Стабилитрон на 15 вольт. Стабилитрон: принцип работы, характеристики и применение в электронике

Что такое стабилитрон и как он работает. Каковы основные характеристики стабилитронов. Где применяются стабилитроны в электронных схемах. Как правильно выбрать и использовать стабилитрон. Какие существуют аналоги и альтернативы стабилитронам.

Содержание

Что такое стабилитрон и принцип его работы

Стабилитрон — это полупроводниковый диод специального назначения, предназначенный для стабилизации напряжения в электрических цепях. Основной особенностью стабилитрона является способность поддерживать практически постоянное напряжение на своих выводах при изменении протекающего через него тока в широких пределах.

Принцип работы стабилитрона основан на явлении электрического пробоя p-n перехода при обратном включении. При подаче на стабилитрон обратного напряжения, превышающего напряжение пробоя, через него начинает протекать значительный ток, но напряжение остается практически неизменным. Это свойство и используется для стабилизации напряжения.


Основные характеристики и параметры стабилитронов

Ключевыми параметрами стабилитронов являются:

  • Напряжение стабилизации (Uст) — номинальное напряжение на стабилитроне в режиме стабилизации
  • Минимальный и максимальный токи стабилизации (Iст.мин и Iст.макс)
  • Дифференциальное сопротивление (rст) — характеризует стабильность напряжения
  • Температурный коэффициент напряжения (TKH)
  • Максимальная рассеиваемая мощность (Pмакс)

Как выбрать подходящий стабилитрон для конкретной схемы? Необходимо учитывать следующие факторы:

  1. Требуемое напряжение стабилизации
  2. Ток нагрузки и диапазон его изменения
  3. Максимальное входное напряжение
  4. Допустимая нестабильность выходного напряжения
  5. Температурный диапазон работы

Применение стабилитронов в электронных схемах

Стабилитроны широко используются в различных электронных устройствах для стабилизации напряжения питания и создания источников опорного напряжения. Основные области применения:

  • Стабилизаторы напряжения в блоках питания
  • Формирователи опорного напряжения в измерительных приборах
  • Ограничители напряжения для защиты цепей
  • Генераторы шума
  • Компенсация температурной зависимости в полупроводниковых схемах

Типовые схемы включения стабилитронов

Наиболее распространенная схема включения стабилитрона — параметрический стабилизатор напряжения. Она состоит из балластного резистора R и собственно стабилитрона VD:


«`
Uвх R VD Uвых «`

В этой схеме входное напряжение Uвх должно превышать напряжение стабилизации стабилитрона. Резистор R ограничивает ток через стабилитрон. При изменении входного напряжения или тока нагрузки, напряжение на выходе Uвых остается практически постоянным и равным напряжению стабилизации стабилитрона.

Особенности выбора и применения стабилитронов

При использовании стабилитронов в электронных схемах следует учитывать ряд важных моментов:

  • Напряжение стабилизации реальных стабилитронов имеет некоторый разброс (обычно ±5% от номинала)
  • Необходимо обеспечить ток через стабилитрон в пределах от Iст.мин до Iст.макс
  • Следует контролировать рассеиваемую на стабилитроне мощность
  • При необходимости нужно учитывать температурную зависимость напряжения стабилизации
  • Для более точной стабилизации можно использовать последовательное включение нескольких стабилитронов

Альтернативы и аналоги стабилитронов

Хотя стабилитроны остаются популярным и надежным решением для стабилизации напряжения, существуют и альтернативные подходы:


  • Интегральные стабилизаторы напряжения (например, серии 78xx, LM317)
  • Импульсные стабилизаторы напряжения
  • Параметрические стабилизаторы на полевых транзисторах
  • Прецизионные источники опорного напряжения

Выбор конкретного решения зависит от требований к точности стабилизации, величине выходного тока, КПД и других факторов.

Маркировка и обозначение стабилитронов

Как правильно «прочитать» маркировку стабилитрона и определить его характеристики? Существует несколько систем маркировки:

  • Отечественная система (например, КС168А, где 16,8 — напряжение стабилизации)
  • Зарубежная система (например, 1N4733A, где 33 указывает на напряжение 3,3В)
  • SMD-компоненты часто имеют цветовую маркировку

На принципиальных схемах стабилитрон обозначается специальным символом — диодом с «перечеркнутым» катодом. Важно правильно определять полярность включения стабилитрона в схему.


Стабилитроны мощные

Тип
прибора
Предельные значения
параметров при Т=25°С
Значения параметров
при Т=25°С
Тк.мах
п.)

°С

Uст.ном.

B

при
Iст.ном.
mA
Рмакс.

mBt

Uст.rст.

Om

aст.
10-2
%/°С
Iст.
мин
B
мах
B
мин
mA
мах
mA
Д815А5,6100080005,06,21,04,5501400125
Д815Б6,8100080006,17,51,26,0501150125
Д815В8,2100080007,49,11,59,050950125
Д815Г10,050080009,0111,88,025800125
Д815Д12,0500800010,813,32,09,025650125
Д815Е15,0500800013,316,42,510,025550125
Д815Ж18,0500800016,219,83,011,025
450
125
Д815И4,7100080004,25,20,814,0501400125
Д816А22,0150500019,624,27,012,010230125
Д816Б27,0150500024,229,58,012,010180125
Д816В33,0150500029,5361012,010150125
Д816Г36,0150500035,0431212,010130125
Д816Д47,0150500042,551,51512,010110125
Д817А56,050,0500050,551,53514,05,090125
Д817Б68,050,0500061,0754014,05,075125
Д817В82,050,0500074,0904514,05,060125
Д817Г100,050,0500090,01105014,05,050125
КС406А8,215,05007,78,76,59,0 0,53585
КС406Б10,012,05009,410,68,511,00,252885
2С411А8,05,03407,08,56,07,03,040125
2С411Б9,05,034089,5108,03,036125
КС407А3,310,05003,13,528-8,01,010085
КС407Б3,920,05003,74,123-7,01,08385
КС407В4,7
20,0
5004,4519-3,01,06885
КС407Г5,120,05004,85,417±2,01,05985
КС407Д6,818,05006,47,24,55,01,04285
КС409А5,65,04005,35,9202. ..41,04885
КС412А6,25,04005,86,610-1…61,055125
КС433А3,360,010002,973,6325-10,03,0229125
2С433А3,360,010002,973,6314-10,03,0229125
КС439А3,951,010003,514,2925-10,03,0212125
2С439А3,951,010003,514,2912-10,03,0212125
КС447А4,743,010004,235,1718-8…33,0190125
2С447А4,743,010004,235,1710-8…33,0190125
КС456А5,636,010005,046,167,05,03,0167125
2С456А5,636,010005,046,167,05,03,0167125
КС468А6,830,010006,127,485,06,53,0119125
2С468А6,829,010006,127,485,06,53,0142125
КС482А8,25,010007,49,0258,01,096125
2С482А8,25,010007,49,0258,01,096125
КС508А12,010,550011,412,71111,00,252385
КС508Б15,010,550013,815,61611,00,251885
КС508В16,07,850015,317,11711,00,251785
КС508Г18,07,050016,819,12111,00,251585
КС508Д24,05,250022,825,63312,00,251185
КС509А15,015,0130013,815,6159,00,54285
КС509Б18,015,0130018,619,1209,00,53585
КС509В20,010,0130018,821,2249,00,53185
КС510А10,05,010009,0112510,01,079125
2С510А10,05,010009,0112510,01,079125
КС512А12,05,0100010,813,22510,01,067125
2С512А12,05,0100010,813,22510,01,067125
КС515А15,05,0100013,516,52510,01,053125
2С515А15,05,0100013,516,52510,01,053125
2С516А10,05,03409,010,5129,03,032125
2С516Б11,05,03401012159,53,029125
2С516В13,05,034011,514189,53,024125
КС518А18,05,0100016,219,82510,01,045125
2С518А18,05,0100016,219,82510,01,045125
КС522А22,05,0100019,824,22510,01,037125
2С522А22,05,0100019,824,22510,01,037125
2С522А522,05,0100019,824,2251,037125
КС524А24,05,0100022,825,23010,01,033125
2С524А24,05,0100022,825,23010,01,033125
КС527А27,05,0100024,329,74010,01,030125
2С527А27,05,0100024,329,74010,01,030125
2С530А30,05,0100028,531,54510,01,027125
КС533А33,05,064030364010,03,017125
2С536А36,05,0100034,237,85010,01,023125
КС551А51,01,51000485420012,01,014,6125
2С551А51,01,51000485420012,01,014,6125
КС591А91,01,51000869640012,01,08,8125
2С591А91,01,51000869640012,01,08,8125
КС600А1001,510009510545012,01,08,1125
2С600А1001,510009510545012,01,08,1125
КС620А12050,0500010813215020,05,042125
КС630А13050,0500011714318020,05,038125
КС650А15025,0500013616427020,02,533125
КС680А18025,0500016219833020,02,528125
2С920А12050,0500010813210016,05,042125
2С930А13050,0500011714312016,05,038125
2С950А15025,0500013616417016,02,533125
2С980А18025,0500016219822016,02,528125

Uст.ном.номинальное напряжение стабилизации стабилитрона;
Iст.ном.номинальный ток стабилизации стабилитрона;
Рмакс.максимально-допустимая рассеиваемая мощность на стабилитроне;
Uст.напряжение стабилизации стабилитрона;
rст.дифференциальное сопротивление стабилитрона;
aст.температурный коэффициент стабилизации стабилитрона;
Iст.ток стабилизации стабилитрона;
Тк.макс.максимально-допустимая температура корпуса стабилитрона;
Тп.макс.максимально-допустимая температура перехода стабилитрона.

Мощный стабилитрон на 5 вольт 1ампер. Стабилитрон

Это достаточно простая схема бестрансформаторного блока питания. Устройство выполнена на доступных элементах и в предварительной наладке не нуждается. В качестве диодного выпрямителя использован готовый мост серии КЦ405В(Г), также можно использовать любые диоды с напряжением не менее 250 вольт. Электросхема показана на рисунке:

Неполярный конденсатор подобрать на 400-600 вольт, от его емкости зависит сила тока на выходе. Резистор с сопротивлением от 75 до 150 килоом. После диодного моста напряжение порядка 100 вольт, его нужно уменьшит. Для этих целей использован отечественный стабилитрон серии Д814Д.


После стабилитрона уже получаем напряжение 9 вольт, можно также использовать буквально любые стабилитроны на 6-15 вольт. На выходе использован типовой микросхемный стабилизатор на 5 вольт, вся основная нагрузка лежит именно на нем, поэтому стабилизатор следует прикрутить на небольшой теплоотвод, желательно заранее намазав термопастой.


Полярные конденсаторы предназначены для гашения и фильтрации сетевых помех. Устройство работает очень стабильно, но имеет всего один недостаток — малый выходной ток. Ток можно увеличить подбором конденсатора и резистора, в токогасящей цепи. Печатная — в архиве.


Устройство сейчас активно используется для маломощных конструкций. Выходной ток достаточно велик, чтобы зарядить мобильный телефон, питать светодиоды и небольшие лампы накаливания. Видео с экспериментами и замерами приводим ниже:

Однако учтите, что из-за отсутствия сетевого трансформатора, есть риск удара током фазы, поэтому все токонесущие элементы БП и девайса, что к нему подключен, должны быть тщательно изолированны! Автор статьи — АКА (Артур).

Обсудить статью БЕСТРАНСФОРМАТОРНЫЙ БП НА 5В

Вам знаком термин «стабильность»? Стабильная зарплата, стабильная жизнь, стабильное государство. Последнее не про Россию конечно:-). Если глянуть в толковый словарик, то можно толково разобрать, что же такое «стабильность». На первых строчках Яндекс мне сразу выдал обозначение этого слова: стабильный — это значит постоянный, устойчивый, не изменяющийся.

Но всех больше этот термин используется именно в электронике и электротехнике. В электронике очень важны постоянные значения какого-либо параметра. Это может быть Сила тока , Напряжение , частота сигнала и другие его характеристики. Отклонение сигнала от какого-либо заданного параметра может привести к неправильной работе радиоэлектронной аппаратуры и даже к ее поломке. Поэтому очень важное слово в электронике — это слово «стабильность».

Чаще всего в электронике и электротехнике стабилизируют напряжение . От значения напряжения зависит работа радиоэлектронной аппаратуры. Если оно изменится в меньшую, или даже еще хуже, в большую сторону, то аппаратура в первом случае может неправильно работать, а во втором случае и вовсе колыхнуть ярким пламенем. Поэтому, чтобы не допустить взлетов и падения напряжения, были придуманы различные стабилизаторы напряжения. Как вы поняли из словосочетания — они используются чтобы стабилизировать «играющее» напряжение.

Самым простым стабилизатором напряжения в электронике является радиоэлемент стабилитрон . Иногда его еще называют диодом Зенера. На схемах стабы обозначаются примерно так:

Вывод с «кепочкой» называется также как и у диода — катод, а другой вывод — анод.

Стабилитроны выглядят также, как и диоды . На фото ниже слева популярный вид современного стабилитрона, а справа один из образцов Советского Союза

Если присмотреться поближе к советскому стабилитрону, то можно увидеть это схематическое обозначение на нем самом, указывающее, где у него находится катод, а где анод.

Самый главный параметр стабилитрона — это конечно же, напряжение стабилизации. Что это за параметр?

Давайте возьмем стакан и будем наполнять его водой…

Сколько бы вода не лилась в стакан, излишки воды будут выливаться из стакана. Думаю, это понятно и дошкольнику.

Теперь по аналогии с электроникой. Стакан — это стабилитрон. Уровень воды в полном до краев стакане — это и есть напряжение стабилизации стабилитрона. Представьте рядом со стаканом большой кувшин с водой. Водой из кувшина мы как раз и будем заливать наш стакан водой, но кувшин при этом трогать не смеем. Вариант только один — лить воду из кувшина, пробив отверстие в самом кувшине. Если бы кувшин был меньше по высоте, чем стакан, то мы бы не смогли лить воду в стакан. Если объяснить языком электроники — кувшин обладает «напряжением» больше, чем «напряжение» стакана.

Так вот, дорогие читатели, в стакане заложен весь принцип работы стабилитрона. Какую бы струю мы на него не лили (ну конечно в пределах разумного, а то стакан унесет и разорвет), стакан всегда будет полным. Но лить надо сверху. Это значит, напряжение, которое мы подаем на стабилитрон, должно быть выше, чем напряжение стабилизации стабилитрона.

Итак, напряжение стабилизации — это напряжение, которое «оседает» на концах стабилитрона, если, конечно, подавать на него напряжение больше, чем напряжение стабилизации. Для того, чтобы узнать напряжение стабилизации советского стабилитрона, нам понадобится справочник. Например, на фото ниже советский стабилитрон Д814В:

Его напряжение стабилизации в среднем 10 Вольт.

Зарубежные стабилитроны маркируются проще. Если приглядеться, то можно увидеть незамысловатую надпись:

5V1 — это означает напряжение стабилизации данного стабилитрона составляет 5,1 Вольта. Намного проще, не так ли?

Катод у зарубежных стабилитронов помечается в основном черной полоской

Как же проверить стабилитрон? Да также как и диод! А как проверить диод, можно глянуть в этой статье. Давайте же проверим наш стабилитрон. Ставим Мультиметр на прозвонку и цепляемся красным щупом к аноду, а черным к катоду. Мультиметр должен показать падение напряжения прямого P-N перехода.

Меняем щупы местами и видим единичку. Это значит, что наш стабилитрон в полной боевой готовности.

Ну что же, настало время опытов. В схемах стабилитрон включается последовательно с резистором:

где Uвх — входное напряжение, Uвых.ст. — выходное стабилизированное напряжение

Если внимательно глянуть на схему, мы получили ни что иное, как Делитель напряжения . Здесь все элементарно и просто:

Uвх=Uвых.стаб +Uрезистора

Или словами: входное напряжение равняется сумме напряжений на стабилитроне и на резисторе.

Эта схема называется параметрический стабилизатор на одном стабилитроне. Расчет этого стабилизатора выходит за рамки данной статьи, но кому интересно, в гугл;-)

Итак, собираем схемку. Мы взяли резистор номиналом в 1,5 КилоОм и стабилитрон на напряжение стабилизации 5,1 Вольта. Слева цепляем Блок питания , а справа замеряем мультиметром полученное напряжение:

Теперь внимательно следим за показаниями мультика и блока питания:

Так, пока все понятно, еще добавляем напряжение… Опа на! Входное напряжение у нас 5,5 Вольт, а выходное 5,13 Вольт! Так как напряжение стабилизации стабилитрона 5,1 Вольт, то как мы видим, он прекрасно стабилизирует.

Давайте еще добавим вольты. Входное напряжение 9 Вольт, а на стабилитроне 5,17 Вольт! Изумительно!

Еще добавляем… Входное напряжение 20 Вольт, а на выходе как ни в чем не бывало 5,2 Вольта! 0,1 Вольт — это ну очень маленькая погрешность, ей можно даже в некоторых случаях пренебречь.

Думаю, не помешало бы рассмотреть Вольт амперную характеристику (ВАХ) стабилитрона. Выглядит она примерно как-то так:

где

Iпр — прямой ток

Uпр — прямое напряжение

Эти два параметра в стабилитроне не используются

Uобр — обратное напряжение

Uст — номинальное напряжение стабилизации

Iст — номинальный ток стабилизации

Номинальный — это значит нормальный параметр, при котором возможна долгосрочная работа радиоэлемента.

Imax — максимальный ток стабилитрона

Imin — минимальный ток стабилитрона

Iст, Imax, Imin — это сила тока, которая течет через стабилитрон при его работе.

Так как стабилитрон работает именно в обратной полярности, в отличие от диода (стабилитрон подключают катодом к плюсу, а диод катодом к минусу), то и рабочая область будет именно та, что отмечена красным прямоугольником.

Как мы видим, при каком-то напряжении Uобр у нас график начинает падать вниз. В это время в стабилитроне происходит такая интересная штука, как пробой. Короче говоря он не может больше наращивать на себе напряжение, и в это время начинается возрастать сила тока в стабилитроне. Самое главное — не переборщить силу тока, больше чем Imax , иначе стабилитрону придет жопа. Самым лучшим рабочим режимом стабилитрончика считается режим, при котором сила тока на стабилитроне находится где-то в середине между максимальным и минимальным его значением. На графике это и будет рабочей точкой рабочего режима стабилитрона (пометил кружком).

Раньше, во времена дефицитных деталей и начала расцвета электроники, стабилитрон часто использовался, как ни странно, для стабилизации выходного напряжения блока питания. В старых советских книгах по электронике можно увидеть вот такой участок цепи различных блоков питания:

Слева, в красной рамке, я пометил знакомый вам участок цепи блока питания. Здесь мы получаем постоянное напряжение из переменного . Справа же, в зеленой рамке, схема стабилизации;-).

Уф, вот и в кратце объяснил работу стабилитрона. Да, знаю, трудно все это для понимания, но на стабилитроне можно не зацикливаться. В настоящее время Трехвыводные (интегральные) стабилизаторы напряжения вытесняют стабилизаторы на стабилитронах, потому как они еще лучше стабилизируют напряжение, поэтому в большинстве прецизионной (точной) аппаратуры используют именно их.

На Али можно взять сразу целый набор этих стабилитронов, начиная от 3,3 Вольт и до 30 Вольт стабилизации. Выбирайте на ваш вкус и цвет.



Стабилитрон

Стабилитрон это тоже диод, но предназначен поддержания постоянства напряжения в цепях питания радиоэлектронной аппаратуры. По устройству и принципу работы кремниевые стабилитроны широкого применения аналогичны плоскостным выпрямительным диодам. Особенностью его является то, что в прямом направлении он работает как обычный диод, а вот в обратном его срывает на каком либо напряжении, например на 3.3 вольта. Подобно ограничительному клапану парового котла, открывающемуся при превышении давления и стравливающему излишки пара. Стабилитроны используют когда хотят получить напряжение заданной величины, вне зависимости от входных напряжений. Это может быть, например, опорная величина, относительно которой происходит сравнение входного сигнала. Им можно обрезать входящий сигнал до нужной величины или используют его как защиту. В своих схемах я часто ставлю на питание контроллера стабилитрон на 5.5 вольт, чтобы в случае чего, если напряжение резко скакнет, этот стабилитрон стравил через себя излишки.


Напряжение на стабилитрон подают в обратной полярности, то есть на анод стабилитрона будет подан минус «-«. При таком включении стабилитрона через него протекает обратный ток (I обр ) от выпрямителя. Напряжение с выхода выпрямителя может изменяться, будет изменяться и обратный ток, а напряжение на стабилитроне и на нагрузке останется неизменным, то есть стабильным. На следующем рисунке показана вольт-амперная характеристика стабилитрона.


Стабилитрон работает на обратной ветви ВАХ (Вольт-амперной характеристики), как показано на рисунке. К основным параметрам стабилитрона относятся U ст . (напряжение стабилизации) и I ст . (ток стабилизации). Эти данные указаны в паспорте на конкретный тип стабилитрона. Причём величины максимального и минимального токов учитываются только при расчёте стабилизаторов с прогнозируемыми большими изменениями напряжения.

Схемы включения стабилитронов


это что такое и для чего он нужен? Как работает стабилитрон Стабилитрон на 30 вольт отечественные

Стабилитрон — это полупроводниковый диод с уникальными свойствами. Если обычный полупроводник при обратном включении является изолятором, то он выполняет эту функцию до определенного роста величины приложенного напряжения, после чего происходит лавинообразный обратимый пробой. При дальнейшем увеличении протекающего через стабилитрон обратного тока напряжение продолжает оставаться постоянным за счет пропорционального уменьшения сопротивления. Таким путем удается добиться режима стабилизации.

В закрытом состоянии через стабилитрон сначала проходит небольшой ток утечки. Элемент ведет себя как резистор, величина сопротивления которого велика. При пробое сопротивление стабилитрона становится незначительным. Если дальше продолжать повышать напряжение на входе, элемент начинает греться и при превышении током допустимой величины происходит необратимый тепловой пробой. Если дело не доводить до него, при изменении напряжения от нуля до верхнего предела рабочей области свойства стабилитрона сохраняются.

Когда напрямую включается стабилитрон, характеристики не отличаются от диода. При подключении плюса к p-области, а минуса — к n-области сопротивление перехода мало и ток через него свободно протекает. Он нарастает с увеличением входного напряжения.

Стабилитрон — это особый диод, подключаемый большей частью в обратном направлении. Элемент сначала находится в закрытом состоянии. При возникновении электрического пробоя стабилитрон напряжения поддерживает его постоянным в большом диапазоне тока.

На анод подается минус, а на катод — плюс. За пределами стабилизации (ниже точки 2) происходит перегрев и повышается вероятность выхода элемента из строя.

Характеристики

Параметры стабилитронов следующие:

  • U ст — напряжение стабилизации при номинальном токе I ст;
  • I ст min — минимальный ток начала электрического пробоя;
  • I ст max — максимальный допустимый ток;
  • ТКН — температурный коэффициент.

В отличие от обычного диода, стабилитрон — это полупроводниковое устройство, у которого на вольт-амперной характеристике области электрического и теплового пробоя достаточно далеко расположены друг от друга.

С максимально допустимым током связан параметр, часто указываемый в таблицах — мощность рассеивания:

P max = I ст max ∙ U ст.

Зависимость работы стабилитрона от температуры может быть как с положительным ТКН, так и отрицательным. При последовательном подключении элементов с разными по знакам коэффициентами создаются прецизионные стабилитроны, не зависящие от нагрева или охлаждения.

Схемы включения

Типовая схема простого стабилизатора, состоит из балластного сопротивления R б и стабилитрона, шунтирующего нагрузку.

В некоторых случаях происходит нарушение стабилизации.

  1. Подача на стабилизатор большого напряжения от источника питания при наличии на выходе фильтрующего конденсатора. Броски тока при его зарядке могут вызвать выход из строя стабилитрона или разрушение резистора R б.
  2. Отключение нагрузки. При подаче на вход максимального напряжения ток стабилитрона может превысить допустимый, что приведет к его разогреву и разрушению. Здесь важно соблюдать паспортную область безопасной работы.
  3. Сопротивление R б подбирается небольшим, чтобы при минимально возможной величине напряжения питания и максимально допустимом токе на нагрузке стабилитрон находился в рабочей зоне регулирования.

Для защиты стабилизатора применяются тиристорные схемы защиты или

Резистор R б рассчитывается по формуле:

R б = (U пит — U ном)(I ст + I н).

Ток стабилитрона I ст выбирается между допустимыми максимальным и минимальным значениями, в зависимости от напряжения на входе U пит и тока нагрузки I н.

Выбор стабилитронов

Элементы имеют большой разброс по напряжению стабилизации. Чтобы получить точное значение U н, стабилитроны подбираются из одной партии. Есть типы с более узким диапазоном параметров. При большой мощности рассеивания элементы устанавливают на радиаторы.

Для расчета параметров стабилитрона необходимы исходные данные, например, такие:

  • U пит = 12-15 В — напряжение входа;
  • U ст = 9 В — стабилизированное напряжение;

Параметры характерны для устройств с небольшим потреблением энергии.

Для минимального входного напряжения 12 В ток на нагрузке выбирается по максимуму — 100 мА. По закону Ома можно найти суммарную нагрузку цепи:

R ∑ = 12 В / 0,1 А = 120 Ом.

На стабилитроне падение напряжения составляет 9 В. Для тока 0,1 А эквивалентная нагрузка составит:

R экв = 9 В / 0,1 А = 90 Ом.

Теперь можно определить сопротивление балласта:

R б = 120 Ом — 90 Ом = 30 Ом.

Оно выбирается из стандартного ряда, где значение совпадает с расчетным.

Максимальный ток через стабилитрон определяется с учетом отключения нагрузки, чтобы он не вышел из строя в случае, если какой-либо провод отпаяется. Падение напряжения на резисторе составит:

U R = 15 — 9 = 6 В.

Затем определяется ток через резистор:

I R = 6/30 = 0,2 А.

Поскольку стабилитрон подключен к нему последовательно, I c = I R = 0,2 А.

Мощность рассеивания составит P = 0,2∙9 = 1,8 Вт.

По полученным параметрам подбирается подходящий стабилитрон Д815В.

Симметричный стабилитрон

Симметричный диодный тиристор представляет собой переключающий прибор, проводящий переменный ток. Особенностью его работы является падение напряжения до нескольких вольт при включении в диапазоне 30-50 В. Его можно заменить двумя встречно включенными обычными стабилитронами. Устройства применяют в качестве переключающих элементов.

Аналог стабилитрона

Когда не удается подобрать подходящий элемент, используют аналог стабилитрона на транзисторах. Их преимуществом является возможность регулирования напряжения. Для этого можно применять усилители постоянного тока с несколькими ступенями.

На входе устанавливают делитель напряжения с R1. Если входное напряжение возрастает, на базе транзистора VT1 оно также увеличивается. При этом растет ток через транзистор VT2, который компенсирует увеличение напряжения, поддерживая тем самым его стабильным на выходе.

Маркировка стабилитронов

Выпускаются стеклянные стабилитроны и стабилитроны в пластиковых корпусах. В первом случае на них наносятся 2 цифры, между которыми располагается буква V. Надпись 9V1 обозначает, что U ст = 9,1 В.

На пластиковом корпусе надписи расшифровываются с помощью даташита, где также можно узнать другие параметры.

Темным кольцом на корпусе обозначается катод, к которому подключается плюс.

Заключение

Стабилитрон — это диод с особыми свойствами. Достоинством стабилитронов является высокий уровень стабилизации напряжения при широком диапазоне изменения рабочего тока, а также простые схемы подключения. Для стабилизации малого напряжения приборы включают в прямом направлении, и они начинают работать как обычные диоды.

Много-много лет тому назад такого слова как стабилитрон не существовало вообще. Тем более в бытовой аппаратуре.

Попробуем представить себе громоздкий ламповый приёмник середины двадцатого века. Многие приносили их в жертву собственному любопытству, когда папа с мамой приобретали что-нибудь новое, а «Рекорд» или «Неман» отдавали на растерзание .

Блок питания лампового приёмника был предельно прост: мощный кубик силового трансформатора , который обыкновенно имел всего две вторичных обмотки, диодный мостик или селеновый выпрямитель, два электролитических конденсатора и резистор на два ватта между ними.

Первая обмотка питала накал всех ламп приёмника переменным током и напряжением 6,3V (вольт), а на примитивный выпрямитель приходило порядка 240V для питания анодов ламп. Ни о какой стабилизации напряжения и речи не шло. Исходя из того, что приём радиостанций вёлся на длинных, средних и коротких волнах с очень узкой полосой и ужасным качеством, наличие или отсутствие стабилизации напряжения питания на это качество совершенно не влияло, а приличной автоподстройки частоты на той элементной базе просто быть не могло.

Стабилизаторы в то время применялись только в военных приёмниках и передатчиках, конечно тоже ламповые. Например: СГ1П – стабилизатор газоразрядный, пальчиковый. Так продолжалось до тех пор, пока не появились транзисторы. И тут выяснилось, что схемы, выполненные на транзисторах очень чувствительны к колебаниям питающего напряжения, и обыкновенным простым выпрямителем уже не обойтись. Используя физический принцип, заложенный в газоразрядных приборах, был создан полупроводниковый стабилитрон реже называемый диод Зенера.

Графическое изображение стабилитрона на принципиальных схемах.

Внешний вид стабилитронов. Первый сверху в корпусе для поверхностного монтажа . Второй сверху – в стеклянном корпусе DO-35 и мощностью 0,5 Вт. Третий, – мощностью 1 Вт (DO-41). Естественно, стабилитроны изготавливают в разнообразных корпусах. Иногда в одном корпусе объединяется два элемента.

Принцип работы стабилитрона.

Прежде всего, не следует забывать, что стабилитрон работает только в цепях постоянного тока. Напряжение на него подают в обратной полярности, то есть на анод стабилитрона будет подан минус «-«. При таком включении через него протекает обратный ток (I обр ) от выпрямителя. Напряжение с выхода выпрямителя может изменяться, будет изменяться и обратный ток, а напряжение на стабилитроне и на нагрузке останется неизменным, то есть стабильным. На следующем рисунке показана вольт-амперная характеристика стабилитрона.

Стабилитрон работает на обратной ветви ВАХ (Вольт-Амперной Характеристики), как показано на рисунке. К его основным параметрам относятся U ст . (напряжение стабилизации) и I ст . (ток стабилизации). Эти данные указаны в паспорте на конкретный тип стабилитрона. Причём величина максимального и минимального тока учитывается только при расчёте стабилизаторов с прогнозируемым большим изменением напряжения.

Основные параметры стабилитронов.

Для того чтобы подобрать нужный стабилитрон необходимо разбираться в маркировках полупроводниковых приборов. Раньше все типы диодов, включая и стабилитроны, обозначались буквой “Д” и цифрой определяющей, что же это за прибор. Вот пример очень популярного стабилитрона Д814 (А, Б, В, Г). Буква показывала напряжение стабилизации.

Рядом паспортные данные современного стабилитрона (2C147A ), который использовался в стабилизаторах для питания схем на популярных сериях микросхем К155 и К133 выполненных по ТТЛ технологии и имеющих напряжение питания 5V.

Чтобы разбираться в маркировках и основных параметрах современных отечественных полупроводниковых приборов необходимо немного знать условные обозначения. Они выглядят следующим образом: цифра 1 или буква Г – германий, цифра 2 или буква К – кремний, цифра 3 или буква А – арсенид галлия. Это первый знак. Д – диод, Т – транзистор, С – стабилитрон, Л – светодиод. Это второй знак. Третий знак это группа цифр обозначающих сферу применения прибора. Отсюда: ГТ 313 (1Т 313) – высокочастотный германиевый транзистор, 2С147 – кремниевый стабилитрон с номинальным напряжением стабилизации 4,7 вольта, АЛ307 – арсенид-галлиевый светодиод.

Вот схема простого, но надёжного стабилизатора напряжения.

Между коллектором мощного транзистора и корпусом подается напряжение с выпрямителя и равное 12 – 15 вольт. С эмиттера транзистора мы снимаем 9V стабилизированного напряжения, так как в качестве стабилитрона VD1 мы используем надёжный элемент Д814Б (см. таблицу). Резистор R1 – 1кОм, транзистор КТ819 обеспечивающий ток до 10 ампер.

Транзистор необходимо разместить на радиаторе-теплоотводе. Единственный недостаток данной схемы – это невозможность регулировки выходного напряжения. В более сложных схемах подстроечный резистор, конечно, имеется. Во всех лабораторных и домашних радиолюбительских источниках питания есть возможность регулировки выходного напряжения от 0 и до 20 – 25 вольт.

Интегральные стабилизаторы.

Развитие интегральной микроэлектроники и появление многофункциональных схем средней и большой степени интеграции, конечно, коснулось и проблем связанных со стабилизацией напряжения. Отечественная промышленность напряглась и выпустила на рынок радиоэлектронных компонентов серию К142, которую составляли как раз интегральные стабилизаторы. Полное название изделия было КР142ЕН5А, но так как корпус был маленький и название не убиралось целиком, стали писать КРЕН5А или Б, а в разговоре они назывались просто «кренки».

Сама серия была достаточно большая. В зависимости от буквы варьировалось выходное напряжение. Например, КРЕН3 выдавал от 3 до 30 вольт с возможностью регулировки, а КРЕН15 был пятнадцативольтовым двухполярным источником питания.

Подключение интегральных стабилизаторов серии К142 было крайне простым. Два сглаживающих конденсатора и сам стабилизатор. Взгляните на схему.

Если есть необходимость получить другое стабилизированное напряжение, то поступают следующим образом: допустим, мы используем микросхему КРЕН5А на 5V, а нам нужно другое напряжение. Тогда между вторым выводом и корпусом ставится стабилитрон с таким расчётом, чтобы сложив напряжение стабилизации микросхемы, и стабилитрона мы получили бы нужное напряжение. Если мы добавим стабилитрон КС191 на V = 9,1 + 5V микросхемы, то на выходе мы получим 14.1 вольт.

Простейший блок питания 0-30 Вольт для радиолюбителя.

Схема.

В этой статье мы продолжаем тему схемотехники блоков питания для радиолюбительских лабораторий. На сей раз речь пойдет о самом простом устройстве, собранном из радиодеталей отечественного производства, и с минимальным их количеством.

И так, принципиальная схема блока питания:


Как видите, все просто и доступно, элементная база имеет широкое распространение и не содержит дефицитов.

Начнем с трансформатора. Мощность его должна быть не менее 150 Ватт, напряжение вторичной обмотки — 21…22 Вольта, тогда после диодного моста на емкости С1 вы получите порядка 30 Вольт. Рассчитывайте так, чтобы вторичная обмотка могла обеспечивать ток 5 Ампер.

После понижающего трансформатора стоит диодный мост, собранный на четырех 10-ти амперных диодах Д231. Запас по току конечно хороший, но конструкция получается довольно громоздкая. Наилучшим вариантом будет использование импортной диодной сборки типа RS602, при небольших габаритах она рассчитана на ток 6 Ампер.

Электролитические конденсаторы рассчитаны на рабочее напряжение 50 Вольт. С1 и С3 можно ставить от 2000 до 6800 мкФ.

Стабилитрон Д1 — он задает верхний предел регулировки выходного напряжения. На схеме мы видим надпись Д814Д х 2 , это значит, что Д1 состоит из двух последовательно соединенных стабилитронов Д814Д. Напряжение стабилизации одного такого стабилитрона составляет 13 Вольт, значит два последовательно соединенных дадут нам верхний предел регулировки напряжения 26 вольт минус падение напряжения на переходе транзистора Т1. В результате вы получите плавную регулировку от нуля до 25 вольт.
В качестве регулирующего транзистора в схеме применен КТ819, они выпускаются в пластиковых и металлических корпусах. Расположение выводов, размеры корпусов и параметры этого транзистора смотрите на следующих двух изображениях.


Стабильная зарплата, стабильная жизнь, стабильное государство. Последнее не про Россию, конечно:-). Если глянуть в толковый словарик, то можно толково разобрать, что же такое “стабильность”. На первых строчках Яндекс мне сразу выдал обозначение этого слова: стабильный – это значит постоянный, устойчивый, не изменяющийся.

Но чаще всего этот термин используется именно в электронике и электротехнике. В электронике очень важны постоянные значения какого-либо параметра. Это может быть сила тока , напряжение , частота сигнала и . Отклонение сигнала от какого-либо заданного параметра может привести к неправильной работе радиоэлектронной аппаратуры и даже к ее поломке. Поэтому, в электронике очень важно, чтобы все стабильно работало и не давало сбоев.

В электронике и электротехнике стабилизируют напряжение . От значения напряжения зависит работа радиоэлектронной аппаратуры. Если оно изменится в меньшую, или даже еще хуже, в большую сторону, то аппаратура в первом случае может неправильно работать, а во втором случае и вовсе колыхнуть ярким пламенем.

Для того, чтобы не допустить взлетов и падения напряжения, были изобретены различные стабилизаторы напряжения. Как вы поняли из словосочетания, они используются чтобы стабилизировать “играющее” напряжение.

Стабилитрон или диод Зенера

Самым простым стабилизатором напряжения в электронике является радиоэлемент стабилитрон . Иногда его еще называют диодом Зенера . На схемах стабилитроны обозначаются примерно так:

Вывод с “кепочкой” называется также как и у диода – катод , а другой вывод – анод .

Стабилитроны выглядят также, как и диоды . На фото ниже, слева популярный вид современного стабилитрона, а справа один из образцов Советского Союза


Если присмотреться поближе к советскому стабилитрону, то можно увидеть это схематическое обозначение на нем самом, указывающее, где у него находится катод, а где анод.


Напряжение стабилизации

Самый главный параметр стабилитрона – это конечно же, напряжение стабилизации. Что это за параметр?

Давайте возьмем стакан и будем наполнять его водой…

Сколько бы воды мы не лили в стакан, ее излишки будут выливаться из стакана. Думаю, это понятно и дошкольнику.

Теперь по аналогии с электроникой. Стакан – это стабилитрон. Уровень воды в полном до краев стакане – это и есть напряжение стабилизации стабилитрона. Представьте рядом со стаканом большой кувшин с водой. Водой из кувшина мы как раз и будем заливать наш стакан водой, но кувшин при этом трогать не смеем. Вариант только один – лить воду из кувшина, пробив отверстие в самом кувшине. Если бы кувшин был меньше по высоте, чем стакан, то мы бы не смогли лить воду в стакан. Если объяснить языком электроники – кувшин обладает “напряжением” больше, чем “напряжение” стакана.

Так вот, дорогие читатели, в стакане заложен весь принцип работы стабилитрона. Какую бы струю мы на него не лили (ну конечно в пределах разумного, а то стакан унесет и разорвет), стакан всегда будет полным. Но лить надо обязательно сверху. Это значит, напряжение, которое мы подаем на стабилитрон, должно быть выше, чем напряжение стабилизации стабилитрона.

Маркировка стабилитронов

Для того, чтобы узнать напряжение стабилизации советского стабилитрона, нам понадобится справочник. Например, на фото ниже советский стабилитрон Д814В:


Ищем на него параметры в онлайн справочниках в интернете. Как вы видите, его напряжение стабилизации при комнатной температуре примерно 10 Вольт.


Зарубежные стабилитроны маркируются проще. Если приглядеться, то можно увидеть незамысловатую надпись:


5V1 – это означает напряжение стабилизации данного стабилитрона составляет 5,1 Вольта. Намного проще, не так ли?

Катод у зарубежных стабилитронов помечается в основном черной полосой


Как проверить стабилитрон

Как же проверить стабилитрон? Да также как и ! А как проверить диод, можно посмотреть в этой статье. Давайте же проверим наш стабилитрон. Ставим на прозвонку и цепляемся красным щупом к аноду, а черным к катоду. Мультиметр должен показать падение напряжения прямого .


Меняем щупы местами и видим единичку. Это значит, что наш стабилитрон в полной боевой готовности.


Ну что же, настало время опытов. В схемах стабилитрон включается последовательно с резистором:


где Uвх – входное напряжение, Uвых.ст. – выходное стабилизированное напряжение

Если внимательно глянуть на схему, мы получили ни что иное, как Делитель напряжения . Здесь все элементарно и просто:

Uвх=Uвых.стаб +Uрезистора

Или словами: входное напряжение равняется сумме напряжений на стабилитроне и на резисторе.

Эта схема называется параметрический стабилизатор на одном стабилитроне. Расчет этого стабилизатора выходит за рамки данной статьи, но кому интересно, в гугл;-)

Итак, собираем схемку. Мы взяли резистор номиналом в 1,5 Килоом и стабилитрон на напряжение стабилизации 5,1 Вольта. Слева цепляем Блок питания , а справа замеряем мультиметром полученное напряжение:


Теперь внимательно следим за показаниями мультиметра и блока питания:


Так, пока все понятно, еще добавляем напряжение… Опа на! Входное напряжение у нас 5,5 Вольт, а выходное 5,13 Вольт! Так как напряжение стабилизации стабилитрона 5,1 Вольт, то как мы видим, он прекрасно стабилизирует.


Давайте еще добавим вольты. Входное напряжение 9 Вольт, а на стабилитроне 5,17 Вольт! Изумительно!


Еще добавляем… Входное напряжение 20 Вольт, а на выходе как ни в чем не бывало 5,2 Вольта! 0,1 Вольт – это ну очень маленькая погрешность, ей можно даже в некоторых случаях пренебречь.


Вольт-амперная характеристика стабилитрона

Думаю, не помешало бы рассмотреть Вольт амперную характеристику (ВАХ) стабилитрона. Выглядит она примерно как-то так:


где

Iпр – прямой ток, А

Uпр – прямое напряжение, В

Эти два параметра в стабилитроне не используются

Uобр – обратное напряжение, В

Uст – номинальное напряжение стабилизации, В

Iст – номинальный ток стабилизации, А

Номинальный – это значит нормальный параметр, при котором возможна долгосрочная работа радиоэлемента.

Imax – максимальный ток стабилитрона, А

Imin – минимальный ток стабилитрона, А

Iст, Imax, Imin это сила тока, которая течет через стабилитрон при его работе.

Так как стабилитрон работает именно в обратной полярности, в отличие от диода (стабилитрон подключают катодом к плюсу, а диод катодом к минусу), то и рабочая область будет именно та, что отмечена красным прямоугольником.


Как мы видим, при каком-то напряжении Uобр у нас график начинает падать вниз. В это время в стабилитроне происходит такая интересная штука, как пробой. Короче говоря, он не может больше наращивать на себе напряжение, и в это время начинается возрастать сила тока в стабилитроне. Самое главное – не переборщить силу тока, больше чем Imax , иначе стабилитрону придет кердык. Самым лучшим рабочим режимом стабилитрона считается режим, при котором сила тока через стабилитрон находится где-то в середине между максимальным и минимальным его значением. На графике это и будет рабочей точкой рабочего режима стабилитрона (пометил красным кружком).


Заключение

Раньше, во времена дефицитных деталей и начала расцвета электроники, стабилитрон часто использовался, как ни странно, для стабилизации выходного напряжения . В старых советских книгах по электронике можно увидеть вот такой участок цепи различных источников питания:


Слева, в красной рамке, я пометил знакомый вам участок цепи блока питания. Здесь мы получаем постоянное напряжение из переменного . Справа же, в зеленой рамке, схема стабилизации;-).

В настоящее время трехвыводные (интегральные) стабилизаторы напряжения вытесняют стабилизаторы на стабилитронах, так как они в разы лучше стабилизируют напряжение и обладают хорошей мощностью рассеивания.

На Али можно взять сразу целый набор стабилитронов, начиная от 3,3 Вольт и до 30 Вольт. Выбирайте на ваш вкус и цвет.


Блок питания 0-30 Вольт своими руками

Сколько всяких интересных радиоустройств собирают радиолюбители, но основа, без которой не будет работать практически ни одна схема — блок питания . .Часто до сборки приличного блока питания просто не доходят руки. Конечно промышленность выпускает достаточно качественных и мощных стабилизаторов напряжения и тока, однако не везде они продаются и не у всех есть возможность их купить. Проще спаять своими руками.

Схема блока питания:


Предлагаемая схема простого (всего 3 транзистора) блока питания выгодно отличается от аналогичных точностью поддержания выходного напряжения — тут применена компенсационная стабилизация, надёжностью запуска, широким диапазоном регулировки и дешёвыми недефицитными деталями.


После правильной сборки работает сразу, только подбираем стабилитрон согласно требуемому значению максимального выходного напряжения БП.

Корпус делаем из того, что под рукой. Классический вариант — металлическая коробочка от компьютерного БП ATX. Уверен, каждый имеет их немало, так как иногда они сгорают, а купить новый проще, чем чинить.

В корпус прекрасно влазит трансформатор на 100 ватт, и плате с деталями найдётся место.

Кулер можно оставить — лишним не будет. А чтоб не шумел, просто питаем его через токоограничительный резистор, который подберёте экспериментально.

Для передней панели не поскупился и купил пластиковую коробочку — в ней очень удобно делать отверстия и прямоугольные окна для индикаторов и регуляторов.

Амперметр берём стрелочный — чтоб хорошо были видны броски тока, а вольтметр поставил цировой — так удобнее и красивее!

После сборки регулируемого блока питания проверяем его в работе — он должен давать почти полный ноль при нижнем (минимальном) положении регулятора и до 30В — при верхнем. Подключив нагрузку пол ампера — смотрим на просадку выходного напряжения. Она должна быть тоже минимальной.

В общем, при всей своей кажущейся простоте, данный блок питания наверное один из лучших по своим параметрам. При необходимости можно добавить в него узел защиты — пару лишних транзисторов.

Стабилитрон на 30 вольт маркировка. Как работает стабилитрон. Основные параметры стабилитронов

Стабильная зарплата, стабильная жизнь, стабильное государство. Последнее не про Россию, конечно:-). Если глянуть в толковый словарик, то можно толково разобрать, что же такое “стабильность”. На первых строчках Яндекс мне сразу выдал обозначение этого слова: стабильный – это значит постоянный, устойчивый, не изменяющийся.

Но чаще всего этот термин используется именно в электронике и электротехнике. В электронике очень важны постоянные значения какого-либо параметра. Это может быть сила тока , напряжение , частота сигнала и . Отклонение сигнала от какого-либо заданного параметра может привести к неправильной работе радиоэлектронной аппаратуры и даже к ее поломке. Поэтому, в электронике очень важно, чтобы все стабильно работало и не давало сбоев.

В электронике и электротехнике стабилизируют напряжение . От значения напряжения зависит работа радиоэлектронной аппаратуры. Если оно изменится в меньшую, или даже еще хуже, в большую сторону, то аппаратура в первом случае может неправильно работать, а во втором случае и вовсе колыхнуть ярким пламенем.

Для того, чтобы не допустить взлетов и падения напряжения, были изобретены различные стабилизаторы напряжения. Как вы поняли из словосочетания, они используются чтобы стабилизировать “играющее” напряжение.

Стабилитрон или диод Зенера

Самым простым стабилизатором напряжения в электронике является радиоэлемент стабилитрон . Иногда его еще называют диодом Зенера . На схемах стабилитроны обозначаются примерно так:

Вывод с “кепочкой” называется также как и у диода – катод , а другой вывод – анод .

Стабилитроны выглядят также, как и диоды . На фото ниже, слева популярный вид современного стабилитрона, а справа один из образцов Советского Союза


Если присмотреться поближе к советскому стабилитрону, то можно увидеть это схематическое обозначение на нем самом, указывающее, где у него находится катод, а где анод.


Напряжение стабилизации

Самый главный параметр стабилитрона – это конечно же, напряжение стабилизации. Что это за параметр?

Давайте возьмем стакан и будем наполнять его водой…

Сколько бы воды мы не лили в стакан, ее излишки будут выливаться из стакана. Думаю, это понятно и дошкольнику.

Теперь по аналогии с электроникой. Стакан – это стабилитрон. Уровень воды в полном до краев стакане – это и есть напряжение стабилизации стабилитрона. Представьте рядом со стаканом большой кувшин с водой. Водой из кувшина мы как раз и будем заливать наш стакан водой, но кувшин при этом трогать не смеем. Вариант только один – лить воду из кувшина, пробив отверстие в самом кувшине. Если бы кувшин был меньше по высоте, чем стакан, то мы бы не смогли лить воду в стакан. Если объяснить языком электроники – кувшин обладает “напряжением” больше, чем “напряжение” стакана.

Так вот, дорогие читатели, в стакане заложен весь принцип работы стабилитрона. Какую бы струю мы на него не лили (ну конечно в пределах разумного, а то стакан унесет и разорвет), стакан всегда будет полным. Но лить надо обязательно сверху. Это значит, напряжение, которое мы подаем на стабилитрон, должно быть выше, чем напряжение стабилизации стабилитрона.

Маркировка стабилитронов

Для того, чтобы узнать напряжение стабилизации советского стабилитрона, нам понадобится справочник. Например, на фото ниже советский стабилитрон Д814В:


Ищем на него параметры в онлайн справочниках в интернете. Как вы видите, его напряжение стабилизации при комнатной температуре примерно 10 Вольт.


Зарубежные стабилитроны маркируются проще. Если приглядеться, то можно увидеть незамысловатую надпись:


5V1 – это означает напряжение стабилизации данного стабилитрона составляет 5,1 Вольта. Намного проще, не так ли?

Катод у зарубежных стабилитронов помечается в основном черной полосой


Как проверить стабилитрон

Как же проверить стабилитрон? Да также как и ! А как проверить диод, можно посмотреть в этой статье. Давайте же проверим наш стабилитрон. Ставим на прозвонку и цепляемся красным щупом к аноду, а черным к катоду. Мультиметр должен показать падение напряжения прямого .


Меняем щупы местами и видим единичку. Это значит, что наш стабилитрон в полной боевой готовности.


Ну что же, настало время опытов. В схемах стабилитрон включается последовательно с резистором:


где Uвх – входное напряжение, Uвых.ст. – выходное стабилизированное напряжение

Если внимательно глянуть на схему, мы получили ни что иное, как Делитель напряжения . Здесь все элементарно и просто:

Uвх=Uвых.стаб +Uрезистора

Или словами: входное напряжение равняется сумме напряжений на стабилитроне и на резисторе.

Эта схема называется параметрический стабилизатор на одном стабилитроне. Расчет этого стабилизатора выходит за рамки данной статьи, но кому интересно, в гугл;-)

Итак, собираем схемку. Мы взяли резистор номиналом в 1,5 Килоом и стабилитрон на напряжение стабилизации 5,1 Вольта. Слева цепляем Блок питания , а справа замеряем мультиметром полученное напряжение:


Теперь внимательно следим за показаниями мультиметра и блока питания:


Так, пока все понятно, еще добавляем напряжение… Опа на! Входное напряжение у нас 5,5 Вольт, а выходное 5,13 Вольт! Так как напряжение стабилизации стабилитрона 5,1 Вольт, то как мы видим, он прекрасно стабилизирует.


Давайте еще добавим вольты. Входное напряжение 9 Вольт, а на стабилитроне 5,17 Вольт! Изумительно!


Еще добавляем… Входное напряжение 20 Вольт, а на выходе как ни в чем не бывало 5,2 Вольта! 0,1 Вольт – это ну очень маленькая погрешность, ей можно даже в некоторых случаях пренебречь.


Вольт-амперная характеристика стабилитрона

Думаю, не помешало бы рассмотреть Вольт амперную характеристику (ВАХ) стабилитрона. Выглядит она примерно как-то так:


где

Iпр – прямой ток, А

Uпр – прямое напряжение, В

Эти два параметра в стабилитроне не используются

Uобр – обратное напряжение, В

Uст – номинальное напряжение стабилизации, В

Iст – номинальный ток стабилизации, А

Номинальный – это значит нормальный параметр, при котором возможна долгосрочная работа радиоэлемента.

Imax – максимальный ток стабилитрона, А

Imin – минимальный ток стабилитрона, А

Iст, Imax, Imin это сила тока, которая течет через стабилитрон при его работе.

Так как стабилитрон работает именно в обратной полярности, в отличие от диода (стабилитрон подключают катодом к плюсу, а диод катодом к минусу), то и рабочая область будет именно та, что отмечена красным прямоугольником.


Как мы видим, при каком-то напряжении Uобр у нас график начинает падать вниз. В это время в стабилитроне происходит такая интересная штука, как пробой. Короче говоря, он не может больше наращивать на себе напряжение, и в это время начинается возрастать сила тока в стабилитроне. Самое главное – не переборщить силу тока, больше чем Imax , иначе стабилитрону придет кердык. Самым лучшим рабочим режимом стабилитрона считается режим, при котором сила тока через стабилитрон находится где-то в середине между максимальным и минимальным его значением. На графике это и будет рабочей точкой рабочего режима стабилитрона (пометил красным кружком).


Заключение

Раньше, во времена дефицитных деталей и начала расцвета электроники, стабилитрон часто использовался, как ни странно, для стабилизации выходного напряжения . В старых советских книгах по электронике можно увидеть вот такой участок цепи различных источников питания:


Слева, в красной рамке, я пометил знакомый вам участок цепи блока питания. Здесь мы получаем постоянное напряжение из переменного . Справа же, в зеленой рамке, схема стабилизации;-).

В настоящее время трехвыводные (интегральные) стабилизаторы напряжения вытесняют стабилизаторы на стабилитронах, так как они в разы лучше стабилизируют напряжение и обладают хорошей мощностью рассеивания.

На Али можно взять сразу целый набор стабилитронов, начиная от 3,3 Вольт и до 30 Вольт. Выбирайте на ваш вкус и цвет.


R3 10k (4k7 – 22k) reostat

R6 0.22R 5W (0,15- 0.47R)

R8 100R (47R – 330R)

C1 1000 x35v (2200 x50v)

C2 1000 x35v (2200 x50v)

C5 100n ceramick (0,01-0,47)

T1 KT816 (BD140)

T2 BC548 (BC547)

T3 KT815 (BD139)

T4 KT819(КТ805,2N3055)

T5 KT815 (BD139)

VD1-4 КД202 (50v 3-5A)

VD5 BZX27 (КС527)

VD6 АЛ307Б, К (RED LED)

Регулируемый стабилизированный блок питания – 0-24 V , 1 – 3А

с ограничением тока.

Блок питания (БП) предназначен для получения регулируемого стабилизированного выходного напряжения от 0 до 24v при токе порядка 1-3А, проще говоря чтобы не покупали вы батарейки, а использовали его для эксперементов со своими конструкциями.

В блоке питания предусмотрена так называемая защита т е ограничение максимального тока.

Для чего это нужно? Для того что бы этот БП служил верой и правдой, не боясь коротких замыканий и не требовал ремонта, так сказать «несгораемый и неубиваемый»

На Т1 собран стабилизатор тока стабилитрона, т е имеется возможность установки практически любого стабилитрона с напряжением стабилизации менее входного напряжения на 5 вольт

Это значит, что при установке стабилитрона VD5 допустим ВZX5,6 или КС156 на выходе стабилизатора получим регулируемое напряжение от 0 до приблизительно 4 вольт, соответственно — если стабилитрон на 27 вольт, то максимальное выходное напряжение будет в пределах 24-25 вольт.

Трансформатор следует выбирать примерно так- переменное напряжение вторичной обмотки должно быть примерно на 3-5 вольт больше того, которое вы рассчитываете получить на выходе стабилизатора, которое в свою очередь зависит от установленного стабилитрона,

Ток вторичной обмотки трансформатора как минимум должен быть не менее того тока, который нужно получить на выходе стабилизатора.

Выбор конденсаторов по емкости С1 и С2 –примерно по 1000-2000 мкф на 1А, С4 – 220 мкф на 1А

Несколько сложнее с емкостями по напряжению – рабочее напряжение грубо рассчитывается по такой методике – переменное напряжение вторичной обмотки трансформатора делится на 3 и умножается на 4

(~ Uвх:3×4)

Т е – допустим, что выходное напряжение вашего трансформатора порядка 30 вольт – 30 делим на 3 и множим на 4 – получаем 40 – значит рабочее напряжение конденсаторов должно быть более чем 40 вольт.

Уровень ограничения тока на выходе стабилизатора зависит от R6 по минимуму и R8 (по максимуму вплоть до отключения)

При установке перемычки вместо R8 между базой VТ5 и эмиттером VТ4 при сопротивлении R6 равном 0,39 ом ток ограничения будет примерно на уровне 3А,

Как понять «ограничение»? Очень просто – выходной ток даже в режиме короткого замыкания на выходе не превысит 3 А, за счет того что выходное напряжение будет автоматически снижено практически до нуля,

А можно ли заряжать автомобильный аккумулятор? Запросто. Достаточно выставить регулятором напряжения, извиняюсь — потенциометром R3 напряжение 14,5 вольта на холостом ходу (т е с отключенным аккумулятором) а потом подключить к выходу блока, аккумулятор, И пойдет ваш аккумулятор заряжаться стабильным током до уровня 14,5в, Ток по мере зарядки будет уменьшаться и когда достигнет значения 14,5 вольта (14,5 в – напряжение полностью заряженного акк) он будет равен нулю.

Как отрегулировать ток ограничения. Выставить на выходе стабилизатора напряжение на холостом ходу порядка 5-7 вольт. Затем к выходу стабилизатора подключить сопротивление примерно на 1 ом мощностью 5-10 ватт и последовательно с ним амперметр. Подстроечным резистором R8 выставить требуемый ток. Правильно выставленный ток ограничения можно проконтролировать выкручивая потенциометр регулировки выходного напряжения на максимум до упора При этом ток, контролируеммый амперметром должен оставаться на прежнем уровне.

Теперь про детали. Выпрямительный мостик – диоды желательно выбирать с запасом по току минимум раза в полтора, Указанные КД202 диоды могут без радиаторов достаточно долго работать при токе 1 ампер, но ежели рассчитываете что вам этого мало, то установив радиаторы можно обеспечить 3-5 ампер, вот только нужно посмотреть в справочнике какие из них и с какой буквой могут до 3 а какие и до 5 ампер. Хочется больше – загляните в справочник и выбирайте диоды помощнее, скажем ампер на 10.

Транзисторы – VT1 и VT4 устанавливать на радиаторы. VT1 будет слегка греться поэтому и радиатор нужен небольшой, а вот VT4 да в режиме ограничения тока будет греться довольно таки хорошо. Поэтому и радиатор нужно подобрать внушительный, можно и вентилятор от блока питания компьютера к нему приспособить – поверьте, не помешает.

Особо пытливым – почему греется транзистор? Ток то течет по нему и чем больше ток, тем больше греется транзистор. Давайте посчитаем – на входе, на конденсаторах 30 вольт. На выходе стабилизатора ну скажем вольт так 13, В итоге между коллектором и эмиттером остается 17 вольт.

Из 30 вольт минусуем 13 вольт получаем 17 вольт (кто хочет видит тут математику, а мне как то на память приходит один из законов дедушки Киргофа, про сумму падений напряжения)

Ну так вот, тот же Киргоф, что то говорил о токе в цепи, наподобие того что какой ток течет в нагрузке, такой же ток и через транзистор VT4 течет. Скажем ампера эдак 3 течет, резистор в нагрузке греется транзистор тоже греется, Так вот тепло это, которым воздух греем и можно назвать мощностью, которая рассеивается… Но попробуем выразиться математически, то бишь

школьный курс физики

где Р — это мощность в ваттах, U – напряжение на транзисторе в вольтах, а J — ток который течет и через нашу нагрузку и через амперметр и естественно через транзистор.

Итак 17 вольт множим на 3 ампера получаем 51 ватт рассеивающийся на транзисторе,

Ну а допустим подключим сопротивление на 1 ом. По закону Ома при токе 3А падение напряжения на резисторе получится 3 вольта и рассеиваемая мощность величиной в 3 ватта начнет греть сопротивление. Тогда падение напряжения на транзисторе: 30 вольт минус 3 вольта = 27 вольт, а мощность рассеиваимая на транзисторе 27v×3A=81 ватт… Теперь заглянем в справочник, в раздел транзисторы. Ежели проходной транзистор т е VТ4 у нас стоит скажем КТ819 в пластмассовом корпусе то по справочнику выходит что он не выдержит т к мощность рассеивания (Рк*max) у него 60 ватт, но зато в металлическом корпусе (КТ819ГМ, аналог 2N3055) – 100 ватт – вот этот подойдет, но радиатор обязателен.

Надеюсь на счет транзисторов более менее понятно, перейдем к предохранителям. Вообще то предохранитель это последняя инстанция, реагирующая на грубые ошибки допущенные вами и «ценой своей жизни» предотвращающая…. Давайте допустим что в первичной обмотке трансформатора по каким то причинам произошло замыкание,или во вторичной. Может от того что перегрелся, может изоляция прохудилась, а может и просто – неправильное соединение обмоток, но предохранителей нет. Трансформатор дымит, изоляция плавится,сетевой провод пытаясь выполнить доблестную функцию предохранителя, горит и не дай бог если на распределительном шите вместо автомата у вас стоят пробоки с гвоздиками вместо предохранителей.

Один предохранитель на ток примерно на 1А больше чем ток ограничения блока питания (т е 4-5А), должен стоять между диодным мостом и трансформатором, а второй между трансформатором и сетью 220 вольт примерно на 0,5-1 ампер.

Трансформатор. Самое пожалуй дорогое в конструкции Грубо говоря чем массивнее трансформатор тем он мощнее. Чем толще провод вторичной обмотки, тем больший ток может отдать трансформатор. Все это сводится к одному – мощности трансформатора. Так как же выбрать трансформатор? Опять школьный курс физики, раздел электротехника…. Опять 30 вольт, 3 ампера и в итоге мощность 90 ватт. Это минимум, который следует понимать так – этот трансформатор кратковременно может обеспечить выходное напряжение 30 вольт при токе 3 ампера, Поэтому желательно накинуть по току запас минимум процентов 10, а лучше все 30-50 процентов. Так что 30 вольт при токе 4-5 ампер на выходе трансформатора и ваш БП сможет часами если не сутками отдавать ток 3 ампера в нагрузку.

Ну и тем кто желает получть максимум по току от этого БП, скажем ампер эдак 10.

Первое – соответствующий вашим запросам трансформатор

Второе – диодный мост ампер на 15 и на радиаторы

Третье – проходной транзистор заменить на два-три соединенных в параллель с сопротивлениями в эмиттерах по 0,1 ом (радиатор и принудительный обдув)

Четвертое- емкости желательно конечно увеличить, но в том случае если БП будет использоваться как зарядное устройство – это не критично.

Пятое – армировать токопроводящие дорожки по пути следования больших токов напайкой дополнительных проводников и соответственно не забывать про соединительные провода «потолще»


Схема подключения запараллеленных транзисторов вместо одного




Много-много лет тому назад такого слова как стабилитрон не существовало вообще. Тем более в бытовой аппаратуре.

Попробуем представить себе громоздкий ламповый приёмник середины двадцатого века. Многие приносили их в жертву собственному любопытству, когда папа с мамой приобретали что-нибудь новое, а «Рекорд» или «Неман» отдавали на растерзание .

Блок питания лампового приёмника был предельно прост: мощный кубик силового трансформатора , который обыкновенно имел всего две вторичных обмотки, диодный мостик или селеновый выпрямитель, два электролитических конденсатора и резистор на два ватта между ними.

Первая обмотка питала накал всех ламп приёмника переменным током и напряжением 6,3V (вольт), а на примитивный выпрямитель приходило порядка 240V для питания анодов ламп. Ни о какой стабилизации напряжения и речи не шло. Исходя из того, что приём радиостанций вёлся на длинных, средних и коротких волнах с очень узкой полосой и ужасным качеством, наличие или отсутствие стабилизации напряжения питания на это качество совершенно не влияло, а приличной автоподстройки частоты на той элементной базе просто быть не могло.

Стабилизаторы в то время применялись только в военных приёмниках и передатчиках, конечно тоже ламповые. Например: СГ1П – стабилизатор газоразрядный, пальчиковый. Так продолжалось до тех пор, пока не появились транзисторы. И тут выяснилось, что схемы, выполненные на транзисторах очень чувствительны к колебаниям питающего напряжения, и обыкновенным простым выпрямителем уже не обойтись. Используя физический принцип, заложенный в газоразрядных приборах, был создан полупроводниковый стабилитрон реже называемый диод Зенера.

Графическое изображение стабилитрона на принципиальных схемах.

Внешний вид стабилитронов. Первый сверху в корпусе для поверхностного монтажа . Второй сверху – в стеклянном корпусе DO-35 и мощностью 0,5 Вт. Третий, – мощностью 1 Вт (DO-41). Естественно, стабилитроны изготавливают в разнообразных корпусах. Иногда в одном корпусе объединяется два элемента.

Принцип работы стабилитрона.

Прежде всего, не следует забывать, что стабилитрон работает только в цепях постоянного тока. Напряжение на него подают в обратной полярности, то есть на анод стабилитрона будет подан минус «-«. При таком включении через него протекает обратный ток (I обр ) от выпрямителя. Напряжение с выхода выпрямителя может изменяться, будет изменяться и обратный ток, а напряжение на стабилитроне и на нагрузке останется неизменным, то есть стабильным. На следующем рисунке показана вольт-амперная характеристика стабилитрона.

Стабилитрон работает на обратной ветви ВАХ (Вольт-Амперной Характеристики), как показано на рисунке. К его основным параметрам относятся U ст . (напряжение стабилизации) и I ст . (ток стабилизации). Эти данные указаны в паспорте на конкретный тип стабилитрона. Причём величина максимального и минимального тока учитывается только при расчёте стабилизаторов с прогнозируемым большим изменением напряжения.

Основные параметры стабилитронов.

Для того чтобы подобрать нужный стабилитрон необходимо разбираться в маркировках полупроводниковых приборов. Раньше все типы диодов, включая и стабилитроны, обозначались буквой “Д” и цифрой определяющей, что же это за прибор. Вот пример очень популярного стабилитрона Д814 (А, Б, В, Г). Буква показывала напряжение стабилизации.

Рядом паспортные данные современного стабилитрона (2C147A ), который использовался в стабилизаторах для питания схем на популярных сериях микросхем К155 и К133 выполненных по ТТЛ технологии и имеющих напряжение питания 5V.

Чтобы разбираться в маркировках и основных параметрах современных отечественных полупроводниковых приборов необходимо немного знать условные обозначения. Они выглядят следующим образом: цифра 1 или буква Г – германий, цифра 2 или буква К – кремний, цифра 3 или буква А – арсенид галлия. Это первый знак. Д – диод, Т – транзистор, С – стабилитрон, Л – светодиод. Это второй знак. Третий знак это группа цифр обозначающих сферу применения прибора. Отсюда: ГТ 313 (1Т 313) – высокочастотный германиевый транзистор, 2С147 – кремниевый стабилитрон с номинальным напряжением стабилизации 4,7 вольта, АЛ307 – арсенид-галлиевый светодиод.

Вот схема простого, но надёжного стабилизатора напряжения.

Между коллектором мощного транзистора и корпусом подается напряжение с выпрямителя и равное 12 – 15 вольт. С эмиттера транзистора мы снимаем 9V стабилизированного напряжения, так как в качестве стабилитрона VD1 мы используем надёжный элемент Д814Б (см. таблицу). Резистор R1 – 1кОм, транзистор КТ819 обеспечивающий ток до 10 ампер.

Транзистор необходимо разместить на радиаторе-теплоотводе. Единственный недостаток данной схемы – это невозможность регулировки выходного напряжения. В более сложных схемах подстроечный резистор, конечно, имеется. Во всех лабораторных и домашних радиолюбительских источниках питания есть возможность регулировки выходного напряжения от 0 и до 20 – 25 вольт.

Интегральные стабилизаторы.

Развитие интегральной микроэлектроники и появление многофункциональных схем средней и большой степени интеграции, конечно, коснулось и проблем связанных со стабилизацией напряжения. Отечественная промышленность напряглась и выпустила на рынок радиоэлектронных компонентов серию К142, которую составляли как раз интегральные стабилизаторы. Полное название изделия было КР142ЕН5А, но так как корпус был маленький и название не убиралось целиком, стали писать КРЕН5А или Б, а в разговоре они назывались просто «кренки».

Сама серия была достаточно большая. В зависимости от буквы варьировалось выходное напряжение. Например, КРЕН3 выдавал от 3 до 30 вольт с возможностью регулировки, а КРЕН15 был пятнадцативольтовым двухполярным источником питания.

Подключение интегральных стабилизаторов серии К142 было крайне простым. Два сглаживающих конденсатора и сам стабилизатор. Взгляните на схему.

Если есть необходимость получить другое стабилизированное напряжение, то поступают следующим образом: допустим, мы используем микросхему КРЕН5А на 5V, а нам нужно другое напряжение. Тогда между вторым выводом и корпусом ставится стабилитрон с таким расчётом, чтобы сложив напряжение стабилизации микросхемы, и стабилитрона мы получили бы нужное напряжение. Если мы добавим стабилитрон КС191 на V = 9,1 + 5V микросхемы, то на выходе мы получим 14.1 вольт.

Стабилитрон — это полупроводниковый диод с уникальными свойствами. Если обычный полупроводник при обратном включении является изолятором, то он выполняет эту функцию до определенного роста величины приложенного напряжения, после чего происходит лавинообразный обратимый пробой. При дальнейшем увеличении протекающего через стабилитрон обратного тока напряжение продолжает оставаться постоянным за счет пропорционального уменьшения сопротивления. Таким путем удается добиться режима стабилизации.

В закрытом состоянии через стабилитрон сначала проходит небольшой ток утечки. Элемент ведет себя как резистор, величина сопротивления которого велика. При пробое сопротивление стабилитрона становится незначительным. Если дальше продолжать повышать напряжение на входе, элемент начинает греться и при превышении током допустимой величины происходит необратимый тепловой пробой. Если дело не доводить до него, при изменении напряжения от нуля до верхнего предела рабочей области свойства стабилитрона сохраняются.

Когда напрямую включается стабилитрон, характеристики не отличаются от диода. При подключении плюса к p-области, а минуса — к n-области сопротивление перехода мало и ток через него свободно протекает. Он нарастает с увеличением входного напряжения.

Стабилитрон — это особый диод, подключаемый большей частью в обратном направлении. Элемент сначала находится в закрытом состоянии. При возникновении электрического пробоя стабилитрон напряжения поддерживает его постоянным в большом диапазоне тока.

На анод подается минус, а на катод — плюс. За пределами стабилизации (ниже точки 2) происходит перегрев и повышается вероятность выхода элемента из строя.

Характеристики

Параметры стабилитронов следующие:

  • U ст — напряжение стабилизации при номинальном токе I ст;
  • I ст min — минимальный ток начала электрического пробоя;
  • I ст max — максимальный допустимый ток;
  • ТКН — температурный коэффициент.

В отличие от обычного диода, стабилитрон — это полупроводниковое устройство, у которого на вольт-амперной характеристике области электрического и теплового пробоя достаточно далеко расположены друг от друга.

С максимально допустимым током связан параметр, часто указываемый в таблицах — мощность рассеивания:

P max = I ст max ∙ U ст.

Зависимость работы стабилитрона от температуры может быть как с положительным ТКН, так и отрицательным. При последовательном подключении элементов с разными по знакам коэффициентами создаются прецизионные стабилитроны, не зависящие от нагрева или охлаждения.

Схемы включения

Типовая схема простого стабилизатора, состоит из балластного сопротивления R б и стабилитрона, шунтирующего нагрузку.

В некоторых случаях происходит нарушение стабилизации.

  1. Подача на стабилизатор большого напряжения от источника питания при наличии на выходе фильтрующего конденсатора. Броски тока при его зарядке могут вызвать выход из строя стабилитрона или разрушение резистора R б.
  2. Отключение нагрузки. При подаче на вход максимального напряжения ток стабилитрона может превысить допустимый, что приведет к его разогреву и разрушению. Здесь важно соблюдать паспортную область безопасной работы.
  3. Сопротивление R б подбирается небольшим, чтобы при минимально возможной величине напряжения питания и максимально допустимом токе на нагрузке стабилитрон находился в рабочей зоне регулирования.

Для защиты стабилизатора применяются тиристорные схемы защиты или

Резистор R б рассчитывается по формуле:

R б = (U пит — U ном)(I ст + I н).

Ток стабилитрона I ст выбирается между допустимыми максимальным и минимальным значениями, в зависимости от напряжения на входе U пит и тока нагрузки I н.

Выбор стабилитронов

Элементы имеют большой разброс по напряжению стабилизации. Чтобы получить точное значение U н, стабилитроны подбираются из одной партии. Есть типы с более узким диапазоном параметров. При большой мощности рассеивания элементы устанавливают на радиаторы.

Для расчета параметров стабилитрона необходимы исходные данные, например, такие:

  • U пит = 12-15 В — напряжение входа;
  • U ст = 9 В — стабилизированное напряжение;

Параметры характерны для устройств с небольшим потреблением энергии.

Для минимального входного напряжения 12 В ток на нагрузке выбирается по максимуму — 100 мА. По закону Ома можно найти суммарную нагрузку цепи:

R ∑ = 12 В / 0,1 А = 120 Ом.

На стабилитроне падение напряжения составляет 9 В. Для тока 0,1 А эквивалентная нагрузка составит:

R экв = 9 В / 0,1 А = 90 Ом.

Теперь можно определить сопротивление балласта:

R б = 120 Ом — 90 Ом = 30 Ом.

Оно выбирается из стандартного ряда, где значение совпадает с расчетным.

Максимальный ток через стабилитрон определяется с учетом отключения нагрузки, чтобы он не вышел из строя в случае, если какой-либо провод отпаяется. Падение напряжения на резисторе составит:

U R = 15 — 9 = 6 В.

Затем определяется ток через резистор:

I R = 6/30 = 0,2 А.

Поскольку стабилитрон подключен к нему последовательно, I c = I R = 0,2 А.

Мощность рассеивания составит P = 0,2∙9 = 1,8 Вт.

По полученным параметрам подбирается подходящий стабилитрон Д815В.

Симметричный стабилитрон

Симметричный диодный тиристор представляет собой переключающий прибор, проводящий переменный ток. Особенностью его работы является падение напряжения до нескольких вольт при включении в диапазоне 30-50 В. Его можно заменить двумя встречно включенными обычными стабилитронами. Устройства применяют в качестве переключающих элементов.

Аналог стабилитрона

Когда не удается подобрать подходящий элемент, используют аналог стабилитрона на транзисторах. Их преимуществом является возможность регулирования напряжения. Для этого можно применять усилители постоянного тока с несколькими ступенями.

На входе устанавливают делитель напряжения с R1. Если входное напряжение возрастает, на базе транзистора VT1 оно также увеличивается. При этом растет ток через транзистор VT2, который компенсирует увеличение напряжения, поддерживая тем самым его стабильным на выходе.

Маркировка стабилитронов

Выпускаются стеклянные стабилитроны и стабилитроны в пластиковых корпусах. В первом случае на них наносятся 2 цифры, между которыми располагается буква V. Надпись 9V1 обозначает, что U ст = 9,1 В.

На пластиковом корпусе надписи расшифровываются с помощью даташита, где также можно узнать другие параметры.

Темным кольцом на корпусе обозначается катод, к которому подключается плюс.

Заключение

Стабилитрон — это диод с особыми свойствами. Достоинством стабилитронов является высокий уровень стабилизации напряжения при широком диапазоне изменения рабочего тока, а также простые схемы подключения. Для стабилизации малого напряжения приборы включают в прямом направлении, и они начинают работать как обычные диоды.

это что такое и для чего он нужен? Как работает стабилитрон Стабилитрон на 30 вольт маркировка

Много-много лет тому назад такого слова как стабилитрон не существовало вообще. Тем более в бытовой аппаратуре.

Попробуем представить себе громоздкий ламповый приёмник середины двадцатого века. Многие приносили их в жертву собственному любопытству, когда папа с мамой приобретали что-нибудь новое, а «Рекорд» или «Неман» отдавали на растерзание .

Блок питания лампового приёмника был предельно прост: мощный кубик силового трансформатора , который обыкновенно имел всего две вторичных обмотки, диодный мостик или селеновый выпрямитель, два электролитических конденсатора и резистор на два ватта между ними.

Первая обмотка питала накал всех ламп приёмника переменным током и напряжением 6,3V (вольт), а на примитивный выпрямитель приходило порядка 240V для питания анодов ламп. Ни о какой стабилизации напряжения и речи не шло. Исходя из того, что приём радиостанций вёлся на длинных, средних и коротких волнах с очень узкой полосой и ужасным качеством, наличие или отсутствие стабилизации напряжения питания на это качество совершенно не влияло, а приличной автоподстройки частоты на той элементной базе просто быть не могло.

Стабилизаторы в то время применялись только в военных приёмниках и передатчиках, конечно тоже ламповые. Например: СГ1П – стабилизатор газоразрядный, пальчиковый. Так продолжалось до тех пор, пока не появились транзисторы. И тут выяснилось, что схемы, выполненные на транзисторах очень чувствительны к колебаниям питающего напряжения, и обыкновенным простым выпрямителем уже не обойтись. Используя физический принцип, заложенный в газоразрядных приборах, был создан полупроводниковый стабилитрон реже называемый диод Зенера.

Графическое изображение стабилитрона на принципиальных схемах.

Внешний вид стабилитронов. Первый сверху в корпусе для поверхностного монтажа . Второй сверху – в стеклянном корпусе DO-35 и мощностью 0,5 Вт. Третий, – мощностью 1 Вт (DO-41). Естественно, стабилитроны изготавливают в разнообразных корпусах. Иногда в одном корпусе объединяется два элемента.

Принцип работы стабилитрона.

Прежде всего, не следует забывать, что стабилитрон работает только в цепях постоянного тока. Напряжение на него подают в обратной полярности, то есть на анод стабилитрона будет подан минус «-«. При таком включении через него протекает обратный ток (I обр ) от выпрямителя. Напряжение с выхода выпрямителя может изменяться, будет изменяться и обратный ток, а напряжение на стабилитроне и на нагрузке останется неизменным, то есть стабильным. На следующем рисунке показана вольт-амперная характеристика стабилитрона.

Стабилитрон работает на обратной ветви ВАХ (Вольт-Амперной Характеристики), как показано на рисунке. К его основным параметрам относятся U ст . (напряжение стабилизации) и I ст . (ток стабилизации). Эти данные указаны в паспорте на конкретный тип стабилитрона. Причём величина максимального и минимального тока учитывается только при расчёте стабилизаторов с прогнозируемым большим изменением напряжения.

Основные параметры стабилитронов.

Для того чтобы подобрать нужный стабилитрон необходимо разбираться в маркировках полупроводниковых приборов. Раньше все типы диодов, включая и стабилитроны, обозначались буквой “Д” и цифрой определяющей, что же это за прибор. Вот пример очень популярного стабилитрона Д814 (А, Б, В, Г). Буква показывала напряжение стабилизации.

Рядом паспортные данные современного стабилитрона (2C147A ), который использовался в стабилизаторах для питания схем на популярных сериях микросхем К155 и К133 выполненных по ТТЛ технологии и имеющих напряжение питания 5V.

Чтобы разбираться в маркировках и основных параметрах современных отечественных полупроводниковых приборов необходимо немного знать условные обозначения. Они выглядят следующим образом: цифра 1 или буква Г – германий, цифра 2 или буква К – кремний, цифра 3 или буква А – арсенид галлия. Это первый знак. Д – диод, Т – транзистор, С – стабилитрон, Л – светодиод. Это второй знак. Третий знак это группа цифр обозначающих сферу применения прибора. Отсюда: ГТ 313 (1Т 313) – высокочастотный германиевый транзистор, 2С147 – кремниевый стабилитрон с номинальным напряжением стабилизации 4,7 вольта, АЛ307 – арсенид-галлиевый светодиод.

Вот схема простого, но надёжного стабилизатора напряжения.

Между коллектором мощного транзистора и корпусом подается напряжение с выпрямителя и равное 12 – 15 вольт. С эмиттера транзистора мы снимаем 9V стабилизированного напряжения, так как в качестве стабилитрона VD1 мы используем надёжный элемент Д814Б (см. таблицу). Резистор R1 – 1кОм, транзистор КТ819 обеспечивающий ток до 10 ампер.

Транзистор необходимо разместить на радиаторе-теплоотводе. Единственный недостаток данной схемы – это невозможность регулировки выходного напряжения. В более сложных схемах подстроечный резистор, конечно, имеется. Во всех лабораторных и домашних радиолюбительских источниках питания есть возможность регулировки выходного напряжения от 0 и до 20 – 25 вольт.

Интегральные стабилизаторы.

Развитие интегральной микроэлектроники и появление многофункциональных схем средней и большой степени интеграции, конечно, коснулось и проблем связанных со стабилизацией напряжения. Отечественная промышленность напряглась и выпустила на рынок радиоэлектронных компонентов серию К142, которую составляли как раз интегральные стабилизаторы. Полное название изделия было КР142ЕН5А, но так как корпус был маленький и название не убиралось целиком, стали писать КРЕН5А или Б, а в разговоре они назывались просто «кренки».

Сама серия была достаточно большая. В зависимости от буквы варьировалось выходное напряжение. Например, КРЕН3 выдавал от 3 до 30 вольт с возможностью регулировки, а КРЕН15 был пятнадцативольтовым двухполярным источником питания.

Подключение интегральных стабилизаторов серии К142 было крайне простым. Два сглаживающих конденсатора и сам стабилизатор. Взгляните на схему.

Если есть необходимость получить другое стабилизированное напряжение, то поступают следующим образом: допустим, мы используем микросхему КРЕН5А на 5V, а нам нужно другое напряжение. Тогда между вторым выводом и корпусом ставится стабилитрон с таким расчётом, чтобы сложив напряжение стабилизации микросхемы, и стабилитрона мы получили бы нужное напряжение. Если мы добавим стабилитрон КС191 на V = 9,1 + 5V микросхемы, то на выходе мы получим 14.1 вольт.

R3 10k (4k7 – 22k) reostat

R6 0.22R 5W (0,15- 0.47R)

R8 100R (47R – 330R)

C1 1000 x35v (2200 x50v)

C2 1000 x35v (2200 x50v)

C5 100n ceramick (0,01-0,47)

T1 KT816 (BD140)

T2 BC548 (BC547)

T3 KT815 (BD139)

T4 KT819(КТ805,2N3055)

T5 KT815 (BD139)

VD1-4 КД202 (50v 3-5A)

VD5 BZX27 (КС527)

VD6 АЛ307Б, К (RED LED)

Регулируемый стабилизированный блок питания – 0-24 V , 1 – 3А

с ограничением тока.

Блок питания (БП) предназначен для получения регулируемого стабилизированного выходного напряжения от 0 до 24v при токе порядка 1-3А, проще говоря чтобы не покупали вы батарейки, а использовали его для эксперементов со своими конструкциями.

В блоке питания предусмотрена так называемая защита т е ограничение максимального тока.

Для чего это нужно? Для того что бы этот БП служил верой и правдой, не боясь коротких замыканий и не требовал ремонта, так сказать «несгораемый и неубиваемый»

На Т1 собран стабилизатор тока стабилитрона, т е имеется возможность установки практически любого стабилитрона с напряжением стабилизации менее входного напряжения на 5 вольт

Это значит, что при установке стабилитрона VD5 допустим ВZX5,6 или КС156 на выходе стабилизатора получим регулируемое напряжение от 0 до приблизительно 4 вольт, соответственно — если стабилитрон на 27 вольт, то максимальное выходное напряжение будет в пределах 24-25 вольт.

Трансформатор следует выбирать примерно так- переменное напряжение вторичной обмотки должно быть примерно на 3-5 вольт больше того, которое вы рассчитываете получить на выходе стабилизатора, которое в свою очередь зависит от установленного стабилитрона,

Ток вторичной обмотки трансформатора как минимум должен быть не менее того тока, который нужно получить на выходе стабилизатора.

Выбор конденсаторов по емкости С1 и С2 –примерно по 1000-2000 мкф на 1А, С4 – 220 мкф на 1А

Несколько сложнее с емкостями по напряжению – рабочее напряжение грубо рассчитывается по такой методике – переменное напряжение вторичной обмотки трансформатора делится на 3 и умножается на 4

(~ Uвх:3×4)

Т е – допустим, что выходное напряжение вашего трансформатора порядка 30 вольт – 30 делим на 3 и множим на 4 – получаем 40 – значит рабочее напряжение конденсаторов должно быть более чем 40 вольт.

Уровень ограничения тока на выходе стабилизатора зависит от R6 по минимуму и R8 (по максимуму вплоть до отключения)

При установке перемычки вместо R8 между базой VТ5 и эмиттером VТ4 при сопротивлении R6 равном 0,39 ом ток ограничения будет примерно на уровне 3А,

Как понять «ограничение»? Очень просто – выходной ток даже в режиме короткого замыкания на выходе не превысит 3 А, за счет того что выходное напряжение будет автоматически снижено практически до нуля,

А можно ли заряжать автомобильный аккумулятор? Запросто. Достаточно выставить регулятором напряжения, извиняюсь — потенциометром R3 напряжение 14,5 вольта на холостом ходу (т е с отключенным аккумулятором) а потом подключить к выходу блока, аккумулятор, И пойдет ваш аккумулятор заряжаться стабильным током до уровня 14,5в, Ток по мере зарядки будет уменьшаться и когда достигнет значения 14,5 вольта (14,5 в – напряжение полностью заряженного акк) он будет равен нулю.

Как отрегулировать ток ограничения. Выставить на выходе стабилизатора напряжение на холостом ходу порядка 5-7 вольт. Затем к выходу стабилизатора подключить сопротивление примерно на 1 ом мощностью 5-10 ватт и последовательно с ним амперметр. Подстроечным резистором R8 выставить требуемый ток. Правильно выставленный ток ограничения можно проконтролировать выкручивая потенциометр регулировки выходного напряжения на максимум до упора При этом ток, контролируеммый амперметром должен оставаться на прежнем уровне.

Теперь про детали. Выпрямительный мостик – диоды желательно выбирать с запасом по току минимум раза в полтора, Указанные КД202 диоды могут без радиаторов достаточно долго работать при токе 1 ампер, но ежели рассчитываете что вам этого мало, то установив радиаторы можно обеспечить 3-5 ампер, вот только нужно посмотреть в справочнике какие из них и с какой буквой могут до 3 а какие и до 5 ампер. Хочется больше – загляните в справочник и выбирайте диоды помощнее, скажем ампер на 10.

Транзисторы – VT1 и VT4 устанавливать на радиаторы. VT1 будет слегка греться поэтому и радиатор нужен небольшой, а вот VT4 да в режиме ограничения тока будет греться довольно таки хорошо. Поэтому и радиатор нужно подобрать внушительный, можно и вентилятор от блока питания компьютера к нему приспособить – поверьте, не помешает.

Особо пытливым – почему греется транзистор? Ток то течет по нему и чем больше ток, тем больше греется транзистор. Давайте посчитаем – на входе, на конденсаторах 30 вольт. На выходе стабилизатора ну скажем вольт так 13, В итоге между коллектором и эмиттером остается 17 вольт.

Из 30 вольт минусуем 13 вольт получаем 17 вольт (кто хочет видит тут математику, а мне как то на память приходит один из законов дедушки Киргофа, про сумму падений напряжения)

Ну так вот, тот же Киргоф, что то говорил о токе в цепи, наподобие того что какой ток течет в нагрузке, такой же ток и через транзистор VT4 течет. Скажем ампера эдак 3 течет, резистор в нагрузке греется транзистор тоже греется, Так вот тепло это, которым воздух греем и можно назвать мощностью, которая рассеивается… Но попробуем выразиться математически, то бишь

школьный курс физики

где Р — это мощность в ваттах, U – напряжение на транзисторе в вольтах, а J — ток который течет и через нашу нагрузку и через амперметр и естественно через транзистор.

Итак 17 вольт множим на 3 ампера получаем 51 ватт рассеивающийся на транзисторе,

Ну а допустим подключим сопротивление на 1 ом. По закону Ома при токе 3А падение напряжения на резисторе получится 3 вольта и рассеиваемая мощность величиной в 3 ватта начнет греть сопротивление. Тогда падение напряжения на транзисторе: 30 вольт минус 3 вольта = 27 вольт, а мощность рассеиваимая на транзисторе 27v×3A=81 ватт… Теперь заглянем в справочник, в раздел транзисторы. Ежели проходной транзистор т е VТ4 у нас стоит скажем КТ819 в пластмассовом корпусе то по справочнику выходит что он не выдержит т к мощность рассеивания (Рк*max) у него 60 ватт, но зато в металлическом корпусе (КТ819ГМ, аналог 2N3055) – 100 ватт – вот этот подойдет, но радиатор обязателен.

Надеюсь на счет транзисторов более менее понятно, перейдем к предохранителям. Вообще то предохранитель это последняя инстанция, реагирующая на грубые ошибки допущенные вами и «ценой своей жизни» предотвращающая…. Давайте допустим что в первичной обмотке трансформатора по каким то причинам произошло замыкание,или во вторичной. Может от того что перегрелся, может изоляция прохудилась, а может и просто – неправильное соединение обмоток, но предохранителей нет. Трансформатор дымит, изоляция плавится,сетевой провод пытаясь выполнить доблестную функцию предохранителя, горит и не дай бог если на распределительном шите вместо автомата у вас стоят пробоки с гвоздиками вместо предохранителей.

Один предохранитель на ток примерно на 1А больше чем ток ограничения блока питания (т е 4-5А), должен стоять между диодным мостом и трансформатором, а второй между трансформатором и сетью 220 вольт примерно на 0,5-1 ампер.

Трансформатор. Самое пожалуй дорогое в конструкции Грубо говоря чем массивнее трансформатор тем он мощнее. Чем толще провод вторичной обмотки, тем больший ток может отдать трансформатор. Все это сводится к одному – мощности трансформатора. Так как же выбрать трансформатор? Опять школьный курс физики, раздел электротехника…. Опять 30 вольт, 3 ампера и в итоге мощность 90 ватт. Это минимум, который следует понимать так – этот трансформатор кратковременно может обеспечить выходное напряжение 30 вольт при токе 3 ампера, Поэтому желательно накинуть по току запас минимум процентов 10, а лучше все 30-50 процентов. Так что 30 вольт при токе 4-5 ампер на выходе трансформатора и ваш БП сможет часами если не сутками отдавать ток 3 ампера в нагрузку.

Ну и тем кто желает получть максимум по току от этого БП, скажем ампер эдак 10.

Первое – соответствующий вашим запросам трансформатор

Второе – диодный мост ампер на 15 и на радиаторы

Третье – проходной транзистор заменить на два-три соединенных в параллель с сопротивлениями в эмиттерах по 0,1 ом (радиатор и принудительный обдув)

Четвертое- емкости желательно конечно увеличить, но в том случае если БП будет использоваться как зарядное устройство – это не критично.

Пятое – армировать токопроводящие дорожки по пути следования больших токов напайкой дополнительных проводников и соответственно не забывать про соединительные провода «потолще»


Схема подключения запараллеленных транзисторов вместо одного




Простейший блок питания 0-30 Вольт для радиолюбителя.

Схема.

В этой статье мы продолжаем тему схемотехники блоков питания для радиолюбительских лабораторий. На сей раз речь пойдет о самом простом устройстве, собранном из радиодеталей отечественного производства, и с минимальным их количеством.

И так, принципиальная схема блока питания:


Как видите, все просто и доступно, элементная база имеет широкое распространение и не содержит дефицитов.

Начнем с трансформатора. Мощность его должна быть не менее 150 Ватт, напряжение вторичной обмотки — 21…22 Вольта, тогда после диодного моста на емкости С1 вы получите порядка 30 Вольт. Рассчитывайте так, чтобы вторичная обмотка могла обеспечивать ток 5 Ампер.

После понижающего трансформатора стоит диодный мост, собранный на четырех 10-ти амперных диодах Д231. Запас по току конечно хороший, но конструкция получается довольно громоздкая. Наилучшим вариантом будет использование импортной диодной сборки типа RS602, при небольших габаритах она рассчитана на ток 6 Ампер.

Электролитические конденсаторы рассчитаны на рабочее напряжение 50 Вольт. С1 и С3 можно ставить от 2000 до 6800 мкФ.

Стабилитрон Д1 — он задает верхний предел регулировки выходного напряжения. На схеме мы видим надпись Д814Д х 2 , это значит, что Д1 состоит из двух последовательно соединенных стабилитронов Д814Д. Напряжение стабилизации одного такого стабилитрона составляет 13 Вольт, значит два последовательно соединенных дадут нам верхний предел регулировки напряжения 26 вольт минус падение напряжения на переходе транзистора Т1. В результате вы получите плавную регулировку от нуля до 25 вольт.
В качестве регулирующего транзистора в схеме применен КТ819, они выпускаются в пластиковых и металлических корпусах. Расположение выводов, размеры корпусов и параметры этого транзистора смотрите на следующих двух изображениях.


Стабилитрон — это полупроводниковый диод с уникальными свойствами. Если обычный полупроводник при обратном включении является изолятором, то он выполняет эту функцию до определенного роста величины приложенного напряжения, после чего происходит лавинообразный обратимый пробой. При дальнейшем увеличении протекающего через стабилитрон обратного тока напряжение продолжает оставаться постоянным за счет пропорционального уменьшения сопротивления. Таким путем удается добиться режима стабилизации.

В закрытом состоянии через стабилитрон сначала проходит небольшой ток утечки. Элемент ведет себя как резистор, величина сопротивления которого велика. При пробое сопротивление стабилитрона становится незначительным. Если дальше продолжать повышать напряжение на входе, элемент начинает греться и при превышении током допустимой величины происходит необратимый тепловой пробой. Если дело не доводить до него, при изменении напряжения от нуля до верхнего предела рабочей области свойства стабилитрона сохраняются.

Когда напрямую включается стабилитрон, характеристики не отличаются от диода. При подключении плюса к p-области, а минуса — к n-области сопротивление перехода мало и ток через него свободно протекает. Он нарастает с увеличением входного напряжения.

Стабилитрон — это особый диод, подключаемый большей частью в обратном направлении. Элемент сначала находится в закрытом состоянии. При возникновении электрического пробоя стабилитрон напряжения поддерживает его постоянным в большом диапазоне тока.

На анод подается минус, а на катод — плюс. За пределами стабилизации (ниже точки 2) происходит перегрев и повышается вероятность выхода элемента из строя.

Характеристики

Параметры стабилитронов следующие:

  • U ст — напряжение стабилизации при номинальном токе I ст;
  • I ст min — минимальный ток начала электрического пробоя;
  • I ст max — максимальный допустимый ток;
  • ТКН — температурный коэффициент.

В отличие от обычного диода, стабилитрон — это полупроводниковое устройство, у которого на вольт-амперной характеристике области электрического и теплового пробоя достаточно далеко расположены друг от друга.

С максимально допустимым током связан параметр, часто указываемый в таблицах — мощность рассеивания:

P max = I ст max ∙ U ст.

Зависимость работы стабилитрона от температуры может быть как с положительным ТКН, так и отрицательным. При последовательном подключении элементов с разными по знакам коэффициентами создаются прецизионные стабилитроны, не зависящие от нагрева или охлаждения.

Схемы включения

Типовая схема простого стабилизатора, состоит из балластного сопротивления R б и стабилитрона, шунтирующего нагрузку.

В некоторых случаях происходит нарушение стабилизации.

  1. Подача на стабилизатор большого напряжения от источника питания при наличии на выходе фильтрующего конденсатора. Броски тока при его зарядке могут вызвать выход из строя стабилитрона или разрушение резистора R б.
  2. Отключение нагрузки. При подаче на вход максимального напряжения ток стабилитрона может превысить допустимый, что приведет к его разогреву и разрушению. Здесь важно соблюдать паспортную область безопасной работы.
  3. Сопротивление R б подбирается небольшим, чтобы при минимально возможной величине напряжения питания и максимально допустимом токе на нагрузке стабилитрон находился в рабочей зоне регулирования.

Для защиты стабилизатора применяются тиристорные схемы защиты или

Резистор R б рассчитывается по формуле:

R б = (U пит — U ном)(I ст + I н).

Ток стабилитрона I ст выбирается между допустимыми максимальным и минимальным значениями, в зависимости от напряжения на входе U пит и тока нагрузки I н.

Выбор стабилитронов

Элементы имеют большой разброс по напряжению стабилизации. Чтобы получить точное значение U н, стабилитроны подбираются из одной партии. Есть типы с более узким диапазоном параметров. При большой мощности рассеивания элементы устанавливают на радиаторы.

Для расчета параметров стабилитрона необходимы исходные данные, например, такие:

  • U пит = 12-15 В — напряжение входа;
  • U ст = 9 В — стабилизированное напряжение;

Параметры характерны для устройств с небольшим потреблением энергии.

Для минимального входного напряжения 12 В ток на нагрузке выбирается по максимуму — 100 мА. По закону Ома можно найти суммарную нагрузку цепи:

R ∑ = 12 В / 0,1 А = 120 Ом.

На стабилитроне падение напряжения составляет 9 В. Для тока 0,1 А эквивалентная нагрузка составит:

R экв = 9 В / 0,1 А = 90 Ом.

Теперь можно определить сопротивление балласта:

R б = 120 Ом — 90 Ом = 30 Ом.

Оно выбирается из стандартного ряда, где значение совпадает с расчетным.

Максимальный ток через стабилитрон определяется с учетом отключения нагрузки, чтобы он не вышел из строя в случае, если какой-либо провод отпаяется. Падение напряжения на резисторе составит:

U R = 15 — 9 = 6 В.

Затем определяется ток через резистор:

I R = 6/30 = 0,2 А.

Поскольку стабилитрон подключен к нему последовательно, I c = I R = 0,2 А.

Мощность рассеивания составит P = 0,2∙9 = 1,8 Вт.

По полученным параметрам подбирается подходящий стабилитрон Д815В.

Симметричный стабилитрон

Симметричный диодный тиристор представляет собой переключающий прибор, проводящий переменный ток. Особенностью его работы является падение напряжения до нескольких вольт при включении в диапазоне 30-50 В. Его можно заменить двумя встречно включенными обычными стабилитронами. Устройства применяют в качестве переключающих элементов.

Аналог стабилитрона

Когда не удается подобрать подходящий элемент, используют аналог стабилитрона на транзисторах. Их преимуществом является возможность регулирования напряжения. Для этого можно применять усилители постоянного тока с несколькими ступенями.

На входе устанавливают делитель напряжения с R1. Если входное напряжение возрастает, на базе транзистора VT1 оно также увеличивается. При этом растет ток через транзистор VT2, который компенсирует увеличение напряжения, поддерживая тем самым его стабильным на выходе.

Маркировка стабилитронов

Выпускаются стеклянные стабилитроны и стабилитроны в пластиковых корпусах. В первом случае на них наносятся 2 цифры, между которыми располагается буква V. Надпись 9V1 обозначает, что U ст = 9,1 В.

На пластиковом корпусе надписи расшифровываются с помощью даташита, где также можно узнать другие параметры.

Темным кольцом на корпусе обозначается катод, к которому подключается плюс.

Заключение

Стабилитрон — это диод с особыми свойствами. Достоинством стабилитронов является высокий уровень стабилизации напряжения при широком диапазоне изменения рабочего тока, а также простые схемы подключения. Для стабилизации малого напряжения приборы включают в прямом направлении, и они начинают работать как обычные диоды.

Справочник стабилитронов отечественных. Datasheets с подробными характеристиками.

Отечественные производители стабилитронов
Наименование Напряжение стабилизации, В
Импортные стабилитроны
BZX55C0V8 — BZX55C1000.8-100 (0.5 Вт, 5% и 2%)
BZX85C3V6 — BZX85C1003.6-200 (1.3 Вт, 5% и 2%)
1N4728 — 1N47643.3-100 (1 Вт, 10% и 5%)
Отечественные интегральные аналоги стабилитрона
К142ЕН19 2.5-30 (ток до 100мА)
К1156ЕР5 2.5-36 (ток до 100мА) 1%
Отечественные прецизионные стабилитроны  (до 5%)
Д818(А-Е) 8, 8.5, 9, 9.5
2С108(Г-Р) 6,4
2С166(А-В),КС166(А-В) 6.4, 6.6
2С164(Н-К) 6.4, 6.6
2С190(Б-Д),КС190(Б-Д) 9
2С190(Е-Т) 9
2С191(М-Р),КС191(М-Р) 9,1
2С191(С-Ф),КС191(С-Ф) 9,1
КС211(Б-Д) 11
КС405А 6,2
КС515Г,КС520В,КС524Г, КС531, КС547 15, 20, 24, 31, 47
КС539Г,КС568В,КС582Г, КС596В 39, 68, 82, 96
Отечественные импульсные стабилитроны
2С175Е-2С213Е,КС175Е-КС213Е 7.5, 8.2, 9.1, 10, 11, 12, 13
Отечественные двуханодные стабилитроны
2С170А,КС170А 7
КС162А,КС168В,КС175А, КС182А, КС191А, КС210Б, КС213Б 6.2, 6.8, 7.5, 8.2, 9.1, 10, 11, 12, 13
Отечественные стабисторы
2С107А,КС107А 0,6
2С113А,2С119А,КС113А, КС119А 1.25, 1.86
Отечественные стабилитроны общего назначения
Д808-Д813 8, 9, 10, 11, 13
Д814(А-Д) 8, 9, 10, 11, 13
Д815(А-Д), Д816(А-Д),Д817(А-Д) 5.6, 6.8, 8.2, 10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68, 82, 100
КС133А-КС168А 3.3, 3.9, 4.7, 5.6, 6.8
2С133Г-2С156Г 3.3, 3.9, 4.7, 5.6
2С156Ф 5,6
2С175Ж-2С224Ж, КС175Ж-КС224Ж 7.5, 8.2, 9.1, 10, 11, 12, 13, 15, 16, 18, 20, 22,24
2С175Ц-2С212Ц 7.5, 8.2, 9.1, 10, 11, 12
2С291А,КС291А 91
КС406(А,Б), КС508(А-Д) 8.2, 10, 12, 15, 16, 18, 24
КС407(А-Д) 3.3, 3.9, 4.7, 5.1, 6.8
КС409А 5,6
2С433А-2С468А, КС433А-КС468А 3.3, 3.9, 4.7, 5.6, 6.8
КС509(А-В) 14.7, 18, 20
КС533А 33
2С551А-2С600А, КС551А-КС600А 51, 91, 100
КС620А-КС680А 120, 130, 150, 180
2С920А-2С980А 120, 130, 150, 180
интернет казино играть
casino riva
казино Aladdins Gold

Как узнать на сколько вольт стабилитрон

При монтаже, конструировании, ремонте радиоэлектронной аппаратуры, стараемся заранее подбирать весь комплект деталей, необходимый для предстоящего процесса. Иногда роемся в своих запасах при нехватке той или иной детали, тем более, если нам не хватило какой-то мелочи. Любая маркировка уже проставлена на корпусе компонента, схема всегда под рукой и остается дополнить монтаж не достающим .

Представленный здесь прибор – это стабилитронометр для тестирования значения напряжения неизвестного стабилитрона. Стабилитрон – это радиоэлектронный компонент, который поддерживает постоянное напряжение на его контактах, причём напряжение источника Vs должно быть больше, чем собственное напряжение стабилитрона Vz, а ток ограничивается с помощью сопротивления Rs, чтоб его текущее значение всегда было меньше, чем его максимальная мощность.

Схема простейшего метода проверки напряжения стабилитрона

Радиолюбители и все те, кто хорошо дружит с электроникой знают, что задача нахождения стабилитрона с нужными характеристиками (рабочим напряжением) скучная и кропотливая. Случается, что нужно перебрать очень много разных экземпляров, пока не найдётся нужное значение Vz. Проверка состояния стабилитрона обычно делается с помощью обычной шкалы мультиметра для измерения диодов, этот тест дает нам точное представление о состоянии компонента, но не дает нам определить значение Vz. В общем тестер стабилитронов это действительно удобный прибор, когда мы хотим быстро выяснить значение напряжения Vz.

Параметры прибора

  • Питание 220 В.
  • Цифровая индикация Vz
  • Меряет стабилитроны на напряжения от 1 В до 50 В
  • Два токовых режима – 5 мА и 15 мА

Схема устройства для проверки стабилитронов

Как видно, схема проста. Напряжение с трансформатора с двумя вторичными обмотками 24V, выпрямляется и фильтруется для получения постоянного напряжения около 80 В, затем поступает на стабилизатор напряжения, образованный элементами (R1, R2, D1, D2 и Q1), который снижает напряжение до 52V, чтобы избежать превышения максимального предела рабочего напряжения микросхемы LM317AHV.

Обратите внимание на буквенный индекс микросхемы. У LM317AHV входное напряжение, в отличии от LM317T, может достигнуть максимума 57V.

На LM317AHV собран генератор постоянного тока, куда добавлен выключатель (S2) совместно с резистором (R4), чтобы выбрать два тестовых режима (5 мА и 15 мА) в качестве источника тока для испытуемого стабилитрона.

Этот тестер легко собрать из стандартных компонентов. Готовый импульсный блок питания от какого-нибудь DVD или тюнера спутниковой системы, а вольтметр либо в виде промышленного модуля на микроконтроллере, либо взять мультиметр D-830 .

Немного теории

Стабильная зарплата, стабильная жизнь, стабильное государство. Последнее не про Россию, конечно :-). Если глянуть в толковый словарик, то можно толково разобрать, что же такое “стабильность”. На первых строчках Яндекс мне сразу выдал обозначение этого слова: стабильный – это значит постоянный, устойчивый, не изменяющийся.

Но чаще всего этот термин используется именно в электронике и электротехнике. В электронике очень важны постоянные значения какого-либо параметра. Это может быть сила тока, напряжение, частота сигнала и другие его характеристики. Отклонение сигнала от какого-либо заданного параметра может привести к неправильной работе радиоэлектронной аппаратуры и даже к ее поломке. Поэтому, в электронике очень важно, чтобы все стабильно работало и не давало сбоев.

В электронике и электротехнике стабилизируют напряжение. От значения напряжения зависит работа радиоэлектронной аппаратуры. Если оно изменится в меньшую, или даже еще хуже, в большую сторону, то аппаратура в первом случае может неправильно работать, а во втором случае и вовсе колыхнуть ярким пламенем.

Для того, чтобы не допустить взлетов и падения напряжения, были изобретены различные стабилизаторы напряжения. Как вы поняли из словосочетания, они используются чтобы стабилизировать “играющее” напряжение.

Стабилитрон или диод Зенера

Самым простым стабилизатором напряжения в электронике является радиоэлемент стабилитрон. Иногда его еще называют диодом Зенера. На схемах стабилитроны обозначаются примерно так:

Вывод с “кепочкой” называется также как и у диода – катод, а другой вывод – анод.

Стабилитроны выглядят также, как и диоды. На фото ниже, слева популярный вид современного стабилитрона, а справа один из образцов Советского Союза

Если присмотреться поближе к советскому стабилитрону, то можно увидеть это схематическое обозначение на нем самом, указывающее, где у него находится катод, а где анод.

Напряжение стабилизации

Самый главный параметр стабилитрона – это конечно же, напряжение стабилизации. Что это за параметр?

Давайте возьмем стакан и будем наполнять его водой…

Сколько бы воды мы не лили в стакан, ее излишки будут выливаться из стакана. Думаю, это понятно и дошкольнику.

Теперь по аналогии с электроникой. Стакан – это стабилитрон. Уровень воды в полном до краев стакане – это и есть напряжение стабилизации стабилитрона. Представьте рядом со стаканом большой кувшин с водой. Водой из кувшина мы как раз и будем заливать наш стакан водой, но кувшин при этом трогать не смеем. Вариант только один – лить воду из кувшина, пробив отверстие в самом кувшине. Если бы кувшин был меньше по высоте, чем стакан, то мы бы не смогли лить воду в стакан. Если объяснить языком электроники – кувшин обладает “напряжением” больше, чем “напряжение” стакана.

Так вот, дорогие читатели, в стакане заложен весь принцип работы стабилитрона. Какую бы струю мы на него не лили (ну конечно в пределах разумного, а то стакан унесет и разорвет), стакан всегда будет полным. Но лить надо обязательно сверху. Это значит, напряжение, которое мы подаем на стабилитрон, должно быть выше, чем напряжение стабилизации стабилитрона.

Маркировка стабилитронов

Для того, чтобы узнать напряжение стабилизации советского стабилитрона, нам понадобится справочник. Например, на фото ниже советский стабилитрон Д814В:

Ищем на него параметры в онлайн справочниках в интернете. Как вы видите, его напряжение стабилизации при комнатной температуре примерно 10 Вольт.

Зарубежные стабилитроны маркируются проще. Если приглядеться, то можно увидеть незамысловатую надпись:

5V1 – это означает напряжение стабилизации данного стабилитрона составляет 5,1 Вольта. Намного проще, не так ли?

Катод у зарубежных стабилитронов помечается в основном черной полосой

Как проверить стабилитрон

Как же проверить стабилитрон? Да также как и диод! А как проверить диод, можно посмотреть в этой статье. Давайте же проверим наш стабилитрон. Ставим мультиметр на прозвонку и цепляемся красным щупом к аноду, а черным к катоду. Мультиметр должен показать падение напряжения прямого PN-перехода.

Меняем щупы местами и видим единичку. Это значит, что наш стабилитрон в полной боевой готовности.

Ну что же, настало время опытов. В схемах стабилитрон включается последовательно с резистором:

где Uвх – входное напряжение, Uвых.ст. – выходное стабилизированное напряжение

Если внимательно глянуть на схему, мы получили ни что иное, как Делитель напряжения. Здесь все элементарно и просто:

Или словами: входное напряжение равняется сумме напряжений на стабилитроне и на резисторе.

Эта схема называется параметрический стабилизатор на одном стабилитроне. Расчет этого стабилизатора выходит за рамки данной статьи, но кому интересно, в гугл 😉

Итак, собираем схемку. Мы взяли резистор номиналом в 1,5 Килоом и стабилитрон на напряжение стабилизации 5,1 Вольта. Слева цепляем Блок питания, а справа замеряем мультиметром полученное напряжение:

Теперь внимательно следим за показаниями мультиметра и блока питания:

Так, пока все понятно, еще добавляем напряжение… Опа на! Входное напряжение у нас 5,5 Вольт, а выходное 5,13 Вольт! Так как напряжение стабилизации стабилитрона 5,1 Вольт, то как мы видим, он прекрасно стабилизирует.

Давайте еще добавим вольты. Входное напряжение 9 Вольт, а на стабилитроне 5,17 Вольт! Изумительно!

Еще добавляем… Входное напряжение 20 Вольт, а на выходе как ни в чем не бывало 5,2 Вольта! 0,1 Вольт – это ну очень маленькая погрешность, ей можно даже в некоторых случаях пренебречь.

Вольт-амперная характеристика стабилитрона

Думаю, не помешало бы рассмотреть Вольт амперную характеристику (ВАХ) стабилитрона. Выглядит она примерно как-то так:

Iпр – прямой ток, А

Uпр – прямое напряжение, В

Эти два параметра в стабилитроне не используются

Uобр – обратное напряжение, В

Uст – номинальное напряжение стабилизации, В

Iст – номинальный ток стабилизации, А

Номинальный – это значит нормальный параметр, при котором возможна долгосрочная работа радиоэлемента.

Imax – максимальный ток стабилитрона, А

Imin – минимальный ток стабилитрона, А

Iст, Imax, Iminэто сила тока, которая течет через стабилитрон при его работе.

Так как стабилитрон работает именно в обратной полярности, в отличие от диода (стабилитрон подключают катодом к плюсу, а диод катодом к минусу), то и рабочая область будет именно та, что отмечена красным прямоугольником.

Как мы видим, при каком-то напряжении Uобр у нас график начинает падать вниз. В это время в стабилитроне происходит такая интересная штука, как пробой. Короче говоря, он не может больше наращивать на себе напряжение, и в это время начинается возрастать сила тока в стабилитроне. Самое главное – не переборщить силу тока, больше чем Imax , иначе стабилитрону придет кердык. Самым лучшим рабочим режимом стабилитрона считается режим, при котором сила тока через стабилитрон находится где-то в середине между максимальным и минимальным его значением. На графике это и будет рабочей точкой рабочего режима стабилитрона (пометил красным кружком).

Заключение

Раньше, во времена дефицитных деталей и начала расцвета электроники, стабилитрон часто использовался, как ни странно, для стабилизации выходного напряжения блока питания. В старых советских книгах по электронике можно увидеть вот такой участок цепи различных источников питания:

Слева, в красной рамке, я пометил знакомый вам участок цепи блока питания. Здесь мы получаем постоянное напряжение из переменного. Справа же, в зеленой рамке, схема стабилизации ;-).

В настоящее время трехвыводные (интегральные) стабилизаторы напряжения вытесняют стабилизаторы на стабилитронах, так как они в разы лучше стабилизируют напряжение и обладают хорошей мощностью рассеивания.

На Али можно взять сразу целый набор стабилитронов, начиная от 3,3 Вольт и до 30 Вольт. Выбирайте на ваш вкус и цвет.

Купите современный стабилитрон на 15 В для ваших нужд. Бесплатный образец сейчас

О продуктах и ​​поставщиках:
 

Выберите. Стабилитрон на 15 В из огромной коллекции на Alibaba.com. Вы можете купить массив. Стабилитрон на 15 В , включая, помимо прочего, светодиоды, микрофон, выпрямитель, лазер, стабилитрон, триггер, Шоттки, SMD, энергосберегающие диоды лампы. Вы можете выбрать. Стабилитрон на 15 В с широким выбором основных параметров, спецификаций и номиналов для ваших целей.Стабилитрон

15 В на Alibaba.com удобен в установке и использовании. Используемый пластик более высокого качества обеспечивает изоляцию, снижающую нагрев. Они доступны в кремнии и германии. Стабилитрон на 15 В используется в различных отраслях промышленности для различных электрических функций и датчиков. Они используются в инверторах, светодиодах, автомобильной электронике, потребительских товарах, USB 2.0 и USB 3.0, HDMI 1.3 и HDMI 1.4, SIM-карте, мобильной одежде, беспроводной связи, автомобильном генераторе и лазерной эпиляции.Они используются в качестве выпрямителя, датчика освещенности, излучателя света, для рассеивания нагрузки и т. Д. Различная физическая упаковка для. Стабилитрон на 15 В подходит для монтажа на печатной плате, радиатора, проводного и поверхностного монтажа.

Основные особенности. Стабилитрон на 15 В - это толстая медная опорная пластина, низкая утечка, высокая токовая нагрузка, низкое прямое падение напряжения, легирование золотом, низкое сопротивление скачку напряжения, отличная зажимная способность, быстрое время отклика и т. Д. Технические характеристики, предлагаемые на. Стабилитрон на 15 В обладает различными оптическими и электрическими характеристиками, такими как максимальная мощность, напряжение, оптический выход, время обратного восстановления, рабочая температура и т. Д. Стабилитрон на 15 В изготавливается в соответствии со стандартными процедурами для поддержания высочайшего качества. Они соответствуют требованиям RoHS и IEEE 1394.

Получите лучшее. Стабилитрон на 15 В предлагает на Alibaba.com различные поставщики и оптовики. Получите высшее качество. Стабилитрон на 15 В для требований вашего проекта.

WL = стабилитрон 15 В (неисправен выходной адаптер постоянного тока)

Жалоба этого универсального выходного адаптера переменного тока на постоянный ток заключалась в отсутствии питания. Обычный адаптер питания имеет фиксированное выходное напряжение постоянного тока, но этот тип конструкции имеет несколько выходных напряжений постоянного тока — 12/15/16/18/19 В / 20/24 вольт.Вы можете увидеть фото ниже:

Хотя жалоба на адаптер питания заключалась в отсутствии питания, я должен дважды проверить его, чтобы убедиться, что действительно нет питания. Иногда покупатель может дать неверное описание.

После проверки, действительно, не было питания — см. Фото ниже:

Сначала я медленно разрезал крышку резаком. Иногда мне приходилось разрезать его.

После того, как я перевернул силовую плату, я увидел обгоревшие следы на выводах силового полевого транзистора, а также перегорел главный предохранитель.

Поскольку силовой полевой транзистор (2N60) перегорел, это означает, что мне пришлось проверить соответствующие компоненты. Все компоненты SMD были протестированы хорошо, кроме одного (расположение платы ZD3).

Он имел короткое показание, а маркировка компонента была WL.

При поиске в Интернете я обнаружил, что маркировка WL означает 15 вольт — см. Таблицу ниже:

Затем я просто припаял новый силовой полевой транзистор и стабилитрон на 15 В для тестирования, но, конечно же, мне пришлось пройти через серию тестовых ламп.

Последовательное испытание лампочки предназначено для предотвращения повторного перегрева компонентов, которые я заменил, если в адаптере питания все еще есть короткое замыкание. Если адаптер питания исправен, я сниму лампочку и вставлю оригинальный предохранитель.

Хорошая новость заключалась в том, что он работал отлично, и на фотографии ниже вы могли видеть, что выходное напряжение постоянного тока составляло 15,93 В, что очень близко к 16 В.

Заключение — Если вы хотите улучшить свои блоки питания или даже отремонтировать адаптер питания с помощью множества советов и приемов, я могу порекомендовать электронную книгу Джестин Йонг по ремонту SMPS ЗДЕСЬ .

Эту статью подготовил для вас Суранга Бандара, владелец мастерской по ремонту электроники в Анурадапуре, Шри-Ланка.

Нажмите ЗДЕСЬ, чтобы ознакомиться с электронной книгой Humphreys по ремонту ЖК / светодиодных телевизоров

Пожалуйста, поддержите, нажав на кнопки социальных сетей ниже. Ваш отзыв о посте приветствуется. Пожалуйста, оставьте это в комментариях. Если у вас есть статьи по ремонту электроники, которыми вы хотите поделиться с нами, свяжитесь с нами ЗДЕСЬ .

P.S- Если вам понравилось читать вышеупомянутую статью, щелкните здесь , чтобы подписаться на мой блог (бесплатная подписка). Так вы никогда не пропустите сообщение . Вы также можете переслать ссылку на этот сайт своим друзьям и коллегам — спасибо!

Примечание: Вы можете проверить его предыдущий пост по ссылкам ниже:

https://jestineyong.com/power-blinks-in-lg-led-tv-repaired/

Нравится (90) Не понравилось (0)

DO-204AL Chanzon 1N4744A 1N4744 Силовой стабилитрон 1 Вт 15 В DO-41 Упаковка из 100 штук Аксиальные диоды 1 Вт 15 В

DO-204AL Chanzon 1N4744A 1N4744 Силовой стабилитрон 1 Вт 15 В DO-41 Упаковка из 100 шт. Осевые диоды 1 Вт 15 вольт Диоды для бизнеса, промышленности и науки halocharityevents.ком
  1. Home
  2. Business, Industry & Science
  3. Industrial Electrical
  4. Semiconductor Products
  5. Диоды
  6. Стабилитроны
  7. DO-204AL Chanzon 1N4744A 1N4744 Ax D Стабилитрон Diode 15 Вт, 15 Вт, шт. Volt

Корпус: DO-41, Осевые диоды 1 Вт 15 Вольт: Business. DO-204AL, лист технических данных см. На рисунке 2-7, торговая марка: Chanzon, упаковка из 100 штук, для долговременной защиты и идентификации, номер детали: 1N4744A, пожалуйста, обратитесь к рисунку 2-7 для получения технических данных.4744A, очень резкая обратная характеристика / низкий уровень обратного тока / очень высокая стабильность. КОЛ-ВО: 100, осевые диоды 1 ватт 15 вольт: Business. DO-204AL, Тип продукта: ZENER DIODE, Упаковка в пакет ESD с этикеткой основных характеристик, Chanzon 1N4744A 1N4744 Силовой стабилитрон 1 Вт 15 В DO-41, для долговременной защиты и сертификации, Промышленность и наука, 1 Вт — 15 В, Промышленность и Science.









перейти к содержанию

DO-204AL Chanzon 1N4744A 1N4744 Силовой стабилитрон 1 Вт 15 В DO-41 Пакет из 100 шт. Осевые диоды 1 Вт 15 В



Латексные и неопудренные одноразовые перчатки из нитрила Dapetz® X-Large Коробка 100 шт. Аксессуары ATV Wrangler в автомобильной подъемной лебедке с беспроводным дистанционным управлением Грузовая лебедка VEVOR Электрическая лебедка на 4500 фунтов Синтетическая веревка Коромысло 12 В на руле и мощный двигатель для UTV, 1.Точность размеров 75 мм PLA 0,02 мм Нить для 3D-печати с аккуратной катушкой 1 кг / ЛЮБАЯ Нить для 3D-принтера. DO-204AL Chanzon 1N4744A 1N4744 Силовой стабилитрон 1 Вт 15 В DO-41 Пакет из 100 шт. Осевые диоды 1 Вт 15 В , PRO-ELEC GSQ250B Матовая сталь 2500 Вт Автоматическая электрическая сушилка для рук, ЭЛЕКТРОНИКА-САЛОН Монтаж на панели, переключатель мгновенного действия / импульсный -Релейный модуль SPDT с фиксацией сигнала управления, 12 В, станция SECOSANITISER 200×300 мм, самоклеящийся виниловый знак безопасности, DO-204AL Chanzon 1N4744A 1N4744 Силовой стабилитрон 1 Вт 15 В DO-41 Комплект из 100 шт. Осевые диоды 1 Вт 15 В Мощность , KFD 24 В Поставка для робота-уборщика Vileda M-448A SB35 / светодиодной ленты, камеры видеонаблюдения, мини-телевизора, беспроводных маршрутизаторов Wi-Fi, звукового динамика, детской машины, трансформатора, зарядного устройства для водоема, пруда, адаптера переменного тока, постоянного тока, E-Projects 10EP514180R Резисторы на 180 Ом Пакет из 10 5% 1/4 Вт.Тестер измерителя USB C Тестер вольтметра USB Type-C Тестер USB-мультиметра Текущая мощность Емкость AMP Зарядное устройство, измеритель силы тока PD Tester USB Type-C Safety Tester. DO-204AL Chanzon 1N4744A 1N4744 Силовой стабилитрон 1 Вт 15 В DO-41 Упаковка из 100 шт. Осевые диоды 1 Вт 15 В , желтый EAONE Сухие ластики для магнитной доски Очиститель для классной доски Стеклоочиститель для классной комнаты Домашний офис ластики для сухого стирания 40 шт,


DO-204AL Chanzon 1N4744A 1N4744 Силовой стабилитрон 1 Вт 15 В DO-41 Пакет из 100 шт. Осевые диоды 1 Вт 15 В

DO-204AL Chanzon 1N4744A 1N4744 Силовой стабилитрон 1 Вт 15 В DO-41 Пакет из 100 шт. Осевые диоды 1 Вт 15 В

из 100 шт. Аксиальные диоды 1 Вт 15 В DO-204AL Стабилитрон Chanzon 1N4744A 1N4744 1 Вт 15 В Комплект DO-41, Промышленность и наука, (упаковка из 100 шт.) Chanzon 1N4744A 1N4744 Стабилитрон мощностью 1 Вт 15 В DO-41 (DO- 204AL) Осевые диоды 1 Вт 15 В: Бизнес, Последние самые горячие предложения, Недорогие хорошие товары, Удивительная мода, Удивительные цены, Чтобы принести вам все новое качество и здоровье в Интернете.Осевые диоды 1 Вт 15 В DO-204AL Chanzon 1N4744A 1N4744 Силовой стабилитрон 1 Вт 15 В DO-41 Пакет из 100 штук, DO-204AL Chanzon 1N4744A 1N4744 Силовой стабилитрон 1 Вт 15 В DO-41 Пакет из 100 штук Аксиальных диодов 1 Вт 15 В.

Высокоскоростной 15-вольтовый стабилитрон

/ прецизионный стабилитрон SOD-323 BZX384-C15V

Стабилитрон — это кремниевый полупроводниковый прибор, который позволяет току течь в прямом или обратном направлении.Диод состоит из специального сильно легированного p-n перехода, предназначенного для проведения в обратном направлении при достижении определенного заданного напряжения.

Стабилитрон имеет четко определенное напряжение обратного пробоя, при котором он начинает проводить ток и продолжает непрерывно работать в режиме обратного смещения без повреждения. Кроме того, падение напряжения на диоде остается постоянным в широком диапазоне напряжений, что делает стабилитроны пригодными для использования при регулировании напряжения.

Стабилитрон

Стабилитрон работает как обычный диод в режиме прямого смещения и имеет напряжение включения от 0,3 до 0,7 В. Однако при подключении в обратном режиме, что является обычным явлением в большинстве его применений, может протекать небольшой ток утечки. Когда обратное напряжение увеличивается до заданного напряжения пробоя (Vz), через диод начинает течь ток. Ток увеличивается до максимума, который определяется последовательным резистором, после чего он стабилизируется и остается постоянным в широком диапазоне приложенного напряжения.

BZX384-C2V7 / BZX84C2V7W

ХАРАКТЕРИСТИКИ

  1. Конструкция с плоской матрицей
  2. 200 мВт Рассеиваемая мощность
  3. 9015 Напряжение на стабилитроне для установки на поверхность от 2,4 В — 396 В Базовый номер детали BZX384C2V7 / BZX84C2V7W Статус детали Активный Напряжение — стабилитрон (Ном.) (Вz) (Вz) 902 9022 9022 9022 9022 9022 9022 Мощность — макс. 300 мВт Сопротивление (макс.) (Zzt) 100 Ом Ток — обратная утечка при Vr 20 мкА при 1 В 902 Vf Напряжение — прямое (макс.) @ Если 1.1 В при 100 мА Рабочая температура -65 ° C ~ 150 ° C Тип монтажа Поверхностный монтаж Корпус / корпус SC-76, SOD-32351 Поставщик Пакет устройства SOD-323

    Сервис

    Свяжитесь с нами, если вам нужны более подробные сведения или предложение по этому товару. [email protected]
    Пожалуйста, проверьте приведенный ниже номер детали той же серии.

    BZX484-C2V4 — BZV384-C39

    BZX84C2V4W-BZX84C39W ZENER DIODE



    Теги продукта:

    Высокоскоростной стабилитрон 15 В / Прецизионный стабилитрон SOD-323 BZX384-C15V Изображения

    1N5245B лист данных — 15В, 0.Стабилитрон 5 Вт

    1N5059GPthru1N5062GP :. Пластиковый пакет имеет класс воспламеняемости Underwriters Laboratories 94V-0 Конструкция с высокотемпературным металлургическим склеиванием Пассивированный стеклянный переход без полостей Соответствует экологическим стандартам MIL-S-19500, 1,0 А, рабочий ток = 75 ° C, без теплового разгона Типичный ИК-диапазон менее 0,1 A Гарантированная высокотемпературная пайка : 350C / 10.

    1N916A : слабый сигнал. Быстрый диод с высокой проводимостью. Максимальное повторяющееся обратное напряжение Среднее значение выпрямленного прямого тока Непериодический пиковый прямой импульсный ток Ширина импульса = 1.Ширина импульса 0 секунд = 1,0 микросекунда Диапазон температур хранения Рабочая температура перехода * Эти номинальные значения являются предельными значениями, превышение которых может ухудшить работоспособность любого полупроводникового устройства. ПРИМЕЧАНИЯ: 1) Эти рейтинги.

    2SK2938S : Кремниевый N-канальный MOSFET, высокоскоростное переключение мощности. Кремниевый МОП-транзистор с N каналом Высокоскоростное переключение мощности Низкое сопротивление в открытом состоянии DS = 0,026 тип. Высокоскоростное переключающее устройство управления затвором 4 В может управляться от источника 5 В Элемент Напряжение от истока к напряжению от затвора к напряжению истока Ток стока Пиковый ток стока Диод-корпус обратный ток стока Лавинный ток Энергия лавины Рассеяние в канале Температура канала.

    6R1YI30Y-080 : Диодный и тиристорный модуль.

    NTE5829 : Кремниевый выпрямительный диод, 50 А. : NTE5826 — NTE5829 — это кремниевые выпрямительные диоды в корпусе с прессовой посадкой, предназначенные для использования во всех среднетоковых приложениях или для более высоких промышленных генераторов переменного тока и выпрямителей источника питания, устанавливаемых на шасси. : D 50 А D Возможность перенапряжения 600 А D Прочная конструкция D Доступны в стандартном (NTE5826, NTE5828) и реверсивном (NTE5827 ,.

    SRC1211UF : Кремниевый транзистор NPN. Применение коммутации. Схема интерфейса и схема драйвера. Со встроенными резисторами смещения. Упрощение конструкции схемы. Сокращение количества деталей и производственного процесса. Высокая плотность упаковки. Коллектор-база, напряжение, коллектор, эмиттер, напряжение, база, коллектор.

    FMMT458QTA : МАЛЫЙ СИГНАЛЬНЫЙ ТРАНЗИСТОР. Характеристика Рассеиваемая мощность 500 мВт Непрерывный ток коллектора от 225 мА до пикового импульсного тока 1 А Превосходные характеристики hFE до 100 мА Низкое напряжение насыщения Дополнительный номер детали FMMT558 Полностью не содержит свинца и полностью соответствует требованиям RoHS (Примечания и 2) Не содержит галогенов и сурьмы.«Зеленое» устройство (Примечание 3) соответствует стандартам AEC-Q101 для случая высокой надежности :.

    KW302J2 : РЕЗИСТОР, ЗАВИСИМЫЙ ОТ ТЕМПЕРАТУРЫ, NTC, 3000 Ом, КРЕПЛЕНИЕ ДЛЯ ПРОХОДНОГО ОТВЕРСТИЯ. s: Категория / Применение: Общее использование; Монтаж / упаковка: сквозное отверстие, радиальные выводы, радиальные выводы; Диапазон сопротивления: 3000 Ом; Номинальная мощность: 0,0300 Вт (4,02E-5 л.с.); Рабочая температура: от -80 до 135 C (от -112 до 275 F).

    NCS1-13 + : ВЧ ТРАНСФОРМАТОР 720 МГц — 1000 МГц. s: Категория: Сигнал; Другие типы трансформаторов / применение: RF; Монтаж: чип-трансформатор; Рабочая температура: от -40 до 85 C (от -40 до 185 F).

    PMEG1030EH, 135 : 3 А, 10 В, КРЕМНИЙ, ВЫПРЯМИТЕЛЬНЫЙ ДИОД. s: Конфигурация выпрямителя / Технология: Schottky; Пакет: ПАКЕТ ПЛАСТИКОВЫЙ-2; Количество диодов: 1; VRRM: 10 вольт; IF: 3000 мА; Соответствует RoHS: RoHS.

    SHD125217 : 15 А, КРЕМНИЙ, ВЫПРЯМИТЕЛЬНЫЙ ДИОД, TO-254AA. s: Конфигурация выпрямителя / Технология: Schottky; Пакет: ТО-254, 3 ПИН; Количество диодов: 1; ЕСЛИ: 15000 мА.

    SKUT85 / 12T : 85 А, 1200 В, SCR. s: VDRM: 1200 вольт; VRRM: 1200 вольт; IT (RMS): 85 ампер; IGT: 150 мА; Тип корпуса: CASE G67, W3C, SEMIPONT 5, 14 PIN; Количество булавок: 14.

    ST5771-1J05Z : 200 мА, 15 В, PNP, Si, МАЛЫЙ СИГНАЛЬНЫЙ ТРАНЗИСТОР. s: Полярность: PNP.

    TIM5053-4SL : ДИАПАЗОН C, GaAs, N-КАНАЛ, ВЧ МОЩНОСТЬ, JFET. s: Полярность: N-канал; V (BR) DSS: 15 вольт; Тип упаковки: ГЕРМЕТИЧЕСКАЯ УПЛОТНЕНИЕ, 2-11D1B, 3 КОНТАКТА; Количество блоков в ИС: 1.

    VJ0805A220GXCAT : КОНДЕНСАТОР, КЕРАМИЧЕСКИЙ, МНОГОСЛОЙНЫЙ, 200 В, C0G, 0,000022 мкФ, КРЕПЛЕНИЕ НА ПОВЕРХНОСТИ, 0805. s: Конфигурация / форм-фактор: Чип-конденсатор; Технология: Многослойная; Диэлектрик: керамический состав; Соответствие RoHS: Да; Диапазон емкости: 2.20Е-5 мкФ; Допуск емкости: 2 (+/-%); WVDC: 200 вольт; Температурный коэффициент: 30 частей на миллион / ° C; Тип установки:.

    Стабилитрон 15,0 В, 5 Вт

    Описание продукта


    NTE Semiconductors

    NTE Номер детали: NTE5130A
    Описание: ZD-15.0 В, 5 Вт
    КОЛ-ВО В упаковке: 1

    Чтобы узнать о наличии на складе, позвоните или напишите нам.
    Срок поставки товаров, отсутствующих на складе, составляет 1-2 недели.

    Щелкните здесь, чтобы просмотреть техническое описание NTE5130A.
    Если эта ссылка на таблицу не работает, она все еще может быть доступна на nteinc.com.


    Эта деталь эквивалентна замене следующей детали:
    001-023041, 13-0078, 13-3015735-002, 13-3015735-2, 13-5111-1, 14001-2, 14001-2 (FISHER) , 1.5DKZ15, 1.5DKZ15A, 1.5DKZ15B, 1.5JZ15, 1.5JZ15A, 1.5JZ15B, 1.5JZ15C, 1.5JZ15D, 1.5R15, 1.5R15A, 1.5R15B, 1.5Z15, 1.5Z15A, 1.5Z15B, 1.5Z15C, 1N3793, 1N3793A, 1N4469, 1N4836B, 1N4962, 1N5025, 1N5025A, 1N5071, 1N5352, 1N5352A, 1N5352B, 1N5352BE, 1N5352BG, 1N5929, 1N5929A, 1S3015A, 1S4015, 1SEN15-15M, 2S4015E, 1SEN1515A, 2S4015E, 2S4015A, 2S4015E, 2S4015A , 2R15A, 2R15B, 2VR15, 2VR15A, 2VR15B, 3BZ15, 3BZ15A, 3BZ15B, 3EZ15D5, 3L4-3506-2, 3R15, 3R15A, 3R15B, 3TZ15, 3TZ15A, 3TZ15B, 3TZ15, 3WR15D, 3VR15D, 3VR15D, 3VR15D, 3VR15D, 3VR15, 3VR15, 3VR15, 3VR15, 3VR15, 3VR15, 3VR15, 3VR15, 3VR15, 3VR15, 3VR15, 3VR15, 3VR15, 3VR15C , 3WC-15D, 3Z15, 3Z15A, 3Z15B, 424-0361, 48-137028, 48-86850C45, 48P83624E97, 5302781002, 530278-2, 5324, 561-2557-152, 5M15ZS5, 5ZS15, 5ZS15A, 68 5Z6A, 68 5ZS15B , 735-2 (SYL-ZENER), 7724, 919-017406-013, 919-017406-060, 935-6344, 96-5250-06, 96-5344-03, A1-DHZ-LAA-060, AU01- 15, BZD23-C15, BZT03-C15, BZV16 C15, BZV58C15, BZX61C15, BZX70C15, BZY95C15, CZ5352B, DSZ5715, ECG5130, ECG5130A, EZ3-15 (ELCOM), GE5ZD-15, HEP-Z2519, LMZ15, LMZ15-20, LMZX15A, LMZ15-20, LMZX15A, LMZ15-20, LMZX15A, LMZ15A, LMZ15-20, LMZX15A, LMZ57 , MZ715, NT5324C, NT7724, NT77C15, NTE5130A, SK15X, SK15X / 5130A, SK3396, SK3396 / 5130A, SX15, SZ15C, TM5130, TM5130A, TR-14001-2, TR14001-2, UA915, UDZ5715, U154715, U154715, U154715 , UZ5815, UZ5915, UZ715, UZ815, UZ915, VR15F, VZ150F, WEP1518, WEP1624, Z2519 (HEP), Z2B15, Z2C15, Z2D15, Z3B150CF, ZAC15, ZAC15A, ZAC15B, ZBC15, ZBC15, ZBC15C, ZBC15, ZBC15, ZBC15, ZBC15, ZBC15, ZBC15, ZBC15 ZC2015, ZCC15, ZCC15A, ZCC15B, ZD2015, ZR518071-2, ZR51B071-2, ZR51B155-2



    Vetco имеет полный перечень электронных компонентов, включая интегральные схемы (ИС), транзисторы, диоды и светодиоды.
    Ищете дополнительную информацию? Нажмите здесь, чтобы выполнить поиск по онлайн-компоненту NTE ПОКРЫТИЕ ССЫЛКИ

    Состояние продукта: Новый

    Стабилитрон

    Схемы и конструкция »Электроника

    Существует множество схем на стабилитронах от схем опорного напряжения до схем, обеспечивающих защиту от переходных процессов напряжения.


    Учебное пособие по стабилитронам / эталонным диодам В комплект входит: Стабилитрон
    Теория работы стабилитрона Технические характеристики стабилитрона Схемы на стабилитронах

    Другие диоды: Типы диодов


    Стабилитроны или диоды опорного напряжения используются в различных схемах, чтобы они могли обеспечивать опорное напряжение.Их также можно использовать в других схемах, кроме как для обеспечения опорного напряжения.

    Существует множество схем, в которых используются стабилитроны, от очень простых схем на стабилитронах до гораздо более сложных.

    Несколько примеров схем на стабилитронах приведены ниже вместе с некоторыми советами по проектированию схем.

    Простая схема стабилитрона, обеспечивающая опорное напряжение

    Самая простая схема стабилитрона состоит из одного стабилитрона и резистора.Стабилитрон обеспечивает опорное напряжение, но для ограничения тока в диоде должен быть установлен последовательный резистор, в противном случае через него будет протекать большой ток, и он может выйти из строя.

    Следует рассчитать номинал резистора в цепи стабилитрона, чтобы получить требуемое значение тока для используемого напряжения питания. Обычно максимальная рассеиваемая мощность большинства свинцовых стабилитронов с малой мощностью составляет 400 мВт. В идеале схема должна быть спроектирована так, чтобы рассеивать менее половины этого значения, но для правильной работы ток в стабилитроне не должен опускаться ниже примерно 5 мА, иначе они не будут регулироваться правильно.

    Схема базового опорного напряжения на стабилитроне

    Пример схемы

    Возьмем случай, когда схема на стабилитроне используется для питания регулируемой шины 5,1 В, потребляющей 2 мА, от источника входного напряжения 12 В. Для расчета необходимого резистора можно использовать следующие простые шаги:

    1. Рассчитайте разницу напряжений на последовательном резисторе 12 — 5,1 = 6,9 В
    2. Определите ток резистора. Выберите 15 мА.Это обеспечит достаточный запас выше минимального тока стабилитрона для некоторого изменения тока нагрузки.
    3. Проверьте рассеиваемую мощность стабилитрона. При токе 15 мА и напряжении на рассеиваемой мощности: 15 мА x 5,1 В = 76,5 мВт
      Это вполне соответствует максимальному пределу для диода
    4. .
    5. Определите ток через последовательный резистор. Это 15 мА для стабилитрона плюс 2 мА для нагрузки, то есть 17 мА.
    6. Определите номинал последовательного резистора.Используя закон Ома, это можно рассчитать, исходя из падения напряжения на нем и полного тока через него: 6,9 / 17 мА = 0,405 кОм
      Ближайшее значение составляет 390 Ом
    7. Определите мощность последовательного резистора. Это можно определить, используя значение тока через резистор и рассчитанное ранее напряжение на нем: В x I = 6,9 В x 17 мА = 117 мВт
      Резистор должен рассеивать этот уровень тепла. Для этого должно хватить резистора на четверть ватта.

    Эта простая схема на стабилитроне широко используется в качестве простого метода обеспечения опорного напряжения.

    Схема стабилитрона для БП с последовательным транзистором

    Очень простая схема стабилитрона, обеспечивающая функцию шунтирующего стабилизатора, как показано выше, не особенно эффективна и не применима для многих приложений с более высокими токами. Одним из решений является использование схемы стабилитрона, в которой используется транзисторный буфер, который действует как транзистор с последовательным проходом.Ниже показана простая схема, в которой транзистор используется в качестве эмиттерного повторителя.


    Схема простого регулятора напряжения на стабилитроне

    При использовании этой схемы на стабилитроне необходимо рассчитать ток, требуемый от датчика потенциала стабилитрона. Это ток эмиттера транзистора, деленный на коэффициент усиления.

    При выборе напряжения стабилитрона следует помнить, что напряжение эмиттера будет ниже напряжения стабилитрона на величину напряжения база-эмиттер — около 0.6 вольт для кремниевого транзистора.

    Схема стабилитрона для защиты от перенапряжения

    Другой вид схемы стабилитрона — это схема защиты от перенапряжения. Эта схема стабилитрона использует стабилитрон несколько иначе, обнаруживая ток пробоя через диод при достижении определенного напряжения.

    Хотя блоки питания обычно надежны, последствия отказа последовательного транзистора или полевого транзистора могут быть катастрофическими. Если устройство последовательной передачи выйдет из строя из-за короткого замыкания, полное нерегулируемое напряжение будет подаваться на цепи с использованием регулируемой мощности.Это может уничтожить все микросхемы, на которые подается питание.

    Одно из решений — использовать схему с ломом. Когда эта форма схемы обнаруживает ситуацию перенапряжения, она запускает SCR. Это быстро снижает выходное напряжение и в показанном случае перегорает предохранитель, который отключает питание источника входного сигнала.

    Схема защиты от перенапряжения на стабилитроне / тиристоре

    Схема работает путем срабатывания тринистора при обнаружении перенапряжения. Стабилитрон выбирается так, чтобы иметь напряжение выше нормального рабочего напряжения — достаточный запас, чтобы не срабатывать при нормальных рабочих условиях, но достаточно малый, чтобы позволить току течь быстро при обнаружении неисправности.

    В нормальных условиях работы выходное напряжение ниже обратного напряжения стабилитрона, и через него не течет ток, а затвор тринистора не срабатывает.

    Однако, если напряжение превышает допустимое значение, то есть напряжение пробоя стабилитрона, стабилитрон начинает проводить ток, тиристор срабатывает и предохранитель перегорает.

    Наконечники стабилитронов

    Стабилитрон — очень гибкий и полезный компонент схемы. Однако, как и в случае с любым другим электронным компонентом, есть несколько советов и подсказок, которые позволяют сделать из стабилитрона наилучшее.Их количество приведено ниже.

    • Буферизация цепи стабилитрона с помощью цепи эмиттера или истокового повторителя: Чтобы напряжение на стабилитроне было как можно более стабильным, ток, протекающий через стабилитрон, должен быть постоянным. Любые изменения тока, потребляемого нагрузкой, должны быть минимизированы, так как они изменят ток через стабилитрон и вызовут небольшие колебания напряжения. Изменения, вызванные нагрузкой, можно свести к минимуму, используя каскад схемы эмиттерного повторителя для уменьшения тока, потребляемого от схемы стабилитрона, и, следовательно, изменений, которые он видит.Это также имеет то преимущество, что можно использовать стабилитроны меньшего размера.
    • Привод с источником постоянного тока для лучшей стабильности: Другой способ улучшить стабильность стабилитрона — использовать хороший источник постоянного тока. Простая схема, в которой используется только резистор, подходит для многих приложений, но более эффективный источник тока может обеспечить некоторые улучшения характеристик схемы, поскольку ток может поддерживаться практически независимо от любых изменений в шине питания.
    • Выберите правильное напряжение для лучшей стабильности: В приложениях, где требуется стабильность при изменении температуры, стабилитрон опорного напряжения следует выбирать так, чтобы он имел напряжение около 5,5 вольт. Ближайшее предпочтительное значение составляет 5,6 В, хотя 5,1 В — еще одно популярное значение, учитывая его близость к 5 В, требуемым для некоторых семейств логики. Там, где требуются разные уровни напряжения, можно использовать стабилитрон на 5,6 В, а окружающую электронику можно использовать для преобразования его в требуемое выходное значение.
    • Обеспечьте достаточный ток для обратного пробоя: Необходимо убедиться, что через диод проходит достаточный ток, чтобы он оставался в режиме обратного пробоя. Для типичного устройства мощностью 400 мВт необходимо поддерживать ток около 5 мА. Для получения точных значений минимального тока следует обращаться к таблице данных для конкретного устройства и напряжения. Если этот минимальный ток не подается, диод не будет проводить должным образом, и вся цепь не будет работать.
    • Убедитесь, что максимальные пределы тока для стабилитрона не превышены: Хотя необходимо обеспечить прохождение достаточного тока через стабилитрон, максимальные пределы не должны превышаться. Это может быть немного уравновешивающим действием в некоторых схемах, поскольку изменения тока нагрузки будут вызывать изменение тока стабилитрона. Следует проявлять осторожность, чтобы не превысить максимальный ток или максимальную рассеиваемую мощность (напряжение стабилитрона x ток стабилитрона). Если это кажется проблемой, можно использовать схему эмиттерного повторителя для буферизации стабилитрона и увеличения допустимого тока.

    Стабилитроны очень просты в использовании, поэтому существует большое количество различных схем на стабилитронах. При использовании с некоторыми мерами предосторожности они работают хорошо, но иногда могут вызывать некоторые проблемы, но следование указанным выше советам и рекомендациям поможет избежать большинства проблем.

    Другие электронные компоненты:
    Резисторы Конденсаторы Индукторы Кристаллы кварца Диоды Транзистор Фототранзистор Полевой транзистор Типы памяти Тиристор Разъемы Разъемы RF Клапаны / трубки Аккумуляторы Переключатели Реле
    Вернуться в меню «Компоненты».

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *