Что такое термопара. Как работает термопара. Какие бывают типы термопар. Где применяются термопары. Каковы преимущества и недостатки термопар.
Что такое термопара и как она устроена
Термопара — это датчик для измерения температуры, состоящий из двух разнородных проводников, соединенных между собой. Принцип работы термопары основан на термоэлектрическом эффекте — возникновении электродвижущей силы в цепи из двух разных проводников, спаи которых находятся при разных температурах.
Основные элементы конструкции термопары:
- Два проводника из разных металлов или сплавов
- Рабочий спай — место соединения проводников, помещаемое в среду для измерения температуры
- Свободные концы проводников для подключения к измерительному прибору
- Защитный чехол (опционально) — для защиты термопары от механических и химических воздействий
Принцип работы термопары
Принцип действия термопары основан на эффекте Зеебека. При нагреве рабочего спая в цепи термопары возникает термо-ЭДС, пропорциональная разности температур горячего и холодного спаев. Измеряя эту термо-ЭДС, можно определить температуру среды, в которую помещен рабочий спай.
Основные этапы работы термопары:
- Рабочий спай помещается в среду с измеряемой температурой
- При нагреве спая возникает термо-ЭДС
- Термо-ЭДС измеряется милливольтметром или преобразуется в цифровой сигнал
- По известной градуировочной характеристике определяется температура
Основные типы термопар
Существует несколько стандартных типов термопар, различающихся материалами проводников и диапазоном измеряемых температур:
- Тип K (хромель-алюмель): -200…+1300°C
- Тип J (железо-константан): -40…+750°C
- Тип T (медь-константан): -250…+350°C
- Тип E (хромель-константан): -200…+900°C
- Тип N (нихросил-нисил): -270…+1300°C
- Тип S и R (платина-платинородий): 0…+1600°C
- Тип B (платинородий-платинородий): +600…+1700°C
Выбор типа термопары зависит от требуемого диапазона температур, точности, стабильности показаний и условий эксплуатации.
Области применения термопар
Благодаря простоте конструкции, надежности и широкому диапазону измеряемых температур термопары нашли применение во многих отраслях:
- Промышленность: контроль температуры в печах, котлах, реакторах
- Энергетика: измерение температуры пара, газов, масла в турбинах и котлах
- Металлургия: контроль температуры расплавов металлов
- Пищевая промышленность: термоконтроль при производстве продуктов
- Автомобилестроение: датчики температуры двигателя, выхлопных газов
- Бытовая техника: термостаты в утюгах, чайниках, духовках
- Научные исследования: измерение температуры в лабораторных установках
Преимущества и недостатки термопар
Термопары обладают рядом достоинств, но имеют и некоторые ограничения.
Преимущества термопар:
- Простота конструкции и низкая стоимость
- Широкий диапазон измеряемых температур (от -270°C до +2500°C)
- Высокая точность измерений (до 0,1°C)
- Малые размеры и быстродействие
- Возможность дистанционных измерений
- Стойкость к вибрациям и механическим нагрузкам
Недостатки термопар:
- Нелинейность характеристики преобразования
- Необходимость компенсации температуры холодного спая
- Подверженность старению и изменению характеристик
- Относительно низкий уровень выходного сигнала
- Чувствительность к электромагнитным помехам
Как выбрать термопару для конкретного применения
При выборе термопары следует учитывать несколько ключевых факторов:
- Диапазон измеряемых температур — должен соответствовать типу термопары
- Требуемая точность измерений
- Условия эксплуатации (агрессивная среда, вибрации и т.д.)
- Быстродействие
- Совместимость с измерительным оборудованием
- Стоимость и доступность
Правильный выбор типа термопары и конструкции защитного чехла позволит обеспечить надежные измерения температуры в конкретных условиях применения.
Особенности монтажа и эксплуатации термопар
Для обеспечения точных измерений при использовании термопар необходимо соблюдать ряд правил:
- Правильная установка рабочего спая в зоне измерения температуры
- Термоизоляция проводов термопары для исключения влияния окружающей среды
- Компенсация температуры холодного спая
- Использование удлинительных и компенсационных проводов соответствующего типа
- Защита от механических и химических воздействий
- Периодическая поверка и калибровка
При соблюдении этих условий термопары обеспечивают надежные и точные измерения температуры в течение длительного срока эксплуатации.
ТЕРМОПАРА — это… Что такое ТЕРМОПАРА?
термопара — термопара … Орфографический словарь-справочник
Термопара — – первичный измерительный преобразователь в цепи электрического термометра, представляющий собой два разнородных проводника, спаянных концами, для получения электрического тока при тепловом воздействии на спай. Применяют для измерения… … Энциклопедия терминов, определений и пояснений строительных материалов
ТЕРМОПАРА — датчик темп ры, состоящий из двух соединённых между собой разнородных электропроводящих элементов (обычно из металлич. проводников, реже из ПП). Действие Т. основано на эффекте Зеебека (см. ТЕРМОЭЛЕКТРИЧЕСКИЕ ЯВЛЕНИЯ). Если контакты (обычно спаи) … Физическая энциклопедия
ТЕРМОПАРА — ТЕРМОПАРА, смотри в статье Термоэлемент … Современная энциклопедия
ТЕРМОПАРА — термочувствительный элемент в устройствах для измерения температуры, системах управления и контроля. Состоит из двух последовательно соединенных (спаянных) между собой разнородных проводников или (реже) полупроводников. Если спаи находятся при… … Большой Энциклопедический словарь
термопара — сущ., кол во синонимов: 3 • гипертермопара (1) • хромель алюмель (1) • элемент (159) … Словарь синонимов
термопара — Чувствительный элемент авиационного датчика температуры в виде двух разнородных электрических проводников, в котором развивается термоэлектродвижущая сила при разности температур между рабочими и свободными концами. [ … Справочник технического переводчика
термопара — 1.3.1.8 термопара: Термоэлектрический чувствительный элемент, в котором под воздействием температуры контролируемого пламени вырабатывается электродвижущая сила (ЭДС). Источник … Словарь-справочник терминов нормативно-технической документации
Термопара — Схема термопары. При температуре спая нихрома и алюминий никеля равной 300 °C термоэдс составляет 12,2 мВ … Википедия
Термопара — [thermocouple] термо электрический датчик, состоящий из двух соединенных разнородных электропров. элементов (обычно металлических проводников, реже полупроводников). Действие термопары основано на эффекте Зеебека. Если контакты (обычно спаи)… … Энциклопедический словарь по металлургии
что это такое, принцип действия термопары, подключение преобразователя
В повседневной жизни каждого человека встречались приборы и устройства, одним из определяющих факторов работы которых была температура. Начиная от температуры в системах отопления и заканчивая промышленными предприятиями, процесс выпуска продукции которых связан со строгим соблюдением температуры, процедура контроля данного параметра очень важна как для жизнедеятельности, так и для энергосбережения. Одним из устройств по контролю температуры является термопара, или термоэлектрический преобразователь. Термопара – что это такое?
Термопара газового котла
Назначение
Термоэлектрический преобразователь, или термопара, является приспособлением, используемым для контроля температуры на промышленных предприятиях, в процессе научных исследований, при эксплуатации автоматики и в медицинских учреждениях.
Физическая величина, численно определяющая размер энергии тела, получаемой за счет движения молекул веществ, в зависимости от теплоты, называется температурой. Поскольку непосредственно температуру вещества измерить невозможно, то ее величину определяют, благодаря трансформации иных физических параметров вещества. В качестве таких физических параметров могут выступать давление, электрическое сопротивление, объем, интенсивность излучения, температурная электродвижущая сила, коэффициент расширения вещества и ряд других.
Существует два способа контроля температуры:
- При непосредственном контакте с объектом с помощью термопар;
- При отсутствии непосредственного контакта с объектом – пирометрия либо термометрия излучения используется при необходимости измерения очень больших температур.
Принцип действия термопары
Особенностью работы термопары является наличие термоэлектрического эффекта, или эффекта Зеебека, названного в честь ученого, открывшего данное явление в 19 веке. Сущностью такого эффекта является наличие контактной разности потенциалов между разнородными проводниками. Соответственно, принцип работы термопары заключается в следующем.
При скрутке двух концов разнородных проводников или сплавов таким способом, чтобы они представляли собой закольцованную электрическую цепь, и если далее поддерживать противоположные окончания проводов при разной температуре, то в данной цепи сформируется термоэлектродвижущая сила, величина которой будет пропорциональна разности температур между скрутками проводников. Соответственно, цепь, состоящая из двух разнородных проводников либо сплавов, является термопарой, или термоэлементом.
Эффект термоэлектричества
Величина тока работающих термопар зависит от:
- Материала проводников;
- Разности температур на противоположных спайках.
Проводник термоэлектрического преобразователя, по которому электрический ток направлен от горячей спайки к холодной, является положительным, при обратном направлении электрического тока термоэлектрод является отрицательным. Маркировка термопары осуществляется в следующем порядке:
- Принадлежность самого устройства;
- Материал положительного проводника;
- Материал отрицательного проводника.
Разновидности и конструктивные особенности
Виды термопар
Термопары ввиду своих структурных особенностей подразделяются на такие виды:
- По специфике применения:
- Наружное;
- Погружаемое.
- По особенностям предохраняющего кожуха:
- без кожуха;
- со стальным кожухом – устройство эксплуатируется для контроля температур до 600оС;
- со стальным кожухом из специфического сплава – устройство необходимо для измерения температур до 1100оС;
- с кожухом из фарфора – устройство применяется для контроля температур до 1300оС;
- со стальным кожухом из тугоплавких сплавов – устройство эксплуатируется при температурах более 2000оС.
- По методу фиксации термопреобразователей:
- С неподвижным чувствительным элементом;
- С подвижным чувствительным элементом;
- С подвижным креплением.
- По герметичности клемм:
- С простой верхушкой;
- С водонепроницаемой верхушкой;
- Без колпачка, со специфической герметизацией выводных клемм.
- По изолированности:
- Изолированные от влияния активных или неагрессивных сред;
- Не изолированные.
- По герметизации от большого давления:
- Не герметичные;
- Герметичные.
- По стойкости к механическому влиянию:
- Устойчивые к вибрации;
- Ударостойкие;
- Простые.
- По количеству контролируемых зон:
- Рассчитанные на одну зону;
- Рассчитанные на несколько зон.
- По скорости реакции на изменение температуры:
- С высокой инерционностью. Скорость реагирования составляет до 210 секунд;
- С посредственной собственной инерцией. Скорость реакции составляет до 60 секунд;
- С малой инерционностью. Скорость реакции составляет до 40 секунд;
- С ненормированной скоростью реакции.
- По длине функционирующей части:
- Длиной от 120 мм до 1580 мм. Находят свое применение в однозонных термопарах;
- Длиной до 20000 мм. Используются в многозонных термопарах.
К конструктивным особенностям термопар относятся:
- Рабочий спай двух проводников в основном образовывается путем электродуговой сварки предварительно скрученных термоэлектродов. Одним из способов соединения является пайка, однако подключение термопары вольфрам-рениевой или вольфрам-молибденовой обходится обычным скручиванием без дополнительной сварки;
- Проводники соединяются только в активной части. Остальная часть проводов строго изолируется;
- Изоляционным материалом может быть любой источник, вплоть до воздуха, однако температура измеряемой среды должна быть ниже 120оС. При температурах вещества до 1300оС применяются фарфоровые изоляторы. Поскольку при t> 2000оС фарфор теряет свои физические свойства и размягчается, то применяются трубки из окиси алюминия, магния, бериллия, тория, циркония;
- Для предотвращения механического влияния на термопару ее помещают в предохранительную трубку-кожух с герметизированным концом. Этот кожух должен обеспечивать изоляцию от внешней среды, предотвращать механические натяжения и обеспечивать хорошую теплопроводность. Выдерживание предельной температуры термопары в течение длительного времени и стойкость к активной среде контролируемого вещества являются основополагающими требованиями к трубке-кожуху.
Типы термопар и их характеристики
Термопара хромель-алюмель (ТХА)
Термопара хромель-алюмель ТП6
Термоэлектрический преобразователь хромель-алюмель предназначен для эксплуатации в агрессивных и благородных средах, а также допускается использовать в сухом водороде и вакууме, однако на короткое время. Отличительной особенностью ТХА является максимальная устойчивость к облучению внутри ядерного реактора. К недостаткам устройства относятся сравнительно высокая восприимчивость к механическим воздействиям и непостоянство температурной электродвижущей силы. Такие типы термопар применимы для измерения температуры вещества от -200оС до 1100оС и эксплуатируются в основном в сталеварных печах, энергосиловой аппаратуре, отопительных приборах и научной работе.
В качестве положительного электрода выступает проводник никелевого сплава хромель НХ9,5, а роль отрицательного электрода занимает проволока никелевого сплава алюмель НМцАК2-2-1.
Термопара хромель-копель (ТХК)
Термопара хромель-копель ТХК 1199
Основными областями по применению термопар хромель-копель являются промышленные, производственные предприятия и сфера научных исследований. Наряду с остальными термопарами, устройство работает в основном для длительных измерений температуры до 600оС, хотя граничные пределы по температуре составляют от -253оС до 1100оС. Имеется максимальная восприимчивость из всех выпускаемых термопар, также присутствует паразитная большая восприимчивость к механическому воздействию на термодатчик. В качестве проводника для позитивного щупа используется никелевый сплав хромель НХ9,5, проволокой же для негативного щупа является медно-никелевый сплав копель МНМц43-0,5.
Термопара железо-константан (ТЖК)
Термопара железо-константан
Термоэлемент ЖК нашел применение в научных испытаниях и производственных предприятиях в агрессивных, благородных, восстановительных веществах и вакууме при -203оС<t<1100оС. Кроме высокой восприимчивости, к достоинствам ТЖК относится низкая себестоимость. Большая восприимчивость к механическому воздействию на электроды и маленькая коррозийная устойчивость металлического щупа являются негативными сторонами ТЖК. Сырьем для позитивного электрода термопары является малоуглеродистая сталь, отрицательный электрод состоит из медно-никелевого сплава константан МНМц40-1,5.
Термопара вольфрам-рений (ТВР)
Термопара вольфрам-рений
В производстве керамики, тугоплавких металлов, твердых сплавов, разливке стали, контроле температуры газовых потоков, низкотемпературной плазмы применяется термопара вольфрам-рений. Эти типы термопар считаются наилучшими термопарами в промышленности с рабочей t>1800оС. Веществами, с которыми эксплуатируется термопара, являются сухой водород, азот, гелий, аргон и вакуум при температуре 1300оС<t<3000оС.
К достоинствам прибора ВР относятся:
- Наилучшая механическая устойчивость при высоких температурах;
- Стабильная работа при знакочередующихся нагрузках;
- Устойчивость к многократным и стремительным теплосменам.
- Простота в производстве и не восприимчивость к загрязнениям.
Отрицательными свойствами являются недостаточная воспроизводимость температурной электродвижущей силы, нестабильность работы при облучении.
Материалами позитивного и негативного проводников, соответственно, являются:
- ВР5 и ВР20;
- ВАР5 и ВР20;
- ВР10 и ВР20.
Термопара вольфрам-молибден (ТВМ)
Будучи очень дешевыми термопарами, эти типы термопар массово эксплуатируются для
измерения температуры в благородных средах, водороде, вакууме, при 1400оС<t<1800оС. К дополнительным преимуществам относятся большая механическая устойчивость и отсутствие суровых правил к химической чистоте от момента производства до установки и работы. Недостатками являются хрупкость элемента при больших температурах, низкое значение электродвижущей силы и восприимчивости, смена полюсов при t>1400оС.
Позитивные и негативные электроды изготавливаются из вольфрамовой и молибденовой проволоки, которые являются металлами технической чистоты.
Термопара платинородий-платина (ТПП)
Термопара платинородий-платина
Функциональность ТПП характеризуется максимальной достоверностью и устойчивостью, потому широко применяется в научных опытах и технике. Также за счет своих физических особенностей ТПП стала эталоном температурной шкалы МПТШ-68. Комфортный температурный диапазон – до 1600оС. Слабой стороной ТПП является повышенная восприимчивость к загрязнениям, очень высокая цена, нестабильная работа при облучении. В качестве материалов щупов выступают сплавы платинородия ПР10 или ПР13 для позитивного щупа и платина для негативного щупа.
Термопара платинородий-платинородий (ТПР)
Эти типы термопар, прежде всего, эксплуатируются при производстве цемента, стали и стекла, огнеупоров, ввиду возможности длительное время контролировать температуру более 1400оС. Помимо возможности применения в вакуумной среде, к дополнительным преимуществам ТПР относятся сравнительно большая устойчивость при очень больших температурах, лучшая механическая прочность, практически отсутствие хрупкости и минимальная восприимчивость к загрязнению. Проводник электропозитивного щупа изготовлен из платинородия ПР30, негативный щуп выполнен на платинородия ПР6.
Изложенный материал объясняет, что такое термопара, их разнообразие, специфические особенности и сферы использования. Становится понятен физический смысл и порядок определения температуры в той или иной среде.
Видео
Оцените статью:принцип действия, схемы, таблица типов термопар и т.д.
Термопары — это наиболее распространенное устройство для измерения температуры. Термопары генерируют напряжение при нагревании и возникающий ток позволяет проводить измерения температуры. Отличается своей простотой, невысокой стоимостью, но внушительной долговечностью. Благодаря своим преимуществам, термопара используется повсеместно.
Стандартная термопараРекомендуем обратить внимание и на другие приборы для измерения температуры.
Принцип работы термопары
Термопара представляет собой два провода, изготовленных из различных металлов. Эти два провода скреплены или сварены вместе и образуют спай. Когда на этот спай оказывают воздействие изменения температуры, то термопара реагирует на них генерируя напряжение, пропорциональное по величине изменениям температуры.
Если термопара подсоединена к электрической цепи, то величина генерируемого напряжения будет отображаться на шкале измерительного прибора. Затем показания прибора могут быть преобразованы в температурные показания с помощью таблицы. На некоторых приборах шкала откалибрована непосредственно в градусах.
Спай термопары
В конструкции большинства термопар предусмотрен только один спай. Однако, когда термопара подсоединяется к электрической цепи, то в точках ее подсоединения может образовываться еще один спай.
Цепь термопарыЦепь, показанная на рисунке, состоит из трех проводов, помеченных как А, В и С. Провода скручены между собой и помечены как D и Е. Спай представляет собой дополнительный спай, который образуется, когда термопара подсоединяется к цепи. Этот спай называется свободным (холодным) спаем термопары. Спай Е — это рабочий (горячий) спай. В цепи находится измерительный прибор, который измеряет разницу величин напряжения на двух спаях.
Два спая соединены таким образом, что их напряжение противодействует друг другу. Таким образом, на обоих спаях генерируется одна и та же величина напряжения и показания прибора будут равны нулю. Так как существует прямо пропорциональная зависимость между температурой и величиной напряжения, генерируемой спаем термопары, то два спая будут генерировать одни и те же величины напряжения, когда температура на них будет одинаковой.
Воздействие нагрева одного спая термопарыКогда спай термопары нагревается, величина напряжения повышается прямо пропорционально. Поток электронов от нагретого спая протекает через другой спай, через измерительный прибор и возвращается обратно на горячий спай. Прибор показывает разницу напряжения между двумя спаями. Разность напряжения между двумя спаями. Разность напряжения, показываемая прибором, преобразуется в температурные показания либо с помощью таблицы, либо прямо отображается на шкале, которая откалибрована в градусах.
Холодный спай термопары
Холодный спай часто представляет собой точку, где свободные концы проводов термопары подсоединяются к измерительному прибору.
В силу того, что измерительный прибор в цепи термопары в действительности измеряет разность напряжения между двумя спаями, то напряжение холодного спая должно поддерживаться на неизменном уровне, насколько это возможно. Поддерживая напряжение на холодном спае на неизменном уровне мы тем самым гарантируем, что отклонение в показаниях измерительного прибора свидетельствует о изменении температуры на рабочем спае.
Если температура вокруг холодного спая меняется, то величина напряжения на холодном спае также изменится. В результате изменится напряжение на холодном спае. И как следствие разница в напряжении на двух спаях тоже изменится, что в конечном итоге приведет к неточным показаниям температуры.
Для того, чтобы сохранить температуру на холодном спае на неизменном уровне во многих термопарах используются компенсирующие резисторы. Резистор находится в том же месте, что и холодный спай, так что температура воздействует на спай и резистор одновременно.
Цепь термопары с компенсирующим резисторомРабочий спай термопары (горячий)
Рабочий спай — это спай, который подвержен воздействию технологического процесса, чья температура измеряется. Ввиду того, что напряжение, генерируемое термопарой прямо пропорционально ее температуре, то при нагревании рабочего спая, он генерирует больше напряжения, а при охлаждении — меньше.
Рабочий спай и холодный спайТипы термопары
Термопары конструируются с учетом диапазона измеряемых температур и могут изготавливаться из комбинаций различных металлов. Комбинация используемых металлов определяет диапазон температур, измеряемых термопарой. По этой причине была разработана маркировка с помощью букв для обозначения различных типов термопар. Каждому типу присвоено соответствующее буквенное обозначение, и это буквенное обозначение указывает на комбинацию используемых металлов в данной термопаре.
Типы термопар и диапазон их температурКогда термопара подключается к электрической цепи, то она не будет работать нормально пока не будет соблюдена полярность при подключении. Плюсовые провода должны быть соединены вместе и подсоединены к плюсовому выводу цепи, а минусовые к минусовому. Если провода перепутать, то рабочий спай и холодный спай не будут в противофазе и показания температуры будут неточными. Одним из способов определения полярности проводов термопары -это определение по цвету изоляции на проводах. Помните, что минусовой провод во всех термопарах — красный.
Цвет изоляции проводов термопарВо многих случаях приходится использовать провода для удлинения протяженности цепи термопары. Цвет изоляции соединительных проводов также несет в себе информацию. Цвет внешней изоляции соединительных проводов — разный, в зависимости от производителя, однако цвет первичной изоляции проводов обычно соответствует кодировке, указанной в таблице выше.
Неисправности термопары
Если термопара выдает неточные показания температуры, и было проверено, что нет ослабленных соединений, то причина может крыться либо в регистрирующем приборе, либо в самой термопаре, первым обычно проверяется регистрирующий прибор, так как приборы чаще выходят из строя, чем термопары.
Более того, если прибор показывает хоть какие-нибудь показания, пусть даже неточные, то, скорей всего, дело не в термопаре. Если термопара неисправна, то обычно она не выдает вообще никакого напряжения, и прибор не будет выдавать никаких показаний. Если показаний на приборе нет совсем, то вероятно дело в термопаре.
Если Вы подозреваете, что термопара вышла из строя, то проверьте ее сигнал на выходе с помощью прибора, который называется милливольтный потенциометр, который используется для измерения малых величин напряжения.
Потенциометрклассификация, как работает, особенности применения
Термопа́ра — устройство основанное на преобразовании электрического сигнала в показатель температуры при изменении физических параметров веществ, из которых состоит прибор. Термопары широко распространены в промышленности, коммунальном хозяйстве, используются в массе бытовых приборов и автомобилях. От самых простых приборов (которые можно встретить в обычных утюгах) до сложных и дорогих (жаростойкие термопластины для измерения температуры на газовых турбинах) их можно встретить везде, где стоит задача измерения температуры.
Как работает термопара?
Термопара состоит из пары проводников из отличающихся материалов, соединенных между собой только с одной стороны.
Регистрирующие приборы (аналоговые, цифровые) измеряют разницу термо-ЭДС возникающих в местах спайки и на концах проводников.
Действие прибора построено на эффекте Зеебека(термоэлектрической эффект). Представьте две проволоки соединенные между собой двумя спайками. Если нагревать/охлаждать одну спайку, то по кольцу потечет ток. Его вызывает термо-ЭДС, которая возникает за счет разности потенциалов между спайками.
Интересное видео о термопарах от НИЯУ МИФИ смотрите ниже:
При одинаковой температуре спаек сума токов в цепи равна нулю – ток не течет. При отличающихся температурах возникает разность потенциалов между спайками. От интенсивности нагревания/охлаждения зависит и разность потенциалов.
Термо-ЭДС можно измерить. Она пропорциональна изменению разности температур на спайках. Самый простой способ измерения параметров тока в таких условиях – гальванометр (применяется для демонстрации эффекта Зеебека).
В современных сложных термопарах применяются электронные средства преобразования сигнала.
Особенности работы с термопарами для точных и высокоточных измерений
- Недостаток большинства термопар – это необходимость градуировки каждого прибора в отдельности.
Для точных измерений на предприятиях-изготовителях каждая термопара проходит отдельные испытания.
- Необходимо вносить поправку на температуру среды измерительных устройств.
- Термопара должна находиться в одинаковых условиях по всей длине измерительного участка.
- Для определения наиболее точного результата можно использовать рядом с основной термопарой контрольные термопары.
- Для точных измерений используют провода с экранами, для уменьшения наводок: токи, вызываемые термо-ЭДС, незначительны по своей величине.
Ещё одно интересное видео о термопарах смотрите ниже:
Классификация термопар, их свойства и сферы применения
В российском ГОСТе применяется трехбуквенное обозначение кириллицей групп термопар, в международной классификации (МЭК) приняты латинские однобуквенные обозначения.
В большинстве случаев группы термопар соответствуют обеим системам классификации.
В таблице даны обозначения по ГОСТу, в скобках приведены аналоги по МЭК:
Тип термопары | Материал | Свойства |
ТХА (К) | Вольфрам + родий | Для работы в нещелочных средах. Измеряет в пределах −250…+2500°С |
ТНН (N) | Никросил+ нисил | Диапазон температур — 0…1230°С, относится к группе универсальных термопар |
ТЖК (J) | Железо + константан | -200 до +750°С дешевый и надежный вариант для промышленности. |
ТМК (Т) | Медь + константан | -250…+ 400°Снедорогие термопары |
ТХК (L) | Хромель+ копель | наибольшая чувствительностью, но ограничены по диапазону измерений – до 600 °С и очень хрупкие. |
ТПП (R, S) | Платинородий + платина | Для работы в газовых средах, окисленных средах. Недостаток – чувствительны к примесям, нагарам, требуют стерильных условий производства. |
ТВР (А-1, А-2, А-3) | Вольфрам + рений | Диапазон измерений -22О0°С в нормальных средах. Сложны в производстве и эксплуатации. |
В таблице приведены наиболее часто встречаемые в сети интернет термопары.
Также существуют другие виды термопар для редких условий работы. Как правило, это штучные приборы, разрабатываемые только под заказ.
Термопары. Виды и состав. Устройство и принцип действия
Преобразователь температуры в электрический ток называется термопарой. Такой термоэлемент используется в преобразовательных и измерительных устройствах, а также во многих системах автоматики. Если рассматривать термопары по международным стандартам, то это два проводника из разных материалов.
Устройство термопары
На одном конце эти проводники соединены между собой для создания термоэлектрического эффекта, позволяющего измерять температуру.
Внешне такое устройство выглядит в виде двух тонких проволочек сваренных на одном конце между собой, образуя маленький шарик. Многие китайские мультиметры имеют в комплекте такие термопреобразователи, что дает возможность измерять температуру разных нагретых элементов устройств. Эти два проводника обычно помещены в стекловолоконную прозрачную трубку. С одной стороны находится аккуратный сварной шарик, а с другой специальные разъемы для подключения к измерительному прибору.
Промышленное оборудование имеет более сложную конструкцию, по сравнению с китайскими термопарами. Рабочий элемент термодатчика заключают в металлический корпус в виде зонда, внутри которого он изолирован керамическими изоляторами, способными выдержать высокую температуру и воздействие агрессивной среды. На производстве таким термодатчиком измеряют температуру в технологических процессах.
Термопары являются наиболее популярным старым термоэлементом, который применяется в различных приборах для измерения температуры. Он обладает высокой надежностью, низкой инертностью, универсален и имеет низкую стоимость. Диапазон измерения различными видами термопар очень широк, и находится в пределах -250 +2500°С. Конструктивные особенности термодатчика не позволяют обеспечить высокую точность измерений, и погрешность может составлять до 2 градусов.
В бытовых условиях термопары используются в паяльниках, газовых духовках и других бытовых устройствах.
Принцип действияРабота рассматриваемого термодатчика заключается в использовании эффекта ученого физика Зеебека, который обнаружил, что при спайке двух разнородных проводов в них образуется термо ЭДС, величина которого возрастает с увеличением нагрева места спайки. Позже это явление назвали термоэлектрическим эффектом Зеебека.
Напряжение, вырабатываемое термопарой, зависит от степени нагревания и вида применяемых металлов. Величина напряжения небольшая, и находится в интервале 1-70 микровольт на один градус.
При подключении такого температурного датчика к измерительному устройству, возникает дополнительный термоэлектрический переход. Поэтому образуется два перехода в разных режимах температуры. Входящий электрический сигнал на измерительном приборе будет зависеть от разности температур двух переходов.
Для измерения абсолютной температуры используют способ, называемый компенсацией холодного спая. Суть этого способа заключается в помещении второго перехода, не находящегося в зоне измерения, в среду образцовой температуры. Раньше для этого применяли обычный способ – размещали второй переход в тающий лед. Сегодня для этого используют вспомогательный температурный датчик, находящийся рядом со вторым переходом. По данным дополнительного термодатчика измерительное устройство корректирует итоги измерения. Это упрощает схему измерения, так как измерительный элемент и термопару совместно с дополнительным компенсатором можно соединить в одно устройство.
РазновидностиТемпературные датчики на основе термопары разделяются по типу применяемых металлов.
Термопары из неблагородных металловЖелезо-константановые:
- Достоинством стала низкая стоимость.
- Нельзя применять при температуре менее ноля градусов, так как на металлическом выводе влага создает коррозию.
- После термического старения показатели измерений возрастают.
- Наибольшая допустимая температура использования +500°С, при более высокой температуре выводы очень быстро окисляются и разрушаются.
- Железо-константановый вид является наиболее подходящим для вакуумной среды.
Хромель-константановые:
- Способны работать при пониженных температурах.
- Материалы электродов обладают термоэлектрической однородностью.
- Их достоинство – повышенная чувствительность.
Медно-константановые термопары:
- Оба электрода отожжены для создания термоэлектрической однородности.
- Не восприимчивы к высокой влажности.
- Нецелесообразно применять при температурах, превышающих 400°С.
- Допускается применение в среде с недостатком или избытком кислорода.
- Допускается применение при температуре ниже 0°С.
Хромель-алюмелевые термопары:
- Серная среда вредно влияет на оба электрода термодатчика.
- Нецелесообразно применять в среде вакуума, так как из электрода Ni-Cr может выделяться хром. Это явление называют миграцией. При этом термодатчик изменяет ЭДС и выдает температуру ниже истинной.
- Снижение показаний после термического старения.
- Применяется в насыщенной кислородом атмосфере или в нейтральной среде.
- В интервале 200-500°С появляется эффект гистерезиса. Это означает, что при охлаждении и нагревании показания отличаются. Разница может достигать 5°С.
- Широко применяются в разных сферах в интервале от -100 до +1000 градусов. Этот диапазон зависит от диаметра электродов.
Нихросил-нисиловые:
- Наиболее высокая точность работы из всех термопар, изготовленных из неблагородных металлов.
- Повышенная стабильность функционирования при температурах 200-500°С. Гистерезис у таких термодатчиков значительно меньше, чем у хромель-алюмелевых датчиков.
- Допускается работа в течение короткого времени при температуре 1250°С.
- Рекомендуемая температура эксплуатации не превышает 1200°С, и зависит от диаметра электродов.
- Этот тип термопары разработан недавно, на основе хромель-алюмелевых термодатчиков, которые могут быстро загрязняться различными примесями при повышенных температурах. Если спаять два электрода с кремнием, то можно заранее искусственно загрязнить датчик. Это позволит уменьшить риск будущего загрязнения при работе.
Платинородий-платиновые:
- Наибольшая рекомендуемая температура эксплуатации 1350°С.
- Допускается кратковременное использование при 1600°С.
- Нецелесообразно использовать при температуре менее 400°С, так как ЭДС будет нелинейной и незначительной.
- При температуре более 1000°С термопара склонна к загрязнению кремнием, содержащимся в керамических изоляторах. Поэтому рекомендуется применять керамические трубки из чистого оксида алюминия.
- Способны работать в окислительной внешней среде.
- Если температура работы более 900°С, то такие термодатчики загрязняются железом, медью, углеродом и водородом, поэтому их запрещается армировать стальными трубками, либо необходимо изолировать электроды керамикой с газонепроницаемыми свойствами.
Платинородий-платинородиевые:
- Оптимальная наибольшая рабочая температура 1500°С.
- Нецелесообразно использование при температуре менее 600°С, где ЭДС нелинейная и незначительная.
- Допускается кратковременное использование при 1750°С.
- Может применяться в окислительной внешней среде.
- При температуре 1000 и более градусов термопара загрязняется кремнием, поэтому рекомендуется применять керамические трубки из чистого оксида алюминия.
- Загрязнение железом, медью и кремнием ниже, по сравнению с предыдущими видами.
- Прочность и надежность конструкции.
- Простой процесс изготовления.
- Спай датчика можно заземлять или соединять с объектом измерения.
- Широкий интервал эксплуатационных температур, что позволяет считать термоэлектрические датчики наиболее высокотемпературными из контактных видов.
- Материал электродов реагирует на химические вещества, и при плохой герметичности корпуса датчика, его работа зависит от атмосферы и агрессивных сред.
- Градуировочная характеристика изменяется из-за коррозии и появления термоэлектрической неоднородности.
- Требуется проверять температуру холодных спаев. В новых устройствах измерительных приборов на базе термодатчиков применяется измерение холодных спаев полупроводниковым сенсором или термистором.
- На большой длине удлинительных и термопарных проводников может появляться эффект «антенны» для имеющихся электромагнитных полей.
- ЭДС зависит от температуры по нелинейному графику, что затрудняет проектирование вторичных преобразователей сигнала.
- Если серьезные требования предъявляются к времени термической инерции термодатчика, и требуется заземлять спай, то необходимо изолировать преобразователь сигнала, чтобы не было утечки тока в землю.
Точность и целостность системы измерений на основе термопарного датчика может быть увеличена, если соблюдать определенные условия:
- Не допускать вибраций и механических натяжений термопарных проводников.
- При применении миниатюрной термопары из тонкой проволоки. Необходимо применять ее только в контролируемом месте, а за этим местом следует применять удлинительные проводники.
- Рекомендуется применять проволоку большого диаметра, не изменяющую температуру измеряемого объекта.
- Использовать термодатчик только в интервале рабочих температур.
- Избегать резких перепадов температуры по длине термодатчика.
- При работе с длинными термодатчиками и удлинительными проводниками, необходимо соединить экран вольтметра с экраном провода.
- Для вспомогательного контроля и температурной диагностики используют специальные температурные датчики с 4-мя термоэлектродами, позволяющими выполнять вспомогательные температурные измерения, сопротивления, напряжения, помех для проверки надежности и целостности термопар.
- Проводить электронную запись событий и постоянно контролировать величину сопротивления термоэлектродов.
- Применять удлиняющие проводники в рабочем интервале и при наименьших перепадах температур.
- Применять качественный защитный чехол для защиты термопарных проводников от вредных условий.
Похожие темы:
Принцип работы термопары. Статья компании Технонагрев
Термопара — это обычный элемент измерения температуры, который очень часто сейчас используется в различном оборудовании. Термопара имеет четкое соответствие сигнала температуры и возникающего электрического потенциала, тем самым делая возможным преобразование электрических параметров в значение температуры.
Принцип работы термопары заключается в том, что когда два разных проводника или полупроводника A и B образуют цепь и два их конца соединены друг с другом, пока температура в двух узлах разная, температура на одном конце равна t ( что называется рабочим концом или горячим концом), а температура на другом конце равна t0 (известном как свободный конец, который также известен как контрольный конец или холодный конец), петля будет генерировать электродвижущую силу, направление и размер которой связаны с материалом проводника и температурой двух контактов.
Это явление называется термоэлектрическим эффектом, а схема, состоящая из двух проводников, называется термопарой. Эти два проводника называются термоэлектрическим полюсом, а генерируемая электродвижущая сила называется термоэлектрической электродвижущей силой.
Термоэлектрическая ЭДС состоит из двух частей. Одна — это контактная ЭДС двух проводников, а другая — ЭДС разности температур одного проводника. Величина термоэлектрической ЭДС в контуре термопары напрямую связана с материалом проводника и температурой двух контактов, но не с формой и размером датчика термопары. Когда два электродных материала термопары зафиксированы, термоэлектрическая ЭДС будет иметь температуру двух контактов t и t0.
Это соотношение широко используется при практическом измерении температуры. Поскольку холодный конец t0 постоянен, термоэлектрическая ЭДС, создаваемая датчиком термопары, изменяется только с температурой горячего конца (измерительного конца), то есть определенная термоэлектрическая ЭДС соответствует определенной температуре. Достичь цели измерения температуры можно только путем измерения термоэлектрической ЭДС.
Основной принцип измерения температуры термопарой заключается в том, что два разных компонента проводников из материала образуют замкнутую цепь.
Когда на обоих концах есть температурный градиент, через цепь будет проходить ток, а затем возникнет электродвижущая сила — термоэлектрическая электродвижущая сила между двумя концами, что является так называемым эффектом Зеебека. Два типа однородных проводников с разными компонентами — это термоэлектрические полюса, один с более высокой температурой — рабочий конец, другой с более низкой температурой — свободный конец, а свободный конец обычно имеет постоянную температуру. В соответствии с функциональным соотношением между термоэлектрической ЭДС и температурой составляется градуированная таблица термопары. Градуировочная таблица получается, когда температура свободного конца составляет 0 ℃, и разные термопары имеют разные градуированные таблицы.
Когда третий металлический материал подключен к цепи термопары, пока температура двух контактов материала одинакова, термоэлектрический потенциал, создаваемый датчиком термопары, останется неизменным, то есть на него не повлияет третий металл в цепи. Следовательно, когда термопара используется для измерения температуры, ее можно подключить к измерительному прибору, и температура измеряемой среды может быть известна после измерения термоэлектрической ЭДС. При измерении температуры термопары необходимо, чтобы температура ее холодного конца (измерительный конец — это горячий конец, а конец, соединенный с измерительной схемой через подводящий провод, называется холодным концом), должна оставаться неизменной, а ее тепловой потенциал пропорционален измеренной температуре. Если температура холодного конца (окружающей среды) изменится во время измерения, это серьезно повлияет на точность измерения. Принятие некоторых мер для компенсации влияния, вызванного изменением температуры холодного конца, называется нормальной компенсацией холодного конца термопары. Специальный компенсационный провод используется для соединения с измерительным прибором.
В компании ТЕХНОНАГРЕВ вы можете заказать изготовление термопар типов К или J с необходимой вам формой и параметрами. Подробнее о наших термопарах смотрите на странице здесь.
| Термопара (термоэлектрический преобразователь) — устройство, применяемое в промышленности, научных исследованиях, медицине, в системах автоматики для измерения температуры. Термопара (термоэлектрический преобразователь) — это два проводника из разных материалов, спаянных с одной стороны (горячий спай) и свободных с другой стороны (холодный спай- условный спай). Приспособление несложное, и принцип действия тоже – когда термопара нагревается или охлаждается, разные металлы меняют температуру с разной скоростью, и разница позволяет возникнуть термоэлектродвижущей силе (ЭДС), или, говоря другими словами, происходит эффект Зеебека. Благодаря этому удается измерить температуру. Непосредственное участие в измерении ложится на горячий спай, а свободные концы подключаются к измерительному прибору. Главной характеристикой термопар, является их Тип, который определяется разновидностью спаянных металлов. На прибор от термопары поступает напряжение в милливольтах, которое он сопоставляет с таблицей напряжений (согласно типу термопары), таблица заложена в памяти прибора и отражает текущее значение измерения.
Периодически у многих клиентов возникают проблемы с определением типа термопары, когда нет описательных характеристик и необходимо подобрать замену или аналог. Решить ее довольно просто, главное знать принципы классификации термопар. В системе классификации термоэлементов есть цветовая маркировка изоляции проводников. Например, европейская классификация по сплавам для термопар Тип L (Fe-CuNi) и Тип J (Fe-CuNi) одинаковая, очень важно понимать что они не взаимозаменяемые и напряжение на выходе при одной и той же температуре у этих термопар будет разное. Таблица стандартов по цветовой маркировке изоляции проводов будет очень полезна в определении типа термопары, если нет никакой маркировки. Также необходимо отметить разновидность исполнения сенсорной части (горячего спая) термопар. Они бывают с изолированным и неизолированным рабочим спаем. Показатель быстродействия при измерении температуры у неизолированной термопары выше, чем у изолированной. Но при этом усложняется схема подключения и требуются изолированные модули ввода. Поскольку разница в быстродействии не столь существенна, в основном используются термопары с изолированным спаем. Как и все измерители температуры, термопары имеют классификацию по точности. Для примера классы точности Тип K и Тип J, самых распространенных в использовании термопар Класс 1: ±1.5 °C или ±0.004 x T (Тип K: -40 до +1000 °C), (Тип J :-40 до +750 °C) Класс 2: ±2.5 °C или ±0.0075 x T (Тип K: -40 до +1200 °C), (Тип J :-40 до +750 °C) Технические характеристики наиболее популярных термоэлектрических преобразователей (термопар) в соответствии с ГОСТ 3044 приведены в таблице:
Многие клиенты заблуждаются в том, что если типу термопары соответствует рабочий диапазон, например, 1200оС, то все модели термопары с этим типом будут работать в данном диапазоне. Незащищенный спай термопары быстро выгорит, и термопара выйдет из строя. Именно поэтому, сообразно задачам в измерении и рабочим диапазонам, есть разные по конструктиву и степени защиты модели термопар. Самой распространенной защитой для спая/термопары является металлический чехол или гильза из сплава Инконель 600 (2.4816, жаропрочный сплав на никелевой основе). Изоляцией для спая служит окись магния (MgO), сжатая под давлением. Такая защита делает термопару устойчивой к самым экстремальным условиям эксплуатации (повышенное давление, вибрация, сотрясения), позволяет выдерживать высокие механические нагрузки и обеспечивает долгий срок службы термопары, а также в зависимости от диаметра позволяет термопаре быть гибкой. Ярким примером такой термопары, которая достаточно универсальна в своем прикладном характере, является термопара в жаропрочной оболочке MKG/E: Поскольку сферы применения термопар очень многогранны, то и модификации термопар имеют достаточное многообразие. Например, для измерения температуры вязких веществ в экструдерах или измерении температуры подшипников, часто используются байонетные термопары. Такие, как BF1/T или BF2/T. В пищевой промышленности часто используются прокалывающие термопары, для измерения температуры продукта. Это может быть просто необходимым условием, чтобы соблюдать технологический процесс. Обращаем ваше внимание на то, что очень часто для сохранения точности в измерении температуры посредством термопар, требуются особые компоненты для их подключения, это коннекторы и компенсационный кабель.
Термопары самых различных модификаций Вы сможете найти в нашем каталоге, это позволит решить вам задачи по измерению температуры с уверенностью в надежности и качестве. Важно отметить, что немецкая компания FuehlerSysteme может изготовить для вас термопары по вашим чертежам и с учетом ваших пожеланий, в том числе в минимальных количествах, небольшими партиями, ведь ни для кого не секрет, что термопары очень часто требуется подобрать под индивидуальные нужды клиента. Нам по силам: изменить диаметр и длину измерительной части, увеличить до необходимого длину кабеля и подобрать его изоляцию. Возможно изготовление индивидуальных модификаций по вашим чертежам.
Область применения термопар очень широка, и, как правило, заменить их нельзя никаким другим прибором. Вот лишь некоторые из способов использования термопар:
Почти каждый и нас в той или иной степени сталкивается с применением термопар, поэтому полезно иметь о них хотя бы общее представление. Надеемся , что данная статья была полезна для вас, но если у вас остались вопросы, то мы с радостью ответим на них по телефонам по телефонам 8 (800) 500-09-67 и 8 (812) 340-00-57. |
Термопары-Термопары-Что такое термопара-Типы термопар
Добро пожаловать на ThermocoupleInfo.com!
Что такое термопара?Термопара — это датчик, используемый для измерения температуры. Термопары состоят из двух проводов из разных металлов. Ножки проволоки свариваются на одном конце, образуя стык. Это место, где измеряется температура. Когда соединение испытывает изменение температуры, создается напряжение.Затем напряжение можно интерпретировать с помощью справочных таблиц термопар для расчета температуры.
Существует много типов термопар, каждая из которых имеет свои уникальные характеристики с точки зрения температурного диапазона, долговечности, вибростойкости, химической стойкости и совместимости с областями применения. Типы J, K, T и E — это термопары из «недрагоценных металлов», наиболее распространенные типы термопар. Термопары типов R, S и B — это термопары из благородных металлов, которые используются в высокотемпературных приложениях (см. Подробные сведения о диапазонах температур термопар. ).
Термопары используются во многих промышленных, научных и OEM-приложениях. Их можно найти практически на всех промышленных рынках: электроэнергетика, нефть / газ, Фармацевтика, биотехнологии, цемент, бумага и целлюлоза и т. Д. Термопары также используется в бытовых приборах, таких как плиты, топки и тостеры.
Термопары обычно выбираются из-за их низкой стоимости и высокой температуры.
ограничения, широкий диапазон температур и прочный характер.
Прежде чем обсуждать различные типы термопар, следует отметить, что термопары часто заключают в защитную оболочку, чтобы изолировать ее от окружающей атмосферы. Эта защитная оболочка значительно снижает воздействие коррозии. Термопара типа K (никель-хром / никель-алюмель): тип K является наиболее распространенным типом термопар. Он недорогой, точный, надежный и имеет широкий температурный диапазон.
Диапазон температур:
- Провод для термопар, от –454 до 2300F (от –270 до 1260 ° C)
- Удлинительный провод, от 32 до 392F (от 0 до 200C)
Точность (в зависимости от того, что больше):
- Стандарт: +/- 2.2C или +/- 0,75%
- Специальные пределы погрешности: +/- 1,1 ° C или 0,4%
Термопара типа J (железо / константан): Тип J также очень распространен. Он имеет меньший температурный диапазон и более короткий срок службы при более высоких температурах, чем тип K. Он эквивалентен типу K с точки зрения затрат и надежности.
Диапазон температур:
- Провод для термопар, от -346 до 1400F (от -210 до 760 ° C)
- Удлинительный провод, от 32 до 392F (от 0 до 200C)
Точность (в зависимости от того, что больше):
- Стандарт: +/- 2.2C или +/- 0,75%
- Специальные пределы погрешности: +/- 1,1 ° C или 0,4%
Термопара типа T (медь / константан): термопара типа T является очень стабильной и часто используется в приложениях с очень низкими температурами, таких как криогенная техника или морозильники со сверхнизкой температурой.
Диапазон температур:
- Провод для термопар, от -454 до 700F (от -270 до 370C)
- Удлинительный провод, от 32 до 392F (от 0 до 200C)
Точность (в зависимости от того, что больше):
- Стандарт: +/- 1.0C или +/- 0,75%
- Специальные пределы погрешности: +/- 0,5 ° C или 0,4%
Термопара типа E (никель-хром / константан): тип E имеет более сильный сигнал и более высокую точность, чем тип K или тип J, в умеренных диапазонах температур от 1000F и ниже. См. Температурную диаграмму (ссылка) для получения подробной информации.
Диапазон температур:
- Провод для термопар, от -454 до 1600F (от -270 до 870C)
- Удлинительный провод, от 32 до 392F (от 0 до 200C)
Точность (в зависимости от того, что больше):
- Стандарт: +/- 1.7C или +/- 0,5%
- Специальные пределы погрешности: +/- 1,0 ° C или 0,4%
Термопара типа N (Nicrosil / Nisil): Тип N имеет те же пределы точности и температуры, что и Тип K. Тип N немного дороже.
Диапазон температур:
- Провод для термопар, от -454 до 2300F (от -270 до 392 ° C)
- Удлинительный провод, от 32 до 392F (от 0 до 200C)
Точность (в зависимости от того, что больше):
- Стандарт: +/- 2.2C или +/- 0,75%
- Специальные пределы погрешности: +/- 1,1 ° C или 0,4%
ТЕРМОПАРЫ NOBLE METAL (Тип S, R и B):
Термопары из благородных металлов выбраны за их способность выдерживать чрезвычайно высокие температуры, сохраняя при этом свою точность и срок службы. Они значительно дороже термопар из недрагоценных металлов.
Термопара типа S (платина родий — 10% / платина): Тип S используется в приложениях с очень высокими температурами.Обычно он используется в биотехнологической и фармацевтической отраслях. Иногда он используется в приложениях с более низкими температурами из-за его высокой точности и стабильности.
Диапазон температур:
- Провод для термопар, от -58 до 2700F (от -50 до 1480C)
- Удлинительный провод, от 32 до 392F (от 0 до 200C)
Точность (в зависимости от того, что больше):
- Стандарт: +/- 1,5 ° C или +/- 0,25%
- Специальные пределы погрешности: +/- 0.6C или 0,1%
Термопара типа R (платина-родий -13% / платина): Тип R используется при очень высоких температурах. Он имеет более высокий процент родия, чем тип S, что делает его более дорогим. Type R очень похож на Type S с точки зрения производительности. Иногда он используется в приложениях с более низкими температурами из-за его высокой точности и стабильности.
Диапазон температур:
- Провод для термопар, от -58 до 2700F (от -50 до 1480C)
- Удлинительный провод, от 32 до 392F (от 0 до 200C)
Точность (в зависимости от того, что больше):
- Стандарт: +/- 1.5C или +/- 0,25%
- Специальные пределы погрешности: +/- 0,6 ° C или 0,1%
Термопара типа B (платина родий — 30% / платина родий — 6%): термопара типа B используется в приложениях с очень высокими температурами. У него самый высокий температурный предел из всех термопар, перечисленных выше. Он поддерживает высокий уровень точности и стабильности при очень высоких температурах.
Диапазон температур:
- Провод для термопар, от 32 до 3100F (от 0 до 1700C)
- Удлинительный провод, от 32 до 212F (от 0 до 100C)
Точность (в зависимости от того, что больше):
- Стандарт: +/- 0.5%
- Специальные пределы погрешности: +/- 0,25%
Заземленные термопары: это наиболее распространенный тип спая. Термопара заземляется, когда оба провода термопары и оболочка свариваются вместе, образуя одно соединение на конце зонда. Заземленные термопары имеют очень хорошее время отклика, потому что термопара находится в прямом контакте с оболочкой, что позволяет легко передавать тепло. Недостатком заземленной термопары является то, что термопара более восприимчива к электрическим помехам.Это связано с тем, что оболочка часто соприкасается с окружающей областью, создавая путь для помех.
Незаземленные термопары (или незаземленные обычные термопары): термопара не заземлена, когда провода термопары свариваются вместе, но они изолированы от оболочки. Провода часто разделены минеральной изоляцией.
Открытые термопары (или «термопары с неизолированной проволокой»): термопара становится оголенной, когда провода термопары свариваются вместе и непосредственно вставляются в технологический процесс.Время отклика очень быстрое, но оголенные провода термопары более подвержены коррозии и разрушению. Если ваше приложение не требует открытых соединений, этот стиль не рекомендуется.
Незаземленная Необычная: Незаземленная нестандартная термопара состоит из двойной термопары, изолированной от оболочки, и каждый из элементов изолирован друг от друга.
Сравнение оболочки термопары:
316SS (нержавеющая сталь): это наиболее распространенный материал оболочки.Он относительно устойчив к коррозии и экономичен.
304SS: Эта оболочка не так устойчива к коррозии, как 316SS. Разница в стоимости между 316SS и 304SS является номинальной.
Inconel (зарегистрированная торговая марка) 600: Этот материал рекомендуется для высококоррозионных сред.
Каковы специальные пределы ошибок (SLE)?
Особые пределы погрешности: эти термопары изготовлены из термопарного провода более высокого качества, что увеличивает их точность.Они дороже стандартных термопар. Стандартные пределы погрешности: в этих термопарах используется стандартный провод «класса термопар». Они менее дорогие и более распространенные.
М.И. Кабель (с минеральной изоляцией) используется для изоляции проводов термопар друг от друга и от металлической оболочки, которая их окружает. Кабель MI имеет два (или четыре в дуплексном режиме) провода термопары, идущие по середине трубки. Затем трубка заполняется порошком оксида магния и уплотняется, чтобы обеспечить надлежащую изоляцию и разделение проводов.Кабель MI помогает защитить провод термопары от коррозии и электрических помех.
Системная ошибка вычисляется путем сложения точности датчика температуры (термопары) и точности измерителя, используемого для считывания сигнала напряжения. Например, термопара типа K имеет точность +/- 2,2 ° C выше 0 ° C. Допустим, счетчик имеет точность +/- 1С. Это означает, что общая погрешность системы составляет +/- 3,3 ° C выше 0 ° C.
Диапазон температур:
Во-первых, учтите разницу в диапазонах температур.Термопары из благородных металлов могут достигать 3100 F, в то время как стандартные RTD имеют предел 600 F, а RTD с расширенным диапазоном имеют предел 1100 F.
Стоимость:
Термопара с простым штоком в 2–3 раза дешевле, чем RTD с простым штоком. Узел головки термопары примерно на 50% дешевле, чем узел эквивалентной головки RTD.
Точность, линейность и стабильность:
Как правило, RTD более точны, чем термопары.Особенно это актуально в более низких диапазонах температур. RTD также более стабильны и имеют лучшую линейность, чем термопары. Если точность, линейность и стабильность являются вашими первоочередными задачами, и ваше приложение находится в пределах температурных пределов RTD, выберите RTD.
Прочность:
В сенсорной индустрии RTD считаются менее прочным сенсором по сравнению с термопарами. Однако REOTEMP разработал производственные технологии, которые значительно повысили долговечность наших датчиков RTD.Эти методы делают RTD REOTEMP почти эквивалентными термопарам с точки зрения долговечности.
Время отклика:
RTD не могут быть заземлены. По этой причине у них более медленное время отклика, чем у заземленных термопар. Кроме того, термопары могут быть размещены внутри оболочки меньшего диаметра, чем RTD. Меньший диаметр оболочки увеличивает время отклика. Например, заземленная термопара внутри диаметром 1/16 дюйма. оболочка будет иметь более быстрое время отклика, чем RTD диаметром ¼ ”.ножны.
Материал термопары — обзор
Поскольку этот результат достаточно сложен для получения, может быть проще решить проблему методом проб и ошибок, используя электронную таблицу.
Пример 5.2
Нам нужен холодильник, способный отводить 10 Вт из холодильной камеры при −5 C, отводя тепло в окружающую среду при 30 C.
Из-за перепадов температуры в теплообменниках, холодный спай должен быть при –15 C и горячем при 40 C.
Материалы термопары имеют следующие характеристики:
- 1.
α = 0,0006V / K,
- 2.
λA = 0,015Вт см-1K-1,
- 3.
ρA = 0,002 Ом · см,
- 4.
λB = 0,010 Вт · см-1K-1,
- 5.
ρB = 0,003 Ом · см.
Температуры:
- 1.
TH = 313K (40 C),
- 2.
TC = 258K (-15C).
Для оптимальной геометрии
(5,99) ΛR≡β = 0,015 × 0,002 + 0,010 × 0,0032 = 120 × 10-6V2 / K.
Применение уравнений 5.96, 5.97 и
(5.100) TA = 55 + 2 × 258 = 571 кельвинов
(5.101) B = 4 × 120 × 10-6 + 2 × 0,00062 × 571 = 0,02985V / K-1 / 2
(5,102) R = -2 × 552 × 120 × 10-62 × 120 × 10-6 + 0,00062 × 571 + 0,029850,00062 × (120 × 10-6) 1/2 × 55 × 258 × 571 -2 × (120 × 10-6) 3/2 × 552 / 0,00062 × 5712PC = 0,00335PC
Для этого приложения одна термопара потребляет слишком большой ток и требует слишком низкого напряжения.Лучшей стратегией было бы использовать 100 термопар, соединенных последовательно электрически и параллельно термически. Следовательно, мы хотим накачать 0,1 Вт на термопару. (PC = 0,1 Вт),
(5,103) R = 0,0335 Ом.
Соответствующая теплопроводность равна по уравнению 5.99
(5.104) Λ = βR = 120 × 10-60,0335 = 0,00358 Вт / K
Требуемый ток можно найти из уравнения 5.94(5.105) I = 0,0006 × 258 -0,00062 × 2582-2 × 120 × 10-6 × 55-2 × 0,1 × 0,03350,0335 = 2,72 А.
Входная электрическая мощность
(5.106) PE = αΔTI + RI2 = 0,0006 × 55 × 2,72 + 0,00335 × 2,722 = 0,337 Вт
А коэффициент полезного действия равен
(5,107) ϕC = 0,10,337 = 0,296.
Мы можем получить это же значение, используя уравнение 5.95
Теперь у нас есть требуемые значения R и Λ. Мы должны определить геометрию двух рук. Это облегчает сборку термопары, если оба плеча имеют одинаковую длину,, то есть, если ℓA = ℓB≡ℓ.
(5.108) R = ρAℓAA + ρBℓAB
Используя значения в нашем примере,
(5.109) ℓ = 0,03350,002AA + 0,003AB
(5.110) Λ = λAAAℓ + λBABℓ
и(5.111) ℓ = 0,015AA + 0,01AB0.003580
Приравнивая уравнение 5.109 к уравнению 5.111, получаем
( 5.112) AA = 32AB
Далее нам нужно определить максимально допустимую плотность тока Jmax. Мы можем предположить, что Jmax = 300A / см2, и что максимально допустимый ток через термопару составляет 4 A (предполагается, что он работает при 2,7 A.) Это устанавливает приблизительную площадь для AA = 4/300 = 0,013 см2. Значение AB равно 0.02 см2, а длина каждого плеча согласно уравнению 5.109 составляет 0,11 см.
Требуемое напряжение для накачки 10 Вт составляет
(5,113) В = 100PEI = 100 × 0,3372,72 = 12,4 В.
Что такое термопара? | Variohm
Термопара — это тип датчика температуры. Они известны своей универсальностью и могут измерять температуру в широком диапазоне. Они используют электрические токи и различные типы металлов для измерения температуры.
Термопарыявляются частью ассортимента нашей продукции здесь, в компании Variohm.
Как работает термопара?Термопара состоит из двух разных металлов, соединенных на обоих концах. Для измерения температуры один конец термопары подвергается нагреву, когда это происходит, через цепь протекает непрерывный ток, ток протекает только в том случае, если температура одного спая отличается от температуры другого спая. Воздействие более высокой температуры приведет к ускорению протекания тока, скорость тока может быть измерена, и это может быть преобразовано в измерение температуры.Это будет зависеть от типа металлов, используемых в термопаре.
Различные типы термопарСуществуют разные типы термопар, их можно различить по разным металлам, которые они используют в них. У каждого типа будут разные параметры, так как скорость тока будет зависеть от разной температуры в зависимости от используемого металла.
Наиболее распространенные типы термопар: E, J, K, N и T, сравнительная таблица ниже дает больше информации по каждому типу
Тип | Использованные металлы (+ и-) | Диапазон температур (° C) |
E | Никель-хром и константан | 95–900 |
Дж | Железо и константан | 95–760 |
К | Никель-хром и никель-алюминий | 95–1260 |
N | Никросил и Нисил | 650–1260 |
Т | Медь и константан | 200–350 |
Заземленные термопары являются наиболее распространенным типом термопар, и провода термопары, и оболочка свариваются вместе, образуя одно соединение на конце или наконечнике термопары.У них очень хорошее время отклика, так как сама термопара непосредственно контактирует с оболочкой, что позволяет быстро и легко передавать тепло. Однако термопара более восприимчива к электрическим помехам в этом формате, поскольку оболочка может контактировать с атмосферой, что может вызвать помехи.
Незаземленные термопары имеют провода, сваренные вместе, но они изолированы от оболочки, что делает их более стабильными.
Открытые термопары имеют проволоку, свариваемую вместе, а затем непосредственно вставляются в приложение.Это обеспечивает чрезвычайно быстрое время отклика, но оставляет провода открытыми для коррозии. Этот стиль рекомендуется только в том случае, если приложение требует открытых соединений.
Для чего используется термопара?Поскольку термопары могут измерять такой широкий температурный диапазон, они используются во многих различных отраслях промышленности, некоторые из их применений включают:
- Промышленное применение
- Научные приложения
- OEM приложений
- Производство электроэнергии
- Нефть и газ
- Фармацевтическая
- BioTech
- Бумага и целлюлоза
- Цемент
- Бытовая техника — плиты, печи, тостеры и др.
часто выбирают из-за их широкого диапазона температур, быстрого времени отклика и низкой стоимости.
Основные недостатки использования термопар заключаются в том, что они не так надежны, как альтернативные варианты измерения температуры; например, RTD имеют тенденцию быть более точными.
Термопары от VariohmУ нас есть ассортимент термопар на нашем веб-сайте, их можно найти в разделе температуры.
Большинство наших термопар изготавливаются на заказ, поэтому для получения дополнительной информации о термопарах свяжитесь с нами.
Как узнать, неисправна ли ваша термопара
Как и другие компоненты в вашей печи, термопара со временем изнашивается, создавая более низкое напряжение, чем должно, при нагревании. И хуже всего то, что у вас может быть плохая термопара, даже не зная об этом.
Следовательно, осмотр и тестирование термопары должны быть частью технического обслуживания печи.Однако не забудьте проверить перед тестированием, чтобы убедиться, что нет очевидных проблем, которые могут повлиять на показания во время тестирования!
Если вам неудобно выполнять этот тест самостоятельно, обязательно позвоните лицензированному подрядчику по ОВК, который сможет вам помочь.
Как работает термопара?
Термопара — это небольшое электрическое устройство, но оно является важным элементом безопасности вашей печи. Термопара реагирует на изменения температуры, производя электрический ток, который заставляет газовый клапан, который подает пилотный свет, открываться, когда температура высока, или закрываться, когда нет прямого источника тепла.
Как проверить термопару вашей печи
Для проведения теста вам потребуются гаечный ключ, мультиметр и источник пламени, например свеча или зажигалка.
Шаг 1. Осмотрите термопару
Как выглядит термопара и как вы ее находите? Термопара вашей печи обычно находится прямо в пламени запальной лампы печи. Его медная трубка позволяет легко обнаружить.
Термопара состоит из трубки, кронштейна и проводов.Трубка находится над кронштейном, гайка удерживает кронштейн и провода на месте, а под кронштейном вы увидите медные подводящие провода, которые соединяются с газовым клапаном на печи.
Некоторые термопары будут выглядеть немного иначе, поэтому обратитесь к руководству по эксплуатации печи.
Признаки неисправности термопары
После того, как вы обнаружите термопару, произведите визуальный осмотр. Вы ищете несколько вещей.
- Первый — это признаков загрязнения трубки , которые могут включать обесцвечивание, трещины или проколы.
- Затем, , проверьте проводку на предмет износа или коррозии. , например, отсутствие изоляции или оголенный провод.
- Наконец, визуально осмотрите разъемы на предмет физических повреждений , потому что неисправный разъем может повлиять на надежность показаний теста.
Если вы не видите или не обнаруживаете проблемы, продолжите тест.
Шаг 2: Проверка обрыва цепи термопары
* Примечание. Если у вас нет опыта, мы рекомендуем вызвать лицензированного подрядчика по отоплению для проведения теста!
- Перед испытанием отключите подачу газа, так как сначала необходимо снять термопару.
- Снимите термопару, отвинтив медный провод и соединительную гайку (сначала), а затем гайки кронштейна.
- Затем возьмите свой измеритель и установите его на сопротивление. Возьмите два провода от измерителя и прикоснитесь к ним — счетчик должен показывать ноль. Как только эта проверка будет завершена, снова включите измеритель вольт.
- Для фактического испытания включите источник пламени и поместите кончик термопары в пламя, оставив его там, пока он не станет достаточно горячим.
- Затем присоедините провода от мультиметра к термопаре: положите один на сторону термопары, а другой присоедините к концу термопары, который находится в контрольной лампе.
- Рабочая термопара дает показание от 25 до 30 миллиметров. Если показание меньше 25 миллиметров, его следует заменить.
Вызов специалистов по воздуху для ремонта термопар печи в Роли, Северная Каролина!
Для домовладельцев из Северной Каролины специалисты компании Air Experts могут проверить термопару и все остальные компоненты своей газовой печи во время ремонта газовой печи.
Позвоните специалистам по воздуху по телефону 919-480-2727 или свяжитесь с нами онлайн сегодня, чтобы запланировать ремонт печи!
Ссылки по теме
Вам нужен аварийный ремонт печи? »
Почему моя печь не загорается? »
Pyromation | Типы термопар | Тип J, Тип K, Тип N, Тип T, Тип E, Тип R, Тип S, Тип B, Тип C
Термопара состоит из сварного «горячего» спая между двумя разнородными металлами — обычно проводами — и эталонным спаем на противоположном конце.Металлические сплавы, выбранные в качестве Провода положительной и отрицательной ветви термопары определяют тип термопары. Выбор подходящего типа термопары для конкретного применения определяется температурой. ожиданиями и окружающей средой, в которой будет размещен датчик.
Далее следуют популярные общие и торговые названия для наиболее распространенных комбинаций проводов типа термопар, а также типичные области применения и ограничения для каждой из них.
Термопара типа K
Комбинация сплавов: Chromel® / Alumel® Темп.Диапазон: (от 0 до 1260) ° C [от 32 до 2300] ° F
Термопары типа K рекомендуются для непрерывной окислительной или нейтральной атмосферы и обычно используются при температурах выше 538 ° C [1000 ° F]. Они могут выйти из строя, если подвергается воздействию серы. Предпочтительное окисление хрома в положительной ветви при определенных низких концентрациях кислорода вызывает в большинстве случаев « зеленую гниль » и большие отрицательные калибровочные дрейфы. серьезные в диапазоне (от 816 до 1038) ° C [от 1500 до 1900] ° F. Эти проблемы могут предотвратить вентиляция или инертное уплотнение защитной трубки.
Термопара типа J
Комбинация сплавов: железо / константан Темп. Диапазон: (от 0 до 760) ° C [от 32 до 1400] ° F
Термопара типа J подходит для вакуума, восстановительной или инертной атмосферы, окислительной атмосферы с уменьшенным сроком службы. Железо быстро окисляется при температуре выше 538 ° C [1000 ° F], поэтому только Для высокотемпературных применений рекомендуется проволока большого сечения. Открытые элементы не должны подвергаться воздействию сернистой атмосферы выше 538 ° C [1000 ° F].
Термопара типа T
Комбинация сплавов: медь / константан Темп. Диапазон: (от -200 до 370) ° C [от -328 до 700] ° F
Термопары типа T могут использоваться в окислительной, восстановительной или инертной атмосфере, а также в условиях вакуума. Они не подвержены коррозии во влажной атмосфере. См. Наш каталог «Пределы погрешности», опубликованный для диапазонов температур ниже нуля.
Термопара типа E
Комбинация сплавов: Chromel® / Constantan Temp.Диапазон: (от 0 до 870) ° C [от 32 до 1600] ° F
Термопары типа E рекомендуются для работы в окислительной или инертной атмосфере. Минусовые пределы погрешности не установлены. Этот тип имеет самую высокую термоэлектрическую вывод общих калибровок.
Термопара типа N
Комбинация сплавов: Nicrosil® / Nisil® Temp. Диапазон: (от 0 до 1260) ° C [от 32 до 2300] ° F
Термопары типа N могут использоваться в приложениях, где элементы типа K имеют более короткий срок службы и проблемы со стабильностью из-за окисления и развития «зеленой гнили».
Термопара типа S и термопара типа R
Комбинация сплавов типа S: платина / платина (10% родий)
Комбинация сплавов типа R: платина / платина (13% родий)
Темп. Диапазон: (от 538 до 1481) ° C [от 1000 до 2700] ° F
Очевидно, что термопары типов S и R очень похожи. Оба они рекомендуются для высокотемпературных применений и должны быть защищены неметаллическим покрытием. защитная гильза и керамические изоляторы.Продолжительное использование при высоких температурах вызывает рост зерна, что может привести к механическому повреждению. Отрицательный дрейф калибровки может быть вызвано диффузией родия в чистую ветвь, а также испарением родия. Термопара типа R используется в промышленности, а тип S — в лаборатории.
Термопара типа B
Комбинация сплавов: платина (6% родий) / платина (30% родий)
Темп. Диапазон: (871–1704) ° C [1600–3100] ° F
Термопара типа B очень похожа на тип R и тип S, но мощность ниже.Он также менее подвержен разрастанию и сносу зерна.
Ищете термопары в сборе по стилю? См. Нашу страницу о термопарах.
Ищете точные характеристики? Смотрите наш каталог.
Chromel и Alumel являются зарегистрированными товарными знаками Hoskins Mfg. Co.
.Nicrosil и Nisil являются зарегистрированными товарными знаками Amax Specialty Metals Corp.
Два способа измерения температуры с помощью термопар: простота, точность и гибкость
Введение
Термопара — это простой и широко используемый компонент для измерения температуры.В этой статье представлен базовый обзор термопар, описаны общие проблемы, возникающие при их проектировании, и предложены два решения по преобразованию сигналов. Первое решение сочетает в себе компенсацию холодного спая и преобразование сигнала в одной аналоговой ИС для удобства и простоты использования; Второе решение отделяет компенсацию холодного спая от обработки сигнала, чтобы обеспечить измерение температуры на цифровом выходе с большей гибкостью и точностью.
Теория термопар
Термопара, показанная на рисунке 1, состоит из двух проводов из разнородных металлов, соединенных вместе на одном конце, называемых измеряемым («горячим») спаем.Другой конец, где провода не соединены, подключается к дорожкам схемы преобразования сигнала, обычно сделанным из меди. Этот спай между металлами термопары и медными дорожками называется эталонным спаем («холодный»). *
Рисунок 1. Термопара.* Мы используем термины «измерительный спай» и «эталонный спай», а не более традиционные «горячий спай» и «холодный спай». Традиционная система именования может сбивать с толку, потому что во многих приложениях измерительный спай может быть холоднее эталонного спая.
Напряжение, создаваемое на эталонном спаях, зависит от температуры как на измерительном, так и в эталонном спайах. Поскольку термопара представляет собой дифференциальное устройство, а не устройство для измерения абсолютной температуры, для получения точных абсолютных показаний температуры необходимо знать температуру эталонного спая. Этот процесс известен как компенсация холодного спая (компенсация холодного спая).
Термопарыстали промышленным стандартом для экономичного измерения широкого диапазона температур с разумной точностью.Они используются в различных областях применения при температурах до + 2500 ° C в котлах, водонагревателях, печах и авиационных двигателях — и это лишь некоторые из них. Самой популярной термопарой является термопара типа K , состоящая из Chromel ® и Alumel ® (никелевые сплавы с товарными знаками, содержащие хром и алюминий , марганец и кремний, соответственно), с диапазоном измерения — От 200 ° C до + 1250 ° C.
Зачем нужна термопара?
Преимущества
- Температурный диапазон: Большинство практических температурных диапазонов, от криогенных до выхлопа реактивных двигателей, можно обслуживать с помощью термопар.В зависимости от используемой металлической проволоки термопара может измерять температуру в диапазоне от –200 ° C до + 2500 ° C.
- Надежность: термопары — это надежные устройства, невосприимчивые к ударам и вибрации и подходящие для использования во взрывоопасных средах.
- Быстрый отклик. Поскольку термопары маленькие и обладают низкой теплоемкостью, они быстро реагируют на изменения температуры, особенно если чувствительный спай обнажен. Они могут реагировать на быстро меняющиеся температуры в течение нескольких сотен миллисекунд.
- Без самонагрева: поскольку термопарам не требуется мощность возбуждения, они не склонны к самонагреву и искробезопасны.
Недостатки
- Комплексное преобразование сигнала: требуется существенное преобразование сигнала для преобразования напряжения термопары в пригодное для использования значение температуры. Традиционно преобразование сигнала требовало больших затрат времени на разработку, чтобы избежать ошибок, снижающих точность.
- Точность: В дополнение к присущей термопарам неточности из-за их металлургических свойств, измерение термопары является настолько точным, насколько может быть измерена температура эталонного спая, обычно в пределах от 1 ° C до 2 ° C.
- Восприимчивость к коррозии: поскольку термопары состоят из двух разнородных металлов, в некоторых средах коррозия со временем может привести к снижению точности. Следовательно, им может потребоваться защита; и уход и обслуживание имеют важное значение.
- Восприимчивость к шуму: при измерении изменений сигнала микровольтного уровня могут возникнуть проблемы с шумом от паразитных электрических и магнитных полей. Скручивание пары проводов термопары может значительно уменьшить наводку магнитного поля. Использование экранированного кабеля или прокладки проводов в металлическом кабелепроводе и ограждении может уменьшить наводку электрического поля.Измерительный прибор должен обеспечивать фильтрацию сигнала аппаратно или программно с сильным подавлением частоты сети (50 Гц / 60 Гц) и ее гармоник.
Трудности измерения с помощью термопар
Преобразовать напряжение, генерируемое термопарой, в точное показание температуры непросто по многим причинам: сигнал напряжения мал, зависимость температуры от напряжения нелинейная, требуется компенсация холодного спая, а термопары могут создавать проблемы с заземлением.Давайте рассмотрим эти вопросы по порядку.
Сигнал напряжения мал: Наиболее распространенными типами термопар являются J, K и T. При комнатной температуре их напряжение изменяется на 52 мкВ / ° C, 41 мкВ / ° C и 41 мкВ / ° C соответственно. Другие, менее распространенные типы имеют еще меньшее изменение напряжения с температурой. Этот слабый сигнал требует каскада с высоким коэффициентом усиления перед аналого-цифровым преобразованием. В таблице 1 сравниваются чувствительности различных типов термопар.
Таблица 1. Изменение напряжения в зависимости отПовышение температуры
(коэффициент Зеебека) для различных типов термопар при 25 ° C.
Термопара Тип | Коэффициент Зеебека (мкВ / ° C) |
E | 61 |
Дж | 52 |
К | 41 |
N | 27 |
R | 9 |
S | 6 |
Т | 41 |
Поскольку сигнал напряжения мал, схема преобразования сигнала обычно требует усиления около 100 или около того — довольно простое преобразование сигнала.Что может быть сложнее, так это отличить реальный сигнал от шума, улавливаемого выводами термопары. Провода термопары длинные и часто проходят в среде с электрическими помехами. Шум, улавливаемый проводами, может легко подавить крошечный сигнал термопары.
Для выделения сигнала из шума обычно комбинируют два подхода. Первый заключается в использовании усилителя с дифференциальным входом, такого как инструментальный усилитель, для усиления сигнала. Поскольку большая часть шума возникает на обоих проводах (, синфазный, ), дифференциальное измерение устраняет его.Второй — это фильтрация нижних частот, которая удаляет внеполосный шум. Фильтр нижних частот должен устранять как радиочастотные помехи (выше 1 МГц), которые могут вызвать выпрямление в усилителе, так и 50 Гц / 60 Гц (источник питания) фон . Важно установить фильтр радиопомех перед усилителем (или использовать усилитель с фильтрами на входах). Расположение фильтра 50/60 Гц часто не имеет решающего значения — его можно комбинировать с фильтром радиочастотных помех, помещенным между усилителем и АЦП, встроенным как часть сигма-дельта АЦП, или его можно запрограммировать в программном обеспечении. как усредняющий фильтр.
Компенсация холодного спая: Температура холодного спая термопары должна быть известна для получения точных показаний абсолютной температуры. Когда термопары были впервые использованы, это было сделано путем выдерживания контрольного спая в ледяной бане. На рисунке 2 изображена схема термопары, один конец которой находится при неизвестной температуре, а другой конец находится в ледяной бане (0 ° C). Этот метод использовался для исчерпывающей характеристики различных типов термопар, поэтому почти во всех таблицах термопар используется 0 ° C в качестве эталонной температуры.
Рис. 2. Базовая схема железо-константановой термопары.Но держать эталонный спай термопары в ледяной бане нецелесообразно для большинства измерительных систем. Вместо этого в большинстве систем используется метод, называемый компенсацией холодного спая (также известный как компенсация холодного спая ). Температура эталонного спая измеряется другим термочувствительным устройством — обычно ИС, термистором, диодом или RTD (резистивным датчиком температуры). Затем значение напряжения термопары компенсируется, чтобы отразить температуру холодного спая.Важно, чтобы эталонный спай считывался как можно точнее — с помощью точного датчика температуры, поддерживающего ту же температуру, что и эталонный спай. Любая ошибка в считывании температуры холодного спая будет отображаться непосредственно в окончательном показании термопары.
Для измерения эталонной температуры доступны различные датчики:
- Термисторы: они имеют быстрый отклик и небольшой корпус; но они требуют линеаризации и имеют ограниченную точность, особенно в широком диапазоне температур.Им также требуется ток для возбуждения, который может вызвать саморазогрев, что приведет к дрейфу. Общая точность системы в сочетании с формированием сигнала может быть низкой.
- Резистивные датчики температуры (RTD): RTD являются точными, стабильными и достаточно линейными, однако размер корпуса и стоимость ограничивают их использование для приложений управления технологическим процессом.
- Выносные термодиоды: диод используется для измерения температуры рядом с разъемом термопары. Микросхема кондиционирования преобразует напряжение на диоде, пропорциональное температуре, в аналоговый или цифровой выходной сигнал.Его точность ограничена примерно ± 1 ° C.
- Встроенный датчик температуры: Встроенный датчик температуры, автономная ИС, которая измеряет температуру локально, должна быть осторожно установлена рядом с эталонным спаем и может сочетать компенсацию холодного спая и формирование сигнала. Может быть достигнута точность с точностью до малых долей в 1 ° C.
Сигнал напряжения нелинейный: Наклон кривой отклика термопары изменяется в зависимости от температуры.Например, при 0 ° C выходной сигнал термопары типа T изменяется на 39 мкВ / ° C, но при 100 ° C крутизна увеличивается до 47 мкВ / ° C.
Есть три распространенных способа компенсации нелинейности термопары.
Выберите относительно плоский участок кривой и аппроксимируйте наклон как линейный в этой области — подход, который особенно хорошо работает для измерений в ограниченном диапазоне температур. Никаких сложных вычислений не требуется. Одна из причин популярности термопар K- и J-типа заключается в том, что они обе имеют большие диапазоны температур, для которых наклон приращения чувствительности (коэффициент Зеебека) остается довольно постоянным (см. Рисунок 3).
Рисунок 3. Изменение чувствительности термопары в зависимости от температуры. Обратите внимание, что коэффициент Зеебека K-типа примерно постоянен и составляет около 41 мкВ / ° C от 0 ° C до 1000 ° C.Другой подход — сохранить в памяти справочную таблицу, которая сопоставляет каждый из набора напряжений термопары с соответствующей температурой. Затем используйте линейную интерполяцию между двумя ближайшими точками в таблице, чтобы получить другие значения температуры.
Третий подход заключается в использовании уравнений более высокого порядка, которые моделируют поведение термопары.Хотя этот метод является наиболее точным, он также требует больших вычислительных ресурсов. Для каждой термопары существует две системы уравнений. Один набор преобразует температуру в напряжение термопары (полезно для компенсации холодного спая). Другой набор преобразует напряжение термопары в температуру. Таблицы термопар и уравнения термопар более высокого порядка можно найти на http://srdata.nist.gov/its90/main/. Все таблицы и уравнения основаны на температуре холодного спая 0 ° C. Компенсацию холодного спая необходимо использовать, если он имеет любую другую температуру.
Требования к заземлению: Производители термопар изготавливают термопары как с изолированными, так и с заземленными наконечниками для измерительного спая (рисунок 4).
Рисунок 4. Типы измерительного спая термопары.Устройство преобразования сигнала термопары должно быть спроектировано таким образом, чтобы исключить контуры заземления при измерении заземленной термопары, но также иметь путь для входных токов смещения усилителя при измерении изолированной термопары. Кроме того, если наконечник термопары заземлен, диапазон входного сигнала усилителя должен быть рассчитан таким образом, чтобы выдерживать любые различия в потенциале земли между наконечником термопары и заземлением измерительной системы (рисунок 5).
Рисунок 5. Варианты заземления при использовании наконечников разных типов.Для неизолированных систем система формирования сигнала с двумя источниками питания обычно будет более надежной для типов заземленных и открытых наконечников. Благодаря широкому входному диапазону синфазного сигнала усилитель с двумя источниками питания может справиться с большим перепадом напряжения между землей печатной платы и землей на наконечнике термопары. Системы с однополярным питанием могут удовлетворительно работать во всех трех случаях, если синфазный диапазон усилителя имеет некоторую способность измерять под землей в конфигурации с однополярным питанием.Чтобы справиться с ограничением синфазного сигнала в некоторых системах с однополярным питанием, полезно смещение термопары до среднего напряжения. Это хорошо работает для изолированных наконечников термопар или если вся измерительная система изолирована. Однако это не рекомендуется для неизолированных систем, предназначенных для измерения заземленных или открытых термопар.
Практические решения с термопарами: Преобразование сигнала термопары сложнее, чем в других системах измерения температуры.Время, необходимое для разработки и отладки системы формирования сигнала, может увеличить время вывода продукта на рынок. Ошибки в формировании сигнала, особенно в секции компенсации холодного спая, могут привести к снижению точности. Следующие два решения устраняют эти проблемы.
В первом описывается простое аналоговое интегрированное аппаратное решение, сочетающее прямое измерение термопарой с компенсацией холодного спая с использованием одной ИС. Второе решение представляет собой программную схему компенсации холодного спая, обеспечивающую повышенную точность измерения термопар и гибкость в использовании многих типов термопар.
Измерительное решение 1: оптимизировано для простоты
На рисунке 6 показана схема измерения термопары К-типа. Он основан на использовании усилителя термопары AD8495, который разработан специально для измерения термопар типа K. Это аналоговое решение оптимизировано для минимального времени разработки: оно имеет прямую сигнальную цепочку и не требует программного кодирования.
Рис. 6. Измерительное решение 1: оптимизировано для простоты.Как эта простая сигнальная цепочка удовлетворяет требованиям к формированию сигнала для термопар K-типа?
Масштабный коэффициент усиления и выхода: Малый сигнал термопары усиливается коэффициентом усиления AD8495, равным 122, в результате чего чувствительность выходного сигнала составляет 5 мВ / ° C (200 ° C / В).
Подавление шума: Высокочастотный синфазный и дифференциальный шум удаляется внешним фильтром радиопомех. Низкочастотный синфазный шум подавляется инструментальным усилителем AD8495. Любой оставшийся шум устраняется внешним постфильтром.
Компенсация холодного спая: AD8495, который включает датчик температуры для компенсации изменений температуры окружающей среды, должен быть размещен рядом с холодным спаем, чтобы поддерживать одинаковую температуру для точной компенсации холодного спая.
Коррекция нелинейности: AD8495 откалиброван так, чтобы выдавать выходной сигнал 5 мВ / ° C на линейном участке кривой термопары типа K с погрешностью линейности менее 2 ° C в диапазоне от –25 ° C до + 400 ° Температурный диапазон C. Если требуются температуры за пределами этого диапазона, в примечании к применению AN-1087 компании Analog Devices описывается, как можно использовать справочную таблицу или уравнение в микропроцессоре для расширения диапазона температур.
Работа с изолированными, заземленными и незащищенными термопарами: На рисунке 5 показан резистор 1 МОм, подключенный к земле, что позволяет использовать все типы наконечников термопар.AD8495 был специально разработан, чтобы иметь возможность измерять несколько сотен милливольт под землей при использовании с одним источником питания, как показано на рисунке. Если ожидается больший перепад заземления, AD8495 также может работать с двумя источниками питания.
Подробнее об AD8495: На рисунке 7 показана блок-схема усилителя термопары AD8495. Усилители A1, A2 и A3 — и показанные резисторы — образуют инструментальный усилитель, который усиливает выходной сигнал термопары K-типа с коэффициентом усиления, подходящим для создания выходного напряжения 5 мВ / ° C.Внутри коробки с надписью «Компенсация реф. Перехода» находится датчик температуры окружающей среды. При постоянной температуре измерительного спая дифференциальное напряжение на термопаре будет уменьшаться, если температура опорного спая повысится по какой-либо причине. Если крошечный (3,2 мм × 3,2 мм × 1,2 мм) AD8495 находится в непосредственной близости от опорного спая, схема компенсации опорного спая подает дополнительное напряжение в усилитель, так что выходное напряжение остается постоянным, таким образом компенсируя опорное напряжение. изменение температуры.
Рисунок 7. Функциональная блок-схема AD8495.Таблица 2 обобщает производительность интегрированного аппаратного решения с использованием AD8495:
Таблица 2. Решение 1 (Рисунок 6) Сводная информация о производительности
Термопара Тип | Диапазон измерения температуры спая | Диапазон температур холодного спая | Точность при 25 ° C | Потребляемая мощность |
К | от –25 ° C до + 400 ° C | от 0 ° C до 50 ° C | ± 3 ° C (класс А) ± 1 ° C (класс C) | 1.25 мВт |
Измерительное решение 2: оптимизировано для обеспечения точности и гибкости
На рисунке 8 показана схема измерения термопары J-, K- или T-типа с высокой степенью точности. Эта схема включает высокоточный АЦП для измерения напряжения малосигнальной термопары и высокоточный датчик температуры для измерения температуры холодного спая. Оба устройства управляются через интерфейс SPI от внешнего микроконтроллера.
Рис. 8. Измерительное решение 2: оптимизировано для обеспечения точности и гибкости.Как эта конфигурация удовлетворяет упомянутым ранее требованиям к формированию сигнала?
Устранение шума и усиление напряжения: AD7793, подробно показанный на Рисунке 9 — высокоточный маломощный аналоговый входной каскад, — используется для измерения напряжения термопары. Выход термопары фильтруется извне и подключается к набору дифференциальных входов AIN1 (+) и AIN1 (-). Затем сигнал направляется через мультиплексор, буфер и инструментальный усилитель, который усиливает небольшой сигнал термопары, и на АЦП, который преобразует сигнал в цифровой.
Рисунок 9. Функциональная блок-схема AD7793.Компенсация температуры холодного спая: ADT7320 (подробно на Рисунке 10), если он расположен достаточно близко к опорному спаю, может точно измерять температуру холодного спая с точностью до ± 0,2 ° C, от –10 ° C до +85 ° C. Встроенный датчик температуры генерирует напряжение, пропорциональное абсолютной температуре, которое сравнивается с внутренним опорным напряжением и подается на прецизионный цифровой модулятор. Оцифрованный результат модулятора обновляет 16-битный регистр значения температуры.Затем регистр значения температуры может быть считан с микроконтроллера с использованием интерфейса SPI и объединен со считыванием температуры с АЦП для осуществления компенсации.
Рисунок 10. Функциональная блок-схема ADT7320.Правильная нелинейность: ADT7320 обеспечивает отличную линейность во всем номинальном температурном диапазоне (от –40 ° C до + 125 ° C), не требуя корректировки или калибровки пользователем. Таким образом, его цифровой выход можно считать точным представлением состояния холодного спая.
Чтобы определить фактическую температуру термопары, это эталонное измерение температуры должно быть преобразовано в эквивалентное термоэлектрическое напряжение с помощью уравнений, предоставленных Национальным институтом стандартов и технологий (NIST). Затем это напряжение добавляется к напряжению термопары, измеренному AD7793; и суммирование затем переводится обратно в температуру термопары, снова с использованием уравнений NIST.
Работа с изолированными и заземленными термопарами: На рисунке 8 показана термопара с оголенным наконечником.Это обеспечивает лучшее время отклика, но такая же конфигурация может использоваться и с термопарой с изолированным наконечником.
В таблице 3 приведены характеристики программного решения для измерения холодного спая с использованием данных NIST:
Таблица 3. Решение 2 (Рисунок 8) Сводная информация о производительности
Термопара Тип | Диапазон измерения температуры спая | Диапазон температур холодного спая | Точность | Потребляемая мощность |
Дж, К, Т | Полный диапазон | от –10 ° C до + 85 ° C от –20 ° C до + 105 ° C | ± 0.2 ° С ± 0,25 ° С | 3 мВт 3 мВт |
Заключение
Термопары обеспечивают надежное измерение температуры в довольно широком диапазоне температур, но они часто не являются первым выбором для измерения температуры из-за необходимого компромисса между расчетным временем и точностью. В этой статье предлагаются рентабельные способы решения этих проблем.
Первое решение концентрируется на уменьшении сложности измерения с помощью аппаратного метода компенсации аналогового эталонного спая. В результате получается прямая сигнальная цепочка без необходимости программирования программного обеспечения, основанная на интеграции, обеспечиваемой усилителем термопары AD8495, который выдает выходной сигнал 5 мВ / ° C, который может подаваться на аналоговый вход большого количества микроконтроллеров.
Второе решение обеспечивает высочайшую точность измерения, а также позволяет использовать различные типы термопар.Программный метод компенсации эталонного спая, он основан на высокоточном цифровом датчике температуры ADT7320, который обеспечивает гораздо более точное измерение компенсации эталонного спая, чем это было возможно до сих пор. ADT7320 поставляется полностью откалиброванным и рассчитанным на диапазон температур от –40 ° C до + 125 ° C. Полностью прозрачный, в отличие от традиционного измерения термистора или датчика RTD, он не требует дорогостоящего этапа калибровки после сборки платы, а также не потребляет ресурсы процессора или памяти с коэффициентами калибровки или процедурами линеаризации.Потребляя лишь микроватты энергии, он позволяет избежать проблем с саморазогревом, которые снижают точность традиционных резистивных датчиков.
Приложение
Использование уравнения NIST для преобразования температуры ADT7320 в напряжение
Компенсация холодного спая термопары основана на соотношении:
(1) |
где:
Δ В = выходное напряжение термопары
В @ Дж 1 = напряжение, генерируемое на спайе термопары
В @ Дж 2 = напряжение, генерируемое на опорном переходе
Чтобы это соотношение компенсации было действительным, обе клеммы холодного спая должны поддерживаться при одинаковой температуре.Выравнивание температуры достигается с помощью изотермической клеммной колодки, которая позволяет выравнивать температуру обоих клемм при сохранении гальванической развязки.
После измерения температуры эталонного спая ее необходимо преобразовать в эквивалентное термоэлектрическое напряжение, которое будет генерироваться переходом при измеренной температуре. В одном методе используется многочлен степенного ряда. Рассчитано термоэлектрическое напряжение:
(2) |
где:
E = термоэлектрическое напряжение (микровольты)
a n = коэффициенты полинома, зависящие от типа термопары
T = температура (° C)
n = порядок полинома
NIST публикует таблицы полиномиальных коэффициентов для каждого типа термопар.В этих таблицах приведены списки коэффициентов, порядок (количество членов в полиноме), допустимые диапазоны температур для каждого списка коэффициентов и диапазон ошибок. Для некоторых типов термопар требуется более одной таблицы коэффициентов, чтобы охватить весь рабочий температурный диапазон. Таблицы полиномов степенных рядов перечислены в основном тексте.
Что такое термопара | TE подключения
- Ни один из проводов не является магнитным, но отрицательный провод красный, положительный — фиолетовый.
- Рекомендуется для использования при температуре до 900 ° C (1600 ° F) в окислительной или инертной атмосфере.
- Подходит для низких температур до -230 ° C (-380 ° F).
- Обладает самой высокой выходной ЭДС из всех стандартных типов.
- Уязвим к воздействию серы, не подвергайте воздействию этого типа атмосферы.
- Perfom лучше всего работает в чистой окислительной атмосфере.
- Не рекомендуется использовать (кроме непродолжительных периодов):
o В частично окислительных условиях.
o При чередовании циклов окисления и восстановления.
o В вакууме.
• Ни один из проводов не является магнитным, но отрицательный провод красный, положительный — фиолетовый.
• Рекомендуется для использования при температуре до 900 ° C (1600 ° F) в окислительной или инертной атмосфере.
• Подходит для низких температур до -230 ° C (-380 ° F).
• Имеет самую высокую выходную ЭДС из всех стандартных типов.
• Уязвимость к воздействию серы, не подвергайте воздействию этого типа атмосферы.
• Лучше всего работает в чистой окислительной атмосфере.
• Не рекомендуется использовать (за исключением непродолжительных периодов времени):
o В частично окислительных условиях.
o При чередовании циклов окисления и восстановления.
o В вакууме.
• Ни один из проводов не является магнитным, но отрицательный провод красный, положительный — фиолетовый.
• Рекомендуется для использования при температуре до 900 ° C (1600 ° F) в окислительной или инертной атмосфере.
• Подходит для низких температур до -230 ° C (-380 ° F).
• Имеет самую высокую выходную ЭДС из всех стандартных типов.
• Уязвимость к воздействию серы, не подвергайте воздействию этого типа атмосферы.
• Лучше всего работает в чистой окислительной атмосфере.
• Не рекомендуется использовать (за исключением непродолжительных периодов времени):
o В частично окислительных условиях.
o При чередовании циклов окисления и восстановления.
o В вакууме.
• Ни один из проводов не является магнитным, но отрицательный провод красный, положительный — фиолетовый.
• Рекомендуется для использования при температуре до 900 ° C (1600 ° F) в окислительной или инертной атмосфере.
• Подходит для низких температур до -230 ° C (-380 ° F).
• Имеет самую высокую выходную ЭДС из всех стандартных типов.
• Уязвимость к воздействию серы, не подвергайте воздействию этого типа атмосферы.
• Лучше всего работает в чистой окислительной атмосфере.