Ток что такое: Что такое электрический ток? | Полезные статьи

Содержание

Сила тока в физике — что это такое?

Покажем, как применять знание физики в жизни

Начать учиться

Для большинства людей электрический ток — это что-то из категории магии вне Хогвартса. На самом деле, это всего лишь упорядоченность природных явлений и больше ничего. Давайте переходить в категорию разбирающегося меньшинства.

Электрический ток

По проводам течет электрический ток. Причем он именно «течет», практически как вода. Представим, что вы — счастливый фермер, который решил полить свой огород из шланга. Вы чуть-чуть приоткрыли кран, и вода сразу же побежала по шлангу. Медленно, но все-таки побежала.

Сила струи очень слабая. Потом вы решили, что напор нужен побольше и открыли кран на полную катушку. В результате струя хлынет с такой силой, что ни один помидор не останется без внимания, хотя в обоих случаях диаметр шланга одинаков.

А теперь представьте, что вы наполняете два ведра из двух шлангов. У зеленого напор сильнее, у желтого — слабее. Быстрее наполнится то ведро, в которое льется вода из шланга с сильным напором. Все дело в том, что объем воды за равный промежуток времени из двух разных шлангов тоже разный. Иными словами, из зеленого шланга количество молекул воды выбежит намного больше, чем из желтого за равный период времени.

Если мы возьмем проводник с током, то будет происходить то же самое: заряженные частицы будут двигаться по проводнику, как и молекулы воды. Если больше заряженных частиц будет двигаться по проводнику, то «напор» тоже увеличится.

  • Электрический ток — это направленное движение заряженных частиц.

Пятерка по физике у тебя в кармане!

Решай домашку по физике на изи. Подробные решения помогут разобраться в сложной теме и получить пятерку!

Сила тока

Сразу возникает потребность в величине, которой мы будем «напор» электрического тока измерять. Такая, чтобы она зависела от количества частиц, которые протекают по проводнику.

Сила тока — это физическая величина, которая показывает, какой заряд прошел через проводник за единицу времени.

Как обозначается сила тока?

Сила тока обозначается буквой I

Сила тока

I = q/t

I — сила тока [A]

q — заряд [Кл]

t — время [с]

Сила тока измеряется в амперах. Единица измерения выбрана не просто так.

Во-первых, она названа в честь физика Андре-Мари Ампера, который занимался изучением электрических явлений.

А во-вторых, единица этой величины выбрана на основе явления взаимодействия двух проводников.


Здесь аналогии с водопроводом провести, увы, не получится. Шланги с водой не притягиваются и не отталкиваются вблизи друг друга (а жаль, было бы забавно).

Когда ток проходит по двум параллельным проводникам в одном направлении, проводники притягиваются. А когда в противоположном направлении (по этим же проводникам) — отталкиваются.


За единицу силы тока 1 А принимают силу тока, при которой два параллельных проводника длиной 1 м, расположенные на расстоянии 1 м друг от друга в вакууме, взаимодействуют с силой 0,0000002 Н.

Задача

Найти силу тока в цепи, если за 2 секунды в ней проходит заряд, равный 300 мКл.

Решение:

Возьмем формулу силы тока

I = q/t

Подставим значения

I = 300 мКл / 2 с = 150 мА

Ответ: сила тока в цепи равна 150 мА

Чтобы хорошо запомнить теорию, нужно много практики. Классический курс по физике для 10 класса в онлайн-школе Skysmart — отличная возможность попрактиковаться в решении задач.

Проводники и диэлектрики

Некоторые делят мир на черное и белое, а мы — на проводники и диэлектрики.

  • Проводники — это материалы, которые проводят электрический ток. Самыми лучшими проводниками являются металлы.
  • Диэлектрики — материалы, которые не проводят электрический ток. Изи!

Проводники

Диэлектрики

Медь, железо, алюминий, олово, свинец, золото, серебро, хром, никель, вольфрам

Воздух, дистиллированная вода, поливинилхлорид, янтарь, стекло, резина, полиэтилен, полипропилен, полиамид, сухое дерево, каучук

То, что диэлектрик не проводит электрический ток, не значит, что он не может накапливать заряд. Накопление заряда не зависит от возможности его передавать.

Направление тока

Раньше в учебниках по физике писали так: когда-то давно решили, что ток направлен от плюса к минуса, а потом узнали, что по проводам текут электроны. Но электроны эти — отрицательные, а значит к минусу идти не могут. Но раз уже условились о направлении, поэтому оставим, как есть. Вопрос тогда возникал у всех: почему нельзя поменять направление тока? Но ответ так никто и не получил.

Сейчас пишут немного иначе: положительные частицы текут по проводнику от плюса к минусу, туда и направлен ток. Здесь вопросов ни у кого не возникает.

Так и какая версия верна?

На самом деле, обе. Носители заряда в каждом типе материала разные. В металлах — это электроны, в электролитах — ионы. У каждого типа частиц свои знаки и потребность в том, чтобы бежать к противоположно заряженному полюса источника тока.

Не будем же мы для каждого типа материала выбирать направление тока, чтобы решить задачу! Поэтому принято направлять ток от плюса к минусу. В большинстве задач школьного курса направление тока роли не играет, но есть то самое коварное меньшинство, где этот момент будет очень важным. Поэтому запомните —

направляем ток от плюса к минусу.



Источник тока

Вода в шланге берется из водопровода, ключа с водой в земле — в общем, не из ниоткуда. Электрический ток тоже имеет свой источник.

В качестве источника может выступить, например, гальванический элемент (привычная батарейка). Батарейка работает на основе химических реакций внутри нее. Эти реакции выделяют энергию, которая потом передается электрической цепи.

У любого источника обязательно есть полюса — «плюс» и «минус».

Полюса — это его крайние положения. По сути клеммы, к которым присоединяется электрическая цепь. Собственно, ток как раз течет от «+» к «-».

Амперметр

Мы знаем, куда ток направлен, в чем измеряется сила тока, как ее вычислить, зная заряд и время, за которое этот заряд прошел. Осталось только измерить.

Прибор для измерения силы тока называется амперметр. Его включают в электрическую цепь последовательно с тем проводником, в котором ток измеряют.


Амперметры бывают очень разными по принципу действия: электромагнитные, магнитоэлектрические, электродинамические, тепловые и индукционные — и это только самые распространенные.

Мы рассмотрим только принцип действия теплового амперметра, потому что для понимания принципа действия других устройств необходимо знать, что такое магнитное поле и катушки.

Тепловой амперметр основан на свойстве тока нагревать провода. Устроен так: к двум неподвижным зажимам присоединена тонкая проволока. Эта тонкая проволока оттянута вниз шелковой нитью, связанной с пружиной. По пути эта нить петлей охватывает неподвижную ось, на которой закреплена стрелка. Измеряемый ток подводится к неподвижным зажимам и проходит через проволоку (на рисунке стрелками показан путь тока).

Под действием тока проволока немного нагреется, из-за чего удлинится, вследствие этого шелковая нить, прикрепленная к проволоке, оттянется пружиной. Движение нити повернет ось, а значит и стрелку. Стрелка покажет величину измерения.



 

Карина Хачатурян

К предыдущей статье

125.8K

Коэффициент полезного действия (КПД)

К следующей статье

177.2K

Закон Ома

Получите индивидуальный план обучения физике на бесплатном вводном уроке

На вводном уроке с методистом

  1. Выявим пробелы в знаниях и дадим советы по обучению

  2. Расскажем, как проходят занятия

  3. Подберём курс

Что такое блуждающий ток?


Что такое блуждающий ток?

Металлические изделия, применяемые в электрике, быстро изнашиваются и теряют свои высокие технические характеристики из-за такого явления, как блуждающие токи.  

Что же такое «блуждающий ток»? Данное явление является одним из видов движения зарядов в определенном направлении. Заряженные частицы при этом появляются в земле, которая является в конкретной ситуации проводником. Блуждающие токи приводят к разрушению металлических изделий, который расположены под землей или же слегка соприкасающиеся с ней. Именно во взаимодействии с почвой и таится опасность. Для того, чтобы понять природу данного явления, необходимо тщательно разобраться в причинах его возникновения, а также в характеристиках и способах защиты от него.  

Блуждающие токи: причина возникновения 

Ежедневно и даже ежечасно люди в современном мире находятся в окружении различных электрических средств. Следовательно, объемы потребляемой электроэнергии неумолимо растут, что приводит к необходимости строительства большего количества КТП (комплектных трансформаторных подстанций) и распределительных установок, а также к монтажу все новых линий электропередач, электросетей для поездов, контактных рельсов метрополитенов и т. п. Известно, что земля не является электропроводной, а все вышеперечисленные объекты электроэнергии, так или иначе, взаимосвязаны с ней, и данная связь очень специфична.

Основа появления электрического тока — разность потенциалов в двух точках электрического проводника. Блуждающие токи возникают по аналогичному принципу, отличие состоит в том, что проводником в данной ситуации является почва. Электрические системы, в которых присутствует изолированная нейтраль, характеризуются тем, что разность потенциалов обеспечивают контуры заземления. При соединении нулевого проводника с данным контуром может возникнуть ситуация падения в напряжении из-за собственного сопротивления, которое появляется во время прохождения заряда. Данный проводник имеет обозначение PEN, что говорит о совмещенном нулевом защитном и нулевом рабочем проводниках. Основание данного совмещенного проводника и контур заземления КТП соединены между собой. Также PEN-проводник соединяется с заземляющим устройством здания. Таким образом, два устройства заземления, а именно ЗУ трансформаторной подстанции и ЗУ объекта, являются основой возникновения разности потенциалов, откуда и появляются блуждающие токи.  

В ситуации повреждения линий электропередач происходит практически аналогичная ситуация. То есть, земля является носителем разности потенциалов в случае возникновения замыканий. Как правило, львиная доля подобных повреждений ликвидируется при помощи автоматики. Важно, что устранение таким способом возможно лишь при масштабных утечках. Нейтрализация данной проблемы при небольших значения более проблематична.

Небольшие блуждающие токи появляются как раз из-за обилия электротранспорта. Например, троллейбус подключен к электросети при помощи специальных конструкций, которые называются «штанги». Они соединены с нулевыми и фазными проводниками и, как известно, находятся на самом троллейбусе. Именно поэтому данное транспортное средство характеризуется невозможностью производства больших блуждающих токов.

Электропитание поездов отличается от приведенного выше примера с троллейбусом. В данном случае, нулевой проводник имеет соединение с рельсами, фазный, в свою очередь, находится над путями. Специальные токосъемники (пантографы) подают электрическую энергию к двигателю данного транспортного средства. Располагается пантограф на крыше электровоза, электропоезда или трамвая и имеет прямой контакт с кабелем питания. Тяговые подстанции – основа электропитания данного типа электросетей. Расстояние между  подстанциями одинаковое и неизменное. Блуждающие токи появляются из-за искривленности маршрутов. В данном случае заряженные частицы идут по траектории с наименьшим сопротивлением. То есть, при появлении возможности «срезать угол» заряд пройдет не через рельсы, а по земле.

Блуждающие ток: влияние на металл 

Под землей расположено огромное число различных объектов и изделий из металла: трубопроводы, кабельные линии, железобетон и др. Известно, что металл – это хороший проводник электрического тока, следовательно, заряд в данной ситуации пройдет не через почву, а по имеющемуся в ней металлу. Зона, через которую электрический ток входит в грунт, называется «катодной зоной», а через которую выходит – «анодной зоной».

Относительно водопровода стоит поговорить подробнее. Известно, что процесс коррозии в них неизбежен, а подземные воды отличаются большим содержанием растворимых микроэлементов и служат отличным проводником электричества. Таким образом, в металлических трубах под землей из-за процесса электролиза происходят коррозийные процессы. Очень хорошо коррозия выражается в анодной зоне, а в катодной разрушения менее выражены.

Подводя итог, стоит отметить, что блуждающие токи оказывают разрушительное влияние на металлические изделия, являясь при этом причиной серьезных экономических потерь.


Как избежать пагубного влияния блуждающего тока?

Блуждающие токи устраняются таким способом, как катодная защита. Для того, что борьба с данным явлением происходила с минимумом препятствий, необходимо нейтрализовать вероятность возникновения анодной зоны на объекте защиты.

Катодная защита производит электроток постоянного характера и при этом подключается к металлическим объектам полюсом с отрицательным значением. Положительный полюс присоединяется к анодам («жертвенные аноды»), забирающим львиную долю разрушительного влияния на себя. Кроме того, объекты защиты покрываются специальными антикоррозийными покрытиями.

Минусы катодной защиты:

  • вероятность «перезащиты», при которой увеличивается сверх нормы потенциал защиты и начинаются коррозийные процессы;
  • неверные расчеты защиты, которые являются причиной ускорения процессов коррозии рядом находящегося металла.

Как измерить блуждающий ток? 

Прежде, чем осуществляется монтаж трубопровода под землей, происходит вычисление блуждающих токов путем измерения разности потенциалов, о которой говорилось выше. Измерение осуществляется через каждые 1000 метров.

Используемые измерительные приборы должны иметь степень точности не меньше 1,5, а минимальное собственное сопротивление равняется 1 МОм. Максимальный показатель разности потенциалов – 10 мВ. Продолжительность одного измерения должна быть не меньше 10 минут, а фиксация должна осуществляться каждые 10 секунд.

Стоит отметить, что измерения в области действия электрического транспорта необходимо осуществлять в период пиковых нагрузок. Разность потенциалов, превышающая 0,04 В, говорит от том, что присутствуют блуждающие токи.

Измерительными приборами могут выступать электроды сравнения, а именно: медно-сульфатный переносного типа и медно-сульфатный соединительного типа. Кроме того, необходим мультиметр цифрового типа и гибкий провод с хорошей изоляцией длиной не меньше 100м.

Блуждающие токи таят в себе опасность даже при самых незначительных показателях и подразумевают под собой разрушительное воздействие подземных и других коммуникаций. Во избежание подобных ситуаций необходимо осуществлять профилактику по выявлению и последующему устранению данного явления.

Что такое электрический ток? | Hioki

Что такое электрический ток? Разница между напряжением и током, различные типы тока и методы измерения тока

Обзор

Мы ежедневно пользуемся силой электричества, не задумываясь об этом. Возможно, вы обнаружите, что в электричестве есть много такого, чего вы не знали. Вы также можете стесняться задавать вопросы о том, что, по вашему мнению, уже должны были понять. Не бойся! На этой странице представлены базовые знания об электрическом токе, а также простое для понимания введение в такие темы, как разница между током и напряжением, различные типы тока и методы измерения тока.

После прочтения у вас должно быть общее представление об электрическом токе.

Что такое электрический ток?

Электрический ток означает поток электричества в электронной цепи и количество электричества, протекающего через цепь. Измеряется в амперах (А). Чем больше значение в амперах, тем больше электричества протекает в цепи.

Электричество легко представить себе, если представить его себе как течение воды в реке. Частицы, называемые электронами, собираются вместе, и количество электронов, протекающих каждую секунду, и есть ток.

Разница между напряжением и током

Напряжение — это еще один термин, который используется в отношении электронных схем так же часто, как и ток. Напряжение измеряется в вольтах (В). Как и ток, напряжение также связано с потоком электронов в цепи. Ток относится к потоку электронов, а напряжение относится к величине силы, толкающей поток электронов.

Чем выше напряжение, тем больше ток; более низкое напряжение означает более слабый ток.

Сопротивление также оказывает значительное влияние на протекание тока. Думайте о сопротивлении как о ширине, через которую проходят электроны. Чем больше сопротивление, тем уже ширина, через которую должны протекать электроны, и, следовательно, меньше ток. Напротив, более низкое сопротивление увеличивает ширину, через которую могут протекать электроны, позволяя одновременно протекать большему току.

Если вы хотите, чтобы при заданном значении сопротивления протекал больший ток, вы можете добиться этого, повысив напряжение. Мощность обычно рассчитывается путем умножения тока (А) на напряжение (В), что дает результат, выраженный в ваттах (Вт). Таким образом, ток и напряжение совершенно разные, но оба являются важными элементами в мире электричества.

Постоянный ток и переменный ток

Термины «ток» и «напряжение» охватывают различные типы явлений, и одно из основных различий, которое можно сделать, это различие между постоянным и переменным током. Постоянный ток (DC) относится к току и напряжению, направление которых не меняется.

Типичным примером является электроэнергия, вырабатываемая сухими элементами и литий-ионными батареями, используемыми в автомобилях. При постоянном токе напряжение всегда положительное (или всегда отрицательное), а ток всегда течет в одном направлении. В результате устройство может не работать, если его батарея установлена ​​с обратной полярностью.

Напротив, переменный ток (AC) относится к току и напряжению, направление и величина которых регулярно изменяются во времени. Волны переменного тока отличаются разнообразием форм, включая синусоидальные волны, прямоугольные волны, пилообразные волны и треугольные волны.

Электричество переменного тока используется электросетью, например, в бытовых розетках. Однако большинство стандартных электронных устройств преобразуют его в постоянный ток с помощью своих внутренних схем. Почему же тогда в электросети используется переменный ток?

Причина связана с передачей. Сопротивление в линиях электропередач вызывает потери при передаче тока, но эти потери можно уменьшить, увеличив напряжение. Однако создать постоянный ток высокого напряжения сложно, поэтому электричество передается в виде переменного тока, а затем понижается до более низкого напряжения с помощью трансформаторов, прежде чем поступать на электрические устройства через энергосистему. Затем эти устройства в большинстве случаев преобразуют переменный ток в постоянный с помощью своей внутренней схемы, чтобы его можно было использовать.

Методы измерения электрического тока

Для измерения электрического тока вам потребуется такой инструмент, как цифровой мультиметр. Функциональность зависит от продукта, но цифровые мультиметры могут выполнять различные измерения, включая не только ток, но также напряжение и сопротивление.

При измерении электрического тока с помощью цифрового мультиметра перед выполнением измерений необходимо настроить прибор на функцию измерения тока. Прибор будет иметь несколько единиц отображения, например, мкА, мА и А, поэтому вам нужно будет выбрать диапазон измерения, который лучше всего подходит для измеряемого тока.

При измерении тока подключите отрицательную клемму к разъему COM, а положительную клемму к разъему A на приборе так, чтобы мультиметр был последовательно включен в цепь.

Соблюдайте осторожность, чтобы не подавать напряжение, когда выбрана функция тока. Это может привести к повреждению прибора из-за протекания через него сверхтока. На самом деле в приборах используются предохранители для защиты их цепей, но рекомендуется проявлять осторожность, поскольку перегрузка по току может повредить прибор. Некоторые цифровые мультиметры не имеют входной клеммы тока, чтобы избежать этой опасности.

Использование цифрового мультиметра для измерения тока

Ток относится к потоку электричества в электронной цепи, причем большие цифры указывают на большее количество электричества. Хотя ток отличается от напряжения, оба являются важными понятиями, и необходимо понимать каждое из них.

Ток можно измерить цифровым мультиметром. Почему бы не попробовать измерить ток на основе информации, представленной на этой странице?

Как использовать

Сопутствующие товары

  • Цифровой мультиметровый DT4282
  • Метр зажима переменного тока CM4141-50
  • Утечка переменного тока CM4001
  • AC Clamp Meter CM3286-50

5.

цифровой мультиметр. Обзор преимуществ и недостатков

  • Как измерить ток Зачем нужно измерять ток? Причины, методы и меры предосторожности

  • Как пользоваться токоизмерительными клещами Готовы учиться? Советы по использованию токоизмерительных клещей, соответствующие меры предосторожности и многое другое

  • Как использовать токовые пробники Узнайте больше о том, как использовать токовые пробники. Обзор основных методов и мер предосторожности

  • Что такое электрический ток » Electronics Notes

    Электрический ток возникает при движении электрических зарядов — это могут быть отрицательно заряженные электроны или носители положительного заряда — положительные ионы.


    Учебное пособие по электрическому току Включает:
    Что такое электрический ток Текущая единица — Ампер ПЕРЕМЕННЫЙ ТОК


    Электрический ток является одним из самых основных понятий, существующих в электротехнике и электронике. Электрический ток лежит в основе науки об электричестве.

    Будь то электрический обогреватель, крупная электрическая сеть, мобильный телефон, компьютер, удаленный сенсорный узел или что-то еще, понятие электрического тока является центральным в его работе.

    Однако ток как таковой обычно нельзя увидеть, хотя его эффекты можно увидеть, услышать и почувствовать все время, и в результате иногда трудно получить представление о том, чем он является на самом деле.

    Удар молнии — впечатляющее зрелище электрического тока
    Фотография сделана с вершины башни Петронас в Куала-Лумпуре, Малайзия

    Определение электрического тока

    Определение электрического тока:

    Электрический ток — это поток электрического заряда в цепи. Точнее, электрический ток — это скорость протекания заряда через данную точку электрической цепи. Заряд может представлять собой отрицательно заряженные электроны или носители положительного заряда, включая протоны, положительные ионы или дырки.

    Величина электрического тока измеряется в кулонах в секунду, общепринятой единицей для этого является ампер или ампер, который обозначается буквой «А».

    Ампер или ампер широко используются в электрических и электронных технологиях вместе с такими множителями, как миллиампер (0,001 А), микроампер (0,000001 А) и так далее.

    Подробнее о . . . . Ампер, единица силы тока.

    Ток в цепи обычно обозначается буквой «I», и эта буква используется в таких уравнениях, как закон Ома, где V=I⋅R.

    Что такое электрический ток: основы

    Основная концепция тока заключается в том, что это движение электронов внутри вещества. Электроны — это мельчайшие частицы, которые существуют как часть молекулярной структуры материалов. Иногда эти электроны прочно удерживаются внутри молекул, а иногда они удерживаются свободно и могут относительно свободно перемещаться по структуре.

    Один очень важный момент, который следует отметить в отношении электронов, заключается в том, что они являются заряженными частицами — они несут отрицательный заряд. Если они перемещаются, то количество заряда перемещается, и это называется током.

    Также стоит отметить, что количество электронов, способных двигаться, определяет способность конкретного вещества проводить электричество. Некоторые материалы позволяют току двигаться лучше, чем другие.

    Движение свободных электронов обычно очень бессистемно — оно хаотично — столько электронов движется в одном направлении, сколько в другом, и в результате нет общего движения заряда.

    Случайное движение электронов в проводнике со свободными электронами

    Если на электроны действует сила, перемещающая их в определенном направлении, то все они будут дрейфовать в одном и том же направлении, хотя и несколько беспорядочно, но общее движение в Одно направление.

    Сила, действующая на электроны, называется электродвижущей силой, или ЭДС, а ее величина – напряжением, измеряемым в вольтах.

    Поток электронов под действием приложенной электродвижущей силы

    Чтобы лучше понять, что такое ток и как он действует в проводнике, можно сравнить его с течением воды в трубе. У этого сравнения есть ограничения, но оно служит очень простой иллюстрацией течения и течения.

    Течение можно рассматривать как воду, текущую по трубе. Когда давление оказывается на одном конце, оно заставляет воду двигаться в одном направлении и течь по трубе. Количество потока воды пропорционально давлению на конце. Давление или силу, прикладываемую к концу, можно сравнить с электродвижущей силой.

    Когда к трубе прикладывается давление или вода течет в результате открытия крана, вода течет практически мгновенно. То же самое верно и для электрического тока.

    Чтобы получить представление о потоке электронов, требуется 6,24 миллиарда, миллиардов электронов в секунду, чтобы течь при токе в один ампер.

    Обычный ток и поток электронов

    Часто возникает много недоразумений относительно обычного течения тока и потока электронов. Поначалу это может немного сбивать с толку, но на самом деле все довольно просто.

    Частицы, переносящие заряд по проводникам, — это свободные электроны. Направление электрического поля внутри цепи по определению является направлением, в котором выталкиваются положительные пробные заряды. Таким образом, эти отрицательно заряженные электроны движутся в направлении, противоположном электрическому полю.

    Электронный и обычный ток

    Это произошло потому, что первоначальные исследования статических и динамических электрических токов были основаны на том, что мы теперь назвали бы носителями положительного заряда. Это означало, что тогдашнее раннее соглашение о направлении электрического тока было установлено как направление движения положительных зарядов. Это соглашение осталось и используется до сих пор.

    Итого:

    • Обычный ток:   Обычный ток течет от положительного к отрицательному выводу и указывает направление, в котором будут течь положительные заряды.
    • Электронный поток:   Электронный поток идет от отрицательного к положительному выводу. Электроны заряжены отрицательно и поэтому притягиваются к положительной клемме, поскольку притягиваются разноименные заряды.

    Это соглашение используется во всем мире и по сей день, хотя оно может показаться немного странным и устаревшим.

    Скорость движения электрона или заряда

    Скорость передачи электрического тока сильно отличается от скорости фактического движения электрона. Сам электрон скачет в проводнике и, возможно, продвигается по проводнику только со скоростью несколько миллиметров в секунду. Это означает, что в случае переменного тока, когда ток меняет направление 50 или 60 раз в секунду, большая часть электронов никогда не выходит из провода.

    Возьмем другой пример: в почти вакууме внутри электронно-лучевой трубки электроны движутся почти прямолинейно со скоростью примерно в одну десятую скорости света.

    Эффекты тока

    Когда по проводнику течет электрический ток, существует ряд признаков, указывающих на то, что ток течет.

    • Тепло рассеивается:   Возможно, наиболее очевидным является выделение тепла. Если ток мал, то количество выделяемого тепла, вероятно, будет очень небольшим и может быть незаметно. Однако, если ток больше, возможно выделение заметного количества тепла. Электрический огонь является ярким примером того, как ток вызывает выделение тепла. Фактическое количество тепла определяется не только током, но также напряжением и сопротивлением проводника.
    • Магнитный эффект:   Другой эффект, который можно заметить, заключается в том, что вокруг проводника создается магнитное поле. Если в проводнике течет ток, то это можно обнаружить. Поместив компас рядом с проводом, по которому проходит достаточно большой постоянный ток, можно увидеть, что стрелка компаса отклоняется. Обратите внимание, что это не будет работать с сетью, потому что поле меняется слишком быстро, чтобы стрелка могла среагировать, а два провода (фаза и нейтраль), расположенные близко друг к другу в одном кабеле, компенсируют поле.

      Магнитное поле, создаваемое током, находит хорошее применение в ряде областей. Намотав проволоку на катушку, можно усилить эффект и сделать электромагнит. Реле и множество других предметов используют этот эффект. Громкоговорители также используют переменный ток в катушке, чтобы вызвать вибрации в диафрагме, которые позволяют преобразовывать электронные токи в звуки.

    Как измерить силу тока

    Одним из важных аспектов тока является знание величины тока, который может протекать в проводнике. Поскольку электрический ток является ключевым фактором в электрических и электронных цепях, очень важно знать, какой ток течет.

    Существует множество различных способов измерения тока. Одним из самых простых является использование мультиметра.

    Как измерить ток с помощью цифрового мультиметра:

    Используя цифровой мультиметр, цифровой мультиметр, можно легко измерить ток, поместив цифровой мультиметр непосредственно в цепь, по которой течет ток. Затем цифровой мультиметр даст точное значение тока, протекающего в цепи.

    Узнайте , как измерять ток с помощью цифрового мультиметра.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *