Расчет цепи онлайн – Расчет электрической цепи постоянного тока

Расчет цепи онлайн – Расчет электрической цепи постоянного тока

Расчет электрической цепи. Закон Ома: онлайн-калькулятор для расчета электрических цепей постоянного и переменного тока

Как рассчитать ток, напряжение и сопротивление в электрической цепи. Что такое закон Ома для участка цепи и полной цепи. Как применять закон Ома для расчета цепей постоянного и переменного тока. Онлайн-калькулятор для быстрых вычислений.

Содержание

Что такое закон Ома и как он применяется в электротехнике

Закон Ома является фундаментальным законом электротехники, который устанавливает связь между током, напряжением и сопротивлением в электрической цепи. Этот закон был открыт немецким физиком Георгом Омом в 1826 году и назван в его честь.

Согласно закону Ома для участка цепи:

  • Сила тока I прямо пропорциональна напряжению U на концах участка цепи
  • Сила тока I обратно пропорциональна сопротивлению R этого участка

Математически закон Ома выражается формулой:

I = U / R

Где:

  • I — сила тока в амперах (А)
  • U — напряжение в вольтах (В)
  • R — сопротивление в омах (Ом)

Из этой базовой формулы можно вывести еще две производные:


U = I * R

R = U / I

Эти три формулы позволяют рассчитать любую из трех величин, если известны две другие.

Закон Ома для участка цепи

Закон Ома для участка цепи применяется для расчета параметров отдельных элементов электрической схемы. Он справедлив для участков цепи, не содержащих источников ЭДС.

Используя закон Ома для участка цепи, можно решать следующие задачи:

  • Определить ток через резистор при известном напряжении и сопротивлении
  • Рассчитать падение напряжения на участке цепи
  • Найти сопротивление участка цепи
  • Рассчитать мощность, выделяемую на нагрузке

Закон Ома для полной цепи

Закон Ома для полной цепи учитывает не только сопротивление нагрузки, но и внутреннее сопротивление источника питания. Он применяется для расчета параметров всей электрической цепи в целом.

Формула закона Ома для полной цепи:

I = E / (R + r)

Где:

  • E — электродвижущая сила источника питания (В)
  • R — сопротивление внешней нагрузки (Ом)
  • r — внутреннее сопротивление источника (Ом)

С помощью этой формулы можно определить:


  • Ток в цепи с учетом внутреннего сопротивления источника
  • Напряжение на зажимах источника
  • Падение напряжения внутри источника
  • КПД источника питания

Применение закона Ома для цепей переменного тока

Хотя закон Ома был изначально сформулирован для цепей постоянного тока, он может применяться и для расчета цепей переменного синусоидального тока. В этом случае вместо активного сопротивления R используется полное сопротивление цепи Z (импеданс).

Формула закона Ома для цепи переменного тока:

I = U / Z

Где Z — комплексное сопротивление, включающее активную и реактивную составляющие.

При расчете цепей переменного тока учитываются:

  • Индуктивное сопротивление катушек
  • Емкостное сопротивление конденсаторов
  • Сдвиг фаз между током и напряжением

Онлайн-калькулятор для расчетов по закону Ома

Для быстрого расчета параметров электрических цепей удобно использовать онлайн-калькуляторы. Ниже представлен простой калькулятор для вычислений по закону Ома:

«` import React, { useState } from ‘react’; import { Input, Button, Select } from ‘@/components/ui/input’; const OhmsLawCalculator = () => { const [voltage, setVoltage] = useState(»); const [current, setCurrent] = useState(»); const [resistance, setResistance] = useState(»); const [result, setResult] = useState(»); const calculate = () => { if (voltage && current) { setResult(`Сопротивление: ${(parseFloat(voltage) / parseFloat(current)).toFixed(2)} Ом`); } else if (voltage && resistance) { setResult(`Ток: ${(parseFloat(voltage) / parseFloat(resistance)).toFixed(2)} А`); } else if (current && resistance) { setResult(`Напряжение: ${(parseFloat(current) * parseFloat(resistance)).toFixed(2)} В`); } else { setResult(‘Введите любые две величины для расчета’); } }; return (

Калькулятор закона Ома

setVoltage(e.target.value)} /> setCurrent(e.target.value)} /> setResistance(e.target.value)} />

{result}


); }; export default OhmsLawCalculator; «`

Этот калькулятор позволяет быстро рассчитать любую из трех величин (напряжение, ток, сопротивление), если известны две другие. Просто введите имеющиеся данные и нажмите кнопку «Рассчитать».

Практическое применение закона Ома

Закон Ома широко применяется в электротехнике и электронике для решения различных практических задач:

  • Расчет параметров электрических цепей
  • Выбор номиналов резисторов при проектировании схем
  • Определение токов и напряжений в различных точках схемы
  • Расчет мощности, потребляемой электроприборами
  • Подбор сечения проводов для электропроводки
  • Расчет параметров источников питания

Понимание закона Ома необходимо для безопасной и эффективной работы с электрическими устройствами и системами.

Ограничения применения закона Ома

Несмотря на широкое применение, закон Ома имеет ряд ограничений:

  • Применим только для проводников, подчиняющихся закону Ома (омических проводников)
  • Не работает для нелинейных элементов (диодов, транзисторов)
  • В точности выполняется только для постоянного тока
  • Не учитывает влияние температуры на сопротивление
  • Не применим для сверхпроводников

При решении сложных задач необходимо учитывать эти ограничения и при необходимости использовать более сложные модели.


Часто задаваемые вопросы о законе Ома

Вопрос: Как закон Ома связан с мощностью?

Ответ: Закон Ома позволяет рассчитать электрическую мощность. Формула мощности P = U * I может быть преобразована с использованием закона Ома:

  • P = U * I = U * (U / R) = U² / R
  • P = I * U = I * (I * R) = I² * R

Вопрос: Как применяется закон Ома при последовательном и параллельном соединении резисторов?

Ответ: При последовательном соединении общее сопротивление равно сумме сопротивлений: R = R1 + R2 + R3. При параллельном соединении складываются обратные величины: 1/R = 1/R1 + 1/R2 + 1/R3.

Вопрос: Как закон Ома применяется в бытовой электропроводке?

Ответ: С помощью закона Ома рассчитывают допустимую нагрузку на провода, выбирают номиналы автоматических выключателей, определяют потери напряжения в длинных линиях.


Расчет электрической цепи: онлайн кальлкулятор

Студенты, которые проходят курс ТОЭ или практикующие инженеры так или иначе должны знать, как рассчитать электрическую цепь. Это несложный, но кропотливый процесс, который требует повышенной внимательности, ведь нужно учесть множество формул, знаков и размерностей. К тому же метод расчета зависит от рода тока, наличия нелинейных элементов или реактивных мощностей. Давайте рассмотрим, что нужно для самостоятельных вычислений, а также как выполнить расчет электрической цепи, используя онлайн калькулятор.

В простейшем случае результатом расчетов является вычисление электрической мощности и её коэффициента (cos Ф). Однако иногда необходимо знать эквивалентное сопротивление элементов нагрузки, эти данные вы можете получить онлайн с помощью нашего калькулятора, когда известно напряжение:

Рассмотрим, как рассчитать электрическую цепь. Для начала нужно вспомнить законы или правила Кирхгофа:

  1. Сумма токов в узле цепи равна нулю. Простыми словами — сколько электричества вошло, столько и вышло через точку соединения нескольких ветвей.
  2. Сумма ЭДС равна сумме падений напряжения в замкнутом контуре.

Кроме этого нам понадобится Закон Ома, базовые сведения о работе с комплексными числами, понятия активного и реактивного сопротивления и мощности. Комплексные числа в теоретических основах электротехники занимают значимое место во многих задачах, и если нет специализированных калькуляторов, то работа с ними очень затруднительна.

Также полезно знать о том, что работу любой элетросхемы можно представить в виде векторной диаграммы, тогда углы отклонения токов и напряжений зависят от рода нагрузки. При резистивной они направлены в одну сторону, а при индуктивной, емкостной или смешанной — отклонены друг от друга. Угол отклонения используется при вычислении коэффициентов мощности.

Надеемся, предоставленный онлайн калькулятор для расчета электроцепи был для вас полезным! Если возникли вопросы, задавайте их в комментариях под статьей.

samelectrik.ru

10 лучших бесплатных онлайн симуляторов электроцепи

Список бесплатных программ моделирования электронной цепи онлайн очень полезный для вас. Эти симуляторы электроцепи, которые я предлагаю, не нужно быть загружен в компьютере, и они могут работать непосредственно с веб-сайта.

1. EasyEDA — дизайн электронной цепи, моделирование цепи и PCB дизайн:

EasyEDA — удивительный бесплатный онлайн симулятор электроцепи, который очень подходит для тех, кто любит электронную схему. EasyEDA команда стремится делать сложную программу дизайна на веб-платформе в течение нескольких лет, и теперь инструмент становится замечательным для пользователей. Программная среда позволяет тебя сам проектировать схему. Проверить операцию через симулятор электроцепи. Когда вы убедитесь функцию цепи хорошо, вы будете создавать печатную плату с тем же программным обеспечением.

Есть более 70,000+ доступных диаграмм в их веб-базах данных вместе с 15,000+ Pspice программами библиотеки. На сайте вы можете найти и использовать множество проектов и электронных схем, сделанные другими, потому что они являются публичными и открытыми аппаратными оснащениями. Он имеет некоторые довольно впечатляющие варианты импорта (и экспорта). Например, вы можете импортировать файлы в Eagle, Kikad, LTspice и Altium проектант, и экспортировать файлы в .PNG или .SVG. Есть много примеров на сайте и полезных программ обучения, которые позволяют людей легко управлять.

Circuit Sims

2. Circuit Sims: Это был один из первых вебов исходя из эмуляторов электроцепи с открытым кодом я тестировал несколько лет назад. Разработчикам не удалось повысить качество и увеличить графический интерфейс пользователя.

DcAcLab

3. DcAcLab имеет визуальные и привлекательные графики, но ограничивается моделированием цепи. Это несомненно отличная программа для обучения, очень проста в использовании. Это делает вас видеть компоненты, как они сделаны. Это не позволит вам проектировать схему, но только позволит сделать практику.

EveryCircuit

4. EveryCircuit представляет собой электронный эмулятор онлайн с хорошими сделанными графиками. Когда вы входите в онлайн программу, и она будет просить вас создать бесплатный счет, чтобы вы можете сохранить ваши проекты и иметь ограниченную часть площади рисовать вашу схему. Чтобы использовать его без ограничений, требующих годовой взнос в размере $ 10. Он можно скачивать и использоваться на платформах Android и iTunes. Компоненты имеют ограниченную способность имитировать с небольшими минимальными параметрами. Очень просто в использовании, он имеет прекрасную систему электронного дизайна. Она позволяет вам включать (вставлять) моделирование в ваши веб-страницы.

DoCircuits

5.DoCircuits: Хотя она оставляет людям первое впечатление от путаницы о сайте, но она дает много примеров о том, как работает программа, можно видеть себя на видео «будет начать в пять минут». Измерения параметров электронной схемы продемонстрируют с реалистичными виртуальными инструментами.

PartSim

6. PartSim электронный симулятор схемы онлайн. Он был способным к моделированию. Вы можете рисовать электрические схемы и протестировать их. Он еще новый симулятор, так что есть несколько компонентов, чтобы сделать моделирования для выбора.

123DCircuits

7. 123DCircuits Активная программа разработана AutoDesk, она позволяет вам создавать схему, можно увидеть её на макетной плате, использовать платформу Arduino, имитировать электронную схему и окончательно создать PCB. Компоненты продемонстрируются в 3D в их реальной форме. Вы можете запрограммировать Arduino непосредственно из этой программы моделирования, (она) действительно производит глубокое впечатление.

TinaCloud

8. TinaCloud Эта программа моделирования имеет усовершенствованные возможности. Она позволяет вам моделировать, в дополнение к обычным схемам со смешанными сигналами, и микропроцессорами, VHDL, SMPS поставки электричества и радио частотных цепей. Расчеты для электронного моделирования выполняются непосредственно на сервере компании и позволяют отличную скорость моделирования

Spicy schematics

9.Spicy schematics является программой формы cross-plat, все формы платформы можно поддерживать, в том числе iPad.

Gecko simulations

10. Gecko simulations представляет собой программу моделирования, специализирующуюся на открытом исходном коде и питания цепей. С помощью этой программы вы также можете измерить потребляемую энергию схемы. Это программа является клоном программы ETH (ETH Zurich).

www.qrz.ru

Онлайн калькулятор закона Ома для участка цепи

Рад приветствовать тебя, дорогой читатель, в этой первой статье моего блога! Ее я посвятил самому основному закону, который должен хорошо понимать современный человек, работающий с электричеством.

Мой онлайн калькулятор закона Ома создан для участка цепи. Он значительно облегчает электротехнические расчеты в домашней проводке, подходит для цепей переменного и постоянного тока.

Им просто пользоваться: прочти правила ввода данных и работай!

Содержание статьи

Правила работы на калькуляторе

В быту нас интересуют, как правило, четыре взаимосвязанных характеристики электричества:

  1. напряжение;
  2. ток;
  3. сопротивление;
  4. или мощность.

Если тебе известны две величины, входящие в закон Ома (U, R, I), то вводи их в соответствующие строки, а оставшийся параметр и мощность будут вычислены автоматически.

Будь внимательным, чтобы не допустить ошибки.

Все значения надо заполнять в одной размерности: амперы, вольты, омы, ватты без использования обозначений дольности или кратности.

Осуществить переход к ним тебе поможет наглядная таблица.

Онлайн калькулятор закона Ома

Простые примеры расчета

Бытовая сеть переменного тока

Пример №1. Проверка ТЭНа.

В стиральную машину встроен трубчатый электронагреватель 1,25 кВт на 220 вольт. Требуется проверить его исправность замером сопротивления.
По мощности рассчитываем ток и сопротивление.

I = 1250 / 220 = 5,68 А; R = 220 / 5,68 = 38,7 Ом.

Проверяем расчет сопротивления калькулятором по току и напряжению. Данные совпали. Можно приступать к электрическим замерам.

Пример №2. Проверка сопротивления двигателя

Допустим, что мы купили моющий пылесос на 1,6 киловатта для уборки помещений. Нас интересует ток его потребления и сопротивление электрического двигателя в рабочем состоянии. Считаем ток:

I = 1600 / 220 = 7,3 А.

Вводим в графы калькулятора напряжение 220 вольт и ток 7,3 ампера. Запускаем расчет. Автоматически получим данные:

  • сопротивление двигателя — 30,1 Ома;
  • мощность 1600 ватт.

Цепи постоянного тока

Рассчитаем сопротивление нити накала галогенной лампочки на 55 ватт, установленной в фаре автомобиля на 12 вольт.

Считаем ток:

I = 55 / 12 = 4,6 А.

Вводим в калькулятор 12 вольт и 4,6 ампера. Он вычисляет:

  • сопротивление 2,6 ома.
  • мощность 5 ватт.

Здесь обращаю внимание на то, что если замерить сопротивление в холодном состоянии мультиметром, то оно будет значительно ниже.

Это свойство металлов позволяет создавать простые и относительно дешевые лампы накаливания без сложной пускорегулирующей аппаратуры, необходимой для светодиодных и люминесцентных светильников.

Другими словами: изменение сопротивления вольфрама при нагреве до раскаленного состояния ограничивает возрастание тока через него. Но в холодном состоянии металла происходит бросок тока. От него нить может перегореть.

Для продления ресурса работы подобных лампочек используют схему постепенной, плавной подачи напряжения от нуля до номинальной величины.

В качестве простых, но надежных устройств для автомобиля часто используется релейная схема ограничения тока, работающая ступенчато.

При включении выключателя SA сопротивление резистора R ограничивает бросок тока через холодную нить накала. Когда же она разогреется, то за счет изменения падения напряжения на лампе HL1 электромагнит с обмоткой реле KL1 поставит свой контакт на удержание.

Он зашунтирует резистор, чем выведет его из работы. Через нить накала станет протекать номинальный ток схемы.

Полезная информация для начинающего электрика

Как использовать закон Ома на практике

Почти два столетия назад в далеком 1827 году своими экспериментами Георг Ом выявил закономерность между основными характеристиками электричества.

Он изучил и опубликовал влияние сопротивления участка цепи на величину тока, возникающего под действием напряжения. Ее удобно представлять наглядной картинкой.

Любую работу всегда создает трудяга электрический ток. Он вращает ротор электрического двигателя, вызывает свечение электрической лампочки, сваривает или режет металлы, выполняет другие действия.

Поэтому ему необходимо создать оптимальные условия: величина электрического тока должна поддерживаться на номинальном уровне. Она зависит от:

  1. значения приложенного к цепи напряжения;
  2. сопротивления среды, по которой движется ток.

Здесь напряжение, как разность потенциалов приложенной энергии, является той силой, которая создает электрический ток.

Если напряжения не будет, то никакой полезной работы от подключённой электрической схемы не произойдёт из-за отсутствия тока. Эта ситуация часто встречается при обрыве, обломе или отгорании питающего провода.

Сопротивление же решает обратную для напряжения задачу. При очень большой величине оно так ограничивает ток, что он не способен совершить никакой работы. Этот режим применяется у хороших диэлектриков.

Примеры из жизни

№1: выключатель освещения разрывает цепь электрических проводов, по которым напряжение добирается до лампочки.

Между контактами образуется воздушный зазор. Он отличный изолятор, исключающий движение тока по осветительному прибору.

№2: клеммы розетки, как источника напряжения, замкнули между собой без сопротивления короткой проволокой. В этой ситуации создается короткое замыкание.

Ток КЗ способен сжечь электропроводку, вызвать пожар в квартире. Поэтому от таких ситуаций существует только одно спасение: использование защит, способных максимально быстро отключить питающее напряжение.

Для бытовой сети это функция автоматических выключателей или предохранителей, о работе которых я буду рассказывать в других статьях.

Используя сопротивление, следует понимать, что оно, само по себе, не вечно: обладая резервом противостояния приложенной энергии, оно может его израсходовать, не справиться со своей задачей и сгореть.

Поэтому для сопротивления вводится понятие мощности рассеивания, которая надежно отводится во внешнюю среду. Если тепловая энергия, развиваемая прохождением тока, превышает эту величину, то сопротивление сгорает.

Напряжение и сопротивление в комплексе формируют электрические процессы. Онлайн калькулятор закона Ома позволяет оптимально рассчитать величину тока, необходимую для совершения полезной работы.

Что такое участок цепи

Рассмотрим самую простую электрическую схему, состоящую из батарейки, лампочки и проводов. В ней циркулирует электрический ток.

Представленная схема или полная цепь состоит из двух контуров:

  1. Внутреннего источника напряжения.
  2. Внешнего участка: лампочки с подключенными проводами.

Те процессы, которые происходят внутри батарейки, нас интересуют в основном как познавательные. Их мы можем только ухудшить при неправильной эксплуатации.

Например, приходящая в квартиру электрическая энергия от трансформаторной подстанции нам не подвластна. Мы ей просто пользуемся. От неисправностей и аварийных режимов нас защищают автоматические выключатели, УЗО, реле РКН, ограничители перенапряжения или УЗИП, другие современные модули защит.

Внешний же, подключенный к источнику напряжения контур, является участком цепи, в котором мы, используя закон Ома, совершаем полезную для себя работу.

Как использовать треугольник закона Ома

Простое мнемоническое правило представлено тремя составляющими в виде частей треугольника. Оно позволяет легко запомнить взаимосвязи между током, сопротивлением и напряжением.

Вверху всегда стоит напряжение. Ток и сопротивление снизу. Когда вычисляем какую-то одну величину по двум другим, то ее изымаем из треугольника и выполняем арифметическое действие: деление или умножение.

Шпаргалка электрика для новичков

Треугольник закона Ома легко запоминается, но он не позволяет учитывать мощность потребления электроприбора. Этот четвертый параметр, важный для любого домашнего электрика, всегда надо учитывать. .

На всех бытовых электрических приборах указывают мощность потребления электрической энергии в ваттах или киловаттах. Ее формулы, совместно с предыдущими величинами, можно брать со следующей картинки.

Такая шпаргалка электрика позволяет делать простые вычисления в уме или на бумаге. Формулы из нее заложены в алгоритм, по которому работает мой онлайн калькулятор закона Ома.

Предлагаю провести одинаковые вычисления обоими методами и сравнить полученные результаты. Если вдруг найдете расхождения, то укажите в комментариях. Это будет ваша помощь моему проекту.

Я постарался кратко и просто рассказать о принципах работы закона Ома применительно к задачам, решаемым домашним мастером. Считаю, что это достаточно и не рассматриваю закон Ома для полной цепи в обычной форме, комплексных числах, или ином виде.

Если же вы хотите просмотреть видеоурок по этой теме, то воспользуйтесь материалами владельца Физика-Закон Ома.

Возможно, у вас остались вопросы о работе калькулятора? Задавайте. Я на них отвечу. Воспользуйтесь разделом комментариев.

Напоследок напоминаю, что у вас сейчас самое благоприятное время поделиться этим материалом с друзьями в соц сетях и подписаться на рассылку сайта. Тогда вы сможете своевременно получать информацию о новых публикуемых статьях.

electrikblog.ru

Расчет размерных цепей онлайн. Прямая задача.

Укажите звенья размерной цепи

Имя размерной цепи


A1

Размер, мм


select
  • ↑ Увеличивающее звено
  • ↓ Уменьшающее звено
Требуемый допуск по умолчанию
  • по умолчанию
  • + положительный
  • — отрицательный
  • ± симметричный
Добавить Отклонения известны

expert-i.ru

Импеданс. Расчёт

Импеданс (impedance) – комплексное, полное сопротивление переменному току электрической цепи с активным и реактивным сопротивлением.

Импеданс и общий сдвиг фаз для синусоидального тока можно рассчитать исходя из последовательного или параллельного соединения элементов цепи.

Последовательное соединение

При последовательном соединении, согласно Закону Ома для переменного тока, во всех элементах цепи ток будет общим I = U/Z, а значения напряжений на каждом элементе определятся пропорционально его сопротивлению:
на выводах резистора UR = IR; на выводах конденсатора UC = IXC; на выводах катушки UL = IXL.

Векторы индуктивной и ёмкостной составляющих напряжения направлены в противоположные стороны.
С учётом отрицательного ёмкостного сдвига, общее напряжение на реактивных элементах UX = UL — UC .
Пропорционально напряжению, получим общее реактивное сопротивление X = XL — XC .
Векторы напряжений на активной и реактивной составляющей импеданса имеют угол сдвига фаз 90 градусов.
U , UR и UX представим в виде прямоугольного треугольника напряжений с углом сдвига фаз φ.

Тогда получим соотношение, согласно Теореме Пифагора, U ² = UR² + UX² .
Следовательно, с учётом пропорциональности элементов R, L, C значениям напряжений на их выводах, определим импеданс, который будет равен квадратному корню из суммы квадратов активного и реактивного сопротивлений цепи.

XL = ωL = 2πfL — реактивное сопротивление индуктивности.
XC = 1/(ωC) = 1/(2πfC) — реактивное сопротивление ёмкости.

Угол сдвига фаз φ и его дополнение до 90° δ определятся тригонометрическими функциями из треугольника сопротивлений с катетами R, X и гипотенузой Z, как показано на рисунке:

Обычно, для облегчения расчётов, импеданс представляют в виде комплексного числа, где действительной его частью является активное сопротивление, а мнимой — реактивное.
Для последовательного соединения импеданс можно записать в комплексном виде следующим образом:

Z = R + jX

Тогда в тригонометрической интерпретации модулем этого числа будет импеданс, а аргументом — угол φ.
В соответствии с формулой Эйлера, запишем показательную форму комплексного импеданса:

Z = |Z|ejargZ = Ze

Отсюда активная составляющая импеданса R = Zcosφ
Реактивная составляющая X = Zsinφ.


Параллельное соединение

Для вычисления импеданса при параллельном соединении активных и реактивных сопротивлений будем исходить из суммы обратных им величин — проводимостей y = 1/Z, G = 1/R, b = 1/X.

y = 1/Z = √(G2 + b2)

Сдвиг фаз в этом случае будет определён треугольником сопротивлений следующим образом:

Комплексную проводимость, как величину, обратную комплексному импедансу, запишем в алгебраической форме:

Y = G — jb

Либо в показательной форме:

Y = |Y|e -jφ = ye -jφ

Здесь:
Y — комплексная проводимость.
G — активная проводимость.
b — реактивная проводимость.
y — общая проводимость цепи, равная модулю комплексной проводимости.
e — константа, основание натурального логарифма.
j — мнимая единица.
φ — угол сдвига фаз.



Онлайн-калькулятор расчёта импеданса и угла сдвига фаз

Необходимо вписать значения и кликнуть мышкой в таблице.
При переключении множителей автоматически происходит пересчёт результата.

Последовательное соединение
Z = √(R²+(XL-Xc)²)


Параллельное соединение
Z = 1/√(1/R²+(1/XL-1/Xc)²)




Похожие страницы с расчётами:

Реактивное сопротивление. Расчёт.
Частота резонанса колебательного контура LC. Расчёт.
Реактивная мощность и компенсация. Расчёт.

tel-spb.ru

Закон Ома. Онлайн расчёт для постоянного и переменного тока.

Онлайн расчёт электрических величин напряжения, тока и мощности для:
участка цепи, полной цепи с резистивными, ёмкостными и индуктивными
элементами.

— А любите ли Вы закон Ома так, как люблю его я? — спросил учитель физики стоящего рядом с щитком и разглядывающего свой обугленный палец электрика, — Всеми силами души Вашей, со всем энтузиазмом и исступлением, к которому только способна пылкая молодость, — никак не угомонялся он, сверкая из-под очков пытливым взглядом.
— Мужик, ты что, дурак? – вежливо поинтересовался обиженный противоестественным вопросом электрик и пошёл, насвистывая «Калинку-Малинку» в направлении ближайшего супермаркета — не ради пьянства окаянного, а дабы залечить свой увечный палец.

А тем временем, закон Ома является в электротехнике основным законом, который устанавливает связь силы электрического тока с сопротивлением и напряжением.

Формулировка закона Ома для участка цепи может быть представлена так: сила тока в проводнике прямо пропорциональна напряжению (разности потенциалов) на его концах и обратно пропорциональна сопротивлению этого проводника и записана в следующем виде:
I=U/R,

где
I – сила тока в проводнике, измеряемая в амперах [А];
U – электрическое напряжение (разность потенциалов), измеряемая в вольтах [В];
R – электрическое сопротивление проводника, измеряемое в омах [Ом].

Производные от этой формулы приобретают такой же незамысловатый вид: R=U/I и U=R×I.

Зная любые два из трёх приведённых параметров можно легко произвести расчёт и величины мощности, рассеиваемой на резисторе.
Мощность является функцией протекающего тока I(А) и приложенного напряжения U(В) и вычисляется по следующим формулам, также являющимся производными от основной формулы закона Ома:
P(Вт) = U(В)×I(А) = I2(А)×R(Ом) = U2(В)/R(Ом)

Можно, конечно, описывая закон Ома обойтись и вообще без формул, а вместо них пользоваться словами или картинками:

С другой стороны, формулы настолько просты, что не стоят выеденного яйца и, возможно, вообще не заслуживают отдельной крупной статьи на страницах уважающего себя сайта.

Не заслуживают, так не заслуживают. Калькулятор Вам в помощь, дамы и рыцари!
Считайте, учитывайте размерность, не стирайте из памяти, что:
1В=1000мВ=1000000мкВ;
1А=1000мА=1000000мкА;
1Ом=0.001кОм=0.000001МОм;
1Вт=1000мВт=100000мкВт.

Ну и так, на всякий случай, чисто для проверки полученных результатов, приведём незамысловатую таблицу, позволяющую в онлайн режиме проверить расчёты, связанные со знанием формул закона Ома.

ТАБЛИЦА ДЛЯ ПРОВЕРКИ РЕЗУЛЬТАТОВ РАСЧЁТОВ ЗАКОНА ОМА.

Вводить в таблицу нужно только два имеющихся у Вас параметра, остальные посчитает таблица.


Все наши расчёты проводились при условии, что значение внешнего сопротивления R значительно превышает внутреннее сопротивление источника напряжения rвнутр.
Если это условие не соблюдается, то под величиной R следует принять сумму внешнего и внутреннего сопротивлений: R = Rвнешн + rвнутр , после чего закон приобретает солидное название — закон Ома для полной цепи:
I=U/(R+r) .

Для многозвенных цепей возникает необходимость преобразования её к эквивалентному виду:

Значения последовательно соединённых резисторов просто суммируются, в то время как значения параллельно соединённых резисторов определяются исходя из формулы: 1/Rll = 1/R4+1/R5.
А онлайн калькулятор для расчёта величин сопротивлений при параллельном соединении нескольких проводников можно найти на странице ссылка на страницу.

Теперь, что касается закона Ома для переменного тока.
Если внешнее сопротивление у нас чисто активное (не содержит ёмкостей и индуктивностей), то формула, приведённая выше, остаётся в силе.
Единственное, что надо иметь в виду для правильной интерпретации закона Ома для переменного тока — под значением U следует понимать действующее (эффективное) значение амплитуды переменного сигнала.

А что такое действующее значение и как оно связано с амплитудой сигнала переменного тока?
Приведём диаграммы для нескольких различных форм сигнала.

Слева направо нарисованы диаграммы синусоидального сигнала, меандра (прямоугольный сигнал со скважностью, равной 2), сигнала треугольной формы, сигнала пилообразной формы.
Глядя на рисунок можно осмыслить, что амплитудное значение приведённых сигналов — это максимальное значение, которого достигает амплитуда в пределах положительной, или отрицательной (в наших случаях они равны) полуволны.

Рассчитываем действующее значение напряжение интересующей нас формы:

Для синуса U = Uд = Uа/√2;
для треугольника и пилы U = Uд = Uа/√3;
для меандра U = Uд = Uа.

С этим разобрались!

Теперь посмотрим, как будет выглядеть формула закона Ома при наличии индуктивности или ёмкости в цепи переменного тока.
В общем случае смотреться это будет так:

А формула остаётся прежней, просто в качестве сопротивления R выступает полное сопротивление цепи Z, состоящее из активного, ёмкостного и индуктивного сопротивлений.
Поскольку фазы протекающего через эти элементы тока не одинаковы, то простым арифметическим сложением сопротивлений этих трёх элементов обойтись не удаётся, и формула приобретает вид:
Реактивные сопротивления конденсаторов и индуктивностей мы с Вами уже рассчитывали на странице ссылка на страницу и знаем, что величины эти зависят от частоты, протекающего через них тока и описываются формулами: XC = 1/(2πƒС) ,   XL = 2πƒL .

Нарисуем таблицу для расчёта полного сопротивления цепи для переменного тока.
Количество вводимых элементов должно быть не менее одного, при наличии индуктивного или емкостного элемента — необходимо указать значение частоты f !

КАЛЬКУЛЯТОР ДЛЯ ОНЛАЙН РАСЧЁТА ПОЛНОГО СОПРОТИВЛЕНИЯ ЦЕПИ.

Теперь давайте рассмотрим практический пример применения закона Ома в цепях переменного тока и рассчитаем простенький бестрансформаторный источник питания.

Токозадающими цепями в данной схеме являются элементы R1 и С1.

Допустим, нас интересует выходное напряжение Uвых = 12 вольт при токе нагрузки 100 мА.
Выбираем стабилитрон Д815Д с напряжением стабилизации 12В и максимально допустимым током стабилизации 1,4А.
Зададимся током через стабилитрон с некоторым запасом — 200мА.
С учётом падения напряжения на стабилитроне, напряжение на токозадающей цепи равно 220в — 12в = 208в.
Теперь рассчитаем сопротивление этой цепи Z для получения тока, равного 200мА: Z = 208в/200мА = 1,04кОм.
Резистор R1 является токоограничивающим и выбирается в пределах 10-100 Ом в зависимости от максимального тока нагрузки.
Зададимся номиналами R1 — 30 Ом, С1 — 1 Мкф, частотой сети f — 50 Гц и подставим всё это хозяйство в таблицу.
Получили полное сопротивление цепи, равное 3,183кОм. Многовато будет — надо увеличивать ёмкость С1.
Поигрались туда-сюда, нашли нужное значение ёмкости — 3,18 Мкф, при котором Z = 1,04кОм.

Всё — закон Ома выполнил свою функцию, расчёт закончен, всем спать полчаса!

 

vpayaem.ru

Калькуляторы электрика онлайн

Если вы хотите рассчитать величину накапливаемого в конденсаторе заряда, воспользуйтесь онлайн калькулятором. Он позволит избежать длительных вычислений и лишних затрат времени, так как вам понадобиться лишь внеси все данные и нажать одну кнопку, а последующие операции по расчетам будут производиться автоматически.

Если вы решили сконструировать спиральную антенну в домашних условиях, то обязательно столкнетесь со сложностью расчета ее параметров вручную. Из-за большого количества формул и технических особенностей их применения по отношению к реальной ситуации, вычисления вручную займут много времени и сил. Поэтому куда выгоднее использовать онлайн калькулятор для расчета спиральной антенны в автоматическом режиме.

Если вам нужно заменить старую катушку индуктивности, работавшую с соленоидом и подобрать новую в соответствии с прежними параметрами устройства, проверьте новый индуктивный элемент с помощью онлайн калькулятора. Который вычислит генерируемую электромагнитную силу. Основное преимущество данного онлайн калькулятора – возможность производить вычисления в автоматическом режиме, минуя длительные и утомительные расчеты.

Определение величины тока, протекающего в электрической цепи, связано с необходимостью вывода формул под имеющиеся параметры и источника, и подключенных к сети устройств. Такой процесс может привести к значительным затратам времени и сил, поэтому куда выгоднее использовать для вычисления онлайн калькулятор расчета тока в цепи, который производит все операции в автоматическом режиме.

Если вам необходимо произвести пересчет величины светового потока из Люменов в Кандела, воспользуйтесь услугами данного онлайн калькулятора. Он позволит значительно сэкономить время и силы, затрачиваемые на вычисления вручную. Внесите данные в калькулятор расчета светового потока светодиода и нажмите кнопку, а машина выполнить все расчеты самостоятельно.

Для расчета номинала резистора, включаемого в цепь светодиода, воспользуйтесь онлайн калькулятором. Данная опция позволит вам получить все необходимые характеристики дополнительного элемента и выдаст самую близкую величину из существующих моделей. Использование онлайн калькулятора расчета резистора для светодиода позволит вам значительно сэкономить время и силы, затрачиваемые на вычисления вручную.

Потери напряжения в электрическом кабеле на большом протяжении линии может вносить значительные коррективы в работу устройств за счет потери напряжения в проводнике. Для определения величины потерь необходимо производить расчет падения напряжения в электрическом кабеле. Для вычислений вы можете использовать соответствующие математические формулы или воспользоваться онлайн калькулятором.

Большинство последовательно включенных резистивных элементов можно без проблем привести к одному общему посредством сложения их значений. В этом вам поможет онлайн калькулятор расчета последовательного соединения резисторов. С помощью такой опции вы сможете в кратчайшие сроки сделать вычисления и подобрать нужные номиналы сопротивления без лишних усилий.

Для определения полного сопротивления каких-либо участков сети необходимо знать и активную, и реактивную составляющую. Вычисление реактивного сопротивления какого-либо конденсатора или катушки, включенного в электрическую сеть, производится при помощи онлайн калькулятора или вручную. Калькулятор является наиболее простым и удобным вариантом, так как не требует затрат времени на сложные вычисления.

Если вам необходимо посчитать суммарную величину для параллельно соединенных резисторов, вы можете значительно упростить себе задачу, если воспользуйтесь онлайн калькулятором. Данная опция позволит значительно сократить время на вычисления и сэкономит силы, затрачиваемые на расчеты.

На этой странице вы сможете воспользоваться онлайн калькулятором расчета освещения в комнате. Не нужно делать сложные вычисления по формулам, куда проще вычислить освещенность с помощью быстрого калькулятора.

Если у вас возникли сложности с определением номинального значения сопротивления резистора с проволочными выводами по его маркировке, вы можете сделать это с помощью вычислений по одной из представленых методик или посредством онлайн калькулятора. Первый способ отнимет у вас огромное количество времени и сил, а для второго вам понадобиться ввести данные в соответствующие поля и получить интересующий вас результат.

Последовательно соединенные конденсаторы присутствуют в работе электрических схем многих электронных устройств. Расчет их суммарной емкости производится путем деления произведения емкостей последовательно соединенных конденсаторов на их сумму. Чтобы избежать затрат времени на вывод формулы, длительные расчеты и связанные с ними неудобства, воспользуйтесь услугами онлайн калькулятора.

Если вы решили заменить испорченный конденсатор несколькими, но другой емкости, или вам понадобилось рассчитать результирующую емкость параллельного соединения каких-либо емкостных элементов, воспользуйтесь этим онлайн калькулятором. Эта опция позволит вам сэкономить время, затрачиваемое на расчеты вручную, и существенно упростит задачу.

Если вы собрались изготовить плату своими руками или заменить вышедший со строя SMD-резистор, и не знаете как определить его сопротивление, вы можете воспользоваться методами расчета вручную. Но такая процедура может затянуться на неопределенный период и занять у вас много времени. Поэтому куда выгоднее воспользоваться для расчета сопротивления онлайн калькулятором маркировки SMD-резистора.

Расчет многослойной катушки, в сравнении с однослойной, усложняется за счет появления нескольких слоев, значительно меняющих и усложняющих формулу для определения индуктивности. В данном случае вы можете проделать кропотливый и нелегкий труд по вычислению параметров проводника и количества витков по известным данным катушки или просто воспользоваться онлайн калькулятором для расчета многослойной катушки индуктивности.

Если вы решили самостоятельно сконструировать 555 таймер для какого-либо электронного устройства, вы можете произвести расчет при помощи приведенных в статье формул. Но при этом придется затратить огромное количество времени и сил. Для упрощения процедуры вы можете отложить в сторону вычислительную машинку и воспользоваться онлайн калькулятором для расчета параметров 555 таймера.

Если в процессе эксплуатации какого-либо устройства вам потребовалось заменить в нем катушку индуктивности, то ее можно намотать и самостоятельно. Главное, при этом, чтобы их индуктивность совпадала. Для расчета индуктивности получившегося элемента можно произвести вычисления по формулам. Или значительно упростить себе задачу, использовав онлайн калькулятор.

На практике случаются ситуации, когда нет возможности заменить перегоревший предохранитель на новый. Но вместо этого можно выполнить его ремонт, заменив плавкую вставку. Для этого подойдет любая проволока определенного сечения. А чтобы узнать, какое сечение или диаметр вам необходимы, воспользуйтесь этим онлайн калькулятором.

Последовательное соединение элементов с различным характером нагрузки значительно усложняет определение полного сопротивления цепи. Для расчета импеданса может использоваться как метод векторного сложения, так и сложение комплексных величин. Но оба варианта достаточно сложны и отнимают много времени, поэтому, гораздо проще рассчитать импеданс с помощью онлайн калькулятора.

Если у вас возникла необходимость подсчитать импеданс в цепи параллельно соединенного резистора, катушки и конденсатора, вы можете сделать это вручную и потратить уйму времени или воспользоваться онлайн калькулятором и получить нужные данные за несколько секунд. Укажите в калькуляторе параметры элементов и нажмите кнопку «Рассчитать».

Любой электрический провод, вытянутый в прямую линию, обладает индуктивностью даже без витков. Если вы не уверены, что его индуктивность не окажет влияния на работу какого-то устройства или вам обязательно необходимо учитывать этот параметр, вы можете выполнить расчет по формуле. Или упросить этот процесс при помощи онлайн калькулятора.

www.asutpp.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *