Ток в трехфазной сети от мощности. Расчет тока в трехфазной сети: мощность, напряжение и формулы

Как рассчитать ток в трехфазной сети. Какие формулы используются для вычисления мощности трехфазной системы. Чем отличаются расчеты для симметричной и несимметричной нагрузки. Как связаны линейное и фазное напряжение в трехфазной цепи.

Содержание

Основные характеристики трехфазной сети

Трехфазная электрическая сеть имеет ряд важных особенностей, которые необходимо учитывать при расчетах:

  • Наличие трех фаз, сдвинутых относительно друг друга на 120°
  • Два типа напряжения — линейное (между фазами) и фазное (между фазой и нейтралью)
  • Возможность симметричной и несимметричной нагрузки по фазам
  • Более высокая эффективность передачи энергии по сравнению с однофазной системой

Рассмотрим подробнее ключевые параметры трехфазной сети и формулы для их расчета.

Связь между линейным и фазным напряжением

В трехфазной системе существует два типа напряжения:

  • Линейное напряжение Uл — между двумя фазами
  • Фазное напряжение Uф — между фазой и нейтралью

Эти напряжения связаны следующим соотношением:


Uл = √3 * Uф

Например, если линейное напряжение равно 380 В, то фазное составит:

Uф = 380 / √3 ≈ 220 В

Расчет тока в симметричной трехфазной цепи

Для симметричной нагрузки, когда токи во всех фазах равны, расчет производится по формуле:

I = P / (√3 * Uл * cosφ)

где:

  • I — ток в линии, А
  • P — активная мощность трехфазной системы, Вт
  • Uл — линейное напряжение, В
  • cosφ — коэффициент мощности

Пример расчета тока для симметричной нагрузки

Дано: P = 10 кВт, Uл = 380 В, cosφ = 0.8

I = 10000 / (√3 * 380 * 0.8) ≈ 19.0 А

Таким образом, при заданных параметрах ток в каждой фазе составит около 19 А.

Особенности расчета для несимметричной нагрузки

При несимметричной нагрузке токи в фазах различны. В этом случае расчет усложняется и требует знания мощности или тока для каждой фазы отдельно.

Общая мощность трехфазной системы будет равна сумме мощностей отдельных фаз:

P = PA + PB + PC

где PA, PB, PC — мощности фаз A, B и C соответственно.

Пример расчета для несимметричной нагрузки

Допустим, имеем следующие данные:


  • Фаза A: IA = 20 А
  • Фаза B: IB = 15 А
  • Фаза C: IC = 25 А
  • Uф = 220 В, cosφ = 0.9 для всех фаз

Рассчитаем мощность для каждой фазы:

PA = Uф * IA * cosφ = 220 * 20 * 0.9 = 3960 Вт

PB = 220 * 15 * 0.9 = 2970 Вт

PC = 220 * 25 * 0.9 = 4950 Вт

Общая мощность системы:

P = 3960 + 2970 + 4950 = 11880 Вт ≈ 11.9 кВт

Расчет полной и реактивной мощности

Помимо активной мощности P, в трехфазных системах важно учитывать полную S и реактивную Q мощности.

Полная мощность

Полная мощность S (ВА) связана с активной мощностью P (Вт) и коэффициентом мощности cosφ следующим соотношением:

S = P / cosφ

Реактивная мощность

Реактивная мощность Q (вар) может быть рассчитана по формуле:

Q = P * tgφ

где tgφ — тангенс угла φ, связанный с коэффициентом мощности как tgφ = √(1 / cos²φ — 1)

Влияние коэффициента мощности на ток в сети

Коэффициент мощности cosφ оказывает существенное влияние на величину тока в трехфазной сети. Чем ниже cosφ, тем больший ток необходим для передачи той же активной мощности.

Пример влияния cosφ на ток

Рассмотрим, как изменится ток при различных значениях cosφ для трехфазной нагрузки мощностью 10 кВт при линейном напряжении 380 В:


  • При cosφ = 1.0: I = 10000 / (√3 * 380 * 1.0) ≈ 15.2 А
  • При cosφ = 0.8: I = 10000 / (√3 * 380 * 0.8) ≈ 19.0 А
  • При cosφ = 0.6: I = 10000 / (√3 * 380 * 0.6) ≈ 25.3 А

Как видим, снижение cosφ с 1.0 до 0.6 приводит к увеличению тока почти на 67%.

Методы повышения коэффициента мощности

Для снижения потерь в сети и уменьшения нагрузки на оборудование важно поддерживать высокий коэффициент мощности. Основные способы повышения cosφ:

  • Установка компенсирующих устройств (конденсаторных батарей)
  • Замена недогруженных асинхронных двигателей на двигатели меньшей мощности
  • Применение синхронных двигателей вместо асинхронных там, где это возможно
  • Использование преобразователей частоты для управления электроприводами

Особенности расчета токов короткого замыкания

При проектировании электрических сетей важно учитывать возможные токи короткого замыкания (КЗ). Расчет токов КЗ в трехфазных системах имеет свои особенности:

  • Учитываются различные виды КЗ: трехфазное, двухфазное, однофазное
  • Трехфазное КЗ обычно дает максимальный ток
  • Необходимо учитывать сопротивление элементов сети до точки КЗ
  • Расчет ведется в именованных или относительных единицах

Для точного расчета токов КЗ используются специальные методики и программные комплексы.


Выбор сечения проводников для трехфазной сети

При выборе сечения проводников для трехфазной сети учитываются следующие факторы:

  • Длительно допустимый ток
  • Потери напряжения
  • Термическая стойкость к токам КЗ
  • Механическая прочность
  • Экономическая целесообразность

Сечение проводника должно быть таким, чтобы длительно допустимый ток для него был не меньше расчетного тока нагрузки с учетом коэффициента запаса.

Пример выбора сечения кабеля

Для трехфазной нагрузки мощностью 20 кВт при Uл = 380 В и cosφ = 0.85 расчетный ток составит:

I = 20000 / (√3 * 380 * 0.85) ≈ 35.9 А

С учетом коэффициента запаса 1.25, требуемый длительно допустимый ток кабеля:

Iдоп = 35.9 * 1.25 ≈ 44.9 А

По справочным данным выбираем медный кабель сечением 10 мм², допустимый ток для которого составляет 50 А.

Заключение

Расчет токов в трехфазных сетях требует понимания основных принципов работы таких систем и знания соответствующих формул. Важно учитывать особенности симметричных и несимметричных нагрузок, влияние коэффициента мощности на величину тока, а также правильно выбирать сечение проводников с учетом всех необходимых факторов. Грамотный расчет позволяет обеспечить надежную и эффективную работу трехфазных электрических сетей.



некоторые формулы для вычисления и методы измерения мощности

Переменный и постоянный ток отличаются один от другого многими параметрами, а особенно наличием фаз у первого вида. С этими отличиями связаны более сложные формулы и методы вычислений численных значений величин, характеризующих переменный ток, в том числе и мощность трёхфазного тока.

  • Характеристики трёхфазных цепей
    • Соединение звезда
    • Соединительная схема треугольник
  • Измерение мощности
    • Симметричная нагрузка
    • Неравномерное распределение потребителей

Характеристики трёхфазных цепей

Электрические системы, использующие в качестве источника питания трёхфазный ток, имеют два основных вида подключения: «звезда» и «треугольник». На схемах, изображающих подключение трёхфазного питания, принято обозначать фазы с помощью набора латинских букв:

  • А, В, С;
  • или же U, V, W.

А так называемая нейтраль обозначается буквой N.

На практике довольно часто приходится сталкиваться с необходимостью расчёта мощности электрического тока. В случае постоянного тока эта задача решается предельно просто — путём умножения напряжения и силы тока. Эти

параметры не подвержены изменениям во времени, поэтому и значение мощности будет неизменным, так как система уравновешена и постоянно находится в таком состоянии.

Совершенно иная ситуация возникает при необходимости расчётов мощности изменяющегося во времени по величине и направлению течения электрического тока. Выполнение таких вычислений требует специальных знаний о природе переменного тока и его особенностях.

Мощность трёхфазного тока вычисляется как сумма отдельных величин на каждой фазе и выражается формулой:

При условии равномерной загрузки сети, мощность, потребляемую каждой из них, определяют следующим образом: . То есть эту величину на отдельной фазе находят с помощью произведения соответствующих напряжений и токов на косинус угла сдвига фаз.

А так как нагрузка распределяется одинаково на каждую фазу, то и мощностные характеристики по отдельности будут равны между собой. В результате мощность трехфазной сети в этой ситуации можно найти, умножив на 3 эту величину, вычисленную для отдельной фазы: .

Соединение звезда

Использование такой схемы при соединении фаз даёт возможность уравновесить систему и получить суммарное напряжение в точке их пересечения N равное нулю. В случае соединения по схеме «звезда» трёхфазный ток характеризуется двумя типами напряжений: фазным и линейным. Фазное напряжение измеряется между одной из фаз (А, В или С) и нулевой точкой N, а линейное показывает значение разности потенциалов между двумя фазами (А-В, В-С или А-С).

Соотношения между линейными и фазными напряжениями и токами при такой схеме соединения выглядит следующим образом: и .

А, следовательно, общая мощностная характеристика находится по формуле: .

Соединительная схема треугольник

При подключении нагрузок в трёхфазной цепи по принципу «треугольника» одинаковыми будут значения линейного и фазного напряжения, а величины силы тока (линейная и фазная) будут связаны соотношением: .

Результирующая формула для мощности 3-фазного тока при равномерной нагрузке на каждую фазу в этом соединении будет выглядеть как .

Измерение мощности

Измерять мощность трёхфазных цепей позволяют ваттметры, специальные приборы, предназначенные для этой цели. Их количество и способы подключения зависят от конкретной электрической цепи: её характеристик и схемы подключения нагрузок. Трёхфазные сети различают по количеству подводящих проводов и распределением нагрузки по фазам, а именно:

  • трёхпроводная система;
  • четырёхпроводная система;
  • равномерная нагрузка;
  • асимметричная нагрузка.

В зависимости от варианта комбинации системы и нагрузки определяется методика измерения мощности в электрической сети.

Симметричная нагрузка

Если система состоит из четырёх проводов (3 фазы и «ноль»), а нагрузка равномерно распределена между фазами, то для того, чтобы узнать суммарную величину мощности, достаточно иметь один прибор для измерения. Токовую обмотку ваттметра последовательно подключают в один из линейных проводов, а между линейным и нулевым проводами включается обмотка напряжения измерительного устройства. Этот вид подключения даёт возможность узнать количество ватт на одной фазе. А поскольку нагрузка в системе распределяется равномерно, то результирующую мощность трёхфазной сети находят умножением полученных показаний на количество фаз, то есть на 3.

В случае трёхпроводной системы обмотка напряжения измерительного прибора включается на линейное напряжение сети, а его токовая обмотка пропускает через себя линейный электропоток.

Поэтому общая мощность сети будет больше показаний ваттметра в раз.

Неравномерное распределение потребителей

Цепи с несимметричной нагрузкой на фазах требуют использования нескольких ваттметров для определения мощностной характеристики. В системе, состоящей из четырёх проводов, нужно подключить три прибора таким образом, чтобы обмотки напряжений каждого были включены между нулевым проводом и одной из фаз. Общий результат находится путём суммирования отдельных показаний каждого ваттметра.

Трёхпроводная система потребует минимум двух ваттметров для определения мощности всей цепи. С входным токовым зажимом и оставшимся свободным линейным проводом соединяются обмотки напряжений каждого отдельного ваттметра. Полученные показания складывают и получают значение этой величины для трёхфазной цепи. Эта схема подключения измерительных приборов основана на первом законе Кирхгофа.

Подобные нюансы очень важны при проектировании трёхфазной сети для частного сектора. А также их стоит учитывать при правильном обслуживании уже действующих систем электропитания.

Ток в трехфазной цепи в зависимости от мощности и напряжения в сетях до 6 кВ | Справка

  • 6кВ
  • 0,4кВ
  • справка
  • сети

Ток в трехфазной цепи в зависимости от полной мощности и напряжения в сетях до 6000 В (при cosφ =1)


Мощность,  кВ А

Ток
(А) при напряжении, В

220

380

660

1140

6000

5

13,14

7,6

4,4

2,53

10

26,27

15,21

8,8

5,07

 

16

42,04

24,32

14

8,11

 

20

52,55

30,42

17,6

10,14

 

25

65,68

38,03

21,9

12,67

 

32

84,08

48,68

28

16,22

40

105,1

60,84

35

20,28

 

50

131,4

76,06

43,8

25,35

63

165,5

95,8

55,2

31,9

100

262,7

152,1

87,6

50,7

9,63

125

328,4

190,1

109,5

63,4

12,04

160

420,4

243,2

140,1

81,1

15,41

200

525,5

304,2

175,2

101,4

19,26

250

656,8

380,3

219

126,7

24,08

320

840,8

486,8

280

162,2

30,82

400

1051

608,4

350

202,8

38,52

500

1314

760,6

438

253,5

48,17

630

1655

958,3

552

319

60,69

1000

2627

1521

876

507

96,34

  • Назад
  • Вперед
    org/BreadcrumbList»>
  • Вы здесь:  
  • Главная
  • Инфо
  • Справка
  • Обозначение элементов электрических схем

Трехфазный ток — простой расчет

К Стивен Макфадьен on

Расчет тока в трехфазной системе был поднят на нашем сайте и является дискуссией, в которую я, кажется, участвую время от времени. В то время как некоторые коллеги предпочитают запоминать формулы или коэффициенты, я предпочитаю решать задачу шаг за шагом, используя базовые принципы. Я подумал, что было бы хорошо написать, как я делаю эти вычисления. Надеюсь, это может оказаться полезным для кого-то еще.

 

Трехфазная мощность и ток

Мощность, потребляемая цепью (однофазной или трехфазной), измеряется в ваттах Вт (или кВт). Произведение напряжения и тока представляет собой полную мощность и измеряется в ВА (или кВА). Соотношение между кВА и кВт представляет собой коэффициент мощности (pf):


что также может быть выражено как:

Однофазная система — с этим проще всего иметь дело. Учитывая мощность в кВт и коэффициент мощности, можно легко вычислить кВА. Ток — это просто кВА, деленное на напряжение. В качестве примера рассмотрим нагрузку, потребляющую мощность 23 кВт при напряжении 230 В и коэффициенте мощности 0,86:9.0008


 

Примечание: вы можете выполнить эти уравнения либо в ВА, В и А, либо в кВА, кВ и кА, в зависимости от величины параметров, с которыми вы имеете дело. Чтобы преобразовать ВА в кВА, просто разделите на 1000.

Трехфазная система — Основное различие между трехфазной и однофазной системами заключается в напряжении. В трехфазной системе у нас есть линейное напряжение (V LL ) и фазное напряжение (V LN ), связанные:


или альтернативно как:

чтобы лучше понять это или получить больше информации, вы можете прочитать сообщение «Введение в трехфазную электроэнергию»

.

Для меня самый простой способ решения трехфазных задач — преобразовать их в однофазные задачи. Возьмем трехфазный двигатель (с тремя одинаковыми обмотками), потребляющий заданную мощность кВт. кВт на обмотку (однофазную) нужно разделить на 3. Точно так же трансформатор (с тремя обмотками, каждая из которых идентична), вырабатывающий заданное количество кВА, будет иметь каждую обмотку, обеспечивающую треть общей мощности. Чтобы преобразовать трехфазную проблему в однофазную, возьмите общее количество кВт (или кВА) и разделите на три.

В качестве примера рассмотрим сбалансированную трехфазную нагрузку, потребляющую 36 кВт при коэффициенте мощности 0,86 и линейном напряжении 400 В (V LL ):

напряжение между фазой и нейтралью В LN = 400/√3 = 230 В
трехфазная мощность 36 кВт, однофазная мощность = 36/3 = 12 кВт
теперь просто следуйте описанному выше однофазному методу

Достаточно просто. Чтобы найти мощность при заданном токе, умножьте ее на напряжение, а затем на коэффициент мощности, чтобы преобразовать его в Вт. Для трехфазной системы умножьте ее на три, чтобы получить общую мощность.

Личная заметка о методе

Как правило, я запоминаю метод (не формулы) и переделываю его каждый раз, когда делаю расчет. Когда я пытаюсь запомнить формулы, я всегда быстро их забываю или не уверен, правильно ли я их запоминаю. Я бы посоветовал всегда помнить метод, а не просто запоминать формулу. Конечно, если у вас есть какие-то сверхспособности к запоминанию формулы, вы всегда можете придерживаться этого подхода.

Использование формул

Вывод формулы – пример

Сбалансированная трехфазная система с общей мощностью P (Вт), коэффициентом мощности pf и линейным напряжением В 5 LL

Преобразовать в проблема с одной фазой:     
P1ph=P3

Полная мощность одной фазы S 1-фазная (ВА):     
S1ph=P1phpf=P3×pf

Фазный ток I (A) – полная мощность одной фазы, деленная на напряжение между фазой и нейтралью (при условии В LN = В LL / √3):     
I=S1phVLN=P3×pf3VLL

Упрощая (и с 3 = √3 x √3):     
I=P3×pf×VLL

Приведенный выше метод основан на запоминании нескольких простых принципов и манипулировании задачей для получения ответа.

Более традиционные формулы могут использоваться для получения того же результата. Их можно легко получить из приведенного выше, например:

I=W3×pf×VLL,   в A

Несимметричные трехфазные системы

Вышеупомянутое относится к сбалансированным трехфазным системам. То есть ток в каждой фазе одинаков, и каждая фаза отдает или потребляет одинаковое количество энергии. Это характерно для систем передачи энергии, электродвигателей и подобного оборудования.

Часто, когда используются однофазные нагрузки, например жилые и коммерческие помещения, система может быть несбалансированной, когда каждая фаза имеет разный ток и отдает или потребляет разное количество энергии.

Сбалансированные напряжения

К счастью, на практике напряжения имеют тенденцию быть фиксированными или очень небольшими. В этой ситуации и после небольшого размышления можно распространить вышеуказанный тип расчета на трехфазные системы с несимметричным током. Ключом к этому является то, что сумма мощностей в каждой фазе равна общей мощности системы.

Например, возьмем трехфазную систему 400 В (V LL ) со следующими нагрузками: фаза 1 = 80 А, фаза 2 = 70 А, фаза 3 = 82 А

напряжение между фазой и нейтралью В LN = 400/√3 = 230 В
Полная мощность фазы 1 = 80 x 230 = 18 400 ВА = 18,4 кВА     
Полная мощность фазы 2 = 70 x 230 = 16 100 ВА = 16,1 кВА     
Полная мощность фазы 3 = 82 x 230 = 18 860 ВА = 18,86 кВА
Общая трехфазная мощность = 18,4 + 16,1 + 18,86 = 53,36 кВА

Точно так же, зная мощность в каждой фазе, можно легко найти фазные токи. Если вы также знаете коэффициент мощности, вы можете преобразовать кВА в кВт, как показано ранее.

Несбалансированные напряжения

Если напряжения становятся несимметричными или есть другие причины (например, несбалансированный фазовый сдвиг), необходимо вернуться к более традиционному анализу сети. Системные напряжения и токи можно найти, подробно нарисовав схему и используя законы Кирхгофа и другие сетевые теоремы.

Сетевой анализ не является целью этой заметки. Если вас интересует введение, вы можете просмотреть нашу публикацию: Теория сетей — введение и обзор 

Эффективность и реактивная мощность

Другие факторы, которые необходимо учитывать при проведении расчетов, могут включать эффективность оборудования. Зная, что КПД энергопотребляющего оборудования — это выходная мощность, деленная на входную мощность, опять же это легко объяснить. Реактивная мощность в статье не обсуждается, более подробную информацию можно найти в других заметках (просто воспользуйтесь поиском по сайту).

Резюме

Помня, что трехфазная мощность (кВт или кВА) просто в три раза больше однофазной, любая трехфазная проблема может быть упрощена. Разделите кВт на коэффициент мощности, чтобы получить кВА. ВА — это просто произведение тока на напряжение, поэтому, зная это и напряжение, можно получить ток. При расчете тока используйте фазное напряжение, которое связано с линейным напряжением квадратным корнем из трех. Используя эти правила, можно решить любую трехфазную задачу без необходимости запоминать и/или прибегать к формулам.

Трехфазный ток — простой расчет

К Стивен Макфадьен on

Расчет тока в трехфазной системе был поднят на нашем сайте и является дискуссией, в которую я, кажется, участвую время от времени. В то время как некоторые коллеги предпочитают запоминать формулы или коэффициенты, я предпочитаю решать задачу шаг за шагом, используя базовые принципы. Я подумал, что было бы хорошо написать, как я делаю эти вычисления. Надеюсь, это может оказаться полезным для кого-то еще.

 

Трехфазная мощность и ток

Мощность, потребляемая цепью (однофазной или трехфазной), измеряется в ваттах Вт (или кВт). Произведение напряжения и тока представляет собой полную мощность и измеряется в ВА (или кВА). Соотношение между кВА и кВт представляет собой коэффициент мощности (pf):


что также может быть выражено как:

Однофазная система — с этим проще всего иметь дело. Учитывая мощность в кВт и коэффициент мощности, можно легко вычислить кВА. Ток — это просто кВА, деленное на напряжение. В качестве примера рассмотрим нагрузку, потребляющую мощность 23 кВт при напряжении 230 В и коэффициенте мощности 0,86:9.0008


 

Примечание: вы можете выполнить эти уравнения либо в ВА, В и А, либо в кВА, кВ и кА, в зависимости от величины параметров, с которыми вы имеете дело. Чтобы преобразовать ВА в кВА, просто разделите на 1000.

Трехфазная система — Основное различие между трехфазной и однофазной системами заключается в напряжении. В трехфазной системе у нас есть линейное напряжение (V LL ) и фазное напряжение (V LN ), связанные:


или альтернативно как:

чтобы лучше понять это или получить больше информации, вы можете прочитать сообщение «Введение в трехфазную электроэнергию»

.

Для меня самый простой способ решения трехфазных задач — преобразовать их в однофазные задачи. Возьмем трехфазный двигатель (с тремя одинаковыми обмотками), потребляющий заданную мощность кВт. кВт на обмотку (однофазную) нужно разделить на 3. Точно так же трансформатор (с тремя обмотками, каждая из которых идентична), вырабатывающий заданное количество кВА, будет иметь каждую обмотку, обеспечивающую треть общей мощности. Чтобы преобразовать трехфазную проблему в однофазную, возьмите общее количество кВт (или кВА) и разделите на три.

В качестве примера рассмотрим сбалансированную трехфазную нагрузку, потребляющую 36 кВт при коэффициенте мощности 0,86 и линейном напряжении 400 В (V LL ):

напряжение между фазой и нейтралью В LN = 400/√3 = 230 В
трехфазная мощность 36 кВт, однофазная мощность = 36/3 = 12 кВт
теперь просто следуйте описанному выше однофазному методу

Достаточно просто. Чтобы найти мощность при заданном токе, умножьте ее на напряжение, а затем на коэффициент мощности, чтобы преобразовать его в Вт. Для трехфазной системы умножьте ее на три, чтобы получить общую мощность.

Личная заметка о методе

Как правило, я запоминаю метод (не формулы) и переделываю его каждый раз, когда делаю расчет. Когда я пытаюсь запомнить формулы, я всегда быстро их забываю или не уверен, правильно ли я их запоминаю. Я бы посоветовал всегда помнить метод, а не просто запоминать формулу. Конечно, если у вас есть какие-то сверхспособности к запоминанию формулы, вы всегда можете придерживаться этого подхода.

Использование формул

Вывод формулы – пример

Сбалансированная трехфазная система с общей мощностью P (Вт), коэффициентом мощности pf и линейным напряжением В 5 LL

Преобразовать в проблема с одной фазой:     
P1ph=P3

Полная мощность одной фазы S 1-фазная (ВА):     
S1ph=P1phpf=P3×pf

Фазный ток I (A) – полная мощность одной фазы, деленная на напряжение между фазой и нейтралью (при условии В LN = В LL / √3):     
I=S1phVLN=P3×pf3VLL

Упрощая (и с 3 = √3 x √3):     
I=P3×pf×VLL

Приведенный выше метод основан на запоминании нескольких простых принципов и манипулировании задачей для получения ответа.

Более традиционные формулы могут использоваться для получения того же результата. Их можно легко получить из приведенного выше, например:

I=W3×pf×VLL,   в A

Несимметричные трехфазные системы

Вышеупомянутое относится к сбалансированным трехфазным системам. То есть ток в каждой фазе одинаков, и каждая фаза отдает или потребляет одинаковое количество энергии. Это характерно для систем передачи энергии, электродвигателей и подобного оборудования.

Часто, когда используются однофазные нагрузки, например жилые и коммерческие помещения, система может быть несбалансированной, когда каждая фаза имеет разный ток и отдает или потребляет разное количество энергии.

Сбалансированные напряжения

К счастью, на практике напряжения имеют тенденцию быть фиксированными или очень небольшими. В этой ситуации и после небольшого размышления можно распространить вышеуказанный тип расчета на трехфазные системы с несимметричным током. Ключом к этому является то, что сумма мощностей в каждой фазе равна общей мощности системы.

Например, возьмем трехфазную систему 400 В (V LL ) со следующими нагрузками: фаза 1 = 80 А, фаза 2 = 70 А, фаза 3 = 82 А

напряжение между фазой и нейтралью В LN = 400/√3 = 230 В
Полная мощность фазы 1 = 80 x 230 = 18 400 ВА = 18,4 кВА     
Полная мощность фазы 2 = 70 x 230 = 16 100 ВА = 16,1 кВА     
Полная мощность фазы 3 = 82 x 230 = 18 860 ВА = 18,86 кВА
Общая трехфазная мощность = 18,4 + 16,1 + 18,86 = 53,36 кВА

Точно так же, зная мощность в каждой фазе, можно легко найти фазные токи. Если вы также знаете коэффициент мощности, вы можете преобразовать кВА в кВт, как показано ранее.

Несбалансированные напряжения

Если напряжения становятся несимметричными или есть другие причины (например, несбалансированный фазовый сдвиг), необходимо вернуться к более традиционному анализу сети. Системные напряжения и токи можно найти, подробно нарисовав схему и используя законы Кирхгофа и другие сетевые теоремы.

Сетевой анализ не является целью этой заметки. Если вас интересует введение, вы можете просмотреть нашу публикацию: Теория сетей — введение и обзор 

Эффективность и реактивная мощность

Другие факторы, которые необходимо учитывать при проведении расчетов, могут включать эффективность оборудования. Зная, что КПД энергопотребляющего оборудования — это выходная мощность, деленная на входную мощность, опять же это легко объяснить. Реактивная мощность в статье не обсуждается, более подробную информацию можно найти в других заметках (просто воспользуйтесь поиском по сайту).

Резюме

Помня, что трехфазная мощность (кВт или кВА) просто в три раза больше однофазной, любая трехфазная проблема может быть упрощена. Разделите кВт на коэффициент мощности, чтобы получить кВА.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *