Регулятор напряжения на lm317 – Использование регулятора напряжения LM317

Использование регулятора напряжения LM317

  
Особенности LM317

— Микросхема может работать в широком диапазоне выходных напряжений от 1.2 до 37 В.
— Микросхема обеспечивает выходной ток до 1.5 А.
— Максимальная рассеиваемая мощность до 20 Вт.
— Микросхема имеет встроенную защиту от перегрузок по току и от короткого замыкания.
— Встроенная защита от перегрева.

Минимальное включение подразумевает использование двух внешних резисторов. Отношение сопротивлений этих резисторов задает выходное напряжение регулятора, и двух конденсаторов на входе и выходе микросхемы.

Наиболее важные электрические параметры микросхемы — это опорное напряжение Vref и тое в цепи управляющего вывода Iadj. опорное напряжение — это напряжение, которое микросхема стремиться поддерживать на резисторе R1, то есть, если замкнуть накоротко резистор R2, то на выходе регулятора мы получит это самое опорное напряжение. Это напряжение может немного меняться от экземпляра к экземпляру и составляет 1.2 … 1.3 В ( в среднем 1.25В.) Чем выше падение напряжение на резисторе R2, тем выше выходное напряжение регулятора. Вычислить выходное напряжение просто, оно равно падению напряжения на R2 + 1.25 (Vref).

  

  
  
Что касается второго параметра Iadj, то это фактически паразитный ток. Чем он меньше, тем лучше. Изготовители микросхемы заявляют этот ток от 50 до 100 микроампер, но в действительности может быть до 500 мкА. Поэтому чтобы обеспечить  хорошую стабильность выходного напряжения, ток через делитель R1-R2 должен быть не менее 5 мА. Можно оттолкнуться от сопротивления резистора R1 и высчитать R2 по формуле:R2=R1*((Uвых/Uоп)-1)

Затем уточнить номиналы в реальных условиях в работающей схеме.

Приведем пример номиналов для пары стандартных напряжений:

Для напряжения 5В R1 = 120 Ом, R2 = 360 Ом
Для напряжения 12В R1 = 240Ом, R2 = 2000 Ом

Однако, для типовых напряжений вроде 5, 12, 15 и т.д. вольт проще и удобнее использовать регуляторы на фиксированные напряжения вроде 7805 или 7812. Использовать 317 для этих целей лучше только в том случае если регулятора на фиксированное напряжение не оказалось под рукой, а сделать источник питания нужно срочно.

Конфигурация выводов микросхемы LM317 в разных корпусах
  
  

Регулируемый источник питания на микросхеме LM317
  
  

Источник питания с плавным запуском. Как видим, к стандартной схеме добавляется биполярный транзистор структуры PNP, резистор на 50 кОм, кремниевый диод и электролитический конденсатор на 25 мкФ. В момент включения такого источника на его выходе минимальное напряжение, которое плавно увеличивается до установленного 15В по мере заряда конденсатора C1.

Также легко сделать на этой микросхеме источник с несколькими фиксированными напряжениями, которые можно переключать программно, с помощью микроконтроллера. Для этого в управляющую цепь включаем цепочки из транзисторов и резисторов, как показано на рисунке ниже. Базы транзисторов соединяем с портами микроконтроллера. При подаче высокого уровня на каждый последующий транзистор он будет подключать параллельно R2 еще один дополнительный резистор и выходное напряжение будет уменьшаться: 
  

   
  
LM317 можно использовать не только для стабилизации напряжения, но и в качестве стабилизатора тока. Схема получается еще проще, так как здесь нужен всего один единственный внешний резистор, задающий выходной ток:
 

   
  
На LM317 можно сделать несложное зарядное устройство для аккумуляторов с номинальным напряжением 12В.  Номиналы резисторов R1 и R2 задают конечное напряжение на заражаемой батарее, а  резистор Rs устанавливает максимальный зарядный ток.  Это схема из даташита на микросхему:
   
 

     
Двуполярный регулируемый источник питания (например как основа для лабораторного блока питания) можно собрать на двух LM317, но тогда придется использовать трансформатор с двумя обмотками и два выпрямителя, то есть каналы источника питания нужно будет делать независимыми друг от друга. Это хорошее, но дорогое решение. Можно упростить себе жизнь, если использовать микросхему LM337 — аналог микросхемы LM317, но на отрицательное напряжение. Тогда схема нашего регулируемого двуполярного источника может выглядеть например так:
   
 

   
Здесь дополнительные мощные транзисторы VT1 и VT2 позволяют увеличить выходной ток стабилизаторов. нужно выбирать транзисторы согласно тому току, на который вы рассчитываете источник питания.

На следующей схеме изображен регулируемый источник питания на ток до 20 ампер и напряжение от 1.3 до 12 вольт. Транзисторы и микросхему LM317 необходимо установить на радиаторы.  Резисторы в эмиттерных цепях транзисторов должны быть рассчитаны на мощность не менее 5 Вт.
     

musbench.com

Стабилизированный регулятор напряжения на LM317 1.2-37В 1.5А

Сегодня проснулся с мыслью закинуть что то интересное на блог. Вспомнил про простенький регулятор напряжения на LM317T. Очень удобный регулятор за небольшую цену

Все собирается с десятка деталей и работает на ура. Собрал уже с десятка два таких регуляторов напряжения

И так смотрим схему

Схема регулятора напряжения на LM317 LM317T

Используемые в схеме компоненты:

C1 = 1000мФ выравнивает напряжение, кстати поднимает напряжения с моста в 1.4 раза, помните об этом прежде чем микросхему впаивать

C2 = 100нФ Фильтрующий высокие помехи. С номиналом можно немного поиграть, но для качественного подбора нужен осцик)))

C3 = 10µ Служит для подавления шумов с резистора R1 и для стабилизации напряжения опорного на ножке управления

C4 = 1мФ Нужен для подавления помех на выходе микры

R1 = 5к Переменный, если надо точно выставлять напряжение, берите многооборотный подстроечный резистор

R2 = 240 любой от 0,25Вт

VR1 = LM317T Аналог: КР142ЕН12А

Схема питается постоянным напряжением в 40В, не больше, можно пускать с диодного моста. После выхода Стабилизированное напряжение от 1.2В до 37В. Напряжение выставляется с помощью резисторного делителя R1 и R2 так, что бы на ножке управления было опорное напряжение 1.2В. Микросхема LM317 c максимальным током 1.5А, при условии что максимальная рассеиваемая мощность микросхемы не превышена. Рассчитать ее можно по формуле (Uвх-Uвых)/Iн

Параметры скажу честно меня устраивает. Я питал от такого стабилизированного блока питания 4 вентилятора больших по 0,33А 12В. На входе стояли тр-р 70Вт 15В 4А, мост 6А и емкость 2200мФ. Вы не думайте, всего 2А хватило бы с головой, просто ставил что есть под рукой. А после емкости предохранитель был на 2A. Работает и по сей день прибор.

В общем вот что я скажу вообще ор микре LM317 – эта микросхема работает уже во многих моих устройствах, к примере зарядке Зарядное устройство на LM317 , поэтому я практически везде сую эту регулируемую КренКУ

Печатная плата регулятора напряжения на LM317

Скачать печатную плату
Прочитайте Получить пароль от архива
Собирайте, испытайте и пользуйтесь на здоровье
С ув.Админчек

Загрузка…


Полезные материалы по этой теме:


Навигация по записям

rustaste.ru

Стабилизатор тока на lm317 | AUDIO-CXEM.RU

Ток на выходе блока питания может увеличиться вследствие уменьшения сопротивления нагрузки (простой пример, короткое замыкание), также изменение тока нагрузки происходит из-за изменения напряжения питания её. Стабилизатор тока на lm317 обеспечивает стабильность тока (ограничение тока) на выходе в случаях описанных выше.

Данный стабилизатор может быть применён в схемах питания светодиодов, зарядных устройствах (ЗУ), лабораторных источников питания и так далее.

Если, к примеру, рассматривать светодиоды, то необходимо учитывать тот факт, что для них нужно ограничивать ток, а не напряжение. На кристалл можно подать 12В и он не сгорит, при условии, что ток будет ограничен до номинального (в зависимости от маркировки и типа светодиода).

Основные технические характеристики LM317

Максимальный выходной ток 1.5А

Максимальное входное напряжение 40В

Выходное напряжение от 1.2В до 37В

Более подробные характеристики и графики можно посмотреть в даташите на стабилизатор.

Схема стабилизатора тока на lm317

Плюс данного стабилизатора в том, что он является линейным и не вносит высокочастотные помехи, например как некоторые импульсные стабилизаторы. Минусом является низкий КПД (в счёт своей линейности), и поэтому происходит значительный нагрев кристалла микросхемы. Как вы уже поняли, микросхему необходимо обеспечить хорошим радиатором.

За величину тока стабилизации (ограничения) отвечает резистор R1. С помощью данного резистора можно выставить ток стабилизации, например 100мА, тогда даже при коротком замыкании на выходе схемы будет протекать ток, равный 100мА.

Сопротивление резистора R1 рассчитывается по формуле:

R1=1,2/Iнагрузки

Изначально необходимо определиться с величиной тока стабилизации. Например, мне необходимо ограничить ток потребления светодиодов равный 100мА. Тогда,

R1=1,2/0,1A=12 Ом.

То есть, для ограничения тока 0,1A необходимо установить резистор R1=12 Ом. Проверим на железе… Для проверки собрал схему на макетной плате. Резистор на 12 Ом искать было лень, зацепил в параллель два по 22 Ома (были под рукой).

Выставил напряжение холостого хода, равное 12В (можно выставить любое). После чего, я замкнул выход на землю, и стабилизатор LM317 ограничил ток 0,1А. Расчеты подтвердились.

При увеличении или уменьшении напряжения ток остается стабильным.

Резистор можно припаять на выводы микросхемы, но не стоит забывать, что через резистор протекает весь ток нагрузки, поэтому при больших токах нужен резистор повышенной мощности.

Если использовать данный стабилизатор тока на LM317 в лабораторном блоке питания, то необходимо устанавливать переменный резистор проволочного типа, простой переменный резистор не выдержит токи нагрузки протекающие через него.

Для ленивых представляю таблицу значений резистора R1 в зависимости от нужного тока стабилизации.

Ток R1 (стандарт)
0.025 51 Ом
0.05 24 Ом
0.075 16 Ом
0.1 13 Ом
0.15 8.2 Ом
0.2 6.2 Ом
0.25 5.1 Ом
0.3 4.3 Ом
0.35 3.6 Ом
0.4 3 Ома
0.45 2.7 Ома
0.5 2.4 Ома
0.55 2.2 Ома
0.6 2 Ома
0.65 2 Ома
0.7 1.8 Ома
0.75 1.6 Ома
0.8 1.6 Ома
0.85 1.5 Ома
0.9 1.3 Ома
0.95 1.3 Ома
1 1.3 Ома

Таким образом, применив галетный переключатель и несколько резисторов, можно собрать схему регулируемого стабилизатора тока с фиксированными значениями.

 

Даташит на LM317 СКАЧАТЬ

Похожие статьи

audio-cxem.ru

Схема простого стабилизатора с регулировкой по напряжению

Лабораторный блок питания на LM317

Здравствуйте друзья!

Лабораторный блок питания необходим радиолюбителю, без него как без рук. Для начинающих радиолюбителей я предлагаю собрать схему простого стабилизатора с регулировкой по напряжению на микросхеме LM317, на очень распространенных и не дорогих радиоэлементах. Диапазон выходного напряжения от 1,5 до 37В. Ток может достигать 5А, зависит от используемого силового транзистора и теплоотвода. Входной трансформатор можно использовать любой выдающий нужный вам ток и  напряжение до 37В. Стабилизатор не боится короткого замыкания, однако держать длительное время выводы замкнутыми не рекомендуется, так как КТ818 и LM317 при этом начинают достаточно ощутимо греться и при неэффективном теплоотводе могут выйти из строя.

Принципиальная  схема стабилизатора с регулировкой по напряжению

Печатная плата стабилизатора с регулировкой по напряжению

Достоинства данного стабилизатора.

  • простота в изготовлении
  • надежность
  • дешевизна
  • доступность компонентов

Недостатки

  • низкий КПД.
  • необходимость использования массивных радиаторов.
  • не смотря на компактность самой платы. Размеры стабилизатора с радиатором достаточно внушительного размера.

Для изготовления данного устройства Вам понадобится:

  • Стабилизатор LM317 -1шт.
  • Транзистор КТ818 -1шт. в пластиковом корпусе (TO-220)
  • Диод КД522 или аналогичный -1шт.
  • Резистор R1 -47ОМ желательно от 1Вт -1шт.
  • Резистор R3 220Ом от 0.25 Вт -1шт.
  • Переменный резистор линейный — 5кОм -1шт.
  • Конденсатор электролитический 1000мФ от 50В -1шт.
  • Конденсатор электролитический 100мФ от 50В -1шт.
  • Диодный мост током от 5А

Данная схема не критична к точному соблюдению номиналов радио элементов. Например резистор R1 может быть от 30 до 50 Ом, резистор R3 от 200 до 240Ом. Диод можно не ставить.

Фильтрующие конденсаторы можно поставить и большей емкостью, однако стоит учитывать, что конденсатор дает небольшой прирост по напряжению.

Транзистор КТ818 можно заменить аналогичными импортного производства 2N5193, 2N6132, 2N6469, 2N5194, 2N6246, 2N6247.

Сборка стабилизатора на LM317

Сборка стабилизатора выполняется на одностороннем стеклотекстолите и выглядит примерно так.

Диодную сборку следует выбирать исходя из максимального тока способного дать трансформатор.

Транзистор и микросхему я установил на радиатор через изолирующие прокладки. Радиатор выбрал максимально большой из имеющихся и подходящий под мой корпус. Закрепил его двумя болтами к нижней крышке корпуса.

На радиатор установил кулер от старой видеокарты, для более эффективного охлаждения. В верхней и задней крышке просверлил вентиляционные отверстия.

У выбранного мной трансформатора для стабилизатора на LM317 только одна вторичная обмотка на 27В. По этому для питания вольтметра и вентилятора я использовал плату от зарядного устройства мобильного телефона. Она выдает напряжение 5В и ток до 900мА.

Готовый блок питания выглядит так.

Простой двух полярный стабилизатор напряжения на LM317.

За основу устройства взята схема описанная в выше, и добавлено плечо стабилизации отрицательного напряжения.

Характеристики и достоинства двух полярного стабилизатора

  • напряжение стабилизации от 1,2 до 36 В;
  • максимальный ток до 5 А;
  • используется малое количество элементов;
  • простота в выборе трансформатора, так как можно использовать вторичную обмотку без центрального отвода;

Детали устанавливаются на односторонний стеклотекстолит. Транзистор VT1, VT2 и микросхемы LM317 и LM337 следует устанавливать на радиаторы. При установке на общий радиатор следует использовать изолирующие прокладки и втулки.

На этом все. Если у Вас есть замечания или предложения по данной статье, прошу написать администратору сайта.

Успехов!

На этом все. Если у Вас есть замечания или предложения по данной статье, прошу написать администратору сайта.

Успехов!

electrongrad.ru

DIY набор: регулятор напряжения на LM317

Всем привет.

Сегодняшний обзор будет посвящен очередному DIY набору — преобразователю напряжения на LM317. После того, как мною успешно были собраны часы, радиоприемник, металлоискатель и ёлочка, захотелось чего-то не только интересного, но и полезного в домашнем хозяйстве. Именно по этой причине выбор пал на преобразователь напряжения. Вообще, существует несколько вариантов такого набора, я выбрал не самый дешевый — со всему проводками и пластиковым корпусом.


Продавец был выбран совершенно спонтанно, но несмотря на это, сработал он оперативно. посылка была отправлена на следующий день после оплаты. Если кому-то посмотреть на маршрут ее следования из Китая в Беларусь, то сделать это можно здесь.

Поставляется набор в обычном полиэтиленовом пакете. Хоть данный товар нельзя отнести к категории хрупких, но радиатор охлаждения пришел ко мне с погнутыми ребрами (можно будет увидеть дальше не фото). Не могу утверждать, что причиной этого была упаковка, но от лишнего слоя пупырки я бы не отказался. Итак, сам набор на момент получения выглядел следующим образом:


В запечатанном пакете находятся провод для подключения преобразователя к сети, корпус, трансформаторная катушка и пакетик с мелкими компонентами.


После раскрытия которого можно увидеть все, что входит в состав набора:


Инструкция черно-белая, на английском языке. Содержит схему сборки преобразователя, а так же несколько фотографий процесса сборки.


Вооружившись паяльником и терпением, можно приступать к сборке. В целом, данный набор нельзя назвать сложным. Элементов тут не много, а благодаря схеме, сразу понятно что и куда нужно монтировать. Некоторые начинают установку начиная с самых мелких и переходя к крупным, но, как говорится, у каждого до*ика своя методика 🙂 Поэтому я делал так, как мне было удобно. Первый этап сборки (на фото хорошо видны погнутые ребра на радиаторе):


В основе нашего преобразователя лежит линейный стабилизатор напряжения (тока LM317). Если кто-то не в курсе что это такое и зачем оно надо, то вот немного теории:

Линейный стабилизатор представляет собой делитель напряжения, на вход которого подаётся входное (нестабильное) напряжение, а выходное (стабилизированное) напряжение снимается с нижнего плеча делителя. Стабилизация осуществляется путём изменения сопротивления одного из плеч делителя: сопротивление постоянно поддерживается таким, чтобы напряжение на выходе стабилизатора находилось в установленных пределах. При большом отношении величин входного/выходного напряжений линейный стабилизатор имеет низкий КПД, так как большая часть мощности Pрасс = (Uin — Uout) * It рассеивается в виде тепла на регулирующем элементе. Поэтому регулирующий элемент должен иметь возможность рассеивать достаточную мощность, то есть должен быть установлен на радиатор нужной площади. Преимущество линейного стабилизатора — простота, отсутствие помех и небольшое количество используемых деталей.

Недостаток — низкий КПД, большое тепловыделение

.

И вот, зная, что LM317 можно использовать в виде миниатюрного обогревателя, замечаем, что в комплекте нет ни грамма термопасты, ни миллиметра термоленты 🙁 из-за чего набор можно считать неполноценным. Можно, конечно, просто прижать стабилизатор к радиатору, но как-то это не очень хорошо. Так что чтобы избежать быстрого перегрева и сгорания стабилизатора, пришлось лезть в свои запасы.

Но продолжим. Этап два:


Вот тут тоже момент интересный, связанный с длиной проводов. Как видно на фото, к дисплею изначально подпаяны провода, длина которых примерно 10 сантиметров. В отверстия в плате находятся в нескольких миллиметрах от контактных площадок. Ну вот зачем такие провода? Что с ними делать? Куда прятать? В общем, провода были отрезаны, а на них место установлены остатки ножек уже установленных элементов.


К слову, то же самое касается и проводов, идущих от и к трансформаторной катушке.

Дальше ничего особо интересного не было, так что вот фото готовой платы:


Пробный запуск прошел успешно:


Пластинки, составляющие корпус трансформатора были с двух сторон оклеены бумагой, благодаря чему, на них не было ни единой царапинки. Но отрывается эта бумага достаточно трудно, так что надо быть готовым к тому, что придется немного помучиться. Соединяются части корпуса при помощи винтов и гаек, так что ничего сложного тут тоже нет. В корпусе предусмотрены отверстия для подключения проводов, регулировки подстроечника, отвода тепла. Вот так выглядит собранный преобразователь:


Настало время проверить как же он работает. Если верить продавцу, преобразователь работает в диапазонах 1,25В-12В. Для начала замер на минимально возможном напряжении:


Если верить преобразователю, то минимальное напряжение 1,16В, но HYELEC MS8232 показал на крокодилах 1,267В. В принципе, это значение рядом с заявленным.

Теперь о максимуме:


Как видно, при разнице между минимальным и максимальным напряжением в 12,04В разбежка данных на преобразователе и мультиметре составило 0,3В. Так же следует отметить, что изначально с повышением напряжения, оно начинало прыгать (на максимуме в пределах 0,5В). Данную проблему удалось решить при помощи подстроечника, так что тут он не зря 🙂

По началу впечатления были сугубо положительные. Но подключив к преобразователю нагрузку в виде автомобильной светодиодной лампочки, все немного изменилось.


Просадка напряжения составила без малого 3В, что никак нельзя назвать хорошим показателем 🙁 Так что, в перспективе, надо будет с этим что-то решать. Возможно, поможет установка дополнительного преобразователя на LM2596…

В целом же преобразователь оказался рабочим 🙂 Данную покупку можно рассматривать в 2 аспектах. Во-первых, как конструктор, на сборку которого придется потратить несколько часов. Лично мне такие нравятся, поэтому это время считаю потраченными с пользой и интересом. Во-вторых, в конечном результате, мы получаем полноценный преобразователь, который может пригодиться при тестировании лампочек, моторчиков и прочих безделушек, работающих от постоянного напряжения 1,25-12В. Так что я остался покупкой очень доволен и могу смело рекомендовать данный набор к покупке (пусть он и не лишен недостатков).

На этом, пожалуй, все. Спасибо за внимание и потраченное время.

mysku.ru

БП НА LM317 С БЛОКОМ ЗАЩИТЫ

Блок питания — одно из самых важных устройств, в мастерской радиолюбителя. Тем более с батарейками и с аккумуляторами каждый раз мучиться как-то надоело. Рассмотренный здесь БП Регулирует напряжение от 1.2 вольта до 24 вольта. И нагрузку до 4 А. Для большей силы тока, было решено установить два одинаковых трансформатора. Трансформаторы подключаются параллельно.

Детали для регулируемого блока питания

  1. Стабилизатор LM317 ТО-220 корпусе.
  2. Кремниевый транзистор, p-n-p КТ818.
  3. Резистор 62 Ом.
  4. Конденсатор электролитический 1 мкф*43В.
  5. Конденсатор электролитический 10 мкф*43В.
  6. Резистор 0,2 Ом 5W.
  7. Резистор 240 Ом.
  8. Подстроечный резистор 6.8 Ком.
  9. Конденсатор электролитический 2200 мкф*35В. 
  10. Любой светодиод.

 

Схема блока питания

Схема блока защиты

Схема блока выпрямителя

Детали для построения защиты от КЗ

  1. Кремниевый транзистор, n-p-n КТ819.
  2. Кремниевый транзистор, n-p-n КТ3102.
  3. Резистор 2 Ом.
  4. Резистор 1 Ком.
  5. Резистор 1 Ком.
  6. Любой светодиод.

Для корпуса регулируемого блока питания, были использованы два корпуса, от обычного компьютерного блока питания. В места из под кулера, были поставлены вольтметр и амперметр.

Для дополнительного охлаждения, был установлен кулер.

Печатная плата была нарисована в Sprint layout v6.0.

Но можно спаять схему просто навесным монтажом. Соединяются корпуса, с помощью двух болтов.

Гайки были приклеены, к крышке корпуса термо клеем. Для охлаждения стабилизатора и транзисторов был использован радиатор от компьютера, который обдувал кулер.

Для удобства переноса блока питания, была прикручена ручка от шуфлядки письменного стола. В общем, получившийся блок питания очень нравится. Мощности его хватает для питания почти всех схем, проверки микросхем, и зарядки небольших аккумуляторов.

Схема ИП не нуждается в настройке, и при правильной спайке она заработает сразу. Автор статьи 4ei3 e-mail [email protected] 

   Форум по БП

   Обсудить статью БП НА LM317 С БЛОКОМ ЗАЩИТЫ

radioskot.ru

Стабилизатор тока на lm317, lm338, lm350 для светодиодов

В последнее время интерес к схемам стабилизаторов тока значительно вырос. И в первую очередь это связано с выходом на лидирующие позиции источников искусственного освещения на основе светодиодов, для которых жизненно важным моментом является именно стабильное питание по току. Наиболее простой, дешевый, но в то же время мощный и надежный токовый стабилизатор можно построить на базе одной из интегральных микросхем (ИМ): lm317, lm338 или lm350.

Datasheet по lm317, lm350, lm338

Прежде чем перейти непосредственно к схемам, рассмотрим особенности и технические характеристики вышеприведенных линейных интегральных стабилизаторов (ЛИС).

Все три ИМ имеют схожую архитектуру и разработаны с целью построения на их основе не сложных схем стабилизаторов тока или напряжения, в том числе применяемых и со светодиодами. Различия между микросхемами кроются в технических параметрах, которые представлены в сравнительной таблице ниже.

  LM317 LM350 LM338
Диапазон значений регулируемого выходного напряжения 1,2…37В 1,2…33В 1,2…33В
Максимальный показатель токовой нагрузки 1,5А
Максимальное допустимое входное напряжение 40В 35В 35В
Показатель возможной погрешности стабилизации ~0,1% ~0,1% ~0,1%
Максимальная рассеиваемая мощность* 15-20 Вт 20-50 Вт 25-50 Вт
Диапазон рабочих температур 0° — 125°С 0° — 125°С 0° — 125°С
Datasheet LM317.pdf LM350.pdf LM338.pdf

* — зависит от производителя ИМ.

Во всех трех микросхемах присутствует встроенная защита от перегрева, перегрузки и возможного короткого замыкания.

Lm317, самая распространенная ИМ, имеет полный отечественный аналог — КР142ЕН12А.

Выпускаются интегральные стабилизаторы (ИС) в монолитном корпусе нескольких вариантов, самым распространенным является TO-220. Микросхема имеет три вывода:

  1. ADJUST. Вывод для задания (регулировки) выходного напряжения. В режиме стабилизации тока соединяется с плюсом выходного контакта.
  2. OUTPUT. Вывод с низким внутренним сопротивлением для формирования выходного напряжения.
  3. INPUT. Вывод для подачи напряжения питания.

Схемы и расчеты

Наибольшее применение ИС нашли в источниках питания светодиодов. Рассмотрим простейшую схему стабилизатора тока (драйвера), состоящую всего из двух компонентов: микросхемы и резистора. На вход ИМ подается напряжение источника питания, управляющий контакт соединяется с выходным через резистор (R), а выходной контакт микросхемы подключается к аноду светодиода.

Если рассматривать самую популярную ИМ, Lm317t, то сопротивление резистора рассчитывают по формуле: R=1,25/I0 (1), где I0 – выходной ток стабилизатора, значение которого регламентируется паспортными данными на LM317 и должно быть в диапазоне 0,01-1,5 А. Отсюда следует, что сопротивление резистора может быть в диапазоне 0,8-120 Ом. Мощность, рассеиваемая на резисторе, рассчитывается по формуле: PR=I02×R (2). Включение и расчеты ИМ lm350, lm338 полностью аналогичны.

Полученные расчетные данные для резистора округляют в большую сторону, согласно номинальному ряду.

Постоянные резисторы производятся с небольшим разбросом значения сопротивления, поэтому получить нужное значение выходного тока не всегда возможно. Для этой цели в схему устанавливается дополнительный подстроечный резистор соответствующей мощности. Это немного увеличивает цену сборки стабилизатора, но гарантирует получение необходимого тока для питания светодиода. При стабилизации выходного тока более 20% от максимального значения, на микросхеме выделяется много тепла, поэтому ее необходимо снабдить радиатором.

Онлайн калькулятор lm317, lm350 и lm338

Допустим, необходимо подключить мощный светодиод с током потребления 700 миллиампер. Согласно формуле (1) R=1,25/0,7= 1.786 Ом (ближайшее значение из ряда E2—1,8 Ом). Рассеиваемая мощность по формуле (2) будет составлять: 0.7×0.7×1.8 = 0,882 Ватт (ближайшее стандартное значение 1 Ватт).

На практике, для предотвращения нагрева, мощность рассеивания резистора лучше увеличить примерно на 30%, а в корпусе с низкой конвекцией на 50%.

Кроме множества плюсов, стабилизаторы для светодиодов на основе lm317, lm350 и lm338 имеют несколько значительных недостатков – это низкий КПД и необходимость отвода тепла от ИМ при стабилизации тока более 20% от максимального допустимого значения. Избежать этого недостатка поможет применение импульсного стабилизатора, например, на основе ИМ PT4115.

Читайте так же

ledjournal.info

Отправить ответ

avatar
  Подписаться  
Уведомление о