![]()
Вы находитесь в разделе справочной информации по электронике — технические характеристики тиристоров, стабилитронов, диодов. Таблицы взаимозаменяемости полевых и биполярных транзисторов. Импортные аналоги цифровых микросхем и операционных усилителей. В справочниках по полупроводниковым элементам приводятся основные параметры транзисторов — напряжение, ток, предельная частота работы. Справочник по smd компонентам для планарного монтажа содержит информацию о цоколёвке и маркировке чип-деталей, а узнать характеристики отечественных транзисторов серий КТ можно в специальных разделах, где они рассортированы по числовым группам. На все популярные модели мобильных телефонов самсунг, нокиа, моторола и другие, имеются сборники принципиальных схем. Есть информация и для тех, кто хочет починить свой нерабочий мультиметр — посмотрите схемы для dt830, dt838, m932 и dt9208. Там же рассказывается о некоторых полезных доработках, позволяющих уменьшить расходы на покупку батареек к тестерам. Кстати о покупках — если вы собираетесь купить домашний кинотеатр, ламповый усилитель или электронную книгу; прочитайте советы по выбору и рекомендации пользователей различного электронного оборудования и бытовой техники. Сейчас многие стали активно делать покупки в интернет магазинах, в том числе и на китайских сайтах. О некоторых необычных и интересных радиоэлетронных устройствах, заказанных на dealextreme, написаны подробные обзоры. |
Взаимозаменяемость отечественных транзисторов
ПРИЛОЖЕНИЯ
Взаимозаменяемость отечественных транзисторов
Приводим транзисторы каждой группы в такой последовательности, что все последующие заменяют все предыдущие. Возможна также обратная замена, но при этом качественные характеристики устройства могут ухудшаться. В скобках указаны транзисторы, снятые с производства.
Высокочастотные германиевые р-п-р транзисторы мжпой мощности: П401, П402, П416, П422, П423, П403, П403А, П423А, ГТ309А-ГТ309Г, ГТ322В-ГТ322Е, ГТ322А, ГТ322Б, ГТ308А, ГТ308В, ГТ313А, ГТ313Б.
Высокочастотные кремниевые п-р-п транзисторы малой мощности: 1$Т301, КТ301А-КТ301В, КТ301Г-КТ301Е, (П501), (П502), (П503), КТ315А-КТ315Г.
Низкочастотные германиевые п-р-п транзисторы малой мощности: (П13), МП39, (П13А), МП39А, (П13Б), МП39Б, (П14), МП40, (П15), МП41, МП41А, (П16), МП42, (П16А), МП42А, (П16Б), МП42Б.
Низкочастотные германиевые п-р-п транз’шггоры малой мощности: (П8), МП35, (П9), МП36, (П10), МП37, (П11), МП38, (П11А), МП38А.
Низкочастотные кремниевые р-л-р транзисторы малой мощности: (П104), МП114, (П105), МП115, (П106), МП116.
Низкочастотные кремниевые п-р-п транзисторы малой мощности: (П101), МП111, (П102), МП112, (П103), МП113.
Низкочастотные германиевые р-п-р транзисторы средней и большой мощное-, ти: ГТ402А, ГТ402Б, (П201), (П201А), (П203), П213А, П213Б, П214В, П214Г.
Низкочастотные германиевые п-р-п транзисторы средней мощности: ГТ404А, ГТ404Б.
Заменяемость отечественных транзисторов старых выпусков на новые
Слева в столбцах даны старые марки транзисторов, справа — новые, которыми
их можно заменить.
П4А
_
П216А
П6Д
—
МП39Б
П4Б
—
П216Г
П8
—
МП35
П4В
—
П216Б
П9
—
МП36
П4Г
—
П216Г
П9А
—
П4Д
—
П216Д
П10
—
МП37
П5А
—
ГТ108А
П10А
—
МП37А
П5Б
—
ГТ108Б
П10Б
_
МП37Б
П5В
—
ГТ108В
П11
_
МП38
П5Г
—
ГТ108Г
П11А
_
МП38А
П5Д
—
ГТ108Д
ШЗ
_
МП39
П5Е
—
ГТ108Г
П13А
_
МП39А
П6А
—
МП39
П14
_
МП40
П6Б
—
МП39А
П14А
_
МП40А
П6В
—
МП40
П14Б
_
МП40Б
П6Г
—
МП41
П15
—
МП41
П15А
— МП41А
П16
— МП42
П16А
— МП 42 А
П16Б
— МП42Б
П101
— МП111
П101А
— МП111А
Ш02
— МП112
П103
— МП113
П103А
— МП113А
П104
— МП114П105
— МП115
П106
— мппв
П201
— П213А
П201А
— П213Б
П202
— П214Б
Транзистор — аналог | Транзистор — аналог | Транзистор — аналог |
2N1221 — КТ501Г | 2N4260 — КТ363АМ- Купить | 2N5875 — 2Т818Б- Купить |
2N1613 — КТ630Г — Купить | 2N4261 — КТ363ЕМ- Купить | 2N6034 — КТ8130А- Купить |
2N1715 — КТ630B — Купить | 2N4271 — 2Т653А — Купить | 2N6035 — КТ8130Б — Купить |
2N2218 — КТ928А — Купить | 2N6036 — КТ8130В — Купить | |
2N2219 — КТ928Б — Купить | 2N4401 — КТ660А — Купить | 2N6037 — КТ8131А — Купить |
2N2219A — КТ928В — Купить | 2N4402 — КТ685А — Купить | 2N6038 — КТ8131Б — Купить |
2N2221 — КТ3117А — Купить | 2N4403 — КТ685В — Купить | 2N6039 — КТ8131В — Купить |
2N2222A — КТ3117Б — Купить | 2N4411 — КТ3127А — Купить | 2N6047 — КТ947А — Купить |
2N2332 — 2Т208Б — Купить | 2N4440 — 2Т921А — Купить | 2N6053 — КТ825Б — Купить |
2N2334 — 2Т208Г — Купить | 2N4494 — KT645А — Купить | 2N6054 — КТ825А — Купить |
2N2335 — 2Т208Д — Купить | 2N4930 — КТ505Б — Купить | 2N6093 — КТ912А — Купить |
2N2336 — 2Т208Л — Купить | 2N4931 — КТ505А — Купить | 2N6202 — КТ934А — Купить |
2N2337 — 2Т208М — Купить | 2N4933 — КТ927А — Купить | 2N6203 — КТ934Б — Купить |
2N2369 — КТ3142А — Купить | 2N5069 — КТ3102Е — Купить | 2N6204 — КТ934В — Купить |
2N2405 — 2Т630А — Купить | 2N5086 — КТ3107Б — Купить | 2N6253 — 2Т818В — Купить |
2N2440 — 2Т630Б — Купить | 2N5087 — КТ3107К — Купить | |
2N2904 — КТ692А — Купить | 2N5088 — КТ3102Е — Купить | 2N6279 — КТ879А — Купить |
2N3055 — КТ8150А — Купить | 2N5092 — КТ504А — Купить | 2N6362 — КТ930А — Купить |
2N3250 — КТ3108А — Купить | 2N5177 — КТ909А — Купить | 2N6364 — КТ930Б — Купить |
2N3250A — КТ3108Б — Купить | 2N5178 — КT909Б — Купить | 2N6369 — КТ931А — Купить |
2N3251 — КТ3108В — Купить | 2N5210 — КТ3102Б — Купить | 2N6388 — КТ899А — Купить |
2N3448 — 2Т504А — Купить | 2N5400 — КТ6116Б — Купить | 2N6428 — КТ3117Б — Купить |
2N3725 — КТ635Б — Купить | 2N5401 — КТ6116А — Купить | 2N6515 — КТ504Б — Купить |
2N3733 — КТ907А — Купить | 2N5483 — 2Т919А — Купить | 2N6516 — КТ504В — Купить |
2N3903 — КТ645А — Купить | 2N5550 — КТ6117Б — Купить | 2N6517 — КТ504А — Купить |
2N3904 — КТ6137А — Купить | 2N5551 — КТ6117А — Купить | 2N6518 — КТ505Б — Купить |
2N3905 — КТ313А — Купить | 2N5589 — КТ920А — Купить | 2N6519 — КТ505А — Купить |
2N3906 — КТ6136А — Купить | 2N5590 — КТ920Б — Купить | 2N6520 — КТ505А — Купить |
2N3939 — 2Т506А — Купить | 2N5591 — КТ920В — Купить | 2N6542 — КТ840Б — Купить |
2N4001 — 2Т653Б — Купить | 2N5641 — КТ922А — Купить | 2N6543 — КТ840А — Купить |
2N4060 — КТ681А — Купить | 2N5642 — КТ922Б — Купить | 2N6546 — 2Т878Б — Купить |
2N4123 — КТ503А — Купить | 2N5643 — КТ922В — Купить | 2N6618 — 2Т3132А — Купить |
2N4124 — КТ503Б — Купить | 2N5650 — 2Т3114А — Купить | 2N6721 — КТ504Б — Купить |
2N4125 — КТ502А — Купить | 2N5672 — 2Т974А — Купить | 2N6853 — 2Т708Б — Купить |
2N4126 — КТ502Е — Купить | 2N5709 — КТ944А — Купить | 2N6972 — КТ874А — Купить |
2N4236 — КТ830Г — Купить | 2N5758 — 2Т818А — Купить | 2N940 — 2Т208Ж — Купить |
2N4239 — КТ831Г — Купить | 2N5773 — КТ8101А — Купить | |
Транзисторы | * * * | Транзисторы |
2SA1106 — КТ8101Б — Купить | 2SA7330 — КТ3107А — Купить | 2SA733R — КТ3107А — Купить |
2SA610 — КТ361А2 — Купить | 2SA733G — КТ3107И — Купить | 2SA733Y — КТ3107Б — Купить |
2SA611 — КТ361А3 — Купить | 2SA733L — КТ3107И — Купить | |
* * * | ||
2SB546A — КТ851В — Купить | 2SB710 — КТ3173А9 — Купить | 2SB970 — КТ3171А9 — Купить |
2SВ506A — 2Т842А — Купить | 2SB772 — КТ9176А — Купить | |
* * * | ||
2SC1618 — КТ808БМ — Купить | 2SC3150 — КТ8118А — Купить | 2SC4242 — КТ8110А — Купить |
2SC1619A — КТ808АМ — Купить | 2SC3217 — 2Т9155А — Купить | 2SC456 — КТ645А — Купить |
2SC1815BL — КТ3102Б — Купить | 2SC3218 — 2Т9155Б — Купить | 2SC544 — КТ315А1 — Купить |
2SC1815GR — КТ3102Б — Купить | 2SC3257 — КТ854А — Купить | 2SC546 — КТ315Б1 — Купить |
2SС1815L — КТ3102Б — Купить | 2SC3277M — 2Т718А — Купить | 2SC714 — КТ645Б — Купить |
2SC1815O — КТ3102А — Купить | 2SC3306 — КТ8117А — Купить | 2SC730 — КТ610А — Купить |
2SC1815Y — КТ3102Б — Купить | 2SC3360 — 2Т9155В — Купить | 2SC9110 — КТ637Б — Купить |
2SC1929 — КТ504В — Купить | 2SC3412 — КТ886А1 — Купить | 2SC9450 — КТ3102А — Купить |
2SC2122 — КТ841Б — Купить | 2SC3750 — КТ8108А — Купить | 2SC945G — КТ3102Б — Купить |
2SC216B — КТ850А — Купить | 2SC380 — КТ315Г — Купить | 2SC945L — КТ3102Б — Купить |
2SC2240BL — КТ503Е — Купить | 2SC388 — КТ315Г — Купить | 2SC945R — КТ3102А — Купить |
2SC2240GR — КТ503Е — Купить | 2SC4055 — KT8120A — Купить | 2SC945Y — КТ3102Б — Купить |
2SC2270 — КТ9157 — Купить | 2SC4173 — КТ645Б — Купить | |
Транзисторы | * * * | Транзисторы |
2SD1172 — 2Т713А — Купить | 2SD415 — КТ683Д — Купить | 2SD882 — КТ9177А — Купить |
2SD1565 — 2Т9136АС — Купить | 2SD602 — КТ3176А9 — Купить | 2SD900B — КТ8183А — Купить |
2SD401A — КТ8123А — Купить | 2SD814 — КТ3179А9 — Купить | |
* * * | ||
ВС119 — КТ630Б — Купить | BC338-16 — КТ660Б — Купить | |
BC136 — КТ639Б — Купить | BC338-25 — КТ660Б — Купить | BC560B— КТ3107И — Купить |
ВС140 — КТ630Д — Купить | BCЗЗ8-40 — КТ660Б — Купить | BC560C — КТ3107И — Купить |
BC223A — КТ660Б — Купить | BC516 — КТ686Ж — Купить | BC635 — КТ503Б — Купить |
BC223B — КТ660Б — Купить | BC517 — КТ645А — Купить | BC636 — КТ684А — Купить |
ВС237А — КТ3102А — Купить | BC546A — КТ503Д — Купить | BC637 — КТ503Г — Купить |
BC237B — КТ3102Б — Купить | BC546B — КТ3117Б — Купить | BC638 — КТ684Б — Купить |
BC237C— КТ3102Б — Купить | BC546С — КТ3117Б — Купить | BC639 — КТ503Е — Купить |
BC238A— КТ645А — Купить | BC547A — КТ645А — Купить | BC640 — КТ684В — Купить |
BC238B— КТ3102В — Купить | BC547B — КТ3102БМ — Купить | BC847A — КТ3189А9 — Купить |
BC238C— КТ3102В — Купить | BC547C — КТ3102БМ — Купить | BC847B — КТ3189Б9 — Купить |
BC239A— КТ3102Д — Купить | BC548A — КТ3102ВМ — Купить | BC847C — КТ3189В9 — Купить |
BC239В — КТ3102Д — Купить | BC548B — КТ3102ВМ — Купить | BC857A — КТ3129Б9 — Купить |
BC239C— КТ3102Д — Купить | BC549A — КТ3102ВМ — Купить | BC857B — КТ3129Г9 — Купить |
BC307A— КТ3107Б — Купить | BC549B — КТ3102ВМ — Купить | BC858A — КТ3129В9 — Купить |
BC307B— КТ3107И — Купить | BC549C — КТ3102ВМ — Купить | |
BC307C— КТ3107И — Купить | BC54BC — КТ3102ВМ — Купить | BCF32 — КТ3172А9 — Купить |
BC308A— КТ3107Г — Купить | BC550A — КТ3102АМ — Купить | BCХ53 — 2Т664А9 — Купить |
BC308B— КТ3107Д — Купить | BC550B — КТ3102БМ — Купить | BCХ56 — КТ665А9 — Купить |
BC308С — КТ3107К — Купить | BC550C — КТ3102БМ — Купить | BCХ70 — КТ3153А9 — Купить |
BC309А — КТ3107Е — Купить | BC556A — КТ502Д — Купить | BCY38 — КТ501Д — Купить |
BC309В — КТ3107Ж — Купить | BC556B — КТ502Д — Купить | BCY39— КТ501М — Купить |
BC309С — КТ3107Л — Купить | BC556C — КТ502Д — Купить | BCY54— КТ501К — Купить |
BC327-16 — КТ686А — Купить | BC557A — КТ6б8Б — Купить | BCY92— 2Т3152А — Купить |
BC327-25 — КТ686Б — Купить | BC557B — КТ668В — Купить | BCY93B— КТ501Л — Купить |
BC327-40 — КТ686В — Купить | BC557C — КТ3107И — Купить | BCW31 — КТ3130Д9 — Купить |
BC328-16 — КТ686Г — Купить | BC558A — КТ3107Г — Купить | BCW33LT1— КТ3130Е9 — Купить |
BC328-25 — КТ686Д — Купить | BC558C — КТ3107К — Купить | BCW71— КТ3139А — Купить |
BC328-40 — КТ686Е — Купить | BC559A — КТ3107Е — Купить | BCW72— КТ3139Б — Купить |
BC337-16 — КТ660А — Купить | BC559B — КТ3107Ж — Купить | BCW73— КТ3139В — Купить |
BC337-25 — КТ660А — Купить | BC559C — КТ3107Л — Купить | |
BC337-40 — КТ660А — Купить | BC560A — КТ3107Б — Купить | |
* * * | ||
BD130 — КТ819БМ — Купить | BD233 — КТ817Б — Купить | BDW22 — КТ818БМ — Купить |
BD135 — КТ815Б — Купить | BD234 — КТ816Б — Купить | BDW51 — КТ819АМ — Купить |
BD136 — КТ814Б — Купить | BD235 — КТ817В — Купить | BDW51B — 2Т819А — Купить |
BD136-10 — КТ639В — Купить | BD236 — КТ816В — Купить | BDW64A — КТ896А — Купить |
BD136-16 — КТ639А — Купить | BD237 — КТ817Г — Купить | BDW65A — КТ8106А — Купить |
BD137 — КТ815В — Купить | BD238 — КТ816Г — Купить | BDX53 — КТ829Г — Купить |
BD138 — КТ814В — Купить | BD242B — КТ818Г — Купить | BDX53A — КТ829В — Купить |
BD138-10 — КТ639Е — Купить | BD291 — КТ819А — Купить | BDX53B — КТ829Б — Купить |
BD138-16 — КТ639Г — Купить | BD292 — КТ818А — Купить | BDX53E — КТ829Д — Купить |
BD138-6 — КТ639Д — Купить | BD293 — КТ819Б — Купить | BDX54 — КТ853Г — Купить |
BD139 — КТ815Г — Купить | BD295 — КТ819В — Купить | BDX54F — КТ712А — Купить |
BD140 — КТ814Г — Купить | ВD534 — КТ837А — Купить | BDX62 — КТ825Д — Купить |
BD140-10 — КТ639Ж — Купить | BD536 — КТ837Б — Купить | BDX63A — КТ827А — Купить |
BD140-6 — КТ639И — Купить | BD875 — КТ972А — Купить | BDY20 — 2Т819В — Купить |
BD142 — 2Т819Б — Купить | BD876 — КТ973А — Купить | BDY73 — КТ819ВМ — Купить |
BD202 — КТ818Б — Купить | BDV64 — КТ8159В — Купить | BDY98 — 2Т841Б — Купить |
BD203 — КТ819Г — Купить | BDV65 — КТ8158В — Купить | |
BD204 — КТ818В — Купить | BDW21 — КТ819ГМ — Купить | |
* * * | ||
BF391 — КТ698К — Купить | BF492 — КТ505Б — Купить | BF970 — КТ3165А — Купить |
BF392 — КТ504Б — Купить | BF493 — КТ505А — Купить | BF979S — КТ3109А — Купить |
BF393 — КТ504В — Купить | BF506 — КТ3126А — Купить | BFP194 — КТ6129А9 — Купить |
BF419 — КТ969А — Купить | BF554 — КТ3170А9 — Купить | BFR90 — КТ3198А — Купить |
BF422 — КТ940А — Купить | BF565 — КТ3169А9 — Купить | BFR90A — КТ3198Б — Купить |
BF423 — КТ9115А — Купить | BF569 — КТ3192А9 — Купить | BFR91 — КТ3198В — Купить |
BF458 — КТ940Б — Купить | BF595 — КТ3169А9 — Купить | BFR91A — КТ3198Г — Купить |
BF459 — КТ940А — Купить | BF599 — КТ368А9 — Купить | BFR92 — КТ3187А9 — Купить |
BF472 — КТ9115А — Купить | BF820S — КТ666А9 — Купить | BFT92 — КТ3191А9 — Купить |
BF491 — КТ6127К — Купить | BF821S — КТ867А9 — Купить | BFY68 — КТ630Е — Купить |
* * * | ||
BLX96 — КТ98ЗА — Купить | BLX98 — КТ983В — Купить | BLY53 — КТ925Б — Купить |
BLX97 — КТ983Б — Купить | BLY38 — КТ925А — Купить | |
Транзисторы | * * * | Транзисторы |
BU106 — 2Т841А — Купить | BU426A — KT868A — Купить | BUX21 — 2T866A — Купить |
BU126 — КТ845А — Купить | BU508 — KT872A — Купить | BUX37 — KT848A — Купить |
BU207 — КТ846Б — Купить | BU508A — KT8107A — Купить | BUX48 — КТ856Б — Купить |
BU208 — КТ8127Б — Купить | BU508D — KT872B — Купить | BUX48A — 2T856A — Купить |
BU208A — КТ8127А — Купить | BU931PFI — KT898A1 — Купить | BUX54 — KT506A — Купить |
BU209 — КТ846Г — Купить | BU931Z — KT897A — Купить | BUX98 — KT878A — Купить |
BU406 — КТ8124А — Купить | BU931ZP — KT898A — Купить | BUX98A — KT878B — Купить |
BU406 — КТ858А — Купить | BU932Z — КТ892Б — Купить | BUY21 — KT867A — Купить |
BU407 — KT8124B — Купить | BUT92A — 2T891A — Купить | BUZ60 — КП707А1 — Купить |
BU407 — KT857A — Купить | BUW76 — KT847A — Купить | BUZ90 — КП707Б1 — Купить |
BU408 — КТ8124Б — Купить | BUX12 — 2T862A — Купить | |
BU426 — КТ868Б — Купить | BUX17B — 2Т718Б — Купить | |
* * * | ||
BV807 — KT8156A — Купить | BVS98A — 2T885A — Купить | |
* * * | ||
BY67A — KT630A — Купить | ||
* * * | ||
DTA124E — КР1054НК2Б — Купить | DTC114E — KP1054HK1B — Купить | DTC144E — KP1054HK1A — Купить |
DTA144E — KP1054HK2A — Купить | DTC124E — КР1054НК1Б — Купить | |
* * * | ||
FJ401E — 2T3115A-2 — Купить | ||
* * * | ||
KSA539 — KT502A — Купить | KSC5021 — КТ8108Б — Купить | KSD362 — КТ805БМ — Купить |
КSC4106 — Т8136А — Купить | KSD227 — KT503A — Купить | KSD363 — KT805AM — Купить |
* * * | ||
MD5000A — KTC3103A — Купить | MD5000F — КТС3103Б — Купить | |
* * * | ||
MJ2955 — KT8102A — Купить | MJE13004 — КТ8164Б — Купить | MJE2955T — KT8149A2 — Купить |
MJ4645 — 2Т505Б — Купить | MJE13005 — KT8164A — Купить | MJE3055T — KT8150A2 — Купить |
MJ4646 — 2T505A — Купить | MJE13006 — КТ8182Б — Купить | MJE340 — КТ504В — Купить |
MJE13002 — КТ8175Б — Купить | MJE13007 — KT8182A — Купить | MJE350 — КТ505А — Купить |
MJE13003 — KT8175A — Купить | MJE13009 — KT8145A — Купить | |
* * * | ||
MPS2923 — KT680A — Купить | MPSA43 — KT6135B — Купить | MPSL01 — KT638A — Купить |
MPS404 — KT209A — Купить | MPSA92 — КТ505А — Купить | MPSL51 — КТ632Б1 — Купить |
MPSA42 — КТ6135Б — Купить | MPSA93 — KT698K — Купить | |
* * * | ||
PN2905A — KT644A — Купить | PN2906A — КТ685Б — Купить | PN2907A — КТ644Г — Купить |
PN2906 — КТ644Б — Купить | PN2907 — KT644B — Купить | |
* * * | ||
SC558B — КТ3107Д — Купить | ||
* * * | ||
SS8050B — KT6114A — Купить | SS9013E — КТ6110Б — Купить | SS9016E — КТ6128Б — Купить |
SS8050C — КТ6114Б — Купить | SS9013F — KT6110B — Купить | SS9016F — KT6128B — Купить |
SS8050D — KT6114B — Купить | SS9013G — КТ6111Г — Купить | SS9016G — КТ6128Г — Купить |
SS8550B — KT6115A — Купить | SS9013H — КТ6111Д — Купить | SS9016H — КТ6128Д — Купить |
SS8550C — КТ6115Б — Купить | SS9014A — KT6111A — Купить | SS9016I — KT6128E — Купить |
SS8550D — KT6115B — Купить | SS9014B — КТ6111Б — Купить | SS9018C — КТ6113Г — Купить |
SS9012D — KT6109A — Купить | SS9014C — KT6111B — Купить | SS9018D — КТ6113А — Купить |
SS9012E — КТ6109Б — Купить | SS9014D — КТ6111Г — Купить | SS9018E — КТ6113Б — Купить |
SS9012F — KT6109B — Купить | SS9015A — KT6112A — Купить | SS9018F — KT6113B — Купить |
SS9012G — КТ6109Г — Купить | SS9015B — КТ6112Б — Купить | SS9018H — КТ6113Д — Купить |
SS9012H — КТ6109Д — Купить | SS9015C — KT6112B — Купить | SS9018I — KT6113E — Купить |
SS9013D — KT6110A — Купить | SS9016D — KT6128A — Купить | |
* * * | ||
STF143 — КТ501Ж — Купить | STF144 — КТ501И — Купить | |
Транзисторы | * * * | Транзисторы |
TIP110 — KT716B — Купить | TIP125 — KT8115B — Купить | TIP150 — КТ8109Б — Купить |
TIP111 — КТ716Б — Купить | TIP125 — KT853B — Купить | TIP151 — KT8109A — Купить |
TIP112 — KT716A — Купить | TIP126 — КТ8115Б — Купить | TIP3055 — KT8150A1 — Купить |
TIP115 — KT852B — Купить | TIP126 — КТ853Б — Купить | TIP41A — KT8125B — Купить |
TIP116 — КТ852Б — Купить | TIP127 — KT8115A — Купить | TIP41B — КТ8125Б — Купить |
TIP117 — KT852A — Купить | TIP127 — KT853A — Купить | TIP41C — KT8125A — Купить |
TIP120 — KT8116B — Купить | TIP140 — KT8111B — Купить | TIP48 — KT859A — Купить |
TIP121 — КТ8116Б — Купить | TIP141 — КТ8111Б — Купить | TIP661 — KT892A — Купить |
TIP122 — KT8116A — Купить | TIP142 — KT8111A — Купить | |
* * * | ||
VN1231 — KP1054HK3A — Купить |
АНАЛОГИ ТРАНЗИСТОРОВ Очередной раз столкнувшись с необходимостью искать по справочникам замену импортным и отечественным транзисторам, решил создать таблицу аналогов. Полные и функциональные аналоги. Даташит на каждый транзистор можно посмотреть введя название в поисковую форму datasheet в правой части сайта. Цены на радиодетали смотрите в любом интернет магазине. ИМПОРТНЫЙ — ОТЕЧЕСТВЕННЫЙ
Партнер статьи: Electronoff.ua Справочники радиодеталей |
Заменяемость транзисторов
Заменяемость транзисторовЗаменяемость отечественных транзисторов старых выпусков
на главнуюНОВАЯ ВЕРСИЯ САЙТА
КЛАССИФИКАЦИЯ ОТЕЧЕСТВЕННЫХ ТРАНЗИСТОРОВВсем транзисторам, разработанным до 1964 года, присвоены условные обозначения по стандарту, установленному в 1959 году. Согласно этому стандарту условное обозначение транзисторов может состоять из трех элементов: первый — буквенный (П — плоскостной транзистор): второй — цифровой, указывающий на материал прибора (германий или кремний) и обычное применение или назначение транзистора. Основная классификация ведется по максимальной допустимой мощности, рассеиваемой на коллекторе Р
к.доп и частотным свойствам — частоте fa или /макс Классификация различает транзисторы малой мощности (Рк.доп < 0,25 вт) и большой мощности (Рк.доп > 0,25 вт.), низкочастотные (fa < 5 Мгц) и высокочастотные (fa> > 5 Мгц). Последний третий элемент обозначения — буквенный, указывающий разновидность прибора. Исключение из этого правила представляют транзисторы типа П4А—П4Д, которые являются транзисторами большой мощности.Например, условное обозначение П13 расшифровывается: «транзистор низкочастотный, германиевый, малой мощности, типа 13».
В настоящее время эта система классификации транзисторов устарела и не соответствует возросшему количеству и разнообразию приборов. В связи с этим с 1964 года была введена новая система классификации и условных обозначений на полупроводниковые приборы, в том числе и на транзисторы. Согласно новому стандарту основная классификация ведется по исходному материалу, рассеиваемой прибором мощности и частотным свойствам.
В зависимости от этого транзисторы могут называться германиевыми или кремниевыми, малой, средней или большой мощности; транзисторами низкой, средней или высокой частоты. Энергетической характеристикой транзистора является мощность, рассеиваемая на коллекторе Рк.доп,
а частотной — максимальная частота генерации fмакс.Условное обозначение транзистора по новому стандарту состоит из четырех элементов.
Первый элемент — буква или цифра, обозначающая исходный материал: Г или 1 — германий, К или 2 — кремний, А или 3 — арсенид галлия. Одновременно первый элемент обозначает верхний предел допустимой температуры корпуса прибора: Г-+ 60° С, 1-+70° С; К—+85° С, 2— +120° С.
Второй элемент — буква, указывающая класс полупроводникового прибора: Т—транзистор (биполярный с проводимостью р-п-р или п-р-п).П—полевой транзистор (с каналом р или п типа).
Третий элемент — цифровой, характеризующий основные энергетические и частотные параметры транзистора.
Четвертый элемент обозначения — буквенный — указывает на разновидность прибора.
Например, условное обозначение прибора ГТ108А означает: «германиевый транзистор малой мощности, низкочастотный, подтипа А, предназначенный для работы при температуре не выше +60° С».
Все необходимые сведения о параметрах транзисторов можно найти в специальных справочниках по полупроводниковым приборам.
Следует заметить, что ряд транзисторов может иметь условные индексы, которых нет в приведенных выше классификациях. Это главным образом транзисторы, разработанные до 1964 года, но выпускаемые в модернизированном варианте. В этом случае дополнительные буквенные индексы означают следующее:
М — холодносварной корпус;
Э — улучшенная влагостойкость;
И — улучшенные импульсные свойства. Например, МП39Б означает, что это низкочастотный маломощный транзистор с холоднссварным корпусом; П601 А(И) — высокочастотный транзистор средней мощности с улучшенными импульсными свойствами.
ВЗАИМОЗАМЕНЯЕМОСТЬ ОТЕЧЕСТВЕННЫХ ТРАНЗИСТОРОВ
Наличие значительного количества типов и подтипов транзисторов связано с большим разнообразием технологических средств и приемов, а также исходных материалов, используемых при изготовлении транзисторов. Производство транзисторов — очень сложный и трудоемкий процесс, требующий высокой точности, чистоты и жесткого соблюдения технологических режимов. Выполнение всех этих требований связано с большими техническими трудностями, чем и объясняется имеющийся большой разброс параметров выпускаемых транзисторов. В связи с этим обычно указываются средние либо минимальные значения параметров, гарантированные для данного типа транзисторов. Наибольший разброс наблюдается у коэффициента усиления по току бета в схеме с общим эмиттером, обратного тока коллектора /к0
и емкости коллекторного перехода Ск. Несколько меньшим разбросом обладают частотные параметры fа и fmакс.Большой разброс параметров транзисторов делает весьма условными границы между типами транзисторов, что позволяет в ряде случаев без особых затруднений заменять одни транзисторы другими. При такой замене в первую очередь обращается внимание на параметры в режиме, при котором транзистор будет работать в данной схеме Фк, /к, Рк). Исходя из этих сведений подбираются типы транзисторов, обладающие некоторым запасом по указанным параметрам и необходимыми частотными и усилительными свойствами (fa или fmakс и beta). Предпочтение при этом отдается более дешевым и доступным транзисторам.
Например, имеется описание схемы усилителя низкой частоты на двух транзисторах типа МП41. Постоянное напряжение источника питания составляет 9 в, постоянный ток коллектора каждого транзистора не превышает 1—2 ма, а сама схема допускает применение транзисторов с beta = 20—40.
Из приведенных в приложении справочных таблиц видно, что в данном случае возможно применение транзисторов типа МП40, МП42А, МП42Б, а также некоторых образцов транзисторов МП39 и МП39Б.
Другой пример. В приемнике прямого усиления, рассчитанном для работы в диапазоне средних волн (СВ), где максимальная частота сигнала 1,6Мгц, рекомендуется применение транзисторов типа ГТ313А, приобрести которые по тем или иным причинам не удалось. Учитывая сказанное ранее о том, что для устранения влияния зависимости усилительных свойств транзисторов от частоты сигнала необходимо применять транзисторы, у которых граничная частота усиления fm по крайней мере в 20—30 раз выше максимальной частоты усиливаемого сигнала, делаем вывод, что возможно использование транзисторов с граничной частотой от 50 Мгц и выше. Как видно из таблицы 5, этому условию удовлетворяют практически все высокочастотные транзисторы, кроме П401 и КТ301, КТ301А. Поскольку ГТ313А — германиевый р-п-р транзистор, то, для того чтобы не вносить в схему устройства каких-либо дополнительных изменений, следует применить такой же проводимости германиевый транзистор, например, П402 или П403. Если же германиевый транзистор заменяется кремниевым, хотя бы и той же проводимости, то в большинстве случаев требуется проведение дополнительных изменений в схеме смещения вследствие большого различия в характере зависимости тока коллектора от напряжения смещения.
К сожалению, дать какой-либо конкретный рецепт замены транзисторов на все случаи жизни нельзя из-за чрезмерно большого числа типов выпускаемых транзисторов, а также вследствие огромного множества различных вариантов схем. Можно только рекомендовать стремиться производить замену транзисторов внутри группы наиболее близких по своему устройству и параметрам транзисторов. При этом допускается замена с улучшением или ухудшением параметров транзисторов. Лучше всего, когда заменяющий транзистор не уступает заменяемому ни по одному из предельно
допустимых параметров (Рк.доп UK3, /K макс), а также по величине гарантированных значений усиления тока (а или бета) и предельной частоты усиления (fa или fbeta). В крайнем случае возможна замена транзисторов с несколько заниженными значениями beta и fa, что хотя и приведет к некоторому изменению параметров устройства, но ненамного.Особо следует сказать о замене транзисторов, выпуск и продажа которых давно прекращены, но упоминание на страницах радиолюбительской литературы еще иногда встречается. Кроме того, в употреблении находится большое количество бытовой радиоэлектронной аппаратуры, где применяются транзисторы старых выпусков, что создает определенные трудности при ремонте. Например, согласно табл. транзистор П15 заменяется через МП41, П105 — МП 115, П420 —П401 и т. д. При такой замене каких-либо дополнительных изменений в схемах не требуется.
Нужно отметить, что труднее всего находить замену транзисторов начинающим радиолюбителям, которые еще не накопили достаточного опыта обращения с параметрами транзисторов, чтобы свободно сравнить их между собой, находя лучшие и худшие варианты для взаимной замены транзисторов.
Граничная частота fm определяет частоту, где гарантируется усиление потоку не менее единицы, а f2 — характеризует максимальную частоту, выше которой наблюдается резкое возрастание внутренних шумов транзистора. Наилучшими шумовыми характеристиками обладают транзисторы ГТ322А—ГТ322Е, у которых коэффициент шума не превосходит 4 дб. Распространенные в любительской практике транзисторы типа П401 — П403, имеют значительно худшие свойства. Из низкочастотных транзисторов в лучшую сторону отличаются транзисторы типа П27А и П27. Эти транзисторы применяются, как правило, в промышленной аппаратуре. Конструктивно они оформлены точно так же, как МП35— МП42, но отличаются от них значительно меньшим шумом. Для сравнения можно указать, что наименее «шумящим» из доступных любителям транзисторов является МП39Б, у которого коэффициент шума не более 12 дб, тогда как у остальных транзисторов типов МП39—МП42 он может составлять до 24 дб. По этой причине в первых каскадах усиления низкой частоты всегда желательно применение малошу-мящих транзисторов типа МП39Б, а еще лучше- П27А и П28.
Можно, конечно, производить разбраковку транзисторов по величине интересующих параметров и выбирать наилучшие из них. Иногда это бывает полезным или необходимым. Но ввиду влияния на транзисторы различных внешних факторов и процесса естественного старения транзисторов, при конструировании аппаратуры целесообразно ориентироваться на средние, а еще лучше — на минимальные значения параметра.
Замена | Замена | Замена | |||
Старый | Новый | Старый | Новый | Старый | Новый |
П4А | П216А | П10Б | МП37Б | П201 | П213А |
П4Б | П216Г | П11 | МП38 | П201А | П213Б |
П4В | П216Б | П11А | МП38А | П202 | П214Б |
П4Г | П216Г | П13 | МП39 | П202А | П214В |
П4Д | П216Д | П13А | МП39А | П203 | П214Г |
П4Д | П216Д | П13Б | МП39Б | П203А | П214В |
П5А | ГТ108А | П14 | МП40 | П410 | ГТ313А |
П5Б | ГТ108Б | П14А | МП40А | П410 | ГТ313А |
П5В | ГТ108В | П14Б | МП40Б | П410А | ГТ313Б |
П5Г | ГТ108Г | П15 | МП41 | П411 | ГТ313Б |
П5Д | ГТ108Д | П15А | МП41А | П411А | ГТ313Б |
П5Е | ГТ108Г | П16 | МП42 | П417 | ГТ313А |
П6А | МП39 | П16А | МП42А | П417А | ГТ313Б |
П6Б | МП39А | П16Б | МП42Б | П420 | П401 |
П6В | МП40 | П101 | МП111 | П421 | П402 |
П6Г | МП41 | П101А | МП111А | П501 | КТ315А |
П6Д | МП39Б | П102 | МП112 | П502 | КТ315Б |
П8 | МП35 | П103 | МП113 | П503 | КТ315В |
П9 | МП36 | П103А | МП113А | П504 | КТ315Г |
П9А | МП36А | П104 | МП114 | П504А | КТ315Г |
П10 | МП37 | П105 | МП115 | П505 | КТ315В |
П10А | МП37А | П106 | МП116 | П505А | КТ315В |
Форум на сайте
на главную
пишите пожалуйста на
[email protected]
Для большинства MOSFET-транзисторов достаточно просто подобрать аналоги, схожие по параметрам. Если заменить неисправный MOSFET-транзистор на такой же невозможно, то для поиска аналога необходимо:
- Узнать полное наименование транзистора по его маркировке. Для MOSFET-транзистора в корпусе СМД название можно расшифровать по маркировке: СМД-коды 🔗.
- Изучить схему включения MOSFET-транзистора для определения режима его работы (ключ в цепях коммутации, импульсное устройство, линейный стабилизатор и т.д.).
- Найти даташит для неисправного MOSFET-транзистора и заполнить форму для подбора аналога на сайте.
- Выбрать наиболее подходящий аналог MOSFET-транзистора, учитывая режим его работы в устройстве.
На что нужно обратить внимание
Открыв PDF-даташит, в первую очередь надо выяснить: тип транзистора (MOSFET или JFET), полярность, тип корпуса, расположение выводов (цоколевку).
Из числовых параметров это, прежде всего предельные характеристики, такие как Pd — максимальная рассеиваемая мощность, Vds — максимальное напряжение сток-исток, Vgs — максимальное напряжение затвор-исток, Id — максимальный ток стока. У подбираемого транзистора эти параметры должны быть не меньше чем у исходного транзистора.
Для MOSFET-транзистора важным параметром является сопротивление сток-исток открытого транзистора (Rds). От значения Rds зависит мощность, выделяемая на транзисторе. Чем меньше значение Rds, тем меньше транзистор будет нагреваться.
Однако необходимо помнить, что чем больше Id и меньше Rds, тем больше ёмкость затвора у MOSFET-транзистора. Это приводит к тому, что требуется большая мощность для управления этим затвором. А если схема не обеспечит нужную мощность, то возрастут динамические потери из-за замедленной скорости переключения транзистора и, как итог, MOSFET будет больше нагреваться. Поэтому необходимо проверить температурный режим (нагрев) транзистора после включения устройства. Если транзистор сильно нагревается, то дело может быть как в самом транзисторе, так и в элементах его обвязки.
Расшифровка основных параметров MOSFET-транзисторов
Тип транзистора – в реальных устройствах могут использоваться полевые транзисторы разных типов: транзистор с управляющим p-n – переходом (J-FET) или униполярные транзисторы МДП-типа (MOSFET).
Полярность — полевые транзисторы могут быть прямой проводимости или обратной, то есть с P-каналом или N-каналом.
Максимальная рассеиваемая мощность (Pd) — необходимо убедиться, что выбранный транзистор может рассеивать достаточную мощность. Этот параметр зависит от максимальной рабочей температуры транзистора — при повышении температуры максимальная рассеиваемая мощность уменьшается. Если рассеиваемая мощность недостаточна — ухудшаются некоторые характеристики транзистора. Например, сопротивление Rds может удвоиться при возрастании температуры от 25°C до 125°C.
Предельно допустимое напряжение сток-исток (Vds) – это максимальное напряжение сток-исток не вызывающее лавинного пробоя при температуре 25°C. Оно имеет зависимость от температуры: напряжение уменьшаться при уменьшении температуры транзистора. Например, при -50°C, напряжение, не вызывающее лавинного пробоя, может составлять 90% от Vds при 25°C.
Предельно допустимое напряжение затвор-исток (Vgs) – при подаче на затвор напряжения более допустимого, возможно повреждение изолирующего оксидного слоя затвора (это может быть и статическое электричество). Не стоит использовать транзисторы с большим запасом по напряжениям Vds и Vgs, т.к. обычно они имеют худшие скоростные характеристики.
Пороговое напряжение включения Vgs(th) — если напряжение на затворе выше Vgs(th), MOSFET транзистор начинает проводить ток через канал сток-исток. Vgs(th) имеет отрицательный температурный коэффициент: с увеличением температуры MOSFET-транзистор начинает открываться при более низком напряжении затвор-исток.
Максимально допустимый постоянный ток стока (Id) – следует иметь ввиду, что иногда выводы из корпуса транзистора ограничивают максимально допустимый постоянный ток стока (переключаемый ток может быть больше). С ростом температуры максимально допустимый ток уменьшается.
Максимальная температура канала (Tj) — этот параметр ограничивает температуру канала транзистора во включенном состоянии. Если ее превысить, срок службы транзистора может сократиться.
Общий заряд затвора (Qg) — заряд, который нужно сообщить затвору для открытия транзистора. Чем меньше этот параметр, тем меньшая мощность требуется для управления транзистором.
Время нарастания (tr) — время, за которое ток стока увеличится с 10% до 90% от указанного.
Сопротивление сток-исток открытого транзистора (Rds) — сопротивление открытого канала сток-исток при заданных параметрах: Id, Vgs и Tj.
Выше описаны наиболее важные параметры MOSFET-транзисторов. В даташитах производитель указывает много дополнительных параметров: заряд затвора, ток утечки затвора, импульсный ток стока, входная емкость и др.
Что важно учесть при монтаже MOSFET-транзистора
При работе с MOSFET транзисторами нужно учесть, что они могут быть повреждены статическим электричеством на ваших руках или одежде. Перед монтажом на печатную плату необходимо соединить выводы транзистора между собой тонкой проволокой. Для пайки лучше используйте паяльную станцию, а не обычный электрический паяльник. Вместо отсоса для удаления припоя используйте медную ленту для удаления припоя. Это уменьшит вероятность пробоя затвора статическим электричеством. Или используйте антистатический браслет.
Существует большое количество биполярных транзисторов и большинство из них имеет много аналогов, схожих по своим параметрам, так что подбор замены обычно не вызывает затруднений. Конечно, замена сгоревшего транзистора на такой же, это лучший вариант, но если достать его не удается, подобрать аналог не составит труда. Для этого необходимо:
- Узнать наименование транзистора. Если это СМД устройство — расшифровать его кодировку в разделе СМД-коды 🔗.
- Проанализировать схему включения транзистора (схему обвязки).
- Найти даташит неисправного транзистора и внести его основные параметры в форму поиска аналога.
- Просматривая даташиты предлагаемых транзисторов, выбираем наиболее подходящий аналог по параметрам, учитывая режимы его работы в устройстве.
На что нужно обратить внимание?
Открыв PDF-даташит, в первую очередь выясняем тип транзистора: биполярный или полевой, p-n-p или n-p-n, тип корпуса, расположение выводов (цоколевку).
Из числовых параметров это, прежде всего, максимальный ток и напряжение. У транзистора-замены максимальный ток и напряжение должны быть больше либо равны исходному.
Для биполярного транзистора важным параметром является коэффициент передачи по току hfe. Если транзистор стоит в ключевых схемах (включение-выключение нагрузок), hfe должен быть больше или равен искомому. Если стоит в аналоговых усилителях или подобных устройствах, то должен быть близок. В импульсных блоках питания транзисторы-аналоги также нужно выбирать с близким hfe (возможно придётся менять и исправный транзистор, стоящий в паре).
Необходимо проверить температурный режим (нагрев) транзистора после включения устройства. Если транзистор чрезмерно нагревается, то дело может быть как в самом транзисторе, так и в неисправных элементах его обвязки.
Расшифровка основных параметров биполярных транзисторов
Полупроводниковый материал: большинство транзисторов будут германиевые или кремниевые. Другие типы не используются в обычных устройствах. С учетом этого параметра будет спроектирована обвязка транзистора.
Полярность (проводимость): при установке транзистора другой полярности, он выходит из строя.
Pc — Максимальная рассеиваемая мощность: необходимо убедиться, что выбранный транзистор может рассеивать достаточную мощность. Этот параметр зависит от максимальной рабочей температуры транзистора — при повышении температуры максимальная рассеиваемая мощность уменьшается. Если рассеиваемая мощность недостаточна — ухудшаются остальные характеристики транзистора, может начаться резкое увеличение тока коллектора, что проводит к еще большему разогреву и выходу транзистора из строя.
Ucb — Максимально допустимое напряжение коллектор-база, определяемое величиной пробивного напряжения p-n перехода. Оно имеет зависимость от тока коллектора и температуры транзистора.
Uce — Максимально допустимое напряжение коллектор-эмиттер. Необходимо, чтобы Uce было на треть больше напряжения питания цепи коллектора. Если нагрузкой схемы является катушка реле, необходимо предусмотреть защиту транзистора от перенапряжения, например диод.
Ueb — Максимально допустимое напряжение эмиттер-база.
Ic — Максимальный постоянный ток коллектора. Ток транзистора также берется с запасом не менее 30%. Его величина зависит от температуры корпуса транзистора или окружающей среды.
Tj — Предельная температура PN-перехода. Этот параметр важно учитывать, если транзистору приходить работать в экстремальных условиях, например в автомобиле, где его температура может доходить до 100 градусов.
ft — Граничная частота коэффициента передачи тока — частота, при которой модуль коэффициента передачи тока в схеме с общим эмиттером стремится к единице. Данный параметр важен потому, что с ростом частоты входного сигнала коэффициент усиления падает.
Cc — Ёмкость коллекторного перехода. От этого параметра зависит быстродействие транзистора. Чем она ниже, тем лучше.
hfe — Статический коэффициент передачи тока — соотношение тока коллектора Iс к току базы Ib.
Выше описаны только наиболее важные параметры транзисторов. В даташитах производитель указывает много дополнительных параметров: напряжение насыщения коллектор-эмиттер, максимально допустимый импульсный ток коллектора, обратный ток эмиттера, максимально допустимый ток базы и т.д.
История сменных частей
Промышленная революция полностью изменила мир. Это перевернуло экономику с ног на голову и заново изобрело, как общество обходится Одним из наиболее важных, возможно, самых выдающихся изобретений, появившихся в результате промышленной революции, была идея взаимозаменяемых частей.
До промышленной революции не было стандартов для создания деталей машин. Это означало, что каждая машина была, по сути, своей собственной конструкцией, которая была построена в единственном производственном стиле.Это, очевидно, означало, что тиражирование машин для расширения их распространения по всему миру было довольно сложным делом.
Эли Уитни демонстрация
В 1801 году человек по имени Эли Уитни впервые применил метод производства. Он успешно, продемонстрировал концепцию сменных частей.
Впервые эта идея была разработана французским генералом Жаном-Батистом Вакетом де Грибоувалом в середине 18-го века. Эта идея уже давно существует. Грибоуваль даже начал производить огнестрельное оружие со сменными кремневыми замками в 1778 году.Тем не менее, идея никогда не делала это намного дальше, чем это.
Идея была проста: если отдельные части машины были произведены одинаково, то конечный продукт был бы идентичен другим. Это также позволило бы легко исправить сломанные детали, позволяя владельцам машин просто заказать замену.
Первый испытательный полигон для сменных частей Уитни был продемонстрирован в рамках производства огнестрельного оружия.
СВЯЗАННЫЕ: сэр Джозеф Уайтворс был мастером винта
Уитни взял 10 своих сменных винтовок перед конгрессом.Стоя перед толпой, он разобрал их все, перепутал все части, а затем снова собрал их в рабочем состоянии. Это было бы невероятно в то время, так как все ранее было сделано на заказ.
![The History of Interchangeable Parts in the Industrial Revolution The History of Interchangeable Parts in the Industrial Revolution](/800/600/https/inteng-storage.s3.amazonaws.com/img/iea/nZwXzm8kGv/sizes/14760517506-86582f8991-b_resize_md.jpg)
Именно в этот момент идея сменных частей начала охватывать всю промышленную революцию.
По иронии судьбы, демонстрация Уитни была ложью.
Уитни контракт на оружие
В 1797 г.С. Конгресс проголосовал за подготовку к войне с Францией. Во-первых, им нужно было заказать огромное количество оружия.
В то время Эли Уитни был уже хорошо известен своим изобретением хлопкового джина и выиграл у него контракт на 10 000 мушкетов от правительства. К 1801 году Уитни не производил и не поставлял ни одного оружия правительству и поэтому был призван на конгресс, чтобы оправдать использование им средств перед Джоном Адамсом и Томасом Джефферсоном.
Уитни пришел подготовленным, хотя и со своими 10 «сменными винтовками».Он устроил демонстрацию, о которой мы говорили ранее, но это была ложь. Уитни пометил детали перед демонстрацией, чтобы правильно собрать их. Ничто не было взаимозаменяемо — но Конгресс этого не знал.
Демонстрация Уитни принесла ему серьезную федеральную поддержку в то время, и его усилия больше не подвергались сомнению. Хотя дисплей в то время мог быть поддельным, идея не была.
Уитни в итоге поставил последние из своих 10 000 мушкетов через 8 лет, и из-за их качества ему было приказано произвести еще 15 000 в течение следующих четырех лет.
Историки действительно полагают, что Уитни в своей жизни так и не достиг процесса взаимозаменяемости деталей, а, скорее, его компания по производству оружия смогла это сделать после его смерти.
Другие усилия по созданию сменных частей
Хотя публичные показы Эли Уитни выдвинули сменные части на передний план индустриальной культуры, он не смог добиться больших успехов в этой области.
В 1803 году известный инженер Марк Брунел вместе с другими впервые смог произвести серийное производство сменных деталей.Он упростил процесс создания блоков шкивов для военно-морских верфей, используя металлические машины и команду из 10 человек. Эти шкивы были сделаны из дерева и продемонстрировали, что взаимозаменяемые части были достижимы в больших масштабах.
![The History of Interchangeable Parts in the Industrial Revolution The History of Interchangeable Parts in the Industrial Revolution](/800/600/https/inteng-storage.s3.amazonaws.com/img/iea/nZwXzm8kGv/sizes/pulleyship_resize_md.jpeg)
К 1816 году человек по имени Симеон Север создал первый в мире фрезерный станок по металлу. Эта машина позволила производителям создавать детали с жесткими допусками, что было бы ключевым аспектом, необходимым для создания металлических взаимозаменяемых деталей в больших масштабах.
Историки теперь считают, что в какой-то момент до 1832 года Норт смог создать металлические взаимозаменяемые детали, используя свой фрезерный станок. Процесс включал бы грубую ковку оригинальной детали, которая затем была бы размолота до точных спецификаций.
К середине 1800-х годов концепция сменных деталей распространялась по всему миру производства. Удивительно, но потребовалось бы еще одно столетие, чтобы стать широко известным в отрасли.
Сменные части и их влияние на мир
Процесс сменных деталей превратил производство из высококвалифицированной ремесленной профессии в профессию с низкой / низкой квалификацией и в более производительный стиль сборочной линии.Это в конечном итоге увеличило производительность в отрасли, снизило затраты и увеличило количество рабочих мест, доступных для общественности.
К сожалению, побочным эффектом взаимозаменяемости стало то, что он практически уничтожил мировой класс квалифицированных мастеров. Эти квалифицированные рабочие больше не могли конкурировать с методами производства большого объема. Таким образом, эти профессии были либо полностью ликвидированы, либо ремесленники были низведены до высокой стоимости художественного труда.
![The History of Interchangeable Parts in the Industrial Revolution The History of Interchangeable Parts in the Industrial Revolution](/800/600/https/inteng-storage.s3.amazonaws.com/img/iea/nZwXzm8kGv/sizes/ford-assembly-line-1913_resize_md.jpg)
Сегодня взаимозаменяемость и высокие допуски на изготовленные детали практически определяют весь мир вокруг нас. Если бы не это, мы не смогли бы исправить практически все вокруг нас без помощи дорогих мастеров. Если бы ваша машина сломалась, вам пришлось бы оставить ее в магазине, который разработал бы новую деталь для нее. Взаимозаменяемость изменила промышленную революцию и, таким образом, изменила мир.
Каждое другое изобретение, появившееся в результате промышленной революции, извлекало выгоду из взаимозаменяемости, парового двигателя, швейных машин, телеграфов и многого другого.
,Транзистор(BJT) Master Table
Товары- дискретный
- MOSFETs
- Биполярные Транзисторы
- Транзистор (BJT) мастер таблица
- Транзисторы <30В
- Транзисторы от 30 В до 59 В
- Транзисторы от 60 В до 100 В
- Транзисторы> 100 В
- Дарлингтон Транзисторы
- Согласованные пары
- Устройства специального назначения
- Лавинные транзисторы
- Ворота Драйверы Транзисторы
- Транзисторы с предварительным смещением
- Транзистор и комбинация Шоттки
- Транзистор (BJT) мастер таблица
- IGBTs
- Диоды и выпрямители
- Защитные устройства
- Функциональные массивы
- Аналоговый
- Управление питанием
- Связь и время
- Логика
- Автомобильная
— это … Что такое таблица взаимозаменяемости?
Малайзийский ринггит — MYR перенаправляет сюда. Для других целей, см. MYR (значения). Малайзийский ринггит Ринггит Малайзия (малайский) 马来西亚 令吉 (китайский) மலேசியா ரின்க்கிட் (тамильский) ريڠڬيت… Wikipedia
Винтовая резьба — Внутренняя и внешняя резьба показаны с помощью общей гайки и болта. Пара винтов и гаек может использоваться для преобразования крутящего момента в линейную силу.Когда винт (или болт) вращается, винт перемещается вдоль своей оси через неподвижную гайку или не…… Wikipedia
Коаксиальный разъем питания — Самый распространенный коаксиальный разъем питания, мужской и женский, 5,5 x 2,5 мм… Wikipedia
Фрезерный станок — Для машин, используемых в дорожном строительстве, см. Асфальтофрезерный станок. Не путать с мельницей (помол). Пример моста типа вертикального фрезерного центра с ЧПУ… Wikipedia
Портсмут Блокс Миллз — Портсмут Блэк Миллс являются частью Портсмутской верфи в Портсмуте, графство Хэмпшир, Англия, и были построены во время Наполеоновских войн для снабжения британского Королевского флота шкивами.Они начали эпоху массового производства, используя все… Википедия
Лингвистика и Книга Мормона — Часть серии о Книге Мормона… Википедия
театр — / Thee Euh Teuhr, Theeeu /, н. театр. * * * I Здание или пространство, в котором выступления проводятся перед аудиторией. Он содержит зрительный зал и сцену. В древней Греции, где начинался западный театр (5 век до н.э.), были построены театры…… Universalium
Анахронизмы Книги Мормона — В Книге Мормона есть множество слов и фраз, которые считаются анахроничными, поскольку их существование в тексте Книги Мормона расходится с известными лингвистическими закономерностями, археологическими находками или известными исторический… Википедия
Микрометр — Эта статья о измерительном устройстве.Для единицы длины, см. Микрометр. Наружные, внутренние и глубинные микрометры Микрометр (Википедия
Звуковая пленка -… Википедия
НАТО-EPVAT тестирование — Слева направо: 7,62 мм НАТО, 5,56 мм НАТО и 9-мм боеприпасы НАТО. Испытания НАТО EPVAT — это один из трех признанных классов процедур, используемых в мире для контроля безопасности и качества боеприпасов к огнестрельному оружию. Кроме того,…… Википедия
BJT TOP50: 2N2222 | 2N3055 | BC547 | 2N3904 | 2N2222A | BC107 | C945 | BC548 | BD139 | 8050 | S8050 | BC557 | BC337 | TIP31 | D882 | AC128 | BC108 | S9014 | C1815 | BD140 | 2N3906 | S8550 | 8550 | 2SC945 | 2SC5200 | BC547B | 2N5551 | MJE13003 | 9014 | BC549 | BC148 | TIP122 | 9013 | 2N2907 | BC558 | BC327 | C102 | A733 | 2SC1815 | 2N60C | 2N222 | 2N4401 | BC109 | BD135 | S9013 | BC546 | À1015 | 9012 | 431 | 2N3773 |
MOSFET TOP30: IRF3205 | IRFZ44N | IRF740 | IRF540 | IRF840 | BS170 | IRFZ44 | IRF640 | IRF540N | 2N7000 | IRF630 | IRFP460 | IRFZ46N | IRF530 | IRF1404 | IRF3710 | IRFZ34N | IRFP250 | BUZ11 | RFP50N06 | IRF520 | IRFP450 | IRFB3306 | IRF510 | IRF830 | 2N5484 | IRF730 | IRF150 | STF5N52U | IRF2807 |
IGBT TOP15: IRGP4086 | CT60AM-18F | FGPF4633 | G40N60B3 | IRG7IC28U | G20N60B3D | IXGR40N60C2D1 | G7N60C3D | RJP30h2DPD | IKW50N60h4 | 10N40F1D | GT60M303 | FGh50N60SFD | IRG4BC30W-S | IRG4PC50UD |
КУПИТЬ ТРАНЗИСТОРЫ
Выбор замены биполярного транзистора
Материал =
Struct =
шт.> W
Vcb> V
Vce> V
Веб> V
Ic> A
Tj> C
Ft> МГц
куб. См пф
Hfe>
Caps =
R1 = кОм
R2 = кОм
R1 / R2 =
Пустые или нулевые поля игнорируются при поиске!
Как выбрать замену для биполярного транзистора 🔗
ИТОГО: 123559 транзисторов