Стабилизатор напряжения и тока. Стабилизаторы напряжения и тока: принципы работы, схемы и применение

Как работают стабилизаторы напряжения и тока. Какие бывают типы стабилизаторов. Как выбрать подходящий стабилизатор для конкретной задачи. Каковы основные схемы стабилизаторов напряжения и тока. Где применяются стабилизаторы в современной электронике.

Содержание

Принцип работы стабилизаторов напряжения и тока

Стабилизаторы напряжения и тока являются важнейшими элементами современной электроники, обеспечивающими стабильное питание для различных устройств. Основная задача стабилизатора — поддерживать постоянное выходное напряжение или ток независимо от колебаний входного напряжения и изменения нагрузки.

Принцип работы стабилизатора основан на использовании отрицательной обратной связи. Выходной параметр (напряжение или ток) сравнивается с опорным значением, и при их расхождении вырабатывается управляющий сигнал, корректирующий работу регулирующего элемента. Это позволяет компенсировать любые отклонения выходного параметра от заданного значения.


Основные типы стабилизаторов

Существует несколько основных типов стабилизаторов напряжения и тока:

  • Параметрические стабилизаторы — используют нелинейные элементы (стабилитроны, стабисторы)
  • Компенсационные стабилизаторы — работают по принципу автоматического регулирования
  • Импульсные стабилизаторы — используют ШИМ для регулирования выходного параметра
  • Линейные стабилизаторы — регулируют выходной параметр за счет изменения сопротивления

Каждый тип имеет свои преимущества и недостатки, определяющие область их применения.

Схемы простейших стабилизаторов напряжения

Рассмотрим несколько базовых схем стабилизаторов напряжения:

Параметрический стабилизатор на стабилитроне

Простейший стабилизатор напряжения можно реализовать на основе стабилитрона:

«`plaintext Uвх —[R]—+—[VD]—+— Uвых | | | [Rн] | | GND GND «`

Здесь VD — стабилитрон, R — ограничительный резистор, Rн — нагрузка. Напряжение на выходе будет определяться напряжением стабилизации стабилитрона.


Компенсационный стабилизатор на транзисторе

Более эффективный стабилизатор можно построить по следующей схеме:

«`plaintext Uвх —[VT]—+— Uвых | | [R1] [R2] | | [VD] | | | GND GND «`

Здесь VT — регулирующий транзистор, VD — опорный стабилитрон, R1 и R2 — резисторы делителя обратной связи. Такая схема обеспечивает лучшую стабилизацию за счет усиления ошибки транзистором.

Интегральные стабилизаторы напряжения

Современная электроника широко использует интегральные стабилизаторы напряжения. Они представляют собой готовые микросхемы, требующие минимум внешних компонентов. Наиболее популярные серии:

  • 78xx — положительные стабилизаторы
  • 79xx — отрицательные стабилизаторы
  • LM317 — регулируемые стабилизаторы

Интегральные стабилизаторы обеспечивают высокую стабильность, защиту от перегрузок и КЗ, компактность.

Стабилизаторы тока: принципы и схемы

Стабилизаторы тока поддерживают постоянный ток через нагрузку независимо от ее сопротивления. Простейшая схема стабилизатора тока:


«`plaintext Uвх —[VT]—+— Iвых | | [R] [Rн] | | GND GND «`

Здесь VT — регулирующий транзистор, R — датчик тока. Падение напряжения на R поддерживается постоянным, что обеспечивает стабильность тока через нагрузку Rн.

Применение стабилизаторов в современной электронике

Стабилизаторы напряжения и тока находят широкое применение в различных областях:

  • Источники питания электронных устройств
  • Зарядные устройства для аккумуляторов
  • Системы электропитания компьютеров и серверов
  • Автомобильная электроника
  • Системы освещения на светодиодах
  • Измерительное и лабораторное оборудование

Правильный выбор и применение стабилизаторов обеспечивает надежную и стабильную работу электронной аппаратуры в различных условиях эксплуатации.

Выбор стабилизатора для конкретной задачи

При выборе стабилизатора напряжения или тока следует учитывать следующие факторы:

  • Требуемые выходные параметры (напряжение, ток)
  • Диапазон входных напряжений
  • Требуемая точность стабилизации
  • Максимальная мощность нагрузки
  • Наличие защиты от перегрузок и КЗ
  • Температурный диапазон работы
  • Габариты и способ монтажа

Правильный учет этих факторов позволяет выбрать оптимальный стабилизатор для конкретного применения.


Современные тенденции в развитии стабилизаторов

Основные направления развития стабилизаторов напряжения и тока:

  • Повышение КПД и снижение тепловыделения
  • Уменьшение габаритов и веса
  • Расширение функциональности (программируемые параметры, интерфейсы управления)
  • Повышение надежности и срока службы
  • Снижение уровня электромагнитных помех
  • Использование новых полупроводниковых материалов (GaN, SiC)

Эти тенденции позволяют создавать все более эффективные и компактные стабилизаторы для различных применений.


Стабилизаторы напряжения и тока: классификация и основные параметры

Зачастую сглаживающих фильтров недостаточно для надёжного энергоснабжения телекоммуникационных и мобильных систем. Чтобы минимизировать влияние отрицательных факторов таких как колебания напряжений или частоты сети, применяются устройства под названием стабилизатор.

Для начала рассмотрим что же такое стабилизатор – это прибор, который предназначен для автоматического поддержания напряжения или тока на нагрузке с определённой точностью и уменьшения влияния дестабилизирующих факторов.

Выделим следующие дестабилизирующие факторы, которые отрицательно влияют на изменение напряжения или тока на нагрузке:

  1. колебания напряжения питания;
  2. частота тока питающей сети;
  3. температура окружающей среды;
  4. изменение потребляемой мощности на нагрузке.

На рисунке 1 представлена структурная схема работы устройства. На вход поступает дестабилизированное напряжение, с выхода получаем стабилизированное.

Рисунок 1 — структурная схема работы стабилизатора

Главным предназначением стабилизатора является ослабление выше перечисленных факторов.

Классификация

Стабилизирующие устройства можно разделить в зависимости от вида напряжения или тока протекающего через него на стабилизаторы переменного и постоянного тока или напряжения. И также их можно подразделить по типу: параметрические и компенсационные.

Параметрические стабилизаторы строятся на основе таких нелинейных элементов, как транзисторы, стабилитроны и стабисторы и т. п. Это обусловлено тем, что благодаря их характеристикам (вольт-амперных, ампер-вольтовых, ом-градусных, вебер-амперных, вольт-секундных и др.) ток или напряжения могут быть стабилизированы на определённом уровне. Более подробно будут рассмотрены в следующих статьях.

Компенсационные стабилизаторы – это устройство, которое выполнено в виде системы автоматического регулирования, или другим словом содержит цепь отрицательной обратной связи. За счёт изменения параметров регулирующего элемента посредством воздействия на него сигнала обратной связи и происходит стабилизация напряжения. Схема и принцип действия более подробно будут рассмотрены в следующих статьях.

Стабилизация тока или напряжения происходит при помощи регулирующего элемента (РЭ), который, в свою очередь, может быть расположен относительно нагрузки последовательно или параллельно. Следовательно стабилизаторы можно подразделить на схемы с последовательным включением регулирующего элемента и на схемы с параллельным включением регулирующего элемента. Пример схем с вариантом включения РЭ представлен на рисунке 2.

Рисунок 2 — Последовательное и параллельное включение регулирующего элемента

При последовательном соединении регулирующего элемента с нагрузкой, регулирование напряжения на выходе происходит за счёт изменения сопротивления в регулирующем элементе. Выходное напряжение при таком соединении будет равно Uвых=Uвх+ΔUрэ.

При параллельном соединении регулирующего элемента с нагрузкой, регулировка напряжения на выходе достигается за счёт изменения тока, протекающего через регулирующий элемент. В свою очередь, стабилизация напряжения на выходе осуществляется за счёт изменения напряжения на балластном резисторе R

б. Ток на балластном резисторе можно найти исходя из первого закона Кирхгофа: сумма сходящихся токов в одном узле равна нулю. Следовательно ток на Rб  будет равен Iб=Iрэ+Iн. Главное преимущество параллельного соединения заключается в устойчивости к перегрузкам по току и выдерживание короткого замыкания в цепи нагрузки.

Для определения какой следует применить стабилизатор стоит исходить из требований, предъявляемых к качеству питающих напряжений.

Основные параметры

Основные параметры, по которым оцениваются рассматриваемые устройства следующие: качественные, массогабаритные и энергетические. По данным параметрам можно судить о массе и удельном объёме устройства.

Качественные параметры стабилизаторов постоянного напряжения:

Коэффициент стабилизации по входному напряжению – это отношение номинального и относительного изменения напряжения на входе и выходе устройства при неизменном токе нагрузки.

где Uвх, Uвых

– номинальное значение напряжения на входе и на выходе;

ΔUвх, ΔUвых – относительно изменение напряжения на входе и на выходе.

Внутреннее сопротивление стабилизатора – это отношение изменения выходного напряжения к изменению тока нагрузки при неизменном входном напряжении.

Качество стабилизации – это отношение изменения напряжения на выходе к номинальному значению на выходе. Измеряется в процентах.

Коэффициент сглаживания пульсаций – это отношение амплитуд пульсаций и номинальных напряжения на входе и выходе устройства.

Температурный коэффициент – это отношения изменения напряжения на выходе устройства от изменения температуры окружающей среды при неизменном входном напряжении и тока нагрузки.

Качественные параметры стабилизаторов постоянного тока:

Коэффициент стабилизации тока по входному напряжению – это отношение номинальных и относительных изменений напряжения на входе и тока на выходе устройства при неизменном сопротивлении нагрузки.

Где Uвх, Iн – номинальное значение входного напряжения и тока нагрузки;

ΔUвх, Δ Iн – относительно изменение входного напряжения и тока нагрузки.

Коэффициент стабилизации при изменении сопротивления нагрузки – это отношение номинального значения сопротивления и тока нагрузки к их изменению, при постоянном входном напряжении.

Где Rн, ΔRн – номинальное сопротивление нагрузки и его изменение;

ri – внутреннее сопротивление

Коэффициент пульсаций по току – это отношение амплитуды пульсаций тока к номинальному значению тока на выходе устройства.

Где Iн~ — амплитуда пульсаций тока в нагрузке

Качество стабилизации – это отношение изменения тока на выходе к номинальному значению на выходе. Измеряется в процентах.

Температурный коэффициент – это отношения изменения тока на выходе устройства от изменения температуры окружающей среды.

Массогабаритные параметры характеризуются следующими параметрами: удельный объём Pвых/Vст, Вт/дм3, и удельная массам устройства Pвых/Gст, Вт/кг, где Vст это объём, а Gст это масса устройства.

К энергетическим параметрам можно отнести нижеперечисленное.

Коэффициент полезного действия – это отношение активной мощности, на выходе к потребляемой мощности от сети.

Не стоит забывать про мощность, которая рассеивается на регулирующем элементе, это тоже немаловажный параметр.

Резюмируя всё выше написанное, нами была рассмотрена основная информация о видах и характеристиках стабилизаторов. Для более глубокого изучения воспользуйтесь соответствующей литературой. Для более надёжного закрепления материала в будущем ниже будут размещены вопросы и задачи для самопроверки.

Стабилизатор тока и стабилизатор напряжения.

Стабилизатор тока и стабилизатор напряжения.

     Эта статья является продолжением статьи «Генератор тока (источник тока). Различия и сходства стабилизаторов тока и напряжения».

     Как одно превратить в другое.

     ***

     Временами я просматриваю статистику посещаемости моего сайта в Яндекс Метрике. Там же можно увидеть по каким запросам читатели приходят на ту или иную статью. Так вот на статью о генераторах тока зачастую читатели попадают, набирая запросы такого характера:

     — Как из стабилизатора напряжения сделать генератор тока?

     — Как источник тока переделать в стабилизатор напряжения?

     Ну и тому подобное.

     Раньше у меня такие вопросы вызывали только улыбку. Но сейчас я решил, что нужно вполне серьёзно на них ответить. Рассказать, чем же отличается схемотехника стабилизаторов тока и стабилизаторов напряжения. Вместо слова стабилизатор можете подставить генератор или источник.

     Итак, для начала нам нужно твёрдо себе уяснить основное различие источников тока и напряжения:

     Идеальный источник тока создаёт в нагрузке ток стабильной, неизменной величины.

     Идеальный источник напряжения создаёт на нагрузке напряжение стабильной неизменной величины.

     Далее я буду употреблять в тексте слова стабилизатор, генератор, источник. Все они будут являться синонимами словосочетания «Идеальный источник». Не пугайтесь слова «идеальный». Практически любой бытовой источник напряжения является условно идеальным, до того момента пока вы не нарушите условий его эксплуатации. Ну не включите, например слишком большую нагрузку, или не закоротите накоротко.

     Исключение составляют зарядные устройства. Но там разговор особый.

     Таким образом если мы изменяем сопротивление нагрузки у источника напряжения, то напряжение на нагрузке остаётся стабильным, а ток, протекающий через нагрузку, изменяется.

     Uн → const,

     Iн → var.

     Если мы изменяем сопротивление нагрузки у источника тока, то ток, протекающий через нагрузку, остаётся неизменным, а напряжение на нагрузке изменяется.

     Uн → var.

     Iн → const,

     Сразу оговорюсь что никакие химические, фотоэлектрические, электромеханические и т.д. и т.п. источники электроэнергии, не оснащённые специальными схемами стабилизации выходных характеристик, не могут рассматриваться ни как источник напряжения ни как источник тока. Они нечто среднее между тем и другим так как и ток и напряжение на выходе у них изменяются и при изменении сопротивления нагрузки, и с течением времени и по разным другим причинам. Такие источники являются источниками ЭДС.

     Итак, чем же различаются схемы стабилизаторов тока и стабилизаторов напряжения?

     Рассмотрим для начала что такое стабилизатор вообще. Функциональная схема любого стабилизатора выглядит так как показано на Рис. 1.


Рис. 1 Функциональная схема стабилизатора.

     Здесь:

     — УМ — усилитель мощности. Надо понимать, что несмотря на грозное название усилителем мощности может послужить обычный транзистор. Внутри интегральных микросхем таких усилителей мощности пруд пруди.

     — УО — расшифровывается не как умственно отсталый, а как усилитель ошибки.

     Как это работает.

     Вход подключен к какому-либо источнику питания. На выходе начинает протекать ток, который создаёт некоторое падение напряжения на сопротивлении подключенной нагрузки. УО включен в цепь глубокой отрицательной обратной связи (ОС).

     Выходной параметр, ток или напряжение подаётся на один из входов УО. Ко второму входу подключен некий эталон. Если величина параметра на выходе УМ не совпадает с величиной эталона, то образуется некоторая разница между первым и вторым входом. Эта разница называется ошибкой.

     УО усиливает эту ошибку во много раз и выдаёт на УМ в виде управляющего сигнала, этот сигнал заставляет УМ изменить свои характеристики так чтобы выходной параметр (ток или напряжение) пришёл в соответствие с эталоном.

     Думаю, должно быть понятно, что для того, чтобы поддерживать минимальную разность между выходным параметром и эталоном УО должен обладать очень большим коэффициентом усиления (Ку).

     Теперь давайте посмотрим, как это всё можно реализовать на практике.

     Начнём с простейшего стабилизатора напряжения, Рис. 2. Кстати, схемы, построенные по такому принципу в основном и были распространены примерно до 1980 года.

     Для начала немного о терминологии.

     — Эталон теперь будет называться опорным напряжением (Uоп). Независимо от того стабилизатор чего мы строим тока или напряжения, на вход 1 УО будет подаваться напряжение.

     — ИОН — источник опорного напряжения.


Рис. 2 Схема простого стабилизатора напряжения.

     В этой схеме роль УМ выполняет биполярный транзистор структуры n-p-n. В качестве ИОН задействован стабилитрон VD1. Остаётся вопрос — а где же УО? Роль УО выполняет p-n переход база-эмиттер транзистора. Вход 1 это эмиттер, на нём присутствует выходное напряжение. Роль входа 2 выполняет база транзистора, на неё подано опорное напряжение с катода VD1.

     Действительно, переход Б-Э это фактически включенный в прямом направлении полупроводниковый диод. А как известно на p-n переходе диода при прямом включении возникает некоторое довольно стабильное падение напряжение. И это напряжение очень слабо зависит от протекающего через диод тока. Стабильность напряжения Б-Э зависит от крутизны вольтамперной характеристики этого диода. Чем круче характеристика, тем меньше влияние тока протекающего через диод на падение напряжения на нём, что эквивалентно большому Ку усилителя ошибки.

     Напряжение на нагрузке вычисляется по следующей формуле:

     Uн = Uоп — Uбэ

     Так как Uоп и Uбэ стабильны то и Uн также стабильно. Причём, при идеальных Uоп и Uбэ, Uн не будет зависеть ни от изменения питающего напряжения, ни от изменения сопротивления нагрузки. В разумных пределах, конечно.

     Тот, кто читал мою статью «Генератор тока (источник тока). Различия и сходства стабилизаторов тока и напряжения», тот думаю сам сможет оценить эти самые пределы.

     Теперь давайте подумаем, как нам этот стабилизатор напряжения переделать в стабилизатор (генератор) тока.

     На самом деле всё очень просто.

     Так как ток, протекающий через нагрузку, течёт от источника питания к коллектору транзистора, а затем в эмиттер, то следовательно ток в нагрузке практически точно соответствует току, протекающему через коллектор.

     Если вместо Rн запаять постоянный резистор тогда величина тока, протекающего через коллектор, будет постоянна и не будет зависеть от изменения напряжения питания, Рис. 3.


Рис. 3

     Вычисляться этот ток будет по следующей формуле:

     Iк = Uэ / R2 = (Uоп — Uбэ) / R2

     Вот мы, собственно говоря, уже и получили генератор (источник) тока. Правда работать он будет сам на себя, а потому в таком виде никому не нужен.

     Преобразовать его в полноценный генератор тока совсем просто. Нужно оторвать коллектор транзистора от цепи питания и включить в разрыв нагрузку, Рис. 4.


Рис. 4 Схема простого генератора (стабилизатора) тока.

     В этой схеме ток в нагрузке будет стабильным и не будет зависеть от напряжения питания и сопротивления нагрузки, опять же — в разумных пределах. Как эти пределы рассчитать я рассказывал в предыдущей статье.

     Таким образом стабилизатор напряжения (Рис. 2) я преобразовал в генератор тока (Рис. 4). Но в этих схемах есть один недостаток — очень низкий коэффициент стабилизации. Связано это как малой стабильностью ИОН на стабилитроне VD1, так и с низкой стабильностью Uбэ.

     В предыдущей статье я приводил такой пример схемы генератора тока, Рис. 5.

Рис. 5 Схема генератора тока с операционным усилителем в цепи обратной связи.

     В этой схеме ИОН может быть построен на стабилитронах или на более современных компонентах, например трёхвыводная микросхема TL431 или её аналог.

     Операционный усилитель ОУ выполняет роль усилителя ошибки. Такое построение схемы позволяет получить очень высокую стабильность выходных характеристик. Здесь резистор Rэ выполняет роль датчика тока (ДТ). Падение напряжения на этом датчике тока изменяется пропорционально изменению протекающего через него тока.

     Ну и как вы уже, наверное, поняли её также легко превратить в стабилизатор напряжения, Рис. 6.

Рис. 6 Схема стабилизатора напряжения с операционным усилителем в цепи обратной связи.

     ИОН обычно выдаёт Uоп в районе (2 — 5) Вольт. Делителем R1R2 устанавливают требуемое выходное напряжение. Чем больше коэффициент деления делителя, тем больше выходное напряжение.

     Что можно сказать по поводу этих двух схем.

     Генераторы тока по схеме изображённой на Рис. 5 вполне себе строятся так как от генераторов тока обычно не требуется большая мощность. Обычно они питают различные резистивные датчики температуры, давления, освещённости. В этих случаях требуется высокая стабильность генератора тока, а не мощность.

     Стабилизаторы напряжения в наше время в основном представляют из себя импульсные источники питания. Это позволяет получить высокий КПД и хорошие массогабаритные характеристики. Но в некоторых случаях не обойтись и без аналоговых стабилизированных источников питания. Например, там, где предъявляются высокие требования к уровню высокочастотных помех. Все импульсные источники довольно сильно фонят.

     Применение.

     Стабилизаторы напряжения окружают нас со всех сторон. Ни один компьютер или телевизор не может обойтись без них. Даже мобильник нужно время от времени заряжать через зарядное устройство, которое представляет собой ничто иное как стабилизированный источник напряжения.

     Генераторы тока для нас не так заметны. Но могу вас уверить что вы их постоянно неосознанно используете.

     Практически каждая интегральная микросхема содержит внутри себя генератор тока (источник стабильного тока). В больших интегральных микросхемах их сотни если не тысячи.

     Но также находят применение и мощные генераторы тока, вот два примера.

     Специализированные зарядные устройства для мощных аккумуляторов.

     Как известно заряд аккумулятора нужно проводить стабильным током. Для этого используют мощный источник питания, в который встроены две цепи обратной связи, одна по напряжению, она не даёт выходному напряжению превысить некоторый установленный уровень. Другая по току ограничивающая выходной ток устройства, а следовательно, и ток заряда.

     Таким образом когда вы подключаете разряженный аккумулятор к зарядному устройству возникает режим перегрузки. Обратная связь по току реагирует на это и ограничивает ток на выходе. Напряжение на выходных клеммах при этом падет. В дальнейшем по мере заряда аккумулятора напряжение растёт, ток при этом остаётся неизменным.

     Это означает что зарядное устройство работает в режиме генератора тока.

     Вторым примером может служить полупроводниковый сварочный аппарат. Здесь та же ситуация, а вернее даже ещё хуже, так как в начале процесса сварки на выходе аппарата вообще создаётся короткое замыкание. Но обратная связь по току не даёт току вырасти до опасной величины и сбрасывает уровень выходного напряжения. Дальше уже в процессе сварки эта же обратная связь следит за постоянством тока в электрической дуге, выходное напряжение при этом будет колебаться. Таким образом сварочный аппарат работает в режиме генератора тока.

     То есть и сварочный аппарат, и зарядное устройство если правильно организовать обратные связи и ввести соответствующие переключатели, можно использовать по прямому назначению, то есть в режиме генератора (стабилизатора) тока, а также как стабилизированные источники напряжения.

     Всё зависит от того откуда снимается сигнал для ОС. Если непосредственно с выхода, то получаем стабилизатор напряжения. Если с датчика тока, то получим генератор тока.

     Правда если говорить о современных источниках питания, то они представляют собой стабилизированные источники напряжения со схемой ограничения по току.

     То есть в них присутствуют обе обратные связи: и по напряжению, и по току. Но обратная связь по току включается в работу только в случае перегрузки. Именно поэтому большинство современных источников питания способны выдерживать даже длительные короткие замыкания на выходе.

 Рис. 6 Схема стабилизатора напряжения с операционным усилителем

Схемы стабилизаторов напряжения и тока

  Стабилизированные источники питания необходимы для обеспечения независимости параметров электронного устройства от изменений питающего напряжения. Практически в любой современной аппаратуре имеется стабилизатор напряжения, а то и несколько. В таких устройствах часто применяются операционные усилители ( ОУ ), с помощью которых решить эту задачу просто и эффективно с точностью регулировки и стабильности в диапазоне 0,01…0,5 %, причём ОУ легко встраивать в традиционные стабилизаторы напряжения и тока.
Простейший стабилизатор напряжения представляет собой усилитель постоянного тока, на вход которого подано постоянное напряжение стабилитрона или часть его. Нагрузочная способность такого стабилизатора определяется силой максимального выходного тока ОУ.
Следящие стабилизаторы, как правило, работают на принципе сравнения опорного и выходного напряжений, усиления их разности и управления электропроводностью регулирующего транзистора.

   Стабилизатор по схеме Рис.1 выдаёт напряжение Uвых большее, чем опорное напряжение стабилитрона VD1, а стабилизатор Рис.2 – меньшее. Стабилизаторы питаются от одного источника. С помощью эмиттерного повторителя VT2 увеличивают ток нагрузки, в нашем примере – до 100 мА, но можно и более с составным повторителем на мощном транзисторе. Транзистор VT1 защищает выходной транзистор VT2 от перегрузок по току, причём датчиком тока служит резистор R8 небольшого сопротивления, включённый в цепь эмиттера транзистора VT2. Когда падение напряжения на нём превысит Uб-э=0,6 В, откроется транзистор VT1 и зашунтирует эмиттерный переход транзистора VT2. При токах нагрузки до 10…15 мА резисторы R7, R8 и транзисторы VT1, VT2 можно не ставить. Отметим, что в стабилитронах по схемам на Рис.1, 2 входное напряжение не должно превышать максимально допустимой суммы напряжений питания.

    На Рис.3а приведена схема подобного стабилизатора в котором ОУ включён таким образом, что он сам питается стабилизированным напряжением. Здесь дополнительно включены несколько элементов, улучшающих работу стабилизатора напряжения. Потенциал выхода ОУ DA1 смещён в сторону положительного напряжения с помощью стабилитрона VD3 и транзистора VT1. Выходной эмиттерный повторитель – составной ( VT2, VT3 ), а к базе защитного транзистора VT4 подключён делитель R4R5, что позволяет создать “падающую” характеристику ограничения тока перегрузки. Ток короткого замыкания не превышает 0,3 А. Термокомпенсированный источник опорного напряжения выполнен на микросхеме К101КТ1А (DA2). Выходное напряжение стабилизатора, равное +15В, изменяется всего на 0,0002 % при изменении входного напряжения в пределах 19…30 В; при изменении тока нагрузки от нуля до номинального выходное напряжение падает лишь на 0,001%. В этом стабилизаторе подавление пульсаций входного напряжения частотой 100 Гц составляет 120 дБ. К достоинствам стабилизатора следует отнести также и то, что в отсутствии нагрузки потребляемый ток составляет около 10 мА. При скачкообразном изменении тока нагрузки выходное напряжение устанавливается с погрешностью 0,1% за время не более 5 мкс.

Практически нулевые пульсации напряжения на выходе может обеспечить стабилизатор по схеме Рис.4. Если движок переменного резистора R1 находится в верхнем (по схеме) положении, амплитуда пульсаций максимальна. По мере перемещения движка вниз амплитуда будет уменьшаться, так как напряжение пульсаций, поданное на инвертирующий вход ОУ через конденсатор С2, в противофазе складывается с выходным напряжением пульсаций. Примерно в среднем положении движка резистора R1 пульсации будут компенсированы.
В случае необходимости получения отрицательного выходного напряжения необходимо в качестве повторителя применить p-n-p транзистор, а также заземлить положительную шину питания ОУ. Но можно поступить по-другому, если в аппаратуре требуются стабилизированные напряжения разной полярности.

   На Рис.5 приведены две упрощённые схемы соединения стабилизаторов для получения выходных напряжения разного знака. В первом случае входная и выходная цепи имеют общую шину. Пусть, например, имеются только положительные стабилизаторы. Тогда в стабилизаторе по второй схеме можно применить, если оба канала по входным цепям гальванически развязаны, чтобы можно было заземлять положительный полюс нижнего (по схеме) стабилизатора. Источником опорного напряжения для одного из каналов служит стабилитрон, а для второго – выходное напряжение первого стабилизатора. Для этого необходимо включить делитель из двух резисторов между выводами +Uст и -Uст стабилизаторов и подвести напряжение средней точки делителя к неинвертирующему входу ОУ второго стабилизатора, заземлив инвертирующий вход ОУ. Тогда выходные напряжения двух стабилизаторов ( несимметричные в общем случае ) связаны и регулирование напряжений осуществляется одним переменным резистором.

В случае если необходимо иметь два питающих напряжения с заземлённой средней точкой, то можно применить активный делитель на ОУ с повторителями для увеличения нагрузочной способности (Рис. 6). Если R1=R2, то равны и выходные напряжения относительно заземлённой средней точки. Через выходные транзисторы VT1 и VT2 протекают полные токи нагрузки, а падение напряжения на участках коллектор – эмиттер равны половине входного напряжения. Это надо иметь в виду при выборе радиаторов охлаждения.
Ключевые стабилизаторы напряжения зарекомендовали себя наилучшим образом с точки зрения экономичности, так как КПД таких устройств всегда высокий. Несмотря на их сложность по сравнению с линейными стабилизаторами, только за счёт уменьшения размеров теплоотводящего радиатора проходного транзистора ключевой стабилизатор позволяет уменьшить габариты регулируемого мощного источника питания в два – три раза. Недостаток ключевых стабилизаторов заключается в повышении уровня помех. Однако рациональное конструирование, и когда весь блок выполнен в виде экранированного модуля с расположенной непосредственно на теплоотводе мощного транзистора платой управления, позволяет свести помехи к минимуму. Устранить “пролезание” высокочастотных помех в нестабилизированный источник первичного питания и нагрузку можно путём включения последовательно радиочастотных дросселей, рассчитанный на постоянный ток 1…3 А. В ключевых стабилизаторах напряжения с успехом применяются интегральные компараторы.

   На Рис. 7 приведена схема релейного стабилизатора на базе микросхемы К554СА2. Здесь компаратор DA1 работает от источников напряжения +12 и -6 В. Эта комбинация образована подключением вывода 11 положительного питания DA1 к эмиттеру транзистора VT1 (+18 В), вывода 2 – к стабилитрону VD6 (примерно +6 В), вывода 6 отрицательного питания – к нулевому потенциалу общей шины. Опорное напряжение стабилизатора формируется диодами VD3 – VD5, оно равно +4,5 В. Это напряжение подаётся на инвертирующий вход компаратора DA1, включённого по схеме детектора уровня с гистерезисной характеристикой из-за положительной обратной связи по цепи R5, R3. Цепь отрицательной обратной связи замыкается через усилительный транзистор VT2, ключевой элемент на транзисторах VT3, VT4 и фильтр L1C7. Глубину отрицательной обратной связи по выходному напряжению регулируют переменным резистором R4, в результате оно изменяется в пределах 4…20 В при минимальном входном нестабилизированном напряжении +23 В и максимальном – до +60 В с применением элементов, рассчитанных на такое напряжение. В то же время переменная составляющая выходного напряжения ( пульсации ) проходят без ослабления через конденсатор С4, поэтому регулирование выходного напряжения не приводит к пропорциональному изменению пульсаций.
Данный стабилизатор напряжения относится к числу автогенерирующих, когда в зависимости от входного напряжения и тока нагрузки, разряжающего накопительный конденсатор C7, автоматически меняется как период автоколебаний, так и время включённого состояния транзисторов VT3, VT4. Усилитель управления на компараторе DA1 и транзисторе VT2 открывает ключевой элемент в тот момент, когда потенциал инвертирующего входа станет меньше, чем потенциал неинвертирующего (опорного) входа. В этот момент напряжение на нагрузке падает несколько ниже заданного уровня стабилизации, т.е пульсирует. После включения транзисторов VT3, VT4 ток через дроссель L1 нарастает, его индуктивность и конденсатор С7 запасает энергию, так что потенциал инвертирующего входа повышается. Благодаря действию усилителя управления ключевой элемент закрывается. Затем фильтр L1C7 отдаёт некоторую часть запасённой энергии в нагрузку, причём полярность напряжения на дросселе L1 меняется и цепь питания замыкается через диод VD7. Как только напряжение на конденсаторе С7 станет ниже опорного на величину гистерезиса, вновь включаются транзисторы VT3, VT4. Далее циклы повторяются.
В качестве дросселя L1 можно применить дроссели фильтров промышленного изготовления, например из серий Д8, Д5 – плоские и др., среди которых выбирают типономинал с требуемой индуктивностью, рассчитанный на ток подмагничивания не менее ожидаемого тока нагрузки и пригодный к использованию на частотах до 50 кГц.
Диод VD7 должен быть обязательно быстродействующим с большим допустимым импульсным током, не менее удвоенного значения тока нагрузки. В стабилизаторе по схеме на Рис. 7, где ток нагрузки 2 А, возможна замена его на диоды КД212Б, КД217А и некоторые другие. Конденсатор С7 из ряда К53 или танталовый типов К52-7А, К52-9, К52-10, С9 – ёмкостью не менее 15,…2,2 мкФ.
Большая потребность в стабилизаторах для питания аппаратуры привела к необходимости разработки и производства специальных линейных микросхем – стабилизаторах напряжения. В интегральном исполнении преобладают последовательные регуляторы с непрерывным или импульсным режимом управления. Стабилизаторы строятся как для положительных так и для отрицательных напряжений питания. Выходное напряжение может быть регулируемым или фиксированным, например +5 В для питания блоков с цифровыми микросхемами или ±15 В для питания аналоговых микросхем. К данной группе из выпускаемых стабилизаторов относятся категория регулируемых стабилизаторов КР142ЕН1 и К142ЕН2.


   На базе микросхем КР142ЕН1,2 можно создавать стабилизаторы отрицательных напряжений Рис. 8. При этом стабилитрон VD1 смещает уровень напряжения на выводе 8 относительно входного напряжения. Базовый ток транзистора VT1 не должен превышать максимально допустимого тока стабилизатора, иначе следует применить составной транзистор.

   Широкие возможности микросхем КР142ЕН1,2 позволяют создавать на их основе релейные стабилизаторы напряжения (Рис. 9). В таком стабилизаторе опорное напряжение установлено делителем R4R5, а амплитуда пульсаций выходного напряжения на нагрузке задаётся делителем R2R3. Следует также иметь в виду, что ток нагрузки не может изменяться в широких пределах, обычно не более чем в два раза от номинального значения. Преимуществом релейных стабилизаторов является высокий КПД.

   Также следует рассмотреть ещё один класс стабилизаторов – стабилизаторов тока, преобразующих напряжение в ток независимо от изменения напряжения нагрузки. Мощные источники тока предусматривают подключение к ОУ усилительных транзисторов.

   На Рис.10 дана схема источника тока, а на Рис. 11 – схема приёмника тока. В обоих устройствах сила тока зависит от напряжения Uвх и номинала резистора R1, чем меньше входной ток ОУ и тем меньше ток управления первого (после ОУ) транзистора, который выбран поэтому полевым. Ток нагрузки может достигать 100 мА.

   Схема простого мощного источника тока для зарядки устройства показана на Рис. 12. Здесь R4 – токоизмерительный проволочный резистор. Номинальное значение тока нагрузки Iн =ΔU/R4=5 A устанавливается примерно при среднем положении движка резистора R1. При зарядке автомобильной аккумуляторной батареи напряжение Uвх ≥ 18 В без учёта пульсаций выпрямленного переменного напряжения. В таком устройстве следует применять ОУ с диапазоном входного напряжения вплоть до напряжения положительного питания. Такими возможностями обладают ОУ К553УД2, К153УД2, К153УД6, а также КР140УД18.
Более подробно по данной тематике можно найти в источнике:

В ПОМОЩЬ РАДИОЛЮБИТЕЛЮ” выпуск 91, МОСКВА издательство ДОСААФ СССР, 1985 стр. 39-53

Похожее

Стабилизаторы тока. Виды и устройство. Работа и применение

Стабилизаторы тока предназначены для стабилизации тока на нагрузке. Напряжение на нагрузке зависит от его сопротивления. Стабилизаторы необходимы для функционирования различных электронных приборов, например газоразрядные лампы.

Для качественного заряда аккумуляторов также необходимы стабилизаторы тока. Они используются в микросхемах для настройки тока каскадов преобразования и усиления. В микросхемах они играют роль генератора тока. В электрических цепях всегда есть разного рода помехи. Они отрицательно влияют на действие приборов и электрических устройств. С такой проблемой легко справляются стабилизаторы тока.

Отличительной чертой стабилизаторов тока является их значительное выходное сопротивление. Это дает возможность исключить влияние напряжения на входе, и сопротивления нагрузки, на значение тока на выходе устройства. Стабилизаторы тока поддерживают выходной ток в определенных пределах, меняя при этом напряжение таким образом, что ток, протекающий по нагрузке, остается постоянным.

Устройство и принцип действия

На нестабильность нагрузочного тока влияет значение сопротивления и напряжения на входе. Пример: в котором сопротивление нагрузки постоянно, а напряжение на входе повышается. Ток нагрузки при этом также возрастает.

В результате этого повысится ток и напряжение на сопротивлениях R1 и R2. Напряжение стабилитрона станет равным сумме напряжений сопротивлений R1, R2 и на переходе VT1 база-эмиттер: Uvd1=UR1+UR2+UVT1(б/э)

Напряжение на VD1 не меняется при меняющемся входном напряжении. Вследствие этого ток на переходе база-эмиттер снизится, и повысится сопротивление между клеммами эмиттер-коллектор. Сила тока на переходе коллектор-эмиттере и нагрузочное сопротивление станет снижаться, то есть переходить к первоначальной величине. Так выполняется выравнивание тока и поддержание его на одном уровне.

Виды стабилизаторов тока

Существует множество разных видов стабилизаторов в зависимости от их назначения и принципа работы. Рассмотрим подробнее основные из таких устройств.

Стабилизаторы на резисторе

В элементарном случае генератором тока может быть схема, состоящая из блока питания и сопротивления. Подобная схема часто используется для подключения светодиода, выполняющего функцию индикатора.

Из недостатков такой схемы можно отметить необходимость использования высоковольтного источника. Только при таком условии можно использовать резистор, имеющий высокое сопротивление, и получить хорошую стабильность тока. На сопротивлении рассеивается мощность P = I 2 х R.

Стабилизаторы на транзисторах

Значительно лучше функционируют стабилизаторы тока, собранные на транзисторах.

Можно выполнить настройку падения напряжения таким образом, что оно будет очень маленьким. Это дает возможность снижения потерь при хорошей стабильности тока на выходе. На выходе транзистора сопротивление очень большое. Такая схема применяется для подключения светодиодов или зарядки аккумуляторных батарей малой мощности.

Напряжение на транзисторе определяется стабилитроном VD1. R2 играет роль датчика тока и обуславливает ток на выходе стабилизатора. При увеличении тока падение напряжения на этом резисторе становится больше. Напряжение поступает на эмиттер транзистора. В итоге напряжение на переходе база-эмиттер, которое равно разности напряжения базы и эмиттерного напряжения, снижается, и ток возвращается к заданной величине.

Схема токового зеркала

Аналогично функционируют генераторы тока. Популярной схемой таких генераторов является «токовое зеркало», в которой вместо стабилитрона применяется биполярный транзистор, а точнее, эмиттерный переход. Вместо сопротивления R2 применяется сопротивление эмиттера.

Стабилизаторы тока на полевике

Схема с применением полевых транзисторов более простая.

Нагрузочный ток проходит через R1. Ток в цепи: «+» источника напряжения, сток-затвор VТ1, нагрузочное сопротивление, отрицательный полюс источника – очень незначительный, так как сток-затвор имеет смещение в обратную сторону.

Напряжение на R1 положительное: слева «-», справа напряжение равно напряжению правого плеча сопротивления. Поэтому напряжение затвора относительно истока минусовое. При снижении нагрузочного сопротивления, ток повышается. Поэтому напряжение затвора по сравнению с истоком имеет еще большую разницу. Вследствие этого транзистор закрывается сильнее.

При большем закрытии транзистора нагрузочный ток снизится, и возвратится к начальной величине.

Устройства на микросхеме

В прошлых схемах имеются элементы сравнения и регулировки. Аналогичная структура схемы применяется при проектировании устройств, выравнивающих напряжение. Отличие устройств, стабилизирующих ток и напряжение, заключается в том, что в цепь обратной связи сигнал приходит от датчика тока, который подключен к цепи нагрузочного тока. Поэтому для создания стабилизаторов тока используют популярные микросхемы 142 ЕН 5 или LМ 317.

Здесь роль датчика тока играет сопротивление R1, на котором стабилизатор поддерживает постоянное напряжение и нагрузочный ток. Величина сопротивления датчика значительно ниже, чем нагрузочное сопротивление. Снижение напряжения на датчике влияет на напряжение выхода стабилизатора. Подобная схема хорошо сочетается с зарядными устройствами, светодиодами.

Импульсный стабилизатор

Высокий КПД имеют импульсные стабилизаторы, выполненные на основе ключей. Они способны при незначительном напряжении входа создавать высокое напряжение на потребителе. Такая схема собрана на микросхеме МАХ 771.

Сопротивления R1 и R2 играют роль делителей напряжения на выходе микросхемы. Если напряжение на выходе микросхемы становится выше опорного значения, то микросхема снижает выходное напряжение, и наоборот.

Если схему изменить таким образом, чтобы микросхема реагировала и регулировала ток на выходе, то получится стабилизированный источник тока.

При падении напряжения на R3 ниже 1,5 В, схема работает в качестве стабилизатора напряжения. Как только нагрузочный ток повышается до определенного уровня, то на резисторе R3 падение напряжения становится больше, и схема действует как стабилизатор тока.

Сопротивление R8 подключается по схеме тогда, когда напряжение становится выше 16,5 В. Сопротивление R3 задает ток. Отрицательным моментом этой схемы можно отметить значительное падение напряжения на токоизмерительном сопротивлении R3. Эту проблему можно решить путем подключения операционного усилителя для усиления сигнала с сопротивления R3.

Стабилизаторы тока для светодиодов

Изготовить такое устройство самостоятельно можно с применением микросхемы LМ 317. Для этого останется только подобрать резистор. Питание для стабилизатора целесообразно применять следующее:

  • Блок от принтера на 32 В.
  • Блок от ноутбука на 19 В.
  • Любой блок питания на 12 В.

Достоинством такого устройства является низкая стоимость, простота конструкции, повышенная надежность. Сложную схему нет смысла собирать самостоятельно, проще ее приобрести.

Похожие темы:
Как выбрать стабилизатор напряжения (2018) | Стабилизаторы напряжения | Блог

Вместо привычного с детства числа 220 в маркировке современных электроприборов все чаще попадается 230. С недавних пор именно 230 В является стандартным напряжением в России и многих других странах. Впрочем, для большинства электроприборов разницы между 230 и 220 В нет никакой. Стандартом допускаются отклонения напряжения сети на ±10%, т.е. от 207 до 253 В. Производители бытовой техники ориентируются именно на эти показатели.

Однако в реальности напряжение в этих рамках удерживается не всегда. В новых микрорайонах, в деревнях и поселках часто к старой подстанции, рассчитанной на определенную нагрузку, подключается много новых потребителей. Это приводит к падению напряжения до 190 В и даже ниже, что бывает хорошо заметно по горящим в полнакала лампочкам. К сожалению, снижением яркости лампочек проблема не исчерпывается. Возрастают токи в обмотках электродвигателей насосов, холодильников, стиральных машин, посудомоек и пр. Это может привести к выходу двигателя из строя.

Бывает в сети и повышенное напряжение, также довольно частое в загородных домах – иногда подстанции намеренно подстраиваются на выдачу повышенного напряжения, чтобы на удаленных потребителях оно поднялось до нормального. При этом на потребителях, близких к подстанции, оно может быть около 250 В. Если при этом еще и нулевой провод окажется не заземлен, то из-за перекоса фаз напряжение может подняться еще выше – до 260 В и даже больше. Ну и не так уж редки случаи, когда электрики случайно подключают в щитке вместо нулевого провода – еще одну фазу, выдавая потребителям 400 В вместо 230. Повышенное напряжение вредно всем потребителям без исключения, поскольку ведет к увеличению выделения тепла, перегреву деталей, выходу их из строя и даже воспламенению.

Можно защитить все электроприборы в доме, установив во входном щитке реле напряжения, но это не решит проблему полностью – при выходе напряжения за установленные рамки оно просто обесточит потребителей. Чтобы защититься от длительных просадок или повышений напряжения, следует ставить стабилизатор.

Конечно, можно поставить мощный стабилизатор на входе в дом и защитить всю технику скопом, но это будет стоить весьма недешево. Тем более что особой надобности в этом и нет – различные электроприборы по-разному реагируют на повышенное или пониженное напряжение. Вполне возможно, что не всей вашей технике нужна защита стабилизатором.

Защита электроприборов

Холодильники, морозильники и кондиционеры требуют защиты в первую очередь – пониженное напряжение в сети может стать причиной поломки компрессора и дорогостоящего ремонта.

Но еще одна особенность этой техники в том, что многие модели могут выйти из строя при быстром выключении-включении. Дело в том, что при выключении компрессора давление в системе выравнивается в течение некоторого времени (1-3 минуты). Если запустить компрессор раньше, его двигатель будет работать с повышенной нагрузкой (или вообще не сможет запуститься), что может привести к поломке. Современные холодильники и кондиционеры большей частью имеют встроенное реле задержки, но если у вас есть сомнения, или в руководстве указано, что перед повторным пуском следует выждать некоторое время, то стабилизатор обязательно должен иметь функцию задержки запуска минимум на 1 минуту.

Насосы, как погружные, так и поверхностные также требуют защиты от пониженного/повышенного напряжения и им тоже нужна задержка запуска. При пуске двигатель насоса в течение 1-2 секунд потребляет ток, в несколько раз превышающий номинальный. При этом обмотка двигателя нагревается. При обычном пуске излишки тепла снимаются прокачиваемой водой, но если напряжение в сети пропадает и появляется, то пусковые токи длятся дольше, а двигатель не успевает раскрутиться и прокачать воду. Контактирующая с насосом вода перегревается вплоть до закипания, что приводит к поломке насоса и перегоранию обмоток двигателя. Поэтому стабилизатор, защищающий насосы, должен также иметь задержку запуска в 5-10 секунд.

СВЧ-печь не выйдет из строя при падении напряжения, но эффективность её при этом снизится многократно. Если отвезенная на дачу «микроволновка» перестала греть, не спешите везти её в ремонт – возможно, дело в низком напряжении сети. Стабилизатор легко устранит эту проблему.

Электроника (компьютеры, современные телевизоры, аудиотехника), оснащенная импульсными блоками питания, пониженного напряжения не боится. Обычно это указывается в руководстве или прямо на блоке питания: «INPUT: 100-240 V». Так что, если ваша проблема состоит в пониженном напряжении, стабилизатор такой технике не нужен. Другое дело, если оно повышенное – при длительном воздействии напряжения от 240 В и выше, нагрузка (как тепловая, так и электрическая) на электронику БП сильно возрастает, что довольно быстро приводит к выходу его из строя.

Энергосберегающие лампы (как люминесцентные, так и светодиодные) к пониженному напряжению довольно лояльны, а вот повышенного не любят. Если всплески напряжения в вашей сети не редкость, то их лучше защитить стабилизатором. Тем более что потребляют они немного, и одного недорогого стабилизатора мощностью в 300-500 ВА хватит на освещение частного дома.

Нагревательным приборам, лампам накаливания, электрочайникам, утюгам и прочей подобной технике падения напряжения вообще не опасны – у них просто снизится эффективность. Повышенное напряжение может ускорить их износ, но в целом, напряжение, на 10-20% превышающее номинал, для большинства подобных приборов неопасно. Эти приборы можно включать в «проблемную» сеть без стабилизатора. Правда, это не относится ко многим современным моделям, оснащенным сложными электронными устройствами управления.

Определившись с тем, какие приборы следует защитить, следует определиться с характеристиками стабилизатора.

Характеристики стабилизаторов

Тип стабилизатора напряжения

Релейные стабилизаторы напряжения представляют собой трансформатор с несколькими отводами входной или выходной обмотки, коммутируемыми силовыми реле.

При нормальном входном напряжении трансформатор работает как разделительный – не повышая и не понижая напряжение. При выходе входного напряжения за установленные границы, электроника включает соответствующее реле, превращая трансформатор в понижающий или повышающий.

Преимущества релейных стабилизаторов:

– Низкая цена.

– Высокая перегрузочная способность – даже самые простые модели выдерживают 200% перегрузки в течение нескольких секунд. Модели же с мощными силовыми реле, рассчитанные на высокие пусковые токи, выдерживают непродолжительные десятикратные перегрузки.

– Малое время переключения – напряжение полностью стабилизируется через 20-100 мс после выхода его за нормальные границы.

Недостатки:

– Ступенчатость регулирования. Трансформатор имеет ограниченное число отводов на обмотке, поэтому изменять напряжение может только ступенчато – по 5, 10, а на недорогих моделях – по 20 вольт на одну ступень регулирования. В целом это для техники неопасно, но на граничных напряжениях частые переключения реле, сопровождающиеся мерцанием ламп накаливания, могут раздражать.

– Шумность. Реле при переключении щелкает довольно громко.

– Износ контактов реле. Основной недостаток этого вида стабилизаторов – опасность прогара или пригара контактов реле. Если в первом случае напряжение на выходе стабилизатора просто пропадет, то второй вариант намного неприятнее. Если пригар случится во время пониженного входного напряжения, то при возврате напряжения в норму, реле останется включенным. Трансформатор продолжит работать, как повышающий и напряжение на выходе станет повышенным! Спокойный за свою электротехнику владелец стабилизатора даже не будет подозревать, что именно в этот момент он сжигает её высоким напряжением. Поэтому не стоит выбирать релейный стабилизатор, если в сети случаются частые перепады напряжения – чем чаще реле срабатывает, тем быстрее снижается его ресурс.

Электромеханические (сервоприводные) стабилизаторы напряжения представляют собой тороидальный трансформатор с передвигающимся над внешней обмоткой токосъемником, контактирующим с обмоткой с помощью угольной щетки. При падении или превышении входного напряжения сервопривод перемещает токосъемник, нормализуя выходное.

Преимущества электромеханических стабилизаторов:

– Высокая перегрузочная способность – 200% перегрузки в течение 4-х секунд.

– Плавность регулирования.

– Высокая точность регулирования.

– Низкий уровень шума при регулировании.

Недостатки:

– Большое время переключения – токосъемник движется по обмоткам довольно медленно. Чем больше перепад напряжения, тем медленнее стабилизатор его отрабатывает. Это может привести к появлению импульсных помех на выходе стабилизатора, вызывающих сбои в работе электротехники.

– Износ токосъемника. Токосъемник желательно периодически смазывать графитовой смазкой. Но даже своевременная смазка не предотвращает полностью износа трущихся деталей.

– Высокая цена.

Инверторный стабилизатор сделан на основе инвертора – ток сначала выпрямляется, потом, с помощью инвертора, вновь преобразуется в переменный.

Это позволяет достичь высокой точности регулирования и позволяет добиться полного отсутствия возмущений на выходе. Благодаря отсутствию движущихся контактов, у них низкий уровень шума, ресурс выше и опасности пригара контактов они лишены.

Недостатки инверторных стабилизаторов:

– Недорогие инверторы дают на выходе не чистую синусоиду, а ступенчатую. Некоторые электронные приборы (измерительные приборы, газовые котлы, аудио- и видеотехника) могут начать сбоить или вообще откажутся работать с такой синусоидой.

– Низкая перегрузочная способность. Допускается перегрузка 25-50% от номинала, в течение 1-4 секунд. Для защиты приборов, имеющих высокий пусковой ток, стабилизатор такого типа потребуется брать с большим запасом по мощности.

– Высокая чувствительность к мощным импульсным помехам. Впрочем, в бытовых сетях такие помехи — явление маловероятное.

Ступенчатые электронные стабилизаторы конструктивно схожи с релейными, однако коммутирование обмоток в них производится не с помощью реле, а с помощью мощных полупроводниковых приборов.

Это позволяет добиться высочайшей скорости регулирования (5-40 мс на переключение) при достаточно низкой цене. Эти стабилизаторы тоже не имеют движущихся контактов, бесшумны и обладают высоким ресурсом.

Но свои недостатки есть и у этого вида стабилизаторов:

– Низкая перегрузочная способность. Допускается перегрузка 20-40% от номинала, и то весьма непродолжительное время.

– Ступенчатость регулирования.

– Высокая чувствительность к мощным импульсным помехам. Если в сети нередки сильные кратковременные всплески напряжения, прослужит такой стабилизатор недолго.

Необходимая полная выходная мощность стабилизатора рассчитывается исходя из мощностей всех подключенных к нему электроприборов. При подсчете полной мощности следует иметь в виду, что та мощность (в Ваттах), которая приводится в паспорте на электроприбор – это его активная мощность, т.е., выделяющаяся в виде тепла или света.

Нагревательные приборы и лампы накаливания имеют полную мощность, равную активной. Но некоторые потребители, содержащие в себе электродвигатели или трансформаторы, создают вдобавок к активной еще и реактивную нагрузку. Для определения их полной мощности следует активную мощность поделить на коэффициент мощности (cos(φ)), обычно указанный в паспорте на электроприбор. Если найти это значение не удается, можно воспользоваться таблицей:

Полные мощности всех потребителей следует сложить и добавить к получившейся сумме 30% — дело в том, что мощность стабилизатора приводится для напряжения 220В. При выходе напряжения за пределы нормального, мощность стабилизатора падает на 20-30%. Именно это падение и следует компенсировать.

Но это еще не все – теперь полную мощность каждого потребителя следует помножить на пусковой коэффициент, также взяв его из паспорта или из таблицы. Сумма получившихся чисел (не забываем про 30%) – это пусковая мощность, и перегрузочная способность стабилизатора должна её обеспечивать.

Например, нам следует защитить холодильник мощностью 150 Вт, погружной насос мощностью 500 Вт и линию освещения со светодиодными лампочками суммарной мощностью 500 Вт. Необходимая полная мощность в ВА будет равна:

  • 150/0,8=187,5
  • 500/0,7=714,3
  • 500/0,95=526,3

Суммируем полученные данные и прибавляем 30%. Итого 1857 ВА.

Пусковая мощность будет равна:

  • 187,5*3=562,5
  • 714,3*7=5000
  • 526,3*1,5=790

Также суммируем, прибавляем 30%, получается 8258 ВА. Таким образом, нам нужен стабилизатор на 3000 ВА, способный выдержать перегрузку в три раза больше (релейный с усиленными реле), либо стабилизатор на 4500 ВА, способный выдержать в два раза больше перегрузки (релейный или электромеханический), либо электронный (ступенчатый или инверторный) на 9000 ВА.

Если такой подбор выглядит слишком сложным, то можно просто сложить активные мощности электроприборов (в Ваттах) и подобрать стабилизатор также по активной выходной мощности. Но такой подбор будет грубее: во-первых, этот метод не учитывает индивидуальных особенностей электроприборов, во-вторых, все производители по-разному рассчитывают зависимость полной и активной мощностей. И здесь также следует быть уверенным, что перегрузочная способность стабилизатора поможет ему выдержать пусковую мощность потребителей.

Разъем для подключения нагрузки может быть в виде клемм, либо в виде розеток. Если стабилизатор планируется использовать для защиты какой-либо линии электропитания (например, осветительной) предпочтительнее разъем в виде клемм.

Если же защищать планируется отдельных потребителей, то удобнее подключать их напрямую в евророзетки (СЕЕ 7), обратите внимание, чтобы количество розеток соответствовало количеству потребителей.

Некоторые стабилизаторы оснащены компьютерными розетками IEC 320 C13 – как правило, эти стабилизаторы предназначены для защиты персональных компьютеров и учитывают низкий коэффициент мощности этого вида техники.

Задержка запуска, как указывалось выше, может потребоваться для защиты некоторых видов техники, не приемлющих частых включений-выключений: холодильников, кондиционеров, насосов и пр.

Варианты выбора стабилизаторов

Для защиты отдельного маломощного потребителя – газового котла или циркуляционного насоса – будет достаточно стабилизатора полной мощностью до 1000 ВА.

Для защиты электроприборов, наиболее сильно подверженных влиянию пониженного или повышенного напряжения, будет достаточно стабилизатора в 3000-6000 ВА.

С защитой всех домашних электроприборов справится мощный стабилизатор.

Для защиты компьютера и периферии удобно использовать специализированный стабилизатор с компьютерными розетками.

Релейные и электромеханические стабилизаторы обладают высокой перегрузочной способностью и хорошо подходят для защиты электроприборов с высокими пусковыми токами.

как работает, зачем нужен, типы и применение

В статье расскажем что такое стабилизатор напряжения, применение, как работает и его различные типы с принципиальными схемами, а также мы поможем вам в выборе стабилизатора напряжения.

Применение стабилизаторов напряжения стало необходимостью для каждого дома. Различные типы стабилизаторов напряжения доступны в настоящее время с различными функциями и работами. Последние достижения в технологии, такие как микропроцессорные чипы и силовые электронные устройства, изменили стабилизаторы напряжения. Теперь они полностью автоматические, интеллектуальные и оснащены множеством дополнительных функций. Они также имеют сверхбыструю реакцию на колебания напряжения и позволяют своим пользователям дистанционно регулировать требования к напряжению, включая функцию пуска или выключения. Большой выбор стабилизаторов напряжения вы можете посмотреть и приобрести на Алиэкспресс, выбирайте любой подходящий.

Что такое стабилизатор напряжения

Стабилизатор напряжения — это электрическое устройство, которое используется для подачи постоянного напряжения на нагрузку на своих выходных клеммах независимо от каких-либо изменений или колебаний на входе, то есть входящего питания.

Основное назначение стабилизатора напряжения заключается в защите электрических или электронных устройств (например, кондиционера, холодильника, телевизора и так далее) от возможного повреждения в результате скачков напряжения или колебаний, повышенного или пониженного напряжения.


Рис.1 — Различные типы стабилизаторов напряжения

Стабилизатор напряжения также известен как AVR (автоматический регулятор напряжения). Использование стабилизатора напряжения не ограничивается домашним или офисным оборудованием, которое получает электропитание извне. Даже места, которые имеют свои собственные внутренние источники питания в виде дизельных генераторов переменного тока, сильно зависят от этих AVR для безопасности своего оборудования.

Мы можем увидеть различные типы стабилизаторов напряжения, доступных на рынке. Аналоговые и цифровые автоматические стабилизаторы напряжения доступны от многих производителей. Благодаря растущей конкуренции и повышению осведомленности о безопасности устройств. Эти стабилизаторы напряжения могут быть однофазными (выход 220-230 вольт) или трехфазными (выход 380/400 вольт) в зависимости от типа применения. Регулирование желаемой стабилизированной мощности осуществляется методом понижения и повышения напряжения в соответствии с его внутренней схемой. Трехфазные стабилизаторы напряжения доступны в двух разных моделях, то есть моделях с сбалансированной нагрузкой и моделях с несбалансированной нагрузкой.

Они доступны в различных рейтингах и диапазонах
КВА. Стабилизатор напряжения нормального диапазона может обеспечить стабилизированное выходное напряжение 200-240 вольт с усилением 20-35 вольт при питании от входного напряжения в диапазоне от 180 до 270 вольт. Принимая во внимание, что широкий диапазон стабилизатора напряжения может обеспечить стабилизированное напряжение 190-240 вольт с повышающим сопротивлением 50-55 вольт при входном напряжении в диапазоне от 140 до 300 вольт.

Они также доступны для широкого спектра применений, таких как специальный стабилизатор напряжения для небольших устройств, таких как телевизор, холодильник, микроволновые печи, для одного огромного устройства для всей бытовой техники.

В дополнение к своей основной функции стабилизаторы текущего напряжения оснащены многими полезными дополнительными функциями, такими как защита от перегрузки, переключение нулевого напряжения, защита от изменения частоты, отображение отключения напряжения, средство запуска и остановки выхода, ручной или автоматический запуск, отключение напряжения и так далее.

Стабилизаторы напряжения являются очень энергоэффективными устройствами (с эффективностью 95-98%). Они потребляют очень мало энергии, которая обычно составляет от 2 до 5% от максимальной нагрузки.

Зачем нужны стабилизаторы напряжения и его важность

Все электрические устройства спроектированы и изготовлены для работы с максимальной эффективностью с типичным источником питания, который известен как номинальное рабочее напряжение. В зависимости от расчетного безопасного предела эксплуатации рабочий диапазон (с оптимальной эффективностью) электрического устройства может быть ограничен до ± 5%, ± 10% или более.

Из-за многих проблем источник входного напряжения, которое мы получаем, всегда имеет тенденцию колебаться, что приводит к постоянно меняющемуся источнику входного напряжения. Это изменяющееся напряжение является основным фактором, способствующим снижению эффективности устройства, а также увеличению частоты его отказов.

Рис. 2 — Проблемы из-за колебаний напряжения

Помните, нет ничего более важного для электронного устройства, чем отфильтрованный, защищенный и стабильный источник питания. Правильное и стабилизированное напряжение питания очень необходимо, чтобы устройство выполняло свои функции наиболее оптимальным образом. Это стабилизатор напряжения, который обеспечивает то, что устройство получает желаемое и стабилизированное напряжение, независимо от того, насколько сильно колебание. Таким образом, стабилизатор напряжения является очень эффективным решением для тех, кто хочет получить оптимальную производительность и защитить свои устройства от непредсказуемых колебаний напряжения, скачков напряжения и шума, присутствующих в источнике питания.

Как и источник бесперебойного питания, стабилизаторы напряжения также являются активом для защиты электронного оборудования. Колебания напряжения очень распространены независимо от того, где вы живете. Могут быть различные причины колебаний напряжения, такие как электрические неисправности, неисправная проводка, молнии, короткие замыкания и так далее. Эти колебания могут быть в форме перенапряжения или пониженного напряжения.

Эффекты повторяющегося перенапряжения в бытовой технике

  • Необратимые повреждения подключенного устройства
  • Повреждения изоляции обмотки
  • Перебои в нагрузке
  • Перегрев кабеля или устройства
  • Ухудшится срок полезного использования устройства
  • Неисправность оборудования
  • Низкая эффективность устройства
  • Устройство в некоторых случаях может занять дополнительные часы, чтобы выполнить ту же функцию
  • Ухудшить производительность устройства
  • Устройство будет потреблять больше электричества, что может привести к перегреву

Как работает стабилизатор напряжения, принцип работы понижения и повышения напряжения

Основная работа стабилизатора напряжения заключается в выполнении двух необходимых функций: функции понижения и повышения напряжения. Функция понижения и повышения — это не что иное, как регулирование постоянного напряжения от перенапряжения. Эта функция может выполняться вручную с помощью селекторных переключателей или автоматически с помощью дополнительных электронных схем.

В условиях перенапряжения функция «понижения напряжения» обеспечивает необходимое снижение интенсивности напряжения. Аналогично, в условиях пониженного напряжения функция «повышения напряжения» увеличивает интенсивность напряжения. Идея обеих функций в целом заключается в том, чтобы поддерживать одинаковое выходное напряжение.

Стабилизация напряжения включает в себя сложение или вычитание напряжения из первичного источника питания. Для выполнения этой функции стабилизаторы напряжения используют трансформатор, который подключен к переключающим реле в различных требуемых конфигурациях. Немногие из стабилизаторов напряжения используют трансформатор, имеющий различные отводы на своей обмотке, для обеспечения различных коррекций напряжения, в то время как стабилизаторы напряжения (такие как Servo стабилизатор напряжения) содержат автоматический трансформатор для обеспечения желаемого диапазона коррекции.

Как работает функция понижения и повышения в стабилизаторе напряжения

Для лучшего понимания обеих концепций мы разделим его на отдельные функции.

Функция понижения в стабилизаторе напряжения

Рис. 4 — Принципиальная схема функции понижения в стабилизаторе напряжения

На приведенном выше рисунке показано подключение трансформатора в функции «Понижения». В функции понижения полярность вторичной катушки трансформатора подключается таким образом, что приложенное напряжение к нагрузке является результатом вычитания напряжения первичной и вторичной катушек.

В стабилизаторе напряжения есть схема переключения. Всякий раз, когда обнаруживается превышение напряжения в первичном источнике питания, подключение нагрузки вручную или автоматически переключается в конфигурацию режима «Понижения» с помощью переключателей (реле).

Функция повышения в стабилизаторе напряжения


Рис. 6 — Принципиальная схема функции повышения напряжения в стабилизаторе напряжения

На рисунке выше показано подключение трансформатора в функции «Повышения». В функции повышения полярность вторичной обмотки трансформатора подключается таким образом, что приложенное напряжение к нагрузке является результатом сложения напряжения первичной и вторичной обмоток.

Как конфигурация повышения и понижения работает автоматически

Вот пример 02 Stage Voltage Stabilizer. Этот стабилизатор напряжения использует 02 реле (реле 1 и реле 2) для обеспечения стабилизированного источника питания переменного тока для нагрузки в условиях перенапряжения и понижения напряжения.

На принципиальной схеме 02-ступенчатого стабилизатора напряжения (изображенного выше) реле 1 и реле 2 используются для обеспечения конфигурации понижения и повышения во время различных условий колебаний напряжения, то есть перенапряжения и пониженного напряжения. Например — предположим, что вход переменного тока 230 В переменного тока, а требуемый выход также постоянный 230 В переменного тока. Теперь, если у вас есть +/- 25 Вольт понижения & повышения стабилизация, это означает, что ваш стабилизатор напряжения может обеспечить вам постоянное требуемое напряжение (230 В) в диапазоне от 205 В (пониженное напряжение) до 255 В (повышенное напряжение) входного источника переменного тока.

В стабилизаторах напряжения, в которых используются трансформаторы с отводом, точки ответвления выбираются на основе требуемого количества напряжения, которое должно быть подавлено или повышено. В этом случае у нас есть разные диапазоны напряжения для выбора. Принимая во внимание, что в стабилизаторах напряжения, в которых используются автотрансформаторы, серводвигатели вместе со скользящими контактами используются для получения необходимого количества напряжения, которое необходимо стабилизировать или повысить. Скользящий контакт необходим, поскольку автотрансформаторы имеют только одну обмотку.

Различные типы стабилизаторов напряжения

Первоначально на рынке появились ручные / селекторные переключатели напряжения. В этих типах стабилизаторов используются электромеханические реле для подбора желаемого напряжения. С развитием технологий появились дополнительные электронные схемы и стабилизаторы напряжения стали автоматическими. Затем появился Servo стабилизатор напряжения, который способен стабилизировать напряжение непрерывно, без какого-либо ручного вмешательства. Теперь также доступны стабилизаторы напряжения на базе микросхем / микроконтроллеров, которые также могут выполнять дополнительные функции.

Стабилизаторы напряжения можно разделить на три типа:

  • Стабилизаторы напряжения типа реле
  • Servo стабилизаторы напряжения
  • Стабилизаторы статического напряжения

Стабилизаторы напряжения типа реле

В релейных стабилизаторах напряжения напряжение регулируется переключающими реле. Реле используются для подключения вторичного трансформатора в различных конфигурациях для достижения функции понижения и повышения.

Как работает релейный стабилизатор напряжения

Рисунок выше показывает, как стабилизатор напряжения типа реле выглядит изнутри. Он имеет трансформатор с ответвлениями, реле и электронную плату. Печатная плата содержит схему выпрямителя, усилитель, микроконтроллер и другие вспомогательные компоненты.

Электронные платы выполняют сравнение выходного напряжения с источником опорного напряжения. Как только он обнаруживает любое увеличение или уменьшение входного напряжения выше эталонного значения, он переключает соответствующее реле для подключения требуемого постукивания для функции понижения и повышения.

Стабилизаторы напряжения релейного типа обычно стабилизируют входные колебания на уровне ± 15% с точностью на выходе от ± 5% до ± 10%.

Использование и преимущества релейных стабилизаторов напряжения

Этот стабилизатор в основном используется для приборов / оборудования с низким номинальным энергопотреблением в жилых / коммерческих / промышленных целях.

  • Они стоят дешевле
  • Они компактны по размеру

Недостатки релейных стабилизаторов напряжения

  • Их реакция на колебания напряжения немного медленнее по сравнению с другими типами стабилизаторов напряжения
  • Они недолговечны
  • Они менее надежны
  • Они не способны выдерживать скачки напряжения, так как их предел допуска на колебания меньше
  • При стабилизации напряжения переход тракта электропитания может обеспечить незначительное прерывание электропитания

Серво стабилизаторы напряжения

В servo стабилизаторах напряжения регулирование напряжения осуществляется с помощью серводвигателя. Они также известны как сервостабилизаторы. Это замкнутые системы.

Как работает серво стабилизатор напряжения?

В системе замкнутого контура отрицательная обратная связь (также известная как ошибка подачи) гарантируется от выхода, чтобы система могла гарантировать, что был достигнут желаемый результат. Это делается путем сравнения выходных и входных сигналов. Если в случае, если желаемый выход превышает / ниже требуемого значения, то регулятором источника входного сигнала будет получен сигнал ошибки (Выходное значение — Входное значение). Затем этот регулятор снова генерирует сигнал (положительный или отрицательный в зависимости от достигнутого выходного значения) и подает его на исполнительные механизмы, чтобы привести выходное значение к точному значению.

Благодаря свойству замкнутого контура стабилизаторы напряжения на основе сервоприводов используются для приборов / оборудования, которые очень чувствительны и нуждаются в точном входном питании (± 01%) для выполнения намеченных функций.

Рис. 10 — Внутренний вид серво стабилизатора напряжения

Рисунок выше показывает, как серво стабилизатор напряжения выглядит изнутри. Он имеет серводвигатель, автотрансформатор, трансформатор понижения и повышения, двигатель, электронную плату и другие вспомогательные компоненты.

В стабилизаторе напряжения на основе сервопривода один конец первичной обмотки трансформатора понижения и повышения (отвод) подключен к фиксированному ответвлению автотрансформатора, а другой конец первичной обмотки соединен с подвижным рычагом, который контролируется серводвигателем. Один конец вторичной катушки трансформатора
понижения и повышения подключен к входному источнику питания, а другой конец подключен к выходу стабилизатора напряжения.

Электронные платы выполняют сравнение выходного напряжения с источником опорного напряжения. Как только он обнаруживает любое увеличение или уменьшение входного напряжения выше контрольного значения, он начинает работать с двигателем, который еще больше перемещает рычаг на автотрансформаторе.

При перемещении рычага на автотрансформаторе входное напряжение на первичной обмотке трансформатора понижения и повышения изменится на требуемое выходное напряжение. Серводвигатель будет продолжать вращаться, пока разность между значением опорного напряжения и выход стабилизатора становится равным нулю. Этот полный процесс происходит за миллисекунды. Современные серво стабилизаторы напряжения поставляются с микроконтроллерной / микропроцессорной схемой управления для обеспечения интеллектуального управления пользователями.

Различные типы серво стабилизаторов напряжения

Различные типы серво стабилизаторов напряжения:

Однофазные серво стабилизаторы напряжения

В однофазных стабилизаторах напряжения с сервоприводом стабилизация напряжения достигается с помощью серводвигателя, подключенного к переменному трансформатору.

Трехфазные сбалансированные серво стабилизаторы напряжения

В трехфазных стабилизированных стабилизаторах напряжения с сервоуправлением стабилизация напряжения достигается с помощью серводвигателя, подключенного к 03 автотрансформаторам, и общей цепи управления. Выходные данные автотрансформаторов варьируются для достижения стабилизации.

Трехфазные несбалансированные серво стабилизаторы напряжения

В трехфазных несимметричных стабилизаторах напряжения с сервоприводом стабилизация напряжения достигается с помощью серводвигателя, подключенного к 03 автотрансформаторам и 03 независимым цепям управления (по одной на каждый автотрансформатор).

Использование и преимущества серво стабилизатора напряжения

  • Они быстро реагируют на колебания напряжения
  • Они имеют высокую точность стабилизации напряжения
  • Они очень надежные
  • Они могут выдерживать скачки напряжения

Недостатки серво стабилизатора напряжения

  • Они нуждаются в периодическом обслуживании
  • Чтобы обнулить ошибку, серводвигатель должен быть выровнен. Выравнивание сервомотора требует умелых рук.

Стабилизаторы статического напряжения


Рис. 13 — Статические стабилизаторы напряжения

Статический выпрямитель напряжения не имеет движущихся частей, как в случае серво стабилизаторов напряжения. Для стабилизации напряжения используется силовая электронная схема преобразователя. Эти статические стабилизаторы напряжения имеют очень высокую точность, а стабилизация напряжения находится в пределах ± 1%.

Стабилизатор статического напряжения содержит трансформатор понижения и повышения, силовой преобразователь с изолированным затвором (IGBT), микроконтроллер, микропроцессор и другие необходимые компоненты.

Как работает статический стабилизатор напряжения

Микроконтроллер / микропроцессор управляет IGBT-преобразователем питания для генерации требуемого уровня напряжения с использованием метода «широтно-импульсной модуляции». В методе «Импульсная широтно-импульсная модуляция» преобразователи питания в режиме переключения используют силовой полупроводниковый переключатель (например, MOSFET) для управления трансформатором для получения требуемого выходного напряжения. Это сгенерированное напряжение затем подается на первичную обмотку трансформатора понижения & повышения. Преобразователь мощности IGBT также контролирует фазу напряжения. Он может генерировать напряжение, которое может быть в фазе или на 180 градусов не в фазе по отношению к входному источнику питания, что, в свою очередь, позволяет ему контролировать, нужно ли добавлять или вычитать напряжение в зависимости от повышения или понижения уровня входного питания.

Рис. 15 — Принципиальная схема статического стабилизатора напряжения

Как только микропроцессор обнаруживает падение уровня напряжения, он посылает сигнал широтно-импульсной модуляции на преобразователь мощности IGBT. Преобразователь мощности IGBT, соответственно, генерирует напряжение, аналогичное разности напряжений, на которую уменьшился входной источник питания. Это генерируемое напряжение находится в фазе с входным источником питания. Затем это напряжение подается на первичную обмотку трансформатора Понижения & Повышения. Поскольку вторичная катушка трансформатора Понижения & Повышения подключена к входному источнику питания, напряжение, наведенное во вторичной катушке, будет добавлено к входному источнику питания. И поэтому стабилизированное повышенное напряжение будет затем подаваться на нагрузку.

Аналогично, как только микропроцессор обнаруживает повышение уровня напряжения, он посылает сигнал широтно-импульсной модуляции на преобразователь мощности IGBT. Соответственно, IGBT-преобразователь мощности генерирует напряжение, аналогичное разности напряжений, на которую уменьшился входной источник питания. Но на этот раз генерируемое напряжение будет на 180 градусов не в фазе по отношению к входному источнику питания. Затем это напряжение подается на первичную обмотку трансформатора Понижения & Повышения. Поскольку вторичная катушка трансформатора Понижения & Повышения подключена к входному источнику питания, напряжение, которое было наведено во вторичной катушке, теперь будет вычитаться из входного источника питания. И поэтому стабилизированное пониженное напряжение будет подаваться на нагрузку.

Использование / Преимущества статических стабилизаторов напряжения

  • Они очень компактны по размеру.
  • Они очень быстро реагируют на колебания напряжения.
  • Они имеют очень высокую точность стабилизации напряжения.
  • Поскольку нет движущейся части, она почти не требует технического обслуживания.
  • Они очень надежные.
  • Их эффективность очень высока.

Недостатки статического стабилизатора напряжения

Они дорогостоящие по сравнению со своими аналогами.

В чем разница между стабилизатором напряжения и регулятором напряжения?

Оба звучат одинаково. Они оба выполняют одинаковую функцию стабилизации напряжения. Однако то, как они это делают, приносит разницу. Основное функциональное отличие стабилизатора напряжения от регулятора напряжения:

Стабилизатор напряжения — это устройство, которое подает постоянное напряжение на выход без каких-либо изменений входного напряжения. В то время как,

Регулятор напряжения — это устройство, которое подает постоянное напряжение на выход без каких-либо изменений тока нагрузки.

Как выбрать лучший стабилизатор напряжения для вашего дома? Руководство по покупке

При покупке стабилизатора напряжения необходимо учитывать различные факторы. В противном случае вы можете столкнуться со стабилизатором напряжения, который может работать хуже или лучше. Чрезмерное выполнение не повредит, но это будет стоить вам лишних долларов. Так почему бы не выбрать такой стабилизатор напряжения, который может удовлетворить ваши требования и сохранить ваш карман тоже.

Различные факторы, которые играют важную роль в выборе стабилизатора напряжения

Различные факторы, которые играют жизненно важную роль и требуют рассмотрения перед выбором стабилизатора напряжения:

  • Требуемая мощность прибора (или группы приборов)
  • Тип прибора
  • Уровень колебаний напряжения в вашем районе
  • Тип стабилизатора напряжения
  • Рабочий диапазон стабилизатора напряжения, который вам нужен
  • Перегрузка по повышению / пониженному напряжению
  • Тип схемы стабилизации / управления
  • Тип монтажа для вашего стабилизатора напряжения

Пошаговое руководство по выбору и покупке стабилизатора напряжения для вашего дома

Вот основные шаги, которые вы должны выполнить, чтобы выбрать лучший выпрямитель напряжения для вашего дома:

  • Проверьте номинальную мощность устройства, для которой вам нужен стабилизатор напряжения. Номинальная мощность указана на задней панели устройства в виде наклейки или фирменной таблички. Это будет в киловаттах (KW). Обычно номинальная мощность стабилизатора напряжения указывается в кВА. Переведите его в киловатт (кВт).

(КВт = кВА * коэффициент мощности)

  • Подумайте о том, чтобы сохранить дополнительную маржу в 25-30% от номинальной мощности стабилизатора. Это даст вам дополнительную возможность добавить любое устройство в будущем.
  • Проверьте предел допуска колебаний напряжения. Если это соответствует вашим потребностям, вы готовы идти вперед.
  • Проверьте требования к монтажу и размер, который вам нужен.
  • Вы можете спросить и сравнить дополнительные функции в одном и том же ценовом диапазоне разных марок и моделей.

Практический пример для лучшего понимания

Предположим, вам нужен стабилизатор напряжения для вашего телевизора. Давайте предположим, что ваш телевизор имеет номинальную мощность 1 кВА. Допустимая надбавка 30% на 1 кВА составляет 300 Вт. Добавляя оба варианта, вы можете приобрести стабилизатор напряжения мощностью 1,3 кВт (1300 Вт) для вашего телевизора.

Видео совет при выборе стабилизатор напряжения

Самый важный совет при покупке стабилизатора напряжения

Стабилизаторы напряжения и тока

Лекция 8

2.4 Стабилизаторы напряжения и тока.
2.4.1 Принцип стабилизации. Виды стабилизаторов.

      Величина напряжения на выходе выпрямителей, предназначенных для питания различных РТУ, может колебаться в значительных пределах, что ухудшает работу аппаратуры. Основными причинами этих колебаний являются изменения напряжения на входе выпрямителя и изменение нагрузки. В сетях переменного тока наблюдаются изменения напряжения двух видов: медленные, происходящие в течение от нескольких минут до нескольких часов, и быстрые, длительностью доли секунды. Как те, так и другие изменения отрицательно сказываются на работе аппаратуры. Например, ЛБВ вообще не могут работать без стабилизации напряжения. Для обеспечения заданной точности измерительных приборов (электронных вольтметров, осциллографов и др.) также необходима стабилизация напряжения.       Стабилизатором напряжения называется устройство, поддерживающее напряжение на нагрузке с требуемой точностью при изменении сопротивления нагрузки и напряжения сети в известных пределах.       Стабилизатором тока называется устройство, поддерживающее ток в нагрузке с требуемой точностью при изменении сопротивления нагрузки и напряжения сети в известных пределах.       Стабилизатор одновременно со своими основными функциями осуществляет и подавление пульсаций.       Качество работы стабилизатора оценивается коэффициентом стабилизации, равным отношению относительного изменения напряжения на входе к относительному изменению напряжения на выходе стабилизатора:       (1)       Качество стабилизации оценивается также относительной нестабильностью выходного напряжения       (2)       Внутреннее сопротивление        (3)       Коэффициент сглаживания пульсаций      (4) где Uвх~, Uвых~ — амплитуды пульсации входного и выходного напряжений соответственно. Для стабилизаторов тока важны следующие параметры:       Коэффициент стабилизации тока по входному напряжению      (5)       Коэффициент стабилизации при изменении сопротивления нагрузки       (6)       Коэффициент полезного действия определяется для всех типов стабилизаторов по отношению входной и выходной активных мощностей        (7)       Существуют два основных метода стабилизации: параметрический и компенсационный.       Параметрический метод основан на использовании нелинейных элементов, за счёт которых происходит перераспределение токов и напряжений между отдельными элементами схемы, что ведёт к стабилизации.       Структурная схема параметрического стабилизатора состоит из двух элементов — линейного и нелинейного.

           

      При изменении напряжения на входе стабилизатора в широких пределах () напряжение на выходе изменяется в значительно меньших пределах ()      Параметрические стабилизаторы напряжения строятся на основе кремниевых стабилитронов. В кремниевом стабилитроне при определённом Uст развивается лавинный пробой p-n перехода (см. рисунок (а)). Обычно рабочую ветвь изображают при ином расположении осей (см. рисунок (б)). Рабочий участок ограничен предельно допустимым по тепловому режиму Imax.

а)                                          б)

      В параметрическом стабилизаторе переменного напряжения линейным элементом служит конденсатор, а нелинейным — дроссель насыщения.       Компенсационный стабилизатор отличается наличием отрицательной обратной связи, посредством которой сигнал рассогласования усиливается и воздействует на регулируемый элемент, изменяя его сопротивление, что ведёт к стабилизации. Компенсационные стабилизаторы, в которых регулируемый транзистор постоянно (непрерывно) находится в открытом состоянии, называются линейными или с непрерывным регулированием. В импульсном стабилизаторе регулируемый транзистор работает в ключевом режиме.

2.4.2 Параметрический стабилизатор постоянного напряжения

      Стабилизатор состоит из стабилитрона и гасящего резистора Rг (см. рисунок).

     

По I и II законам Кирхгофа       (8)       Согласно 001:    Подставим в эту формулу уравнения (8):

      Поскольку rст<<R и Rг/Rст>>1, то       (9)

     Кст увеличивается при уменьшении rст и увеличении Rг. Но при увеличении Rг нужно увеличивать Uвх. Поэтому нельзя получить очень высокий Кст. Обычно Кст не превышает нескольких десятков. Существует предельно достижимый для данного стабилитрона коэффициент стабилизации , где       Но при увеличении Rг возрастает Rг и потери мощности, снижается КПД:       (10) = 20-30%, что объясняется значительными потерями мощности в гасящем резисторе и самом стабилитроне. Поэтому простую схему со стабилитроном применяют для стабилизации напряжения на нагрузках, потребляющих очень малую мощность.       Существенным недостатком кремниевых стабилитронов является изменение напряжения пробоя при изменении температуры. Это изменение можно выразить линейной зависимостью:       (11) где — абсолютный температурный коэффициент. Стабилитроны с Uст<5В имеют отрицательный , т.е. Uст уменьшатся с ростом температуры, а стабилитроны с Uст>5В — положительный .       Относительный температурный коэффициент:       Для уменьшения температурной нестабильности используют схемы с температурной компенсацией.       Наиболее простая схема предполагает использование одного или нескольких полупроводниковых диодов, смещённых в прямом направлении. У открытых p-n переходов отрицателен, поэтому такой способ пригоден для стабилитронов с Uст>5В.       Включение термокомпенсирующих диодов приводит к росту внутренннего сопротивления ветви со стабилитроном:   , где — внутреннее сопротивление термокомпенсирующего диода.       Кст немного уменьшается.       Другой способ заключается в использовании стабилитронов с внутренней термокомпенсацией, представляющих собой два p-n перехода, включенных навстречу друг другу и выполненных на одном кристалле. Это прецизионные стабилитроны 2С108В, 2С116В, 2С190Д с ТКН=±0,0005% / оC на градус, и другие.       Параметрический стабилизатор можно умощнить, включив стабилитрон в базовую цепь эмиттерного повторителя (см. рисунок).

     Таким образом, мощность нагрузки увеличена, а нестабильность снижена, так как базовый ток изменяется очень слабо в процессе стабилизации.       В качестве параметрических стабилизаторов постоянного тока используют нелинейные элементы, ток которых мало зависит от напряжения, приложенного к ним. В качестве такого элемента можно использовать полевой транзистор. Если Uзи=const, то Iс~const (см. рисунок). В нашем случае затвор и исток закорочены (см. рисунок).

      

      Стабилизатор тока применяют в параметрических стабилизаторах напряжения для стабилизации входного тока. Включение стбилизатора тока вместо гасящего сопротивления даёт возможность повысить Кст:

, где  — дифференциальное сопротивление канала полевого транзистора.

      КПД также повышается.       Традиционные стабилитроны не охватывают весь диапазон напряжений. Для получения требуемого Uвых>Uст используются операционные усилители (см. рисунок).

      Например: Uст=9В, Uвых=10В.  R1=1кОм, R2=9кОм.   Для Iст=10мА  Rо=1/(10*(1/1000))=100 Ом.       Всвязи с тем. что простой стабилитрон не отвечает требованиям, предъявляемым к источникам опорного напряжения (ИОН), были разработаны СИМС (стабилитронные ИМС), которые имеют два (или три) вывода и выполнены как обычный стабилитрон, хотя в действительности они являются ИМС, содержащей пассивные и активные элементы. Все СИМС можно разделить на три группы:       температурно-компенсированные СИМС;       температурно-стабилизированные;       опорные источники с напряжением запрещённой зоны ( bandgap ИОН).       Температурно-компенсированные — 1009ЕН1. В неё входят 9 транзисторов и резисторы. Uст=31-35 В, Iст=5 мА, ТКН 0,006 % / о C. Предназначены для питания варикапов.       Температурно-стабилизированные ИОН содержат интегральный стабилитрон, а также прецизионный термостат, управляемый датчиком температуры (ДТ — переход БЭ транзистора). Термостат обеспечивает постоянную температуру кристалла интегрального стабилитрона при помощи нагревательной схемы, дополненной датчиком температуры. ТКН до 0,00005 % / оC, что на порядок меньше, чем у любого стабилитрона. 2С483 (аналог LM199 фирмы National Semiconductor).       Опорные источники с напряжением запрещённой зоны состоят из биполярных транзисторов и резисторов. В них используется принцип термокомпенсации Uбэ падением напряжения на резисторе с положительным ТКН. Uвых=1,22 В, Еотс~0,7 В. Для изменения значения Uвых введена схема с ОУ. На этом принципе выполнен регулируемый интегральный стабилитрон типа 142ЕН19 (аналог TL431 фирмы Texas Instruments). ТКН=0,0003 % / о C, Uвых=2,5-36 В, rдиф=0,2 Ом,Iнmax=100 мА. Эти параметры намного лучше, чем у прецизионных стабилитронов.

различных типов стабилизаторов напряжения — для защиты ваших бытовых приборов

Колебания напряжения вызывают временный или постоянный сбой нагрузки. Эти колебания напряжения также сокращают срок службы бытовых приборов из-за нерегулируемого низкого или более высокого напряжения, чем предполагаемое напряжение, требуемое для нагрузки. Эти колебания напряжения возникают из-за внезапных изменений нагрузки или из-за неисправностей в энергосистеме. Таким образом, необходимо подавать стабильное напряжение на нагрузку, учитывая важность бытовых приборов и необходимость их защиты.Стабилизаторы напряжения используются для поддержания стабильного напряжения питания нагрузки, так что бытовая техника может быть защищена от повышенного и пониженного напряжения.

Что такое стабилизатор?

Стабилизатор — это вещь или устройство, используемое для поддержания чего-либо или количества устойчивым или стабильным. Существуют различные типы стабилизаторов в зависимости от количества, которое они используют для поддержания стабильности. Например, стабилизатор, используемый для поддержания стабильной величины напряжения в энергосистеме, называется стабилизатором напряжения.


What is Stabilizer? What is Stabilizer? Что такое стабилизатор? Стабилизатор напряжения
Стабилизатор напряжения

предназначен для поддержания стабильного уровня напряжения, чтобы обеспечить постоянную подачу, несмотря на любые колебания или изменения в питании для защиты бытовой техники. Обычно регуляторы напряжения используются для поддержания постоянного напряжения, и эти регуляторы напряжения, которые используются для обеспечения постоянного напряжения бытовых приборов, называются стабилизаторами напряжения.

Voltage Stabilizer Voltage Stabilizer Стабилизатор напряжения

Существуют различные типы регуляторов напряжения, такие как электронные регуляторы напряжения, электромеханические регуляторы напряжения, автоматические регуляторы напряжения и активные регуляторы.Аналогично, существуют различные типы стабилизаторов напряжения, такие как стабилизаторы серво напряжения, автоматические стабилизаторы напряжения, стабилизаторы напряжения переменного тока и стабилизаторы напряжения постоянного тока.

Работа стабилизатора напряжения

Работа стабилизатора напряжения может быть изучена с учетом различных типов стабилизаторов напряжения, таких как:

Стабилизаторы напряжения переменного тока

Эти стабилизаторы напряжения переменного тока подразделяются на различные типы, такие как вращение катушки переменного напряжения регуляторы, электромеханические регуляторы и трансформаторы постоянного напряжения.

PCBWay PCBWay
1. Регуляторы напряжения переменного тока с вращением катушки

Это более старый тип регулятора напряжения, который использовался в 1920-х годах. Работает по принципу, аналогичному вариопарам. Он состоит из двух полевых катушек: одна катушка неподвижна, а другая может вращаться вокруг оси, параллельной неподвижной катушке.

Coil Rotation AC Voltage Regulators Coil Rotation AC Voltage Regulators Регуляторы напряжения переменного тока с вращением катушки

Постоянное напряжение можно получить путем балансировки магнитных сил, действующих на подвижную катушку, что достигается путем размещения подвижной катушки перпендикулярно неподвижной катушке.Напряжение во вторичной катушке может быть увеличено или уменьшено путем вращения катушки в одном или другом направлении от центрального положения.

Механизм сервоуправления может использоваться для продвижения положения подвижной катушки для увеличения или уменьшения напряжения; При таком вращении катушки регуляторы напряжения переменного тока могут использоваться в качестве автоматических стабилизаторов напряжения.

2. Электромеханические регуляторы

Электромеханические регуляторы напряжения, которые используются для регулирования напряжения на распределительных линиях переменного тока, также называемые стабилизаторами напряжения или устройствами РПН.Чтобы выбрать соответствующий отвод из нескольких отводов автотрансформатора, эти стабилизаторы напряжения используют операцию сервомеханизма.

Electromechanical Regulators Electromechanical Regulators Электромеханические регуляторы

Если выходное напряжение не находится в диапазоне предполагаемого значения, то для переключения ответвления используется сервомеханизм. Таким образом, изменяя отношение витков трансформатора, вторичное напряжение может быть изменено для получения приемлемых значений выходного напряжения. Охота, которую можно определить как неспособность контроллера постоянно регулировать напряжение; это можно наблюдать в зоне нечувствительности, в которой контроллер не работает.

3. Трансформатор постоянного напряжения

Это тип насыщающего трансформатора, который используется в качестве стабилизатора напряжения; его также называют феррорезонансным трансформатором или феррорезонансным регулятором. Эти стабилизаторы напряжения используют цепь бака, состоящую из конденсатора, для генерирования почти постоянного среднего выходного напряжения с переменным входным током и высоковольтной резонансной обмоткой. По магнитному насыщению участок вокруг вторичной обмотки используется для регулирования напряжения.

Constant Voltage Transformer Constant Voltage Transformer Трансформатор постоянного напряжения

Простой, надежный метод используется для стабилизации источника переменного тока, который может быть обеспечен насыщающими трансформаторами.Из-за недостатка активных компонентов феррорезонансный подход является привлекательным методом, который основывается на характеристиках насыщения прямоугольного контура в цепи бака для поглощения изменений входного напряжения.

Стабилизаторы напряжения постоянного тока

Регуляторы серии

или шунтирующие регуляторы часто используются для регулирования напряжения источников питания постоянного тока. Опорное напряжение подается с помощью регулятора шунта, как стабилитрон или регулятор напряжения трубки. Эти устройства стабилизации напряжения запускают проводимость при указанном напряжении и проводят максимальный ток для поддержания указанного напряжения на клеммах.Избыточный ток отводится на землю, часто используя низкочастотный резистор для рассеивания энергии. На рисунке показан стабилизатор напряжения постоянного тока с использованием микросхемы LM317.

DC Voltage Stabilizers DC Voltage Stabilizers DC напряжения Стабилизаторы

Выходной сигнал регулятора шунта используется только для обеспечения стандартного опорного напряжения к электронному устройству, называемому в качестве стабилизатора напряжения, который способен обеспечить гораздо большие токи, основанные на спросе.

Автоматические стабилизаторы напряжения

Эти стабилизаторы напряжения используются в генераторных установках, аварийных источниках питания, нефтяных вышках и т. Д.Это электронное силовое устройство, используемое для подачи переменного напряжения, и это может быть сделано без изменения коэффициента мощности или сдвига фазы. Стабилизаторы напряжения большого размера постоянно закреплены на распределительных линиях, а стабилизаторы напряжения малого размера используются для защиты бытовой техники от колебаний напряжения. Если напряжение источника питания меньше требуемого диапазона, то для повышения уровня напряжения используется повышающий трансформатор, и, аналогично, если напряжение больше требуемого диапазона, то он понижается с использованием понижающего уровня. трансформатор.

Automatic Voltage Stabilizers Automatic Voltage Stabilizers Автоматические стабилизаторы напряжения

Практический пример автоматического стабилизатора напряжения можно наблюдать в цепях электропитания, используемых для подачи питания на электронные и электронные схемы. Часто регулятор 7805 используется для обеспечения питания проектных комплектов на основе микроконтроллеров, так как микроконтроллеры работают при 5 В. В этом стабилизаторе напряжения 7805 первые две цифры представляют положительный ряд, а последние две цифры представляют значение выходного напряжения регулятора напряжения.

7805 Regulator 7805 Regulator 7805 Regulator

Развитие технологии разработало множество новых стабилизаторов напряжения тренда, которые автоматически регулируют уровни напряжения в требуемом диапазоне. В случае невозможности достижения этого требуемого диапазона напряжения, источник питания будет автоматически отключен от нагрузки для защиты бытовой техники от нежелательных колебаний напряжения. Для получения дополнительной технической информации о стабилизаторах напряжения, вы можете связаться с нами, разместив свои комментарии в разделе комментариев ниже.

Photo Credits:

  • Регуляторы переменного тока с вращением катушки by writework
  • Электромеханические регуляторы by wikimedia
  • Автоматические стабилизаторы напряжения путем нажатия
.
Guard — Руководство по покупке стабилизатора напряжения

Колебания напряжения на наших линиях электропередач являются обычными и тихими. Они наносят вред вашим электрическим приборам, таким как телевизор, холодильник, кондиционер и т. Д., И критически влияют на ваше ценное оборудование, даже оставляя их в поврежденном состоянии. Тщательно подобранный, правильный вид стабилизатора может избавить вас от этой проблемы. Он предотвращает нежелательные колебания напряжения, попадающие в ваши электрические приборы, что делает его работу без проблем.V-Guard с более чем тридцатилетним опытом работы в отрасли предлагает серию стабилизаторов, тщательно разработанных для удовлетворения различных требований применения в вашей повседневной жизни. Наши стабилизаторы разработаны и изготовлены с использованием новейших технологий и строгих мер качества, чтобы защитить все типы ваших электрических приборов от критических колебаний напряжения. Это никогда не будет платой, когда дело доходит до того, что ваше ценное оборудование шокирует вас расплатой.

Что делает стабилизатор напряжения? Как это защищает ваши приборы?
Стабилизаторы (часто называемые автоматическими и безопасными регуляторами напряжения) представляют собой статические устройства для стабилизации напряжения в сети перед подачей на подключенное оборудование.Он распознает колебания напряжения в электросети и регулирует его внутренне для обеспечения постоянного диапазона выходного напряжения, если напряжение в электросети низкое; Ваш стабилизатор распознает его, повышает его до требуемого уровня напряжения и затем подает на подключенное оборудование для работы без проблем. Это происходит наоборот в случае высокого напряжения, которое появляется в сети.

Стабилизаторы получают это, используя электронную схему, которая изменяет требуемые отводы встроенного автотрансформатора с помощью высококачественных электромагнитных реле для генерации желаемого напряжения.Если подаваемое напряжение находится за пределами диапазона, механизм переключает требуемый отвод трансформатора, тем самым подводя напряжение питания к безопасному диапазону.

Таким образом, стабилизатор действует в качестве надежного предохранителя между вашим оборудованием и утилитой, постоянно отслеживая и стабилизируя колебания напряжения, возникающие в утилите. Это гарантирует, что ваше ценное устройство получает стабильный стабилизированный диапазон напряжения в качестве входного сигнала для бесперебойной работы и длительного срока эксплуатации.

Как я могу выбрать правильный размер стабилизатора для моего приложения?
Выбор правильного стабилизатора, подходящего для ваших приложений, имеет решающее значение. Ключевыми областями, которые необходимо учитывать, являются характер, диапазон потребляемой мощности вашего приложения и уровень колебаний напряжения, которые наблюдаются в вашей местности. Вам необходимо знать номинальную мощность защищаемого оборудования — номиналы обычно упоминаются как кВ , кВА или ампер .Вам также необходимо знать номинальное напряжение и частоту линии.

Вот несколько простых советов по выбору стабилизатора:

  • Проверьте напряжение, ток и мощность устройства. Это написано на наклейке с техническими данными рядом с сетевой розеткой, иначе проверьте руководство пользователя
  • В Индии стандартное рабочее напряжение будет 230 В, 50 Гц.
  • Для получения максимальной мощности — умножьте «230 x Макс. Номинальный ток» всего оборудования, которое должно быть подключено к стабилизатору.Добавьте 20-25% запас прочности, чтобы получить рейтинг стабилизатора. Если у вас есть планы добавить больше устройств позже, вы можете оставить для них буфер.
  • Следует также учитывать импульсный ток, который протекает при включении устройства.
  • Если стабилизатор напряжения также имеет номинальную мощность в ваттах, допустим, что коэффициент мощности составляет 0,8 (Вт = V * A * pf) .

Самое главное, чтобы знать характер нагрузки, подключенной к стабилизатору.Сначала вы должны записать мощность (или Вт) для всех приборов, которые будут подключены к стабилизатору. Общая сумма потребляемой мощности (или ватт) даст вам нагрузку на стабилизатор в ваттах. Но большинство размеров стабилизатора указаны в ВА (вольт-ампер) или кВА (киловольт-ампер, что равно 1000 вольт-ампер). Хотя для получения фактического значения VA (или Вольт-ампер) в ваттах (Вт) вам придется выполнить некоторые измерения, но для приблизительного приближения вы можете увеличить значение в ваттах на 20%, чтобы получить приблизительный размер ВА, который вам может понадобиться. ,

Так, например, если сумма ватт, подключенных к вашему стабилизатору, равна 1000, тогда вы можете взять стабилизатор 1200 ВА или 1,2 кВА. (Обратите внимание, что 20% подходит для жилых систем и может не работать в промышленности, если у вас плохой коэффициент мощности).

Обычно стабилизатор поставляется с различными рабочими диапазонами (рабочий диапазон — это диапазон напряжения, в котором стабилизатор работает / стабилизирует входное напряжение сети и обеспечивает желаемое выходное напряжение). Важно выбрать стабилизатор, соответствующий колебаниям напряжения в вашей местности.

Представьте себе уровень колебаний мощности, которые распространены в вашем регионе. (Например, зоны с очень низким / высоким напряжением, зоны с умеренным высоким / низким напряжением и т. Д.). Вы должны выбрать рабочий диапазон ваших стабилизаторов, который будет соответствовать требованиям вашего местоположения. Например, вам может потребоваться выбрать стабилизатор с широким рабочим диапазоном, если ваше местоположение испытывает крайне низкие / высокие колебания напряжения.

Какие характерные особенности следует искать в стабилизаторе напряжения?

а.Крепление
Поскольку стабилизатор напряжения работает от электрической энергии, всегда существует риск того, что ваш стабилизатор промокнет или повредится, если его поместить на землю или в небезопасном месте. Вот почему большинство стабилизаторов могут быть установлены на стене или установлены на более высоком уровне, чтобы не только защитить их от любого повреждения, но и защитить вашу семью, особенно маленьких детей, от риска поражения электрическим током.

б. Показатели
Индикаторы отображают напряжение, которое было отрегулировано для подачи питания на прибор.Более новые модели также включены со светодиодными индикаторами.

гр. Системы с временной задержкой
Эта функция позволяет использовать промежуток времени, так что встроенный компрессор (в случае холодильника, кондиционера и т. Д.) Получает достаточно времени для балансировки тока, когда происходит кратковременное отключение электроэнергии.

д. Оцифрованный
Чтобы сделать функцию стабилизатора более точной и надежной, многие новейшие модели оцифрованы.Что интересно в этих новых моделях, так это то, что они не только оцифрованы, но и адаптируются к различным устройствам. Поэтому все, что вам нужно сделать, это переместить стабилизатор с одного устройства на другое, чтобы заставить его работать. Большинство из них также будут подключаться и адаптироваться к генераторам, если они установлены.

эл. Защита от перегрузки
Функция защиты от перегрузки полностью отключает выход стабилизатора в случае короткого замыкания или выгорания из-за перегрузки.

На большинство наших стабилизаторов предоставляется гарантия 3-5 лет, чтобы вы могли дольше пользоваться безопасной и достаточной защитой своих приборов. Всегда не забывайте выбирать стабилизатор, разработанный специально для вашей бытовой техники. Мы надеемся, что вы примете правильное решение.

ли современные холодильники / кондиционеры поставляются со встроенной стабилизацией напряжения?
Современные приборы (в основном, холодильники и кондиционеры) имеют больший диапазон напряжения для работы, т.е.е. Если в прошлом холодильники работали хорошо только между 200-240В, то теперь они имеют больший диапазон 170-290В. Холодильник поставляется со встроенным отключением высокого и низкого напряжения, но не поставляется со встроенными стабилизаторами напряжения . Использование стабилизатора напряжения с такими приборами может не потребоваться, если только напряжение в вашем районе не поднимется вверх или вниз намного выше или ниже предела, в котором прибор может работать.

Существуют ли разные стабилизаторы для разных приборов?
Стабилизаторы напряжения оптимально спроектированы в зависимости от устройства, для которого они будут использоваться.Они классифицируются на основе предела энергии и особенностей конкретного прибора. Каждый прибор в нашем доме имеет определенный предел энергии. Учитывая эти конкретные ограничения, соответствующие стабилизаторы разработаны. Различные типы стабилизаторов

а. Стабилизатор для кондиционера
б. Цифровой стабилизатор (ЖК-телевизор / LED-телевизор / Музыкальные системы)
с. Стабилизатор для холодильников
д.Стабилизаторы для телевизоров с ЭЛТ, Music Systems
е. Стабилизаторы для стиральной машины, беговая дорожка, духовка
е. Магистральные стабилизаторы

Нажмите здесь, чтобы просмотреть наш ассортимент стабилизаторов напряжения, классифицированных в соответствии с моделью использования и оборудованием.

Как решить, какой стабилизатор подходит вам?
Прежде всего, вам необходимо рассчитать общую мощность, потребляемую вашими приборами при подключении к стабилизатору, особенно при включении.Важно понимать мощность, потребляемую при включении устройств, подключенных к стабилизатору, потому что устройства или устройства потребляют вдвое больше энергии при запуске, чем при работе.

Вот таблица, показывающая требования к мощности для некоторых обычно используемых электроприборов.

Подкатегория — Модель Емкость в ВА Рабочий диапазон Бытовая техника
Стабилизатор для AC VG 400 2700 170 В — 270 В AC до 1.5 тонн переменного тока или 18 000 БТЕ / час.
VG 500 3350 170 В — 270 В AC до 2 тонн или 24 000 БТЕ / час.
VS 400 2700 170 В — 280 В AC до 1.5 тонн переменного тока или 18 000 БТЕ / час.
VS 500 3350 170 В — 280 В AC до 2 тонн или 24 000 БТЕ / час.
VND 400 3000 150 В-285 В AC до 1.5 тонн или 18 000 БТЕ / час.
VND 500 3700 150 В-285 В AC до 2 тонн или 24 000 БТЕ / час.
VND 400 Digital 2800 150 В-290 В AC до 1.5 тонн или 18 000 БТЕ / час.
VD 400 Digital 2800 150 В-290 В AC до 1,5 тонн или 18 000 БТЕ / ч.
VWR 400 3000 130В-300В AC до 1.5 тонн или 18 000 БТЕ / час.
VGB 500 3800 130В-300В AC до 2 тонн или 24 000 БТЕ / час.
VEW 400 Digital 3000 90В-300В AC до 1,5 тонн или 18 000 БТЕ / ч.
VGX 400 3000 130В-300В AC до 1,5 тонн или 18 000 БТЕ / ч.
Цифровые стабилизаторы (LED / LCD TV) Mini Crystal 320 90В-290В Один ЖК / LED телевизор до 81.3 см и DVD / DTH
VG Crystal 480 90В-290В Один ЖК / LED / 3D-телевизор до 107 см и домашний кинотеатр, DVD / DTH
Кристалл Плюс 720 90В-290В Один ЖК / LED / 3D-телевизор до 117 см и домашний кинотеатр, DVD / DTH
Digi 200 1380 140В-295В LCD / LED / 3D / Плазменный телевизор + DVD / DTH + Система домашнего кинотеатра или фотостата
Стабилизаторы для холодильников VG 50 500 135 В-280 В Один холодильник до 300 л
VGSD 50 500 130 В-290 В Один холодильник до 300 л
VGSJW 50 500 90В-260В Один холодильник до 300 л.
VEW 50 500 90В-280В Один холодильник до 300 л.
VEB 50 500 70В-300В Один холодильник до 300 л.
VG 100 1000 135 В-280 В Один морозильник до 4 ампер / холодильник до 600 л.
VGSD 100 1000 130В-290В Один морозильник до 4 ампер / холодильник до 600 л.
VGSJW 100 1000 90В-260В Один морозильник до 4 ампер / холодильник до 600 л.
VG 150 1500 150 В-280 В Один морозильник до 6 А / Холодильник / Воздухоохладитель / 0.ЦИФРОВОЙ ИБП 5 ТОНА / 800 ВА
VEW 150 1500 100В-300В Один морозильник до 6 ампер / Холодильник / Воздухоохладитель / 0,5 тонны переменного тока / 800 ВА ЦИФРОВОЙ ИБП
Стабилизаторы для ЭЛТ ТВ, Музыкальные системы VGD 20 200 90В-300В Один 63 см телевизор или один телевизор до 53 см + DVD / DTH
VG 30 250 135 В-290 В Один 73 см телевизор или один телевизор до 63 см + DVD / DTH и музыкальная система
VGD 30 250 90 В-300 В Один 73 см телевизор или один телевизор до 63 см + DVD / DTH и музыкальная система
Стабилизаторы для стиральных машин, беговых дорожек и духовок VM 300 2000 150 В — 280 В Одна микроволновая печь / беговая дорожка / стиральная машина
VM 500 3500 150 В — 280 В Одна микроволновая печь / беговая дорожка / стиральная машина
магистральных стабилизаторов VGMW 500 Digital 3700 90 В — 300 В Основная линия
VGMW 200 1500 100 В — 300 В Основная линия
VGMW 300 2300 100 В — 300 В Основная линия
VGMEW 500 3800 70 В — 280 В Основная линия
VGMW 1000 7300 120 В — 280 В Основная линия

Рекомендации:
У вас может быть больше вопросов об инвестировании в подходящий стабилизатор напряжения для вашего дома.Пожалуйста, посетите наш раздел часто задаваемых вопросов на веб-сайте V-Guard, чтобы узнать больше. Для любых дальнейших запросов, пожалуйста, не стесняйтесь писать в нашу службу поддержки.

Вот оно! Полное руководство по покупке стабилизатора напряжения. Благодаря этому мы уверены, что вы сможете принять мудрое решение о покупке стабилизатора напряжения, который наилучшим образом соответствует вашим потребностям.

,
Новый тип экспорта Svc напряжения и частоты стабилизатор

Новый тип Экспорт SVC стабилизатор напряжения и частоты

1.General

SVC однофазный серво стабилизатор напряжения использует линейную интегральную схему для формирования системы управления, управляет регулятором контактного напряжения для автоматического регулирования посредством управления серводвигатель.

Он зафиксирован на 220 ± 3% и имеет функцию защиты (пониженного напряжения), перенапряжения и перегрузки по току; он может автоматически отключать источник питания для обеспечения безопасности потребителя, когда выходное напряжение слишком велико или на входе имеется сверхток.

напряжение и частота стабилизатора напряжения и частоты стабилизатора напряжения и частоты стабилизатора напряжения и частоты стабилизатора напряжения и частоты стабилизатора напряжения и частоты стабилизатора напряжения и частоты стабилизатора напряжения и частоты стабилизатора напряжения и частоты стабилизатора напряжения и частоты стабилизатора напряжения и частоты стабилизатора напряжения и частоты стабилизатора

2.Характеристики

Преимущества 1.Широкий диапазон входного напряжения
2. Способность к сильной нагрузке
3. Высокая эффективность и хорошее качество
4. Стабилизированный процесс регулирования
5. Отличная форма сигнала выходного напряжения
6. Нет потерь феномен электричества
Области применения Жилье, школа, магазин, офис, фабрика
Научный прецизионный прибор, испытательный прибор
Оргтехника, промышленное оборудование
Система связи, арматура, электроприбор

напряжение и частота стабилизатора напряжения и частоты стабилизатора напряжения и частоты стабилизатора напряжения и частоты стабилизатора напряжения и частоты стабилизатора напряжения и частоты стабилизатора напряжения и частоты стабилизатора напряжения и частоты стабилизатора напряжения и частоты стабилизатора напряжения и частоты стабилизатора стабилизатор напряжения и частоты стабилизатор напряжения и частоты стабилизатор напряжения и частоты стабилизатор напряжения и частоты стабилизатор напряжения и частоты стабилизатор напряжения и частоты

3.Технические характеристики

Регулирование выходного напряжения
Артикул / Тип SVC 500AV-30000VA SVC5000VA-30000VA
Входное напряжение 150 В ~ 250 В 160 В ~ 250 В
220 ± 3%, 110 ± 4% 220 ± 3%
Защита от пониженного напряжения 184 В ± 4 В (устанавливается в соответствии с требованиями пользователя, как правило, не устанавливается)
Защита от перенапряжения 246 В ± 4 В
Частота 50 Гц / 60 Гц
Время отклика Менее 1 с
Температура окружающей среды, -5 ° С ~ + 40 ° С
Повышение температуры ≤80K
Относительная влажность <90%
Искажение формы волны Без дополнительных искажений
Эффективность iency> 90%

напряжение и частота стабилизатора напряжения и частоты стабилизатора напряжения и частоты стабилизатора напряжения и частоты стабилизатора напряжения и частоты стабилизатора напряжения и частоты стабилизатора напряжения и частоты стабилизатора напряжения и частоты стабилизатора напряжения и частоты стабилизатора напряжения и частоты стабилизатор напряжения и частоты стабилизатора напряжения и частоты стабилизатора напряжения и частоты стабилизатора напряжения и частоты стабилизатора напряжения и частоты стабилизатора напряжения и частоты стабилизатора

4.Габаритные и установочные размеры (мм)

напряжения и частоты стабилизатора напряжения и частоты стабилизатора напряжения и частоты стабилизатора напряжения и частоты стабилизатора напряжения и частоты стабилизатора напряжения и частоты стабилизатора напряжения и частоты стабилизатора напряжения и частоты стабилизатора напряжения и частоты стабилизатора частоты стабилизатор напряжения и частоты стабилизатор напряжения и частоты стабилизатор напряжения и частоты стабилизатор напряжения и частоты стабилизатор напряжения и частоты стабилизатор напряжения и частоты стабилизатор напряжения и частоты стабилизатор напряжения и частоты

Почему мы?

1.Мы являемся поставщиком трех проектов Gorges, China Nationa Petroleum, Sinopec Group;

2. Китай известное экспортное предприятие, наша продукция продается более чем в 100 странах;

3.Наша лаборатория является ключевой промышленной электрической лабораторией Китая;

4. У нас есть полностью система продаж, убедитесь, что все детали идут гладко;

5. У нас есть новые разработанные продукты каждый год;

6.Прекрасная система тестирования гарантирует, что каждый продукт квалифицирован;

однофазный серво стабилизатор напряжения однофазный серво стабилизатор напряжения однофазный серво стабилизатор напряжения однофазный серво стабилизатор напряжения однофазный серво стабилизатор напряжения однофазный серво стабилизатор напряжения однофазный серво стабилизатор напряжения однофазный серво стабилизатор напряжения однофазный серво стабилизатор напряжения

Хотите узнать больше о нас?

Ждем Вашего запроса!

напряжения и частоты стабилизатора напряжения и частоты стабилизатора напряжения и частоты стабилизатора напряжения и частоты стабилизатора напряжения и частоты стабилизатора напряжения и частоты стабилизатора напряжения и частоты стабилизатора напряжения и частоты стабилизатора напряжения и частоты стабилизатора напряжения и частоты стабилизатора стабилизатор напряжения и частоты стабилизатор напряжения и частоты

стабилизатор напряжения и частоты стабилизатор напряжения и частоты стабилизатор напряжения и частоты стабилизатор напряжения и частоты стабилизатор напряжения и частоты стабилизатор напряжения и частоты стабилизатор напряжения и частоты стабилизатор напряжения и частоты стабилизатор напряжения и частоты стабилизатор напряжения и частоты стабилизатор напряжения и частоты стабилизатор напряжения и частоты стабилизатор напряжения и частоты напряжение и частота стабилизатора напряжения и частоты стабилизатора напряжения и частоты стабилизатора напряжения и частоты стабилизатора напряжения и частоты стабилизатора напряжения и частоты стабилизатора напряжения a стабилизатор напряжения и частоты стабилизатор напряжения и частоты стабилизатор напряжения и частоты стабилизатор напряжения и частоты стабилизатор напряжения и частоты

,
10000 Вт 10 кВ Автоматический стабилизатор тока напряжения с Ce Ul 125% 30сек Перегрузка

Описание продукта

СТАБИЛИЗАТОР (AVR)

Продукт Стабилизатор (AVR)
Фаза Однофазный три / три фазы Фаза
Мощность 5 кВА ~ 500 кВА
Диапазон регулировки ± 10%
Регулирование мощности ± 1%
Частота 50/60 Гц
В оба конца время Менее 0.1с
перегрузочная способность 125% 30сек
150% 1Осек
КПД 98%
Окружающая среда Температура окружающей среды: 0 ~ 45
Влажность: ниже 95%
Настраиваемый

ОСОБЕННОСТИ:

Диапазон стабилизации: ± 5% от входного номинального напряжения или даже до ± 2% или ± 0% (например: для питания 220 В диапазон 187В ~ 253В).


ТОЧНОСТЬ СТАБИЛИЗАЦИИ: После стабилизации напряжения погрешность выходного напряжения будет составлять менее ± 1%. Например: при напряжении 220 В погрешность напряжения составляет около 2 В.


ВРЕМЯ ОТВЕТА: Стабилизационное движение начинается с 0,01 секунды и может быть завершено за 0,1 секунды (когда требуется более быстрая реакция, рекомендуется использовать магнитный насыщенный стабилизатор).

ДОПОЛНИТЕЛЬНЫЕ ПУНКТЫ:

Одно / трехфазный Вольт Напряжение и стабилизатор с трансформатором (комбинированный тип)

Наша полная линейка продуктов:

  • A / Сухой тип Трансформатор
  • (1) Однофазный (промышленный) Трансформатор
  • (2) Трехфазный (сухой) трансформатор
  • (3) Серво-трансформатор
  • B / Линейный реактор
  • C / Стабилизатор (A.VR)
  • D / масляный трансформатор

Контроль качества: от 8 до 12 наименований продукции Перед отправкой

Обзор компании

T-SUPPLY International CO. Ltd. является специализированным производителем трансформаторов. Наш ассортимент включает в себя различные трансформаторы, реакторы и стабилизаторы напряжения. Продукты T-SUPPLY разработаны и изготовлены в соответствии со стандартами IEC и сертифицированы несколькими органами.Это дает клиентам гарантию надежности продукции T-SUPPLY.

Мы всегда стремимся повышать технологический уровень и стремиться к росту компании. В то же время мы занимаемся разработкой новых продуктов, повышением эффективности производства, повышением качества и производительности. Вся наша продукция должна проходить систему контроля качества: входной контроль, контроль процесса, контроль готовой продукции и проверка перед отправкой. Тем не менее, мы никогда не забываем предлагать экспертные и быстрые услуги для наших клиентов.

Специальное предложение

Выберите нас, вы не пожалеете!

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *