Регулятор температуры воды в системе отопления: типы, принцип работы, монтаж

Как работает регулятор температуры воды в системе отопления. Какие бывают виды терморегуляторов. Как правильно выбрать и установить регулятор температуры. Каковы преимущества использования терморегуляторов в системе отопления.

Содержание

Основное назначение и принцип работы регулятора температуры воды

Регулятор температуры воды в системе отопления — это устройство, которое автоматически поддерживает заданную температуру теплоносителя. Его основная задача — обеспечить комфортную температуру в помещении и оптимизировать расход энергии на отопление.

Принцип работы регулятора основан на изменении потока теплоносителя через радиатор в зависимости от температуры воздуха в помещении. Когда температура повышается, регулятор уменьшает поток горячей воды, и наоборот.

Виды регуляторов температуры для систем отопления

Существует несколько основных видов регуляторов температуры воды для систем отопления:

  • Механические — простые и надежные, но требуют ручной настройки
  • Электронные — более точные, с возможностью программирования
  • Автоматические — самостоятельно подстраиваются под изменения температуры
  • Термостатические — работают за счет расширения термочувствительного элемента

Каждый тип имеет свои преимущества и особенности применения. Выбор зависит от конкретных требований системы отопления.


Устройство и принцип действия термостатического регулятора

Термостатический регулятор состоит из следующих основных элементов:

  • Термостатическая головка с датчиком температуры
  • Корпус клапана
  • Шток с конусом
  • Сильфон или мембрана

Принцип действия основан на расширении термочувствительного вещества в головке при нагревании. Это приводит к перемещению штока и изменению проходного сечения клапана. Так регулируется поток теплоносителя через радиатор.

Преимущества использования регуляторов температуры в системе отопления

Использование регуляторов температуры воды в системе отопления дает ряд важных преимуществ:

  • Повышение комфорта за счет точного поддержания заданной температуры
  • Экономия энергии и снижение затрат на отопление до 20-30%
  • Возможность регулировки температуры в разных помещениях
  • Защита от перегрева системы отопления
  • Продление срока службы отопительного оборудования

Это позволяет оптимизировать работу всей системы отопления и сделать ее более эффективной.

Как выбрать подходящий регулятор температуры воды

При выборе регулятора температуры воды для системы отопления следует учитывать несколько ключевых факторов:


  • Тип системы отопления (однотрубная, двухтрубная)
  • Мощность и тип отопительного прибора
  • Требуемый диапазон регулирования температуры
  • Необходимость программирования режимов работы
  • Способ монтажа (на радиатор, на трубопровод)

Важно также обратить внимание на качество и надежность устройства, наличие сертификатов. Оптимальный выбор обеспечит эффективную работу регулятора в вашей системе отопления.

Порядок установки регулятора температуры на радиатор отопления

Установка регулятора температуры на радиатор отопления включает следующие основные этапы:

  1. Перекрыть подачу теплоносителя и слить воду из радиатора
  2. Демонтировать старый вентиль или заглушку
  3. Установить корпус термостатического клапана на подающую трубу
  4. Установить термостатическую головку на клапан
  5. Открыть подачу теплоносителя и проверить герметичность соединений
  6. Выполнить настройку регулятора согласно инструкции

При самостоятельном монтаже важно строго следовать инструкции производителя и соблюдать меры безопасности. В сложных случаях лучше обратиться к специалистам.


Настройка и эксплуатация регулятора температуры воды

Правильная настройка и эксплуатация регулятора температуры воды крайне важны для его эффективной работы:

  • Установите комфортную для вас температуру (обычно 20-22°С для жилых помещений)
  • Учитывайте особенности разных комнат при настройке (спальня может быть прохладнее)
  • Используйте режим пониженной температуры ночью и в отсутствие людей
  • Регулярно проверяйте работоспособность устройства
  • Очищайте регулятор от пыли и загрязнений

Соблюдение этих рекомендаций позволит максимально эффективно использовать регулятор температуры и обеспечить комфортный микроклимат в помещении.


типы приборов, как своими руками смонтировать термостат

Электронные или механические регуляторы температуры воды в системе отопления позволяют существенно повысить комфорт проживания в частном доме, сокращая расходы домовладельца на обогрев помещения. Используемая автоматика отличается универсальностью, подходит для теплового оборудования различного типа, позволяет в автономном режиме корректировать работу котлов, поддерживая температуру в помещении.

Содержание

  1. Основное назначение и принцип работы
  2. Виды терморегуляторов
  3. Жидкостные и газонаполненные термостаты
  4. Монтаж автоматических регуляторов
  5. Способы настройки механических клапанов
  6. Рекомендации по установке

Основное назначение и принцип работы

Температурный регулятор отопления представляет собой простейшее устройство, которое в зависимости от интенсивности нагрева воды в контуре или воздуха в помещении могут перекрывать ток жидкости в радиаторе отопления. Наличие таких механических и электрических клапанов позволяет автоматизировать работу отопительного оборудования.

С помощью регуляторов отопления поддерживают оптимальную температуру в различных комнатах. Например, в спальне можно установить термостат на уровне 16−18 градусов, на кухне — 20−22, в детской — 24−25, а в ванной комнате — 26−28 градусов. Автоматические регуляторы позволяют упростить отопление помещения, при этом имеется возможность тонкой настройки работы модуля управления, который будет отвечать за создание оптимального микроклимата в помещении.

Наличие терморегулятора позволяет решить следующие проблемы:

  1. 1. В помещении создается оптимальный температурный режим.
  2. 2. Уменьшается расход тепловой электроэнергии.
  3. 3.
    Имеется возможность аварийного отключения батареи без обесточивания всего стояка.
  4. 4. С одинаковым успехом такие регуляторы могут использоваться в квартирах в многоэтажках, так и в частных домах, где работают автономные отопительные установки.

Принцип работы регуляторов чрезвычайно прост. В механических устройствах внутри корпуса располагается термоактивная жидкость или газ. В зависимости от положения рычага термостата активное вещество в регуляторе будет перекрывать поток теплоносителя, изменяя тем самым интенсивность нагрева радиатора.

В автоматических устройствах встроены различные механические датчики, которые следят за температурой и при необходимости изменяют положение задвижки в трубе, уменьшая или увеличивая количество попадающего в радиатор теплоносителя. Электрорегулятор температуры отопления способен управлять не только батареями, но и контролирует смесители, насосы, котлы.

Виды терморегуляторов

В автономных системах используются различные типы терморегуляторов, которые отличаются своей конструкцией и принципом работы. Распространение получили три вида устройств:

  • механические;
  • электронные;
  • полуавтоматические.

Простейшие механические терморегуляторы отличаются надежной конструкцией, позволяя выполнять ручную настройку количества подаваемого внутрь батареи теплоносителя. К преимуществам этого типа приборов можно отнести их простоту, доступную стоимость, четкость и легкость настройки. Они полностью энергонезависимы, поэтому для работы таких устройств не требуется дополнительное подключение к электричеству или использование различных небольших батареек. К недостаткам механических терморегуляторов принято относить отсутствие разметки, поэтому настройку агрегата выполняют исключительно опытным путем.

Электронные термостаты отличаются сложной конструкцией, включают программируемый микропроцессор, который анализирует данные от многочисленных датчиков, посылая сигналы исполнительным устройствам на открытие или закрытие радиаторов, что позволяет оперативно изменять температуру в помещении.

Электронные терморегуляторы в системах отопления принято разделять на два типа:

  1. 1. Закрытые модели не способны автоматически определять температуру, поэтому требуется их ручная настройка. После завершения регулировки устройство будет в автономном режиме поддерживать микроклимат в помещении.
  2. 2. Открытые автоматические регуляторы температуры в системах отопления отличаются расширенной логикой. Имеется возможность тонкой настройки термостата, в том числе установка таймера, порога срабатывания устройства на минимальную и максимальную температуру.

Полуавтоматические модели сочетают преимущества электронных и механических терморегуляторов. Они имеют доступную стоимость, поэтому идеально подходят для применения в бытовых целях. Наличие у полуэлектрического регулятора небольшого цифрового дисплея позволяет существенно упростить их настройку и последующее использование.

В качестве термостатического элемента у регулятора может использоваться вещество в жидком или газообразном состоянии. Соответственно, все устройства принято делить на жидкостные и газонаполненные. Каждый из таких типов регуляторов имеет свои преимущества и недостатки.

Газонаполненные регуляторы отличаются длительным сроком службы, при этом они обеспечивают максимально возможную точность работы. Благодаря использованию газообразного термостатического элемента достигается четкая и плавная регулировка температуры нагрева радиаторов. У электромеханических приборов в комплекте поставки имеются датчики, определяющие температуру воздуха в помещении, что обеспечивает максимальную точность управления системой отопления.

Из преимуществ жидкостных моделей отмечают их высокую точность при передаче давления на внутренние подвижные механизмы. Такие регуляторы обеспечивают максимально точную работу радиаторов отопления в соответствии с заданной предварительно программой. В зависимости от своей модификации жидкостные регуляторы могут иметь дистанционные и встроенные датчики. Приборы, оснащенные внутренним блоком для измерения температуры, устанавливают строго горизонтально.

Регуляторы с дистанционными датчиками могут использоваться в следующих случаях:

  • радиаторы установлены в нише;
  • термостат расположен в вертикальном положении;
  • батарея закрыта плотными воздухонепроницаемыми шторами.

Во всех случаях встроенный в прибор внутренний датчик работает некорректно, поэтому для правильного определения температуры воздуха в помещении используются выносные термометры. В последующем передача данных осуществляется по небольшому кабелю или беспроводной связи.

Монтаж автоматических регуляторов

Установка термостата не представляет особой сложности, поэтому всю работу можно выполнить самостоятельно, не обращаясь к профессиональным сантехникам. В то же время необходимо в обязательном порядке изучить инструкцию к конкретной модели регулятора, где будут подробно расписаны действия при установке устройства.

При монтаже автоматического регулятора отопления необходимо слить из батареи всю воду, для чего потребуется запирающий шаровой кран. После слива воды с батареи откручивают клапан, предварительно перекрыв все краны.

На радиаторе меняют адаптер. Для его снятия потребуется два разводных ключа, которыми фиксируют и откручивают гайки на подающей трубе и батарее. После замены адаптера аналогичную процедуру следует выполнить с воротником на радиаторе.

Непосредственно к установленному новому воротнику крепят терморегулятор. На корпусе термостата имеются соответствующие стрелки, позволяющие правильно смонтировать прибор, клапан которого фиксируется разводным ключом, после чего затягивают герметично гайку с дополнительной гидроизоляцией паклей и аналогичными материалами.

Всё что останется сделать, это открыть вентиль, полностью заполнить батарею водой, убедиться в отсутствии протечек, после чего можно приступать к настройке регулятора.

Способы настройки механических клапанов

Если с настройкой полностью автоматических устройств не возникает каких-либо сложностей, то правильно отрегулировать работу механических клапанов бывает затруднительно. Необходимо измерять не только температуру теплоносителя, но и воздуха в помещении. В комнате закрывают все двери и окна, что позволяет свести теплопотери к минимуму.

Измеряют температуру воздуха в помещении, записывают полученные данные, после чего до упора отворачивают клапан термостата. Теплоноситель заполнит батарею полностью, а показатель теплоотдачи у прибора будет максимальным. Через час выполняют повторное измерение температуры и сравнивают ее с предварительными данными.

Головку регулятора до упора поворачивают в обратную сторону. Как только температура воздуха в комнате достигнет оптимальных значений, клапан вновь открывают до тех пор, пока из батареи не будет слышен шум текущей воды, а сам радиатор не начнет быстро нагреваться. В этот момент вращение регулятора прекращают, фиксируя зажимом его положение.

Рекомендации по установке

Алгоритм действий при установке терморегуляторов может существенно различаться, поэтому перед началом монтажа прибора следует ознакомиться с инструкцией.

В конструкции регуляторов отопления имеются хрупкие детали, которые можно повредить при неосторожном обращении, поэтому во время монтажа следует соблюдать внимательность, действуя предельно аккуратно, не пережимая газовыми ключами и другими фиксаторами пластиковые элементы термостата.

Устанавливать клапан необходимо таким образом, чтобы после фиксации термостат имел горизонтальное положение. В противном случае в регулятор будет поступать теплый воздух от батареи, что может отрицательно сказаться на точности его работы.

При установке термостата на однотрубные радиаторы возможен дополнительный монтаж байпаса в патрубок, что позволяет существенно упростить последующую эксплуатацию системы отопления.

На корпусе регулятора будут указаны стрелки, показывающие направление воды на входе в радиатор отопления. При установке теплоклапанов следует учитывать направление движения теплоносителя.

При использовании электрических термостатов выносные датчики должны располагаться на удалении от клапанов 2−8 см. Это позволит обеспечить необходимую точность измерений, оптимизируя работу всей системы отопления в доме.

Использование регуляторов температуры в системах отопления позволяет повысить эффективность обогрева помещения, создает оптимальные условия в каждой из комнат, сокращает расходы домовладельца на оплату коммунальных услуг. В настоящее время в продаже можно найти механические, полуавтоматические и автоматические термостаты, отличающиеся своим принципом работы. Наибольшее распространение получили полуавтоматы, которые сочетают функциональность и удобство использования. Все монтажные работы можно провести самостоятельно, что позволит сэкономить на услугах профессиональных сантехников.

Регулятор температуры прямого действия. Устройство, монтаж, нормы

   Регулятор температуры прямого действия — это трубопроводная арматура, предназначенная для автоматического поддержания заданного значения температуры воды. Регулятор автоматически поддерживает температуру воды, изменяя проходное сечение клапана управляемого термостатическим элементом, и не требует дополнительного источника энергии.
   Принцип работы регулятора температуры прямого действия, основан на использовании энергии фазового перехода и теплового расширения рабочей жидкости в замкнутом пространстве температурного датчика для изменения проходного сечения клапана. По реакции на увеличение температуры воды, регуляторы делятся на те которые с ростом температуры открываются и те, которые закрываются.
   Регулятор может управлять теплоотдачей скоростного теплообменного аппарата, обеспечить нагрев до заданной температуры бака водонагревателя или управлять расходом воды в циркуляционном трубопроводе системы горячего водоснабжения.
Наиболее широкое распространение, регуляторы температуры получили в системах горячего водоснабжения (ГВС) для управления расходом греющего теплоносителя в зависимости от изменяющейся потребности в горячей воде.

Достоинства:
 — Невысокая цена
 — Простая конструкция
 — Высокая надёжность
 — Простая настройка
 — Не требует внешних источников энергии

Недостатки:
 — Высокие требования к качеству теплоносителя.
 — Температура настройки изменяется только в ручном режиме.
 — Вынос датчика температуры ограничен длиной импульсной трубки.
 — Диапазон настройки ограничен характеристиками термостатического элемента.
 — Точность поддержания температуры снижается при отклонении температуры настройки от средины к граничным значениям диапазона регулирования.

Устройство и конструкция регулятора температуры прямого действия

   Устройство регулятора температуры прямого действия включает в себя три составляющих: датчик температуры с импульсной трубкой, термоэлемент и регулирующий клапан разъёмно или неразъёмно связанные друг с другом.

Датчик температуры:
   Конструкция датчика температуры — металлическая колба, заполненная рабочей средой способной существенно изменять свой объём при нагреве и соединённая импульсной трубкой с термостатическим приводом. Регуляторы могут быть укомплектованы накладным, погружным или интегрированным датчиком температуры.
   Накладной датчик температуры крепится на поверхность трубы, прост в монтаже, не вносит дополнительного гидравлического сопротивления и не требует устройства специальных расширителей. Но накладные температурные датчики отличаются высокой инерционностью, и существенной погрешностью, которую в принципе можно скорректировать дополнительной настройкой по месту.
   Погружные датчики температуры врезаются в трубопровод через защитную гильзу или без неё. Они отличаются значительно меньшей инерционностью, но требуют проведения сварочных работ для врезки в трубопровод, вносят дополнительное гидравлическое сопротивление и при монтаже на трубопроводах меньше DN65 требуют устройства расширителей.
   Интегрированные температурные датчики встроены в корпус регулятора температуры. Подобные регуляторы применяются в схемах, где по технологическому процессу необходимо поддерживать температуру воды в трубопроводе, на котором установлен клапан регулятора, а температура теплоносителя зависит от его расхода.

Термостатический элемент:
   Конструкция термостатического элемента — сильфон соединённый импульсной трубкой с датчиком температуры и заполненный той же рабочей средой, что и датчик температуры. Жёсткость конструкции сильфона позволяет ему разжиматься с повышением температуры и давления рабочей среды и перемещать шток регулирующего клапана.

Регулирующий клапан:
   Конструкция клапана регулятора температуры прямого действия, ничем не отличается от клапанов, применяемых с приводами другого типа. Как правило, это линейный односедельный разгруженный по давлению клапан, с чугунным, стальным, бронзовым или латунным корпусом, присоединяемый к трубопроводу на фланцах, резьбе или с концами под приварку.

Принцип работы регулятора температуры прямого действия

   Принцип работы регулятора температуры прямого действия основан на использовании энергии теплового расширения жидкости в замкнутом контуре. Замкнутый контур образован полостью датчика температуры соединённого импульсной трубкой с сильфоном термопривода. В зависимости от диапазона регулирования, рабочей средой заполняющей сильфон и датчик может быть жидкость, газ, парафин или газоконденсатная смесь. Датчик регулятора монтируется в месте поддержания температуры. При нагреве объём рабочей среды увеличивается, а при охлаждении — уменьшается. Изменение объёма в замкнутой полости (датчик — импульсная трубка — сильфон термопривода) приводит к изменению давления. С ростом давления сильфон термопривода вытягивается, давит на шток клапана, изменяя положение затвора и автоматически уменьшая расход через регулятор температуры. При снижении температуры воды относительно заданного значения — давление в сильфоне понижается, сжимая его и поднимая шток регулятора. По реакции на увеличение температуры воды, регуляторы делятся на те которые с ростом температуры открываются и те, которые закрываются, при этом следует учесть, что каждый привод регулирует температуру в определённом диапазоне.

Подбор регулятора температуры

   Регулятор температуры прямого действия это самостоятельный элемент системы теплоснабжения, который не требует комплектации дополнительными компонентами и работает без внешних источников энергии. Основная задача регулятора температуры – это управление процессом подогрева или охлаждения рабочей среды, путём перекрытия потока тепло или холодоносителя. Регулирующую способность определяет авторитет клапана в управляемой системе, поэтому настоятельно рекомендуется выбирать клапан с учётом искривления его расходной характеристики связанным с отклонением авторитета регулятора температуры от 1. В противном случае процесс регулирования может проходить в двухпозиционном режиме. Точность поддержания регулятором температуры, зависит от гистерезиса и зоны пропорциональности термопривода, а скорость реакции на отклонение температуры — от постоянной времени. В системах с быстро меняющимися параметрами, лучше отдать предпочтение «быстрым» регуляторам с постоянной времени до 60 секунд, а в системах с накопительными баками водонагревателями и теплоаккумуляторами достаточно будет и более «медленных» регуляторов. Рекомендуется выбирать термопривод регулятора температуры таким образом, чтобы поддерживаемая температура находилась в средней трети регулируемого диапазона.

Методика расчёта

   Методика расчёта и подбора регулятора температуры заключается в определении:
 — требуемой пропускной способности регулятора;
 — оптимального диапазона поддерживаемых температур;
 — скорости закрытия, точности поддержания.

   Расчёт пропускной способности регулятора температуры Kv, выполняется на основании данных о расходе теплоносителя через него и допустимых потерь напора. Следует отметить, что чем большую долю потерь на регулируемом участке от располагаемого напора привносит регулятор температуры, тем выше его авторитет и тем, более плавным будет регулирование.
Выше приведенный алгоритм подбора регуляторов температуры, при расчёте искривления регулировочной характеристики клапана, связанного с отличием авторитета от 1, по умолчанию принимает начальную рабочую характеристику — линейной.
Расчёт возможности возникновения кавитации

   Кавитация – образование пузырьков пара в потоке воды проявляющееся при снижении давления в нём ниже давления насыщения водяного пара. Уравнением Бернулли описан эффект увеличения скорости потока и снижения давления в нём, возникающий при сужении проходного сечения. Проходное сечение между затвором и седлом регулятора температуры является тем самым сужением, давление в котором может опуститься до давления насыщения, и местом наиболее вероятного образования кавитации. Пузырьки пара нестабильны, они резко появляются и также резко схлопываются, это приводит к выеданию частиц метала из затвора клапана, что неизбежно станет причиной его преждевременного износа. Кроме износа кавитация приводит к повышению шума при работе клапана.

   Основные факторы, влияющие на возникновение кавитации:
 — Температура воды – чем она выше, тем большие вероятность возникновения кавитации.
 — Давление воды – перед регулирующим клапаном, чем оно выше, тем меньше вероятность возникновения кавитации.
 — Допустимые потери давления – чем они выше, тем выше вероятность возникновения кавитации. Здесь следует отметить, что в положении затвора близком к закрытию дросселируемое давление на регуляторе температуры стремиться к располагаемому давлению на регулируемом участке.
 — Кавитационная характеристика регулятора температуры – определяется особенностями дросселирующего элемента клапана. Коэффициент кавитации различен для различных типов регуляторов и должен указываться в их технических характеристиках, но так, как большинство производителей не указывают данную величину, в алгоритм расчёта заложен диапазон наиболее вероятных коэффициентов кавитации.

   Расчёт регулятора температуры на возникновение шума:
   Высокая скорость потока во входном патрубке регулятора температуры может стать причиной высокого уровня шума. Для большинства помещений, в которых устанавливаются регуляторы температуры допустимый уровень шума составляет 35-40 dB(A) который соответствует скорости во входном патрубке клапана примерно 3м/c. Поэтому, при подборе регулятора температуры рекомендуется не превышать выше указанной скорости.

Настройка регулятора температуры прямого действия

   Настройка регулятора температуры прямого действия выполняется после монтажа вращением настроечного лимба на отметку соответствующую требуемой температуре с последующей подстройкой по контрольному термометру. Проверяют работу регулятора изменяя температуру воды в месте подключения датчика, при этом отмечают точность поддержания температуры, значение гистерезиса, постоянной времени и зоны пропорциональности, сравнивая их с паспортными данными. Чтобы изменить температуру воды в системе горячего водоснабжения достаточно открыть один водоразборный кран и дождаться пока температура в месте установки датчика не понизится, а регулятор не отреагирует на её изменение. При наличии на трубопроводе греющего теплоносителя приборов учёта, рекомендуется замерить потери напора на полностью открытом регуляторе температуры и сравнить их с расчётными значениями.

Схемы установки регуляторов температуры прямого действия

   Схемы установки регуляторов температуры прямого действия обусловлены условиями технологического процесса, по которым необходимо поддерживать постоянную температуру воды. В системах горячего водоснабжения автоматические регуляторы температуры применяются в узлах обвязки скоростных теплообменных аппаратов. Клапан регулятора устанавливается на входе греющего теплоносителя, а датчик температуры на выходе нагреваемой воды.

   В системе ГВС с накопительным водонагревателем регулятор температуры прямого действия устанавливается на входе или выходе греющего теплоносителя, а датчик температуры в средней части бака. Подключённый по такой схеме регулятор температуры управляет загрузкой бака, исключая его перегрев.

 

 

   На циркуляционных трубопроводах систем горячего водоснабжения в один трубопровод устанавливаются клапан и датчики регулятора температуры. Схема позволяет понизить расход воды через циркуляционный трубопровод и исключить его перегрев. Рекомендуется температуру в циркуляционном трубопроводе ГВС поддерживать на 5-10°C ниже температуры горячей воды поступающей в систему.

 

   В системах отопления регуляторы температуры прямого действия применяются только при количественном регулировании теплоотдачи отопительных приборов. Но так как, в большинстве случаев проектируются системы с качественным или качественно-количественным регулированием, регуляторы температуры прямого действия в них не устанавливаются.

 

 

 

Технические характеристики регуляторов температуры прямого действия

Постоянная времени регулятора температуры отражает в секундах динамическую характеристику и зависит от конструкции термоэлемента и способа монтажа датчика. Скорость перемещения затвора выше у автоматических регуляторов с низкими значениями постоянной времени.

Зона пропорциональности регулятора равна отклонению температуры от значения настройки, при котором клапан регулятора полностью откроется или полностью закроется. Значение зоны пропорциональности различно для разных настроек в пределах регулируемого диапазона и определяется по номограммам, приведенным в техническом описании температурного регулятора.

Гистерезис регулятора равен отклонению температуры воды от значения настройки, при котором затвор клапана начнёт движение для приведения её к заданному значению.

DN регулятора температуры — номинальный диаметр отверстия в присоединительных патрубках. Значение DN применяется для унификации типоразмеров трубопроводной арматуры. Фактический диаметр отверстия может незначительно отличаться от номинального в большую или меньшую сторону. Альтернативным обозначением номинального диаметра DN, распространённым в странах постсоветского пространства, был условный диаметр Ду регулятора температуры. Ряд условных проходов DN трубопроводной арматуры регламентирован ГОСТ 28338-89 «Проходы условные (размеры номинальные)».

PN регулятора температуры — номинальное давление — наибольшее избыточное давление рабочей среды с температурой 20°C, при котором обеспечивается длительная и безопасная эксплуатация. Альтернативным обозначением номинального давления PN, распространённым в странах постсоветского пространства, было условное давление Ру регулятора температуры. Ряд номинальных давлений PN трубопроводной арматуры регламентирован ГОСТ 26349-84 «Давления номинальные (условные)».

Kvs регулятора температуры — коэффициент пропускной способности соответствует расходу воды, в м³/ч с температурой в 20°C, при котором потери напора на клапане регулятора составят 1 бар. Значение коэффициента пропускной автоматического регулятора температуры используется в гидравлических расчётах для определения потерь напора.

Установка и монтаж регулятора температуры прямого действия

   Установку регулятора температуры прямого действия следует выполнять в соответствии с инструкцией по монтажу, кроме того необходимо учесть:
 — Монтажное положение следует выбирать на горизонтальном трубопроводе термоприводом вниз, если другое не оговорено инструкцией по монтажу.
 — Перед регулятором температуры рекомендуется выдержать прямой участок трубопровода не менее 5DN, а после него не менее 10DN. В противном случае показатели пропускной способности могут отличаться от паспортных.
 — Монтаж регулятора температуры должен исключать действие на него изгибающих, крутящих, сжимающих и растягивающих усилий от присоединённых трубопроводов.
 — Перед и после регулятора должны быть установлены манометры, а в месте установки датчика температуры контрольный термометр. Следует помнить, что врезка термометра в трубопровод DN50 и менее без устройства расширителя не допускается.
 — Перед регулятором по ходу движения воды должен быть установлен сетчатый фильтр.

Последовательность паковки резьбового соединения

1. Взять прядь льняного волокна с таким количеством нитей, чтобы в скрученном состоянии её диаметр были примерно равен глубине резьбы на монтируемом элементе. Длина пряди должна обеспечивать количество подмотки в 1,5-2раза превосходящее число витков резьбы.
2. Отступив примерно 50-70 мм от начала пряди, следует слегка скрутить её, уложить в первый виток резьбы и удерживая её рукой, плотно намотать длинную ветвь пряди по часовой стрелке, укладывая её в каждый виток резьбы.
3. Дойдя до конца резьбы, продолжить намотку вторым слоем, перемещая витки к началу резьбы. Длина второго слоя намотки должна быть примерно равна 2/3 длины резьбы.
4. Оставшийся конец пряди (50-70мм) намотать аналогично по часовой стрелке, укладывая от конца резьбы к её началу.
5. Нанести слой герметика поверх подмотки.
6. Навернуть рукой сопрягаемые элементы. При правильной подмотке, монтируемый элемент должен завернуться на 1,5-2 оборота.
7. Гаечным ключом или динамометрическим продолжить наворачивание элемента. В случае, когда монтируемому элементу необходимо придать определённое положение, закончить наворачивание в необходимом для этого элемента положении.

Требования норм, касающиеся регуляторов температуры

   Ниже собраны требования норм и правил касающиеся подбора, монтажа и эксплуатации регуляторов температуры. Приведенный перечень нормативных требований не является исчерпывающим, и со временем будет расширяться. Выдержки взяты из нормативных документов регулирующих порядок проектирования, монтажа и эксплуатации инженерных систем жилых, общественных и административно бытовых зданий. В разделе не приведены требования норм и правил которые относятся к Регуляторам температуры применяемым в промышленности и технологических установоках.

ДБН В.2.2-15 Жилые здания

Пункт 5 — ДБН В.2.2-15 Жилые здания Инженерное оборудование зданий

ДБН В.2.5-39 Тепловые сети

Пункт 12.11 — Глава 12 Конструкции трубопроводов

Использовать запорную арматуру как регулирующую не допускается.

Пункт 12.20 — Глава 12 Конструкции трубопроводов

Устройство обводных трубопроводов вокруг грязевиков и регулирующих клапанов не допускается.

Пункт 16.7.1 — Раздел 16.7 Схемы присоединения потребителей к тепловой сети — Глава 16 Тепловые пункты

Присоединение потребителей тепловой энергии к тепловой сети в тепловых пунктах следует предусматривать по схемам, обеспечивающим минимальный расход воды в тепловых сетях, а также экономию тепловой энергии за счёт использования автоматических регуляторов теплового потока (температуры) и ограничения максимального расхода сетевой воды.

Пункт 16.7.4 — Раздел 16.7 Схемы присоединения потребителей к тепловой сети — Глава 16 Тепловые пункты

Использование муфтовых соединений трубопроводов подающей линии допускается при согласовании с теплоснабжающей организацией.

Пункт 16.15 — Глава 16 Тепловые пункты

В тепловых пунктах не допускается устройство пусковых перемычек между подающим и обратным трубопроводами тепловой сети. Не допускается устройство обводных трубопроводов для насосов (кроме подпиточных), элеваторов, регулирующих клапанов, грязевиков и приборов учёта тепловых потоков и расхода воды.

Регуляторы перелива и конденсатоотводчики следует оборудовать обводными трубопроводами.

Пункт 17.13 — Глава 17 Электроснабжение и система управления

Автоматизация теплового пункта должна обеспечивать:
 — регулирование расхода тепловой энергии в системе отопления и ограничение максимального расхода сетевой воды у потребителя;
 — заданную температуру воды в системе горячего водоснабжения;
 — поддержание статического давления в системах потребителей теплоты при их независимом присоединении;
 — заданное давление в обратном трубопроводе или необходимый перепад давлений воды в подающем и обратном трубопроводах тепловых сетей;
 — защиту систем теплопотребления от повышенного давления и температуры воды в случаях появления опасности превышения допустимых граничных параметров;
 — включение резервного насоса при отключении рабочего;
 — прекращение подачи воды в бак-аккумулятор при достижении верхнего уровня воды в баке и разбора воды из бака при достижении нижнего уровня;
 — другие мероприятия повышающие эффективность работы оборудования.

СНиП 2.04.01 Внутренний водопровод и канализация зданий

Пункт 8.6 — Глава 8 Расчёт водопроводной сети горячей воды

При невозможности увязки давлений в сети трубопроводов систем горячего водоснабжения путем соответствующего подбора диаметров труб следует предусматривать установку регуляторов температуры или диафрагм на циркуляционном трубопроводе системы.
Диаметр диафрагмы не следует принимать менее 10 мм. Если по расчету диаметр диафрагм необходимо принимать менее 10 мм, то допускается вместо диафрагмы предусматривать установку кранов для регулирования давления.

СНиП II-35 Котельные установки

Пункт 15.27 — Глава 15 Автоматизация

В котельной следует предусматривать автоматическое поддержание заданной температуры воды, поступающей в тепловые сети централизованного теплоснабжения.
Для котельных с водогрейными котлами, оборудованными топками, не предназначенными для автоматического регулирования процесса горения, автоматическое регулирование температуры воды допускается не предусматривать.

ГОСТ 11881-76 Регуляторы работающие без использования постороннего источника энергии. Общие технические условия
ГОСТ 12.2.063-81 Общие требования безопасности. Арматура промышленная трубопроводная
ГОСТ 12893-83 Клапаны регулирующие односедельные, двухседельные и клеточные. Общие технические условия
ГОСТ 23866-87 Клапаны регулирующие односедельные, двухседельные и клеточные. Основные параметры
ГОСТ 24856-81 (ISO 6552-80) Арматура трубопроводная промышленная. Термины и определения
ГОСТ 4666-75 Маркировка и отличительная окраска. Арматура трубопроводная

 

 

 

Благодарность за предоставленные материалы:
http://www.ktto.com.ua

Другие материалы в этой категории: « Балансировочные клапаны. Устройство, применение, монтаж, нормы Задвижка клиновая, шиберная. Устройство, монтаж, нормы »

Регуляторы температуры | Thermal Care

Терморегулятор — это часть оборудования, используемая для поддержания заданной температуры. Контроллер температуры может работать при повышенных температурах, нагревая или охлаждая систему по мере необходимости. Блоки включают насос, нагреватель, охлаждающий клапан и ПИД-регулятор. Контроллеры температуры доступны в различных конфигурациях с широким диапазоном размеров насосов (от 3/4 л.с. до 10 л.с.), нагревателей (от 9 кВт до 48 кВт) и клапанов (от 1/4 дюйма до 1 дюйма). Эксперты Thermal Care помогут вам выбрать необходимую конфигурацию, которая наилучшим образом соответствует потребностям вашей системы.

Типы термостатов

Термостаты подразделяются на три основные группы: водяные, масляные и вакуумные. Водяные агрегаты используют воду в качестве технологической жидкости. Они, безусловно, наиболее распространены и имеют наибольшее разнообразие доступных конфигураций. Водяные агрегаты серии Thermal Care RQT в основном ограничены в своем применении допустимым верхним температурным требованием для системы. При превышении этой температуры выбираются масляные агрегаты серии Thermal Care RO из-за того, что они могут выдерживать гораздо более высокие температуры.

Наконец, вакуумные блоки или блоки отрицательного давления серии Thermal Care RV имеют регулируемый уровень вакуума, обеспечивающий точное количество, необходимое для остановки утечки без всасывания воздуха в контур.

Компания Thermal Care предлагает широкий выбор терморегуляторов, способных удовлетворить практически любые требования. Наши специалисты могут определить правильную конфигурацию, чтобы предоставить наилучшее возможное решение для требований вашей системы.

Отрасли, в которых мы сохраняем спокойствие


Подробнее

Анодирование и гальванопокрытие

Компания Thermal Care является ведущим производителем оборудования для промышленного охлаждения металлургической…

Учить больше

Экстракция ботанического масла

Компания Thermal Care является ведущим производителем оборудования для отопления и охлаждения, в том числе…

Учить больше

Гликолевые чиллеры для пивоварни и винокурни

Существует несколько важных факторов, которые следует учитывать при выборе чиллера для пивоварни или чиллера…

Учить больше

Химическая промышленность

Компания Thermal Care является ведущим производителем оборудования для промышленного нагрева и охлаждения…

Учить больше

Молочная промышленность

Признавая уникальные потребности производителей молока и молочной промышленности в технологическом охлаждении, компания Thermal Care…

Учить больше

ЦОД

Компьютеры ЦОД выделяют огромное количество тепла и без надлежащего отвода тепла…

Учить больше

Литье под давлением

Компания Thermal Care предлагает полную линейку нагревательного и охлаждающего оборудования для литья под давлением…

Учить больше

Продукты питания и напитки

С 1969 года компания Thermal Care является ведущим производителем промышленного нагрева и…

Учить больше

Термическая обработка и индукция

Компания Thermal Care является ведущим производителем промышленного оборудования для технологического охлаждения для тепловых…

Учить больше

HVAC

Разнообразный ассортимент оборудования для охлаждения HVAC от Thermal Care включает портативные и центральные охладители,…

Учить больше

Охладители и системы охлаждения для катка

Любите ли вы хоккей или фигурное катание, важно, чтобы лед был правильной толщины…

Учить больше

Лазеры

Компания Thermal Care предлагает обширную линейку лазерных охладителей, разработанных с учетом потребностей…

Учить больше

Механический инструмент

С учетом сегодняшних все более жестких требований к допускам становится необходимым поддерживать…

Учить больше

Медицина и фармацевтика

Независимо от того, включаете ли вы медицинское оборудование и оборудование для визуализации, лабораторные и хирургические наборы,…

Учить больше

Пластик

Вам нужно оборудование для технологического охлаждения для вашего производства пластмасс? С таким упором на поиск…

Учить больше

Термальное напыление

Компания Thermal Care предлагает самую полную линейку систем охлаждения, доступных для процессов термического напыления.

Учить больше

Водоструйные насосы и машины для резки

Thermal Care — ведущий производитель промышленных переносных и центральных охладителей воды…

Учить больше

Сварочные аппараты

Компания Thermal Care предлагает самую полную линейку промышленных систем охлаждения для сварки…

Учить больше

Чиллеры серии TC безотказны и требуют минимального обслуживания. За почти 3 года единственным элементом, который мы заменили, является уплотнение технологического насоса. Компрессор Turbocor остается безупречным и буквально нетронутым уже почти 3 года. Удаленный доступ отлично подходит для устранения неполадок и обеспечивает душевное спокойствие в экстремальных погодных условиях, зная, что Thermal Care регулярно контролирует систему, чтобы обеспечить ее правильную работу.

Есть абсолютно некоторые эффективности с системой. В холодные дни мы видели, как один из 16 вентиляторов работает на внешних конденсаторных блоках, а компрессоры Turbocor работают на половинной скорости в зимние месяцы. Уэйн Хьюэрт, Таф-Тайт

Блоки контроля температуры воды | Tool-Temp

Температура воды Блоки управления | Температура инструмента Живой чат

ТТ-170 до 90ºC

Для использования с водой с температурой до 90ºC, TT-170 представляет собой компактный блок контроля температуры воды для небольших форм для литья под давлением и роликов. Он также может быть использован в лабораторных приложениях.

Диапазон обзора

TT-181 до 150ºC

TT-181 — небольшой, но мощный блок контроля температуры, предназначенный для использования с вода до 90°C для форм до 600кг и масло до 150°C для форм до 300кг.

Диапазон обзора

ТТ-188 до 150ºC 9№ 0003

Этот мощный малогабаритный терморегулятор с электронной регулировкой расхода может использоваться с водой или маслом, а также в режиме герметизации. ТТ-188 — бестселлер.

Диапазон обзора

ТТ-168 до 150ºC

TT-168 E, TT-168 H: Для использования с водой до 90°C или маслом до 150°C. TT-168 E/A, TT-168 H/A: Для использования с водой при температуре до 90ºC для больших форм.

Диапазон обзора

TT-168-PHE от 20ºC до 90ºC

TT-168 PHE — это серия специализированных агрегатов с высокой холодопроизводительностью. Установки TT-168 PHE идеально подходят для воды с температурой от 20ºC до 50ºC.

Диапазон обзора

ТТ-118К до 90ºC

Для использования с водой температурой до 90ºC. ТТ-118 обладает высокой охлаждающей способностью, что делает его пригодным для использования с валками, каландрами, пластинами, сосудами с двойными стенками и другими крупными потребителями.

Диапазон обзора

TT-1548 от 50ºC до 90ºC

Этот блок контроля температуры с воздушным охлаждением предназначен для использования с полиуретановыми формами на круглых столах или для применений, где отсутствует охлаждающая вода.

Диапазон обзора

TT-1368 от 20ºC до 90ºC

TT-1368 — это мощный агрегат для обогрева и охлаждения с большим возвратным объемом — для температур от 20°C до 90°C с очень высокой холодопроизводительностью — для тяжелых условий эксплуатации.

Диапазон обзора

TT-1500 от 20ºC до 90ºC

Этот блок обеспечивает очень высокую производительность прямого охлаждения — для температур от 20°C до 90°C. Он предназначен для роликов, пластин, сосудов с двойными стенками и других тяжелых условий эксплуатации.

Диапазон просмотра

Вернуться домой

Последние новости

С 2007 года команда Tool-Temp проводит День гольфа, который проводится ежегодно в июне. День всегда начинается с кофе и булочки с беконом, после чего следует игра в гольф на 9 лунок и обед в клубном доме. Затем команды отправляются на раунд из 18 лунок и возвращаются к трапезе из трех блюд. Tool-Temp предлагает размещение всем клиентам, а некоторые даже присоединяются к команде, чтобы выпить несколько напитков в местном городе после этого.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *