Регулятор скорости дрели: Регулятор Оборотов для Дрели – купить в интернет-магазине OZON по выгодной цене

Содержание

Автоматическая регулировка оборотов двигателя микродрели dc. Как устроен регулятор оборотов дрели: схема

Схемы и конструкции регуляторов оборотов для микродрели радиолюбителя

Доброго дня уважаемые радиолюбители!
Приветствую вас на сайте “ “

В этой статье мы рассмотрим радиолюбительскую схему облегчающую работу с микродрелью – регулятор оборотов микродрели . Схема проста по исполнению и доступна начинающим радиолюбителям.

Со сверлением отверстий в печатных платах сталкивается практически каждый радиолюбитель . Для этого применяют микродрель из электродвигателя постоянного тока с цанговым зажимом для сверл. Предлагаемый узел управления двигателем микродрели прост, не содержит дефицитных деталей и доступен для повторения начинающему радиолюбителю .

В исходном состоянии, после подачи напряжения питания, сверло вращается с минимальной частотой – 100 оборотов в минуту. В таком режиме дрель не перегревается и в тоже время довольно просто попасть в центр. При нажатии на сверло дрель быстро набирает обороты до номинальной частоты вращения, начинается сверление. По его завершению, когда сопротивление материалы платы падает, обороты автоматически уменьшаются до “холостых”.

Схема управления содержит выпрямитель на диодах VD1-VD4, сглаживающих конденсаторах С1 и С3 и два канала управления дрелью. Первый выполнен на интегральном стабилизаторе DA1, второй на транзисторах VT1, VT2. Назначение первого – поддерживать на нагрузке около 2,5 вольт. Ток двигателя протекает через датчик тока на резисторе R1. Падения напряжения на этом резисторе в отсутствии механической нагрузки двигателя недостаточно для открывания транзистора VT1. С началом сверления ток двигателя растет. Как только напряжение на резисторе R1 достигнет приблизительно 0,6 В, транзистор VT1 и вместе с ним VT2 открываются, подключая двигатель к выпрямителю. Для ограничения напряжения падения на датчике тока применен диод VD5. Конденсатор С2 служит для небольшой задержки перехода на “холостой” режим.

Стабилизатору DA1 и транзистору VT2 требуются теплоотводы.

Детали. В конструкции можно применить практически любые аналогичные транзисторы с допустимым напряжение коллектор-эмиттер не менее 35 В и с током коллектора для VT1 не менее 100 мА.

Настройка. Напряжение на двигателе без нагрузки можно изменить резистором R3. Его сопротивление можно рассчитать по формуле:

U=1,25(1+R3/R5)+0,0001*R3-Uvd6, где U- требуемое напряжение на двигателе а Uvd6 – падение напряжение на диоде.

R1=0,6*Ixx/2, где Ixx – ток холостого хода.

Добрый день. Представляю Вашему вниманию регулятор для ковырялоки печатых плат, схема взята из журнала Радио за 2010 год. Собрал и испытал — работает отлично. В схеме нет дефицитных деталей — всего 4 распространённых транзистора и несколько пассивных радиоэлементов, которые можно выпаять из любой нерабочей аппаратуры. Принципиальная схема регулятора оборотов:

Работа схемы регулятора минидрели

На элементах vd1, vd2, r2, r3, vt1, r11 собран регулятор холостых (далее ХО) оборотов. Диод vd3 является разобщителем регулятора ХО и токовым тригером собранным на vt2, r4, r7. Диод vd5 облегчает температурный режим датчика тока r7. Конденсатор С2 и резистор r6 обеспечиваю плавное возвращение к режиму ХО. На vd4, r5, c1 выполнен ограничитель стартового тока (т.е плавный пуск). Составной транзистор образованный vt3 и vt4 усиливает токи предыдущих узлов. Паралельно моторчику обязательно надо включить защитный диод vd6 в обратном направлении, чтобы ЭДС, возникающая в нём, не пожгла редиоэлементы регулятора.

Все резисторы кроме R7 применены на 0,125вт, R7 на 0,5вт. Сопротивление R7 желательно подбирать для каждого моторчика индивидуально, чтобы было чёткое срабатывание токового тригера в нужный момент, т.е. сверло не соскальзывало с кернения и не клинило.

Прилагаю фото регулятора оборотов минидрели в сборе и разведёную мной топологию печатной платы. Транзистор П213 необходино включать именно так, как написано на плате с названием «п213» (из-за обратного диода).



При использовании планарных компонентов, размеры платы можно уменьшить до такой степени, что она поместится в корпус (или снаружи) дрельки. Как вариант, данный регулятор оборотов допустимо использовать для управления оборотами любых электромоторчиков постоянного тока — в игрушках, вентиляции и т.д. Желаю всем удачи. С уважением, Жданов Андрей (Мастер665).

Сегодня невозможно найти человека, который бы не знал о существовании электрической дрели. Многим приходилось пользоваться этим инструментом. Но как устроена эта незаменимая в хозяйстве вещь, известно далеко не каждому.

Внутри корпуса дрели расположен электродвигатель, система его охлаждения, редуктор, регулятор оборотов дрели. О работе регулятора оборотов дрели стоит поговорить несколько подробнее. Все детали во время работы изнашиваются, особенно подвержена этому процессу кнопка включения дрели. А с ней непосредственно связана система регулировки оборотов.

Назначение регулятора оборотов

Регулятор оборотов современной электрической дрели располагается внутри кнопки включения прибора. Достичь таких малых размеров позволяет микропленочная технология, по которой он собран. Все детали и сама плата, на которой расположены эти детали, отличаются малыми размерами. Основная деталь регулятора — симистор. Принцип его работы состоит в изменении момента замыкания цепи и включения симистора. Происходит это так:

  1. После включения кнопки симистор получает на свой управляющий электрод напряжение, имеющее синусоидальную форму.
  2. Симистор открывается, и ток начинает течь через нагрузку.

При большей амплитуде управляющего напряжения симистор включается раньше. Амплитуда управляется с помощью переменного резистора, который соединен с пусковым курком дрели. Схема подключения кнопки в разных моделях может быть немного разной. Только не стоит путать регулятор оборотов с устройством управления реверсом. Это совершенно разные вещи. Иногда они могут размещаться в разных корпусах. Регулятор оборотов может предусматривать подключение конденсатора и обоих проводов от розетки.

Вернуться к оглавлению

Использование дрели в качестве станка

Рисунок 1. Типовая схема регулятора оборотов дрели.

Ручная дрель может применяться нестандартно. На ее основе делают разнообразные станки: сверлильный, шлифовальный, циркулярный и другие. В таких станках функция регулирования оборотов является очень важной. У большинства бытовых дрелей обороты регулируются кнопкой пуска аппарата. Чем сильнее она нажата, тем выше обороты. Но фиксируются они только на максимальных значениях. Это в большинстве случаев может оказаться существенным недостатком.

Можно выйти из данной ситуации путем самостоятельного изготовления выносного варианта регулятора оборотов. В качестве регулятора вполне можно применить диммер, который обычно применяют для регулировки освещенности. Схема регулятора довольно проста и представлена на рис. 1. Для его изготовления нужно к розетке присоединить провода разной длины. Длинный провод другим концом присоединяется к вилке. Остальное собирается по схеме. Рекомендуется использовать дополнительный автоматический выключатель, который отключит устройство в случае аварии.

Самодельный регулятор оборотов готов. Можно выполнить пробный пуск. Если он работает нормально, можно поместить его в подходящего размера коробку и закрепить на станине будущего станка в удобном месте.

Вернуться к оглавлению

Ремонт кнопки с регулятором оборотов

Рисунок 2. Схема регулятора оборотов для микродрели.

Ремонт кнопки представляет собой довольно непростой процесс, требующий определенных навыков. При открытии корпуса некоторые детали могут просто выпасть и потеряться. Поэтому в работе нужна осторожность. В случае неполадок обычно выходит из строя симистор. Стоит эта деталь очень дешево. Разборка и ремонт происходят в следующем порядке:

  1. Разобрать корпус кнопки.
  2. Промыть и прочистить внутренности.
  3. Снять плату с находящейся на ней схемой.
  4. Выпаять сгоревшую деталь.
  5. Впаять новую деталь.

Разобрать корпус очень просто. Нужно отогнуть боковины и вывести крышку из фиксаторов. Делать все нужно аккуратно и осторожно, чтобы не потерять 2 пружинки, которые могут выскочить. Чистить и протирать внутренности рекомендуется спиртом. Зажимы-контакты в форме медных квадратиков выдвигаются из пазов, плата легко снимается. Сгоревший симистор обычно хорошо виден. Осталось выпаять его и впаять на его место новую деталь. Сборка регулятора производится в обратном порядке.

Регуляторы для ручной сверлилки плат.

Приветствую радиолюбителей. И да не остынет ваш паяльник. В принципе в инете полно разных схем регуляторов, выбирай на свой вкус, но, чтобы вам долго не мучаться в поисках мы решили предложить вашему вниманию несколько вариантов схем в одной статье. Сразу оговоримся, описывать принцип работы каждой схемы мы не будем, вам будет предоставлена принципиальная схема регулятора, а также печатная плата к ней в формате LAY6. И так, начнем.

Первый вариант регулятора построен на микросхеме LM393AN, питание на нее подается с интегрального стабилизатора 78L08, операционник управляет полевым транзистором, нагрузкой которого является мотор ручной минидрели.

Принципиальная схема:

Регулировка оборотов осуществляется потенциометром R6.
Напряжение питания 18 Вольт.

Плата LAY6 формата к схеме на LM393 выглядит так:

Фото-вид платы LAY6 формата:

Размер платы 43 х 43 мм.

Расположение выводов полевого транзистора IRF3205 показано на следующем рисунке:

Второй вариант имеет довольно широкое распространение. В его основу заложен принцип широтно-импульсного регулирования. Схема построена на микросхеме таймере NE555. Управляющие импульсы с генератора поступают на затвор полевика. В схему можно поставить транзисторы IRF510…640. Напряжение питания 12 Вольт. Принципиальная схема:

Регулировка оборотов двигателя осуществляется переменным резистором R2.
Расположение выводов IRF510…640 такое же как у IRF3205, картинка выше.

Печатная плата LAY6 формата к схеме на NE555 выглядит так:

Фото-вид платы LAY6 формата:

Размер платы 20 х 50 мм.

Третий вариант схемы регулятора оборотов имеет не меньшую популярность среди радиолюбителей чем ШИМ, ее отличительной особенностью является то, что регулировка скорости происходит автоматически, и зависит от нагрузки на валу моторчика. То есть, если мотор крутится на холостых оборотах, скорость его вращения минимальна. При увеличении нагрузки на валу (в момент сверления отверстия), обороты автоматически увеличиваются. В нете эту схему можно найти по запросу “Регулятор Савова”. Принципиальная схема автоматического регулятора оборотов:

После сборки необходимо сделать небольшую настройку регулятора, для этого на холостом ходу моторчика подстраивается подстроечный резистор Р1 чтобы обороты были минимальны, но так, чтобы вал вращался без рывков. Р2 служит для подстройки чувствительности регулятора к увеличению нагрузки на валу. При 12-ти Вольтовом питании ставьте электролиты на 16 Вольт, 1N4007 заменимы на подобные от 1 Ампера, светодиод любой, например АЛ307Б, LM317 можно поставить на небольшой теплоотвод, печатная плата рассчитана на установку радиатора. Резистор R6 – 2 Вт. Если моторчик вращается рывками, увеличьте немного номинал конденсатора С5.

Печатная плата автоматического регулятора оборотов показана ниже:

Фото-вид платы автоматического регулятора оборотов LAY6 формата:

Размер платы 28 х 78 мм.

Все вышеприведенные платы изготавливаются на одностороннем фольгированном стеклотекстолите.

Скачать принципиальные схемы регуляторов оборотов для ручной мини-дрели, а также печатные платы в формате LAY6 моожно по прямой ссылке с нашего сайта, которая появится после клика по любой строке рекламного блока ниже кроме строки “Оплаченная реклама”. Размер файла – 0,47 Mb.

Да, это моя дрель и почему-то все пугаются когда её видят.
Ну, жалко мне пока денег на нормальный девайс.

Самая приятная часть работы, и трудная, это сверление печатной платы. Я собираю что-то новое и необходимо сверлить все это дело.
Очень часто приходится класть дрель на стол, пока что-то обдумываешь или тебя отвлекает супруга, а если на столе ещё и творческий беспорядок, то микродрели очень сложно найти место. Из-за вибрации во включенном состоянии она может слететь со стола.

Тут возникла идея собрать стабилизатор с регулировкой частоты вращения.
Нашел хорошую подборку схем на Радиокоте:

Идея и схема

Хотелось сделать так, чтобы микродрель имела маленькие обороты на холостом режиме, а при нагрузке частота вращения сверла увеличивалась.
Во-первых это очень удобно, во-вторых двигатель работает в облегченном режиме, в-третьих меньше изнашиваются щетки.


Источник изображения radiokot.ru

А вот и схема такого автоматического регулятора оборотов. Её автор Александър Савов из Болгарии .

Детали

В схеме применены легкодоступные детали. Микросхему необходимо установить на радиатор во избежание её перегрева.
Конденсаторы электролитические на номинальное напряжение 16В.
Диоды 1N4007 можно заменить на любые другие рассчитанные на ток не менее 1А.
Светодиод АЛ307 любой другой. Печатная плата выполнена на одностороннем стеклотекстолите.
Резистор R5 мощностью не менее 2Вт, или проволочный.

БП должен иметь запас по току, на напряжение 12 В. Регулятор работоспособен при напряжении 12-30 В, но свыше 14В придется заменить конденсаторы на соответствующие по напряжению.

Налаживание

Готовое устройство после сборки начинает работать сразу. Резистором P1 выставляем требуемую частоту вращения на холостом ходу. Резистор P2 служит для установки чувствительности к нагрузке, им выбираем нужный момент увеличения оборотов. Если увеличить емкость конденсатора C4, то увеличится время задержки высоких оборотов или если двигатель работает рывками. Я увеличил емкость до 47uF.

Двигатель для устройства не критичен. Только необходимо чтобы он был в хорошем состоянии.
Я долго мучился, уже подумал, что у схемы был глюк, что она непонятно как регулирует обороты, или уменьшает обороты во время сверления.
Но разобрал двигатель, прочистил коллектор, подточил графитовые щетки, смазал подшипники, собрал.
Установил искрогасящие конденсаторы. Схема заработала прекрасно.
Теперь не нужен неудобный выключатель на корпусе микродрели.

Печатная плата в Sprint Layout

Разводка уважаемого МП42Б , вытащена из общего файла его статьи, упомянутой в начале.

02.05.2019 по просьбе камрадов на плате подписал детали и немного навёл красоты Игорь Котов.
Архив обновлён.
▼ 🕗 05/02/19 ⚖️ 11,15 Kb ⇣ 19

Стабилизированный регулятор оборотов электродрели « схемопедия


Для качественного сверления отверстий плат необходимо использовать электродрель со стабилизатором крутящего момента и оборотов. Транзисторный стабилизированный блок имеет большие потери мощности на регулируемом транзисторе. Большой вес и габариты трансформатора и радиаторов не позволяют выполнить переносной вариант прибора.

Тиристорные регуляторы напряжения выгодно отличаются малым весом и техническими возможностями стабилизации оборотов и крутящего момента электродвигателя. Падение напряжения на силовом тиристоре в импульсном режиме незначительно и при небольшой мощности отпадает потребность в радиаторе.

Характеристики:

Напряжение сети 220Вольт

Мощность 300 Ватт

Ток нагрузки 10 Ампер

Стабилизация 86,7%

Схема регулятора оборотов электродрели стабилизирует крутящий момент введением положительной обратной связи с электродвигателя М1 через RC цепь R12C2 VD2R6R1C1 на эмиттер однопереходного двухбазового транзистора VT1

Диод VD2 позволяет подавать на эмиттер транзистора VT1 только импульсы положительной полярности со щёток электродвигателя дрели М1. Переменный резистор R6 работает как регулятор оборотов, и в тоже время стабилизирует их при изменении нагрузки:

Без Обратной связи 0,6А 22,2 В 13ватт 260 об. мин

С Обратной связью 2,8 А 21 В 58,8 ватт 520 об.мин

С обратной связью обороты падают незначительно, при холостом ходе в 600 оборотов.

Характеристики двухбазовых транзисторов:

ТипIэ max, мAUБ1Б2 max, BUБ2Э max, BPmax, мВтRБ1Б2, кOmηfmax, кГц
КТ117А5030303004…90.5…0.7200
КТ117Б5030303004…90.65…0.9200
КТ117В5030303008…120. 5…0.7200
КТ117Г5030303008…12 0.65…0.9200

Входная вольт-амперная характеристика транзистора К117:

Однопереходные двухбазовые транзисторы предназначены для работы в генераторах периодических и однократных импульсов Сопротивление между выводами транзисторов зависят от тока управляющего эмиттерного перехода. На входной вольтамперной характеристике однопереходных транзисторов имеется участок с отрицательным дифференциальным сопротивлением. При некотором напряжении на эмиттере происходит отпирание транзистора и быстрое нарастание тока через базу. Процесс происходит лавинообразно.

Однопереходный транзистор относится к семейству тиристоров. Однопереходный транзистор входит в транзисторно – тиристорную сборку КУ106А-Г и представляет собой гибридный прибор, состоящий из однопереходного транзистора и триодного тиристора.

Схема:

Отпирающий импульс с однопереходного транзистора VT1 поступает на управляющий электрод тиристора VS1,который переходит в проводящее состояние и остаётся в нём пока текущий через тиристор VS1 прямой ток больше тока удержания.

Напряжение с резистора R3 цепи катода VS1 через резисторы R7R9 поступает на управляющий электрод мощного тиристора VS2 и приводит его в открытое состояние.

Порог включения тиристора VS2 устанавливается резистором R9. ввиду большого разброса входных характеристик.Анод силового тиристора непосредственно связан с электромотором электродрели М1.

Импульсы отрицательной полярности возникшие при вращении электродвигателя устраняютCя диодом VD3.

Часть напряжения с коллектора двигателя поступает на стабилизацию вращения – в эммитер двухбазового транзистора VT1.

Светодиод HL1 индицирует напряжение на электродвигателе элекродрели и снижает импульсные помехи напряжением более 300 Вольт.

Диод VD3 обеспечивает протекание обратного тока якоря электродвигателя в то время, когда тиристор заперт. В начале каждого полупериода напряжение выпрямителя через диод VD2 и резисторы R1,R6 поступает на зарядку конденсатора С1, противо –э.д.с в этот момент еще отсутствует. Далее напряжение на аноде тиристора VS2 будет равно разнице напряжения диодного моста VD4-VD7 и противо- э.д.с якоря, то есть от скорости вращения.

Уменьшение скорости при увеличении момента нагрузки на валу снижает противо-э.д.с и ускоряет зарядку конденсатора С1, уменьшает угол задержки отпирания тиристора -снижение скорости почти полностью компенсируется.

Импульсы напряжения с резистора R3 поступают на управляющий электрод маломощного тиристора VS1 для предварительного усиления, далее через резисторы установки порога включения R7,R9

на управляющий электрод мощного силового тиристора VS2.Цепь VD1,R9 снижает влияние сетевого напряжения и нагрузки на работу релаксационного генератора на транзисторе VT1.

Ток тиристора VS1 ограничен номиналом резистора R4,снижать его значение не рекомендуется, так как будет нарушено восстановление управляемости, то есть снизится интервал между переходом тока и напряжения тиристора через ноль в отрицательную полярность и обратно в положительную.

Время восстановления зависит от многих факторов: прямого и обратного тока, амплитуды запираемого напряжения и напряжения на управляющем электроде.

Кстати, радиопомехи создает обратный ток, который почти мгновенно спадает на этапе запирания тиристора с очень большой скоростью и может вызвать перенапряжения.

Принудительная коммутация создаётся установкой диода VD3 и позволяет прервать ток в тиристоре VS2 на время достаточное для запирания.

Практические испытания регулятора оборотов электродрели в разных режимах с изменением номиналов радиокомпонентов подтвердили теоретические обоснования в использовании положительной обратной связи для стабилизации скорости и оборотов электродвигателя:

Обороты холостого хода не превышали 600 об/мин,

нагрузка на вал электродвигателя в обоих случаях была около 4 кг силы, электродвигатель типа ДПР 72-Ф6-06 постоянного тока, длина корпуса 80мм, диаметр 40 мм.

Крутящий момент возрос при наличии обратной связи, обороты упали незначительно.

Радиодетали в схеме не дефицитные:

резисторы на мощность 0,25 ватт типа МЛТ, двухбазовый транзистор VT1 и тиристор VS1 можно заменить сборкой КУ106В-Г, тип силового тиристора и трансформатора зависит от напряжения и мощности используемого электродвигателя. Хорошо работают в схеме трансформаторы типа ТН-54 с четырьмя обмотками по 6,3 вольта и ток более трех ампер, соединённых в последовательную цепь.

Кремневая диодная сборка типа PBL405 имеет небольшое падение напряжения и не требует радиатора.

На плоский тиристор VS2 установить небольшой радиатор 60*40*50.

Регулировка схемы регулятора оборотов электродрели заключается в следующем:  при минимальном значении сопротивления резистора R6 (обороты) установить порог включения тиристора VS2 изменением номинала резистора R9, далее увеличением сопротивления резистора R6 установить требуемые обороты электродвигателя.

На рисунке печатного монтажа расположены почти все радиодетали кроме цепей коммутации, силового трансформатора и диодного моста, регулятор оборотов и светодиодный индикатор HL1 установлены на верхней крышке корпуса, на боковой стороне закреплены предохранитель FU1, выключатель SA1 и вывод силового шнура.

Литература:

1. Тиристоры. Технический справочник 1971г. Перевод с английского. Издательство «Энергия».

2.Регулятор оборотов электродрели. В.Новиков. « Радиомир» №5 2006 г. стр.19

3.Резисторы,конденсаторы,трансформаторы, дроссели, коммутационные устройства РЭА. Справочник. Минск « Беларусь» 1994 г.

Скачать печатную плату в формате Sprint-Layout

Автор статьи: Владимир Коновалов

Анализ схемы

— Понимание схемы регулятора скорости дрели с питанием от аккумуляторной батареи / Поиск и устранение неисправностей

Задавать вопрос

спросил

Изменено 1 год, 4 месяца назад

Просмотрено 81 раз

\$\начало группы\$

Я занимаюсь моделированием триггерной схемы и столкнулся с некоторыми проблемами, как концептуальными, так и в процессе моделирования. Ниже приведена схема, которую я придумал в Circuitlab. У меня была аналогичная схема в LTspice, но у меня были проблемы с симуляцией, когда она достигала критического значения, и напряжение колебалось с неожиданной амплитудой. Я знаю, что мой реостат в LTspice был определен неправильно, и это могло вызвать проблему с колебаниями; однако были некоторые другие проблемы, которые я не мог объяснить.

  1. В моей модели LTspice я установил так, что SW2 активируется при запуске на 1 секунду, а затем деактивируется. После этого есть пауза в 1 секунду, прежде чем я активирую SW1, который остается включенным в течение 1 секунды, а затем деактивируется. Это создает второе изображение ниже. Я понимаю, почему напряжение падает до 0 в источнике в результате нажатия триггера с точки зрения моделирования. Я не считаю, что состояния должны быть одинаковыми, когда спусковой крючок нажат, а когда нет. Практически, когда спусковой крючок полностью нажат, напряжение должно свободно проходить. Я предполагаю, что пропустил настройку нагрузки или провожу измерения не в той точке диаграммы.

  1. R7 в приведенной ниже цепи замыкается при замыкании SW2, но имеет незначительные колебания при замыкании SW1. Я предполагаю, что это связано с разрядкой конденсатора, но хотелось бы другого мнения.

Вот несколько других тем, связанных с этим проектом:

Идентификационная ИС — изображения физических компонентов

Моделирование реостата LTspice

Я просто пытаюсь понять, как работает триггер с регулируемой скоростью. Я уверен, что есть некоторые/много проблем с тем, как спроектирована эта схема. Я вполне уверен в компоновке микросхемы и соединении SW2, хотя, вероятно, мне не хватает соединения для нагрузки, которую я должен измерять.

имитация этой схемы – Схема создана с помощью CircuitLab \$\конечная группа\$

8

Зарегистрируйтесь или войдите в систему

Зарегистрируйтесь с помощью Google

Зарегистрироваться через Facebook

Зарегистрируйтесь, используя электронную почту и пароль

Опубликовать как гость

Электронная почта

Требуется, но никогда не отображается

Опубликовать как гость

Электронная почта

Требуется, но не отображается

Нажимая «Опубликовать свой ответ», вы соглашаетесь с нашими условиями обслуживания, политикой конфиденциальности и политикой использования файлов cookie

Китайский производитель контроллеров двигателей, контроллеров насосов, поставщиков контроллеров автомобильных топливных насосов

Применяется к автомобильным топливным/водяным насосам, вентиляторам охлаждения конденсаторов/радиаторов, вентиляторам испарителей

Свяжитесь сейчас

Свяжитесь сейчас

Свяжитесь сейчас

Свяжитесь сейчас

Свяжитесь сейчас

Свяжитесь сейчас

Свяжитесь сейчас

Свяжитесь сейчас

Свяжитесь сейчас

Свяжитесь сейчас

Применимо к электрическим самолетам, судам и глубинным насосам

Видео

Свяжитесь сейчас

Видео

Свяжитесь сейчас

Видео

Свяжитесь сейчас

Видео

Свяжитесь сейчас

Свяжитесь сейчас

Видео

Свяжитесь сейчас

Видео

Свяжитесь сейчас

Видео

Свяжитесь сейчас

Видео

Свяжитесь сейчас

Видео

Свяжитесь сейчас

Применяется для сверления костей и пилы, хирургических электроинструментов

Свяжитесь сейчас

Видео

Свяжитесь сейчас

Видео

Свяжитесь сейчас

Свяжитесь сейчас

Свяжитесь сейчас

Свяжитесь сейчас

Свяжитесь сейчас

Свяжитесь сейчас

Свяжитесь сейчас

Видео

Свяжитесь сейчас

Профиль компании

{{ util. each(imageUrls, функция(imageUrl){}}

{{ }) }}

{{ если (изображениеUrls.length > 1){ }}

{{ } }}

Вид бизнеса: Производитель/Фабрика
Основные продукты: Контроллер двигателя , Контроллер насоса , Контроллер автомобильного топливного насоса , Скорость двигателя. ..
Зарегистрированный капитал: 5000000 юаней
Площадь завода: 1001~2000 квадратных метров
Сертификация системы менеджмента: ИСО 9001, ИАТФ16949
Среднее время выполнения: Время выполнения заказа в сезон пиковой нагрузки: 1-3 месяца
Время выполнения заказа в межсезонье: в течение 15 рабочих дней

Shenzhen Xiongcai Technology Co.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *