Как рассчитать необходимую мощность стабилизатора напряжения для квартиры или дома. По каким параметрам выбирать стабилизатор. Какие виды стабилизаторов существуют и в чем их особенности. На что обратить внимание при подборе устройства.
Основные способы расчета мощности стабилизатора напряжения
Правильный подбор стабилизатора напряжения — важная задача для обеспечения стабильной работы электроприборов в доме или квартире. Существует несколько основных способов рассчитать необходимую мощность устройства:
1. Расчет по техническим характеристикам приборов
Этот метод подразумевает суммирование мощностей всех электроприборов, которые планируется подключить к стабилизатору. Алгоритм расчета:
- Выписать из паспортов мощность каждого прибора
- Сложить все значения
- Добавить 30% запаса на пусковые токи
- Для китайской техники добавить еще 50% запаса
2. Расчет по входным автоматам
Более простой способ — ориентироваться на номинал вводных автоматов в электрощите:

- Посмотреть номинал автомата (например, 25А)
- Разделить это значение на 5
- Получится необходимая мощность стабилизатора (в данном случае 5 кВА)
3. Онлайн-калькуляторы
Многие производители предлагают на своих сайтах онлайн-калькуляторы для расчета мощности стабилизатора. В них нужно ввести перечень и количество используемых электроприборов.
Виды стабилизаторов напряжения и их особенности
При выборе стабилизатора важно учитывать не только мощность, но и тип устройства. Рассмотрим основные виды стабилизаторов:
Релейные стабилизаторы
Особенности релейных стабилизаторов:
- Высокая скорость регулирования
- Эффективны при сильных скачках напряжения
- Работают с небольшой точностью
- При работе издают характерные щелчки
Тиристорные (симисторные) стабилизаторы
Характеристики тиристорных стабилизаторов:
- Высокая точность регулирования
- Бесшумность работы
- Высокая скорость стабилизации
- Возможны кратковременные провалы при переключении
- Более высокая стоимость
Электромеханические стабилизаторы
К этому типу относятся сервоприводные, роликовые, щеточные и электродинамические устройства. Их преимущества:

- Высокая точность регулирования
- Бесшумная работа
- Плавное изменение напряжения
Недостаток — быстрый износ щеточного узла при высоких нагрузках (кроме роликовых моделей).
Особенности расчета мощности стабилизатора напряжения
При подборе стабилизатора следует учитывать ряд важных факторов:
Учет пусковых токов
Многие приборы в момент включения потребляют мощность в 3-7 раз выше номинальной. Это нужно учитывать при расчетах, добавляя 30-50% запаса мощности.
Проверка напряжения в сети
Рекомендуется измерить напряжение в разное время суток в течение нескольких дней. Это поможет определить диапазон колебаний и выбрать стабилизатор с подходящими характеристиками.
Учет реактивной мощности
Многие приборы потребляют не только активную, но и реактивную мощность. Ее также нужно учитывать при расчетах, используя специальные формулы.
На что обратить внимание при выборе стабилизатора напряжения
При подборе стабилизатора важно учесть следующие моменты:
Диапазон входных напряжений
Чем шире диапазон входных напряжений, тем эффективнее будет работать стабилизатор при сильных колебаниях в сети.

Точность стабилизации
Для бытовой техники обычно достаточно точности ±5-7%. Для чувствительной электроники может потребоваться более высокая точность.
Время реакции
Показывает, как быстро стабилизатор реагирует на изменения напряжения. Важный параметр при частых и резких скачках.
Защитные функции
Желательно наличие защиты от перегрузки, короткого замыкания, перегрева. Для дорогой техники актуальна защита от импульсных помех.
Как правильно подключить стабилизатор напряжения
Правильное подключение стабилизатора обеспечит его эффективную и безопасную работу:- Определите место установки с хорошей вентиляцией
- Подключите заземление (если предусмотрено конструкцией)
- Подсоедините входные провода к сети, а выходные — к нагрузке
- Включите стабилизатор и проверьте его работу
- При необходимости настройте параметры согласно инструкции
Типичные ошибки при выборе стабилизатора напряжения
Чтобы избежать проблем, не допускайте следующих ошибок:
- Выбор стабилизатора без запаса мощности
- Игнорирование пусковых токов приборов
- Неправильная оценка качества электросети
- Экономия на защитных функциях
- Выбор модели без учета условий эксплуатации (температура, влажность)
Обслуживание и эксплуатация стабилизатора напряжения
Для долгой и эффективной работы стабилизатора соблюдайте следующие правила:

- Регулярно очищайте устройство от пыли
- Обеспечьте хорошую вентиляцию
- Не перегружайте стабилизатор
- Следите за показаниями индикаторов
- Проводите профилактические осмотры согласно инструкции
Правильный выбор и эксплуатация стабилизатора напряжения обеспечат надежную защиту вашей бытовой техники и электроники от перепадов напряжения в сети.
Расчет стабилизатора
Расчет стабилизатора
Для получения более постоянного напряжения на
нагрузке при изменении потребляемого тока к выходу выпрямителя подключают
стабилизатор, который может быть выполнен по схеме, приведенной на рис. 1. В
таком устройстве работают стабилитрон V5 и регулирующий транзистор
V6. Расчет позволит выбрать все элементы стабилизатора, исходя из
заданного выходного напряжения Uн и максимального тока
нагрузки Iн. Однако оба эти параметра не должны превышать
параметры уже рассчитанного выпрямителя. А если это условие нарушается, тогда
сначала рассчитывают стабилизатор, а затем — выпрямитель и трансформатор
питания. Расчет стабилизатора ведут в следующем порядке.
1. Определяют необходимое для работы стабилизатора входное напряжение (Uвып) при заданном выходном (Uн):
Uвып = Uн + 3,
Здесь цифра 3, характеризующая минимальное напряжение между
коллектором и эмиттером транзистора, взята в расчете на использование как
кремниевых, так и германиевых транзисторов. Если стабилизатор будет подключаться
к готовому или уже рассчитанному выпрямителю, в дальнейших расчетах необходимо
использовать реальное значение выпрямленного напряжения
U
2. Рассчитывают максимально рассеиваемую транзистором мощность:
Рmах = 1,3 (Uвып — Uн) Iн,
3. Выбирают регулирующий транзистор. Его предельно допустимая рассеиваемая мощность должна быть больше значения Рmax, предельно допустимое напряжение между эмиттером и коллектором — больше Uвып, а максимально допустимый ток коллектора — больше Iн.
4. Определяют максимальный ток базы регулирующего транзистора:
Iб.макс = Iн / h21Э min,
где: h21Эmin — минимальный коэффициент передачи тока выбранного (по справочнику) транзистора..
5. Подбирают подходящий стабилитрон. Его напряжение стабилизации должно быть равно выходному напряжению стабилизатора, а значение максимального тока стабилизации превышать максимальный ток базы Iб max.
6. Подсчитывают сопротивление резистора R1:
R1 = (Uвып — Uст) / (Iб max + Iст min),
Здесь R1 — сопротивление резистора R1, Ом;
Uст — напряжение стабилизации стабилитрона, В;
Iб.max — вычисленное значение максимального тока базы
транзистора, мА;
Iст.min — минимальный ток стабилизации для
данного стабилитрона, указанный в справочнике (обычно 3…5 мА).
.
7. Определяют мощность рассеяния резистора R1:
PR1 = (Uвып — Uст)2 / R1,
Может случиться, что маломощный стабилитрон не подойдет по максимальному току стабилизации и придется выбирать стабилитрон значительно большей мощности — такое случается при больших токах потребления и использовании транзистора с малым коэффициентом
В приведенных здесь расчетах отсутствует поправка
на изменение сетевого напряжения, а также опущены некоторые другие уточнения,
усложняющие расчеты. Проще испытать собранный стабилизатор в действии, изменяя
его входное напряжение (или сетевое) на ± 10 % и точнее подобрать резистор R1 по
наибольшей стабильности выходного напряжения при максимальном токе нагрузки.
Источник: shems.h2.ru
Расчитать мощность стабилизатора напряжения
Очень важная характеристика для надежной, долгой работы. Всем известно, если любое оборудование использовать на все сто процентов его возможностей, срок службы значительно сокращается. Мощность стабилизатора указывает максимальное значение нагрузки, которое можно подключить. Перед покупкой следует первым делом вычислить общее потребление бытовой техники дома, лишь после этого рассматривать модели, способные обеспечить соответствующий режим работы по нагрузке.
Как она влияет на работоспособность? Если неправильно подобрать мощность стабилизатора, периодически будет срабатывать защита — перегрузка. Результат, возникает дискомфорт от постоянных отключений. Работа будет в перегруженном режиме, последствия — перегрев трансформатора. Случай без гарантийный. Чтобы правильно рассчитать данный параметр электронного стабилизатора, существует несколько способов. Рассмотрим подробнее.
Расчет по техническим характеристикам
Каждый бытовой прибор имеет паспорт, где есть таблица характеристик прибора. В этой таблице без особого труда можно посмотреть сколько потребляет прибор. На каждом приборе (обычно на задней стороне прибора) есть шильдик с указанием основных характеристик. Собрав все значения с приборов которыми Вы можете пользоваться одновременно, суммируем. Получаем приблизительное значение необходимой мощности стабилизатора. Значение приблизительное. Поэтому рекомендуется всегда закладывать небольшой запас для Российских производителей, и 50% запаса для произведенных в Китае.
Мощность стабилизатора по входным автоматам
Самый простой способ определения мощности стабилизатора — посмотреть номинал входных автоматов установленных в щитке. Автоматы находятся рядом со счетчиком электроэнергии. На фото показан пример расположения автоматов, место обозначения номинала. Расчет мощности электронного стабилизатора прост. Смотрим значения номинала автомата. Приблизительно делим значение на 5, получаем мощность стабилизатора. Например стоят автоматы 25 Ампер (25 А). Будет прописано С25. Делим, получаем значение 5 кВа. Если автоматы не выбивало, значит Ваша нагрузка не превышает 5 кВа. Начинаем просматривать модели с данной характеристикой. Сложнее определить если в щитке много автоматических выключателей. Внимательно рассматриваем номиналы всех. Как правило вводной (входной) автомат имеет значение выше, чем все остальные, ставят его первым от счетчика электроэнергии.
Расчет мощности в онлайн калькуляторе
В процессе расчета надо сложить все электроприборы, которыми пользуетесь одновременно. Прибавить несколько киловатт на свет. Не забывайте учитывать мощные нагревательные элементы. Получив определенное значение, надо теперь заложить запас на падение мощности стабилизатора при пониженном напряжении. В нижней части калькулятора предусмотрена дополнительная шкала, которая учитывает падение, закладывая небольшой запас.
Серия ЛЮКС работает без падения мощности стабилизатора при пониженном напряжении. Измерительный элемент стоит на выходе стабилизирующего устройства. В результате защита по перегрузке сработает только тогда, когда потребитель даст нагрузку в 100% от заданных параметров. Естественно, законы физики не отменяли, на входе устройства при низком напряжении потребление тока будет больше. В результате само падение оплачивает не потребитель, а производитель. Что очень удобно для конечного потребителя.
Хотите получить бесплатную консультацию, узнать стоимость и действующие скидки?
Отправьте запрос, заполнив все поля в онлайн консультанте.
Рассчитать мощность стабилизатора можно позвонив по бесплатному номеру
Калькулятор подбора стабилизатора —
Подбор стабилизатора напряжения – достаточно серьезный вопрос, ведь неправильный подбор не решит проблему плохого качества сети, а возврат/замена стабилизатора принесет немало хлопот.
Подобрать стабилизатор для вашего дома/квартиры/объекта вы можете на нашем сайте.
Для удобства мы создали калькулятор подбора необходимого вам стабилизатора напряжения. При возникновении вопросов или проблем с подбором, вы всегда можете проконсультироваться с нашими менеджерами, любым удобным для вас способом.
Наши калькуляторы по подбору мощности необходимого вам стабилизатора напряжения помогут просчитать силу тока, который потребляется наиболее популярными бытовыми устройствами и помогут выбрать необходимую мощность стабилизатора напряжения.
Наша компания рекомендует выбирать стабилизатор напряжения с запасом по нужной вам мощности – около 20% Это будет резерв для подключения дополнительного оборудования в будущем.
И так, давайте более детально расскажем как выбрать стабилизатор напряжения производства VOLTER на нашем сайте:
Первый вариант:
Используйте калькулятор подбора стабилизатора «расчет по электроприборам».
Выбираете бытовую технику (например, холодильник или телевизор), которую используете на объекте (дом, квартира, завод и прочие объекты, нуждающиеся в стабильном напряжении), выбираете ее используемое количество, нажимаете кнопку «рассчитать». Просчет мощности электроприборов примерный, потому что модели техники бывают естественно разные, мы рассчитывали среднюю мощность.
Помните, что для того чтобы правильно выбрать мощность стабилизатора, нужно просчитать сумму мощностей всех устройств, подключенные к снабжению электроэнергией одновременно, учитывая пусковые токи приборов. Вот как раз эти пусковые токи могут быть более мощными, чем постоянная мощность прибора, поэтому запас мощности в 20% точно не будет лишним.
Второй вариант:
Используйте калькулятор подбора стабилизатора «расчет по мощности»
Этот вариант для тех, кто знает необходимую мощность. Узнать можно у вашего электрика, который вводил в эксплуатацию объект.
Вписываете в поле необходимую мощность в Ваттах и нажимаете кнопку «рассчитать».
Но также не забывайте, что мы рекомендуем выбирать стабилизатор с запасом (20%) по мощности, для подключения дополнительного оборудования.
Третий вариант:
Используйте калькулятор подбора стабилизатора «расчет по силе тока»
Вписываете в поле «введите номинал вводного автомата» необходимый номинал в Амперах и нажимаете кнопку «рассчитать».
Рекомендовано подбирать стабилизатор напряжения VOLTER с запасом 20% по мощности, как резерв для подключения в будущем дополнительного оборудования.
Также напоминаем, что выбрав стабилизатор напряжения производства VOLTER, вы получаете на него пожизненную гарантию.
Как рассчитать мощность стабилизатора напряжения для дома
Правильный подбор стабилизатора напряжения необходимо выполнять по основному параметру – общей мощности электроприборов, которые необходимо защитить от чрезмерной нагрузки и перепадов напряжения, подключенных к определенной сети питания.
Однофазные устройства устанавливают чаще всего для создания качественных параметров напряжения в небольшом офисе, квартире. Чтобы правильно рассчитать мощность стабилизатора, необходимо сначала сложить мощность всех электрических устройств. Кроме мощности по паспорту устройства, оснащенного электродвигателем, нужно учесть пусковой ток. Для этого к расчету добавляют около 30% мощности.
Наличие в цепи стабилизатора напряжения дает возможность обеспечить защиту бытовой техники. Через стабилизатор можно подключить отдельные приборы, однако эффективнее всего будет выбор прибора, через которое будет работать все оборудование
Расчет по техническим характеристикам
Каждый прибор в комплекте имеет паспорт, где указаны все характеристики работы. В нем указана мощность устройства. Необходимо суммировать все значения устройств. Эта величина будет приблизительной.
К ней необходимо добавить запас мощности около 30% для пусковых токов, и также 50% для устройств, изготовленных в Китае.
Мощность стабилизатора напряжения по автоматам
Оптимальным методом является посмотреть значение мощности на автоматах входа, находящихся в щитке. Они расположены вместе со счетчиком электрической энергии. Электронный стабилизатор рассчитать намного проще:
- Сначала определяем номинал автомата.
- Далее, эту величину делим на 5. В результате получаем необходимую полную мощность вашего стабилизатора.
Если автоматы на 25 А, то маркировка стоит С25. В результате деления получаем 5 кВА. Если у вас в квартире никогда не выбивало автоматы, то значит нагрузка вашей квартиры меньше 5 кВА. По этой информации подбираем полную мощность стабилизатора.
Расчет мощности стабилизатора будет сложнее, если в щите есть несколько автоматов. Необходимо выписать все значения с них. И по этим данным осуществляют подбор стабилизатора.
Стабилизаторы серии ЛЮКС функционируют без снижения мощности при низком напряжении. Элемент измерения находится на выходе устройства. В итоге защита сработает, когда потребитель превысит более 100% нагрузки от заданных номиналов. При пониженном напряжении на входе сила тока возрастет. В итоге падение напряжения будет оплачивать производитель устройства, а не потребитель.
Подкатегории стабилизаторов
Существуют различные типы стабилизирующих устройств с разным типом работы. Рассмотрим основные из таких стабилизаторов, для облегчения выбора в торговой сети.
Релейные
При повышенной скорости регулирования, сильных скачках напряжения, за небольшой промежуток несколько раз, стабилизаторы работают с малой точностью, при работе способны издавать щелчки. Это работает реле, переключает ступени трансформатора.
Тиристорные
Такие устройства еще называют симисторными. Они относятся к электронным приборам. Их повышенная точность и скорость регулирования напряжения питания, бесшумность работы привлекает покупателей при приобретении.
Из недостатков можно отметить различные микросекундные провалы при переключении. Однако, даже имею повышенную стоимость, для домашнего использования они вполне подходят. Чаще всего на такие приборы заводы изготовители дают расширенную длительную гарантию.
Электромеханические
К таким типам приборов относятся: сервоприводные, роликовые, щеточные, и электродинамические устройства. Они обладают повышенной точностью регулирования, не имеют шума при работе, постепенного изменения напряжения при входных колебаниях питания.
Одним из недостатков является быстрый износ узла щеток из-за повышенного искрообразования при значительной нагрузке. Стабилизаторы напряжения электродинамического вида, роликовые фирмы Ortea не имеют таких недостатков. Они являются оптимальным выбором для частного дома.
Особенности расчётов
Параметров выбора приборов стабилизации существует много. Одним из основных является полная мощность стабилизатора напряжения. Речь идет о характеристике напряжения и тока, то есть, о параметрах выхода тока, которые устройство может поддерживать в номинальном режиме работы. Однако исходными данными расчета становится расходуемая мощность устройств, которые будут подключаться к прибору.
- Иногда к стабилизатору подключают дополнительное оборудование. При этом нужно учитывать это показатель мощности при расчете.
- Если вы планируете устанавливать внешние циркуляционные насосы, то необходимо брать в расчет также их мощность.
- При преобразовании напряжения до требуемого значения всегда имеются потери мощности. Чем больше отклонение от 220 вольт, тем выше эти потери. Поэтому перед расчетом, целесообразно сделать проверку – измерить сетевое напряжение днем, вечером, утром, и в часы «пик». Эту проверку лучше провести за несколько дней. В результате вы получите информацию, которая вам пригодится для расчетов.
- Обычная сумма значений мощности будет неточными данными, так как значительное число приборов расходует кроме полезной мощности, также и реактивную составляющую. Она определяется по определенной формуле, и добавляется в результаты расчета.
Особенности выбора стабилизатора
Необходимо заметить, что если ваша электросеть способна выдать в пиковые часы напряжение 120 вольт, то понятно, что в это время нельзя подключать к прибору другие устройства значительной мощности. При таком режиме допускается подключать только маломощные потребители в виде телевизора, освещения. А такие устройства, как чайник, бойлер или стиральная машина перегрузят бытовую сеть, и защита обесточит всю вашу квартиру.
В торговой сети продавцы чаще всего говорят, что мощность при малых напряжениях входа теряется только на недорогих стабилизаторах. Однако, практически это далеко не так. Даже дорогой прибор не способен сделать чудо, и нарушить законы физики.
Многие изготовители стабилизаторов вместо Вт в инструкции указывают В/А. Это делается для введения покупателей в заблуждение, так как имеются приборы, расходующие электроэнергию, с разными типами нагрузки:
- Активная нагрузка (лампы освещения, нагревательные элементы).
- Реактивная нагрузка (электродвигатели).
При расчете мощности следует учитывать сечение кабеля. При размере в 4 кв. мм нагрузка не должна превышать 10 киловатт. Следовательно, если купить при этом стабилизатор выше 10 кВт, то это не даст больше мощности, и вы зря потратите деньги.
Расчет стабилизатора напряжения на транзисторе и стабилитроне
Приведена техника упрощенного расчета параметрического стабилизатора напряжения на транзисторах. Схема простейшего параметрического стабилизатора на стабилитроне и резисторе показана на рисунке 1.
Простой параметрический стабилизатор напряжения
Входное напряжение Uвх должно быть существенно выше напряжения стабилизации стабилитрона VD1. А чтобы стабилитрон не вышел из строя ток через него ограничен постоянным резистором R1. Выходное напряжение Uвых будет равно напряжению стабилизации стабилитрона, а с выходным током ситуация сложнее.
Дело в том, что у каждого стабилитрона есть некий диапазон рабочего тока через него, например, минимальный ток стабилизации 5 mA, а максимальный 25 mA. Если мы подключаем на выходе такого стабилизатора нагрузку, то часть тока начинает протекать через неё.
И величина максимального значения этого тока будет зависеть и от сопротивления R1 и от минимального тока стабилизации стабилитрона, – максимальный ток нагрузки будет уменьшен на минимальный ток стабилизации стабилитрона. То есть, получается, что чем меньше сопротивление R1, тем больший ток можно отдать в нагрузку. В то же время, ток через R1 не должен быть больше максимального тока стабилизации стабилитрона.
Рис. 1. Схема простейшего параметрического стабилизатора на стабилитроне и резисторе.
Так как, во-первых, стабилитрону необходим некий запас на поддержания напряжения на выходе стабильным, а во-вторых, стабилитрон может выйти из строя при превышении максимального тока стабилизации, что может при отключении нагрузки или её работе на режиме с низким током потребления.
Стабилизатор по такой схеме очень не эффективен и годится для питания только цепей, потребляющих ток не более максимального тока стабилитрона. Поэтому стабилизаторы по схеме на рис.1 используются только в схемах с небольшим током нагрузки.
Стабилизатор напряжения с применением транзистора
Если нужно обеспечить более-менее значительный ток нагрузки и снизить его влияние на стабильность нужно усилить выходной ток стабилизатора при помощи транзистора, включенного по схеме эмиттерного повторителя (рис.2).
Рис. 2. Схема параметрического стабилизатора напряжения на одном транзисторе.
Максимальный ток нагрузки данного стабилизатора определяется по формуле:
Ін = (Іст – Іст.мин)*h31э.
где Іст. – средний ток стабилизации используемого стабилитрона, h31э – коэффициент передачи тока базы транзистора VT1.
Например, если использовать стабилитрон КС212Ж (средний ток стабилизации = (0,013-0,0001 )/2 = 0,00645А), транзистор КТ815А с h31 э – 40) мы сможем получить от стабилизатора по схеме на рис.2 ток не более: (0,006645-0,0001)40 = 0,254 А.
К тому же, при расчетах выходного напряжения нужно учитывать, что оно будет на 0,65V ниже напряжения стабилизации стабилитрона, потому что на кремниевом транзисторе падает около 0,6-0,7V (примерно берут 0,65V).
Попробуем рассчитать стабилизатор по схеме на рисунке 2.
Возьмем такие исходные данные:
- Входное напряжение Uвх = 15V,
- выходное напряжение Uвых = 12V,
- максимальный ток через нагрузку Ін = 0,5А.
Возникает вопрос, что выбрать – стабилитрон с большим средним током или транзистор с большим h31э?
Если у нас есть транзистор КТ815А с h31э = 40, то, следуя формуле Ін = (Іст -Іст.мин)h31э, нам потребуется стабилитрон с разницей среднего тока и минимального 0,0125А. По напряжению он должен быть на 0,65V больше выходного напряжения, то есть 12,65V. Попробуем подобрать по справочнику.
Вот, например, стабилитрон КС512А, напряжение стабилизации у него 12V, минимальный ток 1 мА, максимальный ток 67 мА. То есть средний ток 0,033А. В общем подходит, но выходное напряжение будет не 12V, а 11,35V.
Нам же нужно 12V. Остается либо искать стабилитрон на 12,65V, либо компенсировать недостаток напряжения кремниевым диодом, включив его последовательно стабилитрону как показано на рисунке 3.
Рис.3. Принципиальная схема параметрического стабилизатора напряжения, дополненного диодом.
Теперь вычисляем сопротивление R1:
R = (15 -12) / 0,0125А = 160 Ом.
Несколько слов о выборе транзистора по мощности и максимальному току коллекто-ра. Максимальный ток коллектора Ік.макс. должен быть не менее максимального тока нагрузки. То есть в нашем случае, не менее 0,5А.
А мощность должна не превышать максимально допустимую. Рассчитать мощность, которая будет рассеиваться на транзисторе можно по следующей формуле:
Р=(Uвх – Uвых) * Івых.
В нашем случае, Р= (15-12)*0,5=1,5W.
Таким образом, Ік.макс. транзистора должен быть не менее 0,5А, а Рмакс. не менее 1,5W. Выбранный транзистор КТ815А подходит с большим запасом (Ік.макс.=1,5А, Рмакс.=10W).
Схема на составном транзисторе
Увеличить выходной ток без увеличения тока через стабилитрон можно только увеличив h31э транзистора. Это можно сделать если вместо одного транзистора использовать два, включенных по составной схеме (рис.4). В такой схеме общий h31э будет примерно равен произведению h31э обоих транзисторов.
Рис. 4. Принципиальная схема стабилизатора напряжения на основе составного транзистора.
Транзистор VT1 берут маломощный, а VT2 на мощность и ток, соответствующий нагрузке. Все рассчитывается примерно так же, как и в схеме по рисунку 3. Но теперь у нас два кремниевых транзистора, поэтому выходное напряжение снизится не на 0,65V, а на 1,ЗV.
Это нужно учесть при выборе стабилитрона, – его напряжение стабилизации (при использовании кремниевых транзисторов) должно быть на 1,ЗV больше требуемого выходного напряжения. К тому же появился резистор R2. Его назначение – подавлять реактивную составляющую транзистора VТ2, и обеспечивать надежную реакцию транзистора на изменение напряжения на его базе.
Величина этого сопротивления слишком уж существенного значения не имеет, но и за пределы разумного выходить не должна. Обычно его выбирают примерно в 5 раз больше сопротивления R1.
Приведена техника упрощенного расчета параметрического стабилизатора напряжения на транзисторах. Схема простейшего параметрического стабилизатора на стабилитроне и резисторе показана на рисунке 1.
Простой параметрический стабилизатор напряжения
Входное напряжение Uвх должно быть существенно выше напряжения стабилизации стабилитрона VD1. А чтобы стабилитрон не вышел из строя ток через него ограничен постоянным резистором R1. Выходное напряжение Uвых будет равно напряжению стабилизации стабилитрона, а с выходным током ситуация сложнее.
Дело в том, что у каждого стабилитрона есть некий диапазон рабочего тока через него, например, минимальный ток стабилизации 5 mA, а максимальный 25 mA. Если мы подключаем на выходе такого стабилизатора нагрузку, то часть тока начинает протекать через неё.
И величина максимального значения этого тока будет зависеть и от сопротивления R1 и от минимального тока стабилизации стабилитрона, – максимальный ток нагрузки будет уменьшен на минимальный ток стабилизации стабилитрона. То есть, получается, что чем меньше сопротивление R1, тем больший ток можно отдать в нагрузку. В то же время, ток через R1 не должен быть больше максимального тока стабилизации стабилитрона.
Рис. 1. Схема простейшего параметрического стабилизатора на стабилитроне и резисторе.
Так как, во-первых, стабилитрону необходим некий запас на поддержания напряжения на выходе стабильным, а во-вторых, стабилитрон может выйти из строя при превышении максимального тока стабилизации, что может при отключении нагрузки или её работе на режиме с низким током потребления.
Стабилизатор по такой схеме очень не эффективен и годится для питания только цепей, потребляющих ток не более максимального тока стабилитрона. Поэтому стабилизаторы по схеме на рис.1 используются только в схемах с небольшим током нагрузки.
Стабилизатор напряжения с применением транзистора
Если нужно обеспечить более-менее значительный ток нагрузки и снизить его влияние на стабильность нужно усилить выходной ток стабилизатора при помощи транзистора, включенного по схеме эмиттерного повторителя (рис.2).
Рис. 2. Схема параметрического стабилизатора напряжения на одном транзисторе.
Максимальный ток нагрузки данного стабилизатора определяется по формуле:
Ін = (Іст – Іст.мин)*h31э.
где Іст. – средний ток стабилизации используемого стабилитрона, h31э – коэффициент передачи тока базы транзистора VT1.
Например, если использовать стабилитрон КС212Ж (средний ток стабилизации = (0,013-0,0001 )/2 = 0,00645А), транзистор КТ815А с h31 э – 40) мы сможем получить от стабилизатора по схеме на рис.2 ток не более: (0,006645-0,0001)40 = 0,254 А.
К тому же, при расчетах выходного напряжения нужно учитывать, что оно будет на 0,65V ниже напряжения стабилизации стабилитрона, потому что на кремниевом транзисторе падает около 0,6-0,7V (примерно берут 0,65V).
Попробуем рассчитать стабилизатор по схеме на рисунке 2.
Возьмем такие исходные данные:
- Входное напряжение Uвх = 15V,
- выходное напряжение Uвых = 12V,
- максимальный ток через нагрузку Ін = 0,5А.
Возникает вопрос, что выбрать – стабилитрон с большим средним током или транзистор с большим h31э?
Если у нас есть транзистор КТ815А с h31э = 40, то, следуя формуле Ін = (Іст -Іст.мин)h31э, нам потребуется стабилитрон с разницей среднего тока и минимального 0,0125А. По напряжению он должен быть на 0,65V больше выходного напряжения, то есть 12,65V. Попробуем подобрать по справочнику.
Вот, например, стабилитрон КС512А, напряжение стабилизации у него 12V, минимальный ток 1 мА, максимальный ток 67 мА. То есть средний ток 0,033А. В общем подходит, но выходное напряжение будет не 12V, а 11,35V.
Нам же нужно 12V. Остается либо искать стабилитрон на 12,65V, либо компенсировать недостаток напряжения кремниевым диодом, включив его последовательно стабилитрону как показано на рисунке 3.
Рис.3. Принципиальная схема параметрического стабилизатора напряжения, дополненного диодом.
Теперь вычисляем сопротивление R1:
R = (15 -12) / 0,0125А = 160 Ом.
Несколько слов о выборе транзистора по мощности и максимальному току коллекто-ра. Максимальный ток коллектора Ік.макс. должен быть не менее максимального тока нагрузки. То есть в нашем случае, не менее 0,5А.
А мощность должна не превышать максимально допустимую. Рассчитать мощность, которая будет рассеиваться на транзисторе можно по следующей формуле:
Р=(Uвх – Uвых) * Івых.
В нашем случае, Р= (15-12)*0,5=1,5W.
Таким образом, Ік.макс. транзистора должен быть не менее 0,5А, а Рмакс. не менее 1,5W. Выбранный транзистор КТ815А подходит с большим запасом (Ік.макс.=1,5А, Рмакс.=10W).
Схема на составном транзисторе
Увеличить выходной ток без увеличения тока через стабилитрон можно только увеличив h31э транзистора. Это можно сделать если вместо одного транзистора использовать два, включенных по составной схеме (рис.4). В такой схеме общий h31э будет примерно равен произведению h31э обоих транзисторов.
Рис. 4. Принципиальная схема стабилизатора напряжения на основе составного транзистора.
Транзистор VT1 берут маломощный, а VT2 на мощность и ток, соответствующий нагрузке. Все рассчитывается примерно так же, как и в схеме по рисунку 3. Но теперь у нас два кремниевых транзистора, поэтому выходное напряжение снизится не на 0,65V, а на 1,ЗV.
Это нужно учесть при выборе стабилитрона, – его напряжение стабилизации (при использовании кремниевых транзисторов) должно быть на 1,ЗV больше требуемого выходного напряжения. К тому же появился резистор R2. Его назначение – подавлять реактивную составляющую транзистора VТ2, и обеспечивать надежную реакцию транзистора на изменение напряжения на его базе.
Величина этого сопротивления слишком уж существенного значения не имеет, но и за пределы разумного выходить не должна. Обычно его выбирают примерно в 5 раз больше сопротивления R1.
Теги статьи: | Добавить тег |
Блок питания «Проще не бывает». Часть вторая
Автор:
Опубликовано 01.01.1970
Ага, все-таки зашел? Что, любопытство замучило? Но я очень рад. Нет, правда. Располагайся поудобнее, сейчас мы вместе произведем некоторые нехитрые расчеты, которые нужны, чтобы сварганить тот блок питания, который мы уже сделали в первой части статьи. Хотя надо сказать, что эти расчеты могут пригодиться и в более сложных схемах.
Итак, наш блок питания состоит из двух основных узлов – это выпрямитель, состоящий из трансформатора, выпрямительных диодов и конденсатора и стабилизатор, состоящий из всего остального. Как настоящие индейцы, начнем, пожалуй, с конца и рассчитаем сначала стабилизатор.
Схема стабилизатора показана на рисунке.
Это, так называемый параметрический стабилизатор. Состоит он из двух частей:
1 – сам стабилизатор на стабилитроне D с балластным резистором R б
2 – эмиттерный повторитель на транзисторе VT.
Непосредственно за тем, чтобы напряжение оставалось тем каким нам надо, следит стабилизатор, а эмиттерный повторитель позволяет подключать мощную нагрузку к стабилизатору. Он играет роль как бы усилителя или если угодно – умощителя.
Два основных параметра нашего блока питания – напряжение на выходе и максимальный ток нагрузки. Назовем их:
Uвых – это напряжение
и
Imax – это ток.
Для блока питания, который мы отгрохали в прошлой части, Uвых = 14 Вольт, а Imax = 1 Ампер.
Сначала нам необходимо определить какое напряжение Uвх мы должны подать на стабилизатор, чтобы на выходе получить необходимое Uвых.
Это напряжение определяется по формуле:
Откуда взялась цифра 3? Это падение напряжения на переходе коллектор-эмиттер транзистора VT. Таким образом, для работы нашего стабилизатора на его вход мы должны подать не менее 17 вольт.
Определим, какой нам нужен транзистор VT. Для этого нам надо определить, какую мощность он будет рассеивать.
Тут надо учесть один момент. Для расчета мы взяли максимальное выходное напряжение блока питания. Однако, в данном расчете, надо наоборот брать минимальное напряжение, которое выдает БП. А оно, в нашем случае, составляет 1,5 вольта. Если этого не сделать, то транзистор может накрыться медным тазом, поскольку максимальная мощность будет рассчитана неверно.
Смотри сам:
Если мы берем Uвых=14 вольтам, то получаем P max =1.3*(17-14)*1=3.9 Вт.
А если мы примем Uвых=1.5 вольта, то P max =1.3*(17-1.5)*1=20,15 Вт
То есть, если бы не учли этого, то получилось бы, что расчетная мощность в ПЯТЬ раз меньше реальной. Разумеется, транзистору это сильно не понравилось бы.
Ну вот, теперь лезем в справочник и выбираем себе транзистор.
Помимо только что полученной мощности, надо учесть, что предельное напряжение между эмиттером и коллектором должно быть больше Uвх, а максимальный ток коллектора должен быть больше Imax. Я выбрал КТ817 – вполне приличный транзистор.
Фу, ну вроде с этим справились. Пошли дальше.
Считаем сам стабилизатор.
Сначала определим максимальный ток базы свежевыбранного транзистора ( а ты как думал? в нашем жестоком мире потребляют все – даже базы транзисторов).
I б max =I max / h31 Э min
h31 Э min – это минимальный коэффициент передачи тока транзистора и берется он из справочника Если там указаны пределы этого параметра – что то типа 30…40, то берется самый маленький. Ну, у меня в справочнике написано только одно число – 25, с ним и будем считать, а что еще остается?
I б max =1/25=0.04 А (или 40 мА). Не мало.
Ну давайте будем теперь искать стабилитрон.
Искать его надо по двум параметрам – напряжению стабилизации и току стабилизации.
Напряжение стабилизации должно быть равно максимальному выходному напряжению блока питания, то есть 14 вольтам, а ток – не менее 40 мА, то есть тому, что мы посчитали.
Полезли опять в справочник.
По напряжению нам страшно подходит стабилитрон Д814Д, к тому же он у меня был под рукой. Но вот ток стабилизации… 5 мА нам никак не годится. Чего делать будем? Будем уменьшать ток базы выходного транзистора. А для этого добавим в схему еще один транзистор. Смотрим на рисунок. Мы добавили в схему транзистор VT2. Сия операция позволяет нам снизить нагрузку на стабилитрон в h31Э раз. h31Э, разумеется, того транзистора, который мы только что добавили в схему. Особо не думая, я взял из кучи железок КТ315. Его минимальный h31Э равен 30, то есть мы можем уменьшить ток до 40/30=1.33 мА, что нам вполне подходит.
Теперь посчитаем сопротивление и мощность балластного резистора R б .
R б =(Uвх-Uст)/(I б max +I ст min )
где Uст – напряжение стабилизации стабилитрона,
Iст min – ток стабилизации стабилитрона.
R б = (17-14)/((1.33+5)/1000) = 470 Ом.
Теперь определим мощность этого резистора
P rб =(U вх -U ст )2/R б .
P rб =(17-14)2/470=0,02 Вт.
Собственно и все. Таким образом, из исходных данных – выходного напряжения и тока, мы получили все элементы схемы и входное напряжение, которое должно быть подано на стабилизатор.
Однако не расслабляемся – нас еще ждет выпрямитель. Уж считать так считать, я так считаю (каламбур однако).
Итак, смотрим на схему выпрямителя.
Ну, тут все проще и почти на пальцах. Учитывая то, что мы знаем, какое напряжение нам надо подать на стабилизатор – 17 вольт, вычислим напряжение на вторичной обмотке трансформатора. Для этого пойдем, как и в начале – с хвоста. Итак, после конденсатора фильтра мы должны иметь напряжение 17 вольт.
Учитывая то, что конденсатор фильтра увеличивает выпрямленное напряжение в 1,41 раза, получаем, что после выпрямительного моста у нас должно получиться 17/1,41=12 вольт.
Теперь учтем, что на выпрямительном мосту мы теряем порядка 1,5-2 вольт, следовательно, напряжение на вторичной обмотке должно быть 12+2=14 вольт. Вполне может случится так, что такого трансформатора не найдется, не страшно – в данном случае можно применить трансформатор с напряжением на вторичной обмотке от 13 до 16 вольт.
Едем дальше. Определим емкость конденсатора фильтра.
C ф =3200I н /U н K н
где Iн – максимальный ток нагрузки,
Uн – напряжение на нагрузке,
Kн – коэффициент пульсаций.
В нашем случае
Iн = 1 Ампер,
Uн=17 вольтам,
Kн=0,01.
C ф =3200*1/14*0,01=18823.
Однако, поскольку за выпрямителем идет еще стабилизатор напряжения, мы можем уменьшить расчетную емкость в 5…10 раз. То есть 2000 мкФ будет вполне достаточно.
Осталось выбрать выпрямительные диоды или диодный мост.
Для этого нам надо знать два основных параметра – максимальный ток, текущий через один диод и максимальное обратное напряжение, так же через один диод.
Необходимое максимальное обратное напряжение считается так
U обр max =2U н , то есть U обр max =2*17=34 Вольта.
А максимальный ток, для одного диода должен быть больше или равен току нагрузки блока питания. Ну а для диодных сборок в справочниках указывают общий максимальный ток, который может протекать через эту сборку.
Ну вот вроде бы и все про выпрямители и параметрические стабилизаторы.
Впереди у нас стабилизатор для самых ленивых – на интегральной микросхеме и стабилизатор для самых трудолюбивых – компенсационный стабилизатор.
Калькулятор расчета мощности стабилизатора напряжения для газового котла
Многие современные модели газовых котлов оснащены достаточно сложной системой электронного управления. Она обеспечивает поддержание заданного режима работы системы, управляет циркуляционными насосами, вентиляторами подачи воздуха в камеру сгорания, дает команду на срабатывание различных электромагнитных клапанов или кранов, иногда сохраняет в памяти необходимые настройки и даже способна анализировать внешние данные для выработки наиболее оптимального алгоритма всей системы отопления в целом.
Калькулятор расчета мощности стабилизатора напряжения для газового котлаБезусловно, это все удобно, но если в сети питания нет достаточной стабильности напряжения, то система управления может начать сбоить, а то и вовсе «зависать». Чтобы избежать подобных ситуаций, настоятельно рекомендуется оснащать подобное котельное оборудование специально выделенным для него стабилизатором. А правильно выбрать подходящую к конкретным условиям модель поможет калькулятор расчета мощности стабилизатора напряжения для газового котла.
Цены на стабилизаторы для газового котла
стабилизатор для газового котла
Если по ходу расчетов возникнут вопросы, то под калькулятором даны необходимые разъяснения по работе с ним.
Калькулятор расчета мощности стабилизатора напряжения для газового котлаПерейти к расчётам
Несколько необходимых пояснений к проведению расчетов
Критериев выбора стабилизатора напряжения – немало. Одним из них является его мощность. Если быть точным, то разговор, конечно, идет о вольт-амперной характеристике, то есть не о полезной мощности (ватт), а о тех параметрах выходного тока (вольт-ампер), которые прибор способен поддерживать в нормальном режиме своей работы. Но все равно исходными параметрами для расчета, безусловно, будут значения потребляемой мощности подключенных к стабилизатору приборов.
- Простое суммирование – даст крайне неточный результат. Дело в том, что большинство приборов потребляют не только полезную, но еще и реактивную мощность. Она рассчитывается по специальной формуле, и ее следует принимать в расчет. В нашем калькуляторе это учтено.
- Далее, при трансформации напряжения до необходимого номинала, обязательно происходят потери мощности, и они тем больше, чем значительнее отклонение от установленных 220 В. Поэтому прежде чем приступать к расчетам, рекомендуется провести своеобразное «исследование» — организовать измерение напряжения в сети, например, утром, днем и в вечерние пиковые часы потребления, в течение нескольких дней. Должна получиться наглядная картина — и значение, наибольшим образом отличающееся от номинала, и станет исходным параметром для расчетов.
- В калькуляторе будет запрашиваться потребляемая мощность котла. ВАЖНО: не путайте с тепловой мощностью котельного оборудования! Потребляемая мощность котла указывается в его паспорте, и касается исключительно его электротехнических параметров.
- Если к стабилизатору планируется подключение внешних (не входящих в компоновку котла) циркуляционных насосов, то учитывается и их потребляемая мощность. В калькуляторе достаточно указать количество насосов.
- Наконец, к стабилизатору иногда подключают и другое внешнее оборудование, необходимое для работы котельной (например, это может быть принудительная вентиляция). В этом случае в специальном поле калькулятора необходимо будет указать суммарную потребляемую мощность всех дополнительных приборов.
Результат будет получен в вольт-амперах. Он станет одним из ключевых критериев при дальнейшем выборе необходимой модели стабилизатора.
Как выбрать оптимальную модель?
В продаже представлен широкий ассортимент приборов такого класса, различающихся как принципом действия, так и эксплуатационными характеристиками. Не ошибиться при выборе стабилизатора напряжения для котла поможет специальная публикация нашего портала.
Расчет параметрического стабилизатора напряжения на стабилитроне
Параллельный параметрический стабилизатор, последовательный стабилизатор на биполярном транзисторе. Практические расчеты.
Доброго дня уважаемые Радиолюбители!
Сегодня на сайте “Радиолюбитель“, в разделе “Практикум начинающего радиолюбителя“, мы продолжим рассмотрение статьи “Источники питания радиолюбительских устройств“. Напомню, что в прошлый раз, изучая схему источника питания радиолюбительских устройств, мы остановились на назначении и расчете сглаживающего фильтра:
- Сегодня мы рассмотрим последний элемент – стабилизатор напряжения.
- Стабилизатор напряжения — преобразователь электрической энергии, позволяющий получить на выходе напряжение, находящееся в заданных пределах при колебаниях входного напряжения и сопротивления нагрузки
- Сегодня мы рассмотрим два простейших стабилизатора напряжения:
— параллельный параметрический стабилизатор напряжения на стабилитроне;
– последовательный стабилизатор напряжения на биполярном транзисторе.
Полупроводниковый стабилитрон — (другое название – диод Зенера) предназначен для стабилизации постоянного напряжения источников питания.
В простейшей схеме линейного параметрического стабилизатора он выступает одновременно и источником опорного напряжения, и силовым регулирующим элементом.
В более сложных схемах ему отводится только роль источника опорного напряжения.
Один из внешних видов и обозначение стабилитрона:
Как работает стабилитронНапряжение на стабилитрон (в отличие от диода) подают в обратной полярности (анод соединяют с минусом а катод с плюсом источника питания – Uобр). При таком включении через стабилитрон течет обратный ток – Iобр.
При увеличении напряжения обратный ток растет очень медленно (на схеме, почти параллельно оси Uобр), но при некотором напряжении Uобр переход стабилитрона пробивается (но разрушение стабилитрона в этот момент не происходит) и через него начинает идти обратный ток значительно большего значения.
В этот момент вольтамперная характеристика стабилитрона (ВАХ) резко идет вниз (почти параллельно оси Iобр) – наступает режим стабилизации, основные параметры которого – напряжение стабилизации минимальное (Uст min) и ток стабилизации минимальный (Iст min).
При дальнейшем увеличении Uобр ВАХ стабилитрона опять меняет свое направление – заканчивается режим стабилизации, основные параметры которого – напряжение стабилизации максимальное (Uст max) и ток стабилизации максимальный (Iст max).
С этого момента стабилитрон теряет свои свойства, начинает разогреваться, что может привести к тепловому пробою перехода стабилитрона и соответственно к его выходу из строя.
Режим стабилизации стабилитрона может быть в широких пределах, поэтому в документации на стабилитроны указывают допустимые минимальные и максимальные значения токов (Iст min и Iст max) и напряжений стабилизации (Uст min и Uст max).
Внутри этих диапазонов лежат выбранные производителем номинальные значения – Iст и Uст.
Номинальный ток стабилизации обычно устанавливается производителями на уровне 25%-35% от максимального, а номинальное значение напряжения стабилизации как среднее от максимального и минимального.
Для примера можно воспользоваться программой “TBFEdit” – справочник по радиодеталям“ и воочию посмотреть какие характеристики приводятся в справочниках по стабилитронам:
К примеру стабилитрон Д814Г:
— номинальный ток стабилизации (Iст)= 5 мА;
– номинальное напряжение стабилизации (Uст)= (от 10 до 12 вольт)= 11 вольт;
– максимальный ток стабилизации (Iст max)= 29 мА.
Эти данные нам будут необходимы при расчетах простейшего стабилизатора напряжения.
- Если вы не смогли найти нужный наш родной, советский, стабилитрон, то можно используя, к примеру программу, Color And Code, подобрать по нужным параметрам буржуйский аналог:
- Как видите, стабилитрон Д814Г легко можно заменить аналогом – BZX55C11 (у которого характеристики даже немного получше)
- Ну а теперь рассмотрим параллельный параметрический стабилизатор напряжения на стабилитроне.
Параллельный параметрический стабилизатор напряжения на стабилитроне применяется в слаботочных устройствах (несколько миллиампер) и представляет собой делитель напряжения (на резисторе R – балластный резистор и стабилитроне VD – который выполняет роль второго резистора) на вход которого подается нестабильное напряжение а выходное напряжение снимается с нижнего плеча делителя. При повышении (понижении) входного напряжения внутреннее сопротивление стабилитрона уменьшается (увеличивается), что позволяет удерживать выходное напряжение на заданном уровне. На балластном резисторе падает разница между входным напряжением питания и напряжением стабилизации стабилитрона.
- Рассмотрим схему данного (самого простейшего) стабилизатора напряжения:
- Как рассчитать параметры такого стабилизатора. Первое и самое главное, что нужно запомнить:
Для нормальной работы схемы ток через стабилитрон должен в несколько раз (3-10 раз) превышать ток в стабилизируемой нагрузке. Практически, так-как номинальный ток стабилизации стабилитрона в несколько раз меньше максимального, то допускается при расчетах считать, что ток нагрузки не должен превышать номинального тока стабилизации.
К примеру: ток потребляемый нагрузкой составляет 10 мА, значит нам необходимо подобрать такой стабилитрон, чтобы его номинальный ток стабилизации не был меньше 10 мА (лучше конечно, если он будет больше).
Расчет параллельного параметрического стабилизатора напряжения на стабилитроне
Дано:
Uвх – входное напряжение = 15 вольт
Uвых – выходное напряжение (напряжение стабилизации) = 11 вольт
Расчет:
1.
По справочнику, приведенному выше, определяем, что для наших целей подходит стабилитрон Д814Г:
Uст (10-12в)= 11 вольт
Iст max= 29 мА
Iст номинальный = 5 мА
Исходя из сказанного выше, определяемся, что ток нагрузки не должен превышать Iст номинального – 5 мА
2. Определяем напряжение падения на балластном резисторе (R) как разность входного и выходного стабилизированного напряжения:
Uпад=Uвх – Uвых=15-11= 4 вольта
3. Используя закон Ома, определяем номинал балластного сопротивления R, деля напряжение падения Uпад на Iст стабилитрона:
R= Uпад/Iст= 4/0,005= 800 Ом
Так как резисторов номиналом 800 Ом нет, берем ближайший больший номинал – R=1000 Ом= 1 кОм
4. Определяем мощность балластного резистора R:
Pрез= Uпад*Iст= 4*0,005= 0,02 ватта
Так как через резистор протекает не только ток стабилизации стабилитрона но и ток потребляемый нагрузкой, то полученное значение увеличиваем минимум в 2 раза:
Pрез= 0,004*2= 0,008 ват, что соответствует ближайшему номиналу = 0,125 ватт.
Что делать если вы не нашли стабилитрон с нужным напряжением стабилизации.
В этом случае можно применить последовательное соединение стабилитронов. К примеру, если мы соединим последовательно два стабилитрона Д814Г, то напряжение стабилизации составит 22 вольта (11+11).
Если соединим Д814Г и Д810 то получим напряжение стабилизации 20 вольт (11+10).
Допускается любое число последовательного соединения стабилитронов одной серии (как в примере – Д8**).
Последовательное соединение стабилитронов разной серии допускается только в том случае, если рабочие токи последовательной цепочки укладываются в паспортные диапазоны токов стабилизации каждой использованной серии.
Что делать, если в приведеном выше примере, ток нагрузки составляет к примеру не 5 а 25 мА?
Можно конечно все так и оставить, так как максимальный ток стабилизации (Iст max) Д814Г равен 29 мА, единственное придется пересчитать мощность балластного резистора. Но в этом случае стабилитрон будет работать на пределе своих возможностей и у вас не будет никаких гарантий, что он не выйдет из строя.
А что делать если ток нагрузки составляет, к примеру, 50 мА?
Последовательный стабилизатор напряжения на биполярном транзисторе
Последовательный стабилизатор напряжения на биполярном транзисторе – это по сути параллельный параметрический стабилизатор на стабилитроне, подключенный ко входу эммитерного повторителя.
Его выходное напряжение меньше напряжения стабилизации стабилитрона за счет падения напряжения на переходе база-эммитер транзистора (для кремниевых транзисторов – около 0,6 вольт, для германиевы – окло 0,25 вольт), что нужно учитывать при выборе стабилитрона.
Эммитерный повторитель (он же – усилитель тока) позволяет увеличить максимальный ток стабилизатора напряжения по сравнению с параллельным параметрическим стабилизатором на стабилитроне в β (h31э) раз (где β (h31э) – коэффициент усиления по току данного транзистора, берется наименьшее значение).
- Схема последовательного стабилизатора на биполярном транзисторе:
- Так-как данный стабилизатор состоит из двух частей – источник опорного напряжения (он же параллельный параметрический стабилизатор на стабилитроне) и усилителя тока на транзисторе (он же эммитерный повторитель), то расчет такого стабилизатора производится аналогично выше приведенному примеру.
Единственное отличие:
— к примеру нам надо получить ток нагрузки 50 мА, тогда выбираем транзистор с коэффициентом усиления β (h31э) не менее 10 (β (h31э)=Iнагрузки/Iст=50/5=10
– мощность балластного резистора рассчитываем по формуле: Ррез=Uпад*(Iст+Iнагрузки) - Ток нагрузки можно увеличить еще в несколько раз, если применить схему с составным тразистором (два транзистора, включенные по схеме Дарлингтона или Шиклаи):
- Вот, в принципе, и все.
Источник: http://radio-stv.ru/praktikum-radiolyubitelya/stabilizatoryi-napryazheniya
Параметрические стабилизаторы напряжения. Расчёт простейшего параметрического стабилизатора на стабилитроне
Параметрический стабилизатор напряжения — это устройство, в котором стабилизация выходного напряжения достигается за счет сильной нелинейности вольт-амперной характеристики электронных компонентов, использованных для построения стабилизатора (т.е. за счет внутренних свойств электронных компонентов, без построения специальной системы регулирования напряжения).
Для построения параметрических стабилизаторов напряжения обычно используются стабилитроны, стабисторы и транзисторы.
Из-за низкого КПД такие стабилизаторы находят применение в основном в слаботочных схемах (с нагрузками до нескольких десятков миллиампер). Наиболее часто они используются как источники опорного напряжения (например, в схемах компенсационных стабилизаторов напряжения).
Параметрические стабилизаторы напряжения бывают однокаскадными, многокаскадными и мостовыми.
Рассмотрим простейший параметрический стабилизатор напряжения, построенный на основе стабилитрона (схема приведена ниже):
- Iст — ток через стабилитрон
- Iн — ток нагрузки
- Uвых=Uст — выходное стабилизированное напряжение
- Uвх — входное нестабилизированное напряжение
- R0 — балластный (ограничительный, гасящий) резистор
Работа стабилизатора основана на том свойстве стабилитрона, что на рабочем участке вольт-амперной характеристики (от Iст min до Iст max) напряжение на стабилитроне практически не изменяется (на самом деле конечно изменяется от Uст min до Uст max, но можно считать, что Uст min = Uст max = Uст).
В приведенной схеме, при изменении входного напряжения или тока нагрузки — напряжение на нагрузке практически не меняется (оно остаётся таким же, как и на стабилитроне), вместо этого изменяется ток через стабилитрон (в случае изменения входного напряжения и ток через балластный резистор тоже).
То есть, излишки входного напряжения гасятся балластным резистором, величина падения напряжения на этом резисторе зависит от тока через него, а ток через него зависит в том числе от тока через стабилитрон, и таким образом, получается, что изменение тока через стабилитрон регулирует величину падения напряжения на балластном резисторе.
- Уравнения, описывающие работу данной схемы:
- Uвх=Uст+IR0, учитывая, что I=Iст+Iн, получим
- Uвх=Uст+(Iн+Iст)R0 (1)
Для нормальной работы стабилизатора (чтобы напряжение на нагрузке всегда было в пределах от Uст min до Uст max) необходимо, чтобы ток через стабилитрон всегда был в пределах от Iст min до Iст max. Минимальный ток через стабилитрон будет течь при минимальном входном напряжении и максимальном токе нагрузки. Зная это, найдём сопротивление балластного резистора:
R0=(Uвх min-Uст min)/(Iн max+Iст min) (2)
Максимальный ток через стабилитрон будет течь при минимальном токе нагрузки и максимальном входном напряжении. Учитывая это и сказанное выше относительно минимального тока через стабилитрон, с помощью уравнения (1) можно найти область нормальной работы стабилизатора:
Перегруппировав это выражение, получим:
Или, по другому:
Если считать, что минимальное и максимальное напряжение стабилизации (Uст min и Uст max) отличаются незначительно, то первое слагаемое в правой части можно считать равным нулю, тогда уравнение, описывающее область нормальной работы стабилизатора, примет следующий вид:
Из этой формулы сразу виден один из недостатков такого параметрического стабилизатора — мы не можем сильно менять ток нагрузки, поскольку это сужает диапазон входного напряжения схемы, более того, можно увидеть, что диапазон изменения тока нагрузки не может быть больше, чем диапазон изменения тока стабилизации стабилитрона (поскольку в этом случае правая часть уравнения вообще становится отрицательной)
Если ток нагрузки постоянен или изменяется незначительно, тогда формула для определения области нормальной работы становится совсем элементарной:
Далее, давайте рассчитаем КПД нашего параметрического стабилизатора. Он будет определяться отношением мощности, отдаваемой в нагрузку к входной мощности: КПД=Uст*Iн/Uвх*I. Если учесть, что I=Iн+Iст, то получим:
Из последней формулы видно, что чем больше разница между входным и выходным напряжением, а также чем больше ток через стабилитрон — тем хуже КПД.
Чтобы понять, что значит «хуже» и насколько вообще плохо обстоит дело с КПД у этого стабилизатора — давайте, используя формулы выше, попробуем прикинуть, что будет, если понижать напругу скажем с 6-10 Вольт до 5-ти. Возьмём самый обычный стабилитрон, скажем КС147А.
Ток стабилизации у него может меняться в пределах от 3-х до 53-х мА.
Чтобы при таких параметрах стабилитрона получить область нормальной работы шириной в 4 Вольта — нам нужно взять балластный резистор на 80 Ом (воспользуемся формулой 4, как будто ток нагрузки у нас постоянный, поскольку если это не так, то всё будет ещё хуже).
Теперь из формулы 2 можно посчитать на какой именно ток нагрузки мы можем в этом случае рассчитывать. Получается всего 19,5 мА, а КПД в этом случае будет, в зависимости от входного напряжения, в пределах от 14% до 61%.
Если для этого же случая посчитать на какой максимальный выходной ток мы можем рассчитывать при условии, что выходной ток не постоянный, а может меняться от нуля до Imax, то решив совместно системы уравнений (2) и (3), получим R0=110 Ом, Imax=13,5 мА. Как видите, максимальный выходной ток получился почти в 4 раза меньше максимального тока стабилитрона.
Более того, выходное напряжение, полученное на таком стабилизаторе, будет обладать значительной нестабильностью в зависимости от выходного тока (у КС147А на рабочем участке ВАХ напряжение меняется от 4,23 до 5,16В), что может оказаться неприемлемым.
Единственный путь борьбы с нестабильностью в данном случае — взять более узкий рабочий участок ВАХ — такой, на котором напряжение меняется не от 4,23 до 5,16В, а скажем от 4,5 до 4,9В, но в этом случае и рабочий ток стабилитрона будет уже не 3..53мА, а скажем 17..40мА.
Соответственно, и без того небольшая область нормальной работы стабилизатора станет ещё меньше.
Итак, единственный плюс такого стабилизатора — это его простота, тем не менее, как я уже говорил, такие стабилизаторы вполне себе существуют и даже находят активное применение в качестве источников опорного напряжения для более сложных схем.
Простейшая схема, позволяющая получить существенно больший выходной ток (или существенно более широкую область нормальной работы, или и то и другое) — параметрический стабилизатор на транзисторе.
Источник: https://radiohlam.ru/paramstab/
Параметрический стабилизатор — основные параметры
В маломощных схемах на нагрузку до 20 миллиампер применяется устройство с малым коэффициентом действия, и называется параметрическим стабилизатором. В устройстве таких приборов имеются транзисторы, стабилитроны и стабисторы.
Они применяются в основном в компенсационных устройствах стабилизации в качестве опорных источников питания. Параметрические стабилизаторы в зависимости от технических данных могут быть 1-каскадными, мостовыми и многокаскадными.
Стабилитрон в устройстве прибора подобен подключенному диоду. Но обратный пробой напряжения больше подходит для стабилитрона и является базой его нормальной работы. Эта характеристика нашла популярность для разных схем, где необходимо создавать ограничение сигнала входа по напряжению.
Такие стабилизаторы являются быстродействующими приборами, и защищают участки с повышенной чувствительностью от импульсных помех. Применение таких элементов в новых схемах является показателем их повышенного качества, которое обеспечивает постоянное функционирование в разных режимах.
Схема стабилизатора
Базой этого прибора является схема подключения стабилитрона, применяющаяся и в других видах приборов вместо источника питания.
Схема включает в себя делитель напряжения из балластного сопротивления и стабилитрона, к которому параллельно подключена нагрузка. Устройство выравнивает напряжение на выходе при переменном питании и нагрузочном токе.
Действие схемы происходит следующим образом. Напряжение, повышающееся на входе прибора, вызывает повышение тока, который проходит через сопротивление R1 и стабилитрон VD.
На стабилитроне напряжение остается постоянным из-за его вольтамперной характеристики. Поэтому не меняется и напряжение на нагрузке. В итоге все преобразованное напряжение будет приходить на сопротивление R1.
Такой принцип действия схемы позволяет сделать расчет всех параметров.
Принцип действия стабилитрона
Если стабилитрон сравнивать с диодом, то при подключении диода в прямом направлении по нему может проходить обратный ток, который имеет незначительную величину в несколько микроампер.
При повышении обратного напряжения до некоторой величины возникнет пробой электрический, а если ток очень велик, то произойдет и тепловой пробой, поэтому диод выйдет из строя.
Конечно, диод может работать при электрическом пробое при снижении тока, проходящего через диод.
Стабилитрон спроектирован так, что его характеристика на участке пробоя имеет повышенную линейность, а разность потенциалов пробоя достаточно стабильна. Стабилизация напряжения с помощью стабилитрона выполняется при его функционировании на обратной ветви свойства тока и напряжения, а на прямой ветке графика стабилитрон работает как обычный диод. На схеме стабилитрон обозначается:
Параметры стабилитрона
Его главные параметры можно увидеть по характеристике напряжения и тока.
- Напряжение стабилизации является напряжением на стабилитроне при прохождении тока стабилизации. Сегодня производятся стабилитроны с таким параметром, равным 0,7-200 вольт.
- Наибольший допустимый ток стабилизации. Он ограничен величиной наибольшей допустимой мощности рассеивания, которая зависит от температуры внешней среды.
- Наименьший ток стабилизации, рассчитывается наименьшей величиной тока, протекающего через стабилитрон, при этом сохраняется действие стабилизатора.
- Дифференциальное сопротивление – это величина, равная отношению приращения напряжения к малому приращению тока.
Стабилитрон, подключенный в схеме как простой диод в прямом направлении, характеризуется величинами постоянного напряжения и наибольшим допустимым прямым током.
Расчет параметрического стабилизатора
Добротность функционирования прибора вычисляется по коэффициенту стабилизации, который вычисляется по формуле: Кст U = (ΔUвх / Uвх) / (ΔU вых / Uвых).
Далее расчет стабилизатора с применением стабилитрона производится в сочетании с балластным резистором в соответствии с типом применяемого стабилитрона. Для расчета используются рассмотренные ранее параметры стабилитрона.
Определим порядок расчета на примере. Возьмем исходные данные:
- U вых=9 В;
- I н =10мА;
- ΔI н = ±2мА;
- ΔU вх = ± 10% Uвх
По справочнику подбираем стабилитрон Д 814Б, свойства которого:
- U ст = 9 В;
- I ст. макс = 36 мА;
- I ст. мин = 3 мА;
- R д = 10 Ом.
Далее вычисляется входное напряжение: Uвх = nст *Uвых, где nст – коэффициент передачи. Функционирование стабилизатора станет эффективнее, если этот коэффициент будет в пределах 1,4-2. Если nст =1,6, то U вх= 1,6 * 9 = 14,4 В.
На следующем шаге производится расчет балластного резистора. Используется формула: R о = (U вх – U вых) / (I ст + I н). Величина тока I ст выбирается: I ст ≥ I н. При изменении U вх на величину Δ Uвх и Iн на ΔIн, не может быть больше тока стабилитрона величин I ст. макс и I ст. мин. Поэтому, I ст берется в качестве среднего допустимой величины в этом интервале и равно 0,015 ампер.
Значит, балластный резистор равен: R о = (14,4 – 9)/(0,015+0,01 )= 16 Ом. Ближнее стандартное значение составляет 220 Ом. Для выбора типа сопротивления, выполняется расчет рассеиваемой мощности на корпусе. Применяя формулу Р = I*2 R о, определяем величину Р = (25*10-3) * 2 * 220 = 0,138 ватт. Другими словами, стандартная мощность сопротивления равна 0,25 ватт.
Поэтому лучше подойдет сопротивление МЛТ — 0,25 — 220 Ом. После осуществления расчетов необходимо проверить правильность выбора режима действия стабилитрона в схеме параметрического прибора.
В первую очередь определяется его наименьший ток: Iст. Мин = (U вх – ΔU вх – U вых) / Rо – (I н + ΔI н), с практическими параметрами определяется величина I ст.
мин = (14,4–1,44–9) * 103 / 220–(10+2) = 6 миллиампер.
Такая же процедура производится для вычисления наибольшего тока: I ст. макс=(Uвх+ΔUвх–Uвых)/Rо–(Iн–ΔIн). По исходным параметрам, наибольший ток составит: Iст.
макс=(14,4 + 1,44 – 9) * 103 / 220–(10 – 2)=23 миллиампер.
Если в результате вычисленные значения наименьшего и наибольшего тока превосходят допустимые границы, то необходимо заменить I ст или резистор R о. Иногда требуется замена стабилитрона.
Параметрический стабилизатор напряжения
(4
Источник: http://ostabilizatore.ru/parametricheskij-stabilizator.html
РадиоКот :: Блок питания «Проще не бывает». Часть вторая
Добавить ссылку на обсуждение статьи на форумеРадиоКот >Обучалка >Аналоговая техника >Собираем первые устройства >
Теги статьи: | Добавить тег |
Блок питания «Проще не бывает». Часть вторая
Ага, все-таки зашел? Что, любопытство замучило? Но я очень рад. Нет, правда. Располагайся поудобнее, сейчас мы вместе произведем некоторые нехитрые расчеты, которые нужны, чтобы сварганить тот блок питания, который мы уже сделали в первой части статьи. Хотя надо сказать, что эти расчеты могут пригодиться и в более сложных схемах.
Итак, наш блок питания состоит из двух основных узлов — это выпрямитель, состоящий из трансформатора, выпрямительных диодов и конденсатора и стабилизатор, состоящий из всего остального. Как настоящие индейцы, начнем, пожалуй, с конца и рассчитаем сначала стабилизатор.
Схема стабилизатора показана на рисунке.
Это, так называемый параметрический стабилизатор. Состоит он из двух частей: 1 — сам стабилизатор на стабилитроне D с балластным резистором Rб 2 — эмиттерный повторитель на транзисторе VT.
Непосредственно за тем, чтобы напряжение оставалось тем каким нам надо, следит стабилизатор, а эмиттерный повторитель позволяет подключать мощную нагрузку к стабилизатору. Он играет роль как бы усилителя или если угодно — умощителя.
Два основных параметра нашего блока питания — напряжение на выходе и максимальный ток нагрузки. Назовем их: Uвых — это напряжение и
Imax — это ток.
- Для блока питания, который мы отгрохали в прошлой части, Uвых = 14 Вольт, а Imax = 1 Ампер.
- Сначала нам необходимо определить какое напряжение Uвх мы должны подать на стабилизатор, чтобы на выходе получить необходимое Uвых. Это напряжение определяется по формуле:
- Uвх = Uвых + 3
Откуда взялась цифра 3? Это падение напряжения на переходе коллектор-эмиттер транзистора VT. Таким образом, для работы нашего стабилизатора на его вход мы должны подать не менее 17 вольт.
Едем дальше.
Определим, какой нам нужен транзистор VT. Для этого нам надо определить, какую мощность он будет рассеивать.
Считаем:
Pmax=1.3(Uвх-Uвых)Imax
Тут надо учесть один момент. Для расчета мы взяли максимальное выходное напряжение блока питания. Однако, в данном расчете, надо наоборот брать минимальное напряжение, которое выдает БП. А оно, в нашем случае, составляет 1,5 вольта. Если этого не сделать, то транзистор может накрыться медным тазом, поскольку максимальная мощность будет рассчитана неверно. Смотри сам:
Если мы берем Uвых=14 вольтам, то получаем Pmax=1.3*(17-14)*1=3.9 Вт. А если мы примем Uвых=1.5 вольта, то Pmax=1.3*(17-1.5)*1=20,15 Вт
То есть, если бы не учли этого, то получилось бы, что расчетная мощность в ПЯТЬ раз меньше реальной. Разумеется, транзистору это сильно не понравилось бы.
Ну вот, теперь лезем в справочник и выбираем себе транзистор. Помимо только что полученной мощности, надо учесть, что предельное напряжение между эмиттером и коллектором должно быть больше Uвх, а максимальный ток коллектора должен быть больше Imax. Я выбрал КТ817 — вполне приличный транзистор…
Фу, ну вроде с этим справились. Пошли дальше.
Сначала определим максимальный ток базы свежевыбранного транзистора ( а ты как думал? в нашем жестоком мире потребляют все — даже базы транзисторов).
Iб max=Imax / h31Э min
h31Э min — это минимальный коэффициент передачи тока транзистора и берется он из справочника Если там указаны пределы этого параметра — что то типа 30…40, то берется самый маленький. Ну, у меня в справочнике написано только одно число — 25, с ним и будем считать, а что еще остается?
Iб max=1/25=0.04 А (или 40 мА). Не мало.
Ну давайте будем теперь искать стабилитрон. Искать его надо по двум параметрам — напряжению стабилизации и току стабилизации.
Напряжение стабилизации должно быть равно максимальному выходному напряжению блока питания, то есть 14 вольтам, а ток — не менее 40 мА, то есть тому, что мы посчитали. Полезли опять в справочник…
По напряжению нам страшно подходит стабилитрон Д814Д, к тому же он у меня был под рукой. Но вот ток стабилизации… 5 мА нам никак не годится. Чего делать будем? Будем уменьшать ток базы выходного транзистора. А для этого добавим в схему еще один транзистор. Смотрим на рисунок.
Мы добавили в схему транзистор VT2. Сия операция позволяет нам снизить нагрузку на стабилитрон в h31Э раз. h31Э, разумеется, того транзистора, который мы только что добавили в схему. Особо не думая, я взял из кучи железок КТ315. Его минимальный h31Э равен 30, то есть мы можем уменьшить ток до 40/30=1.
33 мА, что нам вполне подходит.
- Теперь посчитаем сопротивление и мощность балластного резистора Rб.
- Rб=(Uвх-Uст)/(Iб max+Iст min)
- где Uст — напряжение стабилизации стабилитрона, Iст min — ток стабилизации стабилитрона.
Rб = (17-14)/((1.33+5)/1000) = 470 Ом.
- Теперь определим мощность этого резистора
- Prб=(Uвх-Uст)2/Rб.
- То есть
- Prб=(17-14)2/470=0,02 Вт.
Собственно и все. Таким образом, из исходных данных — выходного напряжения и тока, мы получили все элементы схемы и входное напряжение, которое должно быть подано на стабилизатор.
Однако не расслабляемся — нас еще ждет выпрямитель. Уж считать так считать, я так считаю (каламбур однако).
Итак, смотрим на схему выпрямителя.
Ну, тут все проще и почти на пальцах. Учитывая то, что мы знаем, какое напряжение нам надо подать на стабилизатор — 17 вольт, вычислим напряжение на вторичной обмотке трансформатора. Для этого пойдем, как и в начале — с хвоста. Итак, после конденсатора фильтра мы должны иметь напряжение 17 вольт.
Учитывая то, что конденсатор фильтра увеличивает выпрямленное напряжение в 1,41 раза, получаем, что после выпрямительного моста у нас должно получиться 17/1,41=12 вольт.
Теперь учтем, что на выпрямительном мосту мы теряем порядка 1,5-2 вольт, следовательно, напряжение на вторичной обмотке должно быть 12+2=14 вольт.
Вполне может случится так, что такого трансформатора не найдется, не страшно — в данном случае можно применить трансформатор с напряжением на вторичной обмотке от 13 до 16 вольт.
Едем дальше. Определим емкость конденсатора фильтра.
- Cф=3200Iн/UнKн
- где Iн — максимальный ток нагрузки, Uн — напряжение на нагрузке,
- Kн — коэффициент пульсаций.
- В нашем случае Iн = 1 Ампер, Uн=17 вольтам,
- Kн=0,01.
- Cф=3200*1/14*0,01=18823.
Однако, поскольку за выпрямителем идет еще стабилизатор напряжения, мы можем уменьшить расчетную емкость в 5…10 раз. То есть 2000 мкФ будет вполне достаточно.
- Осталось выбрать выпрямительные диоды или диодный мост.
- Для этого нам надо знать два основных параметра — максимальный ток, текущий через один диод и максимальное обратное напряжение, так же через один диод.
- Необходимое максимальное обратное напряжение считается так
- Uобр max=2Uн, то есть Uобр max=2*17=34 Вольта.
А максимальный ток, для одного диода должен быть больше или равен току нагрузки блока питания. Ну а для диодных сборок в справочниках указывают общий максимальный ток, который может протекать через эту сборку.
Ну вот вроде бы и все про выпрямители и параметрические стабилизаторы. Впереди у нас стабилизатор для самых ленивых — на интегральной микросхеме и стабилизатор для самых трудолюбивых — компенсационный стабилизатор.
Как вам эта статья? | Заработало ли это устройство у вас? |
Источник: https://www.radiokot.ru/start/analog/practice/02/
Параметрический стабилизатор напряжения
Содержание:
В слаботочных схемах с нагрузками не более 20 мА используется устройство с низким коэффициентом полезного действия, известное как параметрический стабилизатор напряжения.
В конструкцию данных приборов входят транзисторы, стабисторы и стабилитроны. Они используются преимущественно в компенсационных стабилизирующих устройствах как опорные источники напряжения.
В зависимости от технических характеристик, параметрические стабилизаторы могут быть однокаскадными, многокаскадными и мостовыми.
Стабилитрон, находящийся в составе конструкции, напоминает обратно включенный диод. Однако пробой напряжения в обратном направлении, характерный для стабилитрона, является основой его нормального функционирования.
Данное свойство широко применяется для различных схем, в которых нужно создать ограничение входного сигнала по напряжению. Параметрические стабилизаторы относятся к быстродействующим устройствам, они защищают чувствительные участки схем от импульсных помех.
Использование этих элементов в современных схемах стало показателем их высокого качества, обеспечивающего стабильную работу оборудования в различных режимах.
Схема параметрического стабилизатора
Основой параметрического стабилизатора является схема включения стабилитрона, использующаяся также и в других типах стабилизаторов в качестве источника опорного напряжения.
Стандартная схема состоит из делителя напряжения, который, в свою очередь включает в себя балластный резистор R1 и стабилитрон VD. Параллельно стабилитрону включается сопротивление нагрузки RH. Данная конструкция стабилизирует выходное напряжение при изменяющемся напряжении питания Uп и токе нагрузки Iн.
Работа схемы происходит в следующем порядке. Напряжение, увеличивающееся на входе стабилизатора, вызывает увеличение тока, проходящего через резистор R1 и стабилитрон VD.
Напряжение стабилитрона остается неизменным за счет его вольтамперной характеристики. Соответственно, не изменяется и напряжение на сопротивлении нагрузки. В результате, все измененное напряжение будет поступать на резистор R1.
Принцип работы схемы дает возможность для расчетов всех необходимых параметров.
Расчет параметрического стабилизатора
Качество работы стабилизатора напряжения оценивается по его коэффициенту стабилизации, определяемого по формуле: КстU= (ΔUвх/Uвх) / (ΔUвых/Uвых). Далее расчет параметрического стабилизатора напряжения на стабилитроне осуществляется в соответствии с сопротивлением балластного резистора Ro и типом используемого стабилитрона.
Маркировка резисторов по цвету
Для расчета стабилитрона применяются следующие электрические параметры: Iст.макс – максимальный ток стабилитрона на рабочем участке вольтамперной характеристики; Iст.
мин – минимальный ток стабилитрона на рабочем участке вольтамперной характеристики; Rд – дифференциальное сопротивление на рабочем участке вольтамперной характеристики. Порядок расчета можно рассмотреть на конкретном примере.
Исходные данные будут следующие: Uвых= 9 В; Iн= 10 мА; ΔIн= ± 2 мА; ΔUвх= ± 10%Uвх.
В первую очередь в справочнике выбирается стабилитрон марки Д814Б, параметры которого составляют: Uст= 9 В; Iст.макс= 36 мА; Iст.мин= 3 мА; Rд= 10 Ом.
После этого выполняется расчет входного напряжения по формуле: Uвх=nстUвых, в которой nст является коэффициентом передачи стабилизатора.
Работа стабилизирующего устройства будет наиболее эффективной когда nст, составляет 1,4-2,0. Если nст = 1,6, то Uвх= 1,6 х 9 = 14,4В.
На следующем этапе выполняется расчет сопротивления балластного резистора (Ro). Для этого применяется следующая формула: Rо= (Uвх–Uвых) / (Iст+Iн). Значение тока Iст выбирается по принципу: Iст ≥ Iн.
В случае одновременного изменения Uвх на величину ΔUвх и Iн на величину ΔIн, не должно быть превышения током стабилитрона значений Iст.макс и Iст.мин.
В связи с этим, Iст берется как среднее допустимое значение в данном диапазоне и составляет 0,015А.
Таким образом, сопротивление балластного резистора будет равно: Rо= (14,4 – 9) / (0,015 + 0,01 ) = 216 Ом. Ближайшее стандартное сопротивление составит 220 Ом.
Для того чтобы выбрать нужный тип резистора, нужно выполнить расчет мощности, рассеиваемой на его корпусе. Используя формулу Р = I2Rо, получаем значение Р = (25· 10-3)2х 220 = 0,138 Вт.
То есть стандартная мощность рассеивания резистора будет 0,25Вт. Поэтому для схемы лучше всего подойдет резистор МЛТ-0,25-220 Ом ± 10 %.
После выполнения всех расчетов нужно проверить, правильно ли выбран режим работы стабилитрона в общей схеме параметрического стабилизатора. Вначале определяется его минимальный ток: Iст.мин= (Uвх–ΔUвх–Uвых) /Rо – (Iн+ΔIн), с реальными параметрами получается значение Iст.мин= (14,4 – 1,44 – 9) х 103/ 220 – (10 + 2) = 6 мА.
Такие же действия выполняются для определения максимального тока: Iст.макс= (Uвх+ΔUвх–Uвых) /Rо – (Iн–ΔIн). В соответствии с исходными данными, максимальный ток составит: Iст.макс= (14,4 + 1,44 – 9) · 103/ 220 – (10 – 2) = 23 мА.
Если полученные значения минимального и максимального тока выходят за допустимые пределы, то в этом случае нужно изменить Iст или сопротивление резистора Rо. В некоторых случаях требуется замена стабилитрона.
Параметрический стабилизатор напряжения на стабилитроне
Для любой радиоэлектронной схемы обязательно наличие источника питания. Они могут быть постоянного и переменного тока, стабилизированными и нестабилизированными, импульсными и линейными, резонансными и квазирезонансными. Такое разнообразие дает возможность выбора источников питания для разных схем.
В наиболее простых электронных схемах, где не требуется высокая стабильность питающего напряжения или большая выходная мощность, чаще всего применяются линейные источники напряжения, отличающиеся надежностью, простотой и низкой стоимостью. Их составной частью служат параметрические стабилизаторы напряжения и тока в конструкцию которых входит элемент, имеющий нелинейную вольтамперную характеристику. Типичным представителем таких элементов является стабилитрон.
Данный элемент относится к особой группе диодов, работающих в режиме обратной ветви вольтамперной характеристики в области пробоя. При включении диода в прямом направлении от анода к катоду (от плюса к минусу) с напряжением Uпор, через него начинает свободно проходить электрический ток.
Если же включено обратное направление от минуса к плюсу, то через диод проходит лишь ток Iобр, составляющий всего несколько мкА. Увеличение на диоде обратного напряжения до определенного уровня приведет к его электрическому пробою. При достаточной величине силы тока диод выходит из строя под действием теплового пробоя.
Работа диода в области пробоя возможна в случае ограничения тока, проходящего через диод. В различных диодах напряжение пробоя может составлять от 50 до 200В.
В отличие от диодов, вольтамперная характеристика стабилитрона имеет более высокую линейность, в условиях постоянного напряжения пробоя. Таким образом, для стабилизации напряжения с помощью этого устройства обратная ветвь вольтамперной характеристики. На участке прямой ветви работа стабилитрона происходит точно так же, как и у обычного диода.
В соответствии со своей вольтамперной характеристикой, стабилитрон обладает следующими параметрами:
- Напряжение стабилизации – Uст. Зависит от напряжения на стабилитроне во время протекания тока Iст. Диапазон стабилизации у современных стабилитронов находится в пределах от 0,7 до 200 вольт.
- Максимально допустимый постоянный ток стабилизации – Iст.max. Ограничивается величиной максимально допустимой рассеиваемой мощности Рmax, которая, в свою очередь тесно связана с температурой окружающей среды.
- Минимальный ток стабилизации – Iст.min. Зависит от минимального значения тока, проходящего через стабилитрон. При этом токе должно быть полное сохранение работоспособности устройства. Вольтамперная характеристика стабилитрона между параметрами Iст.max и Iст.min имеет наиболее линейную конфигурацию, а изменение напряжения стабилизации очень незначительно.
- Дифференциальное сопротивление стабилитрона – rст. Данная величина определяется как отношение приращения напряжения стабилизации на устройстве к малому приращению тока стабилизации, вызвавшему это напряжение (ΔUCT/ ΔiCT).
Параметрический стабилизатор на транзисторе
Работа параметрического стабилизатора на транзисторах почти ничем не отличается от аналогичного устройства на стабилитроне.
В каждой схеме напряжение на выходах остается стабильным, поскольку их вольтамперные характеристики затрагивают участки с падением напряжения, слабо зависящим от тока.
То есть, как и в других параметрических стабилизаторах, стабильные показатели тока и напряжения достигаются за счет внутренних свойств компонентов.
Для чего нужен конденсатор
Падение напряжения на нагрузке будет таким же, как и разность падения напряжения стабилитрона и р-п перехода транзистора. Падение напряжения в обоих случаях слабо зависит от тока, отсюда можно сделать вывод, что выходное напряжение также является постоянным.
Нормальная работа стабилизатора характеризуется наличием напряжения в диапазоне от Uст.max до Uст.min. Для этого необходимо, чтобы и ток, проходящий через стабилитрон, находился в пределах от Iст.max до Iст.min.
Таким образом, течение максимального тока через стабилитрон будет осуществляться в условиях минимального тока базы транзистора и максимального входного напряжения.
Поэтому транзисторный стабилизатор имеет существенные преимущества над обычным устройством, поскольку значение выходного тока может изменяться в широком диапазоне.
Источник: https://electric-220.ru/news/parametricheskij_stabilizator_naprjazhenija/2017-03-10-1197
Расчет мощности в кВА | UST
Для одно- и трехфазных систем.
Рассчитать размер стабилизатора мощности несложно. Самый сложный аспект — это определение силы тока (или силы тока).
Однофазный типоразмер
- Определить входное напряжение для оборудования или цепи, подлежащей защите
- Определите номинальную силу тока для оборудования или цепи, подлежащей защите
- Умножьте напряжение на ток и разделите на 1000, чтобы получить номинальную мощность в кВА.
Пример
Однофазное устройство имеет номинальные значения на паспортной табличке 120 вольт, 40 ампер
Тогда мощность однофазной кВА составляет:
120 X 40 = 4800 вольт-ампер
4800 вольт-ампер ÷ 1000 = 4.8 кВ (примерно 5 кВА)
Трехфазная установка
- Определить входное напряжение для оборудования или цепи, подлежащей защите
- Определить номинальную силу тока для защищаемого оборудования или цепи
- Умножьте напряжение на ток на 1,732 и разделите на 1000, чтобы получить номинальную мощность в кВА.
Пример
Трехфазное устройство имеет номинальные значения на паспортной табличке 480 вольт, 60 ампер
Тогда мощность трехфазной кВА составляет:
480 х 60 х 1.732 = 49,882 вольт-ампер
49882 вольт-ампер ÷ 1000 = 49,9 киловольт-ампер (приблизительно 50 кВА)
Сила тока / пусковой ток
Сила переменного тока — это сила тока, протекающего в устройстве или в цепи. Электрические устройства потребляют различное количество тока в зависимости от их рабочего состояния или объема выполняемой работы. Например, ток в трехфазном электродвигателе изменяется от нуля (выключено) до пикового уровня (пиковый, заблокированный ротор, пусковой или пусковой ток) и падает до промежуточного уровня (ток полной нагрузки или установившийся ток. ).Пусковой ток трехфазного двигателя может в 5-10 раз превышать ток полной нагрузки. (См. Перегрузочная способность.)
Расчет силы тока
Определение силы тока для использования при расчете мощности в кВА зависит от типа используемого стабилизатора мощности. Для стабилизаторов мощности с высокой перегрузочной способностью обычно используется установившийся режим или сила тока полной нагрузки. Для стабилизаторов мощности с низкой устойчивостью к условиям перегрузки обычно используется пусковой или пиковый ток.Нет ничего необычного в том, что стабилизатор мощности с высокой устойчивостью к перегрузкам оказывается на 20-50% меньше, чем их непереносимые аналоги.
Есть несколько способов определить силу тока.
Первый способ — получить значения силы тока из паспортной таблички или документации для каждого устройства. Этот метод довольно точен и прост.
Второй способ — определение номинальной силы тока автоматического выключателя для цепей, которые защищает стабилизатор питания. Этот метод имеет тенденцию давать значения, которые слишком высоки для устройств, устойчивых к перегрузке, и могут быть слишком низкими для устройств, устойчивых к перегрузке.
Третий способ — измерение тока защищаемых устройств или цепей. Этот метод должен использоваться только квалифицированными техниками или профессионалами, знакомыми с методами измерения и процедурами безопасности. Этот метод часто дает очень точные результаты при условии, что измеренная сила тока точно соответствует ожидаемому максимальному потреблению.
Во всех случаях разумно обеспечить некоторый запас при расчете силы тока, чтобы гарантировать, что номинал стабилизатора мощности не будет заниженным.
Калькулятор химического состава воды| Дезинфицирующие средства
Перед добавлением соли проверьте воду в бассейне на текущий уровень соли.
2800 частей на миллион
pH — это показатель кислотности / щелочности воды в бассейне. Если pH слишком низкий, вода может вызвать коррозию оборудования бассейна. Если pH слишком высок, хлор становится менее эффективным для дезинфекции.
7.2 pH
Общая щелочность (TA) — это мера общего содержания щелочных веществ в воде бассейна. Последствия неправильного уровня TA варьируются от коррозии металлических частей бассейна, окрашивания бассейна, горящих глаз, мутной воды и снижения эффективности хлора.
90 страниц в минуту
Циануровая кислота (стабилизатор) очень важна для работы вашей системы производства хлора.Это мягкая кислота, которая помогает предотвратить разложение хлора под действием солнечных ультрафиолетовых лучей.
40 страниц в минуту
Общая жесткость — это показатель общего количества минералов, содержащихся в воде вашего бассейна. Слишком высокая кальциевая жесткость приведет к образованию накипи в вашем бассейне, а слишком низкая — к коррозии воды в бассейне.
300 страниц в минуту
Фосфаты являются обычными компонентами большинства источников воды в бассейнах, и они могут быть внесены внешними факторами (например,грамм. удобрения). Для большинства владельцев бассейнов фосфаты не являются проблемой ни для здоровья, ни для управления водой в бассейне. Однако в некоторых случаях, поскольку фосфаты являются источником пищи для водорослей, это может оказаться проблемой. чтобы в бассейне оставался хлор. Если у вас возникли проблемы с удержанием остаточного хлора, проконсультируйтесь с местным специалистом по бассейну.
Показать результаты
Валидация и оценка неопределенности для декларации соответствия метода оценки стабильности пропеллентов на основе нитроцеллюлозы
https: // doi.org / 10.1016 / j.enceco.2021.04.001Получите права и контентОсновные моменты
- •
Оценка неопределенности для декларации о соответствии
- •
Пригодность топлива для безопасного использования и хранения
- •
- проведена процедура валидации и оптимизации.
- •
Метод ВЭЖХ применялся при анализе реальных проб.
Реферат
Целью настоящего исследования была разработка и валидация быстрого и точного метода оценки стабильности и химической стойкости пропеллентов на основе нитроцеллюлозы, которые содержат в качестве стабилизаторов дифениламин, N -нитрозодифениламин, 2 -нитродифениламин, 4-нитродифениламин и этилцентрали.Это было сделано с использованием расчета процентной массового содержания (% мас. / Мас.) Исходного эффективного стабилизатора, расчета массового процентного содержания (% мас. / Мас.) Эффективного стабилизатора после искусственного старения, а также уменьшения концентрации в процентах. Все важнейшие параметры были исследованы и оптимизированы. Валидация и оценка неопределенности метода были основаны на Руководстве Eurachem. Извлечение метода оказалось выше 95%, а значения RSD были ниже 10%.Было установлено, что процедура старения является наиболее важным фактором, влияющим на неопределенность. Настоящее исследование описывает очень важную процедуру управления боеприпасами и способ предоставления декларации о соответствии для безопасного использования и хранения.
Ключевые слова
Стабильность топлива
Безопасное хранение
Процедура старения
Опасные материалы
ВЭЖХ
Рекомендуемые статьиЦитирующие статьи (0)
© 2021 Авторы. Издательские услуги Elsevier B.V. от имени KeAi Communications Co. Ltd.
Рекомендуемые статьи
Цитирование статей
Численное моделирование и расчет горизонтального стабилизатора самолета против аэродинамических сил с использованием визуального метода
[1] Y X Zhao. Методология анализа усталостной надежности на основе деформации [J].Техника надежности и системная безопасность, 2000, 70 (2): 205-213.
DOI: 10.1016 / s0951-8320 (00) 00062-4
[2] Ч. Р. Уильямс, Й. Л. Ли, Дж. Т. Рилли.Практический метод статистического анализа данных усталостной деформации и долговечности [J]. Международный журнал усталости, 2003 г., 25 (5): 427-436.
DOI: 10.1016 / s0142-1123 (02) 00119-6
[4] Виршинг П. Х., Чен И. Н.Рассмотрение вероятностного расчета на усталость морских конструкций [J]. Морские сооружения, 1988, 1, 23-45.
DOI: 10.1016 / 0951-8339 (88)
- -3
[5] Т. Фадейл, Р.Сьюз. Анализ надежности и оптимальное проектирование нахлеста цельной конструкции планера [R]. AIAA-99-1604, 1-11.
DOI: 10.2514 / 6.1999-1604
[7] Фройденталь А М.Безопасность конструкций [J] .Transaction on ASCE, 1947, (112): 125-128.
[8] Елишаков И. Очерк неопределенностей в упругих и вязкоупругих структурах: Из А.Критика М. Фройденталя современному выпуклому моделированию [J]. Компьютеры и конструкции, 1995, 56 (6): 871-895.
DOI: 10.1016 / 0045-7949 (94) 00499-s
Эквиваленты состава нержавеющих сталей, понимаемые через эффективность стабилизации гамма-излучения
Метод эквивалента состава широко используется для прогнозирования фазового типа сталей с прошлого века.Эквивалентный метод достигается с помощью диаграммы состояния, охватывающей аустенит, феррит, мартенсит и их перекрывающиеся фазовые поля. Химический вклад легирующих элементов на диаграмме оценивается двумя эквивалентами состава, эквивалентом хрома (Cr экв. ) и эквивалентом никеля (Ni экв. ), которые выражаются как эквивалентный вклад в стабильность каждого легирующего элемента в терминах Cr или Ni соответственно. Все легирующие элементы в сталях отныне сгруппированы в Ni-подобные и Cr-подобные элементы, так называемые аустенитные и ферритные стабилизаторы, и их вклад в Cr экв и Ni экв взвешивается с помощью определенных эмпирических коэффициентов, полученных из массы экспериментов. .Следовательно, прогнозирование фазового типа может быть выполнено, следуя фазовому полю на диаграмме строения, как определено координатами Cr экв и Ni экв . Очевидно, что точность диаграммы строения и подобранного эквивалентного уравнения определяет предсказуемость фазового типа эквивалентного метода.
Самая известная диаграмма строения — диаграмма Шеффлера 1 , первоначально разработанная для сварки нержавеющей стали. Диаграмма Шеффлера (рис.1) содержит в основном фазовые поля аустенита, мартенсита, феррита и их перекрывающиеся зоны с линиями изоферрита для прогнозирования процентного содержания феррита. Однако только несколько легирующих элементов учитываются в эквивалентных уравнениях Шеффлера 1 , Ni экв = Ni + 30C + 0,5Mn, Cr экв = Cr + Mo + 1,5Si + 0,5Nb, где коэффициент представляет относительную вклад каждого элемента в аустенитную или ферритную стабильность. С развитием нержавеющих сталей требуется более точное предсказание фазового типа для сложных составов.Были предложены новые диаграммы строения и соответствующие эквивалентные уравнения, в основном нацеленные на конкретные нержавеющие стали с указанным диапазоном составов , 2,3,4,5,6,7,8,9,10,11 . Эквивалентный метод больше не только предсказывает микроструктуру сварки, но также широко используется для измерения фазовой стабильности любых сталей в зависимости от их химического состава. Например, он используется для проектирования нержавеющих сталей с желаемым содержанием феррита 3 , для прогнозирования содержания мартенсита с различным содержанием углерода 10 и для гарантии достаточной стабильности аустенита для получения прекрасных механических свойств при обеспечении хорошей коррозионной стойкости 12 .
Рисунок 1Исходная диаграмма строения Schaeffler 1 , показывающая измененные границы аустенитной зоны и ее перекрывающиеся зоны с ферритом и мартенситом по Делонгу 2 (пунктирные синие линии) и WRC 8 (пунктирная красная линия).
Усовершенствования оригинального эквивалентного метода Schaeffler были выполнены в двух аспектах: первый — это модификация диаграммы строения, в частности, линий изоферрита, а другой — поправка к эквивалентным уравнениям.Существенные изменения границ зоны чистого аустенита и ее перекрывающихся зон с ферритом и мартенситом были сделаны Delong 2 , показанными синими пунктирными линиями на рис. 1. На этой основе построены диаграммы строения с дальнейшей измененной границей аустенитной и дуплексной зон. для металлов сварного шва были опубликованы Советом по исследованиям в области сварки в 1992 г. 8 , показаны красной пунктирной линией на рис. 1. Следует отметить, что только небольшая область на исходной диаграмме Шеффлера вокруг этих пунктирных линий была изменена.Дальнейшие модификации 13,14,15,16 были внесены в границу, разделяющую зоны аустенита и аустенита + мартенсита в диаграммах строения, хотя они применимы только к определенным составам. В отличие от нескольких модификаций диаграммы строения, эквивалентные уравнения подробно рассматриваются 2,3,4,5,6,7,8,9,10,11 , как указано в таблице 1. Вклад (N , Co, Cu) и (W, V, Al, Ti, Ta) были соответственно добавлены к Ni экв и Cr экв на основе исходных эквивалентных уравнений Шеффлера.Эквивалентные коэффициенты одних и тех же элементов могут быть разными. Например, Hull 3 утверждал, что вклад Al в ферритную стабильность в 2,48 раза больше, чем Cr, но Пикеринг 5 дал 5,5, а Tchizhik et al. 9 предложено 2.8. Другой пример: коэффициенты для N, заявленные разными исследователями, варьируются от 18 до 30. Никаких новых эквивалентных уравнений не было предложено с двадцать первого века 17,18,19,20,21,22,23,24,25 , что означает зрелость эквивалентного метода.
Таблица 1 Сводка коэффициентов каждого элемента в эквивалентах Ni / Cr со ссылкой на литературу 1,2,3,4,5,6,7,8,9,10,11 , а последние две строки показывают диапазон рассчитанных нами коэффициентов и соответствующего содержания.Для диверсификации эквивалентных коэффициентов Рагхаван 26 предложил разумное объяснение, согласно которому эквивалентный коэффициент должен варьироваться в первую очередь в зависимости от содержания легирующего элемента (то есть с Ni и другими легирующими элементами) и в меньшей степени с обработкой (т.е.е., с температурой отжига и скоростью охлаждения). Из-за коэффициента, зависящего от состава, надежный прогноз делается в основном для сталей с аналогичным химическим составом, и выбор надлежащих эквивалентных уравнений для новых сталей становится затруднительным. Более того, коэффициенты получены в результате экспериментов в различных условиях. Поэтому требуется глубокое понимание теоретического происхождения эквивалентного метода.
На самом деле диаграмма строения является особым представлением неравновесия (т.е.е., зависит от обработки) фазовая диаграмма в многоэлементной системе, содержащая фазовые поля и их границы. Затем к предсказанию фазового типа можно получить доступ через границу фазового поля конкретной фазы на определенной многоэлементной фазовой диаграмме. Диаграмма Шеффлера приблизительно соответствует изотермическим диаграммам состояния Fe – Cr – Ni, охватывающим аустенитные и ферритные зоны 27 . Вот почему мы интерпретировали эквивалентный коэффициент определенного легирующего элемента как наклон линии границы фазового поля по отношению к таковому для основного легирующего элемента, как показано в эквиваленте Мо для сплавов β-Ti 28 .Средний наклон граничной линии, разделяющей зоны β- и β + α-фаз на бинарной фазовой диаграмме на основе Ti, принимают как вклад элемента в стабильность β-фазы. Большой уклон означает сильное стабилизирующее действие этого элемента. Затем этот наклон делится на наклон Mo, чтобы получить способность этого элемента к стабильности по сравнению с Mo. Таким образом, получают вклады каждого легирующего элемента, и новый эквивалент Mo, обозначенный (Moeq) Q , лучше объясняет структурную стабильность сплавов β-Ti и способствует разработке новых многокомпонентных сплавов β-Ti с низким модулем Юнга.
Самая важная концепция в преобладающем эквивалентном методе состоит в том, что вклад определенного элемента связан только с его содержанием (т. Е. Наклон граничной линии зависит от его заданного состава), но не зависит от присутствия других легирующих элементов (т. Е. расширение и сжатие межфазных границ, вызванное любым другим легирующим элементом, не учитывается). Это также фундаментальная концепция в нашем эквивалентном методе, которая была доказана Брэнди 27 посредством термодинамических расчетов.Эта концепция оправдана для классических сплавов, которые в большинстве своем являются твердыми твердыми растворами; это может не выполняться для высокоэнтропийных сплавов, в которых нельзя игнорировать взаимодействия между легирующими элементами. Это упрощение связано с трудностью оценки структурной стабильности в многоэлементных сплавах даже с помощью средств расчета фазовой диаграммы. На этом основании наклон заданной нижней границы зоны γ-фазы на бинарной фазовой диаграмме Fe-M (M — любой легирующий элемент) рассматривается как фактическая фазовая стабилизационная эффективность любого легирующего элемента.В отличие от нашего предыдущего эквивалента, основанного на среднем наклоне всей фазовой границы, здесь применяется наклон выбранной фазовой границы, начиная с чистого Fe и заканчивая заданным составом.
Этот наклон легирующего элемента, который определяется его внутренними характеристиками и содержанием, эффективно оценивает его фазо-стабилизирующую способность в нержавеющих сталях. Таким образом, учитывается влияние легирующего состава, что объясняет различные эквивалентные коэффициенты, и может быть достигнуто более точное предсказание фазовой стабильности.Что еще более важно, наклон нижней границы зоны γ-фазы в бинарной фазовой диаграмме Fe-M рассматривается как теоретическое происхождение эквивалентного коэффициента. И на этой основе можно рассчитать коэффициент каждого легирующего элемента в стали с заданным составом, не выделяя аустенитный или ферритный стабилизатор.
В этой статье сначала определяется эффективность стабилизации γ k M легирующего элемента M в нержавеющих сталях, которая относится к наклону границы раздела фаз γ / γ + α при заданном содержании M на бинарной диаграмме Fe-M.Затем путем анализа 118 стандартных нержавеющих сталей рассчитываются эквивалентные коэффициенты легирующих элементов в соответствии с этой недавно определенной эффективностью стабилизации γ. Наконец, рассчитанные коэффициенты используются для отображения 118 нержавеющих сталей на диаграмме Шеффлера, чтобы дополнительно доказать осуществимость эффективности стабилизации γ для оценки фазовой стабильности легирующих элементов.
Как преобразовать кВА в амперы? (+3 примера)
кВА (киловольт-ампер) — составная единица.Он состоит из электрического потенциала (вольт) и электрического тока (ампер). 1 кВА — часто используемая единица; это составляет 1000 вольт-ампер. Во многих случаях полезно преобразовать кВА в усилители .
Самый частый вопрос здесь: «Сколько ампер x кВА» . Для расчета ампер мы должны использовать формулу кВА:
I (Ампер) = S (ВА) / В (Вольт)
S означает полную мощность ; то, что измеряется, — это вольт-амперы (ВА).По сути, вы, возможно, уже догадались, что Вольт-Ампер эквивалентно Ватту (1 Вт = 1 А * В = 1 AV).
Используя эту формулу, мы подготовили калькулятор для преобразования кВА в амперы. Вот краткое описание 1 кВА для цепей на 120, 22 и 12 В (аккумулятор):
1 кВА в амперах (120 В) = 8,33 А
1 кВА в амперах (220 В) = 4,55 А
1 кВА в амперах (12 В) = 83,33 А
Ниже калькулятора вы найдете таблицу кВА в амперы (необходимо знать напряжение — обычно 220 В) , а также 2 решенных примера преобразования кВА в амперы .Вы можете использовать его здесь:
кВА к калькулятору ампер (с таблицей)
Теперь мы можем рассчитать таблицу кВА в амперы:
кВА (полная мощность) | Напряжение (220 В) | Сила тока (А) |
---|---|---|
Сколько ампер в 1 кВА? | 220 В | 4,55 А |
Сколько ампер в 5 кВА? | 220 В | 22,73 А |
Сколько ампер в 10 кВА? | 220 В | 45.45 ампер |
Сколько ампер в 20 кВА? | 220 В | 90,91 А |
Сколько ампер в 30 кВА? | 220 В | 136,36 А |
Сколько ампер в 45 кВА? | 220 В | 204,55 А |
Сколько ампер в 60 кВА? | 220 В | 272,73 А |
Сколько ампер в 90 кВА? | 220 В | 409,09 А |
Сколько ампер в 120 кВА? | 220 В | 545.45 ампер |
Чтобы продемонстрировать, как работает расчет отношения кВА к амперам, давайте рассмотрим эти 3 примера:
Пример 1: Сколько ампер у генератора 65 кВА?
Одним из распространенных примеров преобразования кВА в амперы является генератор. Например, у вас есть генератор Americas Generators 65 кВА (на 220 В), и вы хотите знать, сколько ампер вы можете получить от него.
Давайте воспользуемся приведенным выше калькулятором кВА в усилители, чтобы ответить на этот вопрос:
Как мы видим, генератор на 65 кВА при 220 В может создать ток почти 300 ампер.
Пример 2: Что такое 1 кВА в амперах?
Чтобы рассчитать ампер для себя, полезно знать, что такое 1 кВА в амперах. Конечно, это также зависит от напряжения, которое вы используете. Допустим, у нас есть стандартное напряжение (220 В). Вот сколько ампер вы получите от устройства на 1 кВА:
Вы можете использовать эту информацию, чтобы подсчитать, сколько ампер вы получаете от устройств с несколькими кВА.
Пример 3: Генератор для кондиционера на 5000 БТЕ
Допустим, у вас есть небольшой портативный кондиционер на 5000 БТЕ, и вы хотите купить генератор для его работы.Блоку переменного тока мощностью 5000 БТЕ требуется около 500 Вт электроэнергии. Это означает, что вам понадобится генератор 0,5 кВА. Сколько ампер он потребляет? Давайте узнаем:
Как видите, если генератор имеет напряжение 220 В, он будет создавать 2,27 ампер электрического тока.
С этим у вас есть все необходимое для преобразования кВА в амперы. Если у вас есть вопросы, вы можете задать их в комментариях ниже.
Помощь по конструкции стабилизатора| Forum for Electronics
Я разрабатываю стабилизатор на базе PIC18F46K22.Я читал о CVT (трансформаторы постоянного напряжения) и обнаружил, что в этом случае вторичная обмотка будет насыщена, а выход не будет чистой синусоидой, а вместо этого будет сглажен пик, и поэтому я пытаюсь разработать свой собственный стабилизатор. Стоимость не проблема. Я хочу сделать хороший дизайн.Это мои расчеты трансформатора. Это правильно? Какое будет нормальное количество витков первичной обмотки стабилизирующего трансформатора? Для целей расчета я принял первичное число витков равным 100. Если его можно уменьшить до 50, то это тоже нормально.
от 110 В до 290 В
Vpri / Vsec = N
Npri / Nsec = N
Nsec = Npri / N
290V / 230V = 1,26, Nsec = 100 / 1,26 = ~ 79
270V / 230V = 1,174, Nsec = 100 / 1,174 = ~ 85
250V / 230V = 1,087, Nsec = 100 / 1,087 = ~ 92
230V / 230V = 1, Nsec = 100/1 = 108,7 = 100
210V / 230V = 0,91, Nsec = 100 / 0,91 = ~ 110
190 В / 230 В = 0,826, Nsec = 100 / 0,826 = ~ 121
170 В / 230 В = 0,739, Nsec = 100/0.739 = ~ 135
150 В / 230 В = 0,652, Nsec = 100 / 0,652 = ~ 153
130 В / 230 В = 0,565, Nsec = 100 / 0,565 = ~ 177
110 В / 230 В = 0,478, Nsec = 100 / 0,478 = ~ 209
Вместо других методов переключения я просто переключу правильный ответ, чтобы получить постоянный выход 230 В.