Ток напряжение: Эта страница ещё не существует

Содержание

Что такое напряжение, ток, сопротивление: разбираемся на примерах

Не имея определенных начальных знаний об электричестве, тяжело себе представить, как работают электрические приборы, почему вообще они работают, почему надо включать телевизор в розетку, чтобы он заработал, а фонарику хватает маленькой батарейки, чтобы он светил в темноте.

И так будем разбираться во всем по порядку.

Электричество

Электричество – это природное явление, подтверждающее существование, взаимодействие и движение электрических зарядов. Электричество впервые было обнаружено еще в VII веке до н.э. греческим философом Фалесом. Фалес обратил внимание на то, что если кусочек янтаря потереть о шерсть, он начинает притягивать к себе легкие предметы. Янтарь на древнегреческом – электрон.

Вот так и представляю себе, сидит Фалес, трет кусок янтаря о свой гиматий (это шерстяная верхняя одежда у древних греков), а затем с озадаченным видом смотрит, как к янтарю притягиваются волосы, обрывки ниток, перья и клочки бумаги.

Данное явление называется статическим электричеством

. Вы можете повторить данный опыт. Для этого хорошенько потрите шерстяной тканью обычную пластмассовую линейку и поднесите ее к мелким бумажным кусочкам.

Следует отметить, что долгое время это явление не изучалось. И только в 1600 году в своем сочинении «О магните, магнитных телах и о большом магните – Земле» английский естествоиспытатель Уильям Гилберт ввел термин – электричество. В своей работе он описал свои опыты с наэлектризованными предметами, а также установил, что наэлектризовываться могут и другие вещества.

Далее на протяжении трех веков самые передовые ученые мира исследуют электричество, пишут трактаты, формулируют законы, изобретают электрические машины и только в 1897 году Джозеф Томсон открывает первый материальный носитель электричества – электрон, частицу, благодаря которой возможны электрические процессы в веществах.

Электрон – это элементарная частица, имеет отрицательный заряд примерно равный -1,602·10-19 Кл (Кулон). Обозначается е или е.

Напряжение

Чтобы заставить перемещаться заряженные частицы от одного полюса к другому необходимо создать между полюсами

разность потенциалов или – Напряжение. Единица измерения напряжения – Вольт (В или V). В формулах и расчетах напряжение обозначается буквой V. Чтобы получить напряжение величиной 1 В нужно передать между полюсами заряд в 1 Кл, совершив при этом работу в 1 Дж (Джоуль).

Для наглядности представим резервуар с водой расположенный на некоторой высоте. Из резервуара выходит труба. Вода под естественным давлением покидает резервуар через трубу. Давайте условимся, что вода – это электрический заряд, высота водяного столба (давление) – это напряжение, а скорость потока воды – это электрический ток.

Таким образом, чем больше воды в баке, тем выше давление. Аналогично с электрической точки зрения, чем больше заряд, тем выше напряжение.

Начнем сливать воду, давление при этом будет уменьшаться. Т.е. уровень заряда опускается – величина напряжения уменьшается. Такое явление можно наблюдать в фонарике, лампочка светит все тусклее по мере того как разряжаются батарейки. Обратите внимание, чем меньше давление воды (напряжение), тем меньше поток воды (ток).

 

Электрический ток

Электрический ток – это физический процесс направленного движения заряженных частиц под действием электромагнитного поля от одного полюса замкнутой электрической цепи к другому. В качестве частиц, переносящих заряд, могут выступать электроны, протоны, ионы и дырки. При отсутствии замкнутой цепи ток невозможен. Частицы способные переносить электрические заряды существуют не во всех веществах, те в которых они есть, называются проводниками и полупроводниками. А вещества, в которых таких частиц нет – диэлектриками.

Принято считать направление тока от плюса к минусу, при этом электроны движутся от минуса к плюсу!

Единица измерения силы тока – Ампер (А). В формулах и расчетах сила тока обозначается буквой I. Ток в 1 Ампер образуется при прохождении через точку электрической цепи заряда в 1 Кулон (6,241·10

18 электронов) за 1 секунду.

 

Вновь обратимся к нашей аналогии вода – электричество. Только теперь возьмем два резервуара и наполним их равным количеством воды. Отличие между баками в диаметре выходной трубы.

Откроем краны и убедимся, что поток воды из левого бака больше (диаметр трубы больше), чем из правого. Такой опыт – явное доказательство зависимости скорости потока от диаметра трубы. Теперь попробуем уравнять два потока. Для этого добавим в правый бак воды (заряд). Это даст большее давление (напряжение) и увеличит скорость потока (ток). В электрической цепи в роли диаметра трубы выступает сопротивление.

Проведенные эксперименты наглядно демонстрируют взаимосвязь между напряжением, током и сопротивлением. Подробнее о сопротивлении поговорим чуть позже, а сейчас еще несколько слов о свойствах электрического тока.

Если напряжение не меняет свою полярность, плюс на минус, и ток течет в одном направлении, то – это

постоянный ток и соответственно постоянное напряжение. Если источник напряжения меняет свою полярность и ток течет то в одном направлении, то в другом – это уже переменный ток и переменное напряжение. Максимальные и минимальные значения (на графике обозначены как Io) – это амплитудные или пиковые значения силы тока. В домашних розетках напряжение меняет свою полярность 50 раз в секунду, т.е. ток колеблется то туда, то сюда, получается, что частота этих колебаний составляет 50 Герц или сокращенно 50 Гц. В некоторых странах, например в США принята частота 60 Гц.

Сопротивление

Электрическое сопротивление – физическая величина, определяющая свойство проводника препятствовать (сопротивляться) прохождению тока. Единица измерения сопротивления – Ом (обозначается Ом или греческой буквой омега Ω). В формулах и расчетах сопротивление обозначается буквой R. Сопротивлением в 1 Ом обладает проводник к полюсам которого приложено напряжение 1 В и протекает ток 1 А.

Проводники по-разному проводят ток. Их проводимость зависит, в первую очередь, от материала проводника, а также от сечения и длины. Чем больше сечение, тем выше проводимость, но, чем больше длина, тем проводимость ниже. Сопротивление – это обратное понятие проводимости.

На примере водопроводной модели сопротивление можно представить как диаметр трубы. Чем он меньше, тем хуже проводимость и выше сопротивление.

Сопротивление проводника проявляется, например, в нагреве проводника при протекании в нем тока. Причем, чем больше ток и меньше сечение проводника – тем сильнее нагрев.

 

Мощность

Электрическая мощность – это физическая величина, определяющая скорость преобразования электроэнергии. Например, вы не раз слышали: «лампочка на столько-то ватт». Это и есть мощность потребляемая лампочкой за единицу времени во время работы, т.е. преобразовании одного вида энергии в другой с некоторой скоростью.

Источники электроэнергии, например генераторы, также характеризуется мощностью, но уже вырабатываемой в единицу времени.

Единица измерения мощности – Ватт (обозначается Вт или W). В формулах и расчетах мощность обозначается буквой P. Для цепей переменного тока применяется термин Полная мощность, единица измерения – Вольт-ампер (В·А или V·A), обозначается буквой S.

И в завершение про Электрическую цепь. Данная цепь представляет собой некоторый набор электрических компонентов, способных проводить электрический ток и соединенных между собой соответствующим образом.

Что мы видим на этом изображении – элементарный электроприбор (фонарик). Под действием напряжения U (В) источника электроэнергии (батарейки) по проводникам и другим компонентам обладающих разными сопротивлениями R (Ом) от плюса к минусу течет электрический ток I (А) заставляющий светиться лампочку мощностью P (Вт). Не обращайте внимания на яркость лампы, это из-за плохого давления и малого потока воды батареек.

Фонарик, что представлен на фотографии, собран на базе конструктора «Знаток». Данный конструктор позволяет ребенку в игровой форме познать основы электроники и принцип работы электронных компонентов. Поставляется в виде наборов с разным количеством схем и разного уровня сложности.

Ток и напряжение. Виды и правила. Работа и характеристики

Ток и напряжение являются количественными параметрами, применяемыми в электрических схемах. Чаще всего эти величины меняются с течением времени, иначе не было бы смысла в действии электрической схемы.

Напряжение

Условно напряжение обозначается буквой

«U». Работа, затраченная на перемещение единицы заряда из точки, имеющей малый потенциал в точку с большим потенциалом, является напряжением между этими двумя точками. Другими словами, это энергия, освобождаемая после перехода единицы заряда от высокого потенциала к малому.

Напряжение еще могут называть разностью потенциалов, а также электродвижущей силой. Этот параметр измеряется в вольтах. Чтобы переместить 1 кулон заряда между двумя точками, которые имеют напряжение 1 вольт, нужно выполнить работу в 1 джоуль. Кулонами измеряются электрические заряды. 1 кулон равен заряду 6х10

18 электронов.

Напряжение разделяется на несколько видов, в зависимости от видов тока:
  • Постоянное напряжение. Оно присутствует в электростатических цепях и цепях постоянного тока.
  • Переменное напряжение. Этот вид напряжения имеется в цепях с синусоидальными и переменными токами. В случае синусоидального тока рассматриваются такие характеристики напряжения, как:
    амплитуда колебаний напряжения – это максимальное его отклонение от оси абсцисс;
    — мгновенное напряжение, которое выражается в определенный момент времени;
    — действующее напряжение, определяется по выполняемой активной работе 1-го полупериода;
    — средневыпрямленное напряжение, определяемое по модулю величины выпрямленного напряжения за один гармонический период.

При передаче электроэнергии по воздушным линиям устройство опор и их размеры зависят от величины применяемого напряжения. Величина напряжения между фазами называется линейным напряжением, а напряжение между землей и каждой из фаз – фазным напряжением. Такое правило применимо для всех типов воздушных линий. В России в электрических бытовых сетях, стандартным является трехфазное напряжение с линейным напряжением 380 вольт, и фазным значением напряжения 220 вольт.

Электрический ток

Ток в электрической цепи является скоростью движения электронов в определенной точке, измеряется в амперах, и обозначается на схемах буквой «I». Также используются и производные единицы ампера с соответствующими приставками милли-, микро-, нано и т.д. Ток размером в 1 ампер образуется передвижением единицы заряда в 1 кулон за 1 секунду.

Условно считается, что ток в электрической цепи течет по направлению от положительного потенциала к отрицательному. Однако, из курса физики известно, что электрон движется в противоположном направлении.

Необходимо знать, что напряжение измеряется между 2-мя точками на схеме, а ток течет через одну конкретную точку схемы, либо через ее элемент. Поэтому, если кто-то употребляет выражение «напряжение в сопротивлении», то это неверно и неграмотно. Но часто идет речь о напряжении в определенной точке схемы. При этом имеется ввиду напряжение между землей и этой точкой.

Напряжение образуется от воздействия на электрические заряды в генераторах, батареях, солнечных элементах и других устройствах. Ток возникает путем приложения напряжения к двум точкам на схеме.

Чтобы понять, что такое ток и напряжение, правильнее будет воспользоваться осциллографом. На нем можно увидеть ток и напряжение, которые меняют свои значения во времени. На практике элементы электрической цепи соединены проводниками. В определенных точках элементы цепи имеют свое значение напряжения.

Ток и напряжение подчиняются правилам:
  • Сумма токов, входящих в точку, равняется сумме токов, выходящих из точки (правило сохранения заряда). Такое правило является законом Кирхгофа для тока. Точка входа и выхода тока в этом случае называется узлом. Следствием из этого закона является следующее утверждение: в последовательной электрической цепи группы элементов величина тока для всех точек одинакова.
  • В параллельной схеме элементов напряжение на всех элементах одинаково. Иначе говоря, сумма падений напряжений в замкнутом контуре равна нулю. Этот закон Кирхгофа применяется для напряжений.
  • Работа, выполненная в единицу времени схемой (мощность), выражается следующим образом: Р = U*I. Мощность измеряется в ваттах. Работа величиной 1 джоуль, выполненная за 1 секунду, равна 1 ватту. Мощность распространяется в виде теплоты, расходуется на совершение механической работы (в электродвигателях), преобразуется в излучение различного вида, накапливается в емкостях или батареях. При проектировании сложных электрических систем, одной из проблем является тепловая нагрузка системы.
Характеристика электрического тока

Обязательным условием существования тока в электрической цепи является замкнутый контур. Если контур цепи разрывается, то ток прекращается.

По такому принципу действуют все защиты и выключатели в электротехнике. Они разрывают электрическую цепь подвижными механическими контактами, и этим прекращают течение тока, выключая устройство.

В энергетической промышленности электрический ток возникает внутри проводников тока, которые выполнены в виде шин, кабелей, проводов и других частей, проводящих ток.

Также существуют другие способы создания внутреннего тока в:
  • Жидкостях и газах за счет передвижения заряженных ионов.
  • Вакууме, газе и воздухе с помощью термоэлектронной эмиссии.
  • Полупроводниках, вследствие движения носителей заряда.
Условия возникновения электрического тока:
  • Нагревание проводников (не сверхпроводников).
  • Приложение к носителям заряда разности потенциалов.
  • Химическая реакция с выделением новых веществ.
  • Воздействие магнитного поля на проводник.
Формы сигнала тока:
  • Прямая линия.
  • Переменная синусоида гармоники.
  • Меандром, похожий на синусоиду, но имеющий острые углы (иногда углы могут сглаживаться).
  • Пульсирующая форма одного направления, с амплитудой, колеблющейся от нуля до наибольшей величины по определенному закону.

Виды работы электрического тока:
  • Световое излучение, создающееся приборами освещения.
  • Создание тепла с помощью нагревательных элементов.
  • Механическая работа (вращение электродвигателей, действие других электрических устройств).
  • Создание электромагнитного излучения.
Отрицательные явления, вызываемые электрическим током:
  • Перегрев контактов и токоведущих частей.
  • Возникновение вихревых токов в сердечниках электрических устройств.
  • Электромагнитные излучения во внешнюю среду.

Создатели электрических устройств и различных схем при проектировании должны учитывать вышеперечисленные свойства электрического тока в своих разработках. Например, вредное влияние вихревых токов в электродвигателях, трансформаторах и генераторах снижается путем шихтовки сердечников, применяемых для пропускания магнитных потоков. Шихтовка сердечника – это его изготовление не из цельного куска металла, а из набора отдельных тонких пластин специальной электротехнической стали.

Но, с другой стороны, вихревые токи используют для работы микроволновых печей, духовок, действующих по принципу магнитной индукции. Поэтому, можно сказать, что вихревые токи оказывают не только вред, но и пользу.

Переменный ток с сигналом в форме синусоиды может различаться частотой колебаний за единицу времени. В нашей стране промышленная частота тока электрических устройств стандартная, и равна 50 герцам. В некоторых странах используется частота тока 60 герц.

Для различных целей в электротехнике и радиотехнике используют другие значения частоты:
  • Низкочастотные сигналы с меньшей величиной частоты тока.
  • Высокочастотные сигналы, которые намного выше частоты тока промышленного использования.

Считается, что электрический ток возникает при движении электронов внутри проводника, поэтому он называется током проводимости. Но существует и другой вид электрического тока, который получил название конвекционного. Он возникает при движении заряженных макротел, например, капель дождя.

Электрический ток в металлах

Движение электронов при воздействии на них постоянной силы сравнивают с парашютистом, который снижается на землю. В этих двух случаях происходит равномерное движение. На парашютиста действует сила тяжести, а противостоит ей сила сопротивления воздуха. На движение электронов действует сила электрического поля, а сопротивляются этому движению ионы решеток кристаллов. Средняя скорость электронов достигает постоянного значения, так же как и скорость парашютиста.

В металлическом проводнике скорость движения одного электрона равна 0,1 мм в секунду, а скорость электрического тока около 300 тысяч км в секунду. Это объясняется тем, что электрический ток течет только там, где к заряженным частицам приложено напряжение.

Поэтому достигается большая скорость протекания тока.

При перемещении электронов в кристаллической решетке существует следующая закономерность. Электроны сталкиваются не со всеми встречными ионами, а только с каждым десятым из них. Это объясняется законами квантовой механики, которые можно упрощенно объяснить следующим образом.

Движению электронов мешают большие ионы, которые оказывают сопротивление. Это особенно заметно при нагревании металлов, когда тяжелые ионы «качаются», увеличиваются в размерах и уменьшают электропроводность решеток кристаллов проводника. Поэтому при нагревании металлов всегда увеличивается их сопротивление. При снижении температуры повышается электрическая проводимость. При снижении температуры металла до абсолютного нуля можно добиться эффекта сверхпроводимости.

Похожие темы:

Ток, напряжение, сопротивление

Электрический ток ( I ) - это упорядоченное движение заряженных частиц. Первая мысль, которая приходит в голову из школьного курса физики - движение электронов. Безусловно.

Однако электрический заряд могут переносить не только они, а, например, еще ионы, определяющие возникновение электрического тока в жидкостях и газах.

Хочу предостеречь также от сравнения тока с протеканием воды по шлангу. (Хотя при рассмотрении Закона Кирхгофа такая аналогия будет уместна). Если каждая конкретная частица воды проделывает путь от начала до конца, то носитель электрического тока так не поступает.

Если уж нужна наглядность, то я бы привел пример переполненного автобуса, когда на остановке некто, втискиваясь в заднюю дверь, становится причиной выпадения из передней менее удачливого пассажира.

Условиями возникновения и существования электрического тока являются:

  • Наличие свободных носителей заряда
  • Наличие электрического поля, создающего и поддерживающего ток.

Будем считать, что теперь про электрический ток Вы знаете все. Это, конечно, шутка. Тем более что еще ничего не сказано про электрическое поле, которое у многих ассоциируется с напряжением, что не верно.

Электрическое поле - это вид материи, существующей вокруг электрически заряженных тел и оказывающее на них силовое воздействие. Опять же, обращаясь к знакомому со школы "одноименные заряды отталкиваются, а разноименные притягиваются" можно представить электрическое поле как нечто это воздействие передающее.

Это поле, равно как любое другое непосредственно ощутить нельзя, но существует его количественная характеристика - напряженность электрического поля.

Существует множество формул, описывающих взаимосвязь электрического поля с другими электрическими величинами и параметрами. Я ограничусь одной, сведенной к примитиву: E=Δφ.

Здесь:

  • E - напряженность электрического поля. Вообще это величина векторная, но я упростил все до скаляра.
  • Δφ=φ1-φ2 - разность потенциалов (рисунок 1).

Поскольку условием существования тока является наличие электрического поля, то его (поле) надо каким либо образом создать. Хорошо знакомые опыты электризации расчески, натирания тканью эбонитовой палочки, верчения ручки электростатической машины по вполне очевидным причинам на практике неприемлимы.

Поэтому были изобретены устройства, способные обеспечивать разность потенциалов за счет сил неэлектростатического происхождения (одно из них - хорошо всем известная батарейка), получившие название источник электродвижущей силы (ЭДС), которая обозначается так: ε.

Физический смысл ЭДС определяется работой, которую совершают сторонние силы, перемещая единичный заряд, но для того, чтобы получить первоначальное понятие что такое электрический ток, напряжение и сопротивление нам не нужно подробное рассмотрение этих процессов в интегральной и иных не менее сложных формах.

Напряжение ( U ).

Наотрез отказываюсь продолжать заморачивать Вам голову сугубо теоретическими выкладками и даю определение напряжения как разности потенциалов на участке цепи: U=Δφ=φ1-φ2, а для замкнутой цепи будем считать напряжение равным ЭДС источника тока: U=ε.

Это не совсем корректно, но на практике вполне достаточно.

Сопротивление ( R ) - название говорит само за себя - физическая величина, характеризующая противодействие проводника электрическому току. Формула, определяющая зависимость напряжения, тока и сопротивления называется закон Ома. Этот закон рассматривется на отдельной странице этого раздела.

Кроме того, сопротивление зависит от ряда факторов, например, материала проводника. Данные эти справочные, приводятся в виде значения удельного сопротивления ρ, определяемого как сопротивление 1 метра проводника/сечение. Чем меньше удельное сопротивление, тем меньше потери тока в проводнике.

Соответственно сопротивление проводника длиной L и площадью сечения S, будет составлять R=ρ*L/S.

Непосредственно из приведенной формулы видно, что сопротивление проводника также зависит от его длины и сечения. Температура тоже оказывает влияние на сопротивление.

Несколько слов про единицы измерения тока, напряжения, сопротивления. Основные единицы измерения этих величин следующие:

Ток - Ампер (А)
Напряжение - Вольт (В)
Сопротивление - Ом (Ом).

Это единицы измерения интернациональной системы (СИ) не всегда удобны. На практике применяются из производные (милиампер, килоом и пр.). При расчетах следует учитывать размерность всех величин, содержащихся в формуле. Так, если Вы, в законе Ома умножите ампер на килоом, то напряжение получите совсем не вольтах.

© 2012-2020 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов


Основы электроники. Ток, напряжение, сопротивление.

На нашем сайте вышел обновленный курс по электронике! Мы рады предложить Вам новые статьи по этой теме:

Эта статья положит начало циклу статей, посвященных изучению основ электроники! Мы будем последовательно двигаться от самых азов до всяческих тонкостей при разводке плат и составлении принципиальных электрических схем. И начнем мы с рассмотрения основополагающих понятий электроники – тока, напряжения и сопротивления.

Напряжение.

По определению напряжение – это энергия или работа, которая тратится на перемещение единичного положительного заряда из точки с низким потенциалом в точку с более высоким потенциалом. Напряжение представляет собой разность потенциалов между двумя точками. Сразу же остановимся и рассмотрим подробнее понятие – электрический потенциал.

Для определения электрического потенциала необходимо выбрать точку нулевого потенциала, относительно которой будет вестись отсчет. Обычно за ноль потенциала принимают минус питания – это так называемая «земля». Рассмотрим простейшую цепочку, состоящую из источника напряжения и нагрузки – то есть резистора. Пусть напряжение источника равно 10 В, а сопротивление – 5 Ом.

Земля будет точкой отсчета, потенциал в этой точке равен 0. Тогда электрический потенциал в точке 1 будет равен напряжению источника питания, то есть 10 В. Соответственно, в точке 2 потенциал снова уменьшится до нуля, а напряжение на нагрузке будет равно 10 В (разность потенциалов между точками 1 и 2). Вроде бы все несложно и понятно, но это довольно важный момент, надо сразу уяснить для себя понятия напряжения и разности потенциалов, разницу и взаимосвязь между ними.

Ток.

Ток – скорость перемещения заряда в определенной точке, измеряются эта величина в Амперах. Тут тоже есть момент, который важно понять раз и навсегда. Если напряжение мы меряем между(!) двумя точками, то ток всегда проходит через(!) какую-либо точку схемы, либо через какой-либо элемент схемы. И если говорить о напряжении в какой-то точке схемы, то подразумевается напряжение между этой точкой и землей (потенциал в нашей точке минус потенциал земли, равный нулю).

Существует один важный закон для токов, называется он первым законом Кирхгофа и заключается он в том, что «сумма втекающих в точку токов равна сумме вытекающих из этой же точки токов». Для полного понимания смотрим на схему:

Тут у нас втекающие токи – I_1, I_2, I_3, а вытекающие – I_4, I_5. И по первому закону Кирхгофа мы имеем: I_1 + I_2 + I_3 = I_4 + I_5.

Сопротивление.

Сопротивление помогает связать напряжение и ток в цепи. Есть такая потрясающая штука – закон Ома, который говорит нам, что «сила тока в цепи прямо пропорциональна напряжению и обратно пропорциональна сопротивлению рассматриваемого участка цепи». Поясним на простеньком примере:

Итак, по закону Ома имеем: I = \frac{U}{R}.

Таким образом, можно сказать, что резистор позволяет нам преобразовать ток в напряжение, ну и, соответственно, напряжение в ток.

Рассмотрим возможные соединения резисторов, а именно, последовательное и параллельное. Пусть имеются три резистора, соединенных последовательно:

Общее сопротивление равно сумме каждого из сопротивлений в отдельности, то есть: R_0 = R_1 + R_2 + R_3.

Рассмотрим параллельное соединение:

Для параллельного соединения резисторов формула выглядит иначе: \frac{1}{R_0} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}.

Очевидно, что при последовательном соединении резисторов общее сопротивление всегда получается большим, чем сопротивление отдельно взятого резистора, а при параллельном соединении резисторов, наоборот, общее сопротивление получается меньшим, чем сопротивление отдельных резисторов. Это важно запомнить и иметь ввиду при разработке электрических схем.

И еще важный момент – не нужно зацикливаться на точном определении значений сопротивления резисторов. Напротив, очень важно выработать способность быстро прикидывать в голове, какой резистор нужно поместить в схему в каждом конкретном случае.

Думаю тут еще надо рассмотреть такую вещь как делитель напряжения, раз уж речь идет о резисторах и сопротивлениях. Выглядит схема делителя так:

Делители напряжения, кстати, очень широко используются в схемах, можете взять какую-нибудь и обязательно там найдете с десяток делителей. Но что-то я забежал вперед, сначала рассмотрим, что же это такое. Простейший делитель напряжения – это схема, которая на выходе создает напряжение, равное части напряжения, которое имеется на входе.

Ток в цепи: I = \frac{U_{вх} }{R_1 + R_2} .

Тогда что же будет на выходе? Правильно: U_{вых} = IR_2 = \frac{U_{вх}R_2}{R_1 + R_2}.

Вот и получили, что на выходе напряжение равно части входного напряжения. Так работает делитель напряжения.

Итак, мы и рассмотрели понятия тока, напряжения и сопротивления. Наверное, на этом стоит остановиться, а то получится очень громоздко 🙂 Продолжим в следующих статьях, так что оставайтесь на связи!

404 page not found | Fluke

Talk to a Fluke sales expert

Связаться с Fluke по вопросам обслуживания, технической поддержки и другим вопросам»

Имя *

Фамилия *

Электронная почта *

Компания *

Номер телефона *

Страна * - Select -United States (Estados Unidos)CanadaAfghanistanAlbaniaAlgeriaAmerican SamoaAndorraAngolaAnguillaAntarticaAntigua and BarbudaArgentinaArmeniaArubaAustraliaAzerbaijanBahamasBahrainBangladeshBarbadosБеларусь (Belarus)Belgien/Belgique (Belgium)BelizeBeninBermudaBhutanBoliviaBonaire, Sint Eustatius and SabaBosnia and HerzegovinaBouvet IslandBotswanaBrasil (Brazil)British Indian Ocean TerritoryBrunei DarussalamBulgariaBurkina FasoBurundiCambodiaCameroonCape VerdeCayman IslandsCentral African RepublicČeská republika (Czech Republic)ChadChile中国 (China)Christmas IslandCittà Di VaticanCocos (Keeling) IslandsCook IslandsColombiaComorosCongoThe Democratic Republic of CongoCosta RicaCroatiaCyprusCôte D'IvoireDanmark (Denmark)Deutschland (Germany)DjiboutiDominicaEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEspaña (Spain)EstoniaEthiopiaFaroese FøroyarFijiFranceFrench Southern TerritoriesFrench GuianaGabonGambiaGeorgiaGhanaGilbralterGreeceGreenlandGrenadaGuatemalaGuadeloupeGuam (USA)GuineaGuinea-BissauGuyanaHaitiHeard Island and McDonald IslandsHondurasHong KongHungaryIcelandIndiaIndonesiaIraqIrelandIsraelIslas MalvinasItalia (Italy)Jamaica日本 (Japan)JordanKazakhstanKenyaKiribati대한민국 (Korea, Republic of)KuwaitKyrgyzstanLaosLatviaLebanonLesothoLiberiaLibyaLiechtensteinLithuaniaLuxembourgMacaoMacedoniaMadagascarMalawiMalaysiaMaldivesMaliMaltaMarshall IslandsMartiniqueMauritaniaMauritiusMayotteMéxico (Mexico)MicronesiaMoldovaMonacoMongoliaMontenegroMonserratMoroccoMozambiqueMyanmarNamibiaNauruNederland (Netherlands)Netherlands AntillesNepalNew CaledoniaNew ZealandNicaraguaNigerNigeriaNiueNorge (Norway)Norfolk IslandNorthern Mariana IslandsOmanÖsterreich (Austria)PakistanPalauPalestinePanamaPapua New GuineaParaguayPerú (Peru)PhilippinesPitcairn IslandPuerto RicoРоссия (Russia)Polska (Poland)Polynesia (French)PortugalQatarRepública Dominicana (Dominican Republic)RéunionRomânia (Romania)RwandaSaint HelenaSaint Pierre and MiquelonSaint Kitts and NevisSaint LuciaSaint Vincent and The GrenadinesSan MarinoSao Tome and PrincipeSaudi ArabiaSchweiz (Switzerland)SenegalSerbiaSeychellesSierra LeoneSingaporeSlovakiaSloveniaSolomon IslandsSomaliaSouth AfricaSouth Georgia and The South Sandwich IslandsSouth SudanSri LankaSudanSuomi (Finland)SurinameSvalbard and Jan MayenSverige (Sweden)SwazilandTaiwanTajikistanTanzaniaThailandTimor-LesteTokelauTogoTongaTrinidad and TobagoTunisiaTürkiye (Turkey)TurkmenistanTurks and Caicos IslandsTuvaluUgandaUkraineUnited Arab EmiratesUnited KingdomUnited States Minor Outlying IslandsUruguayUzbekistanVanuatuVirgin Islands (British)Virgin Islands (USA)VenezuelaVietnamWallis and FutunaWestern SaharaWestern SamoaYemenZambiaZimbabwe

Почтовый индекс *

Интересующие приборы

Consent Check

?Отмечая галочкой этот пункт, я даю свое согласие на получение маркетинговых материалов и специальных предложений по электронной почте от Fluke Electronics Corporation, действующей от лица компании Fluke Industrial или ее партнеров в соответствии с политикой конфиденциальности.

Политика конфиденциальности

Leave this field blank

Электроника как искусство: электрический ток / Хабр

Не влезай. Убьет! (с)

Среднестатистическая грамотность населения в области электроники и электротехники оставляет желать лучшего. Максимум, спаять схемку, а как она работает — темный лес. К сожалению, все русскоязычные учебники пестрят формулами и интегралами, от них любого человека потянет в сон. В англоязычной литературе дела обстоят несколько лучше. Попадаются довольно интересные издания, но камнем преткновения здесь уже выступает английский язык. Постараюсь изложить основные понятия по электротехнике максимально доступно, в вольном стиле, не от инженера инженеру, а от человека человеку. Сведущий читатель, возможно, тоже найдет для себя несколько интересных моментов.
Электрический ток

Пути электрического тока неисповедимы. (с) мысли из интернета

На самом деле, нет. Все так или иначе можно описать с помощью математической модели, моделирования, да даже прикинув по-быстренькому на бумажке, а некоторые уникумы делают это в голове. Кому как удобнее. На самом деле, эпиграф этой главы родился от незнания, что же такое электрический ток.

Электрический ток характеризуется несколькими параметрами. Напряжением U и током I. Конечно, все мы помним определения по физике, но мало кто понимает их значения. Начну с напряжения. Разность потенциалов или работа по перемещению заряда, как сухо и неинтересно пишут в учебниках. На самом деле, напряжение всегда измеряется между двумя точками. Оно характеризует способность создавать электрический ток между этими двумя точками. Назовем эти точки источником напряжения. Чем больше напряжение, тем больше ток. Меньше напряжения – меньше ток. Но об этом чуть позже.

Что же такое ток? Представьте аналогию русло реки – это провода, электрический ток – это скорость потока воды в реке. Тогда напряжение здесь – перепад высоты между начальной точкой реки и конечной точкой. Или напряжение – это насос гоняющий воду, если река течет в одной плоскости. Такие аналогии на начальных этапах очень помогают понять, что же происходит в электрической схеме. Но, в конечном итоге, лучше от них отказаться. Лучше представить ток как некий поток электронов. Количество заряда, перемещаемое в единицу времени. Конечно, в учебниках говорится, что де электроны движутся со скоростью несколько сантиметров в минуту и значение имеет лишь электромагнитное поле, но пока забудем про это. Итак, под током можно понимать движение электрического тока, т.е. заряда. Носители заряда, электроны, отрицательно заряжены и двигаются от отрицательного потенциала к положительному, электрический ток же имеет направление от положительного потенциала к отрицательному, от плюса к минусу, так принято для удобства и так мы будем пользоваться в дальнейшем, забыв про заряд электрона.

Конечно, сам по себе ток не появится, нужно создать напряжение между двумя точками и нужна какая-либо нагрузка для протекания тока через нее, подключенная к этим двум точками. Очень полезно знать свойство, что для протекания тока нужно два проводника: прямой, до нагрузки, и обратный, от нагрузки до источника. Например, если не замкнуты проводники источника напряжения, то тока не будет.

Что же такое источник напряжения? Представим его в виде черного ящика, имеющего как минимум два вывода для подключения. Самые простые примеры из реальной жизни: электрическая розетка, батарейка, аккумулятор и т.п.


Идеальный источник напряжения обладает неизменным напряжением при протекании через него любого значения тока. Что же будет, если замкнуть зажимы идеального источника напряжения? Потечет бесконечно большой ток. В реальности источники напряжения не могут отдать бесконечно большой ток, потому что обладают некоторым сопротивлением. Например, провода в сетевой розетке 220в от самой розетки до подстанции имеют сопротивление, пусть и малое, но довольно ощутимое. Провода от подстанций до электростанций тоже имеют сопротивление. Нельзя забывать про полное сопротивление трансформаторов и генераторов. Батарейки имеют внутреннее сопротивление, обусловленное внутренней химической реакцией, которая имеет конечную скорость протекания.

Что же такое сопротивление? Вообще, это тема довольно обширная. Возможно, опишу в одной из следующих глав. Если кратко – это параметр, связывающий ток и напряжение. Оно характеризует, какой ток потечет при приложенном напряжении к этому сопротивлению. Если говорить «водной» аналогией, то сопротивление – это дамба на пути реки. Чем меньше отверстие в дамбе – тем больше сопротивление. Эту связь описывает закон Ома: . Как говорится: «Не знаешь закон Ома, сиди дома!».

Зная закон Ома, не сидя дома, имея какой-либо источник тока с заданным напряжением и сопротивление в виде нагрузки, мы очень точно можем предсказать какой потечет ток.
Реальные источники напряжения имеют какое-то свое внутреннее напряжение и отдают некий конечный ток, называемый током короткого замыкания. При этом батареи и аккумуляторы еще и разряжаются со временем и имеют нелинейное внутреннее сопротивление. Но пока тоже забудем об этом, и вот почему. В реальных схемах удобнее проводить анализ с использованием сиюминутных мгновенных значений напряжения и тока, поэтому будем считать источники напряжения идеальными. За исключением того факта, когда потребуется посчитать максимальны ток, который способен отдать источник.

Насчет «водной» аналогии электрического тока. Как я уже писал, она не очень правдива, поскольку скорость движения реки до дамбы и после дамбы будет разным, также разным будет кол-во воды до и после дамбы. В реальных схемах электрический ток втекающий в резистор и вытекающий из него будет равен между собой. Ток по прямому проводу, к нагрузке, и по обратному проводу, от нагрузки до источника, тоже равен между собой. Ток ни откуда не берется и никуда не девается, сколько «втекло» в узел схемы, столько и «вытечет», даже если путей несколько. Например, если есть два пути протекания тока от источника, то он потечет по этим путям, при этом полный ток источника будет равен сумме двух токов. И так далее. Это и есть иллюстрация закона Кирхгофа. Это очень просто.


Также есть еще два важных правила. При параллельном соединении элементов, напряжение в каждом из элементов одинаково. Например, напряжение на резисторе R2 и R3, на рисунке выше, одинаковы, но токи могут быть разными, если резисторы имеют разные сопротивления, по закону Ома. Ток через батарейку равен току на резисторе R1 и равен сумме токов на резисторах R2 и R3. При последовательном соединении напряжения элементов складываются. Например, напряжение которое выдает батарея, т.е. ее ЭДС, равно напряжению на резисторе R1 + напряжение на резисторе R2 или R3.

Как я уже писал, напряжение измеряется всегда между двумя точками. Иногда, в литературе можно встретить: «Напряжение в точке такой-то». Это означает напряжение между этой точкой и точкой нулевого потенциала. Создать точку нулевого потенциала можно, например, заземлив схему. Обычно «землят» схему в месте самого отрицательно потенциала около источника питания, например, как на рисунке выше. Правда это бывает не всегда, да и применение нуля довольно условно, например, если нам нужно двухполярное питание +15 и -15 вольт, то «землить» надо уже не -15в, а потенциал посредине. Если же заземлить -15в, то мы получим 0, +15, +30в. См. рисунки ниже.


Заземление также применяется в качестве защитного или рабочего. Защитное заземление называют зануление. Если нарушится изоляция схемы в каком-нибудь другом участке, отличном от земли, то по нулевому проводу потечет большой ток и сработает защита, которая отключит часть схемы. Защиту мы должны предусмотреть заранее, поставив автоматический выключатель или иное устройство на пути протекания тока.

Иногда «землить» схему нельзя или невозможно. Вместо земли применяют термин общая точка или ноль. Напряжения в таких схемах указываются относительно общей точки. При этом вся схема относительно земли, т.е. нулевого потенциала может располагаться где угодно. См. рисунок.


Обычно, Xv близко к 0 вольт. Такие незаземленные схемы с одной стороны более безопасны, поскольку если человек прикоснется одновременно к схеме и земле ток не потечет, т.к. нет обратного пути протекания тока. Т.е. схема станет «заземлена» через человека. Но с другой стороны такие схемы каверзны. Если вдруг нарушится изоляция схемы от земли в какой-либо ее точке, то мы этого не узнаем. Что может быть опасно, при больших напряжениях Xv.

Вообще земля — это термин довольно обширный и расплывчатый. Есть очень много терминов и названий земли, смотря где «землить» схему. Под землей может пониматься как защитная земля, так и рабочая земля (по протеканию тока через нее при нормальной работе), как сигнальная земля, так и силовая земля (по роду тока), как аналоговая земля, так и цифровая земля (по роду сигнала). Под землей может пониматься общая точка или наоборот, под общей точкой пониматься земля или и быть ей. Также в схеме могут присутствовать все земли одновременно. Так что надо смотреть по контексту. Есть даже такая забавная картиночка в иностранной литературе, см. ниже. Но обычно земля – это схемные 0 вольт и это точка от которой измеряют потенциал схемы.


До сих пор, упоминая источник напряжения, я не касался рода этого самого напряжения. Напряжение есть меняющееся со временем и есть не меняющееся. Т.е. переменное и постоянное. Например, напряжение, меняющееся по синусоидальному закону всем хорошо знакомо, это напряжение сети 220в в бытовых розетках. С постоянным напряжением работать очень просто, мы это уже делали выше, когда рассматривали закон Кирхгофа. А что же делать с переменным напряжением и как его рассматривать?

На рисунке приведены несколько периодов переменного напряжения 220в 50Гц (синяя линия). Красная линия – постоянное напряжение 220в, для сравнения.


Определимся, сначала что такое напряжение 220в, кстати, по новому стандарту положено считать 230в. Это действующее значение напряжения. Амплитудное значение будет в корень из 2х раз выше и составит примерно 308в. Действующее значение – это такое значение напряжения, при котором за период переменного тока в проводнике выделяется столько же теплоты, сколько и при постоянном токе такого же напряжения. Выражаясь математическим языком – это среднеквадратичное значение напряжения. В английской литературе используется термин RMS, а приборы, которые измеряют истинное действующее значение имеют знак «true RMS».

На первый взгляд это может показаться неудобным, какое-то действующее значение, но это удобно для расчетов мощности без необходимости конвертации напряжения.

Переменное напряжение еще удобно рассматривать как постоянное напряжение, взятое в какой-либо точке времени. После чего проводить анализ схемы несколько раз, изменяя знак постоянного напряжение на обратный. Сначала рассмотреть работу схемы с постоянным положительным напряжением, потом, изменить знак, с положительного на отрицательный.
Для переменного напряжения также необходимо два провода. Они называются фаза и ноль. Иногда ноль заземляют. Такая система называется однофазной. Напряжение фазы измеряется относительно нуля и меняется со временем, как показано на рисунке выше. При положительной полуволне напряжения ток протекает от фазы к активной нагрузке и от нагрузки возвращается обратно по нулевому проводу. При отрицательной полуволне ток течет по нулевому проводу и возвращается по фазному.

В промышленности широко применяют трехфазную сеть. Это частный случай многофазных систем. По сути все тоже самое, что и однофазная система, только умноженная на 3, т.е. применение одновременно трех фаз и трех земель. Впервые изобретено Н. Тесла, впоследствии усовершенствовано М. О. Доливо-Добровольским. Усовершенствование состояло в том, что для передачи трехфазного электрического тока можно было выкинуть лишние провода, достаточно четырех: три фазы ABC и нулевой провод или же вовсе три фазы, отказавшись от нуля. Нулевой провод очень часто заземляют. На рисунке ниже ноль общий.


Почему же 3 фазы, и не больше, не меньше? С одной стороны, 3 фазы гарантированно создают вращающееся магнитное поле, так необходимое электрическим двигателям для вращения или получаемое от генераторов электростанций, с другой стороны это экономически выгодно с материальной точки зрения. Меньше нельзя, а больше и не нужно.

Чтобы гарантировано создавать вращающееся поле в трехфазной сети нужно чтобы фазы напряжения были сдвинуты друг относительно друга. Если принять полный период напряжения за 360 градусов, то 360/3 = 120 градусов. Т.е. напряжение каждой фазы сдвинуто относительно друг друга на 120 градусов. См. рисунок ниже.


Здесь показан график напряжения 3-х фазной сети 380в по времени. Как видно из рисунка, все тоже самое, что и с однофазной сетью, только напряжений стало больше. 380в – это так называемое линейное напряжение сети Uл, т.е. напряжение, измеряемое между двумя фазами. На рисунке показан пример нахождения мгновенного значения Uл. Оно также изменяется по синусоидальному закону. Также наряду с линейным напряжением различают фазное Uф. Оно измеряется между фазой и нулем. Фазное напряжение в данной трехфазной сети равно 220в. Под фазным и линейным напряжение, конечно же подразумевается действующее напряжение. Соотносятся линейное к фазному напряжению, как корень из трех.
Нагрузку к трехфазной сети можно подключать как угодно – к фазному напряжению: между какой-либо фазой и нулем, либо к линейному напряжению: между двумя фазами. Если нагрузка подключена к фазному напряжению, то такая схема соединения называется звездой. Она и показана выше. Если к линейному напряжения – то соединение треугольником. Если одинаковая нагрузка подключается к линейным напряжениям между всеми тремя фазами, то такие сети симметричные. Ток через нулевой провод в симметричных сетях не течет. См рис. ниже. Промышленные сети также считаются условно симметричными. Как правило ноль в таких сетях присутствует, но лишь в защитных целях. Иногда может и отсутствовать вообще. Веселая картиночка из вики наглядно иллюстрирует как протекает ток в таких сетях.
На этом кратенький обзор по электросетям и электричеству завершен. Возможно в будущем объясню на пальцах как работает диод и транзистор, что такое стабилитрон, тиристор и другие элементы. Пишите, про что вам интересно почитать.
Библиографический список

  1. Искусство схемотехники, П. Хоровиц. 2003.
  2. GROUNDS FOR GROUNDING. A Circuit-to-System Handbook, Elya B. Joffe, Kai-Sang Lock.
  3. Wiki и интернет ресурсы.

Ток, напряжение, сопротивление. Закон Ома.

Мы начинаем публикацию материалов новой рубрики “Основы электроники“, и в сегодняшней статье речь пойдет о фундаментальных понятиях, без которых не проходит обсуждение ни одного электронного устройства или схемы. Как вы уже догадались, я имею ввиду ток, напряжение и сопротивление 🙂 Кроме того, мы не обойдем стороной закон Ома, который определяет взаимосвязь этих величин, но не буду забегать вперед, давайте двигаться постепенно.

Итак, давайте начнем с понятия напряжения.

Напряжение.

По определению напряжение – это энергия (или работа), которая затрачивается на перемещение единичного положительного заряда из точки с низким потенциалом в точку с высоким потенциалом (т. е. первая точка имеет более отрицательный потенциал по сравнению со второй). Из курса физики мы помним, что потенциал электростатического поля – это скалярная величина, равная отношению потен­циальной энергии заряда в поле к этому заряду. Давайте рассмотрим небольшой пример:

В пространстве действует постоянное электрическое поле, напряженность которого равна E. Рассмотрим две точки, расположенные на расстоянии d друг от друга. Так вот напряжение между двумя точками представляет из себя ни что иное, как разность потенциалов в этих точках:

U = \phi_1\medspace-\medspace \phi_2

В то же время не забываем про связь напряженности электростатического поля и разности потенциалов между двумя точками:

\phi_1\medspace-\medspace \phi_2 = Ed

И в итоге получаем формулу, связывающую напряжение и напряженность:

U = Ed

В электронике, при рассмотрении различных схем, напряжение все-таки принято считать как разность потенциалов между точками. Соответственно, становится понятно, что напряжение в цепи – это понятие, связанное с двумя точками цепи. То есть говорить, к примеру, “напряжение в резисторе” – не совсем корректно. А если говорят о напряжении в какой-то точке, то подразумевают разность потенциалов между этой точкой и “землей”. Вот так плавно мы вышли к еще одному важнейшему понятию при изучении электроники, а именно к понятию “земля” 🙂 Так вот “землей” в электрических цепях чаще всего принято считать точку нулевого потенциала (то есть потенциал этой точки равен 0).

Давайте еще пару слов скажем о единицах, которые помогают охарактеризовать величину напряжения. Единицей измерения является Вольт (В). Глядя на определение понятия напряжения мы можем легко понять, что для перемещения заряда величиной 1 Кулон между точками, имеющими разность потенциалов 1 Вольт, необходимо совершить работу, равную 1 Джоулю. С этим вроде бы все понятно и можно двигаться дальше 🙂

А на очереди у нас еще одно понятие, а именно ток.

Ток, сила тока в цепи.

Что же такое электрический ток?

Давайте подумаем, что будет происходить если под действие электрического поля попадут заряженные частицы, например, электроны… Рассмотрим проводник, к которому приложено определенное напряжение:

Из направления напряженности электрического поля (E) мы можем сделать вывод о том, что \phi_1 > \phi_2 (вектор напряженности всегда направлен в сторону уменьшения потенциала). На каждый электрон начинает действовать сила:

F = Ee

где e − это заряд электрона.

И поскольку электрон является отрицательно заряженной частицей, то вектор силы будет направлен в сторону противоположную направлению вектора напряженности поля. Таким образом, под действием силы частицы наряду с хаотическим движением приобретают и направленное (вектор скорости V на рисунке). В результате и возникает электрический ток 🙂

Ток – это упорядоченное движение заряженных частиц под воздействием электрического поля.

Важным нюансом является то, что принято считать, что ток протекает от точки с более положительным потенциалом к точке с более отрицательным потенциалом, несмотря на то, что электрон перемещается в противоположном направлении.

Носителями заряда могут выступать не только электроны. Например, в электролитах и ионизированных газах протекание тока в первую очередь связано с перемещением ионов, которые являются положительно заряженными частицами. Соответственно, направление вектора силы, действующей на них (а заодно и вектора скорости) будет совпадать с направлением вектора E. И в этом случае противоречия не возникнет, ведь ток будет протекать именно в том направлении, в котором движутся частицы 🙂

Для того, чтобы оценить ток в цепи придумали такую величину как сила тока. Итак, сила тока (I) – это величина, которая характеризует скорость перемещения электрического заряда в точке. Единицей измерения силы тока является Ампер. Сила тока в проводнике равна 1 Амперу, если за 1 секунду через поперечное сечение проводника проходит заряд 1 Кулон.

Мы уже рассмотрели понятия силы тока и напряжения, теперь давайте разберемся каким образом эти величины связаны. И для этого нам предстоит изучить, что же из себя представляет сопротивление проводника.

Сопротивление проводника/цепи.

Термин “сопротивление” уже говорит сам за себя 🙂

Итак, сопротивление – физическая величина, характеризующая свойства проводника препятствовать (сопротивляться) прохождению электрического тока.

Рассмотрим медный проводник длиной l с площадью поперечного сечения, равной S:

Сопротивление проводника зависит от нескольких факторов:

  • удельного сопротивления проводника \rho
  • длины проводника l
  • площади поперечного сечения проводника S

Удельное сопротивление – это табличная величина. Формула, с помощью которой можно вычислить сопротивление проводника выглядит следующим образом:

R = \rho\medspace \frac{l}{S}

Для нашего случая \rho будет равно 0,0175 (Ом * кв. мм / м) – удельное сопротивление меди. Пусть длина проводника составляет 0.5 м, а площадь поперечного сечения равна 0.2 кв. мм. Тогда:

R =0,0175 \cdot \frac{0.5}{0.2} = 0.04375\medspace Ом

Как вы уже поняли из примера, единицей измерения сопротивления является Ом 🙂

С сопротивлением проводника все ясно, настало время изучить взаимосвязь напряжения, силы тока и сопротивления цепи.

Закон Ома.

И тут на помощь нам приходит основополагающий закон всей электроники – закон Ома:

Сила тока в цепи прямо пропорциональна напряжению и обратно пропорциональна сопротивлению рассматриваемого участка цепи.

Рассмотрим простейшую электрическую цепь:Как следует из закона Ома напряжение и сила тока в цепи связаны следующим образом:

I = \frac{U}{R}

Пусть напряжение составляет 10 В, а сопротивление цепи равно 200 Ом. Тогда сила тока в цепи вычисляется следующим образом:

I = \frac{10}{200} = 0.05 = 50\medspaceмА

Как видите, все несложно 🙂 Пожалуй на этом мы и закончим сегодняшнюю статью, спасибо за внимание и до скорых встреч!

Разница между напряжением и током

Напряжение и ток - это два основных аспекта электричества. Напряжение - это тип электромагнитной силы, действие которой вызывает прохождение электрического тока в цепи. Величины напряжения и тока зависят друг от друга, но эти два члена в некотором роде отличаются друг от друга.

Одно из основных различий между напряжением и током состоит в том, что напряжение - это разница между двумя точками, а ток - это поток электрических зарядов между этими двумя точками электрического поля.Некоторые другие различия между ними объясняются ниже в сравнительной таблице.

Содержание: напряжение против тока

  1. Таблица сравнения
  2. Определение
  3. Ключевые отличия
  4. Заключение

Сравнительная таблица

Основа для сравнения Напряжение Ток
Определение Разница между двумя точками электрического поля Поток зарядов между двумя точками
Единица Вольт Ампер
Символ V I
Формула
Создаваемое поле Магнитное поле Электростатическое поле
Типы Переменное и постоянное напряжение Переменный и постоянный ток
Полярность Переменное напряжение изменяется, но постоянное напряжение не может изменить его полярность. Переменный ток меняет свою полярность, но полярность постоянного тока остается постоянной.
Производит Генератор Напряжение
Измерительный прибор Вольтметр Амперметр
Заряды 1 Вольт = 1 Джоуль / Кулон 1 Ампер = 1 кулон в секунду
Последовательное соединение Неравномерно по всем компонентам Равномерно распределено по всем компонентам
Параллельное соединение Величина напряжения остается неизменной во всех компонентах Величина тока изменяется во всех компонентах.
Потери Из-за импеданса Из-за пассивных элементов
Отношение Это причина тока Это эффект напряжения

Определение напряжения

Напряжение - это тип электромагнитной силы. Когда величина напряжения высока, через цепь протекает большой ток, а при низкой величине через нее протекает меньший ток.Напряжение обозначается символом V, а их единица СИ - вольт.

Напряжение в основном подразделяется на два типа: переменное напряжение и постоянное напряжение. Переменное напряжение меняет свою полярность, а постоянное напряжение не меняет своей полярности. Постоянное напряжение создается разностью потенциалов между выводами электрохимической ячейки, а переменное напряжение создается генератором переменного тока.

Иногда в линии передачи напряжение на передающем конце меньше напряжения на приемном конце.Напряжение рассеивается в виде тепла, поэтому потеря напряжения называется падением напряжения. Падение напряжения происходит из-за большой нагрузки. Когда к линии подключается большая нагрузка, она потребляет сильный ток, из-за которого происходит потеря напряжения.

Когда напряжение на принимающей стороне больше, чем на стороне отправителя, в линии происходит рост напряжения. Повышение напряжения называется эффектом Ферранти, и в основном это происходит из-за зарядного тока линии передачи.

Определение тока

Ток - это влияние напряжения. Когда к проводящему материалу прикладывается разность потенциалов, носитель электрического заряда начинает перемещаться от одного атома к другому. Сила тока обозначается символом I, а их единицей СИ является ампер. Один ампер тока соответствует носителю заряда 6,24 × 10 18 . Большинство носителей заряда являются носителями отрицательного заряда, а направление тока - от отрицательной точки к относительно положительной.

Электрический ток в основном делится на два типа: переменный ток и постоянный ток. В постоянном токе электроны текут только по направлению, а в переменном токе направление электронов меняется на противоположное каждую миллисекунду.

Ключевые различия между напряжением и током

  1. Напряжение - это разность электрических зарядов между двумя точками электрического поля, тогда как ток - это поток электрических зарядов между точками электрического поля.
  2. Единица измерения напряжения в системе СИ (международная единица стандарта) - вольт, а единица измерения тока в системе СИ - амперы.
  3. Напряжение представлено символом V , тогда как ток представлен символом I .
  4. Напряжение определяется как отношение проделанной работы к заряду, тогда как ток - это отношение заряда ко времени.
  5. Напряжение создает вокруг него магнитное поле, тогда как ток создает вокруг него электростатическое поле.
  6. Полярность переменного напряжения остается измененной, и из-за этого переменного напряжения возникает переменный ток. Но полярность постоянного напряжения остается постоянной, и их действие индуцирует постоянный ток.
  7. Напряжение - это разница между точками в электрическом поле, тогда как ток вызывается течением электрона в электрическом поле.
  8. Напряжение измеряется прибором, называемым вольтметром, тогда как ток измеряется амперметром.
  9. Один вольт равен 1 джоуль / кулон, тогда как один ампер равен одному столбцу в секунду.
  10. В последовательной цепи величина напряжения остается разной во всех компонентах цепи, тогда как величина тока остается неизменной.
  11. В параллельной цепи напряжение на всех ветвях схемы остается неизменным, в то время как ток распределяется в компонентах схемы неравномерно.
  12. Падение напряжения в основном происходит из-за импеданса цепи, тогда как падение тока происходит из-за пассивного элемента (например, резистора) цепи.
    • Импеданс - это препятствие, которое электрическая цепь создает для прохождения электрического тока, когда к ним прикладывается разность потенциалов.
  13. Напряжение является причиной тока, тогда как ток является следствием напряжения.

Заключение

По закону Ома напряжение прямо пропорционально току. Количественное напряжение генерируется, когда поток перерезается проводником, который помещается между вращающимся магнитным полем.Это напряжение индуцирует ток в цепи. Таким образом, мы можем сказать, что напряжение может существовать без тока, но ток не может существовать без напряжения. Другими словами, ток - это эффект напряжения, а напряжение - причина тока.

Ток, сопротивление, напряжение и мощность

Текущий
Ток - это мера потока электрического заряда через материал. Материал, который может переносить поток заряда, называется проводником. Ток определяется как количество заряда, которое проходит через проводник за определенное время.Единицей измерения тока является ампер (А), который равен одному кулону в секунду (кулон - единица заряда),

Символ I используется для обозначения тока (хотя J часто используется в инженерные источники). Ток I через проводник зависит от его площади A , концентрации n носителей заряда, величины заряда q каждого носителя и величины их средней (или «дрейфующей») скорости. v d ,

Плотность тока - это количество тока, протекающего через проводник, деленное на его площадь,

Направление потока тока определяется в терминах потока положительных зарядов (даже если фактические носители заряда отрицательны).Единица измерения плотности тока - Амперы на квадратный метр (А / м 2 ).

Удельное сопротивление
Некоторые проводники переносят заряд легче, чем другие. Удельное сопротивление материала описывает, насколько легко может течь заряд. Хорошие проводники имеют небольшое удельное сопротивление, а хорошие изоляторы - большое. Удельное сопротивление ρ (греческая буква «ро») равно величине электрического поля в материале, деленной на плотность тока,

Единицей измерения величины электрического поля является вольт на метр (В / м). ), а единицей измерения плотности тока является ампер на квадратный метр (А / м 2 ), поэтому единицей измерения удельного сопротивления является вольт-метр на ампер,

Многие проводники подчиняются закону Ома.Материалы, которые подчиняются закону Ома, имеют постоянное удельное сопротивление независимо от значений электрического поля E и плотности тока J. Формулы, относящиеся к цепям, верны для «омических» материалов, а «неомические» материалы в этом курсе не обсуждаются.

Удельное сопротивление омического проводника зависит от температуры материала. Зависящее от температуры удельное сопротивление ρ (T) можно найти по формуле:

Эта формула требует ρ 0 , удельное сопротивление при эталонной температуре T 0 .Температурный коэффициент удельного сопротивления α различен для каждого материала. Для температур в градусах Цельсия (℃) температурный коэффициент удельного сопротивления имеет единицы: 1 / ℃ = (℃) (-1)

Сопротивление
Удельное сопротивление - это свойство материала, а сопротивление - это свойство определенного куска этого материала. Сопротивление отрезка проводника зависит от его длины L, площади A и удельного сопротивления ρ,

Единицей измерения сопротивления является Ом, который обозначается греческой буквой Ω («омега»).Один Ом равен одному Вольту на Ампер,

Сопротивление зависит от температуры так же, как и удельное сопротивление,

Для этой формулы требуется R 0 , сопротивление при эталонной температуре T 0 . Температурный коэффициент α отличается для каждого материала, как описано в разделе «Сопротивление ».

Резистор - это устройство, которое используется в электрических цепях и имеет определенное фиксированное сопротивление. Резисторы изготавливаются путем выбора куска материала с определенным удельным сопротивлением, длиной и площадью и обертывания его изолятором с проводами, выходящими из каждого конца.На принципиальных схемах он представлен символом

Напряжение
Напряжение - это разница в электрическом потенциале между двумя точками. Если электрическое поле однородно через проводник, разность потенциалов будет равна,

Используя уравнения в Ток, удельное сопротивление, и Сопротивление секций, можно найти другое уравнение для разности потенциалов,

Уравнение V = IR означает, что разность потенциалов или напряжение на резисторе можно найти, умножив его сопротивление на ток, протекающий через него.Единицей измерения разности потенциалов является вольт (В), который равен джоуля на кулон (Дж / Кл).

Источник напряжения - это устройство, используемое в электрических цепях, которое имеет фиксированную разность потенциалов между его концами. Источником напряжения может быть батарея или другой источник постоянного тока с фиксированной разностью потенциалов. На принципиальных схемах он представлен символом

Если концы источника напряжения соединены через цепь с любым количеством резисторов или других компонентов, образуется полная цепь, и ток может течь от одного вывода к другому. другой.Если ток течет, он будет одинаковым на обоих выводах источника напряжения.

Источник напряжения, который является частью законченной схемы, может создавать электродвижущую силу, которая обозначается символом ε («буква е»). Единицей измерения электродвижущей силы является вольт (В), который равен джоуля на кулон (Дж / Кл). Для идеального источника электродвижущая сила равна разнице напряжений,

Настоящие источники, такие как батареи, не идеальны, поэтому существует некоторое внутреннее сопротивление.Если внутреннее сопротивление батареи равно r, то разница напряжений на батарее равна

Это также называется напряжением на клеммах батареи. Если полная цепь сделана с использованием резистора с сопротивлением R, ток, протекающий по цепи, можно найти с помощью уравнения V = IR,

Ток равен электродвижущему. сила источника, деленная на полное сопротивление цепи.

Мощность
Мощность (P) - это мера скорости, с которой энергия передается или используется элементом схемы. Источники напряжения обеспечивают питание, а резисторы используют мощность (рассеивая ее в виде тепла). Мощность равна напряжению на элементе схемы, умноженному на ток, протекающий через него,

Единицей измерения мощности является ватт (Вт), который равен джоулям в секунду,

Это соотношение может быть определяется по формуле для мощности:

Мощность, потребляемая или рассеиваемая резистором, может быть найдена по формуле V = IR.Эта формула может использоваться для замены напряжения или тока в формуле мощности,

,

и

Выходная мощность батареи с внутренним сопротивлением может быть найдена по формуле V = ε-Ir и формула для мощности,

Напряжение и ток | Клуб электроники

Напряжение и ток | Клуб электроники

Следующая страница: Метры

См. Также: Мультиметры | Закон Ома

Напряжение и ток жизненно важны для понимания электроники, но их довольно сложно понять, потому что мы не можем видеть их напрямую.


Напряжение - это причина, ток - это следствие

Напряжение пытается заставить ток течь, и ток будет течь, если цепь замкнута. Напряжение иногда называют «толчком» или «силой» электричества, на самом деле это не сила, но это может помочь вам представить, что происходит. Возможно наличие напряжения без тока, но ток не может течь без напряжения.

Напряжение и ток
Переключатель замкнут,
замыкает цепь, поэтому ток
может течь.

Напряжение, но без тока
Переключатель разомкнут,
цепь разорвана и ток
не может течь.

Нет напряжения и нет тока
Без элемента
нет источника напряжения, поэтому ток
не может течь.


Напряжение, В

  • Напряжение - это мера энергии , переносимой зарядом .
    Строго говоря: напряжение - это «энергия на единицу заряда».
  • Собственное название напряжения - разность потенциалов или p.d. коротко, но в электронике этот термин используется редко.
  • Напряжение подается от аккумулятора (или источника питания).
  • Напряжение используется в компонентах , но не в проводах.
  • Мы говорим, что напряжение на компонент.
  • Напряжение измеряется в В , В .
  • Напряжение измеряется с помощью вольтметра , подключенного параллельно .
  • Символ В используется для напряжения в уравнениях.


Подключение вольтметра параллельно


Напряжение в точке и 0 В (ноль вольт)

Напряжение - это разница между двумя точками , но в электронике мы часто ссылаемся на напряжение в точке означает разность напряжений между этой точкой и контрольной точкой 0 В (ноль вольт).

Нулевое напряжение может быть любой точкой в ​​цепи, но для согласованности обычно это отрицательная клемма аккумулятора или источника питания .Вы часто будете видеть принципиальные схемы помечен как 0В в качестве напоминания.

Возможно, вам будет полезно думать о напряжении как о высоте в географии. Ориентир нулевой высоты - это средний (средний) уровень моря, и все высоты отсчитываются от этой точки. Ноль вольт в электронной схеме подобен среднему географическому уровню моря.

Нулевое напряжение для цепей с двойным питанием

Для некоторых цепей требуется двойной источник питания с тремя соединениями питания , как показано на диаграмма.Для этих цепей опорной точкой нулевого напряжения является средняя клемма между две части поставки.

На сложных принципиальных схемах, использующих двойное питание, символ заземления часто используется для обозначения подключение к 0В, это помогает уменьшить количество проводов, нарисованных на схеме.

На схеме показано двойное питание ± 9 В, средний вывод - 0 В.



Ток, I

  • Ток - это скорость потока заряда .
  • Текущий не израсходован , то, что течет в компонент, должно вытекать.
  • Мы говорим, что ток через компонент.
  • Ток измеряется в ампер (ампер) , A .
  • Ток измеряется амперметром , подключенным к серии .
    Для последовательного подключения необходимо разорвать цепь и поставить амперметр восполните зазор, как показано на схеме.
  • Символ I используется для тока в уравнениях.
    Почему буква, которую я использовал для тока? ... см. FAQ.

1 А (1 ампер) - довольно большой ток для электроники, поэтому часто используется мА (миллиампер). м (милли) означает тысячную:

1 мА = 0,001 А или 1000 мА = 1 А

Необходимость разрыва цепи для последовательного подключения означает, что амперметры затруднены для использования в паяных схемах. Большинство испытаний электроники проводится с помощью вольтметров, которые могут быть легко подключенным без мешающих цепей.


Последовательное подключение амперметра


Напряжение и ток для компонентов серии

  • Сумма напряжений составляет для компонентов, соединенных последовательно.
  • Токи одинаковые во всех компонентах, соединенных последовательно.

В этой цепи 4 В на резисторе и 2 В на светодиоде складываются. к напряжению батареи: 2В + 4В = 6В.

Ток через все части (аккумулятор, резистор и светодиод) составляет 20 мА.


Напряжение и ток для компонентов, подключенных параллельно

  • Напряжения одинаковы на всех компонентах, подключенных параллельно.
  • Сумма токов составляет для компонентов, соединенных параллельно.

В этой цепи батарея, резистор и лампа имеют напряжение 6 В.

Суммируются ток 30 мА через резистор и ток 60 мА через лампу. к току 90мА через аккумулятор.


Следующая страница: Метры | Исследование


Политика конфиденциальности и файлы cookie

Этот сайт не собирает личную информацию.Если вы отправите электронное письмо, ваш адрес электронной почты и любая личная информация будет используется только для ответа на ваше сообщение, оно не будет передано никому. На этом веб-сайте отображается реклама, если вы нажмете на рекламодатель может знать, что вы пришли с этого сайта, и я могу быть вознагражден. Рекламодателям не передается никакая личная информация. Этот веб-сайт использует некоторые файлы cookie, которые классифицируются как «строго необходимые», они необходимы для работы веб-сайта и не могут быть отклонены, но они не содержат никакой личной информации.Этот веб-сайт использует службу Google AdSense, которая использует файлы cookie для показа рекламы на основе использования вами веб-сайтов. (включая этот), как объяснил Google. Чтобы узнать, как удалить файлы cookie и управлять ими в своем браузере, пожалуйста, посетите AboutCookies.org.

electronicsclub.info © Джон Хьюс 2021 г.

Разница между током и напряжением

Основная разница между напряжением и током

Ток и напряжение - это две разные электрические древности, но связанные друг с другом.Важно знать основы напряжения и тока для электротехники и электроники, а также все, что связано с электричеством.

Это наиболее часто задаваемый вопрос новичками даже на собеседовании по основным профессиям. Мы обсудим следующие две основные величины с подробным сравнением.

  • Ток: - это скорость потока заряда (электронов) между двумя точками, вызванная напряжением.
  • Напряжение: - это сила разности потенциалов между двумя точками в электрическом поле, которая вызывает протекание тока в цепи.

Похожие сообщения:

Что сейчас?

Ток - это скорость потока заряда (электронов), проходящего через точку в цепи, вызванного напряжением. Он представлен символом «I». Единицей измерения тока в системе СИ является ампер, который обозначается буквой «А». Если один кулоновский заряд проходит через токопроводящую точку за одну секунду, величина тока известна как один ампер. Ток 1 ампер (1 А) - это носитель заряда 6,24 × 10 18 электронов.

В основном есть два типа токов: i.е. Переменный и постоянный ток (переменный и постоянный ток).

Переменный ток: Переменный ток (переменный ток) постоянно меняет свое направление и величину в течение всего времени.

Постоянный ток: А Постоянный ток (постоянный ток) имеет постоянную величину, которая не меняет свою полярность или направление в течение всего времени.

Электронный ток течет от отрицательного к положительному из-за большого количества отрицательных носителей заряда (электронная техника), в то время как в обычном токе ток течет от положительного к отрицательному (электротехника).Это предполагается только для направления тока при решении и анализе электрической схемы, хотя величина тока одинакова в обоих случаях.

Формулы электрического тока:

Основная электрическая формула для тока приведена ниже.

I = Q / t … (в амперах)

Где:

  • I = ток в амперах
  • Q = заряд в кулонах
  • t = время в секундах

Ток в цепях постоянного тока

Ток в однофазных цепях переменного тока

  • I = P / (V x Cosθ)
  • I = (V / Z)

Ток в трехфазных цепях переменного тока

Где:

  • I = Ток в амперах (A)
  • V = напряжение в вольтах (V)
  • P = мощность в ваттах (Вт)
  • R = сопротивление в омах (Ω)
  • Z = импеданс = сопротивление цепей переменного тока
  • Cosθ = Коэффициент мощности

Связанное сообщение: Разница между микропроцессором и микроконтроллером

Что такое напряжение?

Необходимое количество энергии для перемещения единичного заряда из одной точки в другую известно как напряжение.Другими словами, напряжение - это сила разности потенциалов между двумя точками в электрическом поле, которая заставляет ток течь в цепи, то есть напряжение является основной причиной, а ток - следствием .

Напряжение - это эффект электродвижущей силы (ЭДС), представленный символом V. Единицей измерения напряжения в системе СИ является «вольт», который также обозначается символом «V». Вольт - это разность потенциалов, которая перемещает один джоуль энергии на кулоновский заряд между двумя точками.

Один вольт - это разность электрического положения, равная одному амперу тока, который рассеивает один ватт мощности между двумя токопроводящими точками.

Существует два основных типа напряжений: переменное напряжение и постоянное напряжение

Переменное напряжение: Напряжение переменного тока постоянно меняет свое направление и величину. Генераторы переменного тока могут генерировать переменное напряжение.

Напряжение постоянного тока: Напряжение постоянного тока имеет постоянную величину, которая не меняет свою полярность с течением времени. Постоянное напряжение может вырабатываться электрохимическими элементами и батареями.

Формулы напряжения:

Основная формула для напряжения приведена ниже.

В = J / C = W / A … (в Вольтах)

Где:

  • В = Напряжение в Вольтах
  • Дж = Энергия в Джоулях
  • C = Заряд в Колумбе
  • W = Работа выполнена в джоулях
  • A = ток в амперах

Напряжение в цепях постоянного тока

  • В = I x R
  • В = P / I
  • В = √ (P x R)

Ток в однофазных цепях переменного тока

  • В = P / (I x Cosθ)
  • В = I / Z

Ток в трехфазных цепях переменного тока

Где:

  • I = ток в амперах (А)
  • В = напряжение в вольтах (В)
  • В L = линейное напряжение
  • В PH = фазное напряжение
  • P = мощность в ваттах (Вт)
  • R = сопротивление в Ом (Ом)
  • Z = Импеданс = Сопротивление цепей переменного тока
  • Cosθ = Коэффициент мощности

Соответствующий Сообщений:

Сравнение тока и напряжения
Характеристики Ток Напряжение
Определение Ток - это скорость потока заряда между двумя точками, вызванная напряжением.Или скорость потока электронов называется током. Напряжение - это разность потенциалов между двумя точками электрического поля, которая вызывает протекание тока в цепи.
Символ Ток обозначается буквой «I» Напряжение обозначается буквой «В»
Единица Ампер - также известен как ампер, сила тока или просто «А». Вольт - также известное как напряжение или просто «В».
Единичный заряд 1 кулон / секунда = 1 ампер 1 джоуль / кулон = 1 вольт
Формула I = Q / t

Ток = заряд / время

V = W / Q

Напряжение = Работа / заряд

Причина и следствие Ток - это эффект, вызванный напряжением. Напряжение является причиной тока (являясь следствием).
Измерительный прибор Амперметр (амперметр) используется для измерения силы тока путем последовательного подключения. Вольтметр предназначен для измерения значения напряжения путем его параллельного подключения.
Типы Переменный ток (AC) и постоянный ток (DC) Переменное напряжение и постоянное напряжение. (Напряжение переменного и постоянного тока)
Поле, создаваемое Электрическое поле (электростатическое) Магнитное поле
Производимое Напряжение и ЭДС Генератор, генератор и батареи
Значение в последовательном соединении Ток одинаков в каждой точке последовательного соединения i.е.

I T = I 1 = I 2 = I 3 … = I n

Напряжение другое и складывается в последовательной цепи, т.е.

V T = V 1 + V 2 + V 3 … + V n

Значение при параллельном подключении Ток в параллельной цепи отличается и складывается, т.е.

I T = I 1 + I 2 + I 3 … + I n

Напряжение одинаково в каждой точке параллельного соединения i.е.

V T = V 1 = V 2 = V 3 … = V n

Падение и потеря из-за пассивных элементов из-за импеданса (сопротивления переменного тока)
Изменения полярности AC = переменный ток меняет полярность, в то время как DC = постоянный ток не может. Переменное напряжение меняет свою полярность и величину, в то время как оно остается постоянным на постоянном токе.
Существование Тока не существует без напряжения, поскольку напряжение является основной причиной протекания тока, за исключением теоретического сверхпроводника. Напряжение может существовать без тока, поскольку оно является причиной протекания заряда.

Похожие сообщения:

Напряжение, ток, сопротивление и закон Ома | ОРЕЛ

С возвращением, молодой мастер электроники. В нашем предыдущем блоге мы узнали о простой схеме и ее месте в нашем мире электроники. Но чтобы понять истинную сущность электричества, нужно понять, как управлять и измерять напряжение, ток и сопротивление. Вот тут-то и пригодится этот блог.Мы поднялись на самые высокие вершины, чтобы найти правильную аналогию, объясняющую природу того, как электричество работает в цепи. И вместо того, чтобы проводить еще одну аналогию с водой, мы подумали, что будем более личными, с нашими телами в движении.

Напряжение - все дело в потенциале

Представьте, что вы просыпаетесь утром. Вы лежите в постели, хотите еще несколько часов поспать, но знаете, что настало время для страшной утренней пробежки. Вы знаете, что это хорошо для вас, и вы будете чувствовать себя прекрасно, когда начнете двигаться, но каждое утро вам нужно делать выбор.Вы можете либо остаться в постели и поспать немного дольше, либо встать и начать двигаться.

Это сущность напряжения; все дело в разнице потенциалов. У всех нас есть потенциал, и когда дело доходит до бега, этот потенциал заключается в том, чтобы сделать выбор: бегать или спать. Если вы не решите бегать сегодня утром, ваш потенциал будет бездействовать, но если вы это сделаете, то этот потенциал вырвется наружу, побуждая вас бежать на несколько миль и заряжая энергией остаток дня.

Напряжение в сети

Подобно наличию возможности двигаться или нет, напряжение накапливает электрическую энергию с потенциалом движения . Именно эта сила напряжения побуждает электроны течь по цепи и заставляет их работать час за часом.

Voltage просто ждет, пока мы задействуем его потенциал. Посмотрите на каждую неиспользуемую розетку в вашем доме - в розетках гудит напряжение, готовые сделать за вас работу.Но, как и при выборе бежать, у вас есть выбор, подключать ли этот источник напряжения к вашей розетке. Если оставить его в покое, то напряжение останется там, где оно есть, никогда не реализуя свой полный потенциал.

В электрической цепи напряжение измеряется путем определения так называемой разности потенциалов между двумя точками с помощью мультиметра. Возьмем, например, 9-вольтовую батарею. Если вы измеряете положительный и отрицательный полюсы, вы получите разность потенциалов 9 вольт (или близкую к ней).Положительный конец измеряется при 9 В, а отрицательный конец - при 0 В. Минус два числа, и вы получите свою разность потенциалов.

Вы можете использовать мультиметр для быстрого измерения напряжения или разности потенциалов в батарее. (Источник изображения)

Напряжение бывает двух разных форм: постоянного (постоянного тока) напряжения, которое обеспечивает постоянный поток отрицательного электричества, или переменного (переменного тока) напряжения, которое постоянно переключается с отрицательного на положительное.Вот символы, которые вы хотите найти на схеме для напряжения постоянного и переменного тока и батареи:

Вот некоторые символы напряжения, на которые следует обратить внимание на следующей схеме: батареи, постоянный и переменный ток.

Отец напряжения - Алессандро Вольта

Человек часа, которому приписывают открытие напряжения - Алессандро Вольта (Источник изображения)

Человеком, первым обнаружившим напряжение, был итальянский физик Алессандро Вольта. Он также обнаружил массу других интересных вещей, в том числе:

  • Обнаружение того, что, если вы смешиваете метан с воздухом, вы можете создать электрическую искру, которая положила начало знаменитому теперь двигателю внутреннего сгорания.
  • Обнаружение того, что электрический потенциал, хранящийся в конденсаторе, пропорционален его электрическому заряду.
  • Volta также приписывают создание первой электрической батареи, названной Voltaic Pile, которая позволила ученым того времени создавать устойчивый поток электронов.

Пример гальванической батареи, впервые созданной Вольтой, позволяющей ученым создавать устойчивый поток электронов. (Источник изображения)

Однако

Volta не был лишен своих причуд.Пока ему не исполнилось четыре года, он не произнес ни слова, и его родители опасались, что он либо умственно отсталый. Хорошо, что они ошибались!

Ток - плывя по течению

Возвращаясь к нашей аналогии с бегом, представьте, что вы сделали выбор в пользу утренней пробежки. Вы в обуви и шортах и ​​выходите за дверь, чтобы отправиться в путь. На этом этапе у вас есть какое-то движение, когда вы начинаете бег, поток.

Вот ток, движущийся в наших телах, кто знал, что электричество может быть таким личным?

Может быть, через час пробежки вы начнете бежать, готовые бежать на несколько миль.Когда вы бежите, ваши умные часы точно измеряют, как далеко вы прошли и как быстро вы прошли. Этот процесс запуска и измерения процесса - вот что такое Current .

Ток в электричестве

Как и шаги для завершения утренней пробежки, ток - это постоянное движение или поток электричества в цепи . Электрический ток, протекающий по вашей цепи, всегда измеряется в амперах или амперах. Но что заставляет этот ток двигаться?

Это напряжение, о котором мы говорили ранее.Точно так же, как вам нужно сказать себе, чтобы продолжать бегать, когда вы устанете, напряжение является движущей силой тока, которая поддерживает его движение. Есть две школы мысли о том, как ток течет в цепи; Обычный поток или Электронный поток , давайте посмотрим на оба:

Традиционный поток - Традиционный поток был первым в период научных открытий, когда люди не понимали электроны и то, как они текут в цепи. В рамках этой модели предполагалось, что электричество перетекает с положительного на отрицательный.

Обычный поток с электричеством, протекающим с положительной стороны на отрицательную сторону батареи.

Вы все еще увидите, что этот образ мышления используется в схемах и сегодня, и хотя он не совсем точен, его немного легче понять, чем Electron Flow. В конце концов, если мы вернемся к нашей аналогии с бегом, вы начнете с положительного источника энергии и бежите до тех пор, пока энергия не иссякнет. Это отношение положительное к отрицательному, как и многое в жизни.

Электронный поток - Электронный поток был продолжением обычного потока. Эта модель точно описывает электроны как движущиеся в противоположном направлении, от отрицательного к положительному. Поскольку электроны по своей природе отрицательны, они всегда будут выходить из отрицательного и бесконечно пытаться найти свой путь к положительной стороне источника питания с низким напряжением.

И более текущий поток электронов, при этом электроны текут, как в действительности, от отрицательного к положительному.

Имеет ли значение, каким образом вы показываете ток, протекающий в цепи? Не совсем. Вы, вероятно, увидите, что это представлено в обоих направлениях, если взглянуть на множество схем. Взгляните на диоды или транзисторы на следующей схеме, которую вы исследуете; все они будут указывать в направлении обычного потока.

Человек, стоящий за течением - Андре-Мари Ампер

Андре-Мари Ампер, самоучка, человек, добившийся гораздо большего, чем просто открытие Ампера.(Источник изображения)

Ампер был французским физиком и математиком, а также одним из основоположников науки о классическом электромагнетизме. Вы можете поблагодарить Ampere за несколько замечательных вещей, в том числе:

  • Его главное открытие - демонстрация того, что провод, по которому проходит электрический ток, может притягивать или отталкивать другой провод, по которому также течет ток, без использования физических магнитов.
  • Он также был первым, кто высказал идею о существовании частицы, которую мы все признаем электроном.
  • Он также организовал химические элементы по их свойствам в периодической таблице за полвека до того, как появилась современная периодическая таблица Менделеева.

Интересный факт об образовании Ампера - у него не было никакого формального образования! Вместо этого его отец позволял ему делать то, что он хотел, узнавая все. Хотя это могло вызвать лень и чрезмерное увлечение видеоиграми у остальных из нас, Ампер обнаружил естественную любовь к знаниям, пожирая столько книг из семейной библиотеки, сколько мог, и даже заучивая страницы из энциклопедии.

Сопротивление - это материальный мир

Наша последняя концепция - Сопротивление. Представьте себя снова на беговой дорожке, по какой поверхности вы бежите? Если вам повезет, то вы, возможно, путешествуете по мягкой траве или грунтовой дороге. Или, может быть, вы предпочитаете твердость улицы или тротуара. Но что, если он начнет литься наружу? Тогда вы можете застрять в густой грязи

Независимо от того, по какой дороге вы бежите, ваши ноги сталкиваются с некоторым сопротивлением, когда вы продолжаете двигаться вперед.Естественно, не все пути сопротивления созданы равными. Бег по грязи значительно снижает вашу способность к бегу по сравнению с бегом по грунтовой дороге или улице. В этом вся суть сопротивления, тяга и тяга материального мира.

Сопротивление электричеству

Какой бы материал ни проходил через электричество, он столкнется с трением, препятствующим его движению. Проще говоря, сопротивление замедляет текущий . Хотя в электрической цепи есть определенные компоненты, такие как резистор, единственная задача которого - сопротивление электричеству, любой физический материал будет оказывать некоторое сопротивление.

Сопротивление измеряется в Ом Ом, и оно напрямую зависит от силы тока и напряжения. Вот простой пример: чем больше у вас сопротивление, тем меньше тока может протекать по цепи. Это похоже на бег: чем гуще грязь, тем медленнее ты будешь бежать. Обратное также работает, если вы увеличиваете напряжение, чтобы ваш ток двигался быстрее, чем ваше сопротивление будет иметь меньшее влияние на вашу схему.

Мастер сопротивления - Георг Симон Ом

Георг Ом - Человек, который объединил напряжение, , ток и сопротивление в знаменитом теперь законе Ома.(Источник изображения)

Г-н Ом был немецким физиком и математиком, и именно в те годы, когда он был школьным учителем, он начал свои исследования с использованием новой электрической батареи, изобретенной Вольтой. С помощью собственного оборудования Ом смог обнаружить прямую зависимость между напряжением, приложенным к проводнику (например, медному проводу), и возникающим в результате электрическим током. Это стало известно как известный ныне закон Ома, на который мы все сегодня полагаемся.

Интересно отметить, что Ом представил свои открытия в своей первой книге «Гальваническая цепь, исследуемая математически», но колледж, в котором он работал в то время, не заботился об этом.Так что же сделал Ом? Он ушел в отставку и устроился на новую работу в Политехническую школу Нюрнберга. К счастью, именно здесь его работа привлекла заслуженное внимание.

Объединяя все вместе с законом Ома

Хорошо, пришло время объединить все наши концепции. Вот с чем нам предстоит работать:

  • Напряжение (В) - это накопленная электроэнергия, имеющая потенциал движения. Когда этот потенциал активируется, напряжение действует как своего рода давление, проталкивая ток по цепи.
  • Ток (I) - Поток электричества в цепи. Его можно измерить непосредственно в амперах, и есть две школы мысли о том, как протекает ток - обычный поток и электронный поток.
  • Сопротивление (R) - Сопротивление, с которым электричество сталкивается, просто протекая через какой-то физический материал. Измеряется в Ом.

Собирая все это вместе, мы приходим к закону Ома:

В этом уравнении V = напряжение, I = ток и R = сопротивление.Гибкость закона Ома впечатляет, и его можно использовать для нахождения любого из этих трех значений, когда известны только два из них. Давайте рассмотрим пример, чтобы увидеть, как это работает.

Использование треугольника Ома

Посмотрите на треугольник Ома ниже. Он дает простое и наглядное представление о том, как можно манипулировать законом Ома, чтобы получить нужные ответы. Чтобы использовать его, все, что вам нужно сделать, это скрыть букву значения, которое вам нужно выяснить, а оставшиеся буквы покажут вам, как этого добиться.

Треугольник Ома, ваш удобный инструмент, чтобы точно определить, какой вариант закона Ома необходимо использовать.

Взгляните на схему ниже. У нас есть батарея 9V, подключенная к светодиоду и резистору. Единственная проблема заключается в том, что нам нужно выяснить, каково значение резистора.

Наша тренировочная схема, чтобы познакомиться с законом Ома. Мы можем использовать известные значения ампер и вольт, чтобы получить значение резистора.

Для этого давайте посмотрим на треугольник нашего Ома.Закрыв R, мы видим, что у нас V над I или V, деленное на I. Итак, разделив эти два числа, мы получим номинал нашего резистора. Давайте подставим эти числа в это уравнение: R = V / I.

  • Начнем с самого очевидного, у нашей батареи напряжение 9 вольт.
  • Глядя на техническое описание нашего светодиода, мы можем увидеть рекомендуемый максимальный ток 16 мА (миллиампер), который преобразуется в 0,016 ампер.
  • Подставляя эти два числа в наше уравнение, мы получаем R = 9V / 0.016A, что равно 473,68. Это означает, что для включения светодиода нам понадобится резистор на 473 Ом!

Сопротивление бесполезно

Понимать, как напряжение, ток и сопротивление работают вместе, было не так уж сложно, не так ли? Надеемся, что в следующий раз, когда вы отправитесь на утреннюю пробежку, у вас будет новый взгляд на электричество. Почувствуйте, как ваши ноги летят по тротуару или грязи, и помните, что это сопротивление. А когда вы проверяете, как далеко вы пробежали, то наблюдаете за движущимся потоком! И та сила, которая вытащила тебя из постели и заставила бежать? Напряжение.

Готовы сделать свою первую схему сегодня? Попробуйте Autodesk EAGLE бесплатно!

Как соотносятся напряжение, ток и сопротивление: Закон Ома

Том I - Округ Колумбия »ЗАКОН ОМА»

Электрическая цепь образуется, когда создается токопроводящий путь для позволяют свободным электронам непрерывно двигаться. Это непрерывное движение Свободные электроны, проходящие через проводники цепи, называют током , и его часто называют «потоком», как поток жидкости через полую трубу.

Сила, побуждающая электроны «течь» в цепи, называется напряжением . Напряжение - это особая мера потенциальной энергии, которая всегда относительный между двумя точками. Когда мы говорим об определенном количестве напряжение, присутствующее в цепи, мы имеем в виду измерение о том, сколько потенциальной энергии существует для перемещения электронов из одной конкретной точки в этой цепи в другую конкретную точку. Без ссылки на двух конкретных точек термин «напряжение» не имеет значения.

Свободные электроны имеют тенденцию перемещаться по проводникам с некоторой степенью трение или противодействие движению. Это противодействие движению больше правильно называется сопротивление . Количество тока в цепи зависит от количества доступного напряжения, чтобы мотивировать электронов, а также количество сопротивления в цепи, чтобы противостоять электронный поток. Как и напряжение, сопротивление - величина относительная. между двумя точками. По этой причине величины напряжения и сопротивление часто указывается как «между» или «поперек» двух точек в цепи.

Чтобы иметь возможность делать значимые заявления об этих количествах в цепей, мы должны иметь возможность описывать их количество в одном и том же способ, которым мы могли бы количественно определить массу, температуру, объем, длину или любой другой другой вид физической величины. Для массы мы можем использовать единицы «фунт» или «грамм». Для температуры мы можем использовать градусы Фаренгейта или градусов Цельсия. Вот стандартные единицы измерения для электрический ток, напряжение и сопротивление:

«Символ», указанный для каждого количества, является стандартным буквенным обозначением. буква, используемая для обозначения этой величины в алгебраическом уравнении.Подобные стандартизированные буквы распространены в дисциплинах физика и техника, и признаны во всем мире. Единица аббревиатура "для каждого количества представляет собой используемый алфавитный символ. как сокращенное обозначение его конкретной единицы измерения. А также, да, этот странный на вид символ "подкова" - заглавная греческая буква Ω, просто символ в иностранном алфавите (извинения перед греческими читателями здесь).

Каждая единица измерения названа в честь известного экспериментатора в области электричества: amp в честь француза Андре М.Ampere, вольт после итальянского Алессандро Вольта и Ом после немца Георга Симона Ома.

Математический символ для каждой величины также имеет значение. В «R» для сопротивления и «V» для напряжения говорят сами за себя, тогда как "I" для тока кажется немного странным. Считается, что "я" должно было представлять «Интенсивность» (потока электронов) и другой символ напряжения, «E». расшифровывается как «Электродвижущая сила."Из каких исследований мне удалось Да, похоже, есть некоторые споры о значении «я». Символы «E» и «V» по большей части взаимозаменяемы, хотя некоторые тексты зарезервируйте "E" для обозначения напряжения на источнике (таком как батарея или генератор) и "V" для обозначения напряжения на любом другом элементе.

Все эти символы выражаются заглавными буквами, за исключением случаев, когда величина (особенно напряжение или ток) описывается в терминах короткого периода времени (называемого «мгновенное» значение).Например, напряжение батареи, которое стабильный в течение длительного периода времени, будет обозначаться заглавной буквой буква «Е», а пик напряжения удара молнии в самом момент, когда он попадет в линию электропередачи, скорее всего, будет обозначен строчная буква «е» (или строчная буква «v») для обозначения этого значения как находясь в один момент времени. Это же соглашение о нижнем регистре выполняется верно и для тока, строчная буква «i» обозначает ток в некоторый момент времени.Однако большинство измерений постоянного тока (DC), которые стабильны во времени, будут обозначены заглавными буквами.

Одна основополагающая единица электрического измерения, которой часто учат в начало курсов электроники, но впоследствии редко используемое, блок кулон , который является мерой электрического заряда, пропорциональной количеству электроны в несбалансированном состоянии. Один кулон заряда равен 6 250 000 000 000 000 000 электронов.Символ электрического заряда количество - заглавная буква "Q" с единицей измерения кулоны. сокращенно заглавной буквой "C". Так получилось, что агрегат для поток электронов, amp, равен 1 кулону электронов, проходящих через данный момент в цепи за 1 секунду времени. В этих терминах ток - это скорость движения электрического заряда по проводнику.

Как указывалось ранее, напряжение является мерой потенциальной энергии на единицу заряда , доступной для перемещения электронов из одной точки в другую.Прежде чем мы сможем точно определить, что такое «вольт» то есть, мы должны понять, как измерить эту величину, которую мы называем "потенциал энергия ». Общей единицей измерения энергии любого вида является джоулей , равно количеству работы, выполненной приложенной силой в 1 ньютон через движение на 1 метр (в том же направлении). В британских частях это чуть меньше 3/4 фунта силы, приложенной на расстоянии 1 фут. Проще говоря, требуется около 1 джоуля энергии для поднимите гирю 3/4 фунта на 1 фут от земли или перетащите что-нибудь расстояние в 1 фут с использованием параллельного тягового усилия 3/4 фунта.Определенный в этих научных терминах 1 вольт равен 1 джоуля электрической потенциальной энергии на (деленный на) 1 кулон заряда. Таким образом, батарея на 9 вольт выделяет 9 джоулей энергии на каждый кулон электронов, перемещаемых по цепи.

Эти единицы и символы электрических величин станут очень важно знать, когда мы начинаем исследовать отношения между ними в схемах. Первые и, пожалуй, самые важные отношения между током, напряжением и сопротивлением называется законом Ома, открытым Георгом Саймоном Омом и опубликованным в его статье 1827 года Математические исследования гальванической цепи .Главное открытие Ома заключалось в том, что величина электрического тока через металлический проводник в цепи прямо пропорционально напряжение, приложенное к нему, для любой заданной температуры. Ом выражен его открытие в виде простого уравнения, описывающего, как напряжение, ток и сопротивление взаимосвязаны:

В этом алгебраическом выражении напряжение (E) равно току (I) умноженное на сопротивление (R). Используя методы алгебры, мы можем преобразовать это уравнение в два варианта, решая для I и R, соответственно:

Давайте посмотрим, как эти уравнения могут работать, чтобы помочь нам анализировать простые схемы:

В приведенной выше схеме есть только один источник напряжения (аккумулятор слева) и только один источник сопротивления току. (лампа справа).Это позволяет очень легко применять закон Ома. Если мы знаем значения любых двух из трех величин (напряжения, тока и сопротивления) в этой цепи, мы можем использовать закон Ома для определения третьей.

В этом первом примере мы рассчитаем величину тока (I) в цепи, учитывая значения напряжения (E) и сопротивления (R):

Какая величина тока (I) в этой цепи?

В этом втором примере мы рассчитаем величину сопротивления (R) в цепи, учитывая значения напряжения (E) и тока (I):

Какое сопротивление (R) предлагает лампа?

В последнем примере мы рассчитаем величину напряжения, подаваемого батареей, с учетом значений тока (I) и сопротивления (R):

Какое напряжение обеспечивает аккумулятор?

Закон Ома - очень простой и полезный инструмент для анализа электрических схемы.Он так часто используется при изучении электричества и электроники, которую нужно сохранить в памяти серьезными ученик. Для тех, кто еще не знаком с алгеброй, есть трюк с запоминанием того, как решить для любого одного количества, учитывая другое два. Сначала расположите буквы E, I и R в виде треугольника следующим образом:

Если вы знаете E и I и хотите определить R, просто удалите R с картинки и посмотрите, что осталось:

Если вы знаете E и R и хотите определить I, удалите I и посмотрите, что осталось:

Наконец, если вы знаете I и R и хотите определить E, удалите E и посмотрите, что осталось:

В конце концов, вам придется познакомиться с алгеброй, чтобы серьезно изучать электричество и электронику, но этот совет может сделать ваш первый расчеты запомнить немного легче.Если тебе комфортно с алгебры, все, что вам нужно сделать, это зафиксировать E = IR в памяти и получить другие две формулы из того, когда они вам понадобятся!

  • ОБЗОР:
  • Напряжение измеряется в вольт , обозначается буквами «E» или «V».
  • Ток измеряется в ампер , обозначается буквой «I».
  • Сопротивление измеряется в Ом , обозначается буквой «R».
  • Закон Ома: E = IR; I = E / R; R = E / I

3.Ток, напряжение и сопротивление

Электричество можно описать как Ток, Напряжение и Сопротивление

Ток (символ = I)

  • Электрический ток течет при движении заряда
  • Ток - это мера скорости, с которой заряд проходит через точку в цепи.
  • Ток измеряется в Амперах (А)
  • Чем выше ток, тем быстрее течет заряд в этой точке цепи
  • В цепи ток течет от положительного конца источника питания к отрицательному концу источника
  • Напряжение - это мера энергии, переносимой или используемой зарядом.
  • Напряжение можно представить как разницу в энергии (давлении) в начале и в конце цепи.
    • В начале цепи будет высокое давление, и по мере протекания тока по цепи давление будет снижаться. к резисторам, таким как шарики
    • Электрохимический элемент или батарея восстанавливают давление заряда, чтобы обеспечить цепь энергией для поддержания потока
  • Напряжение измеряется в Вольт (В)
  • Для того, чтобы американские горки поднялись на подъем, требуется энергия, но, оказавшись на вершине, они скатываются вниз по склону без каких-либо дополнительных действий.
    • В цепи батарея будет поставлять достаточно энергии для перемещения заряда из места с низким уровнем энергии в место с высоким уровнем энергии, точно так же, как двигатель, толкающий американские горки на вершину подъема.
    • В клипе ниже взрослый должен подтолкнуть тележку к верху, прежде чем она скатится, и по рельсам

Сопротивление (символ = R)

  • Сопротивление является мерой большой нагрузки, например, свет ограничивает прохождение тока
    • Сопротивление количественно определяет, насколько хорошо проводник проводит электричество
  • Сопротивление измеряется в Ом (Ом)

СМОТРЕТЬ ВИДЕО НИЖЕ, ОПИСАННОЕ ОТНОШЕНИЕ МЕЖДУ ТОКОМ, НАПРЯЖЕНИЕМ И МОЩНОСТЬЮ 00

  • 2

    00

  • 2 9102
  • .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *