Как рассчитать параметры трансформатора онлайн. Какие формулы использовать для расчета мощности, числа витков и сечения проводов. Особенности расчета разных типов трансформаторов.
Принцип работы и устройство трансформатора
Трансформатор — это электротехническое устройство для передачи электроэнергии без изменения ее формы и частоты. Он работает на принципе электромагнитной индукции и состоит из следующих основных элементов:
- Магнитопровод (сердечник)
- Первичная и вторичная обмотки
- Каркас для намотки обмоток
- Изоляция
- Крепежные детали
При подаче переменного напряжения на первичную обмотку в ней возникает переменный магнитный поток. Этот поток, пронизывая витки вторичной обмотки, индуцирует в ней ЭДС. Соотношение числа витков обмоток определяет коэффициент трансформации напряжения.
Виды магнитопроводов трансформаторов
От типа и размеров магнитопровода зависят характеристики трансформатора. Различают три основных вида сердечников:
Стержневой магнитопровод
Имеет П-образную или Ш-образную форму. Собирается из вертикальных стержней, соединенных горизонтальным ярмом. Обмотки располагаются на стержнях.
Броневой магнитопровод
Отличается тем, что ярмо охватывает обмотки с внешней стороны, защищая их от внешних электромагнитных воздействий.
Тороидальный магнитопровод
Имеет кольцевую форму. Изготавливается из ленты электротехнической стали, намотанной в виде кольца. Обмотки располагаются равномерно по всей длине тороида.
Как рассчитать мощность трансформатора
Мощность трансформатора зависит от сечения магнитопровода и может быть рассчитана по формуле:
P = (S / 1.33)^2
где S — площадь сечения сердечника в см2, P — мощность в Вт.
Можно также выполнить обратный расчет — определить необходимое сечение сердечника по заданной мощности:
S = 1.2 * √P
Эти формулы позволяют быстро оценить соотношение мощности и габаритов трансформатора.
Онлайн калькуляторы для расчета трансформаторов
Для упрощения расчетов удобно использовать онлайн калькуляторы. Они позволяют быстро определить основные параметры трансформатора, зная:
- Входное и выходное напряжение
- Выходной ток или мощность
- Форму и размеры магнитопровода
Калькуляторы автоматически рассчитывают:
- Число витков обмоток
- Сечение проводов
- Габариты каркаса
- КПД трансформатора
Это значительно упрощает процесс проектирования, позволяя избежать ошибок ручного расчета.
Особенности расчета автотрансформаторов
Автотрансформатор отличается тем, что имеет одну обмотку, часть которой является общей для первичной и вторичной цепи. При расчете автотрансформатора нужно учитывать:
- Меньшее число витков по сравнению с обычным трансформатором той же мощности
- Возможность получения коэффициента трансформации близкого к 1
- Отсутствие гальванической развязки между цепями
- Повышенный КПД при небольших коэффициентах трансформации
Эти особенности позволяют сделать автотрансформатор компактнее и экономичнее обычного трансформатора.
Расчет тороидальных трансформаторов
Тороидальные трансформаторы имеют ряд преимуществ:
- Минимальные габариты при заданной мощности
- Низкий уровень электромагнитных помех
- Высокий КПД
При расчете тороидального трансформатора учитывают:
- Размеры кольцевого магнитопровода
- Равномерное распределение обмоток по длине тороида
- Ограничение по максимальному диаметру намотки
Для точного расчета рекомендуется использовать специализированные программы или калькуляторы.
Практические советы по изготовлению трансформаторов
При самостоятельном изготовлении трансформаторов следует учитывать:
- Качество изоляции между слоями обмоток и магнитопроводом
- Плотность укладки витков для уменьшения габаритов
- Возможность регулировки выходного напряжения отводами
- Необходимость пропитки обмоток лаком для повышения электрической прочности
- Способы отвода тепла при работе на повышенных мощностях
Соблюдение этих рекомендаций позволит изготовить надежный и эффективный трансформатор.
Заключение
Расчет параметров трансформатора — важный этап его проектирования и изготовления. Использование онлайн калькуляторов и специализированных программ значительно упрощает этот процесс. При этом важно понимать физические принципы работы трансформатора и учитывать особенности различных конструкций. Это позволит создавать оптимальные трансформаторы для конкретных применений.
Расчет трансформатора на стержневом сердечнике в онлайн
Силовой трансформатор является нестандартным изделием, которое часто применяется радиолюбителями, промышленности и при конструировании многих бытовых приборов. Под этим понятием подразумевается намоточное устройство, изготовленное на металлическом сердечнике, набранном из пластин электротехнической стали. Стандартными являются немногие подобные изделия, поэтому чаще всего радиолюбители изготавливают их самостоятельно. Поэтому весьма актуален вопрос: как выполнить расчет трансформатора по сечению сердечника калькулятор использовав для этого?
Необходимые сведения
Для изготовления намоточного изделия необходимо руководствоваться множеством сведений. От этого напрямую будет зависеть качество, срок службы готового блока питания. Следует грамотно подойти к процессу расчета, учесть такие показатели, как магнитную индуктивность, КПД и плотность тока.
Иначе изделие получится ненадежным и скоро выйдет из строя. К основным характеристикам следует отнести:- Входное напряжение сети. Оно зависит от источника, к которому будет подключен трансформатор. Стандартными являются: 110 В, 220 В, 380 В, 660 В. На практике оно может быть любым, что зависит от характеристик промежуточных цепей.
- Выходное напряжение трансформатора — величина, требуемая для обеспечения стабильной работы потребителя. Часто требуется изготовить изделие с несколькими номиналами или с регулируемым напряжением. Тогда необходимо учитывать максимальную его величину.
- Ток в нагрузке. При фиксированном значении рассчитываются жесткие характеристики устройства, но часто требуется обеспечить регулируемую величину, тогда потребуется учесть максимальную его величину.
- Частота сети. У нас применяется европейский стандарт, то есть 50 Гц.
- Мощность нагрузки. Это не основной параметр, потому что ее можно определить по напряжению и току.
- Количество выходных обмоток. В некоторых электронных приборах используются блоки питания с несколькими выходными напряжениями. Для изготовления силовой электроники используется в основном один номинал, например, для сварочных трансформаторов.
Также потребуется учесть тип сердечника, потому что от его конструкции напрямую зависит принцип расчета показателей изделия. Существует много разновидностей как конструкций, так и материалов. Если учитывать последние нет смысла из-за незначительных погрешностей, то форма и размеры имеют большое значение. Поэтому необходимы разные алгоритмы расчета, что зависит от этого критерия. Начнем с самого простого и распространенного.
Не всегда требуется расчет вести с требуемых данных. Нередко в наличии есть какое-то железо, тогда потребуется определить мощность трансформатора по сечению магнитопровода. Программы онлайн, имеющиеся в интернете, позволяют определять параметры любым порядком.
Расчет броневого трансформатора
Распространен вид трансформаторов, используемый практически во всех устройствах от зарядных аппаратов для шуруповертов, заканчивая боками питания магнитофонов. В процессе эксплуатации всех этих устройств часто возникают поломки в питателе, связанные со сгоревшим намоточным изделием. Тогда для его восстановления потребуется перемотка, но это проблемы не решает.
Часто требуется увеличить мощность источника, тогда как рассчитать трансформатор, чтобы его железо не перегревалось? Потребуется выбрать железо больших размеров и использовать более толстый провод. Такой ход поможет сохранить работоспособность устройства и даже улучшить характеристики, сделав его стабильнее и устойчивее при скачках напряжений в сети.
К сожалению, не все производители учитывают этот фактор, а ведь наша сеть неустойчива и регулярно в ней наблюдаются помехи в виде высоковольтных игольчатых импульсов. Также возникают ситуации, когда наблюдается просадка сети до 170 В, что характерно в зимний период. Тогда необходимо предусмотреть запас по напряжению как минимум на 40−45%, увеличив мощность и компенсационного стабилизатора. Часто такие ситуации наблюдаются в частном секторе.
Вернемся к расчету Ш-образного трансформатора на ШП-сердечнике. Принцип будет одинаков и с сердечником типа ПЛ при условии размещения обмотки на средней части. Для чего потребуется выполнить следующие шаги:
- Определить площадь поперечного сечения средней части сердечника. Она выражается буквой S сеч. и находится из произведения ее сторон. Взяв линейку, измеряем параметры сечения, перемножаем и получаем значение в квадратных сантиметрах.
- На следующем этапе решается вопрос, как рассчитать мощность трансформатора. Это расчетная величина, которую можно определить, возведя S сеч. в квадрат. Значение будет измеряться в Вт и обозначаться буквой «P».
- При расчете мощности сердечника необходимо учитывать тип использованных пластин. Например, если были применены для набора Ш-20, то общая толщина сердечника должна быть 30 мм при мощности в 36 Вт. Если для трансформатора были использованы пластины Ш-30, то толщина набора будет достаточно в 20 мм, а при использовании Ш-24 — 25 мм. Существуют справочные таблицы, в которых можно найти мощность трансформатора по сечению магнитопровода для конкретной ситуации. Для обеспечения наилучшей стабильности работы источников питания следует использовать железо с избытком мощности как минимум на 25%. То есть, если ранее была расчетная мощность равна 6 Вт, то для надежности работы и исключения насыщения сердечника следует брать в расчет как минимум 8 Вт. Это обязательное условие. Если использовать магнитопровод с меньшей площадью сечения сердечника, то трансформатор быстро выйдет из строя, потому что железо окажется в насыщении, что приведет к увеличению токов в обмотках.
- На следующем этапе необходимо определиться с количеством обмоток. Для современных транзисторных устройств достаточно будет всего одной или сдвоенной со средней точкой. Поэтому рассмотрим пример расчета именно такого трансформатора. Для этого потребуется воспользоваться понятием «вольт на виток». Значение определяется следующим образом: W /В=(50÷70) / S сеч. Формула справедлива только для сердечников типа ШП и П. Л. При расчете первичной и вторичной обмоток потребуется взять произведение полученного отношения и входного напряжения: W1 = W / B∙U1, W2 = 1,2 ∙ W /B∙U2.
- Выполняется расчет и выбор диаметра провода. Он выбирается исходя из хорошего теплоотвода и изоляции, для чего рекомендуется применять ПЭЛ или ПЭВ, покрытые лаком. Определить его размер можно по формуле: d =0,7∙√ I. Величина выражается в мм. Провод выбирается с небольшим запасом до 4−6%.
Все программы расчета трансформаторов позволяют находить параметры изделий в любом порядке. Они используют стандартные алгоритмы, по которым выводятся значения. При необходимости можно создать собственный калькулятор с помощью таблиц Excel. Подобным образом работает и калькулятор расчета трансформатора на стержневом сердечнике.
Программы для расчета
Известно много программ, которые предлагают онлайн расчет параметров любого трансформатора на броневом или стержневом сердечнике. Одной из таких может стать сервис на сайте «skrutka».
- входное напряжение — U1;
- выходное напряжение — U2;
- ширину пластины — а;
- толщину стопки — b ;
- частоту сети — Гц;
- габаритная мощность — В*А;
- КПД;
- магнитную индуктивность магнитопровода — Тл;
- плотность тока в обмотках — А/мм кв.
Последние 4 величины являются табличными, поэтому потребуется воспользоваться справочником.
Необходимо грамотно и ответственно отнестись к расчету параметров трансформатора, потому что от качества выполненной работы будет зависеть и качество функционирования вашего блока питания. Не всегда стоит надеяться на программы, в них могут быть ошибки. Выберите один или несколько параметров и пересчитайте их вручную по ранее приведенным формулам. Если получится примерно равное значение, то результат можно считать правильным.
Калькулятор расчета трансформатора онлайн
Результаты расчета | |||
Мощность: | |||
Первичная обмотка | |||
Ток (A): | |||
Количество витков (Шт): | |||
Диаметр провода (мм): | |||
Вторичная обмотка | |||
Ток (A): | |||
Количество витков (Шт): | |||
Диаметр провода (мм): |
Трансформаторы постоянно используются в различных схемах, при устройстве освещения, питании цепей управления и прочем электронном оборудовании. Поэтому довольно часто требуется вычислить параметры прибора, в соответствии с конкретными условиями эксплуатации. Для этих целей вы можете воспользоваться специально разработанным онлайн калькулятором расчета трансформатора. Простая таблица требует заполнения исходными данными в виде значения входного напряжения, габаритных размеров, а также выходного напряжения.
Преимущества онлайн калькулятора
В результате расчета трансформатора онлайн, на выходе получаются параметры в виде мощности, силы тока в амперах, количества витков и диаметра провода в первичной и вторичной обмотке.
Существуют формулы, позволяющие быстро выполнить расчеты трансформатора. Однако они не дают полной гарантии от ошибок при проведении вычислений. Чтобы избежать подобных неприятностей, применяется программа онлайн калькулятора. Полученные результаты позволяют выполнять конструирование трансформаторов для различных мощностей и напряжений. С помощью калькулятора осуществляются не только расчеты трансформатора. Появляется возможность для изучения его устройства и основных функций. Запрошенные данные вставляются в таблицу и остается только нажать нужную кнопку.
Благодаря онлайн калькулятору не требуется проводить каких-либо самостоятельных подсчетов. Полученные результаты позволяют выполнять перемотку трансформатора своими руками. Большинство необходимых расчетов осуществляется в соответствии с размерами сердечника. Калькулятор максимально упрощает и ускоряет все вычисления. Необходимые пояснения можно получить из инструкции и в дальнейшем четко следовать их указаниям.
Конструкция трансформаторных магнитопроводов представлена тремя основными вариантами – броневым, стержневым и тороидальным. Прочие модификации встречаются значительно реже. Для расчета каждого вида требуются исходные данные в виде частоты, входного и выходного напряжения, выходного тока и размеров каждого магнитопровода.
Трансформаторы постоянно используются в различных схемах, при устройстве освещения, питании цепей управления и прочем электронном оборудовании. Поэтому довольно часто требуется вычислить параметры прибора, в соответствии с конкретными условиями эксплуатации. Для этих целей вы можете воспользоваться специально разработанным онлайн калькулятором расчета трансформатора. Простая таблица требует заполнения исходными данными в виде значения входного напряжения, габаритных размеров, а также выходного напряжения. Блок: 1/2 | Кол-во символов: 519 4 практических совета по наладке и сборке трансформатора: личный опытСборка магнитопровода Степень сжатия пластин влияет на шумы, издаваемые железом сердечника при вибрациях от протекающего по нему магнитного потока. Одновременно не плотное прилегание железа с воздушными зазорами увеличивает магнитное сопротивление, вызывает дополнительные потери энергии. Если для стягивания пластин используются металлические шпильки, то их надо изолировать от железа сердечника бумажными вставками и картонными шайбами. Иначе по этому креплению возникнет искусственно созданный короткозамкнутый виток. В нем станет наводиться дополнительная ЭДС, значительно снижающая коэффициент полезного действия. Состояние изоляции крепежных болтов относительно железа сердечника проверяют мегаомметром с напряжением от 1000 вольт. Показание должно быть не менее 0,5 Мом. Расчет провода по плотности тока Оптимальные размеры трансформатора играют важную роль для устройств, работающих при экстремальных нагрузках. Для питающей обмотки, подключенной к бытовой проводке лучше выбирать плотность тока из расчета 2 А/мм кв, а для остальных — 2,5. Способы намотки витков Быстрая навивка на станке «внавал» занимает повышенный объем и нормально работает при относительно небольших диаметрах провода. Качественную укладку обеспечивает намотка плотными витками один возле другого с расположением их рядами и прокладкой ровными слоями изоляции из конденсаторной бумаги, лакоткани, других материалов. Хорошо подходят для создания диэлектрического слоя целлофановые (не из полиэтилена) ленты. Можно резать их от упаковок сигарет. Отлично справляется с задачами слоя изоляции кулинарная пленка для запекания мясных продуктов и выпечек. Она же придает красивый вид внешнему покрытию катушки, одновременно обеспечивая ее защиту от механических повреждений. Обмотки сварочных и пускозарядных устройств, работающие в экстремальных условиях с высокими нагрузками, желательно дополнительно пропитывать между рядами слоями силикатного клея (жидкое стекло). Ему требуется дать время, чтобы засох. После этого наматывают очередной слой, что значительно удлиняет сроки сборки. Зато созданный по такой технологии трансформатор хорошо выдерживает высокие температурные нагрузки без создания межвитковых замыканий. Как вариант такой защиты работает пропитка рядов провода разогретым воском, но, жидкое стекло обладает лучшей изоляцией. Когда длины провода не хватает для всей обмотки, то его соединяют. Подключение следует делать не внутри катушки, а снаружи. Это позволит регулировать выходное напряжение и силу тока. Замер тока на холостом ходу трансформатора Мощные сварочные аппараты требуют точного подбора объема пластин и количества витков под рабочее напряжение, что взаимосвязано. Выполнить качественную наладку позволяет замер тока холостого хода при оптимальной величине напряжения на входной обмотке питания. Его значение должно укладываться в предел 100÷150 миллиампер из расчета на каждые 100 ватт приложенной мощности для трансформаторных изделий длительного включения. Когда используется режим кратковременной работы с частыми остановками, то его можно увеличить до 400÷500 мА. Выполняя расчет трансформатора онлайн калькулятором или проверку его вычислений дедовскими формулами, вам придется собирать всю конструкцию в железе и проводах. При первых сборках своими руками можно наделать много досадных ошибок. Чтобы их избежать рекомендую посмотреть видеоролик Виктора Егель. Он очень подробно и понятно объясняет технологию сборки и расчета. Под видео расположено много полезных , с которыми тоже следует ознакомиться. Если заметите в ролике некоторые моменты, которые немного отличаются от моих рекомендаций, то можете задавать вопросы в комментариях. Обязательно обсудим. Блок: 4/4 | Кол-во символов: 3717 Расчет ш-образного трансформатора
Блок: 3/5 | Кол-во символов: 1282 Как рассчитать мощность трансформатора
Если вам необходимо определить мощность трансформатора, который потребуется для конкретных целей, то нужно суммировать мощность установленных энергопотребляющих приборов с 20%-ми, для того, чтобы он имел запас. Например, если у вас имеется 10м светодиодной полосы, потребляющей 48 ватт, то вам необходимо к этому числу прибавить 20%. Получится 58 ватт – минимальная мощность трансформатора, который нужно будет установить. Блок: 4/5 | Кол-во символов: 985 Количество использованных доноров: 4 Информация по каждому донору:
|
онлайн-калькуляторы, особенности автотрансформаторов и торов
Одним из часто применяемых устройств в областях энергетики, электроники и радиотехники является трансформатор. Часто от его параметров зависит надёжность работы приборы в целом. Случается так, что при выходе трансформатора из строя или при самостоятельном изготовлении радиоприборов не получается найти устройство с нужными параметрами серийного производства. Поэтому приходится выполнять расчёт трансформатора и его изготовление самостоятельно.
Принцип работы устройства
Трансформатор — это электротехническое устройство, предназначенное для передачи энергии без изменения её формы и частоты. Используя в своей работе явление электромагнитной индукции, устройство применяется для преобразования переменного сигнала или создания гальванической развязки. Каждый трансформатор собирается из следующих конструктивных элементов:
- сердечника;
- обмотки;
- каркаса для расположения обмоток;
- изолятора;
- дополнительных элементов, обеспечивающих жёсткость устройства.
В основе принципа действия любого трансформаторного устройства лежит эффект возникновения магнитного поля вокруг проводника с текущим по нему электрическим током. Такое поле также возникает вокруг магнитов. Током называется направленный поток электронов или ионов (зарядов). Взяв проволочный проводник и намотав его на катушку и подключив к его концам прибор для измерения потенциала можно наблюдать всплеск амплитуды напряжения при помещении катушки в магнитное поле. Это говорит о том, что при воздействии магнитного поля на катушку с намотанным проводником получается источник энергии или её преобразователь.
В устройстве трансформатора такая катушка называется первичной или сетевой. Она предназначена для создания магнитного поля. Стоит отметить, что такое поле обязательно должно всё время изменяться по направлению и величине, то есть быть переменным.
Классический трансформатор состоит из двух катушек и магнитопровода, соединяющего их. При подаче переменного сигнала на контакты первичной катушки возникающий магнитный поток через магнитопровод (сердечник) передаётся на вторую катушку. Таким образом, катушки связаны силовыми магнитными линиями. Согласно правилу электромагнитной индукции при изменении магнитного поля в катушке индуктируется переменная электродвижущая сила (ЭДС). Поэтому в первичной катушки возникает ЭДС самоиндукции, а во вторичной ЭДС взаимоиндукции.
Количество витков на обмотках определяет амплитуду сигнала, а диаметр провода наибольшую силу тока. При равенстве витков на катушках уровень входного сигнала будет равен выходному. В случае когда вторичная катушка имеет в три раза больше витков, амплитуда выходного сигнала будет в три раза больше, чем входного — и наоборот.
От сечения провода, используемого в трансформаторе, зависит нагрев всего устройства. Правильно подобрать сечение возможно, воспользовавшись специальными таблицами из справочников, но проще использовать трансформаторный онлайн-калькулятор.
Отношение общего магнитного потока к потоку одной катушки устанавливает силу магнитной связи. Для её увеличения обмотки катушек размещаются на замкнутом магнитопроводе. Изготавливается он из материалов имеющих хорошую электромагнитную проводимость, например, феррит, альсифер, карбонильное железо. Таким образом, в трансформаторе возникают три цепи: электрическая — образуемая протеканием тока в первичной катушке, электромагнитная — образующая магнитный поток, и вторая электрическая — связанная с появлением тока во вторичной катушке при подключении к ней нагрузки.
Правильная работа трансформатора зависит и от частоты сигнала. Чем она больше, тем меньше возникает потерь во время передачи энергии. А это означает, что от её значения зависят размеры магнитопровода: чем частота больше, тем размеры устройства меньше. На этом принципе и построены импульсные преобразователи, изготовление которых связано с трудностями разработки, поэтому часто используется калькулятор для расчёта трансформатора по сечению сердечника, помогающий избавиться от ошибок ручного расчёта.
Виды сердечников
Трансформаторы отличаются между собой не только сферой применения, техническими характеристиками и размерам, но и типом магнитопровода. Очень важным параметром, влияющим на величину магнитного поля, кроме отношения витков, является размер сердечника. От его значения зависит способность насыщения. Эффект насыщения наступает тогда, когда при увеличении тока в катушке величина магнитного потока остаётся неизменной, т. е. мощность не изменяется.
Для предотвращения возникновения эффекта насыщения понадобится правильно рассчитать объём и сечение сердечника, от размеров которого зависит мощность трансформатора. Следовательно, чем больше мощность трансформатора, тем большим должен быть его сердечник.
По конструкции сердечник разделяют на три основных вида:
- стержневой;
- броневой;
- тороидальный.
Стержневой магнитопровод представляет собой П-образный или Ш-образный вид конструкции. Собирается из стержней, стягивающихся ярмом. Для защиты катушек от влияния внешних электромагнитных сил используются броневые магнитопроводы. Их ярмо располагается на внешней стороне и закрывает стержень с катушкой. Тороидальный вид изготавливается из металлических лент. Такие сердечники из-за своей кольцевой конструкции экономически наиболее выгодны.
Зная форму сердечника, несложно рассчитать мощность трансформатора. Находится она по несложной формуле: P=(S/K)*(S/K), где:
- S — площадь сечения сердечника.
- K — постоянный коэффициент равный 1,33.
Площадь сердечника находится в зависимости от его вида, её единица измерения — сантиметр в квадрате. Полученный результат измеряется в ваттах. Но на практике часто приходится выполнять расчёт сечения сердечника по необходимой мощности трансформатора: Sс = 1.2√P, см2. Исходя из формул можно подтвердить вывод: что чем больше мощность изделия, тем габаритней используется сердечник.
Типовой расчёт параметров
Довольно часто радиолюбители используют при расчёте трансформатора упрощённую методику. Она позволяет выполнить расчёт в домашних условиях без использования величин, которые трудно узнать. Но проще использовать готовый для расчёта трансформатора онлайн-калькулятор. Для того чтобы воспользоваться таким калькулятором, понадобится знать некоторые данные, а именно:
- напряжение первичной и вторичной обмотки;
- габаритны сердечника;
- толщину пластины.
После их ввода понадобится нажать кнопку «Рассчитать» или похожую по названию и дождаться результата.
Стержневой тип магнитопровода
В случае отсутствия возможности расчёта на калькуляторе выполнить такую операцию самостоятельно несложно и вручную. Для этого потребуется определиться с напряжением на выходе вторичной обмотки U2 и требуемой мощностью Po. Расчёт происходит следующим образом:
- Рассчитывается ток нагрузки: In=Po/U2, А.
- Вычисляется величина тока вторичной обмотки: I2 = 1,5*In, А.
- Определяется мощность вторичной обмотки: P2 = U2*I2, Вт.
- Находится общая мощность устройства: Pт = 1,25*P2, Вт.
- Вычисляется сила тока первичной обмотки: I1 = Pт/U1, А.
- Находится необходимое сечение магнитопровода: S = 1,3*√ Pт, см².
Следует отметить, что если конструируется устройство с несколькими выводами во вторичной обмотке, то в четвёртом пункте все мощности суммируются, и их результат подставляется вместо P2.
После того как первый этап выполнен, приступают к следующей стадии расчёта. Число витков в первичной обмотке находится по формуле: K1 = 50*U1/S. А число витков вторичной обмотке определяется выражением K2= 55* U2/S, где:
- U1 — напряжение первичной обмотке, В.
- S — площадь сердечника, см².
- K1, K2 — число витков в обмотках, шт.
Остаётся вычислить диаметр наматываемой проволоки. Он равен D = 0,632*√ I, где:
- d — диаметр провода, мм.
- I — обмоточный ток рассчитываемой катушки, А.
При подборе магнитопровода следует соблюдать соотношение 1 к 2 ширины сердечника к его толщине. По окончании расчёта выполняется проверка заполняемости, т. е. поместится ли обмотка на каркас. Для этого площадь окна вычисляется по формуле: Sо = 50*Pт, мм2.
Особенности автотрансформатора
Автотрансформаторы рассчитываются аналогично простым трансформаторам, только сердечник определяется не на всю мощность, а на мощность разницы напряжений.
Например, мощность магнитопровода 250 Вт, на входе 220 вольт, на выходе требуется получить 240 вольт. Разница напряжений составляет 20 В, при мощности 250 Вт ток будет равен 12,5 А. Такое значение тока соответствует мощности 12,5*240=3000 Вт. Потребление сетевого тока составляет 12,5+250/220=13,64А, что как раз и соответствует 3000Вт=220В*13,64А. Трансформатор имеет одну обмотку на 240 В с отводом на 220 В, который подключён к сети. Участок между отводом и выходом мотается проводом, рассчитанным на 12,5А.
Таким образом, автотрансформатор позволяет получить на выходе мощность значительно больше, чем трансформатор на таком же сердечнике при небольшом коэффициенте передачи.
Трансформатор тороидального типа
Тороидальные трансформаторы имеют ряд преимуществ по сравнению с другими типами: меньший размер, меньший вес и при этом большее КПД. При этом они легко наматываются и перематываются. Использование онлайн-калькулятора для расчёта тороидального трансформатора позволяет не только сократить время изготовления изделия, но и «на лету» поэкспериментировать с разными вводными данными. В качестве таких данных используются:
- напряжение входной обмотки, В;
- напряжение выходной обмотки, В;
- ток выходной обмотки, А;
- наружный диаметр тора, мм;
- внутренний диаметр тора, мм;
- высота тора, мм.
Необходимо отметить, что почти все онлайн-программы не демонстрируют особой точности в случае расчёта импульсных трансформаторов. Для получения высокой точности можно воспользоваться специально разработанными программами, например, Lite-CalcIT, или рассчитать вручную. Для самостоятельного расчёта используются следующие формулы:
- Мощность выходной обмотки: P2=I2*U2, Вт.
- Габаритная мощность: Pg=P2/Q, Вт. Где Q — коэффициент, берущийся из справочника (0,76−0,96).
- Фактическое сечение «железа» в месте размещения катушки: Sch= ((D-d)*h)/2, мм2.
- Расчётное сечение «железа» в месте расположения катушки: Sw =√Pq/1.2, мм2
- Площадь окна тора: Sfh=d*s* π/4, мм2.
- Значение рабочего тока входной обмотки: I1=P2/(U1*Q*cosφ), А, где cosφ справочная величина (от 0,85 до 0,94).
- Сечение провода находится отдельно для каждой обмотки из выражения: Sp = I/J, мм2., где J- плотность тока, берущаяся из справочника (от 3 до 5).
- Число витков в обмотках рассчитывается отдельно для каждой катушки: Wn=45*Un*(1-Y/100)/Bm* Sch шт., где Y — табличное значение, которое зависит от суммарной мощности выходных обмоток.
- Остается найти выходную мощность и расчёт тороидального силового трансформатора считается выполненным. Pout = Bm*J*Kok*Kct* Sch* Sfh /0,901, где: Bm — магнитная индукция, Kok — коэффициент заполнения проводом, Kct —коэффициент заполнения железом.
Все значения коэффициентов берутся из справочника радиоаппаратуры (РЭА). Таким образом, проводить вычисления в ручном режиме несложно, но потребуется аккуратность и доступ к справочным данным, поэтому гораздо проще использовать онлайн-сервисы.
Рекомендации по сборке и намотке
При сборке трансформатора своими руками пластины сердечника собираются «вперекрышку». Магнитопровод стягивается обоймой или шпилечными гайками. Для того чтобы не нарушить изоляцию, шпильки закрываются диэлектриком. Стягивать «железо» нужно с усилием: если его окажется недостаточно при работе устройства возникнет гул.
Проводники наматываются на катушку плотно и равномерно, каждый последующий ряд изолируется от предыдущего тонкой бумагой или лавсановой плёнкой. Последний ряд обматывается киперной лентой или лакотканью. Если в процессе намотки выполняется отвод, то провод разрывается, а на место разрыва впаивается отвод. Это место тщательно изолируется. Закрепляются концы обмоток с помощью ниток, которыми привязываются провода к поверхности сердечника.
При этом существует хитрость: после первичной обмотки не следует наматывать всю вторичную обмотку сразу. Намотав 10—20 витков, нужно измерить величину напряжения на её концах.
По полученному значению можно представить, сколько витков потребуется для получения нужной амплитуды выходного напряжения, тем самым контролируя полученный расчёт при сборке трансформатора.
принцип работы, сечение сердечника, преимущества эксплуатации
Высококачественные трансформаторы широко используются в различных отраслях. Многие мастера ценят такие агрегаты за то, что они достаточно компактны и легки, а вот коэффициент полезного действия находится на высоком уровне. Такие характеристики особенно важны в сварочных аппаратах и стабилизаторах напряжения. Но чтобы такой агрегат исправно работал, нужно правильно рассчитать тороидальный трансформатор.
Краткое описание
Современные производители занимаются промышленным изготовлением нескольких разновидностей магнитопроводов для трансформаторов — броневого, стержневого, тороидального. Если сравнивать их эксплуатационные характеристики и сферы использования, то более эффективным можно считать последний вариант. Всё дело в том, что такое устройство обладает исключительно положительными параметрами, благодаря чему активно применяется в современной промышленности.
Высокая производительность и длительный эксплуатационный срок повлияли на то, что сейчас тороидальный трансформатор является базовым элементом в осветительной технике, стабилизаторах напряжения, источниках бесперебойного питания, радиотехнике, а также медицинском и диагностическом оборудовании.
Сами производители утверждают, что такой агрегат представлен в виде однофазной установки, которая может как понижать, так и повышать мощность. Для качественной эксплуатации трансформатор оборудован мощным сердечником с двумя и более обмотками. Но принцип его эксплуатации ничем не отличается от тех моделей, которые оснащены броневой или стержневой намоткой.
В независимости от эксплуатационных характеристик, трансформатор — это устройство, главная задача которого основана на преобразовании электроэнергии из одной величины в другую. Однако даже самые минимальные изменения в конструктивном исполнении могут существенно изменить итоговые размеры и вес электрической установки. Благодаря этому, технико-экономические параметры будут только возрастать.
Основные преимущества
У такого трансформатора магнитопровод имеет форму тороида, иными словами — все кольца отличаются прямоугольным сечением. Уникальные эксплуатационные характеристики высоко ценятся как в бытовых, так и промышленных сферах. Помимо этого, тороидальный агрегат имеет ряд дополнительных преимуществ в отличие от стандартных стержневых и бронированных моделей:
- У мастеров появилась отличная возможность использовать для сердечника сталь с повышенной магнитной проницаемостью (Э-370, 340).
- Известно, что итоговый поток рассеяния в идеальной тороидальной катушке должен быть равен нулю. В таком трансформаторе этот показатель имеет некоторую конечную величину. Но такие потоки рассеяния не такие уж и большие, как у обычных моделей, поэтому внешние магнитные поля не влияют на слаженную работу трансформатора.
- В сердечнике полностью отсутствуют зазоры и стыки.
- Мастер может смело использовать структурные свойства сердечника, так как в тороидальном агрегате направление магнитного поля полностью совпадает с прокатом ленты.
Все вышеперечисленные преимущества позволяют добиться высоких экономических и электрических показателей. За счёт этого существенно возрастает производительность оборудования:
- Существенно уменьшается общее количество витков, которые используются для получения величины индуктивной первичной обмотки. Такой эффект достигается благодаря использованию сталей с высокой магнитной проницаемостью. В отдельных конструкциях мастерам удалось снизить итоговый расход меди на 25%.
- Полное отсутствие зазоров и наличие высоколегированной стали является причиной того, что в сердечнике трансформатора достигается более высокая индукция. Это функциональное преимущество совершенно не влияет на коэффициент нелинейных искажений. В результате мастеру удаётся повысить Bmax в два раза, что считается невозможным в броневых трансформаторах. В итоге снижается итоговый вес и объём рабочего сердечника.
- Равномерная частотная характеристика каскад достигается за счёт небольшой величины индуктивности рассеяния. Наличие минимальных искажений по вине переходных процессов позволяет использовать довольно глубокую обратную связь отрицательного типа.
В связи с тем, что тороидальный трансформатор обладает небольшим магнитным полем, даже самый тесный монтаж не влияет на взаимодействие с другими элементами конструкции.
Самостоятельное изготовление агрегата
Прежде чем приступить к созданию такого агрегата, необходимо подготовить все необходимые инструменты и материалы. Для изготовления более качественной модели может понадобиться даже швейная машинка, прочная игла и обычные спички, но такие детали можно найти практически в каждом доме.
Основным расходным материалом является железо, из него изготавливаются базовые части трансформатора. Для работы понадобится качественная сталь, которая должна быть в форме тора. Не стоит забывать и о хорошем проводе в лаковой изоляции. Надёжная фиксация не может обойтись без клея ПВА и малярного скотча.
Отдельно стоит учесть, что качественная работа обмоток зависит от изоленты на тканевой основе. А также стоит приобрести высококачественный провод в резиновой или силиконовой изоляции. Этот элемент понадобится для надёжного соединения всех концов обмотки.
Подготовка трансформаторной стали
Начинающим мастерам может показаться, что достать базовый элемент конструкции крайне сложно, но на практике всё обстоит совершенно иначе. Дело в том, что даже обычные пункты приёма металла часто располагают неработоспособными стабилизаторами напряжения. В советский период они были очень распространены, так как использовались в чёрно-белых телевизорах, что продлевало работоспособность кинескопов.
Исправность такого устройства совершенно не имеет значения, так как особой ценностью обладают только тороидальные трансформаторы, которые расположены во внутреннем отсеке стабилизатора. Именно эта часть используется мастерами в качестве основы всей конструкции.
На пути к изъятию трансформаторов всегда лежит обмотка, изготовленная из алюминиевого провода. Не стоит забывать о том, что сердечник тоже нуждается в подготовительных работах. Мастер должен максимально округлить острые края этой детали, так как в процессе намотки может повредиться лаковая изоляция. Поверх трансформаторной стали обязательно укладывается изолента на тканевой основе. В этом случае нужен всего один изоляционный слой.
Правила обмотки
Прежде чем приступить к этому виду работы, нужно сделать расчёт тороидального трансформатора по сечению сердечника. Конечно, мастер может использовать специальные онлайн-калькуляторы, которых на просторах интернета существует очень много. Но можно выбрать более простой вариант, где для всех вычислений нужно подготовить только линейку и калькулятор.
Конечно, он может иметь некоторые погрешности, так как расчёт не подразумевает соблюдения всех тех факторов, которые встречаются в природе. Главное, придерживаться правила о том, что итоговая мощность во вторичной катушке не должна превышать аналогичных показателей в первой обмотке.
Когда мастер дошёл до этого этапа и нужно сделать намотку тороидального агрегата, ему стоит быть крайне внимательным, так как этот процесс довольно трудоёмкий. Отличным считается тот вариант, когда есть возможность самостоятельно разобрать магнитопровод, а уже после намотки собрать его.
В противном случае можно прибегнуть к помощи обычного веретена, на которое нужно аккуратно намотать определённое количество заранее подготовленного провода. Только после этого веретено можно пропустить необходимое количество раз сквозь тор, равномерно укладывая витки обмоток. Конечно, на реализацию такой идеи уйдёт достаточно много времени, но результат того стоит.
Стоит отметить, что в стандартных ситуациях мастера проводят дополнительную изоляцию тороидального сердечника от обмоток (даже в том случае, если используется лакированная проволока). Особой популярностью пользуется высококачественный электротехнический картон, который соответствует всем стандартам ГОСТ 2824 . Толщина этого материала находится в пределах 0,8 мм.
Во время работы мастера придерживаются следующей схемы:
- Картон аккуратно наматывается на сердечник с небольшим захватом предыдущего витка. Конец материала обязательно фиксируется киперной лентой либо клеем ПВА.
- Все торцы сердечника должны быть защищены картонными шайбами с небольшими надрезами от 10 до 20 мм, длина шага — 35 мм. Как наружная, так и внутренняя грань обязательно закрывается небольшими полосами. Стоит отметить, что технологические шайбы фиксируются на финишном этапе, а все прорезиненные зубцы загибаются. Поверх всей конструкции наматывается киперная лента.
- Если надрезы были сделаны на самых полосах, тогда должен присутствовать небольшой запас, чтобы добиться большей высоты торца. Все кольца должны быть прикреплены строго по ширине, накладываются они поверх загибов.
- В редких случаях кольца могут быть изготовлены из специальной электротехнической фанеры, толстого текстолита. Уязвимую внутреннюю и внешнюю грань защищают картонными полосами с небольшими загибами по краям. Между первыми витками обмотки и сердечником должен присутствовать небольшой воздушный зазор. Такой подход особенно важен в тех случаях, когда края под проволокой протрутся. Так уязвимая токонесущая часть никогда не коснётся тороидального сердечника. На верхний слой обязательно наматывается киперная лента. В некоторых случаях мастера предпочитают сглаживать внешнее ребро колец, за счёт чего намотка углов идёт плавно.
Если трансформатор обладает повышенной мощностью, тогда медный провод должен быть прямоугольного сечения. Такой подход позволяет сэкономить свободное пространство. Жила обязательно должна быть толстой, чтобы она не плавилась во время того, как по ней проходит большое напряжение.
Тонкости расчётных манипуляций
Чаще всего первичная обмотка питается от обычной сети переменного напряжения в 220 В. Если мастеру нужно две вторичные обмотки, чтобы каждая выдавала минимум по 12 В, то площадь сечения должна составлять минимум 0,23 кв. мм. Но этих данных мало, чтобы правильно рассчитать тороидальный трансформатор.
Мастеру нужно разделить 220 В на определённую сумму напряжений вторичной цепи. Так можно получить коэффициент 3,9, который будет обозначать, что сечение провода для вторичной обмотки должно быть аналогичным с этим показателем. А вот для того, чтобы определить количество витков, нужно прибегнуть к достаточно простой формуле: напряжение 220 В умножить на коэффициент 40, а полученную цифру следует разделить на площадь поперечного сечения магнитопровода.
Отдельно стоит учесть, что от правильности проведённых расчётов зависит уровень КПД тороидального трансформатора и его эксплуатационный срок. Именно поэтому лучше несколько раз всё перепроверить, дабы не допустить самых распространённых ошибок.
Рекомендации специалистов
Когда мастер тщательным образом изучил способ изготовления трансформатора своими руками, он может смело приступать к практической части. Так как намотка витков считается очень сложным процессом, понадобится запастись терпением, чтобы итоговый результат оправдал все ожидания. Ведь именно от того, насколько качественно выполнен этот этап, зависят эксплуатационные характеристики устройства.
Для упрощения этой задачи можно использовать специальный станок, предназначенный для намотки тороидальных трансформаторов. Цена такого агрегата считается доступной, а при желании его можно изготовить и своими руками.
🛠 OER — программа для расчёта обмоток трансформатора 👈
Если у вас есть трасформаторное железо и вам нужно рассчитать количество витков и диаметр провода, то эта программа справится лучше всяких онлайн сервисов. Просто введите необходимые данные, все расчёты программа произведёт самостоятельно.
Вам не нужно брать в руки калькулятор и рассчитывать число витков трансформатора по сложным формулам, за вас всё сделает программа в один клик!
Скачать программу OER для расчёта обмоток трансформатора
Также иногда приходится переделывать каркас для намотки трансформатора, вот вам чертёж деталей каркаса сборной катушки из картона, гетинакса или текстолита с защелками.
Когда будете наматывать витки на каркас, вставьте внутрь деревянный брусок, это предотвратит его смятие.
Самодельный станок для намотки трансформаторных катушек, с укладчиком и счетчиком витков. Сделай трансформатор сам. Автор filmmakertube.
И наконец видео о том, как вручную наматывают трансформаторы в Китае в промышленных масштабах!
Написать комментарий
КОММЕНТАРИИ
-
Эту лампу я отыскал на просторах англоязычного Интернета. Автор нашёл очень интересную идею создания такой лампы в игрушках фанерных динозавров.
Дмитрий ДА 03.01.2010
-
К празднику Рождества можно сделать красивый хоровод из бумажных ангелов.
Дмитрий ДА 19.12.2009
-
Перпетум мобиле, блин 🙂 На видеоролике от крутится классно, в жизни он увы стоит на месте.
Дмитрий ДА 01.12.2009
Онлайн расчет трансформатора за 6 простых шагов
Простейший расчет силового трансформатора позволяет найти сечение сердечника, число витков в обмотках и диаметр провода. Переменное напряжение в сети бывает 220 В, реже 127 В и совсем редко 110 В. Для транзисторных схем нужно постоянное напряжение 10 — 15 В, в некоторых случаях, например для мощных выходных каскадов усилителей НЧ — 25÷50 В. Для питания анодных и экранных цепей электронных ламп чаще всего используют постоянное напряжение 150 — 300 В, для питания накальных цепей ламп переменное напряжение 6,3 В. Все напряжения, необходимые для какого-либо устройства, получают от одного трансформатора, который называют силовым.
Силовой трансформатор выполняется на разборном стальном сердечнике из изолированных друг от друга тонких Ш-образных, реже П-образных пластин, а так же вытыми ленточными сердечниками типа ШЛ и ПЛ (Рис. 1).
Его размеры, а точнее, площадь сечения средней части сердечника выбираются с учетом общей мощности, которую трансформатор должен передать из сети всем своим потребителям.
Упрощенный расчет устанавливает такую зависимость: сечение сердечника S в см², возведенное в квадрат, дает общую мощность трансформатора в Вт.
Например, трансформатор с сердечником, имеющим стороны 3 см и 2 см (пластины типа Ш-20, толщина набора 30 мм), то есть с площадью сечения сердечника 6 см², может потреблять от сети и «перерабатывать» мощность 36 Вт. Это упрощенный расчет дает вполне приемлемые результаты. И наоборот, если для питания электрического устройства нужна мощность 36 Вт, то извлекая квадратный корень из 36, узнаем, что сечение сердечника должно быть 6 см².
Например, должен быть собран из пластин Ш-20 при толщине набора 30 мм, или из пластин Ш-30 при толщине набора 20 мм, или из пластин Ш-24 при толщине набора 25 мм и так далее.
Сечение сердечника нужно согласовать с мощностью для того, чтобы сталь сердечника не попадала в область магнитного насыщения. А отсюда вывод: сечение всегда можно брать с избытком, скажем, вместо 6 см² взять сердечник сечением 8 см² или 10 см². Хуже от этого не будет. А вот взять сердечник с сечением меньше расчетного уже нельзя т. к. сердечник попадет в область насыщения, а индуктивность его обмоток уменьшится, упадет их индуктивное сопротивление, увеличатся токи, трансформатор перегреется и выйдет из строя.
В силовом трансформаторе несколько обмоток. Во-первых, сетевая, включаемая в сеть с напряжением 220 В, она же первичная.
Кроме сетевых обмоток, в сетевом трансформаторе может быть несколько вторичных, каждая на свое напряжение. В трансформаторе для питания ламповых схем обычно две обмотки — накальная на 6,3 В и повышающая для анодного выпрямителя. В трансформаторе для питания транзисторных схем чаще всего одна обмотка, которая питает один выпрямитель. Если на какой-либо каскад или узел схемы нужно подать пониженное напряжение, то его получают от того же выпрямителя с помощью гасящего резистора или делителя напряжения.
Число витков в обмотках определяется по важной характеристике трансформатора, которая называется «число витков на вольт», и зависит от сечения сердечника, его материала, от сорта стали. Для распространенных типов стали можно найти «число витков на вольт», разделив 50—70 на сечение сердечника в см:
Так, если взять сердечник с сечением 6 см², то для него получится «число витков на вольт» примерно 10.
Число витков первичной обмотки трансформатора определяется по формуле:
Это значит, что первичная обмотка на напряжение 220 В будет иметь 2200 витков.
Число витков вторичной обмотки определяется формулой:
Если понадобится вторичная обмотка на 20 В, то в ней будет 240 витков.
Теперь выбираем намоточный провод. Для трансформаторов используют медный провод с тонкой эмалевой изоляцией (ПЭЛ или ПЭВ). Диаметр провода рассчитывается из соображений малых потерь энергии в самом трансформаторе и хорошего отвода тепла по формуле:
Если взять слишком тонкий провод, то он, во-первых, будет обладать большим сопротивлением и выделять значительную тепловую мощность.
Так, если принять ток первичной обмотки 0,15 А, то провод нужно взять 0,29 мм.
Ремонт современных электрических приборов и изготовление самодельных конструкций часто связаны с блоками питания, пускозарядными и другими устройствами, использующими трансформаторное преобразование энергии. Их состояние надо уметь анализировать и оценивать.
Считаю, что вам поможет выполнить расчет трансформатора онлайн калькулятор, работающий по подготовленному алгоритму, или старый проверенный дедовский метод с формулами, требующий вдумчивого отношения. Испытайте оба способа, используйте лучший.
Расчёт трансформатора на калькуляторе в домашних условиях
Возникла необходимость в мощном блоке питания. В моём случае имеются два магнитопровода броневой-ленточный и тороидальный. Броневой тип: ШЛ32х50 72х Расчет трансформатора с магнитопроводом типа ШЛ32х50 72х18 показал, что выдать напряжение 36 вольт с силой тока 4 ампера сам сердечник в состоянии, но намотать вторичную обмотку возможно не получится, из-за недостаточной площади окна. Программный он-лайн расчет, позволит налету экспериментировать с параметрами и сократить время на разработку.
Также можно рассчитать и по формулам, они приведены ниже. Описание вводимых и расчётных полей программы: поле светло-голубого цвета — исходные данные для расчёта, поле жёлтого цвета — данные выбранные автоматически из таблиц, в случае установки флажка для корректировки этих значений, поле меняет цвет на светло-голубой и позволяет вводить собственные значения, поле зелёного цвета — рассчитанное значение.
Фактическое сечение стали магнитопровода в месте расположения катушки трансформатора;. Расчётное сечение стали магнитопровода в месте расположения катушки трансформатора;. Расчёт сечения провода для каждой из обмоток для I1 и I2 ;. В тороидальных трансформаторах относительная величина полного падения напряжения в обмотках значительно меньше по сравнению с броневыми трансформаторами. Формула для расчёта максимальной мощности которую может отдать магнитопровод;.
Величины электромагнитных нагрузок Вмах и J зависят от мощности, снимаемой со вторичной обмотки цепи трансформатора, и берутся для расчетов из таблиц. О нас Обратная связь Карта сайта. YouTube Instagram Instagram. Расчет трансформатора с тороидальным магнитопроводом. Юра Гость. Нужно сделать расчёт для каждой из обмоток. Потом сложить рассчитанные мощности. Далее сравниваем сложенную мощность с габаритной мощностью сердечника. Если габаритная мощность больше, то всё нормально. Если нет, то трансформатор с нагрузкой не справится.
Юрий Гость. Большое спасибо за ваш ответ но не совсем понимаю. Мои данные. В сумме все обмотки 76 Вольт. Если не трудно По моим данным покажите правильность расчёта.
Олег Николаевич Гость. Мы делаем на службе электронный стабилизатор на семисторах на 4кВт и столкнулись с тем что нам нужен тороидальный трансформатор на соответствующюю мощность Как бы нам получить правильные расчётные данные у вас по намотке такого трансформатора?
У нас есть старый тороидальный трансформатор. По паспорту к изделию на котором он работал его мощность составляет 4,5кВт Однообмоточные трансформаторы такого типа это ЛАТРы автотрансформаторы , мы ещё пока на практике такие не делали.
Тема интересная может как нибудь попробуем. Но к сожалению пока ни чем помочь не можем. Sintetik Гость. Pc max — это максимальная мощность магнитопровода, которую сердечник может передать от первичной обмотки к вторичным? Jurij Гость. У меня что-то не получается. Вторички 64 В 6А, 13 В 3А. Тор D d Мне надо сложить P2 обоих вторичек и Pгаб обоих вторичек, и сравнить? У меня получилось общая PВт, Pгаб общая,1Вт. Транс не подойдёт? Как рассчитать какой тор мне нужен? Я пробовал в Вашем калькуляторе в полях D,d,h менять размеры, но цифры в полях P2 и Pг не меняются.
Помогите пожалуйста, что я не так делал? Заранее благодарен. Владимир Гость. Добрый день! К сожалению данная программа не имеет оболочки для обычного запуска на компьютере.
Если найдёте какие недочёты пишите, исправим. В принципе-то норм, но как же частота? Такой важный параметр, а его нет От частоты многое зависит, поэтому считаю калькулятор не удобным. Мы создавали данный калькулятор для намотки сетевого трансформатора вольт 50 герц по этому частота фиксированная.
На будущее учтём, может и доработаем или создадим новую версию. Вячеслав Гость. Мне нужно знать какой провод нужен для намотки первичной намотки диаметр и сколько грамм не витков для намотки первичной обмотки на В? С уважением Вячеслав Вячеслав, где вы нашли такое железо. Может быть размеры у вас все же в милл иметрах? У меня нашлось еще одно тороидальное железо,которое нужно намотать.
Мне нужно знать какого диаметра провод нужен для намотки первичной обмотки и сколько грамм будет весить общее количество витков первичной обмотки? Весовые характеристики в данной версии калькулятора не расчитываются.
Анатоль Гость. А этот метод подойдёт для расчёта сварочного трансформатора? Михаил Гость. А в чем считать? Еденицы не подписаны. Например, диаметр трансформатора, диаметр проволоки? В чем будет выражена расчетная площадь магнитопровода? Иван Гость. Запомнить меня. Подписаться на рассылку о публикациях новых статей.
Рекомендации по сборке и намотке
При сборке трансформатора своими руками пластины сердечника собираются «вперекрышку». Магнитопровод стягивается обоймой или шпилечными гайками. Для того чтобы не нарушить изоляцию, шпильки закрываются диэлектриком. Стягивать «железо» нужно с усилием: если его окажется недостаточно при работе устройства возникнет гул.
Проводники наматываются на катушку плотно и равномерно, каждый последующий ряд изолируется от предыдущего тонкой бумагой или лавсановой плёнкой. Последний ряд обматывается киперной лентой или лакотканью. Если в процессе намотки выполняется отвод, то провод разрывается, а на место разрыва впаивается отвод. Это место тщательно изолируется. Закрепляются концы обмоток с помощью ниток, которыми привязываются провода к поверхности сердечника.
При этом существует хитрость: после первичной обмотки не следует наматывать всю вторичную обмотку сразу. Намотав 10—20 витков, нужно измерить величину напряжения на её концах.
По полученному значению можно представить, сколько витков потребуется для получения нужной амплитуды выходного напряжения, тем самым контролируя полученный расчёт при сборке трансформатора.
Данный онлайн расчет трансформатора выполнен по типовым расчетам электрооборудования. В типовых расчётах все начинается с определения необходимой мощности вторичной обмотки, а уж потом с поправкой на КПД — коэффициент полезного действия, находим мощность всего трансформатора, и на основании этого рассчитываем необходимое сечение и тип сердечника и так далее.
Изначально так и было в моём расчете. Пока не появились предложения от посетителей сайта внести изменения в расчет. По имеющимся размерам трансформаторного железа рассчитываем полную мощность трансформатора, а уж потом видим, какой ток и напряжение можно снять с этого железа. Далее все как по типовому расчёту, выбираем тип: броневой или стержневой, указываем напряжение первичной обмотки, вторичной, частоту переменного тока и так далее.
В результате получаем необходимые расчетные данные трансформатора, например сечение обмоточных проводов, которые сравниваются со стандартными обмоточными проводами и представляются для дальнейшего расчёта. Диапазон обмоточных проводов сечением от 0,000314 до 4,906 мм 2 , всего 63 позиции. На основании имеющихся данных рассчитывается площадь занимаемой обмотками трансформатора, для определения возможности их размещения в окнах трансформатора. Хотелось бы узнать в комментариях ваше мнение, и практические результаты, чтобы если это возможно сделать более качественный расчёт.
Просмотр и ввод комментариев к статье
Как правильно провести расчет трансформаторов разных видов, формулы и примеры
Код для вставки без рекламы с прямой ссылкой на сайт. Код для вставки с рекламой без прямой ссылки на сайт. Скопируйте и вставьте этот код на свою страничку в то место, где хотите, чтобы отобразился калькулятор. Калькулятор справочный портал. Избранные сервисы. Кликните, чтобы добавить в избранные сервисы. Расчет трансформатора, онлайн калькулятор позволит вам рассчитать параметры трансформатора, такие как мощность, ток, количество витков и диаметр провода в обоих обмотках, по его размерам, входному и выходному напряжению. Входное напряжение: В Габаритный размер a: см Габаритный размер b: см Габаритный размер c: см Габаритный размер h: см Выходное напряжение: В Трансформатор — это статическое электромагнитное устройство, состоящее из двух или более индуктивно-связанных обмоток, намотанных на общий ферромагнитный сердечник, предназначенное для преобразования напряжения переменного тока посредством электромагнитной индукции.
Принцип работы устройства
Трансформатор — это электротехническое устройство, предназначенное для передачи энергии без изменения её формы и частоты. Используя в своей работе явление электромагнитной индукции, устройство применяется для преобразования переменного сигнала или создания гальванической развязки. Каждый трансформатор собирается из следующих конструктивных элементов:
- сердечника;
- обмотки;
- каркаса для расположения обмоток;
- изолятора;
- дополнительных элементов, обеспечивающих жёсткость устройства.
В основе принципа действия любого трансформаторного устройства лежит эффект возникновения магнитного поля вокруг проводника с текущим по нему электрическим током. Такое поле также возникает вокруг магнитов. Током называется направленный поток электронов или ионов (зарядов). Взяв проволочный проводник и намотав его на катушку и подключив к его концам прибор для измерения потенциала можно наблюдать всплеск амплитуды напряжения при помещении катушки в магнитное поле. Это говорит о том, что при воздействии магнитного поля на катушку с намотанным проводником получается источник энергии или её преобразователь.
В устройстве трансформатора такая катушка называется первичной или сетевой. Она предназначена для создания магнитного поля. Стоит отметить, что такое поле обязательно должно всё время изменяться по направлению и величине, то есть быть переменным.
Читать также: Как собрать простой электрогенератор своими руками
Классический трансформатор состоит из двух катушек и магнитопровода, соединяющего их. При подаче переменного сигнала на контакты первичной катушки возникающий магнитный поток через магнитопровод (сердечник) передаётся на вторую катушку. Таким образом, катушки связаны силовыми магнитными линиями. Согласно правилу электромагнитной индукции при изменении магнитного поля в катушке индуктируется переменная электродвижущая сила (ЭДС). Поэтому в первичной катушки возникает ЭДС самоиндукции, а во вторичной ЭДС взаимоиндукции.
Количество витков на обмотках определяет амплитуду сигнала, а диаметр провода наибольшую силу тока. При равенстве витков на катушках уровень входного сигнала будет равен выходному. В случае когда вторичная катушка имеет в три раза больше витков, амплитуда выходного сигнала будет в три раза больше, чем входного — и наоборот.
От сечения провода, используемого в трансформаторе, зависит нагрев всего устройства. Правильно подобрать сечение возможно, воспользовавшись специальными таблицами из справочников, но проще использовать трансформаторный онлайн-калькулятор.
Отношение общего магнитного потока к потоку одной катушки устанавливает силу магнитной связи. Для её увеличения обмотки катушек размещаются на замкнутом магнитопроводе. Изготавливается он из материалов имеющих хорошую электромагнитную проводимость, например, феррит, альсифер, карбонильное железо. Таким образом, в трансформаторе возникают три цепи: электрическая — образуемая протеканием тока в первичной катушке, электромагнитная — образующая магнитный поток, и вторая электрическая — связанная с появлением тока во вторичной катушке при подключении к ней нагрузки.
Правильная работа трансформатора зависит и от частоты сигнала. Чем она больше, тем меньше возникает потерь во время передачи энергии. А это означает, что от её значения зависят размеры магнитопровода: чем частота больше, тем размеры устройства меньше. На этом принципе и построены импульсные преобразователи, изготовление которых связано с трудностями разработки, поэтому часто используется калькулятор для расчёта трансформатора по сечению сердечника, помогающий избавиться от ошибок ручного расчёта.
Расчет трансформатора, онлайн калькулятор
Сложные многофункциональные устройства, способные преобразовывать электроэнергию из одной величины в другую, на языке электротехники, называют трансформаторами. Для создания такого оборудования, в зависимости от конкретных величин преобразования, применяется специальный расчет. Как правильно проводить расчет трансформаторов, знать в нем основные параметры и формулы, правильно их использовать, уметь пользоваться упрощенной системой проектирования трансформаторов распространенных энерговеличин и становится целью содержания этой статьи. Любая энергосистема, установка, особенно в сети трехфазного 3ф тока и напряжения просто не могла и не может обойтись без такого функционального устройства, как трансформатор.
Одним из часто применяемых устройств в областях энергетики, электроники и радиотехники является трансформатор. Часто от его параметров зависит надёжность работы приборы в целом.
Расчет трансформатора на стержневом сердечнике в онлайн
Энергосистема опознала нового радиотехника и приветливо моргнула всем домом. А тем временем традиционные линейные источники питания на силовых трансформаторах всё чаще стали вытесняться своими импульсными коллегами. При этом, что бы там не говорили авторитетные товарищи про многочисленные технические достоинства импульсных преобразователей, плюс у них только один — массогабаритные показатели. Всё остальное — сплошной минус. Однако этот единственный плюс оказался настолько жирным, что заслонил собой все многочисленные минусы, особенно в тех замесах, когда к электроустройствам не предъявляется каких-либо жёстких требований.
Использование онлайн калькулятора для расчета трансформатора
Ведь не всегда найдётся, например, готовый сетевой трансформатор. Более актуальным этот вопрос становится, когда нужен анодно-накальный или выходной трансформатор для лампового усилителя. Здесь остаётся лишь запастись проволокой и подобрать хорошие сердечники. Достать нужный магнитопровод порой оказывается непросто и приходится выбирать из того, что есть. Для быстрого расчёта габаритной мощности был написан приведённый здесь онлайн калькулятор. По размерам сердечника можно быстро провести все необходимые расчёты, которые выполняются по приведённой ниже формуле, для двух типов: ПЛ и ШЛ.
Онлайн расчёт мощности ленточного сердечника Ведь не всегда найдётся , например, готовый сетевой трансформатор. Более.
Как сделать расчет трансформатора. Расчёт и изготовление силового трансформатора
ВИДЕО ПО ТЕМЕ: Как определить мощность трансформатора, несколько способов
Занимаясь расчетами мощного источника питания, я столкнулся с проблемой — мне понадобился трансформатор тока, который бы точно измерял ток. Литературы по этой теме не много. А в Интернете только просьбы — где найти такой расчет. Прочитал статью ; зная, что ошибки могут присутствовать, я детально разобрался с данной темой. Ошибки, конечно, присутствовали: нет согласующего резистора Rc см.
Такая методика расчета трансформаторов конечно очень приблизительная но для радиолюбительской практики вполне подходит.
Как выбрать ферритовый кольцевой сердечник?
Выбрать примерный размер ферритового кольца можно при помощи калькулятора для расчета импульсных трансформаторов и справочника по ферритовым магнитопроводам. И то и другое Вы можете найти в «Дополнительных материалах».
Вводим в форму калькулятора данные предполагаемого магнитопровода и данные, полученные в предыдущем параграфе, чтобы определить габаритную мощность срдечника.
Не стоит выбирать габариты кольца впритык к максимальной мощности нагрузки. Маленькие кольца мотать не так удобно, да и витков придётся мотать намного больше.
Если свободного места в корпусе будущей конструкции достаточно, то можно выбрать кольцо с заведомо бо’льшей габаритной мощностью.
В моём распоряжении оказалось кольцо М2000НМ типоразмера К28х16х9мм. Я внёс входные данные в форму калькулятора и получил габаритную мощность 87 Ватт. Этого с лихвой хватит для моего 50-ти Ваттного источника питания.
Запустите программу. Выберете «Pacчёт тpaнcфopмaтopa пoлумocтoвoго пpeoбpaзoвaтeля c зaдaющим гeнepaтopoм».
Чтобы калькулятор не «ругался», заполните нолями окошки, неиспользуемые для расчёта вторичных обмоток.
Вернуться наверх к меню.
Онлайн калькулятор расчета трансформатора
Силовой трансформатор является нестандартным изделием, которое часто применяется радиолюбителями, промышленности и при конструировании многих бытовых приборов. Под этим понятием подразумевается намоточное устройство, изготовленное на металлическом сердечнике, набранном из пластин электротехнической стали. Стандартными являются немногие подобные изделия, поэтому чаще всего радиолюбители изготавливают их самостоятельно. Поэтому весьма актуален вопрос: как выполнить расчет трансформатора по сечению сердечника калькулятор использовав для этого? Для изготовления намоточного изделия необходимо руководствоваться множеством сведений. От этого напрямую будет зависеть качество, срок службы готового блока питания.
Выбор типа магнитопровода.
Наиболее универсальными магнитопроводами являются Ш-образные и чашкообразные броневые сердечники. Их можно применить в любом импульсном блоке питания, благодаря возможности установки зазора между частями сердечника. Но, мы собираемся мотать импульсный трансформатор для двухтактного полумостового преобразователя, сердечнику которого зазор не нужен и поэтому вполне сгодится кольцевой магнитопровод. https://oldoctober.com/
Для кольцевого сердечника не нужно изготавливать каркас и мастерить приспособление для намотки. Единственное, что придётся сделать, так это изготовить простенький челнок.
На картинке изображён ферритовый магнитопровод М2000НМ.
Идентифицировать типоразмер кольцевого магнитопровода можно по следующим параметрам.
D – внешний диаметр кольца.
d – внутренний диаметр кольца.
H – высота кольца.
В справочниках по ферритовым магнитопроводам эти размеры обычно указываются в таком формате: КDxdxH.
Пример: К28х16х9
Вернуться наверх к меню.
Простой и легкий способ расчета размера шины и падения напряжения
Фактически, тип медного или алюминиевого проводника или стержня, который собирает и распределяет электрическую энергию по одной или одной цепи.
Множество подключений в различных учреждениях, заводах, фабриках, заводах Электропроводка Сборная шина Взято из. Сверлильный станок просверливается в сборной шине, и Lux соединяется с узлом путем соединения гайки.
Через эту сборную шину люди могут получить доступ к электричеству из одной системы в другую, точно так же, как люди используют мост или мост, чтобы перейти через реку или озеро.
В промышленности Сторона HT Электричество со стороны LT. Доступ к ней можно получить через это шинное соединение. Кроме того, если есть ошибка в какой-либо части системы через активную часть шины. От кого можно отличить неисправную часть. Даже если одна система выключена, другая система все еще работает.
Идеальные характеристики сборных шин:
1) Материал сборных шин имеет низкое сопротивление
2) Сопротивление сборных шин очень мало меняется в зависимости от температуры
3) Высокая механическая прочность.
Использование сборной шины
- Подключение к сети может быть очень легко выполнено в одном или нескольких местах.
- Когда система отключена, остальная часть системы может управляться сборной шиной.
- Техническое обслуживание. В этом случае одна часть может управляться с помощью шины без отключения всей системы.
- Если какая-либо часть системы окажется неисправной, ее можно отделить от активной части шиной.
Сборные шины Обычно они бывают разных размеров.Различные размеры в зависимости от нагрузки или токовой нагрузки. Сборная шина. Листы сборной шины обычно имеют ширину 1/2 дюйма, 3/4 дюйма, 1 дюйм, 1,5 дюйма или 2 дюйма. Или сила тока может быть выше в зависимости от вместимости каретки.
Все характеристики сборной шины должны быть:
- В случае сборной шины следует использовать материал с меньшим сопротивлением.
- Сопротивление не будет уменьшаться при изменении температуры и времени.
- Для изоляции по мере необходимости Сборная шина — между ними должно быть достаточно зазоров.
- Для качественных материалов следует использовать более высокую механическую прочность.
- В дальнейшем любые изменения в системе следует модифицировать.
Типы проживания
В зависимости от материала может быть два типа жилья. А именно —
- Шина медная
- Шина алюминиевая
Также в зависимости от настройки шина может быть двух типов.
- Внутренняя шина
- Внешняя шина
Снова есть пять типов в зависимости от состава.А именно:
- Открытая шина
- Закрытая шина
- Шина World Driving
- Шина с газовой изоляцией
- Изолированная фазная шина
Управление шиной
- Одинарная шина
- Одинарная секционная шина
- Двойная секционная шина
- Двойная шина Одиночная тормозная система
- Кольцевая шина
Факторы и факторы, которые следует учитывать при выборе шины
- В случае эксплуатации установки, полная или частичная работа по мере необходимости
- Количество нагрузки или ток нагрузки
- Местные условия
- начальная стоимость развертывания.
- Затраты на эксплуатацию и техническое обслуживание
- Преимущества расширения в будущем
- Шина Форма соответствует направлению формы
- Безопасные зоны остаются специфическими
- Форма шины
- Начальная стоимость
- Безопасное место
Расчет размера шины
Сборная шина Может быть очень большой или маленькой. Шина В основном, ее размер и толщина зависит от силы тока шины.
Следует иметь в виду, что высота и ширина шины очень важны при расчетах.Размеры в миллиметрах должны быть рассчитаны в миллиметрах.
Расчет базового бара
Возьмем нас 450 Существует трансформатор кВА с линейным напряжением В = 400 В,
Таким образом, ток, I (A) = 1000 × S (кВА) / (√3 × VL) = 1000 * 450 / 1,732 * 400 = 649,519 A
01) Итак, общий судья + 25%. Придется брать дополнительные.
(идёт от трансформатора 649амп. И все время 649 т.р. Ничего не найдено Может быть меньше 25% доп. Захвачено.Давайте подойдем ближе.
Теперь мы 80 × 5 = 400 Возьмем
Размер автобуса
19,05 мм * 6,35 мм = 100A
25,4 мм * 6,5 мм = 200A / 250A
30 мм * 10 мм = 400A
40 мм * 10 мм = 600A
44,45 мм 12,7 мм = 800A
50,8 мм * 12,7 мм = 1000A
2 * 63,5 мм * 9,525 мм = 1600A
2 * 80 мм * 10 мм = 250040 Расчет BasAar 9000 2:
Предположим, в моей отрасли три фазы по 500 кВА. Одна из них 11 /.44 кВ Есть трансформаторы. Теперь я ее исходящая сторона. Позвольте мне выбрать текущую полосу для текущей панели LT, которой я владею. Давайте настроим ее. Давайте посчитаем.
Ток I (вторичный)
= 500 x 1000 / (1,732 x 440)
= 656 ампер
Теперь для большей безопасности следует добавить 25% дополнительных функций.
Then = 656 x 1,25 = 820 A
Теперь, если я использую медную шину, как таковую следует использовать 1A для этой шины 0,5 мм2. А для алюминия 1,2 кв. Мм на ампер.
Итак, если я использую медь, у меня должна быть нагрузка 820 А для этой шины 410 мм2.
Но вы должны иметь в виду, что эта шина большого размера доступна на рынке ?? Типичный размер шин, имеющихся на рынке:
25 x 5, 25 x 8, 25 x 10, 30 x 5, 30 x 8, 30 x 10,
40 x 5, 40 x 8, 50 x 5, 50 x 8, 50 x 10, 80 x 5, 80 x 8, 80 x 10, 100 x 20, 110 x 10 кв. мм и т. д.
Итак, для нашей нагрузки 80 x 5 или 40 x 10 или
50 x 8 кв. достаточно
Теперь вам нужно выполнить кабельное соединение с шиной. Это соединение может быть очень легко выполнено путем сверления шурупов на шине с помощью кабельных шурупов.
Второе вычисление Cartesi: Iqbal Mahmood
Elrctricalnotes
Как это:
Нравится Загрузка …
СвязанныеРасчет тока короткого замыкания — журнал IAEI
Время считывания: 11 минутОдин из самых фундаментальных расчетов системы распределения электроэнергии — это вычисление доступного тока короткого замыкания. В выпуске журнала IAEI за сентябрь — октябрь 2012 г. была статья под названием «Основы, максимальный ток повреждения», в которой говорилось на эту тему, но не рассматривались математические выкладки.С тех пор я получил много просьб заняться математикой. Я надеюсь, что эта статья удовлетворит любопытные умы подробностями о вычислении доступного тока короткого замыкания и предоставит некоторые уравнения для изучения студентом.
Доступный ток короткого замыкания
Максимальный доступный ток короткого замыкания является важным параметром для каждой системы распределения электроэнергии, поскольку он обеспечивает точку данных, необходимую для подтверждения того, что оборудование используется в пределах его номинальных характеристик, и что система работает в соответствии с ожиданиями.Имеющийся ток короткого замыкания также используется во многих других приложениях.
Национальный электротехнический кодекс требует эту точку данных для обеспечения соблюдения таких разделов, как 110.9 «Рейтинг прерывания»; 110.10. Полное сопротивление цепи, номинальные значения тока короткого замыкания и другие характеристики; и 110.24 Доступный ток повреждения. Независимо от того, являетесь ли вы проектировщиком, установщиком или инспектором, в какой-то момент вашей карьеры вы столкнетесь с необходимостью расчета доступного тока повреждения. Понимание математики, лежащей в основе этого, и того, как используются расчетные токи короткого замыкания, может только расширить знания и понимание.Это также может помочь нам понять, что эти расчеты должен производить квалифицированный специалист. Итак, ради понимания, я предлагаю эту статью, чтобы помочь вам в этом.
Основы расчета тока короткого замыкания
Все, что вам нужно знать о вычислении токов короткого замыкания, вы изучили на курсах 101, тригонометрии и базовой математике. На рисунке 1 показана простая однолинейная схема, которая вполне может быть вашим основным служебным входом для коммерческой или промышленной установки.
Рисунок 1. Однолинейная диаграммаРисунок 2 — это основная принципиальная схема того, что представлено на Рисунке 1, и которая будет использоваться для расчета доступного тока короткого замыкания в любой точке приведенной выше простой однолинейной диаграммы. Инженеры назовут то, что вы видите на Рисунке 2, диаграммой импеданса, поскольку она в основном преобразует каждый компонент на Рисунке 1 выше в значения импеданса. Для тех из вас, кто знаком со схемой 101, то, что вы видите ниже, когда все импедансы сложены вместе, представляет собой «эквивалентную схему Теванина», которая включает в себя импеданс и источник напряжения.Эта базовая схема будет использоваться в этой статье.
Рис. 2. Диаграмма импеданса (схема)Для расчетов и упрощения нашей работы с этим документом необходимо сделать допущения.
Предположения для трансформатора, который будет использоваться как часть примера для этой статьи, будут включать следующие. Эта информация должна быть доступна при чтении паспортной таблички трансформатора.
Трансформатор кВА 1500
Первичное напряжение 4160 В
Вторичное напряжение 480 В
% Импеданс 5.75%
Предполагается для тока короткого замыкания, доступного для электросети. Для этого упражнения будет использовано 50 000 ампер. Перед проведением исследования с коммунальным предприятием связываются для получения этой информации. Они могут обеспечить доступный ток короткого замыкания одним из нескольких различных способов. Самыми простыми и, вероятно, наиболее заметными данными от электросети будут доступный ток короткого замыкания в кА. Некоторые утилиты могут вместо этого предоставлять данные в виде MVA короткого замыкания. В этой статье будут представлены уравнения для обеих форм ввода, но с учетом доступного тока короткого замыкания 50 кА.
Что касается импеданса проводника, следующие расчеты будут игнорировать сопротивление проводника и использовать только реактивное сопротивление. Это сделает две вещи для этой статьи. Во-первых, это приведет к более высокому току повреждения, чем можно было бы рассчитать, если бы мы приняли во внимание как сопротивление, так и реактивное сопротивление. Во-вторых, это упростит математику. В последнем разделе этой статьи будут представлены результаты анализа, включающие сопротивление и реактивное сопротивление проводников и электросети.Используемые методы отражают методы, используемые в таких программах, как SKM Systems Analysis A-Fault.
Эта статья также не предполагает участия двигателя. Максимальный доступный ток короткого замыкания должен включать все составляющие короткого замыкания. Мы не включаем этот вклад в эти усилия для простоты.
Расчет базового трансформатора
Самым первым шагом этого процесса является расчет ампер полной нагрузки (FLA) для трансформатора. Еще один базовый расчет, который электротехнику придется выполнять в какой-то момент своей карьеры, и который некоторые выполняют много раз в день.Уравнения для расчета FLA приведены ниже:
FLA вторичный | = кВА |
(√3) × (кВсек) |
FLA вторичный | = 1500 |
[(√3) × (0,480)] = 1804 А |
Этот трансформатор на 1500 кВА имеет FLA вторичной обмотки 1804 ампер. Этот параметр необходим для выбора вторичных проводов для этого трансформатора.Основываясь на этом FLA и использовании таблицы 310.15 (B) (16) из NEC 2014, проводники, используемые на вторичной обмотке трансформатора, будут иметь количество проводников 5-500 MCM на фазу.
Расчет тока короткого замыкания на вторичной обмотке главного трансформатора
Есть два подхода к вычислению доступного тока короткого замыкания на вторичной обмотке трансформатора. Мы можем рассчитать максимальное количество, которое трансформатор пропустит, как если бы объект выработки электроэнергии был подключен непосредственно к линейной стороне трансформатора, или мы можем рассчитать доступный ток повреждения с учетом предоставленного доступного тока повреждения от электросети.Первый подход, который приводит к максимальному значению тока короткого замыкания, который пропускает трансформатор, называется расчетом «бесконечной шины». Схема, показанная на рисунке 2, может быть перерисована, чтобы включить нулевой импеданс для электросети, что снизит общий импеданс цепи и, таким образом, увеличит значение расчетного тока короткого замыкания. На рис. 3 будет показан максимально допустимый ток короткого замыкания, который может подавать трансформатор.
Рисунок 3. Эквивалентная схема бесконечной шиныНа рис. 3 показано только полное сопротивление трансформатора.Уравнение для расчета максимального доступного тока короткого замыкания, который может обеспечить трансформатор, выглядит следующим образом:
Isc | = (трансформатор кВА) × 100 |
(√3) × (вторичный кВ) × (трансформатор% Z) |
Используя информацию, указанную выше для примера трансформатора 1500 кВА для этого примера, максимальный доступный ток повреждения, который пропускает этот конкретный трансформатор, составляет 31 378 ампер и рассчитывается следующим образом:
Isc | = 1500 × 100 |
(√3) × (0.480) × (5,75) = 31 378 ампер |
Это говорит нам о том, что вторичная обмотка трансформатора не может видеть больше тока повреждения, чем мы рассчитали. На стороне электросети НИКАКИХ изменений, которые могут повлиять на этот доступный ток короткого замыкания до точки, где он превысит 31 378 ампер. Единственный способ получить более 31 378 ампер, если мы изменим трансформатор, и новый трансформатор, который предположительно будет таким же по всем другим характеристикам, будет иметь другой% импеданса.На рисунке 4 представлена таблица, которая включает результаты изменения импеданса исследуемого трансформатора +/- 20% с шагом 5% по сравнению со значением импеданса 5,75%, используемым в этом примере. Это показывает, как изменение импеданса трансформатора повлияет на максимально допустимый ток короткого замыкания, который он может пропустить.
Как показано на рисунке 4, смена трансформатора и изменение его импеданса может оказать значительное влияние на систему. Если бы я рискнул предположить, я бы сказал, что в большинстве случаев коммунальное предприятие, меняющее служебный трансформатор, будет признано предприятием.Задача состоит в том, чтобы владелец предприятия или постоянные сотрудники понимали, как это изменение может повлиять на их систему распределения электроэнергии. При внесении изменений следует обновить метки, подобные тем, которые включены в Раздел 110.24 NEC .
Рис. 4. Влияние изменения импеданса (+ / — 20%) трансформатора на 1500 кВАВ этом расчете не учитывается полное сопротивление источника электросети и не учитываются проводники на стороне нагрузки. Давайте теперь исследуем влияние добавления в сеть доступного тока короткого замыкания.
Расчет тока короткого замыкания с учетом тока повреждения сети
Как и в большинстве ситуаций, мы выбираем консервативные ярлыки, консервативные с точки зрения безопасности, пока не возникнут ситуации, требующие углубления в детали. Вышеупомянутый ярлык для расчета тока повреждения является консервативным, поскольку он НЕ учитывает доступный ток повреждения сети, дающий максимальное значение. При рассмотрении прерывания и других аналогичных номиналов устройства и оборудование, которые могут выдерживать это консервативное значение тока короткого замыкания, не нуждаются в дополнительных исследованиях.Когда новое или существующее оборудование не может справиться с этим консервативно высоким доступным током короткого замыкания, может быть проведен дальнейший подробный анализ или оборудование может быть заменено или рассчитано соответствующим образом. Далее будет рассмотрен вопрос о добавлении полезности при наличии доступного тока короткого замыкания. В частности, 50 кА доступны в коммунальном хозяйстве. Это продемонстрирует, что таким образом можно уменьшить рассчитанные 31 378 ампер.
Ниже приведены два уравнения, которые относятся к наличию кА и наличию MVA короткого замыкания.В этом примере мы будем использовать приведенное ниже уравнение, в котором предполагается, что электросеть предоставила вам доступный ток короткого замыкания в кА.
Принципиальная схема теперь выглядит так, как показано на рисунке 5.
Рис. 5. Принципиальная электрическая схема, которая включает импеданс трансформатора и сетевого источника. Первым необходимым шагом является преобразование предоставленной электросетью доступной информации о токе повреждения (50 кА) в полное сопротивление источника.
Если кА предоставляется от электросети:
% Z утилита | = Трансформатор кВА × 100 |
(Isc электросети) × (√3) × (кВ первичная) |
При коротком замыкании MVA предоставляется коммунальным предприятием:
% Z утилита | = Трансформатор кВА |
Короткое замыкание кВА инженерных сетей |
Для данного доступного тока короткого замыкания электросети 50 кА% Z электросети рассчитывается следующим образом:
% Z утилита | = 1500 × 100 |
(50 000) × (√3) × (4.160) = 0,420 |
На рисунке 6 показаны значения импеданса источника электросети для различных токов повреждения электросети для этого конкретного примера. Как отмечалось выше, трансформатор кВА и первичное напряжение будут играть ключевую роль в этих значениях.
Рисунок 6. Значения импеданса сетевого источника для различных уровней доступного тока короткого замыкания в электросетиУравнение для расчета доступного тока короткого замыкания на вторичной обмотке трансформатора, которое включает полное сопротивление электросети, выглядит следующим образом:
Isc | = (трансформатор, кВА) × 100) |
(√3) × (Вторичный кВ) × [(% Zтрансформатор) + (% Z полезность)] |
После вставки всех известных переменных новый доступный ток повреждения рассчитывается следующим образом:
Isc | = 1500 × 100 |
(√3) × (0.480) × [(5,75) + (0,4164)] = 29 259 А |
Если мы сравним расчет бесконечной шины и тот, который включал импеданс источника электросети (доступный ток короткого замыкания 50 000 ампер), мы увидим, что доступный ток короткого замыкания упал с 31 378 ампер до 29 259 ампер, что на 6,8% меньше. в доступном токе короткого замыкания (2119 ампер).
Влияние изменяющегося тока короткого замыкания, доступного в электросети, показано на рисунке 7. В этой таблице показано, как изменяется расчетный доступный ток короткого замыкания при изменении значений тока замыкания в электросети.Доступный ток короткого замыкания 50 кА используется в качестве значения, с которым сравниваются изменения. Интересно видеть, что увеличение доступного тока короткого замыкания от электросети, если исходная точка составляет 50 кА, не имеет такого большого влияния, как можно было бы подумать. Например, удвоение доступного тока повреждения электросети с 50 кА до 100 кА увеличивает доступный ток повреждения вторичной обмотки трансформатора только на 3%, или на 1022 ампер. Для большинства устройств защиты от сверхтоков это изменение не должно быть значительным.Я слышал, что некоторые говорят, что мы не должны маркировать оборудование входа для обслуживания, потому что коммунальное предприятие может вносить изменения в коммутацию на стороне линии, что повлияет на номер на этикетке. Рисунок 7 — хороший пример, который показывает, что даже если бесконечная шина не использовалась, изменения на стороне электросети не имеют такого значительного влияния на ток короткого замыкания, как можно было бы подумать.
Рис. 7. Влияние различных токов короткого замыкания, доступных в электросети, на систему распределения электроэнергииЧтобы напомнить, где мы находимся в этом обсуждении, доступные токи замыкания показаны на рисунке 7a.
Следующее, что мы должны рассмотреть, — это провод на вторичной обмотке трансформатора. Это еще больше снизит доступный ток короткого замыкания.
Расчет — после длины проводника
Проводники могут оказывать значительное влияние на доступный ток короткого замыкания. Давайте продолжим анализ этого примера трансформатора 1500 кВА, добавив параллельные проводники 500MCM на стороне нагрузки.
Эквивалентная схема уже представлена как часть рисунка 1.Теперь давайте рассмотрим влияние длины проводника на доступный ток короткого замыкания. Нам понадобится следующее уравнение:
Данные, необходимые для этого примера, взяты из Национального электротехнического кодекса . Из Таблицы 9 из NEC 2014 для проводника 500 MCM в стальном трубопроводе найдено, что Xl (реактивное сопротивление) составляет 0,048 Ом / 1000 футов. В этом примере, как указывалось ранее, мы используем только значение реактивного сопротивления, которое приведет к немного более высоким значениям тока короткого замыкания и сделает математику для этой публикации более приемлемой.Для трансформатора мощностью 1500 кВА с током полной нагрузки 1804 нам потребуется 5-500 мкс проводов, включенных параллельно на каждую фазу. Расчет производится следующим образом:
уравнение для расчета доступного тока короткого замыкания выглядит следующим образом:
Подставив все известные переменные, мы вычислили ISC следующим образом:
Тот же расчет, предполагающий бесконечную шину без полного сопротивления сети, выглядит следующим образом:
Подводя итог еще раз,
Как можно увидеть здесь, включение дополнительных деталей снижает доступный ток короткого замыкания.В этом случае ток короткого замыкания был снижен с 31 378 ампер до 26 566 ампер, примерно на 15,3%.
Рисунок 8. Сводка расчетов и сравнение с другими инструментами для расчета доступного тока короткого замыкания.Окончательная калибровка
Итак, мы прошли через расчет доступного тока короткого замыкания для служебного входного оборудования. Мы показали, как короткие пути приводят к консервативным доступным токам короткого замыкания, которые в целях оценки отключающих характеристик и / или оценок SCCR обеспечивают коэффициент безопасности для конструкции.Мы также показали, как можно снизить доступные токи короткого замыкания с помощью более подробного анализа, но это требует больше усилий и опыта. Давайте посмотрим на приведенный выше пример и рассмотрим другие инструменты, которые могут быть доступны.
В нашем распоряжении есть различные инструменты, когда мы рассматриваем возможность расчета доступного тока короткого замыкания. Некоторые из них довольно дороги и требуют использования обученных специалистов. К ним относятся такие программные приложения, как инструменты системного анализа SKM. Эти приложения действительно являются достаточно подробными и предоставляют очень подробные отчеты.Существуют также бесплатные инструменты, такие как калькулятор короткого замыкания Eaton Bussmann FC2. Рисунок 8 суммирует то, что мы сделали выше, И дает сравнение с SKM и с приложением Bussmann FC2. Калькулятор Bussmann FC2 является бесплатным и доступен в Интернете или для любого IPHONE или ANDROID через App Store любого продукта. Посетите www.cooperbussmann.com/fc2 для получения дополнительной информации. Вы заметите, что результат программного обеспечения SKM использует как реальную, так и реактивную составляющие проводника. Значения импеданса были взяты прямо из Таблицы 9 в NEC 2014 для медных проводников в стальном трубопроводе.
Опять же, ни один из примеров, показанных выше и включенных в эту статью, не учитывает моторный вклад. Это было упражнение, призванное дать некоторую основу для обсуждения токов короткого замыкания, и поэтому простота была нашим другом. Вклад двигателя может быть очень важным для этих расчетов. С точки зрения математики и / или системной схемы, когда вы включаете вклад двигателя, импеданс параллелен импедансу сетевого источника, импедансу трансформатора и импедансу проводника.Это снижает общий импеданс в цепи, показанной на рисунке 2, и, следовательно, увеличивает расчетный ток короткого замыкания. Сброс остается на усмотрение учащегося. (Я всегда хотел это сказать.)
Заключительное слово
Доступный ток короткого замыкания — очень важный параметр, который необходимо учитывать при проектировании, установке и проверке. На рынке доступны инструменты, которые помогают рассчитать доступный ток короткого замыкания. Используйте эти ресурсы для соответствия требованиям NEC и приложениям продукта.
Как всегда, поставьте безопасность на первое место в списке и убедитесь, что вы и окружающие доживете до следующего дня.
Как рассчитать трансформатор. Расчет и изготовление силового трансформатора
Виктора Хрипченко пос. Октябрьский, Белгородская область
При расчете мощного блока питания столкнулся с проблемой — мне понадобился трансформатор тока, который бы точно измерял ток. По этой теме не так много литературы.А в интернете только запросы — где найти такой расчет. Читать статью; зная, что могут быть ошибки, я подробно рассмотрел эту тему. Ошибки, конечно, присутствовали: нет согласующего резистора Rc (см. Рис. 2) для согласования тока на выходе вторичной обмотки трансформатора (он не рассчитывался). Вторичная цепь трансформатора тока рассчитывается как обычно для трансформатора напряжения (выставляют необходимое напряжение на вторичной обмотке и производят расчет).
Немного теории
Итак, для начала немного теории. Трансформатор тока работает как источник тока с заранее определенным первичным током, представляющим ток защищаемого участка цепи. Величина этого тока практически не зависит от нагрузки. трансформатор тока вторичной цепи, так как его сопротивление с нагрузкой, приведенное к количеству витков первичной обмотки, ничтожно мало по сравнению с сопротивлениями элементов электрической цепи.Это обстоятельство отличает работу трансформатора тока от работы силовых трансформаторов и трансформаторов напряжения.
На рис. 1 показана маркировка концов первичной и вторичной обмоток трансформатора тока, намотанных на магнитопровод в одном направлении (I1 — ток первичной обмотки, I2 — ток вторичной обмотки). Вторичный ток I2, пренебрегая небольшим током намагничивания, всегда направлен так, чтобы размагничивать магнитную цепь.
Стрелки показывают направление токов. Следовательно, если мы возьмем за начало верхний конец первичной обмотки, то начало вторичной обмотки n также будет ее верхним концом. Принятое правило маркировки соответствует одинаковому направлению токов с учетом знака. И самое главное правило: условие равенства магнитных потоков.
Алгебраическая сумма произведений I 1 x W 1 — I 2 x W 2 = 0 (без учета малого тока намагничивания), где W 1 — количество витков первичной обмотки трансформатора тока, W 2 — количество витков витки вторичной обмотки трансформатора тока.
Пример. Допустим, вы, задав себе ток первичной обмотки 16 А, произвели расчет, а в первичной обмотке 5 витков — рассчитали. Вам задается ток вторичной обмотки, например 0,1 А и по приведенной выше формуле I 1 x W 1 = I 2 x W 2 рассчитываем количество витков вторичной обмотки трансформатора.
Вт 2 = I 1 x Вт 1 / I 2
Далее, после вычисления L2-индуктивности вторичной обмотки, ее сопротивления XL1, мы вычисляем U2, а затем Rc.Но это чуть позже. То есть вы видите, что, задав ток во вторичной обмотке трансформатора I2, вы только потом рассчитываете количество витков. Ток вторичной обмотки трансформатора тока I2 можно установить на любой — отсюда будет рассчитываться Rc. А также -I2 должно быть больше тех нагрузок, которые вы будете подключать
Трансформатор тока должен работать только с согласованной по току нагрузкой (это Rc).
Если пользователю требуется трансформатор тока для использования в схемах защиты, то такими тонкостями, как направление обмоток, точность резистивной нагрузки Rc можно пренебречь, но это уже будет не трансформатор тока, а датчик тока с большая ошибка.И устранить эту ошибку можно, только создав нагрузку на устройство (я имею в виду источник питания, куда пользователь собирается поставить защиту с помощью трансформатора тока), и схемой защиты установить порог его срабатывания по току. Если пользователю требуется схема измерения тока, то необходимо соблюдать именно эти тонкости.
На рис. 2 (точки — начало обмоток) показан резистор Rc, который является составной частью трансформатора тока для согласования токов первичной и вторичной обмоток.То есть Rc устанавливает ток во вторичной обмотке. Необязательно использовать резистор в качестве Rc, можно поставить амперметр, реле, но должно быть соблюдено условие — внутреннее сопротивление нагрузки должно быть равно расчетному Rc.
Если нагрузка не согласована по току, это будет генератор перенапряжения. Позвольте мне объяснить, почему это так. Как упоминалось ранее, вторичный ток трансформатора направлен в направлении, противоположном направлению первичного тока.А вторичная обмотка трансформатора работает как размагничивающая. Если нагрузка во вторичной обмотке трансформатора не согласована по току или отсутствует, первичная обмотка будет действовать как намагничивающая. Индукция резко возрастает, вызывая сильный нагрев магнитной проволоки из-за повышенных потерь в стали. Индуктивная ЭДС в обмотке будет определяться скоростью изменения потока во времени, которая имеет наибольшее значение, когда трапецеидальный (из-за насыщения магнитной цепи) поток проходит через нулевые значения.Резко уменьшается индуктивность обмоток, что вызывает еще больший нагрев трансформатора и, в конечном итоге, его выход из строя.
Типы магнитопроводов показаны на рис. 3.
Скрученная или ленточная магнитная цепь — это одно и то же понятие, как и выражение кольцевой или тороидальный магнитный контур: оба они встречаются в литературе.
Это может быть ферритовый сердечник или Е-образный трансформаторный железо, или ленточные сердечники. Ферритовые сердечники обычно используются на более высоких частотах — 400 Гц и выше в связи с тем, что они работают в слабых и средних магнитных полях (W = 0.Не более 3 т). А поскольку ферриты, как правило, обладают высокой магнитной проницаемостью µ и узкой петлей гистерезиса, они быстро попадают в область насыщения. Выходное напряжение на вторичной обмотке при f = 50 Гц составляет несколько вольт или меньше. Ферритовые сердечники обычно маркируются с указанием их магнитных свойств (например, M2000 означает магнитную проницаемость сердечника µ, равную 2000 единиц).
На ленточных магнитопроводах или на W-образных пластинах такой маркировки нет, поэтому их магнитные свойства необходимо определять экспериментально, и они работают в средних и сильных магнитных полях (в зависимости от используемой марки электротехнической стали — 1.5 … .2 Тл и более) и применяются на частотах 50 Гц … .400 Гц. Кольцевые или тороидальные витые (ленточные) магнитопроводы также работают на частоте 5 кГц (и даже до 25 кГц из пермаллоя). При расчете S — площади поперечного сечения ленточного тороидального магнитопровода рекомендуется для большей точности результат умножить на коэффициент k = 0,7 … 0,75. Это связано с конструктивной особенностью ленточных магнитопроводов.
Что представляет собой ленточный магнитопровод (рис.3)? Стальную полосу толщиной 0,08 мм и более наматывают на оправку, а затем отжигают на воздухе при температуре 400 … 500 ° С для улучшения их магнитных свойств. Затем эти формы обрезаются, края шлифуются, и собирается магнитопровод. Кольцевые (сплошные) скрученные магнитопроводы из тонких ленточных материалов (пермаллой толщиной 0,01 … 0,0,05 мм) при намотке покрываются электроизоляционным материалом, а затем отжигаются в вакууме при 1000 … .1100 ° C.
Для определения магнитных свойств таких магнитопроводов необходимо намотать 20… 30 витков провода (чем больше витков, тем точнее будет значение магнитной проницаемости сердечника) на сердечник магнитопровода и измерить L-индуктивность этой обмотки (мкГн). Вычислить S — площадь поперечного сечения сердечника трансформатора (мм2), lm — средняя длина магнитной ЛЭП (мм). И по формуле рассчитаем jll — магнитную проницаемость сердечника:
(1) µ = (800 x L x пог.м) / (N2 x S) — для ленты и W-образной жилы.
(2) µ = 2500 * L (D + d) / W2 x C (D — d) — для кольцевого (тороидального) сердечника.
При расчете трансформатора на более высокие токи в первичной обмотке используется провод большого диаметра, и здесь понадобится витая магнитная цепь (U-образная), витой кольцевой сердечник или ферритовый тороид.
Если кто-то держал в руках промышленный трансформатор тока для высоких токов, он видел, что на магнитной цепи нет первичной обмотки, но есть широкая алюминиевая шина, проходящая через магнитную цепь.
Я тогда вспомнил, что расчет трансформатора тока можно сделать, задав W — магнитную индукцию в сердечнике, в то время как первичная обмотка будет состоять из нескольких витков, и вам придется страдать, наматывая эти витки на сердечник трансформатора. . Или необходимо рассчитать магнитную индукцию W поля, создаваемого проводником с током в сердечнике.
А теперь приступим к расчету трансформатора тока по законам .
Вы устанавливаете ток первичной обмотки трансформатора тока, то есть ток, которым вы будете управлять в цепи.
Пусть это будет I1 = 20 А, частота, на которой будет работать трансформатор тока, f = 50 Гц.
Возьмите ленточный кольцевой сердечник OJ125 / 40-10 или (40х25х10 мм), схематически показанный на рис. 4.
Размеры: D = 40 мм, d = 25 мм, C = 10 мм.
Далее идут два расчета с подробным объяснением того, как именно рассчитывается трансформатор тока, но слишком много формул затрудняет выкладывание расчетов на странице сайта.По этой причине полная версия статьи о том, как рассчитать трансформатор тока, была преобразована в PDF и может быть загружена с помощью
.Трансформатор — это тип электрического компонента, который предназначен для преобразования напряжения и тока из одной величины в другую пропорционально потребляемой мощности на входе и выходе. Этот элемент силового оборудования обычно может содержать одну первичную обмотку и одну или несколько вторичных.
Будучи довольно сложным устройством, расчет трансформатора иногда занимает много времени и не каждый может сделать это качественно.Но от правильности процесса зависит очень многое. Стабильность работы Готовый прибор, КПД, потребляемая мощность. Кроме того, при неверном расчете с заводным устройством может произойти множество непонятных вещей:
- перегрев;
- издает вызывной сигнал при работе;
- потребляют большое количество энергии с низким КПД и так далее.
В более серьезных ситуациях он может даже загореться, что вызовет дополнительные проблемы.Поэтому многих интересует вопрос, как рассчитать трансформатор того или иного типа, чтобы он выдавал необходимое количество электрической мощности и коэффициент полезного действия был максимально приближен к 1 .
Но сразу стоит вас уверить, что КПД равный 1 — это нереальный фактор, потому что потери присутствуют всегда, поэтому при расчете онлайн или традиционным методом увидеть показатель равный 40% при расчете силового трансформатора на железо — это хорошо.Для импульсных устройств программа расчета даст не менее 55-60%. Поэтому, если вы хотите сделать устройство максимально эффективным, то выбирайте именно импульсный тип трансформатора, но если вы хотите сделать надежный блок питания, где не важна потребляемая мощность, то, конечно, мы учитываем трансформатор утюг.
Порядок расчета трансформаторов
Все программы для расчета трансформаторов обрабатывают данные по формулам, известным нам из научных публикаций, поэтому правильность своей программы всегда можно проверить.Но необходимость знать табличные значения может ввести вас в заблуждение … Поэтому сейчас разберем некоторые детали расчета трансформаторов с тороидальным сердечником на трансформаторном железе или на феррите.
Тороид обладает лучшими свойствами по сравнению со всеми другими типами сердечников, так как в нем отсутствуют зазоры, и, как следствие, потери на вихревые токи сведены к минимуму. Поэтому КПД таких трансформаторов значительно выше, поэтому если вы хотите сделать качественное устройство, то используйте именно этот тип сердечника, правда, на него сложнее намотать обмотку, но оно того стоит.
Этапы определения параметров
Прежде всего, для правильного расчета вам потребуется определить основные параметры будущего трансформатора. К ним относятся:
- напряжение и ток первичной обмотки;
- такие же показатели на вторичной обмотке.
Далее рассчитывается количество витков на каждой из обмоток, по таблице и полученным результатам расчета тока выбирается тип провода, но для начала необходимо измерить размеры сердечника, если таковой имеется.Или, наоборот, выставить необходимую мощность и рассчитать параметры кольца. Это то, что предлагают все онлайн-программы расчета трансформаторов.
Выбирая количество витков на первичной обмотке, необходимо помнить, что если их будет недостаточно, она сильно нагреется и со временем перегорит. А при достаточно большом напряжении напряжение на вторичке будет небольшим, поэтому необходимо использовать строго справочные данные и формулы из учебников.
Рассмотрим пример расчета трансформатора, намотанного на тороидальном сердечнике и запитанного от сети с частотой 50 Гц.
Для упрощения процесса расчета устройства можно использовать табличные данные, в которых показаны формулы и переменные, используемые для определения параметров обмоточного изделия, сведенные в таблицу ниже:
Для изготовления сердечников таких сетевых трансформаторов используются 2 марки стали:
- Е310-330 холоднокатаного типа и толщиной листа в пределах 0.35-0,5 мм;
- Сталь Э340-360 обыкновенная толщиной 0,05 — 0,1 мм.
Следует понимать, что количество витков для каждого вида стали может быть разным, что связано с магнитной проницаемостью сердечника и другими показателями. Однако в таблице ω 1 и ω 2 — количество витков для холоднокатаной и обычной стали соответственно. Рг — общая мощность трансформатора; S — параметры сердечника (площадь поперечного сечения), ∆ — максимально допустимая плотность тока в обмотках; η — КПД устройства.
Одной из особенностей изготовления тороидального трансформатора является использование внешней и межобмоточной изоляции, поэтому жилы должны быть достаточно упругими. В качестве таковых часто выбирают ПЕЛШО или ПЕШО , также популярны ПЭВ-2. В качестве внешнего утеплителя используются следующие виды материалов:
- ткань лакированная; Лента кембрика
- ;
- триацетатная пленка;
- Пленка фторопласт.
Преимущества использования программ
Одним из преимуществ использования онлайн-калькуляторов для расчета параметров трансформатора является отсутствие необходимости во всех вышеперечисленных нюансах.Но результат приблизительный , поэтому это важно помнить при использовании той или иной программы. Конечно, есть проекты лучше с расчетом трансформаторов, в которых учитывается толщина изоляционной пленки, тип стали, плотность намотки.
Основные формулы и порядок их применения
Далее необходимо установить основные параметры будущего трансформатора. К ним относятся сетевое напряжение Uc и выходное напряжение вторичной обмотки Uн.Так же выставляем ток в нагрузке Iн, именно этот показатель зачастую является наиболее важным, определяющим характеристики устройства.
Некоторые калькуляторы вместе с вводом данных в форму также показывают основные формулы, по которым определялось полученное значение. Это значительно облегчает процесс и в то же время позволяет глубже понять принцип расчета. В любом случае при указании основных данных в форме программа в первую очередь определяет мощность нВ вторичной обмотки по известной формуле:
Следующим шагом в расчете параметров любого тороидального трансформатора является определение сечения сердечника.Рассчитывается по формуле:
S расчет = √Pg / 1,2.
Для правильного выбора жилы необходимо использовать следующую формулу расчета сечения:
S = (Dc — dc) hc / 2.
Далее, используя справочную таблицу основных параметров, выбираем наиболее близкую по характеристикам. Необходимо подбирать магнитопровод большей мощности, чем рассчитанная по формуле.
Следующим шагом, который выполняет программа для расчета сварочного или силового трансформатора с питанием от сети 50 Гц , является определение количества витков на вольт.Для этого нужно использовать постоянные значения, взятые из справочника. Дело в том, что для каждого типа сердечника есть своя константа. Например, для магнитопровода из стали Э320 он равен 33,3, а формула выглядит следующим образом:
Вт 1-1 = ω 1 x Uc;
Вт 1-2 = ω 1 х У н.
При расчете количества витков на обмотках сварочного тороидального трансформатора необходимо учитывать рассеиваемую мощность, из-за которой выходное напряжение будет занижено на 3%.Поэтому для правильных расчетов рекомендуется увеличить количество витков вторичной обмотки именно на эту разницу.
Следующим шагом будет определение диаметра провода обеих обмоток. Для этого рассчитывается значение тока в первичной обмотке:
I 1 = 1,1 (P2 / Uc). И по формуле:
d 1 = 1,13√ I 1 / ∆ определяется параметр проволоки.
Этот расчет действителен для всех типов трансформаторов, как силовых, так и сварочных трансформаторов, питающихся от сети с частотой 50 Гц.Программа расчета выполняет те же операции, что описаны выше. Только она может оперировать данными в любом порядке. Например, задав количество витков, можно определить напряжение и мощность сердечника, введя параметры сердечника, можно узнать мощность и электрические характеристики трансформатора.
Расчет импульсного трансформатора
Как и обычный силовой трансформатор, импульсные трансформаторы также можно рассчитать с помощью онлайн-калькуляторов и различных программ.Формулы будут аналогичными, но нужно будет учесть магнитную проницаемость и другие параметры ферритового сердечника. Ведь качество и правильность готового устройства напрямую зависит от его свойств.
При выполнении расчетов для сварки импульсных трансформаторов с помощью программ многие из них дают подсказки, представляют мостовые схемы выпрямителя и так далее. Все это значительно упрощает процесс, так как традиционными методами это сложно. Но в целом принцип остается прежним.А что касается программ-калькуляторов, то в Интернете их огромное количество для расчета любых импульсных или обычных сетевых устройств различной мощности и электрических параметров.
- Что делать, если вы приобрели бывшее в употреблении оборудование?
- Самостоятельный расчет силовой обмотки трансформатора
- Формула расчета мощности
- Обеспечение пройденного материала для расчета мощности
Каждый из нас знает, что такое трансформатор. Он служит для преобразования напряжения в большее или меньшее значение.Когда мы приобретаем трансформатор в специализированных магазинах, как правило, в инструкции к ним есть полное техническое описание. Вам не нужно читать все его параметры и измерять их, так как все они уже рассчитаны и выведены производителем. В инструкции можно найти такие параметры, как мощность трансформатора, входное напряжение, выходное напряжение, количество вторичных обмоток, если их количество превышает единицу.
Что делать, если вы приобрели бывшее в употреблении оборудование?
Но если вы уже использовали оборудование в руках и не знаете его функциональности, вам необходимо самостоятельно рассчитать обмотку трансформатора и его мощность.Но как хотя бы приблизительно рассчитать обмотку трансформатора и ее мощность? Стоит отметить, что такой параметр, как мощность трансформатора, является очень важным показателем для данного устройства, поскольку от него будет зависеть, насколько функциональным будет устройство, собранное из него. Чаще всего его используют для создания блоков питания.
Прежде всего, следует отметить, что мощность трансформатора зависит от потребляемого тока и напряжения, которые необходимы для его работы.Для того, чтобы рассчитать мощность, нужно умножить эти два показателя: потребляемый ток и напряжение питания устройства. Эта формула всем знакома со школы, выглядит она так:
P = Un * In, где
Uн — напряжение питания, измеренное в вольтах, Iн — потребляемый ток, измеренный в амперах, P — потребляемая мощность, измеренная в ваттах.
Если у вас есть трансформатор, который вы хотите измерить, вы можете сделать это прямо сейчас, используя следующий метод.Для начала нужно осмотреть сам трансформатор и определить его тип и используемые в нем сердечники. Глядя на трансформатор, нужно понимать, какой тип сердечника в нем используется. Наиболее распространен W-образный тип сердечника.
Этот сердечник применяется в трансформаторах не самых лучших, по КПД, но их легко найти на полках магазинов электротоваров или открутить от старого и неисправного оборудования. Доступность и довольно низкая цена делают их довольно популярными среди любителей собирать устройство своими руками.Вы также можете приобрести тороидальный трансформатор, иногда называемый кольцевым трансформатором. Он намного дороже первого и имеет лучшие показатели эффективности и других качественных показателей; он используется в достаточно мощных и высокотехнологичных устройствах.
Вернуться к содержанию
Самостоятельный расчет силовой обмотки трансформатора
Используя книги по радиотехнике и электронике, мы можем самостоятельно произвести расчет со стандартным W-образным сердечником. Чтобы рассчитать мощность такого устройства, как трансформатор, необходимо правильно рассчитать сечение магнитопровода.Что касается стандартных трансформаторов с W-образным сердечником, размер поперечного сечения магнитопровода будет измеряться длиной поставляемых пластин, изготовленных из специальной электротехнической стали. Итак, чтобы определить сечение магнитопровода, необходимо умножить два показателя, например, толщину набора пластин и ширину центрального лепестка W-образной пластины.
Взяв линейку, можно измерить ширину комплекта излучаемого трансформатора. Очень важно, чтобы все измерения лучше всего проводить в сантиметрах, а также расчеты.Это может исключить появление ошибок в формулах и избавить вас от лишних вычислений при переводе с сантиметров в метры. Итак, образно принимаем ширину рядов равной трем сантиметрам.
Далее необходимо измерить ширину его центрального лепестка. Эта задача может стать проблематичной, поскольку многие трансформаторы по своим технологическим особенностям могут быть закрыты пластиковым каркасом. В этом случае вы не сможете, не увидев предварительно реальную ширину, произвести какие-либо расчеты, которые хотя бы близко будут напоминать реальные.Чтобы измерить этот параметр, нужно искать места, где это можно было бы сделать. В противном случае вы можете аккуратно разобрать его корпус и измерить этот параметр, но делать это нужно с максимальной точностью.
Вернуться к содержанию
Формула расчета мощности
Найдя открытое место или разобрав инструмент, вы можете измерить толщину центральной доли. Условно примем этот параметр равным двум сантиметрам.Стоит напомнить, что, примерно рассчитывая мощность, измерения следует производить максимально точно. Далее необходимо умножить размер набора магнитопровода, равный трем сантиметрам, и толщину лепестка пластины, равную двум сантиметрам. В результате мы получаем сечение магнитопровода в шесть квадратных сантиметров. Для дальнейшего расчета необходимо ознакомиться с такой формулой, как S = 1,3 * √Ptr, где:
- S — площадь поперечного сечения магнитопровода.2 = 20,35 Вт
После всех расчетов получаем абстрактное значение 20,35 Вт, которое будет сложно найти в трансформаторах с W-образным сердечником. Реальные значения колеблются около семи ватт. Этой мощности будет вполне достаточно для сборки блока питания оборудования, работающего на звуковых частотах и имеющего мощность в диапазоне от 3 до 5 Вт.
Расчет силового трансформатора
Трансформатор — это пассивный преобразователь энергии. Его коэффициент полезного действия (COP) всегда меньше единицы.Это означает, что мощность, потребляемая нагрузкой, подключенной ко вторичной обмотке трансформатора, меньше мощности, потребляемой нагруженным трансформатором от сети. Известно, что мощность равна произведению силы тока и напряжения, поэтому в повышающих обмотках ток меньше, а в понижающих больше тока, потребляемого трансформатор от сети.
Параметры и характеристики трансформатора.
Два разных трансформатора с одинаковым напряжением сети могут быть спроектированы для получения одинаковых вторичных напряжений. Но если нагрузка первого трансформатора потребляет больше тока, а второго мала, это означает, что первый трансформатор отличается по сравнению со вторым большей мощностью. Чем больше ток в обмотках трансформатора, тем больше магнитный поток в его сердечнике, поэтому сердечник должен быть толще. Кроме того, чем больше ток в обмотке, тем толще должен быть намотан провод, а это требует увеличения окна сердечника.Поэтому габариты трансформатора зависят от его мощности. И наоборот, сердечник определенного размера подходит для изготовления трансформатора только до определенной мощности, которая называется общей мощностью трансформатора. Количество витков вторичной обмотки трансформатора определяет напряжение на его выводах. Но это напряжение также зависит от количества витков первичной обмотки. При определенном значении напряжения питания первичной обмотки напряжение вторичной обмотки зависит от отношения числа витков вторичной обмотки к числу витков первичной.Этот коэффициент называется коэффициентом трансформации. Если напряжение на вторичной обмотке зависит от коэффициента трансформации, нельзя произвольно выбирать количество витков одной из обмоток. Чем меньше размеры сердечника, тем больше должно быть витков каждой обмотки. Следовательно, размер сердечника трансформатора соответствует весьма определенному числу витков его обмоток на один вольт напряжения, меньшее, чем может быть принято. Эта характеристика называется числом витков на вольт.
Как и любой преобразователь мощности, трансформатор имеет коэффициент полезного действия — отношение мощности, потребляемой нагрузкой трансформатора, к мощности, потребляемой загруженным трансформатором из сети. КПД трансформаторов малой мощности, которые обычно используются для питания бытовой электроники, составляет от 0,8 до 0,95. Более высокие значения имеют трансформаторы большей мощности.
Электрический расчет трансформатора
Перед расчетом трансформатора необходимо сформулировать требования, которым он должен удовлетворять.Они будут исходными данными для расчета. Технические требования к трансформатору также определяются расчетом, в результате которого определяются напряжения и токи, которые должны обеспечивать вторичные обмотки. Поэтому перед расчетом трансформатора рассчитывается выпрямитель, чтобы определить напряжения каждой из вторичных обмоток и токи, потребляемые от этих обмоток. Если напряжения и токи каждой из обмоток трансформатора уже известны, то они являются техническими требованиями к трансформатору.Чтобы определить общую мощность трансформатора, необходимо определить мощность, потребляемую от каждой из вторичных обмоток, и сложить их, учитывая также КПД трансформатора … Мощность, потребляемая от любой обмотки, определяется путем умножения напряжения между выводы этой обмотки по силе потребляемого с нее тока:
П — мощность, потребляемая с обмотки, Вт;
U– действующее значение напряжения, снимаемого с этой обмотки, В;
I — эффективное значение тока, протекающего в той же обмотке, А.
Суммарная мощность, потребляемая, например, тремя вторичными обмотками, рассчитывается по формуле:
PS = U 1 I 1 + U 2 I 2 + U 3 I 3
Для определения общей мощности трансформатора, полученное значение полной мощности PS необходимо разделить на КПД трансформатора: P g =, где
P g — общая мощность трансформатора; η — КПД трансформатора.
Заранее рассчитать КПД трансформатора невозможно, так как для этого нужно знать величину потерь энергии в обмотках и в сердечнике, которые зависят от параметров самих обмоток (диаметров проводов и их длины. ) и параметров сердечника (длина силовой линии и марка стали).И те, и другие параметры становятся известны только после расчета трансформатора. Поэтому с достаточной точностью для практического расчета КПД трансформатора можно определить по таблице 6.1.
Таблица 6.1
Суммарная мощность, Вт
КПД трансформатора
Наиболее распространенными формами сердечников являются O-образная и W-образная формы.На О-образном сердечнике обычно две катушки, а на W-образном сердечнике — одна. Зная общую мощность трансформатора, находят сечение рабочего сердечника его сердечника, на котором расположена катушка:
Сечение рабочего сердечника сердечника является произведением ширины рабочего сердечника a и толщина упаковки c. Размеры a и c выражены в сантиметрах, а поперечное сечение — в квадратных сантиметрах.
После этого выбирается тип пластин трансформаторной стали и определяется толщина пакета сердечников.Сначала находят примерную ширину рабочего сердечника сердечника по формуле: a = 0,8
Затем по полученному значению a выбирается тип пластин трансформаторной стали из имеющихся и фактическая ширина рабочего сердечника. ядро найдено. после чего определяется толщина пакета сердечников:
Количество витков на 1 вольт напряжения определяется сечением рабочего сердечника сердечника трансформатора по формуле: n = k / S, где N — количество витков на 1 В; k — коэффициент, определяемый свойствами сердечника; S — сечение рабочей жилы жилы, см 2.
Из приведенной выше формулы видно, что чем меньше коэффициент k, тем меньше витков будут иметь все обмотки трансформатора. Однако коэффициент k нельзя выбрать произвольно. Его значение обычно лежит в пределах от 35 до 60. В первую очередь это зависит от свойств пластин трансформаторной стали, из которых собирается сердечник. Для С-образных жил, скрученных из тонкой ленты, можно взять k = 35. Если используется О-образный сердечник, собранный из П- или Г-образных пластин без отверстий по углам, берут k = 40.Такое же значение ki для пластин типа УШ, у которых ширина боковых жил больше половины ширины средней жилы. При использовании пластин типа Ш без отверстий в углах, для которых ширина средний сердечник ровно в два раза больше ширины внешних жил, желательно брать k = 45, а если у Ш-образных пластин есть отверстия, то k = 50. Таким образом, выбор k во многом произвольный и может варьироваться в определенных пределах, учитывая, что уменьшение k облегчает намотку, но ужесточает режим трансформатора.При использовании пластин из высококачественной трансформаторной стали этот коэффициент можно немного уменьшить, а при использовании стали низкого качества — увеличить.
Зная необходимое напряжение каждой обмотки и количество витков на 1 В, несложно определить количество витков обмотки, умножив эти значения: W = Un
Это соотношение справедливо только для первичной обмотки, а при определении количества витков вторичных обмоток необходимо ввести дополнительную приблизительную поправку для учета падения напряжения на самой обмотке от тока нагрузки, протекающего по ее проводу: W = mUn
Коэффициент m зависит от ток, протекающий через данную обмотку (см. таблицу 6.2). Если сила тока меньше 0,2 А, можно принять m = 1. Толщина провода, наматывающего обмотку трансформатора, определяется током, протекающим по этой обмотке. Чем больше ток, тем толще должна быть проволока, точно так же, как более толстая труба требуется для увеличения потока воды. Сопротивление обмотки зависит от толщины провода. Чем тоньше провод, тем больше сопротивление обмотки, следовательно, выделяемая в ней мощность увеличивается и она сильнее нагревается.Для каждого типа обмоточного провода существует предел допустимого нагрева, который зависит от свойств эмалевой изоляции. Поэтому диаметр провода можно определить по формуле: d = p, где d — диаметр провода в меди, м; I — ток в обмотке, А; p — коэффициент (таблица 6.3), учитывающий допустимый нагрев проволоки конкретной марки.
Таблица 6.2: Определение коэффициента м
Таблица 6.3: Выбор диаметра проволоки.
Выбрав коэффициент p, можно определить диаметр проволоки каждой обмотки. Найденное значение диаметра округляется в большую сторону.
Ток в первичной обмотке определяется с учетом общей мощности трансформатора и напряжения сети:
Практическая работа:
U 1 = 6,3 В, I 1 = 1,5 А; U 2 = 12 В, I 2 = 0,3 А; U 3 = 120 В, I 3 = 59 мА
Калькулятор и диаграммаТрансформаторы постоянно используются в различных схемах, в осветительных приборах, источниках питания цепей управления и другом электронном оборудовании.Поэтому довольно часто требуется рассчитать параметры устройства в соответствии с конкретными условиями эксплуатации. Для этих целей можно использовать специально разработанный онлайн-калькулятор для расчета трансформатора. Простая таблица требует заполнения исходными данными в виде значения входного напряжения, габаритных размеров, а также выходного напряжения.
Преимущества онлайн-калькулятора
В результате расчета трансформатора онлайн получаются параметры на выходе в виде мощности, тока в амперах, количества витков и диаметра провода в первичной и вторичной обмотках.
Есть такие, которые позволяют быстро производить расчеты трансформатора. Однако они не дают полной гарантии от ошибок расчетов. Чтобы избежать подобных неприятностей, используется программа онлайн-калькулятора. Полученные результаты позволяют проектировать трансформаторы на различные мощности и напряжения. С помощью калькулятора проводятся не только расчеты трансформатора. Есть возможность изучить его структуру и основные функции.Запрошенные данные вставляются в таблицу, и остается только нажать желаемую кнопку.
Благодаря онлайн-калькулятору никаких самостоятельных расчетов не требуется. Полученные результаты позволяют перематывать трансформатор своими руками. Большинство необходимых расчетов производятся по размерам сердечника. Калькулятор максимально упрощает и ускоряет все расчеты. Необходимые пояснения можно получить из инструкций и в дальнейшем строго следовать им.
Конструкция магнитопроводов трансформатора представлена в трех основных вариантах — броневой, стержневой и. Другие модификации встречаются гораздо реже. Для расчета каждого типа требуются исходные данные в виде частоты, входного и выходного напряжения, выходного тока и размеров каждой магнитной цепи.
куб.футов в минуту для промышленных вентиляторов
CFM = Объем помещения / Минуты на воздухообмен | Объем помещения = Д x Ш x В (размеры помещения)
Таблица минутного воздухообмена для коммерческого и промышленного применения
Типичный
Диапазон
Сборка 6
2-10
Аудитории 6
1-20
Пекарни 2
1-3
Банки 6
3-10
Прутки 4
2-5
Сараи 15
10-20
Котельные 2
1-3
Боулинг 3
1-5
Столовая 4
3-5
Церкви 6
2-10
Аудитории 6
4-8
Компрессорные помещения 2
1-3
Танцевальные залы 6
2-10
Молочные предприятия 4
2-5
Общежития 6
4-8
Завод химической чистки 3
1-5
Типичный
Диапазон
Машинное отделение
3
1-5
Заводы
7
4-10
Литейные
5
2-8
Гаражи
7
4-10
Генерирующие установки
4
2-5
Стекольные заводы
2
1-3
Гимназии
6
2-10
Коридоры
8
4-12
Кухни (Comm.)
3
1-5
Лаборатории
3
1-5
Библиотеки
4
2-5
Прачечные
2
1-3
Раздевалки
6
2-10
Машинные цеха
4
2-5
Рынки
6
2-10
Мельницы
4
2-5
Расчет удельной скорости насосаТипичный
Диапазон
Упаковочные коробки 4
3-5
Растения 7
4-10
Гальванические заводы 4
2-5
Типографии 7
4-10
Рестораны 6
2-10
Туалеты 7
4-10
Школы 7
4-10
Покрасочная камера 1
1-2
Магазины 7
4-10
Театры 6
4-8
Трансформаторные помещения 3
1-5
Машинный зал 4
2-5
Залы ожидания 12
10-15
Склады 7
4-10
Сварочные 3
1-4
, технические единицы
Калькулятор удельной скорости всасывания на BEP — Технические единицы
Единицы СИ: N s = (N * (Q) 1/2) / (H) 3/4.где: Ns = удельная скорость. N = скорость насоса, об / мин. Q = расход, м3 / ч. NPSH = чистый положительный напор на всасывании, м. Значения взяты в точке максимальной эффективности (BEP). Расход насоса принимается при максимальном диаметре рабочего колеса. Для рабочих колес с двойным всасыванием расход насоса делится на два.
Получить ценуНасосы — Удельная скорость всасывания — Engineering ToolBox
Этот калькулятор можно использовать для расчета удельной скорости всасывания насоса. … ярлык для этого калькулятора на главном экране? Примечание! Сравнивая насосы и документацию на них — помните об используемых агрегатах.Преобразование британских единиц (галлонов в минуту) в метрические единицы (м 3 / ч, л / с) N ss (US gpm) = 1,63 N ss (метрических л / с) = 0,86 N ss (метрических м 3 / ч) N ss ( Метрические л / с) = 0,614 Н сс (галлонов США в минуту) Н сс …
Узнать ценуРасчет удельной скорости насоса — EasyCalculation
Калькулятор. Формула. Конкретная скорость используется для представления формы насоса. Конкретная скорость насоса может быть рассчитана на основе скорости вращения вала, расхода и подъема напора. Код для добавления этой кальки на ваш сайт.Просто скопируйте и вставьте приведенный ниже код на свою веб-страницу, где вы хотите отобразить этот калькулятор.
Получить ценуКалькулятор размеров оборудования — Единицы измерения
инженерных единиц. Конвертер. Меню. Дом; Преобразование единиц измерения; Калькулятор; Подбор оборудования; Блог; Поиск. Искать: Закрыть поиск. Закрыть меню. Дом. Преобразование единиц. Калькулятор. Подбор оборудования. Блог. Подбор оборудования. Калькуляторы насосов. Калькулятор удельной скорости всасывания на BEP; Калькулятор скорости жидкости — Калькулятор скорости в трубопроводе; Калькулятор крутящего момента насоса; Калькулятор напора насоса; Масса…
Узнать ценуРасчет удельной скорости насоса — участок химической инженерии
23.11.2016 Удельная скорость насоса рассчитывается по формуле: Ns = (N * √Q) / H (3/4) Где. N s — Удельная скорость насоса Безразмерная. N — скорость насоса в об / мин. Q — это объемный расход насоса в точке максимальной эффективности — BEP в галлонах в минуту. H — высота нагнетания насоса при BEP в футах. В единицах СИ
Получить ценуРасчет удельной скорости насоса — EasyCalculation
Калькулятор.Формула. Конкретная скорость используется для представления формы насоса. Конкретная скорость насоса может быть рассчитана на основе скорости вращения вала, расхода и подъема напора. Код для добавления этой кальки на ваш сайт. Просто скопируйте и вставьте приведенный ниже код на свою веб-страницу, где вы хотите отобразить этот калькулятор.
Получить ценуРасчет расхода насоса при заданной удельной скорости …
Чтобы использовать этот онлайн-калькулятор для нагнетания насоса с заданной скоростью, введите «Удельная скорость насоса (Н · с)», «Напор (H)» и «Скорость (N)» и нажмите кнопку «Рассчитать».(4/3). Чтобы рассчитать напор насоса с заданной скоростью, вам нужны скорость (Н), нагнетание (Q) и удельная скорость насоса (Н · с).
Получить ценуУдельная скорость (США) — Расчет насоса
Расчеты Удельная скорость всасывания (США) Крутящий момент с известной мощностью и скоростью поршневой насос двустороннего действия Перемещаемый объем, л.с. и скорость поршня Таблицы удельного веса жидкостей Определения Скорость движения при полной нагрузке Скорость распространения (VP) Синхронная скорость
Получить цену Расчет мощности насоса— engineeringtoolbox
Онлайн-калькулятор насосов — единицы СИ.Приведенный ниже калькулятор можно использовать для расчета гидравлической мощности и мощности на валу насоса: q — расход (м 3 / ч) ρ — плотность жидкости (кг / м 3) г — сила тяжести (м / с 2) h — дифференциальный напор ( м) η — КПД насоса. Онлайн-калькулятор насосов — Британские единицы. Калькулятор ниже можно использовать для расчета гидравлической мощности и мощности на валу насоса в британских единицах измерения: q — расход …
Получить ценуЕдиница скорости Калькулятор Рассчитать Единица скорости
Формула скорости агрегата определяется как отношение скорости турбомашины к квадратному корню из его напора, вычисляемому с использованием unit_speed = Speed / sqrt (Head).(5/4)). Для расчета удельной скорости турбины вам нужны скорость (N), мощность (P) и напор (H). С помощью нашего инструмента вам необходимо ввести соответствующие значения для скорости, мощности и напора. ..
Узнать ценуКалькулятор повышения температуры насоса — Единицы измерения
Калькулятор повышения температуры насоса на основе полного напора, фут / м, КПД насоса U = удельная теплоемкость жидкости, БТЕ / (фунт-° F) кДж / (кг- ° K) кДж / (кг- ° C) в британских единицах / СИ Единицы. Перейти к содержанию. Поиск. Инженерные единицы. Конвертер. Меню. Дом; Преобразование единиц измерения; Калькулятор; Подбор оборудования; Блог; Поиск.Искать: Закрыть поиск. Закрыть меню. Дом. Преобразование единиц. Калькулятор. Подбор оборудования. Блог …
Получить ценуНасосы — Engineering ToolBox
Для насосов, подключенных последовательно — добавьте напор, для насосов, подключенных параллельно — добавьте расходы. Насосы, компрессоры, нагнетатели и вентиляторы. Сравнение насосов, компрессоров, нагнетателей и вентиляторов. Насосы, вентиляторы и турбины — лошадиные силы. British Horse Power в насосах, вентиляторах и турбинах — и как преобразовать их в другие единицы. Насосы особой скорости. Охарактеризуйте.(4/3). Чтобы рассчитать напор насоса с заданной скоростью, вам нужны скорость (Н), нагнетание (Q) и удельная скорость насоса (Н · с).
Получить цену Расчет мощности насоса— engineeringtoolbox
Онлайн-калькулятор насосов — единицы СИ. Приведенный ниже калькулятор можно использовать для расчета гидравлической мощности и мощности на валу насоса: q — расход (м 3 / ч) ρ — плотность жидкости (кг / м 3) г — сила тяжести (м / с 2) h — дифференциальный напор ( м) η — КПД насоса. Онлайн-калькулятор насосов — Британские единицы. Калькулятор ниже можно использовать для расчета гидравлической мощности и мощности на валу насоса в английских единицах измерения: q — расход…
Узнать ценуУдельная скорость всасывания (США) — Расчет насоса
Насосные инженерные расчеты тормозной мощности, мощности, киловатт, двигателя, двигателей, падения напряжения, круговых мельниц, трансформаторов, отношения оборотов, закона сопротивления, мощности постоянного тока …
Получить ценуФормула для расчета мощности насоса Удельная скорость …
22.09.2018 Удельная скорость насоса. Удельная скорость «Nq» — это параметр, полученный из анализа размеров, который позволяет сравнивать рабочие колеса насосов различных размеров, даже если они работают в аналогичном диапазоне Q -H.. Конкретная скорость может использоваться для определения оптимальной конструкции рабочего колеса. Удельная скорость насоса (Nq) определяется как скорость в об / мин, при которой геометрически подобный
получает ценуКалькулятор повышения температуры насоса — Единицы измерения
Калькулятор повышения температуры насоса на основе полного напора, фут / м, КПД насоса U = удельная теплоемкость жидкости, БТЕ / (фунт-° F) кДж / (кг- ° K) кДж / (кг- ° C) в британских единицах / СИ Единицы. Перейти к содержанию. Поиск. Инженерные единицы. Конвертер. Меню. Дом; Преобразование единиц измерения; Калькулятор; Подбор оборудования; Блог; Поиск.(5/4)). Для расчета удельной скорости турбины вам нужны скорость (N), мощность (P) и напор (H). С помощью нашего инструмента вам необходимо ввести соответствующие значения для скорости, мощности и напора. ..
Узнать ценуТехника для всасывающих насосов с удельной скоростью …
Удельная скорость всасывания (S), такая как удельная скорость рабочего колеса (Ns), является параметром или индексом гидравлической конструкции, описывающим всасывающие возможности и характеристики данного рабочего колеса первой ступени. Входные значения для расхода и NPSHR, которые соответствуют производительности насоса при оптимальной (или наилучшей) точке эффективности.В этом примере рассчитайте удельную скорость всасывания в метрических или американских единицах.
Получить ценуНасосы — Engineering ToolBox
Для насосов, подключенных последовательно — добавьте напор, для насосов, подключенных параллельно — добавьте расходы. Насосы, компрессоры, нагнетатели и вентиляторы. Сравнение насосов, компрессоров, нагнетателей и вентиляторов. Насосы, вентиляторы и турбины — лошадиные силы. British Horse Power в насосах, вентиляторах и турбинах — и как преобразовать их в другие единицы. Насосы особой скорости. Охарактеризуйте …
Узнать ценуОсновные принципы выбора насосов.Расчет насосов
Необходимо рассчитать напор, расход и полезную мощность центробежного насоса, перекачивающего маловязкую жидкость плотностью 1020 кг / м 3 из емкости с избыточным давлением 1,2 бар в емкость с избыточным давлением 2,5 бар по заданному трубопроводу с диаметром трубы 20 см. Общая длина трубопровода (суммарно с эквивалентной длиной местных сопротивлений) составляет 78 м (коэффициент трения принимается равным …
Узнать ценуКалькулятор точки росы
Калькулятор рассчитывает температуру, до которой необходимо охладить воздух, чтобы он стал насыщенным водяным паром и образовал росу.
Укажите любых двух из трех переменных ниже для расчета третьей.
Калькулятор охлаждения связанного ветра | Калькулятор теплового индексаЧто такое влажность?
Влажность определяется как количество водяного пара (газообразная фаза воды) в воздухе. Это индикатор наличия росы, мороза, тумана и осадков. Максимальное количество водяного пара, которое может удерживать воздух, зависит от температуры; чем выше температура, тем большее количество водяного пара он может удерживать до достижения насыщения.
Влажность часто называют абсолютной влажностью и относительной влажностью, как в этом калькуляторе. Значение абсолютной влажности возвращается как часть результатов расчета, но именно относительная влажность широко используется в повседневной жизни и используется как часть расчета температуры точки росы.
Абсолютная влажность — это измерение содержания воды в воздухе, обычно в граммах на кубический метр. Он рассчитывается путем деления общей массы водяного пара на объем воздуха.При одинаковом количестве водяного пара в воздухе абсолютная влажность не меняется с температурой при фиксированном объеме. Если объем не фиксирован, как в атмосфере, абсолютная влажность изменяется в ответ на изменения объема, вызванные колебаниями температуры и давления.
Относительная влажность сравнивает текущее отношение абсолютной влажности к максимальной влажности для данной температуры и выражает это значение в процентах. Чем выше процент, тем выше влажность.На него влияют как температура, так и давление. При таком же количестве водяного пара в прохладном воздухе будет более высокая относительная влажность, чем в более теплом.
Относительная влажность — широко используемый показатель в сводках погоды и прогнозах погоды и является хорошим индикатором осадков, росы, мороза, тумана и видимой температуры. Кажущаяся температура — это температура, воспринимаемая людьми. Летом, чем выше относительная влажность, тем выше кажущаяся температура. Это результат более высокой влажности, что снижает скорость испарения пота, что увеличивает воспринимаемую температуру.
Относительная влажность 100% указывает на то, что воздух насыщен, а это означает, что при текущих условиях водяной пар в воздухе не может увеличиваться дальше в нормальных условиях. Относительная влажность 100% также является точкой, при которой может образовываться роса.
Что такое точка росы?
Точка росы определяется как температура, при которой данный объем воздуха при определенном атмосферном давлении насыщается водяным паром, вызывая конденсацию и образование росы. Роса — это конденсированная вода, которую человек часто видит рано утром на цветах и траве.Точка росы варьируется в зависимости от количества водяного пара, присутствующего в воздухе, при этом более влажный воздух приводит к более высокой точке росы, чем сухой воздух. Кроме того, чем выше относительная влажность, тем ближе точка росы к текущей температуре воздуха, а относительная влажность 100% означает, что точка росы эквивалентна текущей температуре. В случаях, когда точка росы ниже точки замерзания (0 ° C или 32 ° F), водяной пар превращается непосредственно в иней, а не в росу.
Хотя восприятие у разных людей разное, и люди на определенном уровне могут адаптироваться к более высоким точкам росы, более высокие точки росы, как правило, вызывают дискомфорт, потому что влажность препятствует правильному испарению пота, затрудняя охлаждение тела человека.И наоборот, более низкие точки росы также могут быть неудобными, вызывая раздражение и растрескивание кожи, а также высушивая дыхательные пути человека. Управление по охране труда и здоровья США рекомендует поддерживать температуру воздуха в помещении в пределах 68–76 ° F при относительной влажности 20–60%.
Точка росы также учитывается в авиации общего назначения для расчета вероятности таких потенциальных проблем, как обледенение карбюратора или туман. В некоторых случаях устройства, известные как измерители точки росы, используются для измерения точки росы в широком диапазоне температур.Эти устройства состоят из полированного металлического зеркала, которое охлаждается при прохождении через него воздуха. Температура, при которой на зеркале образуется роса, и есть точка росы.
Перевести фунты на квадратный дюйм в бар
Укажите значения ниже для преобразования фунтов на квадратный дюйм [psi] в бар или наоборот .
Фунт-сила на квадратный дюйм
Определение: Фунт-сила на квадратный дюйм (обозначение: фунт / кв. Дюйм) — это британская и общепринятая в США единица давления, основанная на единицах эвердупуа.Он определяется как давление, возникающее при приложении силы в один фунт-сила к площади в один квадратный дюйм. Один фунт на квадратный дюйм составляет примерно 6895 паскалей (Н / м 2 ).
История / происхождение: Фунт-сила на квадратный дюйм — это единица измерения, которая возникла в имперской системе мер и системе единиц США. Она основана на системе энирдупуа, системе, которая использует веса в единицах фунта энирдупуа, которая была стандартизирована в 1959 году. Считается, что эта система вошла в употребление в Англии около 1300 года и использовалась в международной торговле шерстью.Таким образом, фунт-прототип в то время был известен как фунт шерсти эвердупуа.
Текущее использование: Пси довольно широко используется для измерения различных давлений, таких как давление в шинах, давление в акваланге, давление в трубопроводе природного газа и др. Хотя паскаль более широко используется в научном контексте, пси чаще используется в повседневном контексте, особенно в таких странах, как Соединенные Штаты, а также в других странах, где действует обычная или имперская система единиц США.
Бар
Определение: Бар (символ: бар) — это метрическая единица измерения давления, которая определяется как ровно 100 000 паскалей (символ: Па). Оно равно 0,987 атмосферы (101,325 Па) и часто используется в качестве эталона стандартного давления.
История / происхождение: Единица, бар, была введена Вильгельмом Бьеркнесом, норвежским метеорологом, основателем современного прогнозирования погоды. Термин «бар» происходит от греческого слова «барос», что означает вес.
Текущее использование: Хотя бар является метрической единицей давления, он не принимается в Международной системе единиц (СИ) и даже не рекомендуется в некоторых полях.Международное бюро мер и весов определило полосу как единицу, которую авторы должны иметь право использовать, но решило не включать ее в список единиц, не относящихся к системе СИ, принятых для использования с системой СИ.
Миллибары (обозначение: мбар) также обычно используются для определения атмосферного давления воздуха, где атмосферное давление равно 1013,25 мбар (101,325 кПа). Метеорологи и метеорологи по всему миру часто используют эту единицу для удобства, поскольку работа в паскалях приведет к гораздо большим значениям.
Пси в бар Таблица преобразования