждую катушку, каждая катушка будет создавать магнитное поле, интенсивность и полярность которого изменяется по мере изменения направления электронов.
через GIPHY
Если мы подключим каждую катушку к разной фазе, электроны на каждой фазе будет менять направление между вперед и назад на разных раз по сравнению с другими фазами, поэтому магнитное поле изменится в интенсивность и полярность в другое время по сравнению с другими фазами.
Затем мы поворачиваем катушки на 120 градусов относительно предыдущей, затем объединяем их в статор двигателя, чтобы создать вращающееся магнитное поле. Это вращающееся магнитное поле заставит вращаться ротор, который мы используем для привода вентиляторов, насосов и т. Д.
Сверху, а иногда и сбоку двигателя у нас есть электрическая клеммная коробка. Внутри этого электрического ящика есть 6 клемм. Каждому соответствует буква и номер U1, V1, W1 и W2, U2 V2.
Наша катушка фазы 1 подключена к двум клеммам U, катушка фазы 2 подключена к двум клеммам V, а катушка фазы 3 подключена к двум клеммам W.Клеммы катушки расположены по-другому сверху вниз. Через мгновение мы поймем, почему мы это делаем.
Мы всегда подключаем сторону питания к клеммам U1, V1 и W1.
Чтобы двигатель заработал, нам нужно замкнуть цепь. Там есть два способа сделать это.
Дельта-конфигурация
Первый — соединение треугольником. Для этого подключаем через клеммы от U1 до W2, от V1 до U2 и от W1 до V2. Это даст нам наша дельта-конфигурация.
Когда мы пропускаем ток через фазы, электричество перетекает из одной фазы в другую, поскольку направление мощности переменного тока в каждой фазе меняется на противоположное.Вот почему у нас есть клеммы в разных положениях, потому что мы можем подключаться и позволять электричеству течь между фазами, поскольку электроны меняют направление в разное время.
Узнайте, как работает электричество здесь и узнайте, как работает трехфазное электричество здесь
Конфигурация звезды
Другой способ подключения клемм — использование звездообразной конфигурации. В этом методе мы подключаемся между W2, U2 и V2 только на одной стороне клемм двигателя.Это дает нам наш звездный эквивалент дизайна.
Когда мы пропускаем ток через катушки, электроны распределяются между фазами на выводах.
Два только что рассмотренных способа настройки двигателя по схеме звезды или треугольника являются фиксированными. Чтобы изменить их, мы должны физически отключить питание, открыть клеммы двигателя и переставить их. Это непрактично.
Как мы можем это автоматизировать?
Чтобы автоматизировать это, нам нужно использовать некоторые контакторы. Они бывают разных конструкций, но основная операция — это переключатель, который может активироваться, чтобы включить или отключить цепь, чтобы управлять потоком электричества во всех трех фазах одновременно.
Мы берем наш главный контактор и подключаем трехфазное питание к одной стороне, а затем подключаем другую сторону к соответствующим клеммам в электрической коробке асинхронных двигателей.
Затем мы берем второй контактор, который будет использоваться для схемы треугольника, и подаем на него наши три фазы. Отсюда мы подключаем нашу фазу 1 к клемме V2, которая является катушкой фазы 2. Затем мы подключаем нашу фазу 2 к клемме W2, которая является катушкой фазы 3. Наконец, мы подключаем наш провод фазы 3 к клемме U2, которая является катушкой фазы 1.
Теперь мы берем еще один контактор, который будет использоваться для нашей схемы звезды, и подключаем к нему наши три фазы. Сверху просто соединяем все три фазы вместе.
Запуск двигателя
Мы начинаем со звездообразного соединения и делаем это, активируя клеммы главного контактора и контактора звезды так, чтобы они замыкались для замыкания цепи.
через GIPHY
Теперь, когда мы пропускаем электричество через цепь, электричество проходит через каждую фазу и катушку, а затем выходит через клеммы двигателя и попадает в звездообразный контактор, где путь электронов разделяется.Это позволяет электронам переходить в другую фазу или выходить из нее при изменении их направления.
Это будет продолжаться несколько секунд перед переключением на дельту. Для соединения треугольником мы отключаем контактор звезды, а затем замыкаем соединение треугольником.
через GIPHY
Теперь у нас есть электричество, текущее и разделяющееся. Он протекает как в основной колодец, так и в контактор треугольника. Электроэнергия в цепи главного контактора будет течь в катушки двигателей, а электричество, которое прошло по схеме контактора треугольником, будет течь к противоположной стороне клемм двигателя и в другую фазу.Каждый будет течь между различными фазами, поскольку они меняют направление.
Органы управления
Для управления переключением контакторов со звезды на треугольник мы просто используйте таймер, чтобы контролировать это. Он автоматически изменит конфигурация закончится через установленный промежуток времени. Дополнительно более продвинутый версия будет контролировать ток или скорость двигателя.
США
Если вы живете в США, вы можете найти эти цвета, это для трехфазного источника питания 208 В, но цвета будут другими, если с использованием трехфазного источника питания 480 В.
Европа
В Великобритании и ЕС эти цвета используются для фаз. Хотя в Великобритании вы, скорее всего, все еще встретите старые установки, в которых используются красно-желто-синие цвета.
Австралия
Почему мы используем звездную дельту?
Мы используем звезду-треугольник, которую в Северной Америке также называют звездой-треугольником, чтобы уменьшить пусковой ток при запуске двигателя. Когда большие асинхронные двигатели запускаются по схеме треугольника, их пусковой ток может быть более чем в 5 раз выше, чем ток полной нагрузки, который возникает, когда двигатель стабилизируется и работает нормально.
Этот огромный скачок тока может вызвать множество проблем. В Этот внезапно большой спрос ударит по электрической системе зданий. В электрическая инфраструктура будет быстро нагреваться, что приведет к отказ компонентов и даже электрические пожары. Внезапный спрос также вызывает падение напряжения во всей электрической системе здания, что мы можем визуально видеть, потому что свет будет гаснуть, это может вызвать много проблем для таких вещей, как как компьютеры, так и серверы.
Итак, чтобы уменьшить пусковой ток, нам просто нужно уменьшить пусковое напряжение.
Конфигурация «звезда» снижает напряжение на катушке примерно до 58% по сравнению с конфигурацией «треугольник». Более низкое напряжение приведет к более низкому току. Ток в катушке при конфигурации звезды будет составлять около 33% от конфигурации треугольника. Это также приведет к снижению крутящего момента, крутящий момент в звездообразной конфигурации также будет около 33% по сравнению с треугольником.
Базовый пример того, что происходит внутри
Допустим, у нас есть двигатель, подключенный по схеме треугольника с типичным Европейское напряжение питания 400В.
Это означает, что когда мы используем мультиметр для измерения напряжения между любыми двумя фазами, мы получим значение 400 В. Мы называем это нашим линейным напряжением.
Между прочим, если у вас нет мультиметра, я настоятельно рекомендую вам приобрести его для своего набора инструментов, он необходим для поиска неисправностей в электрической сети и поможет вам лучше понять электричество. Лично я использую этот счетчик , здесь .
Если мы измеряем на двух концах катушки, мы снова измеряем межфазное напряжение 400 В.Допустим, каждая катушка имеет сопротивление или импеданс, поскольку это мощность переменного тока, равная 20 Ом. Это означает, что мы получим ток на катушке 20 ампер. Мы можем рассчитать это из 400 В / 20 Ом = 20 А. Но ток в линии будет другим, он будет 34,6 А, и мы получим это из 20 А x sqr3 = 34,6 А
.Если бы мы тогда посмотрели на соединение звездой. У нас снова есть межфазное напряжение 400 В, если мы измеряем между любыми двумя фазами. Но при соединении звездой все наши катушки встречаются в точке звезды или нейтрали.С этой точки мы можем провести нейтральную линию. Поэтому, когда мы измеряем напряжение на концах катушки, мы получаем более низкое значение 230 В, потому что катушка не подключена напрямую между двумя фазами, как в дельта-версии. Один конец подключен к фазе, другой конец подключен к общей точке, поэтому напряжение, таким образом, распределяется и будет меньше, потому что одна из фаз всегда обратная.
Мы можем увидеть показание 230 В, разделив 400 В на sqr3 = 230 В. Поскольку напряжение меньше, ток тоже будет.Если сопротивление катушки снова составляет 20 Ом, то ток рассчитывается по 230 В / 20 Ом, что составляет 11,5 А. Сила тока в линии тоже будет 11,5А.
Таким образом, при соединении треугольником катушка подвергается полной нагрузке. 400В между двумя фазами. Но звездное соединение подвергается только 230 В. между фазой и нейтралью. Итак, мы видим, что звезда потребляет меньше напряжения. и поэтому менее актуален по сравнению с дельта-версией, поэтому мы используем это первое.
Star Delta Starter? Принцип работы, теория, электрическая схема
Пускатель звезда-треугольник — это простейший метод пуска для снижения пускового тока асинхронного двигателя.Пускатель может использоваться со всеми асинхронными двигателями с короткозамкнутым ротором, которые соединены треугольником для нормальной работы.
Уменьшение высокого тока двигателя вызывает уменьшение пускового момента двигателя. Поэтому пуск со звезды на треугольник особенно подходит для приводов, которые не нагружаются до момента пуска. Время пуска больше, чем при прямом пуске, что особенно заметно при движении с большими инерционными массами.
Типы пускателей звезда-треугольник
1) Ручной пускатель со звезды на треугольник
2) Полуавтоматический пускатель со звезды на треугольник
3) Полностью автоматическая звезда-треугольник стартер (звезда-треугольник)
Принцип работы стартера звезда-треугольник (звезда-треугольник):
Стартер звезда-треугольник работает в трех состояниях:
а) Состояние соединения звездой
Клеммы двигателя, соединенные звездой ток и напряжение при соединении звездой
Во время пуска пускателя звезда-треугольник , главный контактор и контактор звезды остаются в замкнутом состоянии и замыкают цепь питания.Во время пуска двигатель подключен звездой. В состоянии соединение звездой Напряжение, подаваемое на обмотку двигателя, снижается до 1 / √3 линейного напряжения.
Когда двигатель достигает достаточной скорости полной скорости, т.е. 90% от полного числа оборотов в минуту, включается таймер, подключенный к цепи. он сначала отключает контактор звезды и подключает контактор треугольника в цепь, что означает замкнутый контактор треугольника.б) Открытое состояние:
Между переключением со звезды на треугольник цепь размыкается, и двигатель не остается ни в звездном, ни в треугольном состоянии .Это состояние называется открытым переходным состоянием.в) Дельта-состояние:
обмотка двигателя, соединенная треугольником Ток и напряжение в состоянии треугольника
После активации таймера двигатель переключился со звезды на треугольник. В состоянии соединения треугольником фазное напряжение равно линейному напряжению. Следовательно, на обмотку двигателя подается полное линейное напряжение, и двигатель работает на своей номинальной полной скорости.Обмотка двигателя, соединенная треугольником, показана на рисунке.Схема управления пускателем звезда-треугольник:
Схема соединений цепи управления пускателем со звезды на треугольник состоит из таймера, кнопки запуска и остановки.Схема управления пускателем со звезды на треугольник Во время пуска после нажатия кнопки пуска однофазное питание активирует таймер , контакт таймера 17-18 замыкается, а замыкающий контакт 17-28 размыкается.эта подключенная звезда , контактор , катушка и двигатель соединяются звездой.
Через некоторое время двигатель достигает 90% номинальной скорости, и схема таймера переключает стартер из состояния перехода звезды в состояние треугольника , полное линейное напряжение подается на двигатель, и двигатель продолжает вращаться на полной скорости.Схема и теория питания стартера звезда-треугольник:
Схема силовая :
Теория работы объясняется следующим образом:Схема питания пускателя звезда-треугольник 1) Во время работы стартер, два контактора остаются замкнутыми.Эти два контактора являются главным контактором и контактором треугольником.
2) Третий контактор — это , контактор звезды , и он участвует только во время пуска двигателя и передает ток звезды, когда двигатель находится в звездном состоянии.
3) Ток в звездообразном состоянии составляет 1/3 тока в треугольном состоянии. Следовательно, номинальный ток контактора составляет одну треть номинального тока двигателя.
4) Во время запуска главного контактора KM3 и Star контактор KM1 сначала замыкаются.
5) Через некоторое время срабатывает таймер в цепи, он размыкает контактор звезды и замыкает контактор треугольником.
6) Переключение состояния звезды на состояние треугольник выполняется с помощью таймера, который подключен к схеме управления пускателем звезда-треугольник.
Компоненты пускателя двигателя Y-
Δ1) Контактор:
В пускателе звезда-треугольник используются 3 контактора. Главный контактор, контактор звезды и контактор треугольник.Контактор — это сверхмощное реле с высоким номинальным током, используемое для питания электродвигателя . Номинальный ток контактора варьируется от 10 до нескольких сотен ампер. Сильноточный контактор изготовлен из сплава, содержащего серебро. Возникновение дуги во время переключения контактора вызывает окисление контакта. Однако оксид серебра по-прежнему является хорошим проводником.
Защита от перегрузки предоставляется вместе с контакторами для запуска двигателя. Контактор не используется для прерывания тока короткого замыкания, в отличие от используемого автоматического выключателя.Размер контактора варьируется от маленького до большого для сильноточных приборов.
2) Реле перегрузки (OLR)
Большинство отказов обмотки происходит из-за перегрузки, работы при несимметричном напряжении питания или однофазной сети из-за потери фазы, что приводит к чрезмерному нагреву и ухудшению изоляции обмотки, поскольку для этого электродвигателя требуется защита от перегрузки, чтобы предотвратить повреждение от перегрузки. двигателя, или для защиты от цепи сортировки или неисправности внутренней обмотки электродвигателя .Все эти условия предотвращаются с помощью теплового реле перегрузки .
3) Таймер
Функция таймера в пускателе со звезды на треугольник заключается в переключении контактора со звезды на треугольник после достижения достаточной скорости до 90% полной скорости двигателя.
4) Блок предохранителей
Основное назначение предохранителя — защита двигателя, он состоит из сплава с низкой температурой плавления. Полоса предохранителя подключается последовательно к цепи двигателя.Принцип работы заключается в том, что при превышении тока полоса плавится, разрывает цепь и изолирует двигатель от источника питания.
5) MCB
Автоматический выключатель — это автоматический выключатель, предназначенный для защиты электрической цепи от повреждений, вызванных избыточным током в результате перегрузки / короткого замыкания. Его основная функция — прервать прохождение тока после обнаружения неисправности. С другой стороны, предохранитель, который срабатывает один раз, а затем подлежит замене, автоматический выключатель может быть сброшен, чтобы начать нормальную работу.
Для защиты двигателя от короткого замыкания и предотвращения повреждения обмотки двигателя MCB используется в цепи стартера двигателя звезда-треугольник.
6) Кнопка пуска (NO)
Это кнопка нормально разомкнутого (НО) типа, используемая для запуска двигателя.
7) Кнопка остановки (NC)
Это кнопка типа NC и используется для остановки двигателя.
Преимущества пускателя со звезды на треугольник
1) Пускатели типа «звезда-треугольник» популярны благодаря своей невысокой цене.
2) Нет ограничений на количество раз, которое они могут использовать.
3) Пусковой ток снижается примерно до 1/3 номинального тока двигателя.
4) Обеспечьте высокий крутящий момент на ампер линейного тока.Недостатки пускателя звезда-треугольник
1) Пускатель со звезды на треугольник может использоваться только для двигателей, у которых есть доступ к шести клеммам двигателя.
2) Напряжение питания должно соответствовать номинальному напряжению двигателя для соединения треугольником.
3) Поскольку пусковой ток снижается примерно до 1/3 номинального тока, пусковой момент также снижается до 1/3.Разъяснение по запуску электродвигателя со звездой-треугольником
Схема питания звезда-треугольник Пуск звезда-треугольник — это когда двигатель подключен (обычно снаружи от двигателя) в ЗВЕЗДА во время стартовой последовательности. Когда двигатель разогнался до нормального скорость работы, двигатель подключен по схеме ТРЕУГОЛЬНИК.
Изменение внешнего подключения двигателя со звезды на треугольник обычно достигается тем, что обычно называют стартером звезда-треугольник.Этот стартер — это просто ряд контакторы (переключатели), которые соединяют разные выводы вместе, образуя необходимый переход от звезды к треугольнику.
Когда двигатель запускается по схеме звезды, фазное напряжение двигателя уменьшается на коэффициент √3. Уменьшение пускового тока, пусковой мощности и пускового момента для пониженного напряжения может каждый из них рассчитывается с использованием уравнения 1 (при этом игнорируются другие факторы, такие как насыщение и т. д.):
Эти пускатели обычно настраиваются на определенную последовательность запуска, в основном с использованием настройки времени для переключения между Звездой и Дельтой.На этих пускателях может быть расширенная защита, контролирующая запуск время, ток, напряжение, скорость двигателя и т. д.
Например, если напряжение питания составляет 380 вольт. Во время пуска, когда двигатель подключен к Star, подаваемое напряжение на каждой катушке составляет 380 / 1,73, что составляет 220 вольт. В результате уменьшения приложенного напряжения пусковой момент также снизится до 67%.
Цепь управления
Из схемы управления выше, когда переключатель S1 нажат, будет полный путь электрического тока, который будет течь от L1 к L2, вызывая активацию следующих катушек:
Чтение: Управление электродвигателем на промышленных предприятиях
- K1 — линейный или главный контактор
- K2 — звездообразный контактор
- K4 — таймер (установлен на 3-5 секунд)
По истечении заданного времени произойдет переключение контакта таймера.Таким образом, замыкающий контакт с выдержкой времени (K3), который управляет контактором звезды, теперь станет разомкнутым, а замыкающий контакт с выдержкой времени (K2) будет делать обратное. Таким образом выполняется переход от звезды к треугольнику.
Вспомогательный контакт контактора K1 подключается параллельно кнопке пуска S1 (с фиксацией), так что цепь остается включенной, даже когда S1 возвращается в разомкнутое положение. Обратите внимание, что S1 характеризуется кнопкой, которая возвращается в исходное состояние после нажатия.
Нормально замкнутые контакты K3 и K2 также заблокированы для предотвращения одновременной активации соединения ЗВЕЗДА и ТРЕУГОЛЬНИК, что может вызвать серьезное повреждение двигателя.
Каковы преимущества использования запуска по схеме звезда-треугольник?
Самым значительным преимуществом этого метода пуска является снижение пускового тока при пуске. Снижение пускового тока также может снизить механическую нагрузку на двигатель из-за высокого пускового момента. Обратите внимание, что если пуск с пониженным напряжением не применяется, пусковой ток может достигать 600%.
Что такое пускатель звезда-треугольник? Теория и метод для стартера звезда-треугольник
Пускатель звезда-треугольник — очень распространенный тип пускателя, который широко используется по сравнению с другими типами методов пуска асинхронного двигателя. Звезда-треугольник используется для двигателя с кожухом, предназначенного для нормальной работы на обмотке статора, соединенной треугольником. Подключение трехфазного асинхронного двигателя к пускателю со звезды на треугольник показано на рисунке ниже:
Когда переключатель S находится в положении START , обмотки статора соединены звездой, как показано ниже:
Когда двигатель набирает скорость, составляющую около 80 процентов от его номинальной скорости, переключатель S немедленно переводится в положение RUN .В результате обмотка статора, которая была соединена звездой, теперь заменена на соединение DELTA . Соединение обмотки статора треугольником показано на рисунке ниже:
Сначала обмотка статора подключается по схеме звезды, а затем по схеме треугольника, так что пусковой линейный ток двигателя снижается на одну треть по сравнению с пусковым током с обмотками, соединенными в треугольник. При запуске асинхронного двигателя, когда обмотки статора соединены звездой, каждая фаза статора получает напряжение В L / √3 .Здесь V L — линейное напряжение.
Так как развиваемый крутящий момент пропорционален квадрату напряжения, приложенного к асинхронному двигателю. Пускатель со звезды на треугольник снижает пусковой момент до одной трети, который достигается при прямом пуске по схеме треугольник.
Теория пускателя звезда-треугольник с методом пуска асинхронного двигателя
При запуске асинхронного двигателя обмотки статора соединены звездой, поэтому напряжение на каждой фазной обмотке равно 1 / √3, умноженному на линейного напряжения.
Лет,
- V L — линейное напряжение,
- I styp — пусковой ток на фазу при соединении обмоток статора звездой,
- I styl — стартовый линейный ток с обмоткой статора в звезду.
При соединении звездой линейный ток равен фазному току. Следовательно,
Если,
- В 1 — фазное напряжение,
- V L — линейное напряжение,
- I st Δ p — пусковой ток на фазу при прямом переключении с обмотками статора, соединенными треугольником,
- I st Δ l — пусковой ток линии при прямом переключении с обмотками статора в треугольник,
- I sc Δ p — фазный ток короткого замыкания при прямом переключении с обмотками статора в треугольник,
- Z e10 — эквивалентное сопротивление покоя на фазу двигателя, называемую статором.
Для соединения треугольником линейный ток в три раза больше основного тока фазы.
Таким образом, при пуске со звезды на треугольник пусковой ток от основного источника питания составляет одну треть от тока прямого переключения по схеме треугольник.
Кроме того, следовательно, при пуске по схеме звезда-треугольник пусковой крутящий момент уменьшается до одной трети пускового крутящего момента, полученного при прямом переключении по треугольнику. Где,
I fl Δ p — фазный ток полной нагрузки с обмоткой в треугольнике
Но Следовательно, уравнение (4), показанное выше, дает пусковой момент асинхронного двигателя при пуске по схеме звезда-треугольник.
Устройство плавного пускав сравнении с устройством плавного пуска со схемой «звезда треугольник»
Каждый раз, когда запускается электродвигатель, он потребляет значительную мощность. Этот внезапный приток мощности может повредить двигатель, привести к провалам напряжения и вызвать другие проблемы. Для защиты от этих нежелательных эффектов вам необходимо выбрать метод пуска, который позволит вашему двигателю безопасно запускаться.
Два из этих методов пуска включают использование устройств плавного пуска и пускателей со звезды на треугольник. Хотя эти два устройства имеют схожее назначение, они во многом различаются.В этой статье мы определим и сравним эти две технологии, чтобы помочь вам выбрать наиболее подходящую для приложений вашей компании.
Что такое устройство плавного пуска?
Устройства плавного пуска, также называемые устройствами плавного пуска с пониженным напряжением (RVSS), представляют собой твердотельные устройства, которые защищают электродвигатели переменного тока от повреждений из-за внезапного увеличения мощности во время запуска. Они делают это, позволяя медленно увеличивать мощность за счет постепенного увеличения напряжения, подаваемого на двигатель. Обычно они используются только при запуске, но некоторые могут использоваться и при остановке двигателя.
Устройства плавного пускамогут состоять из электрических или механических компонентов или их комбинации. В механических устройствах плавного пуска могут использоваться муфты и различные типы муфт, в которых для передачи крутящего момента используются текучая среда, стальная дробь или магнитные силы. Электрические устройства плавного пуска снижают крутящий момент, временно изменяя способ соединения двигателя в пределах электрического тока или иным образом уменьшая входной ток или напряжение с помощью электрических средств. Электрические устройства плавного пуска могут управлять от одной до трех фаз. Трехфазное управление обычно дает лучшие результаты.
Обычно в устройствах плавного пуска используются кремниевые выпрямители и тиристоры для снижения напряжения. В выключенном состоянии тиристоры ограничивают ток, а во включенном состоянии разрешают его. Когда двигатель набирает обороты, SCR включаются. После достижения максимальной скорости включаются байпасные контакторы, что помогает уменьшить нагрев двигателя.
Что такое пускатель со звезды на треугольник?
Пускатели со звезды на треугольник — еще одно устройство, которое можно использовать для снижения потребления тока во время запуска двигателя.Он часто используется для запуска трехфазных асинхронных двигателей, но может использоваться только при запуске двигателя без нагрузки и при относительно низком требуемом пусковом токе.
При использовании этого метода двигатель сначала запускается с обмоткой статора, соединенной звездой. Как только двигатель достигнет определенной скорости или пройдет определенное время, двигатель будет работать с нормальной обмоткой статора, соединенной треугольником. Запуск со звездой снижает напряжение на каждой обмотке, а также уменьшает крутящий момент.
В звездообразном соединении четыре провода. Три из них — фазные, а четвертый — нейтральный. Нейтральный провод подключается в начальной точке, где сходятся трехфазные провода. При соединении треугольником три — это три провода. Клемма нейтрали отсутствует, хотя при необходимости заземление можно использовать в качестве пути нейтрали.
Пускателизвезда-треугольник содержат трехполюсный переключатель с двойным направлением, который переключает обмотки статора со звезды на треугольник. У них также есть три контактора, главный контактор, контактор звезды и треугольник, которые регулируют токи обмоток.Они также содержат реле времени, трехполюсный тепловой расцепитель максимального тока и либо плавкие предохранители, либо автоматические выключатели для цепей.
Сравнение устройств плавного пускаи устройств плавного пуска типа звезда-треугольник
Итак, чем же похожи устройства плавного пуска и пускатели со звезды на треугольник и чем они отличаются? А что использовать для запуска мотора?
Оба типа стартеров служат одной и той же цели. Они уменьшают напряжение, подаваемое на двигатель во время запуска, чтобы предотвратить внезапный скачок мощности, который может повредить двигатель и вызвать другие проблемы.Однако основные отличия таковы:
- Ряд состояний: Пускатели со звезды на треугольник имеют только два состояния, низкое напряжение и полное напряжение, между которыми пускатель переключается. С другой стороны, устройства плавного пуска запускаются постепенно. Они могут иметь бесконечное количество состояний в пределах управляющей электроники и ваших требований к запуску.
- Способность справляться с различными условиями нагрузки: Устройства плавного пуска могут справляться с различными условиями нагрузки, такими как запуск с нагрузкой и без нагрузки, в то время как статеры звезда-треугольник не могут.
- Время пуска: Устройства плавного пуска позволяют контролировать время пуска, а устройства пуска звезда-треугольник — нет. Время пуска для пускателей со звезды на треугольник составляет от трех до семи секунд, в то время как устройства плавного пуска имеют регулируемое время пуска от одной до примерно 60 секунд.
- Управление крутящим моментом: Устройства плавного пуска также предлагают динамическое управление крутящим моментом, что позволяет регулировать крутящий момент в соответствии с различными характеристиками двигателя и нагрузки. Пускатели со звезды на треугольник не позволяют регулировать пусковой крутящий момент.
- Плавный останов: Некоторые устройства плавного пуска также предлагают функцию плавного останова, а устройства плавного пуска — нет.
- Снижение тока при очень малых нагрузках: При очень малых нагрузках пускатели со звезды на треугольник могут снизить пусковой ток до более низкого уровня, чем устройства плавного пуска.
- Простота: Пускатели со звезды на треугольник сложнее устройств плавного пуска. Также проще установить устройства плавного пуска.
- Открытый переход и потеря мощности: В пускателях со звезды на треугольник между соединением звезда и треугольник имеется открытый переход, который может привести к переходным процессам тока и высокому крутящему моменту.Во время этого перехода также пропадает питание. В устройствах плавного пуска нет такого открытого перехода и потери мощности.
- Стоимость: Устройства плавного пуска стоят дороже, чем устройства плавного пуска со звезды на треугольник, хотя устройства плавного пуска более эффективны. Однако сегодня разница в стоимости между двумя типами закусок меньше, чем когда-то.
- Применение: Пускатели со звездой-треугольником могут использоваться для маломощных машин, запускаемых с нагрузкой, машин средней мощности, запускаемых без нагрузки, маломощных вентиляторов и маломощных центробежных насосов.Устройства плавного пуска могут использоваться с большими двигателями с нагрузкой или без нее, включая двигатели, используемые для компрессоров, вентиляторов, насосов, конвейеров, мешалок, миксеров, мельниц и т. Д.
Обзор пускателей двигателей
Что следует использовать: устройство плавного пуска или пускатель со звезды на треугольник?
Какой тип стартера следует использовать с вашим двигателем? Устройства плавного пуска предлагают больше функций и более простую установку, но устройства плавного пуска по схеме «звезда-треугольник» предлагают преимущество в виде более низкой стоимости. Вот несколько дополнительных причин использовать каждый тип стартера:
Причины использования устройств плавного пуска
Устройства плавного пускасегодня используются чаще, чем пускатели со звезды на треугольник, из-за их расширенных возможностей и дополнительных функций.Если у вас двигатель большего размера, который вы часто запускаете и останавливаете, устройство плавного пуска — лучший выбор, поскольку он более эффективен, чем пускатель со звезды на треугольник.
Устройства плавного пускатакже более гибкие, чем пускатели со звезды на треугольник, и их проще установить. Вы также можете выбрать устройство плавного пуска из-за его дополнительных возможностей, таких как способность адаптироваться к изменяющимся условиям нагрузки, включать плавные остановки и регулировать время пуска и крутящий момент. Устройства плавного пуска также обладают преимуществами благодаря улучшенным функциям, таким как плавный прогрессивный запуск, отсутствие потери мощности, встроенная защита и длительный срок службы из-за отсутствия движущихся частей
Причины использования пускателей со звезды на треугольник
Основным преимуществом пускателей со звезды на треугольник является их более низкая стоимость, хотя разница в стоимости меньше, чем когда-то.