Сопротивление изоляции: Измерение сопротивления изоляции: полное руководство

Содержание

Измерение сопротивления изоляции: полное руководство

Для безопасной работы все электрические установки и оборудование должны иметь сопротивление изоляции, соответствующее определенным характеристикам. Независимо от того, идет ли речь о соединительных кабелях, оборудовании секционирования и защиты, трансформаторах, электродвигателях и генераторах – электрические проводники изолируются с помощью материалов с высоким электрическим сопротивлением, которые позволяют ограничить, насколько это возможно, электрический ток за пределами проводников.

Из-за воздействий на оборудование качество этих изоляционных материалов меняется со временем. Подобные изменения снижают электрическое сопротивление изоляционных материалов, что увеличивает ток утечки, который, в свою очередь, приводит к серьезным последствиям, как с точки зрения безопасности (для людей и имущества), так и с точки зрения затрат на остановки производства.

Регулярная проверка изоляции, проводимая на установках и оборудовании в дополнение к измерениям, выполняемым на новом и восстановленном оборудовании во время ввода в эксплуатацию, помогает избегать подобных инцидентов за счет профилактического обслуживания. Данные испытания дают возможность обнаружить старение и преждевременное ухудшение изоляционных свойств прежде, чем они достигнут уровня, способного привести к описанным выше инцидентам.

Проверка: испытание или измерение?

На первом этапе полезно прояснить разницу между двумя типами проверки, которые часто путают – испытание электрической прочности изоляции и измерение сопротивления изоляции.

Испытание электрической прочности, также называемое «испытание на пробой», позволяет определить способность изоляции выдерживать выброс напряжения средней длительности без возникновения искрового пробоя. Фактически такой выброс напряжения может быть вызван молнией или индукцией в результате неисправности линии электропередачи. Основной целью этого теста является обеспечение соответствия строительным нормам и правилам, касающимся путей утечки и зазоров. Этот тест часто выполняется с использованием напряжения переменного тока, но также при испытаниях применяется и напряжение постоянного тока. Подобный тип измерений требует использования установок для испытания кабелей повышенным напряжением. Результатом является значение напряжения, обычно выраженное в киловольтах (кВ). Испытания электрической прочности в случае неисправности могут быть разрушительными, в зависимости от уровней тестирования и энергетических возможностей инструмента. Поэтому этот метод используется для типового тестирования на новом или восстановленном оборудовании.

При нормальных условиях испытаний измерение сопротивления изоляции является неразрушающим тестированием. Этот замер выполняется с использованием напряжения постоянного тока меньшей величины, чем при испытании электрической прочности, и дает результат, выраженный в кОм, МОм, ГОм или ТОм. Значение сопротивления указывает на качество изоляции между двумя проводниками. Поскольку данное испытание является неразрушающим, его особенно удобно использовать для контроле старения изоляции работающего электрического оборудования или установок. Для данного измерения используется тестер изоляции, также называемый мегомметром (доступны мегомметры с диапазоном до 999 ГОм).

Типовые причины неисправности изоляция

Поскольку измерение сопротивления изоляции с помощью мегомметра является частью более широкой политики профилактического обслуживания, важно понимать, по каким причинам возможно ухудшение характеристик изоляции. Только это позволит предпринять правильные шаги для их устранения.

Можно разделить причины неисправности изоляции на пять групп. Однако необходимо иметь в виду, что в случае отсутствия каких-либо корректирующих мер, различные причины будут накладываться друг на друга, приводя к пробою изоляции и повреждению оборудования.

1. Электрические нагрузки

В основном электрические нагрузки связаны с отклонением рабочего напряжения от номинального значения, причем влияние на изоляцию оказывают как перенапряжения, так и понижение напряжения.

2. Механические нагрузки

Частые последовательные запуски и выключения оборудования способны вызвать механические нагрузки. Кроме того, сюда входят проблемы с балансировкой вращающихся машин и любые прямые нагрузки на кабели и установки в целом.

3. Химические воздействия

Присутствие химических веществ, масел, агрессивных испарений и пыли в целом отрицательно влияет на характеристики изоляционных материалов.

4. Напряжения, связанные с колебаниями температуры:

В сочетании с механическими напряжениями, вызванными последовательными запусками и остановками оборудования, также на свойства изоляционных материалов влияют напряжения, возникающие при расширении и сжатии. Работа при экстремальных температурах также приводит к старению материалов.

5. Загрязнение окружающей среды

Плесень и посторонние частицы в теплой, влажной среде также способствуют ухудшению изоляционных свойств установок и оборудования.

В приведенной ниже таблице показана относительная частота различных причин отказа электродвигателя.

Внешние загрязнения:

 

В дополнение к внезапным повреждениям изоляции из-за таких чрезвычайных происшествий, как, например, наводнения, факторы, снижающие эффективность изоляции работающей установки объединяются, иногда усиливая друг друга. В конечном итоге в долгосрочной перспективе без постоянного мониторинга это приведет к возникновению ситуаций, которые станут критическими с точки зрения безопасности людей и нормальной эксплуатации. Таким образом, регулярное тестирование изоляции установок или электрических машин является полезным способом контроля состояния изоляции, позволяющим предпринимать необходимые действия еще до того, как возникло повреждение.

Принцип измерения сопротивления изоляции и влияющие на него факторы

Измерение сопротивления изоляции базируется на законе Ома. Подав известное напряжение постоянного тока с уровнем ниже, чем напряжение испытания электрической прочности, а затем измерив значение тока, очень просто замерить значение сопротивления. В принципе, значение сопротивления изоляции очень велико, но не бесконечно, поэтому измеряя малый протекающий ток, мегомметр указывает значение сопротивления изоляции в кОм, МОм, ГОм и даже в ТОм (на некоторых моделях). Это сопротивление характеризует качество изоляции между двумя проводниками и способно указать на риск возникновения тока утечки.

На значение сопротивления изоляции и, следовательно, на значение тока, протекающего, когда к тестируемой цепи приложено напряжение постоянного тока, влияет ряд факторов. К таким факторам относятся, например, температура или влажность, которые способны существенно повлиять на результаты измерений. Для начала давайте проанализируем характер токов, протекающих во время измерения изоляции, используя гипотезу о том, что эти факторы не влияют на проводимое измерение.

Общий ток, протекающий в изоляционном материале, представляет собой сумму трех компонентов:

  • Емкость. Для зарядки емкости тестируемой изоляции необходим ток зарядки емкости. Это переходный ток, который начинается с относительно высокого значения и падает экспоненциально к значению, близкому к нулю, когда тестируемая цепь электрически заряжается. Через несколько секунд или десятых долей секунды этот ток становится незначительным по сравнению с измеряемым током.
  • Поглощение. Ток поглощения, соответствующий дополнительной энергии, которая необходима для переориентации молекул изоляционного материала под воздействием прикладываемого электрического поля. Этот ток падает намного медленнее, чем ток зарядки емкости; иногда необходимо несколько минут, чтобы достичь значения, близкого к нулю.
  • Ток утечки или ток проводимости. Этот ток характеризует качество изоляции и не изменяется со временем.

На приведенном ниже графике эти три тока показаны в зависимости от времени. Шкала времени является условной и может различаться в зависимости от тестируемой изоляции.

Для обеспечения надлежащих результатов тестирования очень больших электродвигателей или очень длинных кабелей сведение к минимуму емкостных токов и токов поглощения может занимать от 30 до 40 минут.

Когда в цепь подается постоянное напряжение, суммарный ток, протекающий в тестируемом изоляторе, изменяется в зависимости от времени. Это предполагает значительное изменение сопротивления изоляции.

Перед подробным рассмотрением различных методов измерения было бы полезно снова взглянуть на факторы, которые влияют на измерение сопротивления изоляции.

Влияние температуры

Температура вызывает квазиэкспоненциальное изменение значения сопротивления изоляции. В контексте программы профилактического технического обслуживания измерения должны выполняться в одинаковых температурных условиях или, если это невозможно, должны корректироваться относительно эталонной температуры. Например, увеличение температуры на 10°C уменьшает сопротивление изоляции ориентировочно наполовину, в то время как уменьшение температуры на 10°C удваивает значение сопротивления изоляции.

Уровень влажности влияет на изоляцию в соответствии со степенью загрязнения ее поверхности. Никогда не следует измерять сопротивление изоляции, если температура ниже точки росы.

Коррекция сопротивления изоляции в зависимости от температуры (источник IEEE-43-2000)

 

Методы тестирования и интерпретация результатов

Кратковременное или точечное измерение

Это наиболее простой метод. Он подразумевает подачу испытательного напряжения на короткое время (30 или 60 секунд) и фиксацию значения сопротивления изоляции на этот момент. Как уже указывалось выше, на такое прямое измерение сопротивления изоляции значительное влияние оказывает температура и влажность, поэтому измерение следует стандартизировать при контрольной температуре и для сравнения с предыдущими измерениями следует фиксировать уровень влажности. С помощью данного метода можно проанализировать качество изоляции, сравнивая текущее измеренное значение с результатами нескольких предыдущих тестов. Со временем это позволит получить более достоверную информацию о характеристиках изоляции тестируемой установки или оборудования по сравнению с одиночным испытанием.

Если условия измерения остаются идентичными (то же самое испытательное напряжение, то же время измерения и т.д.), то при периодических измерениях путем мониторинга и интерпретации любых изменений можно получить четкую оценку состояния изоляции. После записи абсолютного значения, необходимо проанализировать изменение во времени. Таким образом, измерение, показывающее относительно низкое значение изоляции, которое, тем не менее, стабильно во времени, теоретически должно доставлять меньше беспокойства, чем значительное снижение сопротивления изоляции со временем, даже если сопротивление изоляция выше, чем рекомендованное минимальное значение. В общем, любое внезапное падение сопротивления изоляции свидетельствует о проблеме, требующей изучения.

На приведенном ниже графике показан пример показаний сопротивления изоляции для электродвигателя.

В точке A сопротивление изоляции уменьшается из-за старения и накопления пыли.

Резкое падение в точке B указывает на повреждение изоляции.

В точке C неисправность была устранена (обмотка электродвигателя перемотана), поэтому вернулось более высокое значение сопротивления изоляции, остающееся стабильным во времени, что указывает на ее хорошее состояние.

Методы тестирования, основанные на влиянии времени приложения испытательного напряжения (PI и DAR)

Эти методы включают последовательное измерение значений сопротивления изоляции в указанное время. Их преимуществом является неподверженность особому влиянию температуры, поэтому их можно применять без коррекции результатов, если только испытательное оборудование не подвергается во время теста значительным колебаниям температуры.

Данные методы идеально подходят для профилактического обслуживания вращающихся машин и для мониторинга изоляции.

Если изоляционный материал находится в хорошем состоянии, ток утечки или ток проводимости будет низким, а на начальный замер сильно влияют токи зарядки емкости и диэлектрического поглощения. При приложении испытательного напряжения со временем измеренное значение сопротивления изоляции повышается, так как уменьшаются эти токи помех. Необходимое для измерения изоляции в хорошем состоянии время стабилизации зависит от типа изоляционного материала.

Если изоляционный материал находится в плохом состоянии (поврежден, грязный и влажный), ток утечки будет постоянным и очень высоким, часто превышающим токи зарядки емкости и диэлектрического поглощения. В таких случаях измерение сопротивления изоляции очень быстро становится постоянным и стабилизируется на высоком значении напряжения.

Изучение изменения значения сопротивления изоляции в зависимости от времени приложения испытательного напряжения дает возможность оценить качество изоляции. Этот метод позволяет сделать выводы, даже если не ведется журнал измерения изоляции. Тем не менее, рекомендуется записывать результаты периодических измерений, проводимых в контексте программы профилактического обслуживания.

Показатель поляризации (PI)

При использовании этого метода два показания снимаются через 1 минуту и 10 минут, соответственно. Отношение (без размерностей) 10-минутного значения сопротивления изоляции к 1-минутному значению называется показателем поляризации (PI). Этот показатель можно использовать для оценки качества изоляции.

Метод измерения с использованием показателя поляризации идеально подходит для тестирования цепей с твердой изоляцией. Данный метод не рекомендуется использовать на таком оборудовании, как масляные трансформаторы, поскольку он дает низкие результаты, даже если изоляция находится в хорошем состоянии.

Рекомендация IEEE 43-2000 «Рекомендуемые методы тестирования сопротивления изоляции вращающихся машин» определяет минимальное значение показателя поляризации (PI) для вращающихся машин переменного и постоянного тока в температурных классах B, F и H равным 2.0. В общем случае значение PI, превышающее 4, является признаком превосходной изоляции, а значение ниже 2 указывает на потенциальную проблему.

PI = R (10-минутное измерение изоляции) / R (1-минутное измерение изоляции)

Результаты интерпретируются следующим образом:

Значение PI (нормы)

Состояние изоляции

<2

Проблемное

От 2 до 4

Хорошее

> 4

Отличное

Коэффициент диэлектрической абсорбции (DAR)

Для установок или оборудования, содержащих изоляционные материалы, в которых ток поглощения уменьшается быстро, для оценки состояния изоляции, возможно, будет достаточно провести измерение через 30 секунд и 60 секунд. Коэффициент DAR определяется следующим образом:

DAR = R (60-секундное измерение изоляции) / R (30-секундное измерение изоляции)

Результаты интерпретируются следующим образом:

Значение DAR (нормы)

Состояние изоляции

<1,25

Неудовлетворительное

<1,6

Нормальное

>1,6

Отличное

 

Метод, основанный на влиянии изменения испытательного напряжения (тестирование с помощью ступенчатого напряжения)

Наличие загрязнений (пыль, грязь и т.п.) или влаги на поверхности изоляции обычно четко выявляется с помощью зависящего от времени измерения сопротивления (PI, DAR и т.д.). Однако этот тип тестирования, проводимый с использованием низкого напряжение относительно диэлектрического напряжения испытываемого изолирующего материала, может иногда пропускать признаки старения изоляции или механические повреждения. Значительное же увеличение прикладываемого испытательного напряжения может, со своей стороны, вызвать повреждение в этих слабых точках, что приведет к существенному уменьшению измеренного значения сопротивления изоляции.

Для обеспечения эффективности соотношение между шагами изменения напряжения должно быть 1 к 5, и каждый шаг должен быть одинаковым по времени (обычно от 1 до 10 минут), оставаясь при этом ниже классического напряжения испытания электрической прочности (2Un + 1000 В). Полученные с помощью данного метода результаты полностью независимы от типа изоляции и температуры, потому что он основан не на внутреннем значении измеряемого изолятора, а на эффективном сокращении значения, получаемого по истечении одного и того же времени для двух разных испытательных напряжений.

Снижение значения сопротивления изоляции на 25% или более между первым и вторым шагами измерения является свидетельством ухудшения изоляции, которое обычно связано с наличием загрязнений.

Метод испытания рассеиванием в диэлектрике (DD)

Тест рассеивания в диэлектрике (DD), также известный как измерение тока повторного поглощения, выполняется путем измерения тока рассеивания в диэлектрике на испытуемом оборудовании.

Поскольку все три составляющие тока (ток зарядки емкости, ток поляризации и ток утечки) присутствуют во время стандартного испытания изоляции, на определение тока поляризации или поглощения может влиять наличие тока утечки. Вместо попытки измерить во время тестирования изоляции ток поляризации при тестировании рассеяния в диэлектрике (DD) измеряется ток деполяризации и ток разряда емкости после тестирования изоляции.

Принцип измерения состоит в следующем. Сначала тестируемое оборудование заряжается в течение времени, достаточного для достижения стабильного состояния (зарядка емкости и поляризация завершена, и единственным протекающим током является ток утечки). Затем оборудование разряжается через резистор внутри мегомметра и при этом измеряется протекающий ток. Этот ток состоит из зарядного тока емкости и тока повторного поглощения, которые в совокупности дают общий ток рассеивания в диэлектрике. Данный ток измеряется по истечении стандартного времени в одну минуту. Электрический ток зависит от общей емкости и конечного испытательного напряжения. Значение DD рассчитывается по формуле:

DD = Ток через 1 минуту / (Испытательное напряжение x Емкость)

Тест DD позволяет идентифицировать избыточные токи разряда, когда поврежден или загрязнен один из слоев многослойной изоляции. При точечных испытаниях или тестах PI и DAR подобный дефект можно упустить. При заданном напряжении и емкости ток разряда будет выше, если поврежден один из слоев изоляции. Постоянная времени этого отдельного слоя больше не будет совпадать с другими слоями, что приведет к более высокому значению тока по сравнению с неповрежденной изоляцией. Однородная изоляция будет иметь значение DD, близкое к нулю, а допустимая многослойная изоляция будет иметь значение DD до 2. В приведенной ниже таблице указано состояние в зависимости от полученного значения DD.

DD (нормы)

Состояние

> 7

Очень плохое

От 4 до 7

Плохое

От 2 до 4

Сомнительное

<2

Нормальное

Внимание: Данный метод измерения зависим от температуры, поэтому каждая попытка тестирования должна выполняться при стандартной температуре или, по крайней мере, температура должна фиксироваться вместе с результатом теста.

Тестирование изоляции с высоким сопротивлением: использование гнезда G на мегомметре

При измерении значений сопротивления изоляции (выше 1 ГОм) на точность измерений могут повлиять токи утечки, протекающие по поверхности изоляционного материала через имеющиеся на ней влагу и загрязнения. Значение сопротивления больше не является высоким, и поэтому пренебрежимо малым по сравнению с сопротивлением оцениваемой изоляции. Для устранения снижающей точность измерения изоляции поверхностной утечки тока на некоторых мегомметрах имеется третье гнездо с обозначением G (Guard). Это гнездо шунтирует измерительную цепь и повторно вводит поверхностный ток в одну из точек тестирования, минуя цепь измерения (смотрите рисунок ниже).

При выборе первой схемы, без использования гнезда G, одновременно измеряется ток утечки i и нежелательный поверхностный ток I1, поэтому сопротивление изоляции измеряется неверно.

Однако при выборе второй схемы измеряется только ток утечки i. Подключение к гнезду G позволяет отвести поверхностный ток I1, поэтому измерение сопротивления изоляции проводится правильно.

 

Гнездо G необходимо соединить с поверхностью, по которой протекают поверхностные токи, и которая не относится к таким изоляторам, как изоляционные материалы кабелей или трансформаторов. Знание возможных путей протекания испытательных токов через тестируемый элемент имеет решающее значение для выбора места соединения с гнездом G.

Нормы испытательного напряжения для кабелей/оборудования

Рабочее напряжение кабеля/оборудования

Нормы испытательного напряжения постоянного тока

От 24 до 50 В

От 50 до 100 В постоянного тока

От 50 до 100 В

От 100 до 250 В постоянного тока

От 100 до 240 В

От 250 до 500 В постоянного тока

От 440 до 550 В

От 500 до 1000 В постоянного тока

2400 В

От 1000 до 2500 В постоянного тока

4100 В

От 1000 до 5000 В постоянного тока

От 5000 до 12 000 В

От 2500 до 5000 В постоянного тока

> 12 000 В

От 5000 до 10 000 В постоянного тока

 

В приведенной выше таблице показаны рекомендованные нормы испытательного напряжения в соответствии с рабочими напряжениями установок и оборудования (значения взяты из руководства IEEE 43-2000).

Кроме того, эти значения задаются для электрических приборов в самых разнообразных местных и международных стандартах (IEC 60204, IEC 60439, IEC 60598 и т.д.).

Во Франции, например, стандарт NFC15-100 предусматривает значения испытательного напряжения и минимального сопротивления изоляции для электроустановок (500 В постоянного тока и 0,5 МОм при номинальном напряжении от 50 до 500 В).

Однако вам настоятельно рекомендуется обратиться к изготовителю кабеля/оборудования, чтобы узнать их собственные рекомендации по требуемому испытательному напряжению.

Безопасность при тестировании изоляции

Перед тестированием

A. Чтобы испытательное напряжение не было приложено к другому оборудованию, имеющему электрическое соединение с тестируемой цепью, испытание должно проводиться на отключенной, не проводящей электрический ток установке.

B. Убедитесь, что цепь разряжена. Ее можно разрядить, замкнув накоротко выводы оборудования и/или замкнув их на землю на определенное время (смотрите время разряда).

C. Если тестируемое оборудование находится в огнеопасной или взрывоопасной среде, необходима специальная защита, поскольку, если изоляция повреждена, при разряде изоляции (до и после испытания), а также во время тестирования могут возникать искры.

D. Из-за наличия напряжения постоянного тока, величина которого может быть достаточно высокой, рекомендуется ограничить доступ другого персонала и надевать средства индивидуальной защиты (например, защитные перчатки), предназначенные для работы на электрооборудовании.

E. Используйте только те соединительные кабели, которые подходят для проводимого испытания; убедитесь, что кабели находятся в хорошем состоянии. В лучшем случае неподходящие кабели приведут к ошибкам измерения, но гораздо важнее, что они могут быть опасными.

После тестирования

К концу испытания изоляция накапливает значительную энергию, которую необходимо сбросить до выполнения любых других операций. Простое правило безопасности заключается в том, чтобы предоставить оборудованию возможность разряжаться в течение времени, в пять раз превышающего время зарядки (время последнего теста). Для разрядки оборудования можно накоротко замкнуть его выводы и/или соединить их с землей. Все изготовленные компанией Chauvin Arnoux мегомметры оборудованы встроенными цепями разрядки, которые автоматически обеспечивают требуемую безопасность.

Часто задаваемые вопросы

 

Результат моих измерений – x МОм. Это нормально?

Какое должно быть сопротивление изоляции - на этот вопрос нет единого ответа. Точный ответ на него могут дать производитель оборудования или соответствующие стандарты. Для низковольтных установок минимальным значением можно считать значение 1 МОм. Для установок или оборудования с более высоким рабочим напряжением можно использовать правило, определяющее минимальное значение 1 МОм на кВ, в то время как рекомендации IEEE, касающиеся вращающихся машин, определяют минимальное сопротивление изоляции (n + 1) МОм, где n – рабочее напряжение в кВ.

Какие измерительные провода следует использовать для подключения мегомметра к тестируемой установке?

Используемые на мегомметрах провода должны иметь спецификации, подходящие для выполняемых измерений с точки зрения используемых напряжений или качества изоляционных материалов. Использование несоответствующих измерительных проводов может привести к ошибкам измерения или даже оказаться опасным.

Какие меры предосторожности следует принимать при измерении высокого сопротивления изоляции?

При измерении высоких значений сопротивления изоляции в дополнение к указанным выше правилам безопасности необходимо соблюдать следующие меры предосторожности.

  • Используйте специальное гнездо G (Guard) (описывается в специальном разделе выше).
  • Используйте чистые, сухие провода.
  • Прокладывайте провода на расстоянии друг от друга и без контакта с любыми объектами или с полом. Это позволит ограничить возможность возникновения токов утечки в самой измерительной линии.
  • Не касайтесь проводов и не перемещайте их во время измерения, чтобы избежать возникновения вызывающих помехи емкостных эффектов.
  • Для стабилизации измерения выждите необходимое время.

Почему два последовательных измерения не всегда дают одинаковый результат?

Применение высокого напряжения создает электрическое поле, которое поляризует изоляционные материалы. Важно понимать, что для возвращения изоляционных материалов после завершения тестирования в состояние, в котором они находились до испытания, потребуется значительное время. В некоторых случаях на это может потребоваться больше времени, чем указанное выше время разрядки.

Как протестировать изоляцию, если я не могу отключить установку?

Если невозможно отключить питание тестируемой установки или оборудования, мегомметр использовать нельзя. В некоторых случаях можно провести тестирование без снятия напряжения, используя для измерения тока утечки специальные клещи, но этот метод гораздо менее точен.

Как выбрать измеритель сопротивления изоляции (мегомметр)?

При выборе измерителя сопротивления изоляции необходимо задать следующие ключевые вопросы:

  • Какое максимальное испытательное напряжение необходимо?
  • Какие методы измерения будут использоваться (точечные измерения, PI, DAR, DD, ступенчатое изменение напряжения)?
  • Какое максимальное значение сопротивления изоляции будет измеряться?
  • Как будет подаваться питание на мегомметр?
  • Каковы возможности хранения результатов измерений?

Примеры измерений сопротивления изоляции

Измерение изоляции на электрической установке, электрооборудовании

Измерение изоляции на вращающейся машине (электродвигатель)

Измерение изоляции на электроинструменте

Измерение изоляции на трансформаторе

Измерение сопротивления изоляции трансформатора производят следующим образом:

a. Между высоковольтной обмоткой и низковольтной обмоткой и землей

 

b. Между низковольтной обмоткой и высоковольтной обмоткой и землей

 

c. Между высоковольтной обмоткой и низковольтной обмоткой

 

d. Между высоковольтной обмоткой и землей

 

e. Между низковольтной обмоткой и землей

 

Выбираем приборы

Посмотреть приборы для проверки изоляции высоковольтных кабелей.

 

измерение сопротивления изоляции в электроустановках

В электролаборатории “Электротехника” вы можете заказать измерение сопротивления изоляции в электроустановках до и свыше 1000В.

Цель проведения испытаний

Измерения в электроустановках до и свыше 1000В  проводятся с целью проверки соответствия сопротивления изоляции установленным нормам.

Нормы сопротивления изоляции

  • В соответствии с гл.1.8 ПУЭ (Правила устройства электроустановок) для электроустановок напряжением до 1000 В допустимые значения сопротивления изоляции:

Испытуемый элемент

Напряжение мегаомметра, В

Наименьшее допустимое значение сопротивления изоляции, МОм

Шины постоянного тока на щитах управления и в распределительных устройствах (при отсоединенных цепях)

500-1000

10

Вторичные цепи каждого присоединения и цепи питания приводов выключателей и разъединителей

500-1000

1,0

Цепи управления, защиты, автоматики и измерений, а также цепи возбуждения машин постоянного тока, присоединенные к силовым цепям

500-1000

1,0

Вторичные цепи и элементы при питании от отдельного источника или через разделительный трансформатор, рассчитанные на рабочее напряжение 60 В и ниже

500

0,5

Электропроводки, в том числе осветительные сети

1000

0,5

Распределительные устройства, щиты и токопроводы (шинопроводы)

500-1000

0,5

  • Согласно ПТЭЭП (Правила технической эксплуатации электроустановок потребителей), Приложение 3; 3.1 (таблица 37), минимально допустимые значения сопротивления изоляции электроустановок напряжением до 1000 В :

Наименование элемента

Напряжение мегомметра, В

Наименьшее допустимое значение сопротивления изоляции, МОм

Электроизделия и аппараты на номинальное напряжение, В:
– до 50
– свыше 50 до 100
– свыше 100 до 380
– свыше 380

100
250
500-1000
1000-2500

0,5

Распределительные устройства, щиты и токопроводы

1000-2500

1,0

Электропроводки, в том числе осветительные сети

1000

0,5

Вторичные цепи распределительных устройств, цепи питания приводов выключателей и разъединителей, цепи управления, защиты, автоматики, телемеханики и т. п.

1000-2500

1,0

Краны и лифты

1000

0,5

Стационарные электроплиты

1000

1,0

Шинки постоянного тока и шинки напряжения на щитах управления

500-1000

10

Цепи управления, защиты, автоматики, телемеханики, возбуждения машин постоянного тока на напряжение 500-1000 В, присоединенных к главным цепям

500-1000

1,0

Цепи, содержащие устройства с микроэлектронными элементами, рассчитанные на напряжение, В:
– до 60
– выше 60

100
500

0,5

Силовые кабельные линии

2500

0,5

Обмотки статора синхронных электродвигателей

1000

1,0

Вторичные обмотки измерительных трансформаторов

1000

1,0

Требования к проведению измерений сопротивления изоляции

  • Измерение производится мегаомметром с выходным напряжением 500, 1000, 2500 В.
  • Измерение сопротивления изоляции кабелей (за исключением кабелей бронированных) сечением до 16 мм2 производится мегаометром на 1000 В, а выше 16 мм2 и бронированных — мегаометром на 2500 В; измерение сопротивления изоляции проводов всех сечений производится мегаометром на 1000 В.
  • Если электропроводки, находящиеся в эксплуатации, имеют сопротивление  менее 1 МОм, то заключение об их пригодности дается после испытания их переменным током промышленной частоты напряжением 1 кВ.
  • Измерение сопротивления изоляции электрических машин и аппаратов следует производить при температуре изоляции не ниже +5° C (кроме случаев, оговоренных специальными инструкциями.).

Измерение сопротивления изоляции силовых кабелей и электропроводок

Начало замеров сопротивления изоляции начинается с проверки кабеля на напряжение – оно должно отсутствовать. Заземление на 2-3 минуты снимает с токоведущей жилы остаточные заряды, и можно приступать к работе. Пыль, грязь, другие посторонние субстанции затрудняют точное измерение сопротивления изоляции, поэтому кабель нужно от них очистить. Сверка с заводским паспортом дает нашим экспертам величину предполагаемого сопротивления изоляции, исходя из чего, выбирается предел измерений. После контрольной проверки – определения показаний на шкалах мегаомметра при замкнутых и разомкнутых проводах – прибор допускается эксплуатацию. При разомкнутых проводах стрелка должна указывать на бесконечность, при замкнутых – на ноль.

Измерение сопротивления изоляции начинается с проверки каждой фазы относительно заземления. Если показания выявят нарушения изолирующей функции, проводится замер относительно земли изоляции каждой фазы, а также между двумя фазами. Количество замеров варьируется: для трехжильного кабеля могут быть проведены 3-6 замеров, для пятижильного – 4, 8 или 10. Поскольку существует несколько схем, в паспорте замеров обязательно указывать схему, по которой выполнялись работы.

Граничные показатели мегаомметра – 15 и 60 секунд с момента присоединения к исследуемому объекту, из них вычисляется и коэффициент абсорбции, то есть влажности изоляции. Если значения явно не соответствуют ожидаемому, рекомендуется повторно снять остаточное напряжение, наложив заземление, переключить предел и повторить замер. По правилам техники безопасности измерения сопротивления изоляции электрооборудования, эту операцию требуется проводить в диэлектрических перчатках. Помимо этого, строго рекомендуется соблюдать правила измерений, указанные в п.п. 1.7.81, 2.1.35 ПУЭ: «Нулевые рабочие и нулевые защитные проводники должны иметь изоляцию, равноценную изоляции фазных проводников»; «как со стороны источников питания, так и со стороны приемника, нулевые проводники должны быть отсоединены от заземленных частей», «схема испытания… имеет различия лишь в количестве замеров (4 или 8, вместо 3 или 6) и в отсутствие необходимости использовать зажим «Экран» на мегаомметрах»; «измерение сопротивления изоляции силовых и осветительных электропроводок производится при снятом напряжении, выключенных выключателях, снятых предохранителях, отключенных электроприемниках, аппаратах, вывернутых электролампах».

 

Измерение сопротивления изоляции силового электрооборудования

Как и для изоляции кабелей, для электрических аппаратов и машин большое значение имеет температура. Так, для изоляции класса А характерно увеличение сопротивления изоляции в полтора раза при понижении температуры на каждые 10 градусов. Изоляция класса В увеличивает сопротивление в два раза при повышении температуры на 10 градусов. Поэтому установлены температурные пределы для измерения сопротивления изоляции электрооборудования, а также разработаны специальные коэффициенты: для электрических машин – Кт, для трансформаторов – Кз, которые можно посмотреть в таблице. Нормы для сопротивления изоляции приведены в двух документах: для уже работающих установок – в ПТЭЭП, для находящихся в процессе ввода в эксплуатацию – в ПУЭ.

Помимо изоляции проводки, при измерении сопротивления изоляции электрооборудования, замеряется и сопротивление относительно корпуса и наружных металлических частей при выключенном двигателе. Как правило, такие замеры проводятся для переносных электроинструментов. Если корпус инструмента выполнен из диэлектрика, его перед измерением оборачивают металлической фольгой и соединяют с контуром заземления. Для переносных трансформаторов дополнительно проводятся замеры сопротивления изоляции между корпусом и обмотками. А также между обмотками, при этом вторичную обмотку надо закоротить на корпус. Измерения сопротивления изоляции электрооборудования включают в себя и измерения сопротивления изоляции автоматических выключателей и устройств защитного отключения.

Оформление результатов замеров сопротивления изоляции

Результаты измерений заносятся в протокол. На основании сравнения результатов измерений  делается заключение о соответствии параметров требованиям ПУЭ и ПТЭЭП. Протоколы сводятся в отчёт, который утверждается руководителем лаборатории. К отчёту прилагается дефектная ведомость, в которую заносятся все дефекты, обнаруженные при измерении.

Замер сопротивления Изоляции | ИЗМЕРЕНИЕ проводятся аттестованной ЭлектроЛабораторией в Москве и МО

Мероприятия по измерению сопротивления изоляции проводятся с целью исключения утечки тока, сохранения безопасности человека и работоспособности приборов. При этом исследование лицензированной электролабораторией осуществляется измерение изоляционного сопротивления проводки, кабеля и точек соединения электролинии. Эти электроизмерения выполняются с использованием специального оборудования – мегаомметра, который улавливает показатели утечки тока между 2 цепями электросети. Чем они выше, тем ниже изоляционное сопротивление, а это уже повод для беспокойства и тщательной ревизии электроустановки.

Специалисты компании ТМ-Электро выполняют замеры сопротивления изоляции электрооборудования с помощью современных цифровых электроизмерительных приборов компаний Sonel и Merten.

Профессиональное лабораторное измерительное оборудование позволяет провести измерение сопротивления изоляции более точно, не мешая работе организации Заказчика и выпонять поставленные задачи в кратчайшие сроки по невысокой цене. Периодичность замеров сопротивления изоляции электропроводки определяется ПТЭЭП (Правила технической эксплуатации электроустановок потребителей). Например, для изоляции электропроводки осветительной сети составляет 1 раз в 3 года. Эти же нормы действуют для электроустановок офисных помещений и торговых павильонов, складов, предприятиях и общественных заведениях.

Внешняя электропроводка и электроустановки в особо опасных помещениях, должны проходить замер сопротивления изоляции ежегодно. Также необходимо ежегодно выполнять измерения сопротивления изоляции проводов, кабелей, кабельных трасс,электрооборудования и электроустановки в школах, институтах, детских, медицинских и оздоровительных учреждениях, в жилых многоквартирных домах.

Какие бывают измерения сопротивления изоляции:

Лабораторные измерения проводятся c определенной периодичностью, в случае:

  • Приемо-сдаточные испытания;
  • Выполняются после того, как завершены все электромонтажные мероприятия (новое строительство или реконструкция).
  • Эксплуатационные испытания;
  • Проводятся на промышленных или торговых объектах в соответствии с требованиями пожарного надзора, Ростехнадзора, прочих контролирующих организаций, с периодичностью, необходимой для нормального функционирования объекта, согласно ПУЭ.
  • Профилактические испытания.

Измерения электрики осуществляются для предотвращения возгорания или поражения человека электрическим током. Периодичность проведения определяется ответственным за электрохозяйство. Профессионально замерить сопротивление изоляции могут только опытные инженеры лаборатории по электрике, имеющие необходимый допуск, к производству электроизмерительных работ.

Также, организация оказывающая услуги электроизмерения обязана иметь действующее Свидетельство о регистрации электролаборатории выданное Ростехнадзором. Свидетельство выдается сроком на 3 года и должно быть актуально на момент исследования.

Юридическую силу имеют документы выданные только лицензированной электролабораторией и только после проведения реального исследования объекта.

Большое доверие вызывает компания, в которой имеется свой полный штат сотрудников электроизмерительной лаборатории и парк приборов необходимых для проверки электрики. Привлечение не обладающих должным опытом лиц для оказания услуги замера сопротивления изоляции приводит к снижению качества работ и не нужным рискам для Заказчика.

Компания ТМ-Электро обладает своим полным парком электроизмерительного оборудования для проведения любых измерений и испытаний, в штате компании только профессиональные сотрудники, постоянно повышающие свою квалификацию, имеющие группы допуска и все необходимые разрешения и свидетельства. Гарантируем точное соблюдение сроков и условия договора. Грамотно составим Технический отчет и дадим рекомендации. В случае необходимости предоставим свою электромонтажную бригаду.

Измерение сопротивления изоляции электрических аппаратов, вторичных цепей и электропроводок напряжением до 1кВ (1000В).

Измерение сопротивления изоляции является, пожалуй, самым необходимым лабораторным испытанием. В Техническом отчете - Протокол №3. Если говорить кратко, то это измерение нужно для проверки состояния изоляции проводов и кабелей. Сопротивление изоляции силовых кабельных линий до 1000 В измеряется мегаомметром или современным электронным оборудованием на напряжение 2500 В в течение одной минуты. Показатели сопротивления изоляции должны быть не менее 0,5 МОм. Полученные данные заносятся в журнал протокола с соответствующей пометкой “соответствует” или “не соответствует”.

При несоответствии нормативным значениям кабельную трассу рекомендуется заменить.

Очень часто изоляция кабеля повреждается при выполнении электромонтажных работ, при протаскивании через гильзы, отверстия с острой кромкой, при общестроительных работах (например, шурупом, во время крепления гипсокартона, плохо заизолированы кабельные муфты в земле) и т.д. В этих случаях очень помогут измерения сопротивления изоляции при выполнении комплекса приемо-сдаточных испытаний. Своевременно обнаруженный дефект проще устранить.

Периодичность проведения испытаний, обычно 1 раз в 3 года. Школьные и дошкольные учреждения 1 раз в год. По Нормативной документации Правительства г. Москвы изоляция бытовых стационарных электроплит измеряется не реже 1 раза в год в нагретом состоянии плиты. Сопротивление изоляции должно быть не менее 1 МОм.

Изоляция силовых и осветительных электропроводок измеряется мегаомметром на 1000В при снятых плавких вставках на участке между снятыми предохранителями или за последними предохранителями между любым проводом и землёй, а также между двумя проводами. Проверка состояния таких цепей, провода, кабеля, электроприборов и аппаратов должна проводиться путём тщательного внешнего осмотра не реже 1 раза в год!

Стоит напомнить, что работы связанные с напряжением должен проводить только подготовленный технический персонал, прошедший необходимое обучение, получивший соответствующие удостоверения с правом проведения измерительных работ. Все испытания проводятся правильно откалиброванным оборудованием, прошедшим ежегодную поверку в сертифицированном центре.

Использование современного электронного оборудования компаний Sonel, Metrel, Fluke – гарантирует качество и удобство проведения работ.

Внимание, остерегайтесь пользоваться услугами неатестованных лабораторий и частников! Грамотные инженеры с современным оборудованием не нанесут вреда вашей электроустановке и подключенным приборам. При заказе работ требуйте документы подтверждающие квалификацию инженеров, свидетельство на лабораторию и поверку измерительных приборов. Не соглашайтесь на Технические отчеты “без выезда”! Ни одна уважающая себя лаборатория не будет даже предлагать подобные работы, т.к. это влечёт за собой административную и уголовную ответсвенность. Скорее всего, подобная организация пришла на рынок ненадолго и ответственность за выполненние работ ляжет на энергетическую службу предприятия Заказчика работ или директора.

Значения сопротивления изоляции (IR) | Электротехнические примечания и статьи

Введение:

Измерение сопротивления изоляции - это стандартное стандартное испытание, выполняемое для всех типов электрических проводов и кабелей. В качестве производственного испытания это испытание часто используется в качестве приемочного испытания заказчиком, при этом заказчик часто указывает минимальное сопротивление изоляции на единицу длины. Результаты, полученные при ИК-тесте, не предназначены для использования при обнаружении локальных дефектов в изоляции, как при истинном тесте HIPOT, а скорее дают информацию о качестве материала, используемого в качестве изоляции.

Даже когда это не требуется конечному потребителю, многие производители проводов и кабелей используют испытание сопротивления изоляции для отслеживания процессов производства изоляции и выявления возникающих проблем до того, как переменные процесса выйдут за допустимые пределы.

Выбор ИК-тестеров (Megger):

  • Доступны тестеры изоляции с испытательным напряжением 500, 1000, 2500 и 5000 В.
  • Рекомендуемые характеристики тестеров изоляции приведены ниже:
Уровень напряжения ИК-тестер
650 В 500 В постоянного тока
1.1КВ 1 кВ постоянного тока
3,3 кВ 2,5 кВ постоянного тока
66кВ и выше 5 кВ постоянного тока

Испытательное напряжение для мегомметра:

  • Когда используется напряжение переменного тока, практическое правило: Испытательное напряжение (переменного тока) = (2X напряжение на заводской табличке) +1000.
  • Когда используется напряжение постоянного тока (наиболее часто используется во всех мегомметрах), Испытательное напряжение (DC) = (2X напряжение с заводской таблички).
Характеристики оборудования / кабеля Испытательное напряжение постоянного тока
24 В до 50 В от 50 В до 100 В
от 50 В до 100 В от 100 В до 250 В
100 В до 240 В 250 В до 500 В
440 В до 550 В 500 В до 1000 В
2400 В 1000 В до 2500 В
4100В от 1000 В до 5000 В

Диапазон измерения мегомметра:

Испытательное напряжение Диапазон измерения
250 В постоянного тока от 0 МОм до 250 ГОм
500 В постоянного тока от 0 МОм до 500 ГОм
1 кВ постоянного тока от 0 МОм до 1 ТОм
2.5 кВ постоянного тока от 0 МОм до 2,5 ТОм
5 кВ постоянного тока от 0 МОм до 5 ТОм

Меры предосторожности при мегомметрии:

Перед мегомеггерингом:

  • Убедитесь, что все соединения в испытательной цепи затянуты.
  • Проверьте мегомметр перед использованием, дает ли он значение INFINITY , когда он не подключен, и НУЛЬ, когда два терминала соединены вместе и ручка повернута.

Во время мегомметра:

  • При проверке заземления убедитесь, что дальний конец проводника не соприкасается, в противном случае проверка покажет неисправную изоляцию, хотя на самом деле это не так.
  • Убедитесь, что заземление, используемое при проверке заземления и разомкнутых цепей, хорошее, в противном случае тест даст неверную информацию
  • Запасные жилы не следует перерабатывать, когда другие рабочие жилы того же кабеля подключены к соответствующим цепям.

После завершения кабельного Меггеринга:

  • Убедитесь, что все провода подключены правильно.
  • Проверьте функции точек, треков и сигналов, подключенных через кабель, на предмет их правильного отклика.
  • В случае сигналов аспект следует проверять лично.
  • В случае точек проверьте позиции на месте. Проверьте, не произошло ли случайно заземление любой полярности проводов, проходящих через кабель.

Требования безопасности для мегомметра:

  • Все тестируемое оборудование ДОЛЖНО быть отключено и изолировано.
  • Оборудование должно быть разряжено (шунтировано или закорочено), по крайней мере, до тех пор, пока подавалось испытательное напряжение, чтобы быть абсолютно безопасным для человека, проводящего испытание.
  • Никогда не используйте Megger во взрывоопасной атмосфере.
  • Убедитесь, что все переключатели заблокированы, а концы кабеля промаркированы должным образом для безопасности.
  • Концы кабеля, которые необходимо изолировать, должны быть отключены от источника питания и защищены от контакта с питанием, заземлением или случайным контактом.
  • Установка защитных ограждений с предупреждающими знаками и открытый канал связи между испытательным персоналом.
  • Не выполняйте мегомметр при влажности более 70%.
  • Хорошая изоляция: показания мегомметра сначала увеличиваются, а затем остаются постоянными.
  • Плохая изоляция: показания мегомметра сначала увеличиваются, а затем уменьшаются.
  • Ожидаемое значение IR попадает в Temp. От 20 до 30 градусов по Цельсию.
  • Если указанная выше температура снизится на 10 градусов по Цельсию, значения ИК-излучения увеличатся в два раза.
  • При увеличении вышеуказанной температуры на 70 градусов по Цельсию значения ИК-излучения уменьшаются в 700 раз.

Как использовать Megger:

  • Meggers оснащен тремя клеммами подключения линии (L), клеммой заземления (E) и клеммой защиты (G).

  • Сопротивление измеряется между клеммами линии и заземления, где ток будет проходить через катушку 1. Клемма «Guard» предназначена для особых ситуаций тестирования, когда одно сопротивление должно быть изолировано от другого. Давайте проверим одну ситуацию, когда необходимо проверить сопротивление изоляции двухжильного кабеля.
  • Чтобы измерить сопротивление изоляции между проводником и внешней стороной кабеля, нам необходимо подключить «линейный» вывод мегомметра к одному из проводов и подключить заземляющий провод мегомметра к проводу, намотанному на оболочку кабель.

  • В этой конфигурации Megger должен считывать сопротивление между одним проводником и внешней оболочкой.
  • Мы хотим измерить сопротивление между проводниками-2 и оболочками, но на самом деле Megger измеряет сопротивление параллельно с последовательной комбинацией сопротивления провод-провод (R c1-c2 ) и первого проводника к оболочке (R c1-s ).
  • Если нас не волнует этот факт, мы можем продолжить тест в соответствии с настройками.Если мы хотим измерить только сопротивление между вторым проводником и оболочкой (R c2-s ), тогда нам нужно использовать клемму «Guard» мегомметра.

  • При подключении клеммы «Guard» к первому проводнику два проводника имеют почти равный потенциал . При небольшом напряжении между ними или его отсутствии сопротивление изоляции практически бесконечно, и, следовательно, между двумя проводниками не будет тока .Следовательно, показания сопротивления мегомметра будут основываться исключительно на токе, протекающем через изоляцию второго проводника, через оболочку кабеля и к намотанному вокруг провода, а не на токе, протекающем через изоляцию первого проводника.
  • Защитный зажим (если он установлен) действует как шунт для удаления подключенного элемента из зоны измерения. Другими словами, это позволяет вам избирательно оценивать определенные компоненты большого электрического оборудования.Например, рассмотрим двухжильный кабель с оболочкой. Как показано на диаграмме ниже, необходимо учитывать три сопротивления.

  • Если мы измеряем между сердечником B и оболочкой без подключения к защитному выводу, некоторый ток пройдет от B к A и от A к оболочке. Наше измерение было бы низким. При подключении защитной клеммы к A две жилы кабеля будут иметь почти одинаковый потенциал, и, таким образом, эффект шунтирования устранен.

(1) Значения IR Для электрических аппаратов и систем :

(PEARL Standard / NETA MTS-1997, таблица 10.1)

Максимальное номинальное напряжение оборудования Размер мегомметра

Мин. Значение ИК-излучения

250 Вольт

500 Вольт

25 МОм

600 Вольт

1,000 Вольт

100 МОм

5 кВ

2,500 В

1000 МОм

8 кВ

2,500 В

2000 МОм

15 кВ

2,500 В

5000 МОм

25 кВ

5000 В

20000 МОм

35 кВ

15000 Вольт

100000 МОм

46 кВ

15000 Вольт

100000 МОм

69 кВ

15000 Вольт

100000 МОм

Правило одного мегома для значения ИК-излучения для оборудования:

  • На основе номинала оборудования:
  • <1 кВ = 1 МОм минимум
  • > 1 кВ = 1 МОм / 1 кВ

Согласно правилам IE-1956:

  • При давлении 1000 В, приложенном между каждым токоведущим проводом и землей в течение одной минуты, сопротивление изоляции высоковольтных установок должно быть не менее 1 МОм или в соответствии с требованиями Бюро индийских стандартов.
  • Установки среднего и низкого напряжения - При давлении 500 В, приложенном между каждым токоведущим проводом и землей в течение одной минуты, сопротивление изоляции установок среднего и низкого напряжения должно быть не менее 1 МОм или в соответствии с требованиями Бюро Индийские стандарты] время от времени.

В соответствии со спецификациями CBIP допустимые значения составляют 2 МОм на кВ

(2) Значение IR для трансформатора:

  • Испытания сопротивления изоляции проводятся для определения сопротивления изоляции между отдельными обмотками и землей или между отдельными обмотками.Испытания сопротивления изоляции обычно измеряются непосредственно в МОмах или могут быть рассчитаны на основе измерений приложенного напряжения и тока утечки.
  • При измерении сопротивления изоляции рекомендуется всегда заземлять резервуар (и жилу). Замкните накоротко каждую обмотку трансформатора на выводах проходного изолятора. Затем измеряется сопротивление между каждой обмоткой и всеми другими заземленными обмотками.

  • Обмотки никогда не оставляют в плавающем состоянии для измерения сопротивления изоляции.С глухозаземленной обмотки необходимо удалить заземление, чтобы измерить сопротивление изоляции заземленной обмотки. Если заземление не может быть удалено, как в случае некоторых обмоток с глухозаземленной нейтралью, сопротивление изоляции обмотки не может быть измерено. Относитесь к нему как к части заземленной части цепи.
  • Нам нужно проверить обмотку на обмотку и обмотку на землю (E). Для трехфазных трансформаторов нам нужно проверить обмотку (L1, L2, L3) с заменой заземления для трансформатора треугольника или обмотки (L1, L2, L3) с заземлением (E) и нейтраль (N) для трансформаторов звездой.

Значение IR для трансформатора

(Ссылка: «Руководство по техническому обслуживанию трансформатора» Дж. Дж. Келли. С. Д. Майер)

Трансформатор Формула
1-фазный трансформатор Значение IR (МОм) = C X E / (√KVA)
Трехфазный трансформатор (звезда) Значение IR (МОм) = C X E (P-n) / (√KVA)
Трехфазный трансформатор (треугольник) Значение IR (МОм) = C X E (P-P) / (√KVA)
Где C = 1.5 для масляного термостата с масляным баком, 30 для масляного термостата без масляного бака или сухого типа T / C.
  • Температурный поправочный коэффициент (базовая 20 ° C):
Коэффициент коррекции температуры

O C

O F

Поправочный коэффициент

0

32

0.25

5

41

0,36

10

50

0,50

15

59

0,720

20

68

1,00

30

86

1.98

40

104

3,95

50

122

7,85

  • Пример: для 1600 кВА, 20 кВ / 400 В, трехфазный трансформатор
  • Значение IR на стороне ВН = (1,5 x 20000) / √ 1600 = 16000/40 = 750 МОм при 20 0 C
  • Значение IR на стороне НН = (1,5 x 400) / √ 1600 = 320/40 = 15 МОм при 20 0 C
  • Значение IR при 30 0 C = 15X1.98 = 29,7 МОм

Сопротивление изоляции обмотки трансформатора

Трансформатор

Напряжение катушки

Размер мегомметра

Мин. Значение ИК Т / К с жидкостным заполнением

Мин. Значение IR Сухой Тип T / C

0 - 600 В

1кВ

100 МОм

500 МОм

600 В до 5 кВ

2.5кВ

1000 МОм

5000 МОм

от 5 кВ до 15 кВ

5кВ

5000 МОм

25000 МОм

15кВ до 69кВ

5кВ

10000 МОм

50 000 МОм

IR Значение трансформаторов:

Напряжение Испытательное напряжение (постоянный ток) Сторона низкого напряжения Испытательное напряжение (постоянный ток) Сторона ВН Мин. Значение IR
415V 500 В 2.5кВ 100 МОм
До 6,6 кВ 500 В 2,5 кВ 200 МОм
от 6,6 кВ до 11 кВ 500 В 2,5 кВ 400 МОм
от 11 кВ до 33 кВ 1000 В 5кВ 500 МОм
от 33 кВ до 66 кВ 1000 В 5кВ 600 МОм
от 66 кВ до 132 кВ 1000 В 5кВ 600 МОм
132–220 кВ 1000 В 5кВ 650 МОм

Шаги для измерения IR трансформатора:

  • Выключите трансформатор и отсоедините перемычки и молниеотводы.
  • Разрядите емкость обмотки.
  • Тщательно очистите все втулки
  • Замыкание обмоток.
  • Защитите клеммы, чтобы исключить поверхностную утечку через клеммные втулки.
  • Запишите температуру.
  • Подключите измерительные провода (избегайте стыков).
  • Подайте испытательное напряжение и запишите показания. ИК. Значение через 60 секунд после подачи испытательного напряжения называется сопротивлением изоляции трансформатора при температуре испытания.
  • Нейтральная втулка трансформатора должна быть отключена от земли во время испытания.
  • Все заземляющие соединения низковольтного устройства защиты от перенапряжения должны быть отключены во время испытания.
  • Из-за индуктивных характеристик трансформаторов показания сопротивления изоляции не следует снимать до стабилизации испытательного тока.
  • Избегайте измерения мегомметров, когда трансформатор находится под вакуумом.

Тестовые соединения трансформатора для ИК-теста (не менее 200 МОм) :

  1. (ВН + НН) - ЗЕМЛЯ
  2. HV - (LV + GND)
  3. LV - (ВН + Земля)
  • Трехобмоточный трансформатор:
  1. HV - (LV + TV + GND)
  2. LV - (HV + TV + GND)
  3. (HV + LV + TV) - GND
  4. ТВ - (ВН + НН + ЗЕМЛЯ)
  • Автотрансформатор (двухобмоточный):
  1. (ВН + НН) -ЗЕМЛЯ
  • Автотрансформатор (трехобмоточный):
  1. (ВН + НН) - (ТВ + Земля)
  2. (HV + LV + TV) - GND
  3. ТВ - (ВН + НН + ЗЕМЛЯ)

Для любой установки измеренное сопротивление изоляции должно быть не менее:

  • ВН - Земля 200 МОм
  • LV - Земля 100 МОм
  • ВН - НН 200 МОм

Факторы, влияющие на значение IR трансформатора

На значение IR трансформаторов влияет

  • Состояние поверхности клеммной втулки
  • качество масла
  • качество изоляции обмоток
  • температура масла
  • Продолжительность приложения и значение испытательного напряжения

(3) Значение IR для переключателя ответвлений:

  • IR между ВН и НН, а также между обмотками на землю.
  • Минимальное значение IR для переключателя ответвлений составляет 1000 Ом на вольт рабочее напряжение

(4) Значение IR для Электродвигатель:

Для электродвигателя мы использовали тестер изоляции, чтобы измерить сопротивление обмотки двигателя с заземлением (E).

  • Для номинального напряжения ниже 1 кВ, измеренного мегомметром на 500 В постоянного тока.
  • Для номинального напряжения выше 1 кВ, измеренного мегомметром на 1000 В постоянного тока.
  • В соответствии с IEEE 43, пункт 9.3 следует применять следующую формулу.
  • Мин. Значение IR (для вращающейся машины) = (Номинальное напряжение (В) / 1000) + 1

Согласно стандарту IEEE 43 1974,2000

Значение IR в МОм
IR (мин.) = КВ + 1 Для большинства обмоток, изготовленных примерно до 1970 г., все обмотки возбуждения и другие, не описанные ниже
ИК (мин) = 100 МОм Для большинства обмоток якоря постоянного тока и обмоток переменного тока, построенных примерно после 1970 г. (в форме катушек)
ИК (мин) = 5 МОм Для большинства машин с обмотками статора с произвольной обмоткой и обмотками с формовой обмоткой на напряжение менее 1 кВ
  • Пример-1: для трехфазного двигателя 11 кВ.
  • Значение IR = 11 + 1 = 12 МОм, но согласно IEEE43 оно должно быть 100 МОм
  • Пример-2: для 415 В, трехфазный двигатель
  • Значение IR = 0,415 + 1 = 1,41 МОм, но согласно IEEE43 оно должно быть 5 МОм.
  • Согласно IS 732 Мин. Значение IR двигателя = (20XVoltage (p-p / (1000 + 2XKW))

IR Значение двигателя согласно NETA ATS 2007. Раздел 7.15.1

Заводская табличка двигателя (V) Испытательное напряжение Мин. Значение IR
250 В 500 В постоянного тока 25 МОм
600 В 1000 В постоянного тока 100 МОм
1000 В 1000 В постоянного тока 100 МОм
2500В 1000 В постоянного тока 500 МОм
5000 В 2500 В постоянного тока 1000 МОм
8000 В 2500 В постоянного тока 2000 МОм
15000 В 2500 В постоянного тока 5000 МОм
25000 В 5000 В постоянного тока 20000 МОм
34500В 15000 В постоянного тока 100000 МОм

Значение IR погружного двигателя:

Значение IR погружного двигателя

Мотор вне скважины (без кабеля) Значение IR
Новый мотор 20 МОм
Подержанный двигатель, который можно переустановить 10 МОм
Двигатель установлен в скважине (с кабелем)
Новый мотор 2 МОм
Подержанный двигатель, который можно переустановить 0.5 МОм

(5) Значение IR для электрического кабеля и проводки:

  • Для проверки изоляции нам необходимо отключить панель или оборудование и изолировать их от источника питания. Проводку и кабели необходимо проверить друг на друга (между фазами) с помощью кабеля заземления (E). Ассоциация инженеров по изолированным силовым кабелям (IPCEA) предлагает формулу для определения минимальных значений сопротивления изоляции.
  • R = K x Лог 10 (D / d)

  • R = значение IR в МОм на 1000 футов (305 метров) кабеля.
  • K = постоянная изоляционного материала (лакированный Cambric = 2460, термопластичный полиэтилен = 50000, композитный полиэтилен = 30000)
    D = наружный диаметр изоляции жилы для одножильных проводов и кабелей
  • (D = d + 2c + 2b диаметр одножильного кабеля)
    d - Диаметр жилы
    c - Толщина изоляции жилы
    b - Толщина изоляции оболочки

Высоковольтное испытание нового кабеля из сшитого полиэтилена (согласно стандарту ETSA)

Заявка Испытательное напряжение Мин. Значение IR
Новые кабели - Оболочка 1 кВ постоянного тока 100 МОм
Новые кабели - изоляция 10 кВ постоянного тока 1000 МОм
После ремонта - Оболочка 1 кВ постоянного тока 10 МОм
После ремонта - Утеплитель 5 кВ постоянного тока 1000 МОм

Кабели 11 кВ и 33 кВ между жилами и землей (согласно стандарту ETSA)

Заявка Испытательное напряжение Мин. Значение IR
11KV Новые кабели - оболочка 5 кВ постоянного тока 1000 МОм
11кВ После ремонта - Оболочка 5 кВ постоянного тока 100 МОм
33KV TF не подключен 5 кВ постоянного тока 1000 МОм
33кВ с подключенными ТФ. 5 кВ постоянного тока 15 МОм

Измерение ИК-значений (проводник к проводнику (перекрестная изоляция))

  • Первый проводник, для которого измеряется поперечная изоляция, должен быть подключен к линейному выводу мегомметра. Остальные проводники соединены петлей (с помощью зажимов типа «крокодил») i. е. Провод 2 и далее подключаются к клемме заземления мегомметра. На другом конце провода остаются свободными.
  • Теперь поверните ручку мегомметра или нажмите кнопку мегомметра.Показания счетчика покажут поперечную изоляцию между проводником 1 и остальными проводниками. Показания изоляции должны быть записаны.
  • Теперь подключите следующий провод к клемме Line мегомметра, а остальные проводники подключите к клемме заземления мегомметра и выполните измерения.

Измерение ИК-значений ( Изоляция между проводником и землей)

  • Подключите проверяемый провод к линейной клемме мегомметра.
  • Подключите клемму заземления мегомметра к земле.
  • Поверните ручку мегомметра или нажмите кнопку мегомметра. Показания счетчика покажут сопротивление изоляции проводов. Показания изоляции должны быть записаны после подачи испытательного напряжения в течение примерно минуты до получения стабильного показания.

Измерения ИК-значений:

  • Если во время периодических испытаний сопротивление изоляции кабеля обнаруживается между 5 и 1 МОм / км при температуре под землей, соответствующий кабель следует запрограммировать для замены.
  • Если сопротивление изоляции кабеля находится между 1000 и 100 кОм / км , при температуре в земле, соответствующий кабель необходимо срочно заменить в течение года.
  • Если сопротивление изоляции кабеля окажется ниже 100 кОм / км., Соответствующий кабель необходимо немедленно заменить в экстренных случаях.

(6) Значение IR для линии передачи / распределения:

Оборудование. Размер мегомметра Мин. Значение IR
S / S. Оборудование 5 кВ 5000 МОм
EHVLines. 5 кВ 10 МОм
H.T. Линии. 1 кВ 5 МОм
LT / Линии обслуживания. 0,5 кВ 5 МОм

(7) Значение IR для Panel Bus:

  • Значение IR для панели = 2 x номинальное напряжение панели в кВ.
  • Например, для панели 5 кВ минимальная изоляция составляет 2 x 5 = 10 МОм.

(8) Значение IR для оборудования подстанции:

Обычно измеряемые значения оборудования подстанции.

. Типичное значение IR для S / S оборудования

Оборудование Размер мегомметра Значение IR (мин.)

Автоматический выключатель

(Фаза-Земля)

5 кВ, 10 кВ

1000 МОм

(фаза-фаза)

5 кВ, 10 кВ

1000 МОм

Цепь управления

0.5кВ

50 МОм

CT / PT

(Pri-Earth)

5 кВ, 10 кВ

1000 МОм

(вторая фаза)

5 кВ, 10 кВ

50 МОм

Цепь управления

0,5 кВ

50 МОм

Изолятор

(Фаза-Земля)

5 кВ, 10 кВ

1000 МОм

(фаза-фаза)

5 кВ, 10 кВ

1000 МОм

Цепь управления

0.5кВ

50 МОм

L.A

(Фаза-Земля)

5 кВ, 10 кВ

1000 МОм

Электродвигатель

(Фаза-Земля)

0,5 кВ

50 МОм

LT Распределительное устройство

(Фаза-Земля)

0.5кВ

100 МОм

Трансформатор LT

(Фаза-Земля)

0,5 кВ

100 МОм

IR Стоимость S / S оборудования согласно стандарту DEP

Оборудование

Меггеринг

Значение IR при вводе в эксплуатацию ( M Ω)

Значение IR во время обслуживания ( M Ω)

Распределительное устройство

Автобус HV

200 МОм

100 МОм

LV Автобус

20 МОм

10 МОм

Электропроводка НН

5 МОм

0.5 МОм

Кабель (мин. 100 метров)

ВН и НН

(10XKV) /

км

(кВ) /

км

Двигатель и генератор

Фаза-Земля

10 (кВ + 1)

2 (кВ + 1)

Трансформатор с масляным погружением

ВН и НН

75 МОм

30 МОм

Сухой трансформатор

HV

100 МОм

25 МОм

LV

10 МОм

2 МОм

Стационарное оборудование / инструменты

Фаза-Земля

5 кОм / вольт

1 кОм / вольт

Подвижное оборудование

Фаза-Земля

5 МОм

1 МОм

Распределительное оборудование

Фаза-Земля

5 МОм

1 МОм

Автоматический выключатель

Главная цепь

2 МОм / кВ

Цепь управления

5 МОм

Реле

Д.C Цепь-Земля

40 МОм

LT Цепь-Земля

50 МОм

LT-D.C Схема

40 МОм

LT-LT

70 МОм

(9) Значение IR для бытовой / промышленной проводки:

  • Низкое сопротивление между фазным и нейтральным проводниками или между токоведущими проводниками и землей приведет к току утечки.Это приводит к ухудшению изоляции, а также к потере энергии, что увеличивает эксплуатационные расходы на установку.
  • Сопротивление между фазой-фазой-нейтралью-землей не должно быть менее 0,5 МОм для обычных напряжений питания.
  • Помимо тока утечки из-за сопротивления изоляции, существует дополнительная утечка тока в реактивном сопротивлении изоляции, поскольку она действует как диэлектрик конденсатора. Этот ток не рассеивает энергию и не является вредным, но мы хотим измерить сопротивление изоляции, , поэтому для предотвращения включения реактивного сопротивления в измерение используется постоянное напряжение.

Однофазное подключение:

  • ИК-тест между естественной фазой и землей должен быть проведен на всей установке с выключенным главным выключателем, с соединенными вместе фазой и нейтралью, с отключенными лампами и другим оборудованием, но с включенными предохранителями, включенными автоматическими выключателями и всей цепью. переключатели замкнуты.
  • Если установлено двустороннее переключение, будет проверяться только один из двух проводов для зачистки. Чтобы проверить другой, необходимо задействовать оба двухпозиционных переключателя и повторно протестировать систему.При желании можно испытать установку в целом, когда должно быть достигнуто значение не менее 0,5 МОм.

Трехфазное подключение:

  • В случае очень большой установки, в которой имеется много параллельных заземляющих путей, ожидается, что показание будет ниже. Если это произойдет, установку следует разделить и повторно протестировать, когда каждая часть должна соответствовать минимальным требованиям.

  • Испытания на ИК-излучение должны проводиться между фазой-фазой-нейтралью-землей с минимальным допустимым значением для каждого теста равным 0.5 МОм.

ИК-тестирование на низкое напряжение

напряжение цепи Испытательное напряжение Значение IR (мин.)
Сверхнизкое напряжение 250 В постоянного тока 0,25 МОм
До 500 В, кроме более 500 В постоянного тока 0,5 МОм
500 В до 1кВ 1000 В постоянного тока 1,0 МОм
  • Мин. Значение IR = 50 M Ом / Количество электрических розеток.(Все электрические точки с фитингами и заглушками).
  • Мин. Значение IR = 100 M Ω / Количество электрических розеток. (Все электрические точки без фитингов и вилок).

Необходимые меры предосторожности:

  • Электронное оборудование, такое как электронные люминесцентные переключатели стартера, сенсорные переключатели, диммерные переключатели, контроллеры мощности, таймеры задержки, может быть повреждено подачей высокого испытательного напряжения.
  • Необходимо отключить конденсаторы и индикаторные или контрольные лампы, иначе результаты теста будут неточными.
  • Если какое-либо оборудование отключено для целей тестирования, оно должно быть подвергнуто собственному испытанию изоляции с использованием напряжения, которое вряд ли приведет к повреждению. Результат должен соответствовать указанному в соответствующем британском стандарте или быть не менее 0,5 МОм, если стандарт отсутствует.

Нравится:

Нравится Загрузка ...

Связанные

Проверка сопротивления изоляции

- проверка сопротивления изоляции производится мегомметром

Тест на сопротивление изоляции - это второй тест, требуемый стандартами тестирования электробезопасности.

Тест сопротивления изоляции заключается в измерении сопротивления изоляции тестируемого устройства, при этом фаза и нейтраль замыкаются накоротко. Измеренное сопротивление должно быть выше указанного в международных стандартах предела.

Мегаомметр (также называемый измеритель сопротивления изоляции , тераомметр) затем используется для измерения омического значения изолятора при постоянном напряжении с высокой стабильностью.

Для измерения сопротивления высокого значения используются методы измерения тока низкого значения. Источник постоянного напряжения подается на измеряемое сопротивление, и результирующий ток считывается на высокочувствительной цепи амперметра, которая может отображать значение сопротивления.

В нашем ассортименте тестеров сопротивления изоляции используются цепи амперметра двух типов, каждая из которых выбирается в зависимости от измеряемых значений сопротивления.

ИСПЫТАНИЕ ИЗОЛЯЦИИ

Его цель - измерить сопротивление изоляции под постоянным напряжением высокой стабильности, обычно 50, 100, 250, 500 или 1000 В постоянного тока.Оммическое значение сопротивления изоляции выражается в МОм (МОм). В соответствии с конкретными стандартами испытание сопротивления изоляции может проводиться при напряжении до 1500 В постоянного тока. Благодаря стабильности источника напряжения можно регулировать испытательное напряжение с шагом в 1 вольт.

Стабильность напряжения критична; нерегулируемое напряжение резко упадет при плохой изоляции, что приведет к ошибочным измерениям.

ЦЕПЬ АККУМУЛЯТОРА

Вход вольтметра, связанный с сопротивлением, образует цепь шунтирующего амперметра.Эта настройка позволяет измерять любое значение I, множество комбинаций чувствительности и значений RI.

Эта схема используется для измерения тока высоких значений, которые соответствуют измерению сопротивления низких значений (от l x l04 Ом до 2,106 Ом).

ЦЕПЬ АМПЕРМЕТРА ОБРАТНОЙ СВЯЗИ

Эта схема чаще всего используется в наших приборах. Он охватывает измерение сопротивления высоких значений выше 2.106 Ом. Принцип показан на диаграмме ниже.

Входной ток проходит через обратную связь Rc.

Низкий уровень тока смещения усилителя незначительно влияет на

текущий л.

ИЗМЕРЕНИЕ ВЫСОКОГО ЗНАЧЕНИЯ СОПРОТИВЛЕНИЯ
Использование источника постоянного напряжения дает преимущество, заключающееся в точном определении значения напряжения, используемого для измерения.Выбор этого напряжения - важный параметр.

Действительно, значение высокого сопротивления зависит от приложенного к нему напряжения. Другие факторы влияют на измерение сопротивления высокого значения. Температура и относительная влажность - два важных параметра, которые влияют на значение сопротивления изолятора. Мы предлагаем на последней модели Sefelec измерение этих двух физических параметров (M1501P). В следующей таблице можно найти приблизительное значение сопротивления изоляционных материалов.

ЗАЩИТНАЯ ЦЕПЬ
Чтобы минимизировать токи утечки, мы предлагаем защитное соединение. Схема защиты позволяет снизить помехи на тестовом образце. Клемма, доступная на передней панели наших приборов, позволяет измерять одно из сопротивлений конфигурации Delta (т. Е. Кабеля с двумя проводниками и его внешним экраном), так что на результат не влияет наличие двух других шунтов. сопротивления.

* Для этого клемма защиты приближена к потенциалу измерительного входа прибора.

* Значение Rx будет определено с большой точностью, если ток lx, измеренный на входе мегомметра, действительно является током, протекающим через Rx.

* Rp1: обозначает утечку между цепями высокого напряжения (ВН) и землей.

* Rp3 - Rp4: представляют собой параллельную утечку Rx. Если средняя точка Rp2-Rp4 подключена к ограждению, эти утечки не повлияют на измерение Rx.

* Rp2: не влияет, если ограждение заземлено.

Сопротивление изоляции кабеля

СОПРОТИВЛЕНИЕ ИЗОЛЯЦИИ КАБЕЛЯ

ПОЧЕМУ КАБЕЛИ ИЗОЛИРОВАНЫ? ВВЕДЕНИЕ

За исключением кабелей передачи энергии, которые находятся на электрических опорах, почти все кабели, которые используются сегодня, изолированы. Уровень или степень сопротивления изоляции кабеля зависит от цели, для которой кабель был разработан.Помимо экономии энергии от потери или рассеивания в окружающую среду, одна из важнейших причин , почему кабели изолированы , заключается в том, чтобы спасти нас от опасности поражения электрическим током.

Электричество очень опасно. Первое касание может быть последним , и оно никогда не дает ни единого шанса. Легкое прикосновение к кабелю, по которому проходит электрический ток, может привести к несчастному случаю со смертельным исходом. Наше тело частично проводит электричество. Когда наше тело соприкасается с проводником с током, электрический ток будет стремиться течь от проводника к нашему телу.Наше тело, будучи частичным проводником, не сможет проводить электрический ток. Когда ток слишком силен, чем может выдержать наше тело, он убивает человека, это вопрос.

Чтобы избежать подобных аварий в наших домах, возникла необходимость в изоляции кабелей. Изоляция предотвращает утечку тока, а также не дойдет до нас, тем самым защищая нас от поражения электрическим током.

ЧТО ТАКОЕ ИЗОЛЯТОР?

Изолятор - это материал или вещество, не проводящее тепло или электричество.Изоляторы не проводят тепло или электричество, потому что в них нет свободно движущихся электронов. Считается, что проводники изолированы, если они покрыты изоляционным материалом, таким как ПВХ и т. Д. Этот процесс называется изоляцией. Изолятор вокруг проводника предотвращает утечку электроэнергии и сигналов в окружающую среду.

ВЛИЯНИЕ ТЕМПЕРАТУРЫ НА ИЗОЛИРОВАННЫЕ МАТЕРИАЛЫ

Повышение температуры увеличивает сопротивление проводников, в то время как сопротивление уменьшается с увеличением температуры в полупроводниках, а также в изоляторах.Повышение температуры может сделать полупроводник хорошим проводником, а изолятор - полупроводником.

СОПРОТИВЛЕНИЕ ИЗОЛЯЦИИ КАБЕЛЯ

Жила кабеля снабжена изоляцией подходящей толщины, чтобы избежать утечки тока. Толщина любого кабеля зависит от назначения его конструкции. Путь утечки тока в таком кабеле радиальный. Сопротивление или противодействие, обеспечиваемое изоляцией току, также радиально по всей ее длине.

Для одножильной жилы кабеля с радиусом r 1 , радиусом внутренней оболочки r 2 , длиной l и удельным сопротивлением изоляционного материала ρ периметр жилы равен 2πr l . Толщина изоляции указывается как dr.

R ins = ρdr / 2πr l

После интеграции мы получим:

R ins = ρ / 2π l [loge r 2 / r 2 ]

R ins обратно пропорционально 1/ л в отличие от R = ρ л .Где ρ (rho) - постоянная, известная как удельное сопротивление .
Есть кабели, у которых более одного изоляционного слоя и более одной жилы. Главный провод, находящийся в центре, служит основным проводником. Другая жила служит для заземления и предотвращения выхода электромагнитных волн и излучения из кабеля. Он служит щитом. Кабели в этой категории - это коаксиальные кабели.

Коаксиальный кабель передает электрический сигнал с помощью внутреннего проводника (внутренний или основной проводник может быть любым хорошим проводником, но в основном предпочтительна медь из-за ее низкого удельного сопротивления, медь также может быть покрыта гальваническим покрытием) содержится в основном в корпусе из ПВХ.Перед внешним корпусом из ПВХ находятся два или более других изолятора с алюминиевой фольгой или медной жилой между ними. Кабели защищены от внешней среды внешним корпусом из ПВХ. В то время как напряжение проходит через внутренний проводник, экран или корпус практически не пропускают напряжение.

Преимущество коаксиальной конструкции заключается в том, что электрическое и магнитное поля ограничены диэлектриком с небольшой утечкой за пределы экрана. Благодаря уровню изоляции в кабелях, который предотвращает проникновение внешних электромагнитных полей и излучений в них, исключаются помехи.Поскольку проводники большого диаметра имеют меньшее сопротивление, утечка электромагнитного поля будет меньше. То же самое и с кабелями с большей изоляцией. Зная, что более слабые сигналы легко прерываются небольшими помехами, кабели с большим количеством слоев изоляции всегда являются хорошим выбором для передачи таких сигналов.

ХАРАКТЕРИСТИКИ ИЗОЛИРОВАННОГО КАБЕЛЯ

Отметив, что сопротивление изоляции кабеля определяется его конструктивным назначением, существует ряд факторов, которые инженер должен учесть перед проектированием кабеля.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *