Как определить мощность резистора по маркировке. Какие бывают виды маркировки мощности резисторов. Как расшифровать цветовую и цифровую маркировку мощности резисторов. На что влияет мощность резистора в схеме.
Виды маркировки мощности резисторов
Мощность является одной из важнейших характеристик резистора, определяющей его способность рассеивать тепло. Существует несколько способов обозначения мощности резисторов:
- Цветовая маркировка полосками на корпусе
- Цифро-буквенная маркировка на корпусе
- Определение по габаритным размерам
Рассмотрим подробнее каждый из этих видов маркировки мощности резисторов.
Цветовая маркировка мощности резисторов
Цветовая маркировка является наиболее распространенным способом обозначения характеристик резисторов, в том числе их мощности. Она представляет собой цветные полоски, нанесенные на корпус компонента.
Для определения мощности используется последняя полоска маркировки. Ее цвет соответствует следующим значениям мощности:
- Розовый — 0,125 Вт
- Синий — 0,25 Вт
- Красный — 0,5 Вт
- Коричневый — 1 Вт
- Зеленый — 2 Вт
Например, если последняя полоска синяя, то мощность резистора составляет 0,25 Вт.
Цифро-буквенная маркировка мощности резисторов
На некоторых типах резисторов мощность обозначается цифрами и буквами, нанесенными непосредственно на корпус. Обычно используется следующая кодировка:
- 0.125 — 1/8 Вт
- 0.25 — 1/4 Вт
- 0.5 — 1/2 Вт
- 1W — 1 Вт
- 2W — 2 Вт
Таким образом, надпись «1W» на резисторе означает мощность 1 Ватт.
Определение мощности резистора по размеру
Если на резисторе отсутствует явная маркировка мощности, ее можно приблизительно определить по габаритным размерам корпуса. Чем больше физический размер резистора, тем выше его мощность:
- Длина до 6 мм — 0,125 Вт
- 6-8 мм — 0,25 Вт
- 8-12 мм — 0,5 Вт
- 12-18 мм — 1 Вт
- 18-25 мм — 2 Вт
Однако данный метод дает лишь приблизительную оценку и не является точным.
Значение мощности резистора в электрической схеме
Мощность резистора определяет максимальное количество тепла, которое он способен рассеять без разрушения. При протекании электрического тока резистор нагревается, и если выделяемая мощность превысит допустимую, он может выйти из строя.
Поэтому при разработке схем необходимо правильно выбирать мощность резисторов с запасом. Обычно используют следующее правило:
- Для маломощных цепей — 0,125-0,25 Вт
- Для средней мощности — 0,5-1 Вт
- Для силовых цепей — 2 Вт и более
Превышение мощности ведет к перегреву и выходу резистора из строя, а недостаточная мощность может привести к нестабильной работе схемы.
Как рассчитать необходимую мощность резистора
Для расчета требуемой мощности резистора в схеме используется закон Джоуля-Ленца:
P = I^2 * R
где:
- P — мощность в ваттах
- I — ток через резистор в амперах
- R — сопротивление резистора в омах
Рассчитав теоретическую мощность, на практике выбирают резистор с запасом в 2-3 раза от расчетного значения. Это обеспечивает надежную работу и увеличивает срок службы компонента.
Маркировка мощности SMD-резисторов
Для чип-резисторов поверхностного монтажа (SMD) используется другая система обозначения мощности. Она определяется по габаритному размеру корпуса:
- 0402 — 0,063 Вт
- 0603 — 0,1 Вт
- 0805 — 0,125 Вт
- 1206 — 0,25 Вт
- 2010 — 0,5 Вт
- 2512 — 1 Вт
Здесь первые две цифры обозначают длину корпуса в сотых долях дюйма, вторые две — ширину. Например, типоразмер 0805 имеет длину 0,08 дюйма и ширину 0,05 дюйма.
Влияние температуры на мощность резистора
Максимальная мощность резистора указывается для нормальной температуры окружающей среды 25°C. При повышении температуры допустимая мощность снижается. Это необходимо учитывать при проектировании схем, работающих в условиях повышенных температур.
Обычно производители приводят графики зависимости допустимой мощности от температуры. В среднем при повышении температуры на каждые 10°C выше нормы допустимая мощность снижается на 10-15%.
Заключение
Правильное определение и выбор мощности резисторов играет важную роль в обеспечении надежной работы электронных устройств. Знание различных видов маркировки мощности позволяет быстро идентифицировать характеристики компонентов и подобрать оптимальные резисторы для конкретной схемы.
При разработке устройств рекомендуется всегда выбирать резисторы с запасом по мощности, учитывать температурные режимы работы и использовать компоненты проверенных производителей. Это обеспечит стабильное функционирование и долгий срок службы электронной аппаратуры.
Маркировка резисторов по цветам (номинальное сопротивление и мощность)
Если вы заглядывали в «чрево» аппаратуры, то пожалуй уже не раз видели сколько там радиодеталек. Особо опытные радиолюбители уже наверное знают название той или иной детали и даже о том, что на маркировку иногда полезно подсмотреть, чтобы приобрести или поставить аналогичную деталь, взамен испорченной. Ну что же, порой на радиодетали так и написано, что это за деталь и какой у нее номинал. А вот иногда маркировку, в том числе и цветовую, приходится расшифровывать, обращаясь к справочным материалам. Примерно такая же ситуация с резисторами (сопротивлениями), которые имеют цветовую маркировку, обозначающую номинальные характеристики радиодетали.
В данной статье как раз и приведена информация о буквенной и цветовой маркировке резисторов применяемых в радиоаппаратуре. Теперь авы без труда сможете определить какое сопротивление у резистора и на какую мощность он расчитан.
Маркировка современных резисторов (цветные полосы на корпусе)
На настоящий момент в связи с засильем импортной техники и с несостоятельностью нашей, пришли и западные стандарты. Так сегодня актуален стандарт EIA (по англ. Electronics Industries Alliance) — Альянс отраслей электронной промышленности, этот стандарт разработанный в США подразумевает цветовую маркировку сопротивлений. По данному стандарту резисторы маркируются цветными полосками. Каждая из полосок подразумевает определенный смысл. Маркировка полосок читается слева направо, начиная с полоски расположенной ближе к краю, как правило на одной из боковых гильз. Остальные полоски промаркированы непосредственно на теле резистора.
Первая полоска означает цифру от 0 до 9;
Вторая также цифра от 0 до 9;
Третья также цифра от 0 до 9;
Четвертая на 10 в какой степени надо умножить чтобы получился номинал резистора;
Пятая допуск, погрешность относительно номинала в процентах;
Шестая полоска чаще всего не маркируется. Она означает температурный коэффициент при котором способен работать резистор
Взгляните на поясняющую картинку ниже и вам сразу все станет понятно
Так используя данную информацию для определения сопротивления по маркировке на корпусе резистора, вы сможете без труда узнать его номинал и погрешность
Маркировка старых резисторов (символьное обозначение на корпусе)
В советское время (СССР) резисторы маркировались довольно просто. Фактически на корпусе можно было прочитать номинал резистора
Так например:
— если обозначение было R47, то сопротивление составляет 47 Ом;
— 47К, сопротивление 47 Ком;
— 4 М 7 или 4,7 М, составляет 4,7 Мом.
Маркировка резисторов в схемах в зависимости от их мощности в том числе
Также резисторы маркируются и в зависимости от мощности. Так как мощность резистора зависит напрямую от возможности рассеять тепло, то и корпус резистора будет напрямую зависеть от мощности. Ниже на фото приведены размеры резисторов в зависимости от их мощности. Кроме того, здесь приведено и обозначение резисторов в схемах, с линиями.
В зависимости от обозначения применяемого резистора, необходимо применять строго соотвествующее по мощности сопротивление или большего значения. Иначе оно просто перегорит, в первые минуты работы устройства, в котором было заменено.
Как определить мощность резистора. | Для дома, для семьи
Здравствуйте, уважаемые читатели сайта sesaga.ru. Резистор является самым используемым радиокомпонентом, без которого не обходится ни одна электронная схема. Основными параметрами резистора являются электрическое сопротивление, мощность и допуск.
Если с сопротивлением и допуском все понятно, то определение мощности малогабаритных резисторов вызывает некоторые трудности, особенно на первых порах занятием радиолюбительством. В статье о цветовой и цифровой маркировке резисторов я уже рассказывал о мощности резисторов, но судя по Вашим комментариям, этот параметр был раскрыт не полностью. В этой статье я постараюсь устранить этот пробел.
Итак. Резисторы бывают разного устройства и конструкции, но в большинстве случаев они представляют собой небольшой цилиндр из фарфора или какого-нибудь другого изолятора, на который нанесен токопроводящий слой, обладающий определенным электрическим сопротивлением. В других конструкция на цилиндр наматывается требуемое количество витков тонкой проволоки из сплавов, обладающих большим сопротивлением.
Резисторы применяют согласно мощности, на которую он рассчитан, и которую может выдержать без риска быть испорченным при прохождении через него электрического тока. Поэтому на схемах внутри прямоугольника прописывают условные обозначения, указывающие мощность резистора в ваттах (Вт): двойной косой чертой обозначают резистор мощностью 0,125 Вт; прямой чертой, расположенной вдоль значка резистора, обозначают мощность 0,5 Вт; римской цифрой обозначается мощность от 1 Вт и выше.
Как правило, резисторы разной мощности отличаются размерами и чем больше мощность резистора, тем размер его больше. На крупногабаритных резисторах величина мощности указывается на корпусе в виде цифрового значения, а вот малогабаритные резисторы приходится определять на «глаз».
Но все же определить мощность того или иного резистора не так уж и трудно, так как габаритные размеры соответствуют стандарту, которого стараются придерживаться все производители электронных компонентов. В Советском Союзе даже выпускались таблицы для определения мощности резисторов по их размерам: диаметру и длине.
На отечественных резисторах типа МЛТ и некоторых зарубежных мощностью 1Вт и выше величина мощности указывается на корпусе цифровым значением. На остальных импортных резисторах рядом с цифрой дополнительно ставят латинскую букву W.
Правда, встречаются некоторые зарубежные экземпляры, где после цифрового значения может стоять другая буква. Как правило, подобную маркировку ставит производитель, который сам изготавливает некоторые компоненты для своей аппаратуры, не придерживаясь стандартов.
Однако с размерами есть небольшой нюанс, который надо знать: габариты отечественных и импортных резисторов одинаковой мощности немного отличаются друг от друга — отечественные резисторы чуть больше своих зарубежных собратьев.
Это объясняется тем, что отечественные радиокомпоненты выпускаются с некоторым запасом по мощности, тогда как у зарубежных аналогов такого запаса нет. Поэтому при замене отечественных резисторов зарубежными, зарубежный аналог следует брать на порядок мощнее.
Есть еще один тип резисторов, выпускаемые как зарубежными, так и отечественными производителями, габариты которых не подходят под стандартные размеры. Как правило, это низкоомные высокоточные резисторы, имеющие допуск по номинальному сопротивлению от 1% и ниже. Такие резисторы применяются в измерительных приборах, медицинском, военном или высокоточном оборудовании.
Если с крупногабаритными резисторами все понятно, то малогабаритные резисторы мощностью 0,5 Вт и ниже приходится различать только исходя из их размеров. Но и в этом случае сложного ничего нет, так как на первое время достаточно в качестве образца иметь по одному резистору с мощностями от 0,125Вт до 0,5Вт, чтобы сравнивать их с искомыми резисторами.
А в дальнейшем, когда придет опыт, Вы сможете без труда определять мощность резисторов по их габаритам.
Ну и в довершении статьи картинка с резисторами отечественного и зарубежного производства в порядке возрастания их мощности. А чтобы легче было ориентироваться в габаритах, на каждой картинке предоставлена спичка, относительно которой можно судить о размерах того или иного резистора.
И еще надо сказать о замене: резистор мощностью 0,125Вт можно заменить резистором мощностью 0,125Вт и выше. Лишь бы позволял размер платы. А вот резистор мощностью 0,5Вт нельзя заменить резисторами 0,125Вт и 0,25Вт, так как их мощность меньше и в процессе работы они могут перегреться и выйти из строя.
И по традиции видеоролик, где показывается еще один вариант определения мощности резисторов.
Удачи!
определение мощности и сопротивления по цветовой маркировке
Наиболее популярной деталью для электронных схем является резистор – пассивный элемент, основным параметром которого является сопротивление протекающему току. Единица измерения – Ом.
Промаркированные резисторы
Резисторы могут быть фиксированными и регулируемыми (потенциометры). В эту группу включаются также фоторезисторы, варисторы и термисторы, в которых сопротивление определяется освещением, напряжением или температурой.
Фиксированные резисторы изготавливаются по разным технологиям. Наиболее популярные:
- слоистые;
- объемные;
- проволочные.
Определение сопротивления
Производители дают только самые важные параметры в определении резистивных элементов:
- номинальное сопротивление;
- допуск, выраженный в процентах, соответствующих классу точности;
- номинальная мощность.
Как определить сопротивление резистора, зависит от системы кодирования. В случае небольших элементов, где нет места, используется кодовая маркировка резисторов: символы из чисел и букв или цветные полосы. Отметки цветом применяются еще потому, что цифры легко стираются, такую надпись часто труднее разобрать.
Маркировка из букв и цифр
Буквенное кодирование предусматривает два стандарта:
- Обозначение резисторов в системе IEK. Для множителя используют букву: R = 1, K = 1000, M = 1000000;
- В стандарте MIL третья цифра обозначает коэффициент, на который умножаются два первых числа.
Примеры, как узнать сопротивление резистора в разных системах:
- R47 – IEK, R47 –MIL, номинал резистора – 0,47 Ом;
- 6R8 – IEK, 6R8 – MIL, R = 6,8 Ом;
- 27R – IEK, 270 – MIL, говорит о значении номинального сопротивления 27 Ом;
- 820R, K82 – IEK, 821 – MIL, R = 820 Ом;
- 47K – IEK, 473 – MIL, R = 47 кОм;
- 100R – IEK, 101 – MIL, R = 100 Ом;
- 2M7 – IEK, 275 – MIL, R = 2,7 мОм;
- 56М – IEK, 566 – MIL, R = 56 мОм.
Цветовое кодирование
Более распространенным способом кодирования является цветовая маркировка резисторов. Все расшифровки содержатся в публикуемых таблицах.
Международную систему цветных кодов приняли много лет назад, как простой и максимально быстрый способ определения омического значения резистора вне зависимости от его размера.
Схема чтения кода резистора
Важно! Маркировка всегда читается по одной полосе поочередно, начиная от левого конца детали. Каждый цвет ассоциируется с числом, соответствующим ему в таблице.
Элемент идентифицируется цветными полосками: от 3-х до 6-ти. Определение номинала резистора по цветовой маркировке зависит от числа полос:
- Три полоски. Первые две – значения сопротивления резистора, третья – коэффициент, на который умножаются цифры, определяемые двумя кольцами. Допуск для таких деталей имеет общую величину 20%;
- Четырехполосный код. Номинал резистора считывается по цветам аналогично, четвертая полоса означает допуск. Четырехдиапазонный вариант является самым распространенным. Если четвертой отметки нет, он превращается в трехдиапазонный, где сопротивление неизменное, но погрешность 20%;
- Резистор с пятью полосами. Относится к точным элементам. Первые три столбца – сопротивление, четвертый – множительный коэффициент, 5-й – допуск. К примеру, красный, желтый, зеленый, синий – R = 24 x 10 = 240 Ом, ± 0,25%;
- Шестиполосный код используется для высокоточных деталей. Пять полос расшифровываются, как и ранее, шестая указывает температурный коэффициент (ppm/° C). Этот показатель важен для некоторых схем. Коэффициент сообщает, на сколько процентов варьируется сопротивление при температурных изменениях в 1° C. Значение ТКС может указываться в ppm/К.
По цветной маркировке нельзя узнать о мощности, которую будет рассеивать элемент. Можно классифицировать резисторы по мощности, исходя из размера детали. Коммерческие резисторы рассеивают 1/4 Вт, 1/2 Вт, 1 Вт, 2 Вт и т. д. Больший размер элемента говорит о большей рассеиваемой мощности.
Для чего служат допуски
Чем меньше значение допуска, тем ближе сопротивление к желаемому значению.
Иногда схема содержит резисторы, сопротивления которых не очень распространены, и их сложно найти на рынке. С допуском можно приблизиться к нужной величине.
Образец определения параметров резистора по цветовой маркировке
На рисунке представлен образец сопротивления. Он содержит цветовую кодировку. Если расшифровать символы, получаются следующие цифры:
- Данное сопротивление составляет 590 Ом с допуском 5%;
- Значит, можно определить максимальную и минимальную величину. Таким образом, резистор обладает любым сопротивлением между 619,5 Ом и 560, 5 Ом.
Важно! У проволочных деталей существуют некоторые различия в цветовом коде. Тип такого резистора можно узнать по первоначальному расширенному белому кольцу. Остальные кольца по цвету соответствуют стандартным обозначениям, но заключительное может указывать на повышенную сопротивляемость теплу.
Для таких деталей имеется отдельная таблица данных, в которой можно заметить другие цвета и для погрешностей.
Таблица для проволочных резисторных элементов
Отклонения от стандарта
- Надежность. Этот показатель встречается в виде исключения в кодах, где 5 полос, и показывает процент отказов за тысячечасовой временной промежуток;
Таблица, включающая процент отказов и допуски
- Одно черное кольцо. Резистор, имеющий нулевое сопротивление. Такие элементы используются для соединения трасс на печатной плате;
- Замена цветов. Резисторные элементы, рассчитанные на высокое напряжение, маркируются желтым на месте золотого и серым на месте серебряного. Это делают из соображений безопасности, чтобы на внешнем покрове не присутствовало частиц металла.
SMD-резисторы
Для резисторов поверхностного монтажа не используют систему цветового маркирования из-за их микроскопических размеров, но иногда кодируют цифрами. Обычно три числа соответствуют:
- первые два – сообщают о величине сопротивления;
- третье – коэффициент, на который она умножается.
Никаких дополнительных данных не приводится, так как невозможно вместить больше цифр.
Декодер цветовой маркировки резисторов можно найти в удобном режиме, чтобы не заниматься поиском по таблицам. Существует онлайн калькулятор, куда заносится цветная маркировка резисторов с обозначением колец, и в результате вычисляется величина сопротивления. Причем можно рассчитать, как номинал резистора, так и произвести обратную операцию: узнать по сопротивлению цветовой код.
Перед чтением кодов желательно проверить документацию производителя, если есть возможность, чтобы не было сомнений в используемом стандарте. Для контрольной проверки сопротивления служит мультиметр.
Видео
Оцените статью:Мощность резистора по размеру
Внезапно, возникла проблема: на резисторах мощностью до 2 Вт не указана их мощность. А всё потому, что их мощность определяется размером:
Таблица размер-мощность аксиальных (цилиндрических) резисторов. Начиная с 1 Вт и выше мощность резистора на схемах обозначается римскими цифрами (I, II, III, V и т. д.)
Но, всё не так однозначно. Бывают резисторы одинаковой мощности разного размера и разной мощности одинакового размера:
Аксиальные (с осевыми выводами) резисторы с внезапной маркировкой на них мощности ваттах (W)
Мощность чип-резисторов тоже связана с их размером:
Правая часть второй колонки (код типоразмера, состоящий из 4-х цифр) — кодирует длину (первые две цифры) и ширину (вторые две цифры) детали в 1/100 долях дюйма (точнее в 1/1000, а между двумя цифрами подразумевается десятичная точка)
Значения мощности в третьей колонке указаны при температуре 70°С и это некие «стандартные» значения, которые являются «круглыми» долями одного ватта: 0.031 — это 1/32 ватта, 0.05 — 1/20, 0.063 — 1/16 и т. д. Также у разных производителей существуют резисторы такого же размера повышенной мощности [Panasonic High Power SMD Resistors] и пониженной [зато плоские; Thick Film Chip Resistors].
Что такое мощность резистора?
Вообще, мощность (измеряемая в ваттах) — это энергия (измеряемая в джоулях), передаваемая (или потребляемая, или отдаваемая) в секунду. Энергия электрического тока в проводнике состоит из кинетической энергии скорости электронов и их количества (сила тока, I), и потенциальной энергии сжатости электронного газа (напряжение, U). Мощность электрического тока, проходящего через резистор, определяется по формуле P=U·I=R·I2, где U — падение напряжения на выводах резистора, R — заявленное сопротивление резистора.
Электроны врезаются в молекулы полупроводника-резистора и нагревают их (увеличивают амплитуду колебаний), энергия электронного тока частично переходит в тепловую энергию нагрева резистора. Резистор рассеивает это тепло в окружающую среду (воздух), спасаясь от перегрева, и чем быстрее он это делает (чем больше джоулей тепла в секунду отдаёт во вне) тем больше его мощность [рассеивания] и тем более мощный ток он может через себя пропустить. Соответственно, резистор тем мощнее, чем больше поверхность его тушки (или радиатора, к которому он привинчен), чем холоднее и плотнее окружающая среда (воздух, вода, масло), чем большую температуру разогрева себя, любимого, может выдержать резистор.
Так вот, мощность резистора — это максимальная мощность тока, проходящего через резистор, которую резистор выдерживает бесконечно долго, не ломаясь от перегрева и не меняя слишком сильно своего исходного (номинального; при 25°С) сопротивления.
Как же может сломаться резистор, если он сделан из таких материалов как графит (температура плавления >3800°С), керамика (>2800°С), сплава «константан» (=1260°С), нихрома, … ? Ломаются резисторы обычно путём трескания напополам их тщедушного тельца или отваливания (отгорания) от тела колпачков-выводов на концах. Обугливание краски
Мощный резистор, целый, но обуглилась краска на нём, так что пропала маркировка
поломкой не считается. Но чтобы не терять маркировку, в последнее время стало модно запихивать резистор мощностью ≥ 3 Вт в керамический параллелепипед, который снаружи выглядит как новый даже после многих лет напряжённой работы-разогрева резистора.
Т.к. мощный резистор сильно греется, по сути печка, нагревательный элемент, то его обычно на платах подвешивают в пространстве на длинных ножках,
Дистанцирование мощного резистора от платы
чтобы удалить от деталей на плате, особенно от и без того бодро иссыхающих со временем электролитических конденсаторов.
Полезные ссылки:
- Параметры чип-резисторов — даташит от Panasonic
- Мощность-размер советских резисторов (МЛТ, ВС, КИМ, УЛМ) — картинка-скан таблицы
Маркировка сопротивлений по мощности. Основные параметры резисторов
Постоянные резисторы — это такой элемент, который присутствует практически во всей электронной аппаратуре. Резисторы обладают свойствами активного сопротивления. С их помощью можно ограничить или уменьшить ток в цепи, разделить определенное напряжение на две о более части, для отвода остаточных зарядов.
Состоит постоянный резистор из фарфоровой трубки или палочки, на которую напыленно железо или углерод. От толщины напыления зависит сопротивление резистора и от объема — мощность.
Маркировка резисторов
Буквенно-цифровая маркировка резисторов
Общий вид резисторов отечественного производства и обозначение их на схеме (рис1).
Большинство резисторов в своей радиолюбительской практике брал из старых радиоустройств. Как правило, эти устройства были старыми и в них были установлены отечественные резисторы с буквенно-цифровой маркировкой. В маркировке таких резисторов обычно присутствовали три буквы МЛТ, что означает, металлизированный лакированный теплостойкий. Цифра после этого словосочетания обозначает мощность.
Основная единица измерения сопротивления — Ом. В одном Оме 1000 кОм и 1 000 000 мОм. Буквы в маркировке служат в роли разделителей, как запятая в обычном наборе цифр. Например, сопротивление у резистора 5к3 будет 5,3 кОм, а 5м3 — 5,3 мОм. Все остальные буквы английского алфавита и обозначают Ом. Например, 8R0 — это 8,0 Ом. Отсутствие буквы вовсе означает, что цифра обозначает сопротивление в Ом. Например, 100 — это 100 Ом.
Приведу еще несколько примеров с буквой перед цифрами. К250 = 0.250 кОм и это равно 250 Ом. М100 = 0,100 мОм и это равно 100 кОм.
Цветовая маркировка резисторов
Современные изготовители радиодеталей уже практически ушли от буквенно-цифровой маркировки резисторов. На смену ей пришла цветовая маркировка резисторов.
Смысл данной маркировки в нанесении на корпус разноцветных колец, цвет которого несет свою цифру или множитель. Рассказывать и изучать, что означает каждый цвет, мы здесь не будем, я сам этого на память не знаю, и запоминать не хочется. Для определения номинала резисторов с цветовой маркировкой существует множество программ в интернете, скачать одну из них можно . Я начал использование программы больше пяти лет назад и пользуюсь до сих пор.
Так же цветовую маркировку резистора можно определить из шаблона резисторов с уже проставленными номиналами, во всяком случае на столе не помешают:
Универсальный способ определения номинала
И не забываем самый основной способ определения номинала резистора методом измерения. Правда, для определения сопротивления данным способом, необходим довольно точный прибор, китайский цифровой мультиметр вполне сойдет, а вот стрелочные тестеры врятли. При измерении не прикасайтесь к щупам мультиметра, что бы не учитывать сопротивление тела, и при измерении небольших сопротивлений отнимайте сопротивление проводов, показывается если щупы замкнуть накоротко (на большем пределе покажет нуль и сопротивление проводов не учитывается).
Мощность резистора
Резисторы различаются как по сопротивлению, так и по мощности. Основные номиналы мощности показаны на рисунке 1. На том же рисунке показано условно графическое изображение резистора на схеме. Если при сборке, какой либо схемы на ней указан резистор мощностью 1 Вт, то при сборке схемы он должен быть аналогичной или большей мощности.
Хорошо если на схемах такие обозначения есть, а что делать, если схема проектируется самостоятельно. К примеру, нужно подключить светодиод 3 Вольта и 30 миллиАмпер к источнику питания 12 В. Для ограничения тока в цепь светодиода врезается резистор. Что бы рассчитать рассеиваемую мощность резистора необходимо знать напряжение падения на резисторе, ток цепи и найти их произведение. (12-3)х0,03= 0,27 Вт. Принимаем ближайшее, большее значение мощности 0,5 Вт.
Привет. Сегодня статья будет посвящена такому радиоэлементу как резистор, или как было принято называть его ранее сопротивление.
Основной задачей резисторов является создание сопротивления электрическому току. Для более наглядной визуализации, давайте представим электрический ток, как воду, которая течет по трубе. В конце этой трубы установлен кран, который полностью откручен, и он просто пропускает через себя водный поток. Стоит нам немного начать закрывать кран, как мы сразу увидим, что поток стает слабее вплоть до того момента, когда течь воды полностью остановится.
По такому принципу и работают резисторы, только вместо трубы у нас электрический проводник, вместо воды ток, а вместо крана наш резистор. Чем больше номинал резистора, тем больше он делает сопротивление электрическому току. Сопротивление резистора измеряется такой единицей измерения как Ом.
Так как в схемах могут использоваться очень большие резисторы, номинал которых может составлять порядка 1000 -1000000 Ом, то для облегчения вычислений используют производные единицы, такие как кОм , мОм и гОм .
Для большего понимания этих единиц измерения, привожу следующую расшифровку:
1кОм = 1000 Ом;
1 мОм = 1000 кОм;
1гОм = 1000 мОм;
На практике все очень просто. Если нам попался резистор с надписью 1,8 кОм, то проведя не сложные вычисления, увидим, что номинал в Омах будет соответствовать 1800 Ом.
По принципу работы, резисторы делятся на постоянные и переменные .
Из самих названий можно догадаться, что постоянные резисторы в процессе работы никогда не меняют своего номинала. Переменные же резисторы, могут менять свой номинал в процессе работы, и используются для выполнения какой-то настройки. Примером для использования переменных резисторов может быть ручки управления громкостью, тембром на магнитофонах.
Постоянные резисторы
Поговорим более детально о постоянных резисторах. На практике, обозначение номинала резисторов наносится на корпусе. Это может быть буквенно–цифровой код или обозначение цветными полосками (). Как узнать номинал резистора по цветовой маркировке, можем узнать из этой .
Что касается буквенно-цифрового обозначения, то его принято обозначать такими способами:
- Буква R Омах . Очень важным является позиция этой буквы. Если на резисторе надпить типа 12 R то номинал резистора будет 12Ом . Если же буква будет в начале R 12 , то сопротивление будет 0,12Ом . Также возможно обозначение типа 12 R1 , что будет означать 12,1 Ом.
- Буква K – означает, что номинал резистора будет измеряться в к Омах . Действуют теже правила что и для предыдущего примера. 12 K = 12кОм, K 12 = 0,12 кОм и 12К1 = 12,1кОм.
- Буква М – означает, что номинал резистора будет измеряться в м Омах . 12 М = 12мОм, М 12 = 0,12 мОм и 12М1 = 12,1мОм.
Так же на корпусе резистора обозначают такую величину как отклонение от номинала . При массовом производстве сопротивлений, в виду не совершенства технологий производства, сопротивления могут иметь некоторые отклонения от заявленного номинала. Это возможное отклонение обозначается на корпусе резистора в виде ±0,7% или ±5%. Цифры могут быть разные, в зависимости от метода производства.
В процессе работы, при больших нагрузках резистор выделяет тепло. Если в схему, где идут большие нагрузки поставить резистор маленькой мощности, то он быстро разогреется и сгорит. Чем больше по размерам резистор, тем больше его мощность. На рисунке ниже видно обозначение мощности резисторов на схемах.
Обозначение мощности резисторов на схеме
Переменные резисторы
Как говорилось ранее, переменные резисторы используются для плавной регулировки силы тока и напряжения в пределах номинала резистора. Переменные резисторы бывают построечные и регулировочные . С помощью регулировочных резисторов проводятся постоянные пользовательские регулировки аппаратуры (регулировка звука, яркости тембра и др.), а построечные используются для настройки аппаратуры в режиме наладки во время сборки техники. Для регулировочных резисторов приемлемо наличия удобной ручки, построечные же обычно регулируются отверткой.
Если на переменном резисторе написано что он имеет номинал 10кОм , то это означает, что он производит регулировку в пределах от 0 до 10 кОм . В среднем положении ручки его номинал будет приблизительно около 5 кОм , в крайнем или 0 или 10 кОм .
Каждый, кто работает с электроникой, или когда-нибудь видел электронную схему, знает, что практически ни одно электронное устройство не обходится без резисторов.
Функция резистора в схеме может быть совершенно разной: ограничение тока, деление напряжения, рассеивание мощности, ограничение времени зарядки или разрядки конденсатора в RC-цепочке и т. д. Так или иначе, каждая из этих функций резистора осуществима благодаря главному свойству резистора — его активному сопротивлению.
Само же слово «резистор» — это русскоязычное прочтение английского слова «resistor» , которое в свою очередь происходит от латинского «resisto» — сопротивляюсь. В электрических цепях применяют постоянные и переменные резисторы, и предметом данной статьи будет обзор основных видов постоянных резисторов, так или иначе встречающихся в современных электронных устройствах и на их схемах.
В первую очередь постоянные резисторы классифицируются по максимальной рассеиваемой компонентом мощности: 0,062 Вт, 0,125 Вт, 0,25 Вт, 0,5 Вт, 1 Вт, 2 Вт, 3 Вт, 4 Вт, 5 Вт, 7 Вт, 10 Вт, 15 Вт, 20 Вт, 25 Вт, 50 Вт, 100 Вт и даже больше, вплоть до 1 кВт (резисторы для особых применений).
Данная классификация не случайна, ведь в зависимости от назначения резистора в схеме и от условий, в которых должен работать резистор, рассеиваемая на нем мощность не должна привести к разрушению самого компонента и компонентов расположенных поблизости, то есть в крайнем случае резистор должен разогреться от прохождения по нему тока, и суметь рассеять тепло.
Например, керамический резистор с цементным заполнением SQP-5 (5 ватт) номиналом 100 Ом уже при 22 вольтах постоянного напряжения, длительно приложенных к его выводам, разогреется более чем до 200°C, и это необходимо учитывать.
Так, лучше выбрать резистор необходимого номинала, допустим на те же 100 Ом, но с запасом по максимальной рассеиваемой мощности, скажем, на 10 ватт, который в условиях нормального охлаждения не разогреется выше 100°C — это будет менее опасно для электронного устройства.
SMD резисторы для поверхностного монтажа с максимальной рассеиваемой мощностью от 0,062 до 1 ватта — также можно встретить сегодня на печатных платах. Такие резисторы так же как и выводные всегда берутся с запасом по мощности. Например в 12 вольтовой схеме для подтягивания потенциала к минусовой шине можно использовать SMD резистор на 100 кОм типоразмера 0402. Или выводной на 0,125 Вт, поскольку рассеиваемая мощность будет в десятки раз дальше от максимально допустимой.
Проволочные и непроволочные резисторы, точность резисторов
Резисторы для различных целей используют разные. Не желательно, например, проволочный резистор ставить в высокочастотную цепь, а для промышленной частоты 50 Гц или для цепи постоянного напряжения достаточно и проволочного.
Проволочные резисторы изготавливают путем намотки проволоки из манганина, нихрома или константана на керамический или порошковый каркас.
Изготавливают не из проволоки, а из проводящих пленок и смесей на основе связующего диэлектрика. Так, выделяют тонкослойные (на основе металлов, сплавов, оксидов, металлодиэлектриков, углерода и боруглерода) и композиционные (пленочные с неорганическим диэлектриком, объемные и пленочные с органическим диэлектриком).
Непроволочные резисторы — это зачастую резисторы повышенной точности, которые отличаются высокой стабильностью параметров, способны работать при высоких частотах, в высоковольтных цепях и внутри микросхем.
Резисторы в принципе подразделяются на резисторы общего назначения и специального назначения. Резисторы общего назначения выпускаются номиналами от долей ома до десяти мегаом. Резисторы специального назначения могут быть номиналом от десятков мегаом до единиц тераом, и способны работать под напряжением 600 и более вольт.
Специальные высоковольтные резисторы способны работать в высоковольтных цепях с напряжением в десятки киловольт. Высокочастотные способны работать с частотами до нескольких мегагерц, поскольку обладают исключительно малыми собственными емкостями и индуктивностями. Прецизионные и сверхпрецизионные отличаются точностью номиналов от 0,001% до 1%.
Номиналы резисторов и их маркировка
Резисторы выпускаются на различные номиналы, и есть так называемые ряды резисторов, например широко распространенный ряд Е24. Вообще, стандартизированных рядов у резисторов шесть: Е6, Е12, Е24, Е48, Е96 и Е192. Число после буквы «Е» в названии ряда отражает количество значений номиналов на десятичный интервал, и в Е24 этих значений 24.
Номинал резистора обозначается числом из ряда, умноженным на 10 в степени n, где n — целое отрицательное или положительное число. Каждый ряд характеризуется своим допустимым отклонением.
Цветовая маркировка выводных резисторов в виде четырех или пяти полос давно стала традиционной. Чем больше полос — тем выше точность. На рисунке приведен принцип цветовой маркировки резисторов с четырьмя и пятью полосами.
Резисторы для поверхностного монтажа (SMD – резисторы) с допуском в 2%, 5% и 10% маркируются цифрами. Первые две цифры из трех образуют число, которое необходимо умножить на 10 в степени третьего числа. Для обозначения точки в десятичной дроби, на ее месте ставят букву R. Маркировка 473 обозначает 47 умножить на 10 в степени 3, то есть 47х1000 = 47 кОм.
SMD резисторы начиная с типоразмера 0805, с допуском в 1%, имеют четырехзначную маркировку, где первые три — мантисса (число, которое следует умножить), а четвертая — степень числа 10, на которое следует умножить мантиссу, чтобы получить значение номинала. Так, 4701 обозначает 470х10 = 4,7 кОм. Для обозначения точки в десятичной дроби, на ее место ставят букву R.
Две цифры и одна буква применяются в маркировке SMD резисторов типоразмера 0603. Цифры — это код определения мантиссы, а буквы — код показателя степени числа 10 — второго множителя. 12D обозначает 130х1000 = 130 кОм.
На схемах резисторы обозначаются белым прямоугольником с надписью, и в надписи иногда содержится как информация о номинале резистора, так и информация о его максимальной рассеиваемой мощности (если она критична для данного электронного устройства). Вместо точки в десятичной дроби обычно ставят букву R, K, M – если имеются ввиду Ом, кОм и МОм соответственно. 1R0 – 1 Ом; 4K7 – 4,7 кОм; 2M2 – 2,2 МОм и т. д.
Чаще в схемах и на платах резисторы просто нумеруются R1, R2 и т. д., а в сопроводительной документации к схеме или плате дается список компонентов по этими номерами.
Относительно мощности резистора, на схеме она может быть указана надписью буквально, например 470/5W – значит — 470 Ом, 5 ваттный резистор? или символом в прямоугольнике. Если прямоугольник пустой, то резистор берется не очень мощный, то есть 0,125 — 0,25 ватт, если речь о выводном резисторе или максимум типоразмера 1210, если выбран резистор SMD.
Новая деталь — резистор.
Резистор — это элемент, обладающий определенным электрическим сопротивлением. Вообще, справедливости ради, скажу так — сопротивлением обладают не только резисторы, но и все остальные элементы: лампы, двигатели, диоды, транзисторы и даже простые провода. Однако у всех остальных элементов сопротивление — это не главная характеристика, а так скажем — побочная. На самом деле, лампочка — светит, двигатель — вращается, диод — выпрямляет, транзистор — усиливает, а провод — проводит. А вот у резистора нет иной «профессии», кроме как оказывать сопротивление идущему через него току. Ну, правда, он нагревается, и его можно использовать вместо обогревателя долгими зимними вечерами. Однако — это несколько из области нестандартных применений…
На картинке изображены различные резисторы. Маленькая черненькая фичка в нижней части — это тоже резистор, только без ножек. Такие детали используются для поверхностного монтажа и носят имя SMD. Здесь мы имеем счастье наблюдать SMD-резистор.
А на схеме его в любом случае обозначают только так:
Рядом с изображением обычно указывают его порядковый номер в схеме и номинальное сопротивление (то, на которое он рассчитан). В нашем примере он 12-й по счету и его сопротивление — 15 килоом (т.е., 15 000 Ом). Буква R перед порядковым номером говорит нам о том, что это — резистор. (Для каждого вида деталей в схеме ведется свой счет.)
Итак, резистор обладает сопротивлением. Сопротивление измеряется в Омах (см. главу 2 — Закон Ома). Каждый резистор рассчитан на какое-то определенное сопротивление. Чтобы узнать это определенное сопротивление — достаточно посмотреть на корпус резистора. Оно должно быть там написано. Однако не ищите надписей вроде 215 Ом. Так уже давно никто не обозначает, потому как — длинно получается. Сейчас весь мир перешел к трехзначной маркировке. Поэтому, на резисторе можно встретить, например, такие обозначения: 1К5, К20, 10Е, М36. Или такие: 152, 201, 100, 364. Или вообще не найти никаких букв, а только странные цветные полоски. В последнем случае — не отчаивайтесь — это цветовая маркировка. Ее довольно легко читать (если знать как =)). Сейчас мы начнем разгребать все способы маркировки. Но до этого, немного вспомним кратные приставки.
Кратные приставки мы постоянно используем в повседневной жизни. Например, покупая леску толщиной 0,25 миллиметра, или отправляясь на дачу на 54-й километр, или оценивая, сколько мегабайт занимает файл и влезет ли он на винчестер объемом 10 гигабайт. Или, на худой конец, объясняя соседу, что болевой порог человеческого уха — 120 децибелл и ваш усилок никак не обеспечит такой мощи, даже если очень захочет… «Миллиметр», «километр», «мегабайт», «гигабайт», «децибелл» — все эти слова образованы из слов «метр», «байт» и «Белл» при помощи кратных приставок: «милли-«, «кило-«, «Мега-«, «Гиго-«, «деци-«. Все прекрасно знают, что в 1-м километре — 1000 метров, а в 1-м грамме — 1000 миллиграмм, а в одном гигабайте — где-то 1000 000 000 байт. И можно, в принципе, говорить не «3 километра» а «3 тысячи метров», не «40 милиграмм» а «0,04 грамма». Однако — это долго и неудобно. Для того, собственно, и служат эти приставки — чтоб облегчить нам с вами жизнь. Они образуют из некоторой базовой виличины (метр, грамм, байт и т.д.) новую величину, которая больше или меньше базовой во сколько-то раз.-12) (триллионная)
Для обозначения сопротивления тоже используют кратные приставки. Чаще всего в схемах можно найти резисторы от нескольких десятков Ом до нескольких сотен килоом. Встречаются резисторы и по нескольку мегаом, но — редко. Итак:
1 кОм = 1000 Ом
1 МОм = 1000 кОм = 1 000 000 Ом
Несколько примеров:
1,5 кОм = 1,5*1000 = 1500 Ом
0,2 кОм = 0,2*1000 = 200 Ом
и т.д.
Теперь поехали лопатить обозначения на корпусе!
Маркировка резисторов
Маркировка — это условные обозначения, наносимые на корпус детали, по которым мы можем узнать о некоторых её свойствах. Маркировка резистора может сказать нам о самом главном его свойстве — сопротивлении.
Существует несколько различных способов маркировки резисторов.
Способ 1-й, совдеповский.
1К5, 68К, М16, 20Е, К39 и т.д.
Расшифруем:
1К5 = 1,5 кОм
68К = 68 кОм
М16 = 0,16 МОм = 160 кОм
20Е = 20 (единиц) Ом
К39 = 0,39 кОм = 390 Ом
Маркировка всегда состоит из двух цифр и одной буквы, обозначающей кратную приставку. Причем, буква ставится вместо десятичной запятой. Например, чтобы записать 1,5 кОм, надо написать 1К5. Если число 3-значное, скажем — 390 Ом, то надо выразить его с помощью 2-х знаков: 0,39 кОм. Ноль не пишем. Получается К39. Если число целое, то есть, после запятой нет знаков, буква ставится в самом конце: 68 К = 68,0 кОм
Способ 2-й, буржуазный
152, 683, 164, 200, 391.
Расшифруем:
152 = 15 00 Ом = 1,5 кОм
683 = 68 000 Ом = 68 кОм
164 = 16 0000 Ом = 160 кОм
200 = 20 Ом
391 = 39 0 Ом.
Я не случайно писал нули через пробел. Усекли фишку? Правильно! Первые две цифры — это некоторое число. Последняя — количество нулей, дописываемых после этого числа. Проще некуда!
Способ 3-й, цветовой
Не подходит для дальтоников и ленивых.
Идеалогия — как в предыдущем способе, но вместо цифр — цветные полоски. Каждой цифре соответствует свой цвет. Вот таблица соответствия (ее лучше выучить наизусть, или распечатать на цветном принтере и везде носить с собой =)):
Как читать?
Берем резистор с цветовой маркировкой. На корпусе — 4 полоски. Три находятся рядом, одна — чуть в стороне. Переворачиваем резистор так, чтобы эта одиночная полоска была справа. Далее берем таблицу и переводим цвета трех левых линий в цифры. Получается трехзначное число. Далее — см. предыдущий способ.
Вот и все! Оказывается, это так легко!!! =) Однако, если все же по каким-то причинам не удается прочесть маркировку резистора — сопротивление всегда можно померить измерительными приборами. О них мы еще поговорим.
ID: 641
Как вам эта статья? | Заработало ли это устройство у вас? |
особенности обозначения, маркировка мощности и сопротивления
Несмотря на то что времена СССР давно канули в Лету, радиоэлектронной техники и радиодеталей того времени ещё осталось предостаточно. Это говорит о том, что людям, занимающихся электроникой и другой сложной электротехникой, просто необходимо знать обозначения радиодеталей, принятые в те времена. Так, маркировка советских резисторов отличается от современных аналогов, однако столь же понятна и проста.
Резисторы советского производства
В отличие от современных резисторов, которые имеют принятую во всём мире маркировку, советские радиодетали имели собственные стандарты и обозначения. К примеру, чтобы понять, какая перед глазами современная деталь, придётся обращаться к таблицам или онлайн-калькуляторам.
Для советских аналогов такие сложности были ни к чему. Обозначались они просто и понятно каждому, даже начинающему радиолюбителю.
Резистор — это полупроводник, который имеет некое заданное сопротивление и применяется для того, чтобы ограничить токи в цепи. Основными характеристиками резисторов являются:
- Номинальное сопротивление — обозначается в омах, килоомах и мегаомах. На схемах всегда присутствует это значение.
- Рассеиваемая мощность — обозначается в ваттах. Как известно, проходя через полупроводник, ток нагревает его. При превышении некоего заданного значения он начнёт разрушаться. Это и есть рассеиваемая мощность, то есть то значение, при котором полупроводник будет работать без ущерба для себя. На схемах также обозначается это значение.
- Допуск номинального сопротивления — обозначается в процентах. Так как создать резистор без отклонений от оптимальных величин невозможно, то приходиться учитывать некий процент погрешности. Допуск номинального сопротивления указывает процент отклонения от заданного значения сопротивления.
Маркировка мощности
Как на современных, так и на советских деталях обозначение мощности было крайне важно, так как является одной из основных характеристик полупроводника. Но этот параметр можно определить и без маркировки, особенно если мастер опытный. Нередко бывает, что маркировка стирается, скалывается или просто плохо видна. Однако это не является преградой, чтобы определить мощность и сопротивление.
Сделать это можно по размеру резистора — чем больше корпус, тем лучше он рассеивает тепло и, следовательно, большую мощность имеет. И основы физики, в частности, закон Джоуля-Ленца, это подтверждают. Таким образом, чем меньше резистор, тем меньше его мощность.
Мощность советских резисторов МЛТ, то есть металлопленочного, лакированного, теплоустойчивого элемента, начинали обозначать с 1 Вт — МЛТ-1. Соответственно 2 Вт — МЛТ-2, 3 Вт — МЛТ -3 и так далее. У менее мощных маркировка резисторов по мощности отсутствовала, и определить её можно было лишь по размеру корпуса.
Значение сопротивления
Что же касается буквенной маркировки резисторов в плане значений сопротивления, то и здесь всё довольно просто. Как у резисторов МЛТ, так и у других советских приборов этой группы обозначение сопротивления выражается буквенно-цифровой последовательностью. Непосредственно значение отображалось цифрой, что совершенно логично, а вот омы, мегаомы и килоомы имели буквенную маркировку. Если нанесена буква R или E, то значение сопротивления считается в омах. Буква К показывает, что рассматриваются килоомы, а буква М говорит о значениях в мегаомах.
Для примера, заданное сопротивление будет 2 килоома, значит, обозначение имеет вид 2К0. Другой пример: сопротивление 33 МОм будет обозначаться как М33. И третий пример: обозначение вида 1К2 говорит о том, что это резистор на один килоом и 200 Ом.
Современные детали
Если говорить о современном обозначении резисторов, то у некоторых это вызывает определённые сложности, особенно у людей, привыкших к советским аналогам. И дело здесь не в сложности, а в трудоёмкости процесса. Ведь нужно брать таблицу, правильно определить расположение цветных полосок и после этого ещё проводить пусть и не сложные, но всё же расчёты. Хотя в этом помогают онлайн-калькуляторы, которые избавляют от множества нежелательных действий.
Для расшифровки цветных полосок на резисторе необходимо сначала правильно его держать. Для этого золотистая или серебристая полоска должна находиться справа. Хотя если таких полосок две или нет вообще, то к левой руке полоски располагаются таким образом, чтобы они получились сдвинутыми влево.
Полосок может быть от трёх и до шести. Каждая из них несёт в себе заданную информацию, прочитать которую можно, лишь прибегнув к таблице или онлайн-калькулятору.
Существуют ещё и SMD-резисторы. Основной их особенностью является очень маленький размер, что затрудняет чтение информации с поверхности. Да и понять, что это — транзистор, резистор или нечто другое — не всегда просто неопытному пользователю.
Как понятно, нанести полную маркировку даже цветными полосками на столь маленькие объекты не получится. Но всё же сделать это нужно. Поэтому, как правило, на очень миниатюрные ничего не наносят, а на детали чуть крупнее и имеющие допуск 10% принято наносить три цифры. Из них первые две указывают на номинал, а третья — на степень десяти.
В качестве примера можно взять обозначение 332. Первые две цифры — номинал, а третья — степень десяти. Значит, 33 умноженное на 10 в квадрате, что даёт 3300. Это число говорит о том, что взята деталь на 3300 Ом или, если привести к нормальному виду, — 3,3 кОм.
Сопротивления с допуском от одного процента и выше обозначаются четырьмя цифрами. Хотя это ни на что не влияет, так как расшифровывается по той же схеме: последняя цифра — степень, первые три — номинал.
В некоторых случаях SMD-детали могут маркироваться и двумя цифрами с буквой. И подобная маркировка действительно вызывает ряд сложностей, так как обязывает иметь таблицу, по которой можно высчитывать номинал такого полупроводника. Так, в качестве примера можно привести обозначение в следующем виде: 01С, где (согласно таблице) 01 равно 100 Ом, а буква С говорит, что множитель равен 102.
Таким образом, 100 Ом, умноженное на множитель 100, даёт 10 000 Ом, что, в свою очередь, равняется 10 кОм.
Обозначение на схемах
Понятно, что сами резисторы могут маркироваться как угодно, согласно ГОСТам или иным стандартам. Но вот на схемах они обозначаются всегда одинаково, вне зависимости от того, советские это или современные экземпляры. Так, схематическое обозначение таких деталей выглядит, как пустой прямоугольник, внутри которого:
- Три вертикальные линии говорят о том, что установлен резистор мощностью 3 Вт.
- Две такие же линии скажут, что здесь расположен элемент мощностью 2 Вт.
- Одна линия говорит о мощности в 1 Вт.
- Если линия одна и располагается горизонтально, то мощность такого резистора будет 0,5 Вт.
- Одна диагональная линия слева направо говорит о мощности в 0,25 Вт.
- Двумя такими наклонными линиями обозначаются детали с мощностью 0,125 Вт.
Другие данные могут располагаться в цифровом и буквенном виде где угодно, но всегда понятно для читающего схему.
В любом случае, советский это резистор, современный, отечественный или зарубежный, всегда можно прочесть его обозначения и узнать интересующие данные. Таким образом, можно сделать вывод, что как бы ни обозначили такую деталь, мастер всегда поймёт, какая она и чем её можно заменить.
РЕЗИСТОРЫ | Маркировка резисторов ⋆ diodov.net
Резисторы относятся к наиболее простым, с точки зрения понимания и конструктивного исполнения, радиоэлектронным элементам. Однако при этом они занимают лидирующее место по применению в схемах различных электронных устройств. Поэтому очень важно научится применять их в практических целях, уметь самостоятельно рассчитать необходимые параметры и правильно выбрать резистор с соответствующими характеристиками. Этим и другим вопросам посвящена данная статья.
Основное назначение резисторов – ограничивать величину тока и напряжения в электрической цепи с целью обеспечения нормального режима работы остальных электронных компонентов электрической схемы, таких как транзисторы, диоды, светодиоды, микросхемы и т.п.
Главнейшим параметром любого резистора является сопротивление. Именно благодаря наличию сопротивления электронам становится сложнее перемещаться по электрической цепи, в результате чего снижается величина тока. Ввиду этого, сопротивление выполняет не только положительную роль – ограничивает ток, протекающий через другие радиоэлектронные элементы, но также является и паразитным явлением – снижает коэффициент полезного действия всего устройства. К паразитным относятся сопротивления проводов, различных соединений, разъемов и т.п. и его стремятся снизить.
Первооткрывателей такого свойства электрической цепи, как сопротивление является выдающийся немецкий ученый Георг Симон Ом, поэтому за единицу измерения электрического сопротивления приняли Ом. Наиболее практическое применение получили килоомы, мегаомы и гигаомы.
Расширенный список сокращений и приставок системы СИ физических величин, используемых в радиоэлектронике. Максимальное значение 1018 – экса, а минимальное – 10-18 – атто. Надеюсь, приведенная таблица станет полезной.
Условно резисторы подразделяются на два больших подвида: постоянные и переменные.
Постоянные резисторыПостоянные резисторы могут иметь различное конструктивное исполнение, в основном отличающееся внешним видом и размерами. Характерной особенностью постоянных резисторов является постоянное значение сопротивления, которое не предусматривается изменять в процессе эксплуатации радиоэлектронной аппаратуры.
Подстроечные резисторыПодстроечные резисторы применяются для тонкой настройки отдельных узлов радиоэлектронной аппаратуры на этапе ее окончательной регулировки перед выдачей в эксплуатацию. Чаще всего подстроечные резисторы не имеют специальной регулировочной рукоятки, а изменение сопротивления выполняется с помощью отвертки, что предотвращает самопроизвольное изменение положения регулировочного узла, а соответственно и сопротивления.
В некоторых устройствах после окончательной их регулировки на корпус и поворотный винт подстроечного резистора наносится краска, которая предотвращает поворот винта при наличии вибраций. Также метка, нанесенная краской, служит одновременно и индикатором самопроизвольного поворота регулировочного винта, что можно визуально определить по срыву краски в месте поворотного и стационарного элементов корпуса.
В современных электронных устройствах получили широкое применение многооборотные подстроечные резисторы, позволяющие более тонко выполнять регулировку аппаратуры. Как правило, они имеют синий пластиковый корпус прямоугольной формы.
Переменные резисторыПеременные резисторы применяются для изменения электрических параметров в схеме устройства непосредственно в процессе работы, например для изменения яркости света светодиодных ламп или громкости звука приемника. Часто, вместо «переменный резистор» говорят потенциометр или реостат.
Также к переменным резисторам относятся радиоэлементы, имеющие всего два вывода, а сопротивление их изменяется в зависимости от освещенности или температуры, например фоторезисторы или терморезисторы.
Потенциометры применяются для изменения величины силы тока или напряжения. Регулируемый параметр зависит от схемы включения.
Если переменный либо подстроечный резистор используется в качестве регулятора тока, но его называют реостатом.
Ниже приведены две схемы, в которых реостат применяется для регулировки величины тока, протекающего через светодиод VD. В конечном итоге изменяется яркость свечения светодиода.
Обратите внимание, в первой цепи задействованы все три вывода реостата, а во второй – только два – средний (регулирующий) и один крайний. Обе схемы полностью работоспособны и выполняют возлагаемые на них функции. Однако вторую цепь применять менее предпочтительно, поскольку свободный вывод реостата, как антенна, может «поймать» различные электромагнитные излучения, что повлечет за собой изменение параметров электрической цепи. Особенно не рекомендуется применять такую электрическую цепь в усилительных каскадах, где даже незначительная электромагнитная наводка приведет к непредсказуемой работе аппаратуры. Поэтому берем за основу первую схему.
Изменять величину напряжения потенциометром можно по такой схеме: параллельно источнику питания подключается два крайних вывода; между одним крайним и средним выводами можно плавно регулировать напряжение от 0 до напряжения источника питания. В данном случае, от нуля до 12 В. Потенциометр служит делителем напряжения, которому более подробно уделено внимание в отдельной статье.
Условное графическое обозначение (УГО) резисторовНа чертежах электрических схем в независимости от внешнего вида резистора его обозначают прямоугольником. Прямоугольник подписывается латинской буквой R с цифрой, обозначающей порядковый номер данного элемента на чертеже. Ниже указывается номинальное значение сопротивления.
В некоторых государствах УГО резистора имеет следующий вид.
Мощность рассеивания резистораРезистор, как и любой другой элемент, обладающий активным сопротивлением, подвержен нагреву при протекании через него тока. Природа нагрева заключается в том, что при движении электроны встречают на своем пути препятствия и ударяются об них. В результате столкновений кинетическая энергия электрона передается препятствиям, что вызывает нагрев последних. Аналогично нагревается гвоздь, когда по нему долго бьют молотком.
Мощность рассеивания нормируемый параметр для любого резистора и если ее не выдерживать, то он перегреется и сгорит.
Мощность рассеивания P линейно зависит от сопротивления R и в квадрате от тока I
P=I2R
Значение допустимой P показывает, какую мощность способен рассеять резистор не перегреваясь выше допустимой температуры в течение длительного времени.
Как правило, чем выше P, тем большие размеры имеет резистор, чтобы отвести и рассеять больше тепла.
На чертежах электрических схем этот параметр наносится в виде определенных меток.
Если прямоугольник пустой – значит мощность рассеивания не нормирована, поэтому можно применять самый «маленький» резистор.
Более наглядные примеры расчета P можно посмотреть здесь.
Классы точности и номиналы резисторовНи один радиоэлектронный элемент невозможно выполнить со сто процентным соблюдением требуемых характеристик, так как точность связана с рядом параметров и технологических процессов, которым присуща погрешность, в основном связана с точностью производственного оборудования. Поэтому любая деталь или отдельный элемент имеют отклонение от заданных размеров или характеристик. Причем, чем меньший разброс характеристик, тем точнее производственное оборудование и выше конечная стоимость изделия. Поэтому далеко не всегда оправдано применение изделий с минимальными отклонениями характеристик. В связи с этим введены классы точности. В радиолюбительской практике наибольшее применение находят резисторы трех классов точности: I, II и III. Последним временем резисторы второго и третьего классов точности встречаются довольно редко, но мы их рассмотрим в качестве примера.
К I-му классу относится допуск отклонения сопротивления от номинального значения ±5%, II –му – ±10%, III –му – ±20%. Например, при номинальном значении сопротивления 100 Ом резистора I класса, допустимое отклонение может находиться в диапазоне 95…105 Ом; для II-го – 90…110 Ом; для III -го – 80…120 Ом.
Резисторы более высокого класса точности, с допуском 1% и менее, относятся к прецизионным. Они имеют более высокую стоимость, поэтому их применение оправдано только в измерительной и высокоточной технике.
Все стандартные значения сопротивлений I…III классов точности приведены выше в таблице, значения из которой могут умножаться на 0,1; 1, 10, 100, 1000 и т.д. Например, резисторы I-го класса изготавливаются со значениями 1,3; 13; 130; 1300; 13000; 130000 Ом и т.п.
В зависимости от класса точности, номинальные значения выпускаемых промышленностью резисторов строго стандартизированы. Например, если потребуется сопротивление 17 Ом I-го класса, то вы его не найдете, поскольку данный номинал не изготавливается в соответствующем классе точности. Вместо него следует выбрать ближайший номинал – 16 Ом или 18 Ом.
Маркировка резисторовМаркировка резисторов служит для визуального восприятия ряда параметров, характерных для данных электронных элементов. Среди прочих параметров следует выделить три основных: номинальное значение сопротивления, класс точности и мощность рассеивания. Именно на эти параметры в первую очередь обращают внимание при выборе рассматриваемых радиоэлементов.
На протяжении долгих лет существовало много типов маркировки, однако постепенно, по мере развития технологических процессов, пару типов маркировки вытеснили все остальные.
На корпусах советских резисторов, которые все еще широко используются, наносится маркировка в виде цифр и букв. Латинские буквы «E» и «R», стоящие рядом с цифрами или только цифры, обозначают сопротивление в омах, например 21; 21E, 21R – 21 Ом. Буквы «k» и «M» означают соответственно килоомы и мегаомы. Например, если буква стоит перед цифрами или посреди них, то она одновременно служит десятичной точкой: 68к – 68 кОм; 6к8 – 6,8 кОм; к68 – 0,68 кОм.
Цветовая маркировка резисторовДля большинства радиоэлектронных элементов сейчас применяется цветовая маркировка. Такой подход является вполне рациональный, поскольку цветные метки проще рассмотреть, чем цифры и буквы, поэтому хорошо распознаются даже на самых мелких корпусах.
Цветная маркировка резисторов наносится на корпус в виде четырех или пяти цветных колец или полос. В первом случае (4 полосы) первые две полосы обозначают мантису, а во втором (5 полос) – мантису обозначают три полосы. Третье или соответственно 4-е кольцо указывают множитель. Четвертое или пятое – допустимое отклонение в процентах от номинального сопротивления.
По моему мнению и личному опыту, гораздо удобней, проще и практичней измерять сопротивление мультиметром. Здесь наименьшая вероятность допустить ошибку, поскольку цвета колец не всегда четко различимы. Например, красный цвет можно принять за оранжевый и наоборот. Однако, выполняя измерения, следует избегать касания пальцами щупов мультиметра и выводов резистора. В противном случае тело человека зашунтирует резистор, и результаты измерений будут заниженные.
Маркировка SMD резисторовХарактерной особенностью SMD резисторов по сравнению с выводными аналогами являются минимальные габариты при сохранении необходимых характеристик.
В SMD компонентах отсутствуют гибкие выводы, вместо них имеются контактные площадки, посредством которых производится пайка SMD детали на аналогичные поверхности, предусмотренные на печатной плате. По этой причине SMD компоненты называют компонентами для поверхностного монтажа.
Благодаря смене традиционного корпуса на SMD упростился процесс автоматизации изготовления печатных плат, что позволило значительно снизить затраты время на изготовление электронного изделия, его массы и габаритов.
Маркировка SMD резисторов чаще всего состоит из трех цифр. Первые две указывают мантису ,а третья – множитель или количество нулей, следующих после двух предыдущих цифр. Например, маркировка 681 означает 68×101 = 680 Ом, то есть после числа 68 нужно прибавить один ноль.
Если все три цифры – нули, то это перемычка, сопротивление такого SMD резистора близкое к нулю.
Еще статьи по данной теме
ВСЕ О РЕЗИСТОРАХ — символы с низким энергопотреблением, маркировка, цветные полосы, коды, допуск множителя, цилиндрические, плоские потенциометры сопротивления, триммер, переменный резистор, нелинейная мощность, температура, фотографии, фотоэффект, положительный, отрицательный, NTC, LDR, VDR, напряжение, светозависимый, SMD, R K E M, Вт, ток, мощность рассеивания тепла
1. РезисторыРезисторы есть наиболее часто используемый компонент в электронике, и их цель — создать заданные значения тока и напряжения в цепи.А количество различных резисторов показано на фотографиях. (Резисторы на миллиметровой бумаге с интервалом 1 см, чтобы представление о габаритах). На фото 1.1a показаны резисторы малой мощности, а на фото 1.1b — некоторые высшая сила резисторы. Резисторы с рассеиваемой мощностью менее 5 Вт (большинство обычно используемые типы) имеют цилиндрическую форму с выступающей из каждый конец для подключения в цепь (фото 1.1-а). Резисторы с рассеиваемой мощностью более 5 Вт являются показано ниже (фото 1.1-б).
Символ резистора показан на следующая диаграмма (верхний: американский символ, нижний: европейский символ.)
Блок для Измерительное сопротивление Ом . (греческая буква Ω — называется Омега). Более высокие значения сопротивления обозначаются буквой «k». (килоом) и М (мегом). Для Например, 120000 Ом отображается как 120 кОм, а 1 200 000 Ом — как 1M2. Точка обычно опускается, так как его легко потерять в процессе печати. В какой-то цепи На диаграммах такое значение, как 8 или 120, представляет сопротивление в Ом. Другой распространенной практикой является использование буквы E для обозначения сопротивления в омах. В буква R. также может использоваться. Для Например, 120E (120R) обозначает 120 Ом, 1E2 обозначает 1R2 и т. д.
Рис. 1.2: б. Четырехполосный резистор, c. Пятиполосный резистор, d. Цилиндрический резистор SMD, эл. Резистор SMD плоский
ПРИМЕЧАНИЯ:
Вышеуказанные резисторы имеют «общее значение» 5%. типы.
Четвертая полоса называется полосой «допуска». Золото = 5%
(полоса допуска Серебро = 10%, но современные резисторы не 10% !!)
«общие резисторы» имеют номиналы от 10 Ом до 22 МОм.
РЕЗИСТОРЫ МЕНЬШЕ 10 ОМ
Когда третья полоса золото, это означает, что значение «цветов» необходимо разделить на 10.
золота = «разделите на 10», чтобы получить значения 1R0. до 8R2
Примеры см. в 1-й колонке выше.
Когда третий полоса серебряная, это означает, что значение «цветов» необходимо разделить на
100.
(Помните: в слове «серебро» больше букв, значит делитель
«больше»)
Silver = «разделить на 100», чтобы получить
значения 0R1 (одна десятая ома) от
например: 0R1 = 0,1 Ом 0R22 = Точка 22 Ом
См. 4-й столбец выше. Примеры.
Буквы «R, k и M» заменяют десятичную дробь.
точка. Буква «Е» также используется для обозначения слова «ом».
например: 1 R 0 = 1 Ом 2 R 2 = 2
точка 2 Ом 22 R = 22 Ом
2 k 2 =
2200 Ом 100 к = 100000
Ом
2 M 2 = 2200000 Ом
Общие резисторы имеют 4 группы.Они показаны выше. Первый две полосы указывают первые две цифры сопротивления, третья полоса — это множитель (количество нулей, которые должны быть добавлены к полученному числу от первых двух полос), а четвертая представляет собой допуск.
Маркировка сопротивления с помощью пять полос используются для резисторов с допуском 2%, 1% и др. резисторы высокой точности. Первые три полосы определяют первые три цифр, четвертая — множитель, пятая — допуск.
Для SMD (поверхностный монтаж Device) на резисторе очень мало свободного места. Резисторы 5% используйте трехзначный код, в то время как 1% резисторов используют четырехзначный код.
Некоторые резисторы SMD изготавливаются в форма небольшого цилиндра, в то время как наиболее распространенный тип — плоский. Цилиндрические резисторы SMD помечены шестью полосами — первые пять «читаются» как с обычными пятиполосными резисторами, а шестая полоса определяет температурный коэффициент (TC), который дает нам значение сопротивления изменение при изменении температуры на 1 градус.
Сопротивление Плоские резисторы SMD маркируются цифрами на их верхней стороне. Первые две цифры — это значение сопротивления, а третья цифра представляет количество нулей. Например, напечатанное число 683 стоит для 68000Вт, то есть 68к.
Само собой разумеется, что существует массовое производство всех
типы резисторов. Чаще всего используются резисторы E12.
серии и имеют значение допуска 5%. Общие значения для первых двух
цифры: 10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68 и 82.
E24
серия включает все значения, указанные выше, а также: 11, 13, 16, 20, 24, 30,
36, 43, 51, 62, 75 и 91. Что означают эти числа? Это означает, что
резисторы со значениями для цифр «39»: 0,39 Вт, 3,9 Вт, 39 Вт, 390 Вт, 3,9 кВт, 39 кВт и т. д.
(0R39,
3R9,
39R,
390R,
3к9,
39к)
Для некоторых электрических цепей допуск резистора не важен и не указывается. В этом в корпусе можно использовать резисторы с допуском 5%.Однако устройства, которые требуется, чтобы резисторы имели определенную точность, требуется указанная толерантность.
1,2 Резистор Рассеивание
Если поток
ток через резистор увеличивается, он нагревается, а если
температура превышает определенное критическое значение, он может выйти из строя. В
номинальная мощность резистора — это мощность, которую он может рассеивать в течение длительного времени.
промежуток времени.
Номинальная мощность резисторов малой мощности не указана.На следующих диаграммах показаны размер и номинальная мощность:
Чаще всего используется
резисторы в электронных схемах имеют номинальную мощность 1/2 Вт или 1/4 Вт.
Существуют резисторы меньшего размера (1/8 Вт и 1/16 Вт) и выше (1 Вт, 2 Вт, 5 Вт,
так далее).
Вместо одиночного резистора с заданной рассеиваемой мощностью,
можно использовать другой с таким же сопротивлением и более высоким рейтингом, но
его большие размеры увеличивают занимаемое место на печатной плате
а также добавленная стоимость.
Мощность (в ваттах) можно рассчитать по одному из следующие формулы, где U — символ напряжения на резистор (в вольтах), I — ток в амперах, а R — сопротивление в Ом:
Например, если напряжение на 820 Вт резистор 12В, мощность, рассеиваемая резисторами это:
Резистор 1/4 Вт может использоваться.
Во многих случаях это
Непросто определить ток или напряжение на резисторе.В этом
в случае, когда мощность, рассеиваемая резистором, определяется для «худшего»
дело. Мы должны принять максимально возможное напряжение на резисторе,
т.е. полное напряжение источника питания (аккумулятор и т. д.).
Если обозначить
это напряжение как В B , максимальное рассеивание
это:
Например, если V B = 9V, рассеиваемая мощность 220Вт резистор есть:
Резистор мощностью 0,5 Вт или выше должен использоваться
1.3 Нелинейных резистора
Значения сопротивления указанные выше являются постоянными и не изменяются, если напряжение или ток меняется. Но есть схемы, требующие резисторов для изменить значение с изменением умеренного или светлого. Эта функция не может быть линейный, отсюда и название НЕЛИНЕЙНЫЕ РЕЗИСТОРЫ.
Есть несколько типы нелинейных резисторов, но наиболее часто используемые включают: NTC Резисторы (рисунок а) (отрицательный температурный коэффициент) — их сопротивление снижается с повышением температуры. PTC резисторы (рисунок б) (положительный температурный коэффициент) — их сопротивление увеличивается с повышением температуры. Резисторы LDR (рисунок в) (Light Dependent Resistors) — их сопротивление уменьшается с увеличением свет. Резисторы VDR (резисторы, зависимые от напряжения) — их сопротивление критически снижается, когда напряжение превышает определенное значение. Символы, представляющие эти резисторы, показаны ниже.
1.4 Практические примеры с резисторами
На рисунке 1.5 показаны два практических примеры с нелинейными и обычными резисторами в качестве подстроечных потенциометров, элементы, которые будут рассмотрены в следующей главе.
На рисунке 1.5a показан RC-усилитель напряжения, который можно использовать для усиления низкочастотные аудиосигналы с малой амплитудой, например сигналы микрофона. Усиливаемый сигнал передается между узлом 1. (вход усилителя) и земля, а результирующий усиленный сигнал появляется между узлом 2 (выход усилителя) и заземление.Чтобы получить оптимальную производительность (высокая усиление, низкий уровень искажений, низкий уровень шума и т. д.) необходимо «установить» рабочая точка транзистора. Подробная информация о рабочей точке будет приведено в главе 4; а пока давайте просто скажем, что напряжение постоянного тока между узел C и земля должны составлять примерно половину батареи (источника питания) Напряжение. Поскольку напряжение аккумулятора равно 6В, необходимо установить напряжение в узле C. до 3В. Регулировка осуществляется через резистор R1.
Подключить вольтметр между узел C и земля.Если напряжение превышает 3 В, замените резистор. R1 = 1,2 МВт с меньшим резистором, скажем R1 = 1 МВт. Если напряжение по-прежнему превышает 3 В, оставьте понижая сопротивление, пока оно не достигнет примерно 3 В. Если напряжение в узле C изначально ниже 3В, увеличьте сопротивление R1.
Степень усиления каскада зависит от сопротивления R2: более высокое сопротивление — более высокое усиление , более низкое сопротивление — нижнее усиление . Если значение R2 изменяется, напряжение в узле C следует проверить и отрегулировать (через R1).
Резистор R3 и конденсатор 100 мкФ
сформировать фильтр, чтобы предотвратить возникновение обратной связи. Эта обратная связь называется
«Моторная лодка», как это звучит как шум моторной лодки. Этот
шум возникает только при использовании более чем одной ступени.
По мере добавления каскадов к цепи вероятность обратной связи в
форма нестабильности или катания на лодке.
Этот шум появляется на выходе усилителя даже при отсутствии сигнала
доставляется к усилителю.
Нестабильность возникает следующим образом:
Даже если на вход не поступает сигнал, выходной каскад
производит очень слабый фоновый шум, называемый «шипением». Это происходит из-за
ток, протекающий через транзисторы и другие компоненты.
Это помещает очень маленькую форму волны на шины питания. Эта форма волны
поступил на вход первого транзистора и, таким образом, мы получили
петля для «генерации шума». Скорость прохождения сигнала
вокруг цепи определяет частоту нестабильности.От
добавление резистора и электролита к каждому каскаду, фильтр низких частот
производится, и это «убивает» или снижает амплитуду нарушения
сигнал. При необходимости значение R3 можно увеличить.
Практические примеры с резисторами будет рассмотрено в следующих главах, поскольку почти все схемы требуют резисторы.
Практическое применение нелинейных резисторов показано на простом сигнальном устройстве, показанном на рисунок 1.5b. Без триммера TP и нелинейного резистора NTC это аудио осциллятор.Частоту звука можно рассчитать по следующей формуле:
В нашем случае R = 47кВт и C = 47nF, а частота равна: Когда по рисунку обрезать горшок и резистор NTC добавляются, частота генератора увеличивается. Если горшок обрезки установлен на минимальное сопротивление, осциллятор останавливается. При желаемой температуре сопротивление обшивки Pot следует увеличивать до тех пор, пока осциллятор снова не заработает. Для Например, если эти настройки были сделаны при 2 ° C, осциллятор остается замороженным на более высоких температур, поскольку сопротивление резистора NTC ниже, чем номинальный.Если температура падает, сопротивление увеличивается и при 2 ° C осциллятор активирован.Если в автомобиле установлен резистор NTC, близко к поверхности дороги, осциллятор может предупредить водителя, если дорога покрытый льдом. Естественно резистор и два соединяющих его медных провода к контуру следует беречь от грязи и воды.
Если вместо резистора NTC используется резистор PTC используется, осциллятор будет активирован, когда температура поднимется выше определенный обозначенное значение.Например, резистор PTC может использоваться для индикации состояние холодильника: настроить осциллятор на работу при температурах выше 6 ° C через подстроечный резистор TP, и цепь сообщит, если что-то не так с холодильником.
Вместо NTC мы могли бы использовать резистор LDR. — осциллятор будет заблокирован, пока есть определенное количество света настоящее время. Таким образом, мы могли бы сделать простую систему сигнализации для помещений, где свет должен быть всегда включен.
LDR может быть соединен с резистором R. в этом случае осциллятор работает, когда присутствует свет, в противном случае он заблокирован. Это может быть интересный будильник для егерей и рыбаков, которые хотели бы встать на рассвете, но только если погода ясная. Рано утром в нужный момент обрезайте горшок должен быть установлен в самое верхнее положение. Затем сопротивление следует тщательно уменьшается, пока не запустится осциллятор.Ночью осциллятор будет заблокирован, так как есть нет света и сопротивление LDR очень высокое. По мере увеличения количества света в утром сопротивление LDR падает и осциллятор активируется, когда LDR освещается необходимым количеством света.
Подрезной горшок с рисунка 1.5b используется. для точной настройки. Таким образом, TP с рисунка 1.5b может использоваться для установки осциллятор для активации при разных условиях (выше или ниже температура или количество света).
1,5 Потенциометры
Потенциометры (также называемые горшками ) переменные резисторы, используемые в качестве регуляторов напряжения или тока в электронные схемы. По конструкции их можно разделить на 2 группы: мелованные и проволочные.
С потенциометрами с покрытием (рисунок 1.6a), Корпус изолятора покрыт резистивным материалом. Eсть проводящий ползунок перемещается по резистивному слою, увеличивая сопротивление между ползунком и одним концом горшка, уменьшая сопротивление между ползунком и другим концом горшка.
с проволочной обмоткой потенциометры изготовлены из токопроводящий провод намотан на корпус изолятора. По проводу движется ползунок, увеличивающий сопротивление. между ползунком и одним концом горшка, уменьшая сопротивление между слайдер и другой конец горшка.
Гораздо чаще встречаются горшки с покрытием. С их помощью сопротивление может быть линейным, логарифмическим, обратным логарифмическим или обратным логарифмическим. другое, в зависимости от угла или положения ползунка. Большинство распространены линейные и логарифмические потенциометры, а наиболее распространенными являются приложения — радиоприемники, усилители звука и аналогичные устройства. где горшки используются для регулировки громкости, тона, баланса, и т.п.
Потенциометры с проволочной обмоткой используются в приборах. которые требуют большей точности управления. В них есть более высокое рассеивание, чем у горшков с покрытием, и поэтому токовые цепи.
Сопротивление потенциометра обычно равно E6 ряд, включающий значения: 1, 2.2 и 4.7. Стандартные значения допуска включают 30%, 20%, 10% (и 5% для проволочной обмотки). горшки).
Потенциометрыбывают разных формы и размеры, с мощностью от 1/4 Вт (горшки с покрытием для объема управление в амперах и т. д.) до десятков ватт (для регулирования больших токов).Несколько разных горшков показаны на фото 1.6b вместе с символом потенциометр.
Верхняя модель представляет собой стерео потенциометр. На самом деле это две кастрюли в одном корпусе, с ползунки установлены на общей оси, поэтому они перемещаются одновременно. Эти используется в стереофонических усилителях для одновременного регулирования как левого, так и правильные каналы, пр.
Слева внизу находится так называемый ползунок потенциометр.
Внизу справа — горшок с проволочной обмоткой мощностью
20 Вт, обычно используется как реостат (для регулирования тока при зарядке
аккумулятор и т. д.).
Для схем, требующих очень точной
значения напряжения и тока, подстроечные потенциометры (или просто обрезные горшки ). Это небольшие потенциометры с ползунком, который
регулируется отверткой.
Кастрюли также бывают различных форм и размеров, с мощностью от 0,1 Вт до 0,5 Вт. Изображение 1.7 показаны несколько различных горшков для обрезки вместе с символом.
Корректировки сопротивления сделано отверткой.Исключение составляет обрезной горшок в правом нижнем углу, который можно отрегулировать с помощью пластикового вала. Особенно точная регулировка достигается при помощи декоративного кожуха в пластиковом прямоугольном корпусе (нижний середина). Его ползунок перемещается винтом, так что можно сделать несколько полных оборотов. требуется для перемещения ползунка из одного конца в другой.
1,6 Практический примеры с потенциометрами
Как было сказано ранее, потенциометры чаще всего используются в усилителях, радио- и ТВ-приемниках, кассетные плееры и аналогичные устройства.Они используются для регулировки громкости, тон, баланс и т. д.
В качестве примера разберем общая схема регулировки тембра в аудиоусилителе. В нем два горшка и показан на рисунке 1.8a.
Потенциометр с маркировкой BASS регулирует усиление низких частот. Когда ползунок находится в самом нижнем положения, усиление сигналов очень низкой частоты (десятки Гц) примерно в десять раз больше, чем усиление сигналов средней частоты (~ кГц).Если ползунок находится в крайнем верхнем положении, усиление очень низкое. частота сигналов примерно в десять раз ниже, чем усиление средних частотные сигналы. Усиление низких частот полезно при прослушивании музыки с битом (диско, джаз, R&B …), тогда как усиление низких частот должно быть снижается при прослушивании речи или классической музыки.
Аналогично, потенциометр с маркировкой TREBLE регулирует усиление высоких частот. Усиление высоких частот полезно, когда музыка состоит из высоких тонов. например, колокольчики, в то время как, например, усиление высоких частот должно быть уменьшено, когда прослушивание старой записи для уменьшения фонового шума.
На диаграмме 1.8b показана функция усиления в зависимости от частоты сигнала. Если оба ползунка в крайнем верхнем положении результат показан кривой 1-2. Если оба находятся в среднем положении, функция описывается строкой 3-4, а оба ползунка в самом нижнем положении, результат отображается с помощью кривая 5-6. Установка пары ползунков на любые другие возможные результаты приводит к кривым между кривыми 1-2 и 5-6.
Потенциометры BASS и TREBLE имеют покрытие по конструкции и линейные по сопротивлению.
Третий банк на диаграмме — регулятор громкости. Покрытый и логарифмический по сопротивлению (отсюда марка log )
Резисторы — learn.sparkfun.com
Добавлено в избранное Любимый 50Номинальная мощность
Номинальная мощность резистора — одна из наиболее скрытых величин. Тем не менее это может быть важно, и это тема, которая возникает при выборе типа резистора.
Мощность — это скорость, с которой энергия преобразуется во что-то другое. Он рассчитывается путем умножения разности напряжений в двух точках на ток, протекающий между ними, и измеряется в ваттах (Вт). Лампочки, например, превращают электричество в свет. Но резистор может превратить только электрическую энергию, проходящую через него, в тепла . Хит обычно не лучший товарищ по играм с электроникой; слишком много тепла приводит к дыму, искрам и пожару!
Каждый резистор имеет определенную максимальную номинальную мощность.Чтобы резистор не перегревался слишком сильно, важно убедиться, что мощность на резисторе не превышает его максимального значения. Номинальная мощность резистора измеряется в ваттах и обычно находится между & frac18; Вт (0,125 Вт) и 1 Вт. Резисторы с номинальной мощностью более 1 Вт обычно называют силовыми резисторами и используются специально из-за их способности рассеивать мощность.
Определение номинальной мощности резистора
Номинальная мощность резистора обычно определяется по размеру его корпуса.Стандартные сквозные резисторы обычно имеют номинальную мощность ¼ или ½ Вт. Силовые резисторы более специального назначения могут указывать свою номинальную мощность на резисторе.
Эти силовые резисторы могут выдерживать гораздо большую мощность, прежде чем они сработают. Сверху справа в нижний левый приведены примеры резисторов 25 Вт, 5 Вт и 3 Вт со значениями 2 Ом, 3 Ом; 0,1 & Ом; и 22к & Ом. Меньшие силовые резисторы часто используются для измерения тока.
О номинальной мощности резисторов для поверхностного монтажа обычно можно судить также по их размеру.Резисторы типоразмера 0402 и 0603 обычно рассчитаны на 1/16 Вт, а резисторы 0805 могут потреблять 1/10 Вт.
Измерение мощности на резисторе
Мощность обычно рассчитывается путем умножения напряжения на ток (P = IV). Но, применяя закон Ома, мы также можем использовать значение сопротивления при расчете мощности. Если нам известен ток, протекающий через резистор, мы можем рассчитать мощность как:
Или, если мы знаем напряжение на резисторе, мощность можно рассчитать как:
← Предыдущая страница
Расшифровка маркировки резисторов Код SMD резистора
| Стандарты и коды резисторов
Что такое резисторы SMD?
SMD резисторы на плате с USB-накопителяSMD означает устройство для поверхностного монтажа.SMD — это любой электронный компонент, предназначенный для использования с SMT или технологией поверхностного монтажа. SMT был разработан для удовлетворения постоянного стремления производителей печатных плат использовать более мелкие компоненты и быть более быстрыми, эффективными и дешевыми.
SMD меньше своих традиционных аналогов. Они часто имеют квадратную, прямоугольную или овальную форму с очень низким профилем. Вместо проводов, проходящих через печатную плату, SMD имеют небольшие выводы или контакты, которые припаяны к контактным площадкам на поверхности платы.Это устраняет необходимость в отверстиях в доске и позволяет более полно использовать обе стороны доски.
Производство печатных плат с использованием SMT аналогично производству компонентов с выводами. На плату помещаются небольшие прокладки из серебряной, золотой пластины или олова для крепления компонентов. Паяльная паста, смесь флюса и небольших шариков припоя, затем наносится на монтажные площадки с помощью машины, подобной компьютерному принтеру. После того, как печатная плата подготовлена, на нее помещаются SMD с помощью машины, называемой устройством для захвата и размещения.Компоненты подаются в машину в длинных трубках, на рулонах ленты или в лотках. Эти машины могут прикреплять тысячи компонентов в час; один производитель рекламирует скорость до 60 000 центов в час. Затем плата проходит через печь для пайки оплавлением. В этой печи плата медленно нагревается до температуры, при которой припой плавится. После охлаждения плата очищается от остатков припоя и случайных частиц припоя. Визуальный осмотр позволяет проверить отсутствие или смещение деталей, а также чистоту платы.
Калькулятор SMD резистора
Этот калькулятор поможет вам найти значение сопротивления резисторов для поверхностного монтажа. Просто введите код, написанный на резисторе, и значение отобразится под ним.
Калькулятор может использоваться для 3- и 4-значных кодов, значений EIA и кодов с использованием «R» или «m». Хотя мы сделали все возможное, чтобы проверить функцию калькулятора для всех различных кодов, мы не можем гарантировать, что он вычисляет правильное значение для всех резисторов. Иногда производители могут использовать собственные коды.Чтобы точно определить значение, лучше всего измерить сопротивление мультиметром.
Наборы резисторов SMD
Термин «корпус» относится к размеру, форме и / или конфигурации выводов электронного компонента. Например, микросхема IC, имеющая выводы в два ряда на противоположных сторонах микросхемы, называется микросхемой Dual Inline Package (DIP). В резисторах SMD обозначения на корпусе резисторов указывают длину и ширину резистора. Пакеты SMD могут быть указаны как в дюймах, так и в миллиметрах.Поэтому важно проверить документацию производителя. В приведенной ниже таблице наиболее распространенные упаковки представлены в британских единицах измерения с метрическим эквивалентом. Кроме того, даны приблизительные значения типичных номинальных мощностей.
Резистор SMD Код
Из-за небольшого размера резисторов SMD часто нет места для печати на них традиционного кода цветовой полосы. Поэтому были разработаны новые коды SMD резисторов. Наиболее часто встречающиеся коды — это трех- и четырехзначная система, а также система Альянса электронной промышленности (EIA) под названием EIA-96.
Трех- и четырехзначная система
В этой системе первые две или три цифры указывают числовое значение сопротивления резистора, а последняя цифра дает множитель. Число последней цифры указывает степень десяти, на которую следует умножить данное значение резистора. Вот несколько примеров значений в этой системе:
- 450 = 45 Ом x 10 0 — 45 Ом
- 273 = 27 Ом x 10 3 — 27000 Ом (27 кОм)
- 7992 = 799 Ом x 10 2 составляет 79 900 Ом (79.9 кОм)
- 1733 = 173 Ом x 10 3 составляет 173 000 Ом (173 кОм)
Буква «R» используется для обозначения положения десятичной точки для значений сопротивления ниже 10 Ом. Таким образом, 0R5 будет 0,5 Ом, а 0R01 будет 0,01 Ом.
Система EIA-96
Прецизионные резисторы в сочетании с уменьшающимися размерами резисторов создали необходимость в новой, более компактной маркировке для резисторов SMD. Поэтому была создана система маркировки EIA-96.Он основан на серии E96, поэтому предназначен для резисторов с допуском 1%.
В этой системе маркировка состоит из трех цифр: 2 цифры для обозначения номинала резистора и 1 буква для множителя. Два первых числа представляют собой код, который указывает значение сопротивления с помощью трех значащих цифр. В таблице ниже приведены значения для каждого кода, которые в основном являются значениями из серии E96. Например, код 04 означает 107 Ом, а 60 означает 412 Ом. Коэффициент умножения дает окончательное значение резистора, например:
.- 01A = 100 Ом ± 1%
- 38C = 24300 Ом ± 1%
- 92Z = 0.887 Ом ± 1%
Использование буквы предотвращает путаницу с другими системами маркировки. Однако обратите внимание, потому что в обеих системах используется буква R. Для резисторов с допуском, отличным от 1%, существуют другие буквенные таблицы.
Как и в случае с кодами упаковки, эти коды значений сопротивления являются общими, но производитель может использовать их вариации или даже что-то совершенно другое. Поэтому всегда важно проверять систему маркировки производителя.
Номинальная мощность резистора| Рассеивание мощности на резисторах
Резисторыиспользуются во многих схемах.Но не все резисторы подходят для всех приложений. Резисторы подбираются по разным параметрам.
Цветовая кодировка резисторапомогает считывать сопротивление, допуск и напряжение. Помимо этих трех значений, существует еще один важный параметр, необходимый для использования резистора в цепи. Это номинальная мощность резистора. Очень важно использовать в цепи резистор соответствующей номинальной мощности, чтобы предотвратить ее повреждение.
Что означает номинальная мощность?
- Номинальная мощность резистора может быть определена как максимальная мощность, с которой резистор может безопасно работать без каких-либо повреждений.
- Мы знаем, что резистор рассеивает избыточную энергию в виде тепла. Номинальная мощность указывает максимальное количество тепла, которое резистор может безопасно рассеивать.
- Увеличение мощности на несколько процентов больше номинальной приведет к сгоранию резистора.
Как оцениваются резисторы?
- Номинальная мощность резистора выражена в ваттах, т.е. единицах мощности. Следовательно, это также называется мощностью.
- Как правило, чем больше резистор, тем больше мощность, с которой он может работать.
- По мере увеличения мощности резистора увеличивается и его стоимость. Резисторы
- обычно начинаются от 1/8 ватта до многих киловатт. Мощность резистора можно определить, посмотрев на размер резистора.
Резисторы с высокой мощностью называются силовыми резисторами. На рисунке ниже показаны резисторы с указанием их мощности.
Как определить мощность резистора?
Электрическая мощность определяется как P = V x I
Где v — напряжение
I — ток
Из закона Ома имеем V = I × R
Где R — сопротивление
Следовательно, P = I 2 × R
И P = V 2 / R
Следовательно, рассеиваемая мощность в резисторе может быть рассчитана с использованием любого из следующих стандартных уравнений
- Мощность P = V × I
- P = I 2 × R
- P = V 2 / R
Вот пример расчета номинала резистора, который будет использоваться в цепи.
Рассмотрим схему питания светодиода с напряжением источника 12 В и сопротивлением 800 Ом. Теперь посчитайте, какой резистор мощности можно использовать в схеме?
Мы знаем V = 12В, R = 800 Ом. Теперь вычисляем ток
I = V / R = 12/800 = 0,015 = ток 15 мА.
Таким образом, мощность, рассеиваемая резистором, рассчитывается по формуле P = 12x15x10 -3 = 0,18 Вт
Следовательно, здесь необходимо использовать резистор на 1/4 ватта. Использование резистора 1/8 Вт приведет к повреждению цепи.
Силовые резисторы
- Резисторы, рассчитанные на большую мощность, называются силовыми резисторами.
- Резисторы с номинальной мощностью не менее 5 Вт относятся к силовым резисторам.
- Материал, используемый для изготовления силовых резисторов, должен иметь высокую теплопроводность.
- Силовые резисторы часто поставляются с радиатором, который помогает им отводить тепло.
Силовые резисторы с проволочной обмоткой
- Силовые резисторы с проволочной обмоткой широко распространены, но их можно встретить и других типов.
- Если резисторы с проволочной обмоткой из нихромового сплава используются с соответствующей непроводящей эмалевой краской, они могут выдерживать температуры до 450 0 C.
сеточные резисторы
- Сеточные резисторы
- выдерживают большие токи.
- Они могут выдерживать ток до 500 А и иметь значение сопротивления до 0,04 Ом.
- В состав сеточных резисторов входят два электрода с большими металлическими полосками, соединенными между собой в виде матрицы.
- Сетевые резисторы используются в качестве заземляющих резисторов, тормозных резисторов и фильтров гармоник для электрических подстанций.
Водорезисторы
- Конструкция включает трубки, по которым подается физиологический раствор, с электродами, подключенными на обоих концах трубки.
- Концентрация физиологического раствора или соленой воды определяет сопротивление.
- Из-за наличия воды в трубках водные резисторы обеспечивают большую теплоемкость, что, в свою очередь, приводит к высокому рассеянию мощности.
Силовые резисторы SMD
Силовые резисторы также могут быть изготовлены в виде устройств поверхностного монтажа.
Из-за своего небольшого размера рассеиваемая мощность резисторов SMD меньше, чем у резисторов сеточного типа и водяных резисторов.
Обычно мощность, рассеиваемая резисторами SMD, составляет несколько ватт.
Диапазон мощности, рассеиваемой различными типами силовых резисторов:
- Резисторы SMD 5 Вт или менее
- Спиральная рана 50 Вт или менее
- Краевая рана 3.5 кВт или менее
- Сеточные резисторы 100 кВт или менее
- Водонепроницаемые резисторы 500 кВт или менее
Применение силовых резисторов
Силовые резисторы используются в приложениях, где нам нужно рассеивать большую мощность. Некоторые из применений силовых резисторов
- В моторных тормозах тяжелых локомотивов и трамваев используются силовые резисторы. Локомотивы движутся с большой скоростью и обладают высокой кинетической энергией. При остановке этих высокоскоростных локомотивов их кинетическая энергия преобразуется в тепло.
В зависимости от скорости локомотивов количество выделяемого тепла может составлять порядка нескольких киловатт. Классические дисковые тормоза нельзя использовать, так как они быстро изнашиваются. Следовательно, в локомотивах используются рекуперативные тормоза или резисторы большой мощности в виде сетевых резисторов. - Силовые резисторы используются в качестве заземляющих резисторов для ограничения токов короткого замыкания, высокого напряжения и действуют как защитные реле. Эти резисторы могут быть рассчитаны на ток до 8 килоампер.
- Силовые резисторы используются в качестве нагрузочных резисторов в турбинах и источниках бесперебойного питания.Они могут иметь регулируемое сопротивление и рассеивать мощность до 6 мегаватт. Из-за такой высокой рассеиваемой мощности нагрузочные резисторы оснащены эффективной системой охлаждения, которая контролирует температуру и предотвращает перегорание устройств.
SMD
Калькулятор кода резистора SMD
Этот простой калькулятор поможет вам определить номинал любого резистора SMD. Для начала введите 3- или 4-значный код и нажмите кнопку «Рассчитать» или Введите .
Примечание: Программа была тщательно протестирована, но в ней все еще может быть несколько ошибок. Поэтому, если вы сомневаетесь (и когда это возможно), не стесняйтесь использовать мультиметр для перепроверки критических компонентов.
См. Также калькулятор цветового кода на этой странице для MELF и стандартных сквозных резисторов.
Как рассчитать номинал SMD резистора
Большинство чип-резисторов имеют трех- или четырехзначный код — числовой эквивалент знакомого цветового кода для компонентов со сквозным отверстием.Недавно на прецизионных SMD появилась новая система кодирования (EIA-96).
Трехзначный код
Резисторы SMD со стандартным допуском маркируются простым 3-значным кодом . Первые два числа будут указывать значащие цифры, а третье будет множителем, сообщающим вам степень десяти, к которой должны быть умножены две значащие цифры (или сколько нулей нужно добавить). Для сопротивлений менее 10 Ом множитель отсутствует, вместо него используется буква «R» для обозначения положения десятичной точки.
Примеры 3-значного кода:
4-значный код
4-значный код используется для маркировки прецизионных резисторов для поверхностного монтажа. Она похожа на предыдущую систему, единственное отличие состоит в количестве значащих цифр: первые три числа укажут нам значащие цифры, а четвертое будет множителем, показывающим степень десяти, на которую должны быть умножены три значащие цифры. (или сколько нулей добавить).Сопротивления менее 100 Ом обозначаются буквой «R», обозначающей положение десятичной точки.
Примеры 4-значного кода:
EIA-96
Недавно появилась новая система кодирования (EIA-96) на 1% резисторах SMD. Он состоит из трехзначного кода: первые 2 цифры сообщают нам 3 значащих цифры номинала резистора (см. Справочную таблицу ниже), а третья отметка (буква) указывает множитель.
Код | Значение | Код | Значение | Код | Значение | Код | Значение | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
01 | 100 | 735025 | 905 905 905 905 905 905 905 562||||||||||
02 | 102 | 26 | 182 | 50 | 324 | 74 | 576 | |||||
03 | 105 | 332 905 905 905 905 905 51 49 905590 | ||||||||||
04 | 107 | 28 | 191 | 52 | 340 | 76 | 604 | |||||
05 | 110 295 905 905 905 905 905 905 905 905 905 905 | 77 | 619 | |||||||||
06 | 113 | 30 | 200 | 54 | 357 90 550 | 78 | 634 | |||||
07 | 115 | 31 | 205 | 55 | 365 | 79 | 649 | |||||
08 | 905 905 118 495 905 495374 | 80 | 665 | |||||||||
09 | 121 | 33 | 215 | 57 | 383 | 81 | 681 | 392 | 82 | 698 | ||
11 | 127 | 35 | 226 | 59 | 402 | 83 | 715 905 905 905 905 905 | 60 | 412 | 84 | 732 | |
13 | 133 | 37 | 237 | 61 | 422 | 85 | 750 | |||||
14 | 137 | 38 | 243 | 62 | 432 | 86 | 768 | 1405 905 905 905 905 905 905 905 905 | 63 | 442 | 87 | 787 |
16 | 143 | 40 | 255 | 64 | 453 | 88 | 805 905 905 905 905 905 905 905 905 905 905 905 905 | 261 | 65 | 464 | 89 | 825 |
18 | 150 | 42 | 267 | 66 | 475 | 905 905 905 905 905 905 905 905 905 905 43 | 274 | 67 | 487 | 91 | 866 | |
20 | 158 | 44 | 9 054928068 | 499 | 92 | 887 | ||||||
21 | 162 | 45 | 287 | 69 | 511 | 9347 16550 905 905 905 46 | 294 | 70 | 523 | 94 | 931 | |
23 | 169 | 47 | 301 | 71 | 956 905 905 905 905 905 905 | 48 | 309 | 72 | 549 | 96 | 976 |
Код | Множитель | ||
---|---|---|---|
Z | 0.001 | ||
Y или R | 0,01 | ||
X или S | 0,1 | ||
A | 1 | ||
B или H | 10 | ||
905 | D | 1000 | |
E | 10000 | ||
F | 100000 |
Примеры кода EIA-96:
01Y = 100 x 0,01 = 1 Ом
68X = 499 x 0.1 = 49,9 Ом
76X = 604 x 0,1 = 60,4 Ом
01A = 100 x 1 = 100 Ом
29B = 196 x 10 = 1,96 кОм
01C = 100 x 100 = 10 кОм
больше примеров SMD EIA-96 …
Примечания:
- SMD резистор с маркировкой 0, 00, 000 или 0000 — перемычка (перемычка с нулевым сопротивлением).
- чип резистор, помеченный стандартным трехзначным кодом, а короткая полоса под маркировкой обозначает прецизионный (1% или менее) резистор со значением, взятым из серии E24 (эти значения обычно зарезервированы для резисторов 5%).Например: 1 2 2 = 1,2 кОм 1%. Некоторые производители подчеркивают все три цифры — не путайте это с кодом, используемым на резисторах, чувствительных к малому току. SMD
- со значениями в миллиомах, предназначенные для датчиков тока, часто помечаются буквами M, m или L, показывающими расположение десятичной точки (со значением в миллиомах). Например: 1M50 = 1,50 мОм, 2M2 = 2,2 мОм, 5L00 = 5 мОм.
- Токочувствительные SMD также могут быть отмечены длинной полосой сверху (1 м 5 = 1.5 мОм, R001 = 1 мОм и т. Д.) Или длинная полоса под кодом (101 = 0,101 Ом, 047 = 0,047 Ом). Подчеркивание используется, когда необходимо опустить начальную букву «R» из-за ограниченного пространства на корпусе резистора. Так, например, R068 становится 068 = 0,068 Ом (68 мОм).
Номинальная мощность
Чтобы узнать приблизительную номинальную мощность вашего резистора SMD, измерьте его длину и ширину. В таблице ниже представлены несколько часто используемых размеров корпуса с соответствующими типичными номинальными мощностями.Используйте эту таблицу только в качестве руководства и всегда сверяйтесь с таблицей данных компонента, чтобы узнать точное значение.
Упаковка | Размер в дюймах (ДxШ) | Размер в мм (ДxШ) | Номинальная мощность |
---|---|---|---|
0201 | 0,024 дюйма x 0,012 дюйма | 0,6 мм x 0,3 мм | 1/2047 905 |
0402 | 0,04 дюйма x 0,02 дюйма | 1,0 мм x 0,5 мм | 1/16 Вт |
0603 | 0.063 «x 0,031» | 1,6 мм x 0,8 мм | 1 / 16W |
0805 | 0,08 «x 0,05» | 2,0 мм x 1,25 мм | 1 / 10W |
120496 | x 0,063 дюйма3,2 мм x 1,6 мм | 1 / 8W | |
1210 | 0,126 дюйма x 0,10 дюйма | 3,2 мм x 2,5 мм | 1 / 4W |
1812 | 0,18 « | 4,5 мм x 3,2 мм | 1/3 ширины |
2010 | 0.20 дюймов x 0,10 дюйма | 5,0 мм x 2,5 мм | 1 / 2W |
2512 | 0,25 дюйма x 0,12 дюйма | 6,35 мм x 3,2 мм | 1W |
Допуск
Стандартный трех- и четырехзначный код не дает нам возможности определить допуск резистора SMD.
Однако в большинстве случаев вы обнаружите, что резистор для поверхностного монтажа с трехзначным кодом имеет допуск 5%, а резистор с четырехзначным кодом или новым кодом EIA-96 имеет допуск 1%. или менее.
Из этого правила есть много исключений, поэтому всегда сверяйтесь с таблицей данных производителя, особенно если допуск компонента имеет решающее значение для вашего приложения.
Резисторы| Electronics Club
Резисторы | Клуб электроникиЦветовой код | Толерантность | Серия E6 / E12 | Номинальная мощность
См. Также: Сопротивление | Закон Ома | Переменные резисторы
Резисторы ограничивают прохождение электрического тока, например, резистор включен последовательно с светодиод (LED) для ограничения тока, проходящего через светодиод.
Резисторы можно подключать любым способом, и они не повреждаются от нагрева при пайке.
Сопротивление измеряется в омах, символ (омега). 1 довольно мала, поэтому номиналы резисторов также приведены в к и М:
1k = 1000
1M = 1000k
= 1000000.
Большинство резисторов слишком малы, чтобы отображать их сопротивление в виде числа. Вместо этого используется цветовой код.
Для получения информации о резисторах, подключенных последовательно и параллельно, см. страница сопротивления.
Rapid Electronics: резисторы
Сокращенное обозначение резистора
Значения резисторов часто записываются на принципиальных схемах с использованием кодовой системы, исключающей использование десятичной точки. потому что очень легко пропустить маленькую точку. Вместо десятичной точки используются буквы R, K и M.
Чтобы прочитать код: замените букву десятичной точкой, затем умножьте значение на 1000, если буква K, или 1000000, если буква была М. Буква R означает умножение на 1.
Код цвета резистора
Номиналы резисторовобычно отображаются с помощью цветных полос, каждый цвет представляет собой число, как показано в таблице. Большинство резисторов имеют 4 полосы:
- Первая полоса дает первую цифру .
- Вторая полоса дает вторую цифру .
- Третья полоса указывает количество нулей .
- Четвертая полоса показывает допуск (точность) резистора но это можно игнорировать почти для всех схем.
Пример
Этот резистор имеет красную (2), фиолетовую (7), желтую (4 нуля) и золотую полосы, поэтому его значение составляет 270000 = 270 тыс. (на принципиальных схемах обычно отображается как 270K ).
Сделайте свой собственный калькулятор цветового кода.
Электроника Код цвета | ||
Цвет | Номер | |
Черный | 0 | |
Коричневый | 1 | 3 |
Желтый | 4 | |
Зеленый | 5 | |
Синий | 6 | 905 905 905 905 905 905 905 905 905 905 905 Серый8 |
Белый | 9 |
Резисторы малой стоимости (
<10 Ом)Стандартный цветовой код не может отображать значения меньше 10.Для отображения меньших значений используются два специальных цвета для третьей полосы :
- золота, что означает × 0,1
- серебра, что означает × 0,01
Первый и второй диапазоны представляют цифры обычным образом.
Например:
красные, фиолетовые, золотые полосы представляют 27 × 0,1 = 2,7.
зеленые, синие, серебряные полосы представляют 56 × 0,01 = 0,56.
Калькулятор цветового кода резистора
Этот калькулятор можно использовать для определения номиналов резисторов.Он состоит из трех карточных дисков, показывающих цвета и значения, они скреплены вместе, чтобы вы могли просто поверните диски, чтобы выбрать требуемое значение или цветовой код. Простой, но эффективный!
Есть две версии для загрузки и печати на белой карточке формата А4 (два калькулятора на листе):
Чтобы сделать калькулятор: вырежьте три диска и скрепите их вместе латунной застежкой для бумаги. Черно-белую версию необходимо раскрасить вручную, и проще всего это сделать перед вырезанием .
Допуск резисторов
Допуск резистора показан четвертой полосой цветового кода. Допуск — это , точность резистора, он указан в процентах.
Например, 390 резистор с допуском ± 10% будет иметь значение в пределах 10% от 390, г. между 390 — 39 = 351 и 390 + 39 = 429 (39 составляет 10% от 390).
Для четвертой полосы используется специальный цветовой код. Допуск :
.- серебро ± 10%
- золото ± 5%
- красный ± 2%
- коричневый ± 1%
- Если четвертая полоса не отображается, допуск составляет ± 20%
Допуском можно пренебречь почти для всех цепей, поскольку точное значение резистора требуется редко. и там, где это переменный резистор, обычно будет использоваться.
Реальные значения резисторов (серии E6 и E12)
Вы могли заметить, что резисторы доступны не со всеми возможными значениями, например 22k и 47k есть в наличии, но 25к а 50к нет!
Почему это? Представьте, что вы решили делать резисторы каждые 10 дает 10, 20, 30, 40, 50 и так далее. Кажется, это нормально, но что произойдет, когда вы достигнете 1000? Делать 1000, 1010, 1020, 1030 и так далее было бы бессмысленно, потому что для этих значений 10 — очень маленькая разница, слишком мала, чтобы быть заметной в большинстве схем.
Для получения разумного диапазона значений резистора вам необходимо увеличить размер «шага». по мере увеличения значения. Стандартные номиналы резисторов основаны на этой идее и образуют серия, которая следует той же схеме для каждого числа, кратного десяти.
Деньги используют аналогичную систему
Аналогичное расположение используется для денег: размер шага монет и банкнот увеличивается с увеличением стоимости.
Например, валюта Великобритании (1 фунт = 100 пенсов) содержит монеты 1, 2, 5, 10, 20, 50, 1 и 2 фунта стерлингов.
(плюс банкноты 5, 10, 20 и 50 фунтов стерлингов).
Серия E6
Серия E6 имеет 6 значений для каждого кратного десяти, она используется для резисторов с допуском 20%. Значения: 10, 15, 22, 33, 47, 68, … затем продолжается 100, 150, 220, 330, 470, 680, 1000 и т. Д. Обратите внимание, как размер шага увеличивается с увеличением значения. Для этой серии шаг (к следующее значение) примерно вдвое меньше.
Серия E12
Серия E12 имеет 12 значений для каждого кратного десяти, она используется для резисторов с допуском 10%.Значения: 10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68, 82, … затем продолжается 100, 120, 150 и т. Д. Обратите внимание, как это серия E6 с дополнительным значением в промежутках.
Серия E12 наиболее часто используется для резисторов.
Позволяет выбрать значение в пределах 10% от точного значения, которое вам нужно. Это достаточно точно для почти все проекты и это разумно, потому что большинство резисторов имеют допуск ± 10%.
Номинальная мощность резисторов
Электрическая энергия преобразуется в тепло, когда через резистор протекает ток.Обычно эффект незначителен, но если сопротивление низкое или напряжение на резисторе высокое, может пройти большой ток, в результате чего резистор заметно нагреется. Резистор должен выдерживать эффект нагрева и резисторы имеют номинальную мощность, чтобы показать это.
Номинальная мощность резисторов редко указывается в списках деталей, потому что для большинства цепей стандартная мощность Подходят мощность 0,25 Вт или 0,5 Вт. В редких случаях, когда требуется более высокая мощность, она должна быть четко обозначена. указанные в перечне деталей, это будут схемы, в которых используются резисторы низкого сопротивления (менее около 300) или высокого напряжения (более 15В).
Rapid Electronics: силовые резисторы
Мощность P, развиваемая в резисторе, может быть определена с помощью следующих уравнений:
P = V² / R или P = I² × R |
P = развиваемая мощность в ваттах (Вт)
I = ток через резистор в амперах (A)
R = сопротивление резистора в Ом ()
В = напряжение на резисторе в вольтах (В)
Примеры:
- Резистор 470 с 10 В на нем
требуется номинальная мощность P = V² / R = 10² / 470 = 0.21Вт.
В этом случае подойдет стандартный резистор 0,25Вт. - Резистор 27 с напряжением 10 В на нем
требуется номинальная мощность P = V² / R = 10² / 27 = 3,7 Вт.
Требуется резистор большой мощности с номинальной мощностью 5 Вт (или более).
Rapid Electronics любезно разрешили мне использовать их изображения на этом веб-сайте, и я очень благодарен за их поддержку. У них есть широкий ассортимент резисторов и других компонентов для электроники, и я рад рекомендую их как поставщика.
Книг по комплектующим:
Политика конфиденциальности и файлы cookie
Этот сайт не собирает личную информацию. Если вы отправите электронное письмо, ваш адрес электронной почты и любая личная информация будет используется только для ответа на ваше сообщение, оно не будет передано никому. На этом веб-сайте отображается реклама, если вы нажмете на рекламодатель может знать, что вы пришли с этого сайта, и я могу быть вознагражден. Рекламодателям не передается никакая личная информация.Этот веб-сайт использует некоторые файлы cookie, которые классифицируются как «строго необходимые», они необходимы для работы веб-сайта и не могут быть отклонены, но они не содержат никакой личной информации. Этот веб-сайт использует службу Google AdSense, которая использует файлы cookie для показа рекламы на основе использования вами веб-сайтов. (включая этот), как объяснил Google. Чтобы узнать, как удалить файлы cookie и управлять ими в своем браузере, пожалуйста, посетите AboutCookies.org.
electronicsclub.info © Джон Хьюс 2021 г.
Силовой резистор »Примечания по электронике
Резистор с проволочной обмоткой часто используется в резисторах большой мощности или в некоторых других областях, где необходимы его свойства низкого шума и рассеивания мощности.
Resistor Tutorial:
Resistors Обзор Углеродный состав Карбоновая пленка Металлооксидная пленка Металлическая пленка Проволочная обмотка SMD резистор MELF резистор Переменные резисторы Светозависимый резистор Термистор Варистор Цветовые коды резисторов Маркировка и коды SMD резисторов Характеристики резистора Где и как купить резисторы Стандартные номиналы резисторов и серия E
Резистор с проволочной обмоткой используется в различных приложениях и, в частности, как силовой резистор, где необходимо рассеивать большую мощность.
Как видно из названия, проволочный резистор состоит из резистивного провода, намотанного на каркас из непроводящего материала. Обычно резистивный провод изолирован, чтобы смежные провода не закорачивались.
Резисторы с проволочной обмоткой были одними из первых типов резисторов, которые стали производить на заре развития электротехники, а затем и беспроводной связи. На смену им во многих приложениях пришли углеродные резисторы, а затем металлооксидные и металлопленочные резисторы.Тем не менее, сегодня проволочные резисторы по-прежнему используются в качестве предпочтительного резистора во многих приложениях.
Резистор с проволочной обмоткойЧто такое резистор с проволочной обмоткой?
Резистор с проволочной обмоткой был одним из первых применяемых резисторов. Основная структура резистора с проволочной обмоткой мало изменилась с годами.
Резистор изготовлен из резистивного провода, намотанного на центральный сердечник или каркас, который обычно изготавливается из керамики.
Основная концепция конструкции проволочного резистораПосле намотки торцевые крышки прижимаются к сердечнику, и проволока сопротивления приваривается к ним для обеспечения надлежащего контакта.Наконец, сборка инкапсулируется для защиты от влаги и физических повреждений.
Конструкция резисторов с проволочной обмоткой означает, что они могут выдерживать высокие температуры, и, как результат, они используются в качестве резисторов большой мощности во многих случаях, но проверьте номинальные характеристики, чтобы убедиться, что они обладают достаточно высокой мощностью для применения.
Сопротивление проволочных резисторов определяется рядом факторов:
- Длина провода сопротивления
- Диаметр провода сопротивления
- Удельное сопротивление провода сопротивления
Чтобы получить представление о фигурах, 30-метровый медный провод малого диаметра может иметь сопротивление всего несколько Ом.В отличие от этого, используя проволоку с сопротивлением — популярным типом является хромоникелевый — проволоку можно сделать длиной всего 30 см. Это делает возможным намотку на типичном каркасе, который может использоваться в электронной схеме.
Если требуются резисторы с проволочной обмоткой с жестким допуском, то выбранный резистивный провод может иметь меньшее сопротивление, что делает его более длинным и позволяет более точно обрезать его длину как долю от общей длины. При необходимости сопротивление можно уменьшить в индивидуальном порядке.
Резисторы с проволочной обмоткой выпускаются в различных корпусах, и многие из них особенно подходят для применения в силовых резисторах — некоторые находятся в керамических корпусах, а другие доступны в металлических корпусах, которые можно прикрепить болтами к металлическому шасси или другим формам радиатора.
Свойства проволочного резистора
Хотя проволочные резисторы не так широко используются, как резисторы других типов, такие как резисторы для поверхностного монтажа и резисторы с металлической пленкой, они являются важным компонентом для некоторых конкретных областей электроники, где другие типы совершенно не подходят или не могут работать так же хорошо.
В результате проволочные резисторы из-за своих свойств используются в ряде ключевых областей:
- Приложения с высокой мощностью: Резисторы с проволочной обмоткой могут рассеивать значительное количество энергии. Там, где уровень рассеяния превышает ватт или около того, нужны резисторы с проволочной обмоткой. Их технология не только позволяет им выдерживать высокие уровни мощности, но они также могут быть спроектированы для крепления к радиатору, чтобы они могли безопасно рассеивать даже более высокие уровни мощности — некоторые из них рассчитаны на мощность до 2.5кВт.
- Области применения с очень высокими допусками: Тот факт, что в резисторах будут использоваться резисторы, означает, что они могут быть изготовлены с большой точностью — некоторые из них имеют начальные допуски до 0,005%. Это может быть очень полезно для таких приложений, как использование в измерительных приборах.
- Требуется высокая температурная стабильность: Резисторы из проволоки можно не только изготавливать очень точно, но они также могут иметь очень высокую температурную стабильность, особенно по сравнению с другими типами резисторов.Используемый провод сопротивления может иметь очень низкий температурный коэффициент сопротивления, что приводит к тому, что конечный резистор имеет низкое TCR. Достижения в области материаловедения позволили создавать устройства со значениями TCR от 5 до 10 ppm / ° C. Это зависит от металла или сплава, используемого для проволоки сопротивления.
- Долговременная стабильность: Другой ключевой особенностью проволочных резисторов является их долговременная стабильность. Все резисторы меняют свое значение со временем, но резисторы с проволочной обмоткой меняются очень мало.Цифры от 15 до 50 ppm / год часто достигаются, потому что они сделаны из стабильных материалов.
- Способность поглощать импульсы: В отличие от некоторых форм резисторов, резисторы с проволочной обмоткой хорошо выдерживают импульсы высокого напряжения. Их высокая тепловая масса и упругость провода в резисторах означают, что они способны поглощать уровни энергии, значительно превышающие их средние значения, в течение коротких периодов времени без повреждений или изменения сопротивления.
- Если требуются индивидуальные требования: Способ изготовления проволочных резисторов означает, что относительно легко изготавливать индивидуальные устройства с сопротивлением, точно указанным заказчиком для конкретных требований.
- Применения с низким уровнем шума: В результате того, что используется резистивный провод, а не другие материалы, эти резисторы являются одними из доступных резисторов с самым низким уровнем шума.
Типы резисторов с проволочной обмоткой
РезисторыWirewould могут использоваться во множестве различных приложений, и обычно они попадают в некоторые основные категории, для которых конструкция резистора может измениться.
- Прецизионные резисторы: Прецизионные резисторы с проволочной обмоткой используются в ряде различных приложений. Их можно использовать в элементах, включая контрольно-измерительные приборы — даже в мультиметрах, а также в измерительных мостах, калибровочном оборудовании, аттенюаторах НЧ и т.д. .
Для резисторов также необходим низкий температурный коэффициент сопротивления должен быть низким, возможно 5 ppm / ° C.Долговременная стабильность также должна быть низкой, возможно, менее 40 ppm в год. С такими цифрами могут быть выбраны базовые уровни допуска сопротивления ± 0,01%. Подобные цифры означают, что резистор будет поддерживать необходимое сопротивление в течение длительного периода времени.
- Силовые резисторы: Одно из основных применений проволочных резисторов — это силовые приложения. Возможная мощность может достигать 1 кВт или 2,5 кВт. Существует несколько типов, которые можно разделить на категории по корпусу и конструкции:
- Корпус из силиконовой смолы: Эти форматы герметизации обычно используются для резисторов меньшей мощности.Они компактны и могут выдерживать высокие температуры: обычно до ~ 300 ° C, но часто разумно не доводить их до предела.
- Стекловидное эмалевое покрытие: Этот тип покрытия уже много лет широко используется для силовых резисторов с проволочной обмоткой. Эти резисторы часто предназначены для работы при температурах до ~ 400 ° C, но эти температуры не рекомендуются для большинства электронного оборудования! Покрытие хорошо изолирует при более низких температурах, но становится хуже, когда температура повышается к верхнему пределу диапазона.Значения сопротивления для этих резисторов варьируются от ~ 1 Ом до ~ 10 кОм или около того.
- Алюминиевый корпус: Этот тип конструкции используется для самых высоких уровней мощности. Резисторы имеют керамический сердечник с покрытием из силиконовой смолы, которое затем помещается в алюминиевый профиль, анодированный (часто золотого цвета) для обеспечения хорошей электрической изоляции и пассивирования поверхности. Алюминиевый корпус резистора обычно изготавливается с небольшими ребрами и его можно прикрепить болтами к радиатору.Внутренние элементы также спроектированы так, чтобы отводить как можно больше тепла алюминиевому корпусу. Для этого типа резистора доступен широкий диапазон значений сопротивления.
Проволока обмотка резистора проволока
Как и следовало ожидать, провод, используемый в проволочных резисторах, определяет многие из его свойств. Использование разных материалов для проволоки обеспечивает разные электрические свойства: удельное сопротивление, температурный коэффициент сопротивления, долговременную стабильность, максимальную рабочую температуру и тому подобное.
Выбор материала важен, так как правильный провод резистора позволит получить оптимальные характеристики резистора в данной роли.
Многие материалы для проводов имеют знакомые названия, поскольку они много лет использовались в качестве форм проводов сопротивления и, следовательно, использовались в резисторах с проволочной обмоткой.
В качестве проволоки обычно используются медные сплавы, различные сплавы железа, никель-хромовые сплавы, сплавы серебра и вольфрам.
Индуктивность и емкость резистора с проволочной обмоткой
Резисторы с проволочной обмоткой очень хороши для работы на низкой частоте и постоянном токе, но по мере увеличения рабочей частоты влияние индуктивности и емкости становится более заметным.
Индуктивность возникает из-за того, что резистор представляет собой катушку из резистивного провода и действует на катушку индуктивности. Емкость возникает между разными витками катушки и т. Д.
Когда рабочая частота поднимается выше 100 кГц или около того, это влияние может стать значительным и изменить работу схемы.
Обычно резистор с проволочной обмоткой наматывается как обычная катушка на керамический каркас, и этого более чем достаточно для большинства типов операций.Однако, если необходимы низкие индуктивность и емкость, есть другие методы, которые можно использовать для уменьшения, но не для устранения индуктивности и емкости.
Есть методы, которые можно использовать для уменьшения индуктивности:
- Бифилярная обмотка: Один из возможных методов — использовать бифилярный провод, то есть два отдельных провода проложены вместе. Затем их можно соединить на дальнем конце. Идея состоит в том, что, если таким образом соединить два провода вместе, ток будет течь в противоположных направлениях, и поля исчезнут.Хотя он и не идеален, он значительно снижает индуктивность, но, когда два провода проложены в непосредственной близости, нежелательная емкость увеличивается.
- Обмотка Ayrton-Perrry: Обмотка необычной формы. Когда провод входит в катушку резистора, он разделяется на две части, одна половина наматывается в одном направлении, а другая половина — в обратном. При намотке таким образом провода располагаются так, что ток течет в противоположных направлениях, тем самым уменьшая индуктивность.Кроме того, провода не проходят рядом друг с другом так же, как в бифилярной обмотке, и поэтому электрическая емкость увеличивается незначительно.
Самостоятельная индуктивность и емкость всегда будут проблемой для резисторов с проволочной обмоткой. В результате они редко используются в приложениях, где они используются на высоких или радиочастотах. Они могут использоваться только тогда, когда они используются в секции цепи, не несущей RF. Специализированные методы намотки обычно используются только в крайнем случае.Гораздо лучше использовать другую технологию резистора, если на резисторе присутствуют высокие частоты.
Резисторы с проволочной обмоткой используются довольно широко. Они особенно используются в качестве резисторов большой мощности, где необходимо рассеивать большие уровни мощности. Они широко используются во многих энергетических приложениях; Они не только физически больше, чем многие другие типы резисторов, но и имеют проволочный проводник и керамический каркас, они больше подходят для использования в качестве резисторов большой мощности, чем другие типы, более широко распространенные.
К сожалению, их конструкция означает, что они намного дороже, чем обычно используемые резисторы гораздо меньшего размера.
Резисторыс проволочной обмоткой также используются там, где требуются очень жесткие допуски и высокая температурная стабильность. Провода обычно имеют лучший температурный коэффициент сопротивления, чем многие другие типы резисторов, хотя в наши дни многие из них очень хороши.