Резистор регулятора скорости вращения вентилятора: Как выбрать регулятор скорости вращения вентиляторов | Реобас | Блог

Содержание

Регулятор скорости вращения вентилятора по температуре

В одном из обзоров в каментах я опрометчиво пообещал сделать обзор этой железки. Поскольку я не высокопоставленный политик – обещания надо выполнять.

Как я и обещал – никаких замеров, осцилограмм, разборки, распайки и трассировки схемы по печатке – НЕ БУДЕТ. Уж простите – не обладаю ни соответствующим инструментом, ни навыками, ни зрением… Но что смогу – сделаю.

Как-то решил я собрать себе железку-медиасервер. Ну чисто мультики крутить. Помимо всего прочего – хотелось смотреть мультики без звукового сопровождения вентиляторов. И вот набрел на данный лот. Эта железка позволяет регулировать скорость вращения 3-х пинового вентилятора. Так же работает с 2-пиновыми! Регулировка происходит по температуре внешнего термодатчика. Все пороги регулировки можно настраивать:

1. При включении вентилятор запускается на заданном минимальном уровне.
2. При превышении заданной минимальной температуры, дальнейшее повышение температуры ведет к пропорциональному повышению оборотов
3. При превышении температуры выше заданного предела – вентилятор крутится на 100%.

На плате есть три светодиода, которые индицируют работу и выбранные настройки. А также – единственная кнопка, которая и управляет настройками.

На али так же можно найти и другие похожие регуляторы, в т.ч и для 4-хпиновых вентиляторов. Может быть дешевле, красивше, быстрее доставка итп. Не могу ничего сказать за них – мне достался именно этот лот.

Размеры платы небольшие (из измерительных инструментов таки нашлась в хозяйстве рулетка). Провода и датчика, и вход питания – короткие.

Провода питания впаяны в плату. Хорошие – в силиконовой изоляции. Кроме длины имеют еще один недостаток – они не соединены вместе, т.е. просто впаяны два разных провода. Впрочем – при их длине это не заметно.

Датчик температуры гораздо симпатичнее. Но длина его кабеля совсем грустная – монтировать плату нужно рядом с местом замера. Сам датчик мне прям нравится – аккуратная капелька. При необходимости ее легко можно зачеканить в радиатор (просверлив маааленькое глухое отверстие). За счет размера он имеет минимальную тепловую инертность, что тоже хорошо.

Кому интересно – плата чуть более подробно

Дополнительная информация

С обратной стороны ничего интересного нет. Ну разве что только надписи

Для подключения вентилятора впаян стандартный трехпиновый разъем. Как говорил выше – двухпиновые вентиляторы также будут работать и регулироваться (проверил). Рядом – разъем для датчика (что меня удивило – уж датчик то впаять можно было — как провода питания. Экономия была бы)

Для того, чтобы представить чуть больше информации, чем фото с линейкой, был собран стенд из вентилятора и блока питания от ближайшего хаба.

Подключаем – вентилятор тихонько запустился…. Надо сказать, последние пару дней у нас установилась долгожданная (?) жара в +30 и выше. Легкий ветерок на рабочем месте так понравился, что написание обзора отодвинулось на пару дней 🙂

Поработав не менее получаса плата почти никак не нагрелась. Ну в смысле – ощупывание пальцами аномальных температур не выявило. Ладно, достанем градусник из закромов.

Ого – а КРЕНКа то заметно греется! Хотя дельта с окружающим воздухом меньше 10 градусов…. Забегая вперед, скажу, что приватизированный БП оказался (вопреки надписям на корпусе) не 12В, а все 14 (а на холостом ходу и более 15) Так что падение почти 10 вольт на пассивном регуляторе – просто обязано греть воздух. Странно что пальцами я не заметил нагрев – может корона?

Кстати – этот неожиданный тест показывает, что данный регулятор можно применить и на автомобиле (у меня как раз завалялась одна автомобильная магнитола на горячем PX5 с пассивным жестяным охлаждением).

У продавца на странице товара полностью отсутствует какая-либо инструкция по программированию контроллера. К счастью, в век интернета найти инструкцию не проблема

В принципе все просто и понятно. Но для тех, кто не владеет басурманским расскажу подробнее.

Контроллер имеет три настройки скорости/температур и дополнительно – настройку трех режимов (три настройки, три режима, три светодиода… почему же кнопка одна?):

1. Настройка «холодных» оборотов. Во время нормальной работы – после включения, когда горит светодиод 2: однократное нажатие на кнопку увеличивает скорость на 5%. Двойное нажатие – уменьшает на 5%. При нажатиях загораются соответственно 3 (для увеличения) или 1-й (для уменьшения) светодиоды. Если достигнут предел регулирования (некуда увеличивать или уменьшать) – то соответствующий диод остается гореть.
Также, после любого нажатия, 2-й начинает мигать, сообщая что значение было изменено и через 20сек мигания — новое значение прописывается в память. Это значение (на графике PO) – минимальные обороты, с которых стартует вентилятор (в зависимости от режима – см ниже).
2. Настройка минимальной температуры, с которой начинается регулирование (на графике Tu). Для перехода в настройки нужно во время нормальной работы нажать кнопку на 3 сек. Начнет мигать светодиод (возможно не один) показывающий текущую установку Tu (вторая колонка в таблице). Изменяется установка так же – однократное нажатие – в сторону увеличения, двукратное – уменьшения. ПО ОКОНЧАНИИ УСТАНОВКИ НУЖНО НАЖАТЬ КНОПКУ НА 3 СЕК. Иначе новая установка НЕ ЗАПОМНИТСЯ!

3. Настройка интервала от нижней до верхней (на графике Td). В это настройку контроллер переходит сразу после сохранения значений Tu. Светодиод(ы) начинают мигать в 2 раза чаще. Отображают текущие настройки (таблица – колонка 3). Смена значений опять так же – одно и двукратным нажатием. ТАК ЖЕ НЕ ЗАБЫВАЕМ СОХРАНИТЬ НАСТРОЙКИ долгим нажатием!
Запоминаем – настройка PO сохраняется сама через 20сек. А Tu и Td – требуют сохранения долгим нажатием.

Теперь к режимам.
До достижения минимальной температуры вентилятор может себя вести по-разному. Предусмотрено три варианта:

1. Вентилятор крутится со скоростью PO с момента включения и до достижения Tu.
2. Вентилятор НЕ крутится, пока температура не достигнет Tu-2 (т.е. на 2 градуса холоднее, чем заданная минимальная)
3. Вентилятор НЕ крутится, пока температура не достигнет Tu-5 (т.е. на 5 градусов холоднее, чем заданная минимальная)

Надо сказать, что если табличка с графиком находится в соседних лотах довольно часто, то описание этих режимов и их настройки есть далеко не во всех. А уж понять, что написано – можно только проверив экспериментально 🙂

Итак, для входа в настройки режима нужно выключить питание. Отключать вентилятора от контроллера, как везде написано, НЕ НУЖНО (хотя и можно). Зажать кнопку, включить питание. Через 3 сек светодиоды начнут моргать двойными вспышками. Отпустить кнопку. Останется мигать светодиод с номером, соответствующим текущему режиму.

Меняем режим нажатием кнопки. Сохраняем – удержанием 3сек (светодиод перестает мигать).

Температура старт/стопа в режимах 2 и 3 имеет некоторый гистерезис, так что не стоит переживать за разболтанку в граничной точке.
Мне понравилось играться во 2 режиме – изначально вентилятор остановлен. (дописываю это уже утром – пока жара не такая сильная). Зажимаю датчик в пальцах – стартует сразу. Отпускаю – крутится «на минималках». Крутится несмотря на то, что датчик обдувается. Прикасаюсь к датчику влажными пальцами – испарение воды охлаждает датчик ниже порога гистерезиса – вентилятор останавливается.

Поиграв настройками, я вспомнил, что в загашнике есть еще один инструмент. Ц-шка.

Итак – скинул PO в минимум начал повышать скорость и замерять напряжение на вентиляторе. Да, знаю, Ц-шка у меня ни разу не true RMS, поэтому на точные значения можно не рассчитывать, но тенденция и график от этого не сильно поменяются:

Замер производил в обе стороны (вверх и вниз), значения на каждой ступеньке, бывало, совпадали, а бывало, отличались на 0,05-0,10в. В процессе замера напряжение не постоянно – прыгает +-0,5В, поэтому разницу не стал оформлять отдельно. При торможении крыльчатки напряжение падает (хм, странно), что тоже способствует разнице.

Именно во время измерений я и «заметил», что используемый БП выдает несколько больше заявленных 12В 🙂

Что еще по графику: минимальное значение слишком мало. Вентилятор на нем работает, но издает жалобные звуки. При попытке остановить – останавливается и больше не запускается без пинка. При включении тоже сам не запускается…

В детстве, когда надо было снизить шум вентилятора в системнике, мы переключали его на питание от 7 Вольт. Потому что при 5В он мог не стартовать, особенно зимой в квартире с плохим отоплением (смазка густела).

В данном случае – на второй ступеньке (4,1в) вент уверенно запускался. Но так и не зима на улице, да и вентилятор довольно свежий. Поэтому – рекомендую использовать в качестве минимального порога PO третью или четвертую ступень.

Дальше, неплохо бы проверить собственно регулирование. Но как, если под рукой нет ни источника тепла, ни приборов для его измерения?

Ага, смотрим в таблицу и видим: минимальное значение Tu 30 градусов. Отлично – у меня как раз есть под рукой источник тепла чуть выше 30. Задаем в настройках этот порог. А также – интервал Td в 5 градусов. Зажимаем датчик между пальцами — и вентилятор довольно шустро – за 5 сек – плавно набирает полную скорость (и шум). Отпускаем – так же плавно снижает обороты. Работает! Ок, задаем Td = 10 градусов. Повторяем эксперимент – вентилятор так же бодро подхватывает, но до максимума явно не докручивает. Отлично, значит проклятый короновирус до меня еще не добрался!

Ну и еще один момент: если заметили – в месте пайки питающих проводов есть еще одна площадка – выход таходатчика. Она напрямую соединена с таким же контактом в разъеме вентилятора. Если у вас трехконтактный вентилятор и, если хотите, чтобы материнская плата контролировала скорость вентилятора – нужно допаять к этому контакту провод и подключить на материнку. Вероятно, в первоначальной конструкции предполагался разъем-мама для непосредственного подключения на разъем материнки. Но потом или начали экономить (скорее всего) или поняли, что система работает нормально только если материнка сама не пытается управлять вентилятором самостоятельно.

Выводы: Регулятор вполне справляется с заявленными функциями. Регулировка одной кнопкой с индикацией в двоичном коде хоть и сложновата, но трудностей не вызывает. Указанные в инструкции уровни и пороги – вполне адекватные. Большое количество вариантов настроек подойдет практически для любых вариантов применения.
Из минусов – отсутствие инструкции у продавца. Отсутствие провода для таходатчика.

Регулятор скорости вращения вентилятора, схема подключения, фото

  • Опубликовано: 2015-03-22 16:00:2822.03.2015
  • простой регулятор скорости вращения вентилятора
    Основной проблемой вентиляторов, которые охлаждают ту или иную часть компьютера, является повышенный уровень шума. Основы электроники и имеющиеся материалы помогут нам решить эту проблему своими силами. В этой статье предоставлена схема подключения для регулировки оборотов вентилятора и фотографии как выглядит самодельный регулятор скорости вращения.

    Нужно отметить, что количество оборотов в первую очередь зависит от уровня подаваемого на него напряжения. Уменьшая уровень подаваемого напряжения, уменьшается как шум, так и число оборотов.

    Схема подключения:

    схема регулятора скорости вращения вентилятора 12 Вольт для компьютера 220 ВВот какие детали нам пригодятся: один транзистор и два резистора.

    Что касается транзистора, то берите КТ815 или КТ817, также можно использовать мощнее КТ819.

    Выбор транзистора зависит от мощности вентилятора. В основном используются простые вентиляторы постоянного тока с напряжением 12 Вольт.

    Резисторы нужно брать с такими параметрами: первый постоянный (1кОм), а второй переменный (от 1кОм до 5кОм) для регулировки скорости оборотов вентилятора.

    Имея входное напряжение (12 Вольт), выходное напряжение можно регулировать, вращая движковую часть резистора R2. Как правило, при напряжении 5 Вольт или ниже, вентилятор перестает шуметь.

    электронный регулятор скорости вращения вентилятора, фото подключение регулятора скорости вентилятора 

    При использовании регулятора с мощным вентилятором советую установить транзистор на небольшой теплоотвод.

     

    Похожие записи:

     

    Вот и все, теперь вы можете собрать регулятор скорости вентилятора своими руками, без шумной вам работы.

    С уважением, Эдгар.

    виды, принцип работы, как собрать самому

    Вентилятор является одним из малозаметных, но чрезвычайно важных приборов, помогающих создавать благоприятные условия для работы, отдыха и просто приятного проведения времени.

    Без него не смогут функционировать компьютеры, холодильники, кондиционеры и другая техника. Для максимально эффективной работы различных устройств используют регулятор скорости вращения вентилятора.

    Из нашего материала вы узнаете о том, какие бывают регуляторы, особенностях их работы. Также мы расскажем, как своими руками собрать прибор и что для этого потребуется.

    Содержание статьи:

    Виды и особенности устройства

    Существует множество , они задействованы в работе систем климат-контроля, компьютеров, ноутбуков, холодильников, многой другой офисной и бытовой техники.

    Чтобы контролировать скорость вращения его лопастей, часто применяется небольшой элемент – регулятор. Именно он позволяет продлить срок использования оборудования, а также, значительно снизить уровень шума в помещении.

    Галерея изображений

    Фото из

    Регулятор для однофазного вентилятора

    Сфера использования регулирующих устройст

    Ручное управление применяемых в быту приборов

    Схема подключения устройств к сети

    Синусоидальная электронная модель

    Регулятор скорости для тепловентиляторов

    Обслуживание нескольких агрегатов

    Особенности установки регуляторов скорости

    Назначение прибора для управления скоростью

    Когда кондиционер или вентилятор постоянно работает в режиме максимальной мощности, предусмотренной производителем, это неблагоприятно сказывается на сроке эксплуатации. Отдельные детали просто не могут выдержать такой ритм и быстро ломаются.

    Поэтому часто можно встретить рекомендации делать запас по мощности при выборе различного рода оборудования, чтобы оно не работало на пределе.

    6-канальный регулятор6-канальный регулятор

    Для замедления скорости вращения вентилятора применяют регулятор. Причем, есть модели, обслуживающие как одно, так и несколько каналов одновременно. Например, 6-канальный

    Также часто в холодильных установках, компьютерах и другой технике определенные элементы перегреваются в процессе работы. Чтобы они не расплавились, производитель предусмотрел их охлаждение за счет работающих вентиляторов.

    Но не все выполняемые задачи требуют максимальной скорости движения вентилятора/кулера. При офисной работе компьютера или поддержании постоянной температуры в холодильной установке нагрузка значительно меньше, чем при выполнении сложных математических вычислений или заморозке соответственно. А вентилятор, не имеющий регулятора, будет вращаться с одинаковой скоростью.

    Простая модель регулятора вентилятораПростая модель регулятора вентилятора

    Производители предлагают различные модели регуляторов, которые можно установить своими руками, используя рекомендации из инструкции

    Скопление большого количества мощной техники, функционирующей в одном помещении, способно создавать шум на уровне 50 децибел и более за счет одновременно работающих вентиляторов на максимальных оборотах.

    В такой атмосфере человеку сложно работать, он быстро утомляется. Поэтому целесообразно использовать приборы, способные снизить уровень шума вентилятора не только в производственных цехах, но и в офисных помещениях.

    Помимо перегрева отдельных деталей и снижения уровня шума регуляторы позволяют рационально использовать технику, уменьшая и увеличивая при необходимости скорость вращения лопастей оборудования. Например, в системах климат-контроля, используемого во многих общественных местах и производственных помещениях.

    Одной из важных деталей умных помещения являются регуляторы оборотов. Их работу обеспечивают показатели датчиков температуры, влажности, давления. Вентиляторы, используемые для перемешивания воздуха в помещении спортзала, производственного цеха или офисного кабинета, помогают экономить средства, затрачиваемые на отопление.

    Трансформаторный регулятор оборотовТрансформаторный регулятор оборотов

    В мощных системах вентилирования используются трансформаторные регуляторы оборотов. Их основной недостаток – высокая стоимость

    Это происходит за счет равномерного распределения нагретого воздуха, циркулирующего в помещении. Вентиляторы нагнетают верхние теплые слои вниз, перемешивая их с более холодными нижними. Ведь для комфорта человека важно, чтобы в нижней части комнаты, а не под потолком, было тепло. Регуляторы в таких системах следят за скоростью вращения, замедляя и ускоряя скорость движения лопастей.

    Основные разновидности регуляторов

    Контроллеры оборотов вентилятора востребованы. Рынок изобилует различными предложениями и рядовому пользователю, не знакомому с особенностями устройств, легко потеряться среди различных предложений.

    Выбор регулятора по мощностиВыбор регулятора по мощности

    Выбирать регулятор следует с учетом мощности оборудования, к которому его предстоит присоединять

    Регуляторы отличаются по принципу действия.

    Выделяют такие типы устройств:

    • тиристорные;
    • симисторные;
    • частотные;
    • трансформаторные.

    Первый тип приборов применяется для корректировки оборотов однофазных приборов, имеющих защиту от перегрева. Изменение скорости происходит за счет влияния регулятора на мощность подаваемого напряжения.

    Второй тип является разновидностью тиристорных устройств. Регулятор может одновременно управлять приборами постоянного и переменного тока. Характеризуется возможностью плавного понижения/повышения скорости оборотов при напряжении вентилятора до 220 В.

    5-канальный регулятор5-канальный регулятор

    Для управления скоростью движения 2-х и более вентиляторов можно воспользоваться 5-канальным регулятором

    Третий тип устройств изменяет частоту подаваемого напряжения. Основная задача – получить питающее напряжение в пределах 0-480 В. Контроллеры применяются для трехфазного оборудования в системах вентилирования помещений и в мощных кондиционерах.

    Трансформаторные контроллеры могут работать с одно- и трехфазным током. Они изменяют выходное напряжение, регулируя работу вентилятора и защищая прибор от перегрева. Могут использоваться в автоматическом режиме для регулировки оборотов нескольких мощных вентиляторов, учитывая показатели датчиков давления, температуры, влажности и прочие.

    Трансформаторный регуляторТрансформаторный регулятор

    Трансформаторные регуляторы надежные. Они способны работать в сложных системах, регулируя обороты вентилятора без постоянного вмешательства пользователя

    Чаще всего в быту применяются симисторные регуляторы. Их относят к типу XGE. Можно обнаружить много предложений от разных производителей – они компактные и надежные. Причем диапазон цен также будет весьма широк.

    Трансформаторные же устройства довольно дорогие – в зависимости от дополнительных возможностей они могут стоить 700 долларов и более. Они относятся к регуляторам типа RGE и способны регулировать обороты очень мощных вентиляторов, используемых в промышленности.

    Особенности использования приборов

    Регуляторы оборотов вентилятора используются в промышленном оборудовании, в офисных помещениях, спортзалах, кафе, других местах общественного пользования. Также часто можно встретить такие контролеры в системах климат-контроля для домашнего использования.

    Регулятор достаточно подключить к вентиляторуРегулятор достаточно подключить к вентилятору

    Чтобы воспользоваться прибором изменения скорости, достаточно его просто подключить к вентилятору

    Системы вентилирования, используемые в фитнес-центрах, а также, в офисных помещениях, чаще всего содержат регулятор скорости вращения. Причем это не простой дешевый вариант, а дорогостоящее трансформаторное устройство, способное регулировать скорость вращения мощных приборов.

    Галерея изображений

    Фото из

    Регулятор скорости для бытовых вентиляторов

    Плюсы универсальной конструкции

    Возможность установки в сложных схемах

    Особенности подбора регулятора скорости

    В зависимости от конструкционных особенностей контроллеры бывают:

    • механического управления;
    • автоматического.

    Автотрансформаторные регуляторы чаще всего применяются в сложных системах, где командой к действию служат показатели, полученные от датчика температуры, давления, движения, влажности или фотодатчика. Замедляя скорость вращения, устройства позволяют уменьшить потребление энергии.

    егуляторы с механическим управлениемегуляторы с механическим управлением

    Регуляторы с механическим управлением подключаются согласно инструкции и схеме. Ими можно заменить привычный выключатель, вмонтировав контроллер в стену

    Механическое управление контроллерами осуществляется вручную – прибор содержит колесико, позволяющее плавно или ступенчато менять скорость вращения. Это часто можно встретить в симисторных моделях.

    Среди регуляторов, использующихся для оптимизации работы промышленного и бытового оборудования, можно отметить такие устройства, как Vents, СеВеР, Vortice, ЭнерджиСейвер, Delta t°, Telenordik и другие.

    Наиболее распространенный вариант применения регулирующего оборудования в бытовых условиях – компьютер и ноутбук. Именно здесь чаще всего используется регулятор, контролирующий и изменяющий обороты кулера. За счет этого устройства техника создает значительно меньше шума во время работы.

    Регуляторы оборотов для кулера Регуляторы оборотов для кулера

    Для компьютеров можно подобрать самый подходящий вариант исходя из личных предпочтений – предложений на рынке огромное количество

    Контроллеры для кулера бывают как простые, так и с дополнительными возможностями. Это могут быть модели с подсветкой, с датчиком температуры, с сигналом оповещения, с аварийным отключением и др.

    По внешнему виду выделяют регуляторы с дисплеем и без. Первый вариант более дорогостоящий, а второй – дешевле. Это устройство часто называют реобас.

    Производители предлагают модели, контролирующие работу одного или нескольких вентиляторов. Хорошими отзывами пользуются регуляторы скорости кулеров таких компаний, как Scythe, NZXT, Reeven, AeroCool, Aqua Computer, Strike-X Advance Black, Akasa Fan Controller, Cooler Master, Innovatek, Gelid, Lian Li и др.

    Регулятор для кулераРегулятор для кулера

    Регулятор для кулера, не имеющий дисплея, стоит значительно дешевле. Но дополнительных функций у него нет

    Использование контроллера в работе компьютера существенно снижает уровень шума, что положительно влияет на самочувствие и настроение пользователя – ничего не гудит и не ревет. Также, что немало важно, помогает избежать перегревания самой техники, продлевая этим ее срок службы.

    Правила подключения контроллера

    Чтобы подключить регулятор оборотов вентилятора, можно воспользоваться услугами специалистов или попытаться справиться своими силами. Принципиальных особенностей в подключении нет – вполне реально справиться с такой задачей своими силами.

    Инструкция по использованию регулятора скорости вентилятораИнструкция по использованию регулятора скорости вентилятора

    Все добросовестные производители обязательно прилагают инструкцию по использованию и монтажу своей продукции

    В зависимости от конструкционных особенностей и типа обслуживаемого оборудования контролеры могут устанавливаться:

    • на стену, как накладная розетка;
    • внутрь стены;
    • внутрь корпуса оборудования;
    • в специальный шкаф, управляющий умными устройствами дома. Это, как правило, клеммная колодка;
    • подсоединяться к компьютеру.

    Чтобы собственноручно подключить регулятор, предстоит сначала внимательно ознакомиться с инструкцией, предлагаемой производителем. Такой документ обычно идет в комплекте с прибором и содержит полезные рекомендации как по подключению, так по использованию и обслуживанию.

    Настенные и внутристенные модели предстоит крепить шурупами и дюбелями к стене. Комплектующие чаще всего поставляются производителем вместе с основным прибором. Также в инструкции к регулятору можно увидеть схему его подключения. Это значительно облегчит дальнейшие работы по правильной его установке.

    Схемы по подключениюСхемы по подключению

    Схемы по подключению регуляторов у различных производителей могут отличаться. Поэтому следует внимательно изучить рекомендации перед монтажом

    Регулятор скорости подсоединяется к кабелю, питающему вентилятор, согласно схеме производителя. Основная цель – разрезать провод фазы, ноля и земли и подсоединить провода к входному и выходному клеммникам, соблюдая рекомендации. В случае, когда вентилятор имеет свой отдельный выключатель, его предстоит заменить на регулятор, демонтировав первый по ненадобности.

    Не стоит забывать, что должно соответствовать максимальному току напряжения подключаемого прибора.

    Схема, прилагаемая производителемСхема, прилагаемая производителем

    Важно отыскать на подключаемом приборе входные и выходные отверстия для подведения питающего кабеля соответствующего сечения. В этом поможет схема, прилагаемая производителем

    Если предстоит подключать контроллер к ПК, то сначала предстоит узнать, какая предельно допустимая температура отдельных составляющих техники. В противном случае можно безвозвратно потерять компьютер, у которого перегреются и сгорят важные детали – процессор, материнская плата, графическая карта и прочие.

    Модель выбранного реобаса также имеет инструкцию и рекомендации по подключению от изготовителя. Важно придерживаться схем, приведенных на ее страницах при самостоятельной установке прибора.

    Многоканальный реобасМногоканальный реобас

    Если есть потребность подключать более 1-го вентилятора, то можно купить многоканальный реобас

    Бывают встроенные в корпус регуляторы и устройства, которые покупаются отдельно. Чтобы их подключить правильно, следует придерживаться инструкций.

    Например, встроенный контроллер имеет кнопки включения/выключения снаружи системного блока. Провода, идущие от регулятора, соединяются с проводами кулера. В зависимости от модели реобас может контролировать обороты 2, 4 и более вентиляторов параллельно.

    Можно изготовить регуляторМожно изготовить регулятор

    Для вентиляторов компьютера и других, используемых в домашних условиях, можно собственноручно изготовить регулятор

    Отдельный регулятор для кулера устанавливается в 3,5 или 5,25-дюймовые отсек. Его провода также подключаются к кулерам, а дополнительные датчики, если они идут в комплекте, присоединяются к соответствующим компонентам системного блока, за состоянием которого им предстоит следить.

    Сборка прибора своими руками

    Регулятор оборотов вентилятора можно собрать своими силами. Для этого понадобятся простейшие составляющие, паяльник и немного свободного времени.

    Контроллер своими руками Контроллер своими руками

    Чтобы изготовить своими руками контроллер, можно использовать различные комплектующие, выбрав наиболее приемлемый для себя вариант

    Так, для изготовления простого контроллера предстоит взять:

    • резистор;
    • переменный резистор;
    • транзистор.

    Базу транзистора предстоит припаять к центральному контакту переменного резистора, а коллектор – к его крайнему выводу. К другому краю переменного резистора нужно припаять резистор сопротивлением 1 кОм. Второй вывод резистора следует припаять к эмиттеру транзистора.

    Схема изготовления регулятораСхема изготовления регулятора

    Схема изготовления регулятора, состоящего из 3-х элементов, наиболее простая и безопасная

    Теперь остается припаять провод входного напряжения к коллектору транзистора, который уже скреплен с крайним выводом переменного резистора, а «плюсовой» выход – к его эмиттеру.

    Для проверки самоделки в действии понадобится любой рабочий вентилятор. Чтобы оценить самодельный реобас, предстоит подсоединить провод, идущий от эмиттера, к проводу вентилятора со знаком «+». Провод выходного напряжения самоделки, идущий от коллектора, присоединяется к блоку питания.

    Проверка самодельного прибораПроверка самодельного прибора

    Окончив собирать самодельный прибор для регулировки оборотов, обязательно его нужно проверить в работе

    Провод со знаком «–» подсоединяется напрямую, минуя самодельный регулятор. Теперь остается проверить в действии спаянный прибор.

    Для уменьшения/увеличения скорости вращения лопастей кулера нужно крутить колесо переменного резистора и наблюдать изменение количества оборотов.

    Схема регулятора скорости вращения двух вентиляторовСхема регулятора скорости вращения двух вентиляторов

    При желании можно своими руками создать контроллер, управляющий сразу 2-мя вентиляторами

    Это самодельное устройство безопасно для использования, ведь провод со знаком «–» идет напрямую. Поэтому вентилятору не страшно, если в спаянном регуляторе вдруг что-то замкнет.

    Такой контролер можно использовать для регулировки оборотов кулера, и других.

    Выводы и полезное видео по теме

    Ролик об особенностях подключения и использования регулятора оборотов вентилятора от компании Vents:

    Подробное видео о типах регуляторов, принципах их работы и особенностях подключения:

    Видео инструкция с пояснениями каждого шага при выполнении работ по сборке контроллера оборотов кулера своими руками. Причем для выполнения этих действий не требуется быть специалистом – все достаточно просто:

    Видео информация о создании контроллера скорости вентилятора:

    Обзор электронного автотрансформаторного регулятора оборотов вентилятора:

    Ознакомившись с видами регуляторов оборотов вентилятора и правилами их подключения, можно подобрать наиболее оптимальный вариант, способный удовлетворить потребности пользователя. При желании можно доверить вопросы монтажа специалистам. Если же хочется испытать свои силы, то простой прибор несложно собрать самостоятельно.

    Остались вопросы по теме статьи, нашли недочеты или есть информация, которой вы хотите поделиться с нашими читателями? Пожалуйста, оставляйте комментарии внизу статьи.

    Понижаем шум и обороты кулера / Хабр

    Здравствуйте, сегодня я расскажу как просто понизить обороты и шум кулера.
    Обойдемся без дерева и флешек.


    Это мой первый пост, в последующих я расскажу о том как сделать видео наблюдение, систему жидкостного охлаждения, автоматизированное(программируемое) освещение и еще много чего вкусного, будем паять, сверлить и прошивать чипы, а пока начнем с самого простого, но тем не менее, весьма эффективного приема: монтаж переменного резистора.

    Шум от кулера зависит от количества оборотов, формы лопастей, типа подшипников и прочего. Чем больше количество оборотов, тем эффективнее охлаждение, и тем больше шума. Не всегда и не везде нужны 1600 об. и если мы их понизим, то температура поднимется на несколько градусов, что не критично, а шум может исчезнуть вовсе!

    На современных материнских платах интегрировано управление оборотами кулеров, которые питаются от нее. В БИОСе можно выставить «разумный» режем, который будет менять скорость кулеров в зависимости от температуры охлаждаемого чипсета. Но на старых и бюджетных платах такой опции нет и как быть с другими кулерами, например, кулером БП или корпусным? Для этого можно монтировать переменный резистор в цепь питания кулера, такие системы продают, но они стоят невероятных денег, если учесть, что себестоимость такой системы около 1,5 — 2 долларов! Такая система продается за $40:

    Вы же можете сделать ее сами, используя в качестве панельки — заглушку от вашего системного блока(заглушка в корзину, где DVD/CD приводы вставляются), а о прочем Вы узнаете из этого поста.

    Далее я буду описывать процесс на примере работы с БП, но он идентичен во всех случаях.

    Т.к. я отломал 1 лопасть от кулера на БП, я купил новый на шарикоподшипниках, он значительно тише обычных:

    Теперь нужно найти провод с питанием, в разрыв которого монтируем резистор. У этого кулера 3 провода: черный(GND), красный(+12V) и желтый(тахометрический контакт).

    Режем красный, зачищаем и лудим.

    Теперь нам понадобится переменный резистор с сопротивлением в 100 — 300 Ом и мощностью в 2-5 Вт. Мой кулер рассчитан на 0.18 А и 1,7 Вт. Если резистор будет рассчитан на меньшую мощность, чем мощность в цепи, то он будет греться и в конце концов — сгорит. Как подсказывает, exdeniz, для наших целей отлично подойдет ППБ-3А 3Вт 220 Ом. У такого как у меня переменного резистора, 3 контакта. Не буду вдаваться в подробности, просто припаяйте 1 провод к среднему контакту и одному крайнему, а второй к оставшемуся крайнему(Подробности можете узнать при помощи мультиметра\омметра. Спасибо guessss_who за комментарий).

    Теперь монтируем вентилятор в корпус и находим подходящее местечко для крепления резистора.

    Я решил его вставить вот так:

    У резистора есть гаечка для крепления к плоскости. Обратите внимание, что корпус металлический и может замкнуть контакты резистора и он не будет работать, так что вырежьте из пластика или картона прокладку-изолятор. У меня контакты не замыкаются, к счастью, так что на фото нет прокладок.

    Теперь самое главное — полевое испытание.

    Я включил систему, вскрыл корпус БП и пирометром нашел самый горячий участок(это элемент, похоже транзистор, который охлаждается радиатором). Затем закрыл, выкрутил резистор на максимальные обороты и подождал 20-30 минут… Элемент нагрелся до 26.3 °C.

    Затем выставил резистор на половину, шума уже не слышно, снова подождал 30 минут… Элемент нагрелся до 26,7 °C.

    Опять понижаю обороты до минимума(~100 Ом), жду 30 минут, не слышу вообще никакого шума от кулера… Элемент нагрелся до 28,1 °C.

    Я не знаю, что это за элемент и какая у него рабочая температура, но думаю, что он выдержит еще градусов 5-10. Но если учитывать, что на «половине» резистора шума уже не было, то больше нам ничего и не нужно! =)

    Теперь Вы можете сделать такую панель, как я привел в начале статьи и это Вам обойдется в копейки.

    Спасибо.

    UPD: Спасибо господам из комментариев, за напоминание о ваттах.
    UPD: Если Вас заинтересовала тема и Вы знаете, что такое паяльник, то Вы можете запросто собрать аналоговый реобас. Как подсказывает нам fleshy, в статье Аналоговый реобас, описывается это чудное устройство. Даже если Вы никогда не паяли платы, Вы можете собрать реобас. В статье много текста, который и я не понимаю, но главное: Состав, Схема, Мотаж(в этом параграфе есть ссылки на все необходимые статьи по пайке).

    Как сделать простой регулятор оборотов, скорости вращения для компьютерного вентилятора, кулера, маломощного электродвигателя постоянного тока.

     

     

     

     

    как можно самому сделать схему для регулировки скорости вращения кулера от компаКомпьютерные вентиляторы могут быть полезны не только внутри компьютера. Допустим я использую такой вентилятор (размерами 120 на 120 мм, 12 В и 350 мА) для быстрой разморозки своего мини холодильника, а также его вполне хватает для проветривания небольшого помещения, после того как надымил паяльником. Хотя когда такие вентиляторы питаешь от их стандартного напряжения 12 вольт они издают относительно большой шум. Да и не всегда нужны их максимальные обороты вращения. Порой данного кулера хватает и при пониженной мощности. Но чтобы это сделать нам понадобится весьма простая схема (что приведена ниже на рисунке), которая позволит регулировать частоту вращения, его скорость, обороты.

     

    Как сделать простой регулятор оборотов, скорости вращения для компьютерного вентилятора

     

    Для бывалых электронщиков и радиотехников эта простая схема ясна и понятна, так что буду пояснять ее работы, принцип действия для новичков. Одно дело когда собрал схему, включил, и пусть себе работает. Другое же дело, когда знаешь как она функционирует, и при желании можно ввести свои какие-нибудь изменения и дополнения к имеющейся схеме.

     

    Итак, сама схема регулятора оборотов компьютерного вентилятора состоит всего из трех деталей, а именно это биполярный транзистор типа КТ817 с любым буквенным индексом, переменного резистора на 1 килоом и постоянного резистора, который желательно подобрать наиболее подходящий. Транзистор включен по схеме с общим коллектором (называемым также эмиттерным повторителем), а это значит что он усиливает только ток, при том усиления по напряжению не происходит.

     

     

     

     

    Между коллектором и эмиттером стоит делитель напряжения, состоящий из двух резисторов (переменного и постоянного). Как известно, биполярный транзистор имеет три вывода, это эмиттер, коллектор и база. Переход между базой и эмиттером считается управляющим, а переход между коллектором и эмиттером считается силовым. Так вот, в изначальном состоянии (когда никакого напряжения к схеме не приложено) переход коллектор-эмиттер закрыт, он через себя ток не пропускает, его проводимость в этом состоянии имеет бесконечно большое значение (проще говоря имеет бесконечно большое сопротивление). Но вот когда мы на управляющий переход подадим напряжение более 0,6 вольт, этот силовой переход (коллектор-эмиттер) постепенно начинает открываться. И чем больше мы пропустим тока через управляющий переход, тем больше тока сможет пройти через силовой переход.

     

    переменный резистор в схеме регулятора скорости вращения кулераИменно от переменного резистора R1 зависит будет ли силовой переход закрыт (при этом вентилятор вращаться не будет) или же будет он полностью открыт (при этом кулер будет иметь максимальные обороты своего вращения). Естественно, чем больше мы выкрутим ручку переменного резистора, тем сильнее или медленнее будет вращаться наш компьютерный вентилятор (в зависимости в какую сторону мы будем вращать ручку). Но зачем нужен еще одни постоянные резистор R2 ? Дело в том что у переменного резистора имеется некоторая «мертвая зона», находясь в которой вращение ручки не на что не будет влиять (кулер будет стоять на месте). Это происходит из-за того, что транзистор начинает открываться только при напряжении более 0,6 вольт. До этого напряжения с транзистором ничего не происходит.

     

    резистор для мертвой зоны в схеме регулятора оборотов компьютерного вентилятораИ вот чтобы напряжение от 0 до 0,6 вольт убрать с переменного резистора мы и вводим в схему постоянный резистор. Именно он возьмет на себя это самое низкое напряжение «мертвой зоны». В итоге переменный резистор будет работать от максимальных оборотов вентилятора до минимальных. Постоянный резистор R2 нужно подбирать. Лучше вначале вместо него поставить подстроечный резистор с сопротивлением около 470 ом. После того как мы подберем нужное сопротивление «мертвой зоны» можно будет ставить и постоянный, до этого подобранным сопротивлением. Оно будет примерно около 100-300 ом.

     

    Транзистор кт817 в схеме регулятора оборотов кулера от компаЧто касается самого транзистора. В этой схеме я поставил КТ817. У него максимальный ток, который может пройти через коллекторно-эмиттерный переход равен до 3 ампер. Рассеиваемая мощность без радиатора до 1 ватта, а с наличием охлаждающего радиатора эта мощность уже увеличивается аж до 25 ватт. Можно поставить любой другой биполярный транзистор с n-p-n проводимостью, у которого ток коллектор-эмиттер будет больше того, что будет проходит при использовании конкретного вентилятора. Ну, и рассеиваемая мощность должна быть не меньше той, что будет выделяться при конкретном вентиляторе.

     

    Ну, а сама схема работает достаточно просто. Когда мы крутим ручку переменного резистора в сторону уменьшения оборотов вентилятора, то лишнее напряжение отводится на эту транзисторную схему. Проще говоря, лишнюю электрическую мощность на себя забирает эта схема, превращая ее в тепло, которое рассеивается на транзисторе и радиаторе. К сожалению, это является недостатком данной схемы. Ведь при этом не о какой экономии электроэнергии говорить не приходится. Если это для вас важно, то тогда нужно использовать схемы понижающих DC-DC преобразователей, у который с экономией дело обстоит гораздо лучше.

     

    Видео по этой теме:

     

     

    ps smail

    P.S. Несмотря на простоту этой схемы она действительно способна вполне линейно регулировать частоту вращения компьютерного вентилятора. Хотя к ней можно подключать не только кулер от компа, с маломощными электродвигателями постоянного тока, рассчитанных на напряжение 12 вольт, она также вполне способна работать. Хотя и напряжение 12 вольт не является ограничением, схема будет работать и при больших напряжениях.

    Вентилятор с автоматическим контролем температуры с использованием Arduino

    В этом проекте на основе Arduino мы собираемся управлять скоростью вращения вентилятора постоянного тока в соответствии с температурой в помещении и отображать эти изменения параметров на ЖК-дисплее 16x2. Это достигается за счет обмена данными между Arduino, ЖК-дисплеем, модулем датчика DHT11 и вентилятором постоянного тока, который управляется с помощью ШИМ. ШИМ - это метод, с помощью которого мы можем контролировать напряжение.

    Компоненты цепи

    1. Arduino UNO

    2. Датчик DHT11

    3. Вентилятор постоянного тока

    4. 2n2222 транзистор

    5. Аккумулятор 9 В

    6. 16x2 ЖК-дисплей

    7. Резистор 1K

    8. Соединительные провода

    Этот проект состоит из трех разделов.Датчик температуры определяется с помощью датчика влажности и температуры, а именно DHT11 . Вторая секция считывает выходной сигнал модуля датчика dht11 и извлекает значение температуры в подходящее число по шкале Цельсия с и регулирует скорость вращения вентилятора с помощью ШИМ . И последняя часть системы показывает влажность и температуру на ЖК-дисплее и драйвере вентилятора.

    Здесь, в этом проекте, мы использовали модуль датчика, а именно DHT11 , который уже обсуждался в нашем предыдущем проекте, а именно «Измерение влажности и температуры с помощью Arduino».Здесь мы использовали только этот датчик DHT для измерения температуры, а затем запрограммировали нашу ардуино в соответствии с требованиями.

    Работа с этим проектом очень проста. Мы создали PWM на выводе pwm Arduino и применили его к базовому выводу транзистора. Затем транзистор создает напряжение в соответствии с входом ШИМ.

    Значения скорости вентилятора и ШИМ, а также значения рабочих циклов показаны в таблице

    Температура

    Рабочий цикл

    Значение ШИМ

    Скорость вентилятора

    Менее 26

    0%

    0

    выкл.

    26

    20%

    51

    20%

    27

    40%

    102

    40%

    28

    60%

    153

    60%

    29

    80%

    204

    80%

    Большой 29

    100%

    255

    100%

    Что такое ШИМ? PWM - это метод, с помощью которого мы можем контролировать напряжение или мощность.Чтобы понять это проще, если вы прикладываете 5 вольт для привода двигателя, тогда двигатель будет двигаться с некоторой скоростью, теперь, если мы уменьшим приложенное напряжение на 2, значит, мы приложим 3 вольта к двигателю, скорость двигателя также снизится. Эта концепция используется в проекте для управления напряжением с помощью ШИМ. (Чтобы понять больше о ШИМ, проверьте эту схему: Светодиодный диммер на 1 Вт)

    Основная игра ШИМ - это цифровой импульс с некоторым рабочим циклом, и этот рабочий цикл отвечает за управление скоростью или напряжением.

    Предположим, у нас есть пул с рабочим циклом 50%, что означает, что он будет давать половину подаваемого нами напряжения.

    Формула для рабочего цикла приведена ниже:

    Рабочий цикл = Тонна / т

    Где T = общее время или Ton + Toff

    А Тон = Время включения импульса (означает 1)

    And Toff = Время выключения импульса (означает 0)

    Описание цепи

    Подключения этой схемы вентилятора с регулируемой температурой очень просты, здесь жидкокристаллический дисплей используется для отображения температуры и состояния скорости вентилятора.ЖК-дисплей напрямую подключен к Arduino в 4-битном режиме (см. Этот учебник для получения дополнительной информации: Интерфейс ЖК-дисплея с Arduino Uno). Контакты ЖК-дисплея, а именно RS, EN, D4, D5, D6 и D7, подключены к цифровым контактам Arduino 7, 6, 5, 4, 3 и 2. А модуль датчика DHT11 также подключен к цифровому контакту 12 Arduino. Цифровой вывод 9 используется для управления скоростью вентилятора через транзистор.

    Temperature Controlled Fan Circuit Diagram

    Код Описание

    Сначала мы включаем библиотеку для lcd и dht сенсора, а затем определяем контакт для lcd, dht сенсора и вентилятора.

    Затем инициализируйте все в цикле настройки. И в цикле, используя функцию dht, считывает датчик DHT, а затем, используя некоторые функции dht, мы извлекаем температуру и отображаем ее на ЖК-дисплее.

    После этого мы сравниваем температуру с предварительно заданной цифрой температуры, а затем генерируем ШИМ в соответствии со значением температуры.

    Для генерации ШИМ мы использовали функцию «analogWrite (вывод, значение ШИМ)» в 8 бит. Означает, если значение ШИМ эквивалентно аналоговому значению.Поэтому, если нам нужно создать 20% рабочего цикла, мы передаем значение 255/5 как PWM в функцию «analogWrite».

    .

    8 шт. / Лот кабели с резистором вентилятора Скорость вентилятора охлаждения ПК Уменьшите 4-контактный резистор питания между мужчинами и женщинами Переходник кабеля преобразователя продвижение | скорость охлаждающего вентилятора | скорость вентилятора вентилятор охлаждения ПК


    ebay_2_03_1

    Характеристики:
    Название продукта Кабель резистора вентилятора
    Тип штекера 4Pin от мужчины к женщине
    Сопротивление 47,3 Ом
    Основной материал Пластик
    Основной цвет белый, красный, черный
    Общая длина 12 см / 4,7 дюйма
    Вес нетто 40 г Пакет
    содержит 8 кабелей резистора вентилятора
    Описание:
    имеет 4-контактный разъем "папа-мама".Легкая установка. Длительный срок службы.
    Разработан с резистором на кабеле. Довольно практично и полезно.
    Используйте 4-контактный кабель для подключения блока питания к охлаждающему вентилятору, это снизит скорость вентилятора и значительно снизит уровень шума.

    ebay_2_03_2

    8 x кабелей резистора вентилятора

    ebay_2_03_3 1. ДОСТАВКА ПО ВСЕМУ МИРУ. (За исключением некоторых стран и APO / FPO)
    2. Заказы обрабатываются своевременно после подтверждения оплаты.
    3. Мы отправляем только по подтвержденным адресам заказа. Адрес вашего заказа ДОЛЖЕН СООТВЕТСТВОВАТЬ вашему адресу доставки.
    4. Представленные изображения не являются фактическим товаром и предназначены только для справки.
    5. ВРЕМЯ ПЕРЕХОДА ОБСЛУЖИВАНИЯ предоставляется перевозчиком и не включает выходные и праздничные дни. Время доставки может меняться, особенно во время курортного сезона.
    6. Если вы не получили заказ в течение 30 дней с момента оплаты, свяжитесь с нами. Мы отследим ваш заказ и свяжемся с вами в ближайшее время.Наша цель - удовлетворение клиентов!
    7. Срок поставки:
    639572196_089 639572194_249 639572193_115 ebay_2_03_4

    1. У вас есть 7 дней, чтобы связаться с нами и 30 дней, чтобы вернуть его с даты получения. Если товар находится в вашем распоряжении более 7 дней, он будет считаться использованным, и МЫ НЕ БУДЕМ ВЫПЛАТИТЬ ВОЗВРАТ ИЛИ ЗАМЕНУ. БЕЗ ИСКЛЮЧЕНИЙ!
    Стоимость доставки оплачивается как продавцом, так и покупателем пополам.
    2. Все возвращаемые товары ДОЛЖНЫ БЫТЬ в оригинальной упаковке, и вы ДОЛЖНЫ ПРЕДОСТАВИТЬ нам номер отслеживания доставки, конкретную причину возврата и идентификатор вашего заказа.
    3. Мы вернем ВАШУ ПОЛНУЮ СУММУ ВЫИГРЫШНОЙ ЗАЯВКИ после получения товара в его первоначальном состоянии и в упаковке со всеми компонентами и аксессуарами ПОСЛЕ того, как Покупатель и Продавец отменят транзакцию с aliexpress. ИЛИ вы можете выбрать замену.
    4. Мы будем нести всю стоимость доставки, если товар (ы) не соответствует рекламе.

    ebay_2_03_5

    1. 12 месяцев ограниченной гарантии производителя на дефектные изделия (за исключением предметов, поврежденных и / или неправильно использованных после получения).Гарантия на аксессуары составляет 3 месяца.
    2. Дефектные изделия ДОЛЖНЫ БЫТЬ сообщены и возвращены в течение гарантийного срока (и, если возможно, в оригинальной упаковке). Вы должны сообщить нам, в чем заключается дефект, и сообщить номер вашего заказа. МЫ НЕ РЕМОНТИРУЕМ И НЕ ЗАМЕНЯЕМ ИЗДЕЛИЯ
    СРОК ГАРАНТИИ.
    При заказе на aliexpress вы соглашаетесь со всеми вышеперечисленными правилами!

    ebay_2_03_6

    Мы поддерживаем высокие стандарты качества и стремимся к 100% удовлетворенности клиентов! Обратная связь очень важна.Мы просим вас немедленно связаться с нами, ПРЕЖДЕ чем оставить нейтральный или отрицательный отзыв, чтобы мы могли удовлетворить ваши потребности.
    Невозможно решить проблемы, если мы о них не знаем!

    .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *