Трансформатор тесла принцип работы. Катушка Тесла: принцип работы, устройство и применение

Как работает катушка Тесла. Из каких основных элементов состоит трансформатор Тесла. Где применяется катушка Тесла в современном мире. Можно ли собрать катушку Тесла своими руками.

Содержание

Принцип работы катушки Тесла

Катушка Тесла представляет собой резонансный трансформатор, создающий высокочастотное напряжение. Принцип ее работы основан на явлении электромагнитного резонанса между двумя связанными колебательными контурами:

  • Первичный контур состоит из первичной обмотки и конденсатора. При подаче на него напряжения возникают электромагнитные колебания.
  • Вторичный контур образован вторичной обмоткой и собственной межвитковой емкостью. Он настроен в резонанс с первичным контуром.

В результате взаимодействия этих контуров во вторичной обмотке генерируется очень высокое напряжение (до нескольких миллионов вольт), которое вызывает красивые электрические разряды в воздухе.

Основные элементы конструкции катушки Тесла

В состав классической катушки Тесла входят следующие основные элементы:


  1. Первичная обмотка — обычно выполняется из медной трубки или толстого провода, имеет небольшое число витков.
  2. Вторичная обмотка — содержит большое число витков тонкого провода, намотанных на цилиндрический каркас.
  3. Тороид — металлический тор на вершине вторичной обмотки для накопления заряда.
  4. Разрядник — служит для создания импульсов тока в первичной цепи.
  5. Конденсатор — входит в состав первичного колебательного контура.

Также катушка Тесла обязательно должна иметь надежное заземление. Это необходимо для нормальной работы устройства и безопасности.

Современное применение катушек Тесла

Несмотря на то, что изобретению Николы Тесла уже больше века, оно до сих пор находит применение в различных областях:

  • Научные исследования в области физики высоких напряжений и частот
  • Создание впечатляющих световых шоу и спецэффектов
  • Некоторые медицинские процедуры (дарсонвализация)
  • Поиск дефектов в вакуумных системах
  • Беспроводное зажигание газоразрядных ламп
  • Разработка средств радиоэлектронной борьбы

Катушки Тесла также часто используются в образовательных целях для демонстрации явлений электромагнетизма.


Можно ли собрать катушку Тесла самостоятельно?

Собрать простейшую катушку Тесла в домашних условиях вполне реально. Для этого потребуются:

  • Медный провод разного сечения для обмоток
  • Пластиковая труба для каркаса вторичной обмотки
  • Конденсатор и искровой разрядник
  • Источник питания (например, трансформатор от микроволновки)

Однако нужно помнить, что самодельные катушки Тесла могут быть опасны при неправильном обращении. Поэтому важно соблюдать все меры предосторожности и технику безопасности при сборке и эксплуатации устройства.

Интересные эффекты катушки Тесла

Катушка Тесла способна создавать впечатляющие визуальные эффекты. Какие удивительные явления можно наблюдать при ее работе?

  • Яркие электрические разряды, напоминающие молнии
  • Коронный разряд в виде светящегося ореола вокруг проводников
  • Свечение газоразрядных ламп без проводного подключения
  • Искровые разряды между близко расположенными проводниками
  • Ионизация воздуха с характерным запахом озона

Эти эффекты объясняются образованием сильных электрических полей высокой частоты вокруг работающей катушки Тесла. Они позволяют наглядно продемонстрировать многие явления электромагнетизма.


Мифы и заблуждения о катушке Тесла

Вокруг изобретения Николы Тесла существует немало мифов. Какие распространенные заблуждения о катушке Тесла не соответствуют действительности?

  • Катушка Тесла может передавать энергию без проводов на большие расстояния. На самом деле эффективность такой передачи крайне низка.
  • С помощью катушки Тесла можно создать вечный двигатель. Это противоречит законам физики.
  • Катушка Тесла абсолютно безопасна. На самом деле при неправильном обращении она может быть очень опасна.
  • КПД катушки Тесла превышает 100%. Это невозможно согласно закону сохранения энергии.

Важно критически относиться к подобным утверждениям и опираться на научно подтвержденные факты об этом интересном изобретении.

Перспективы развития технологии катушек Тесла

Хотя базовый принцип работы катушки Тесла остается неизменным, технология продолжает развиваться. Какие перспективные направления исследований существуют сегодня?

  • Разработка более эффективных и компактных конструкций
  • Создание мощных установок для научных исследований
  • Применение современной элементной базы (например, твердотельных генераторов)
  • Использование катушек Тесла для беспроводной зарядки устройств
  • Изучение возможности применения в альтернативной энергетике

Исследования в этих направлениях могут привести к появлению новых интересных применений технологии, изобретенной гениальным ученым более века назад.



Катушка Тесла. Устройство и виды. Работа и применение

Одним из знаменитых изобретений Николы Тесла была катушка Тесла. Это изобретение представляет собой резонансный трансформатор, который образует высокочастотное повышенное напряжение. В 1896 году на изобретение выдан патент, который имел название аппарата для образования электрического тока высокого потенциала и частоты.

Разновидности

Со времен Николы Тесла появилось много различных видов трансформаторов Тесла. Рассмотрим распространенные основные виды таких трансформаторов, как катушка Тесла.

SGTC – катушка, работающая на искровом разряде, имеет классическое устройство, используемое самим Теслой. В этой конструкции элементом коммутации является разрядник. У маломощных устройств разрядник выполнен в виде двух отрезков толстого проводника, находящихся на определенном расстоянии. В устройствах большей мощности используются вращающиеся разрядники сложной конструкции с применением электродвигателей. Такие трансформаторы производят при необходимости получения стримера большой длины, без каких-либо эффектов.

VTTC – катушка на основе электронной лампы, которая является коммутирующим элементом. Подобные трансформаторы способны функционировать в постоянном режиме и выдавать разряды большой толщины. Такой тип питания обычно применяют для создания катушек высокой частоты. Они создают эффект стримера в виде факела.

SSTC – катушка, в конструкции которой в качестве ключа используется полупроводниковый элемент в виде мощного транзистора. Такой вид трансформаторов также способен функционировать в постоянном режиме. Внешняя форма стримеров от такого устройства бывает самой различной. Управление с полупроводниковым ключом более простое, существуют такие катушки Тесла, которые умеют играть музыку.

DRSSTC – трансформатор, имеющий два контура резонанса. Роль ключей играют также полупроводниковые компоненты. Это наиболее сложный в настройке и управлении трансформатор, однако, он используется для создания впечатляющих эффектов. При этом большой резонанс получается в первом контуре. Во втором контуре образуется наиболее яркие толстые и длинные стримеры в виде молний.

Устройство и работа

Элементарный трансформатор Тесла включает в себя две катушки, тороид, конденсатор, разрядник, защитное кольцо и заземление.

Тороид выполняет несколько функций:
  • Снижение частоты резонанса, особенно для вида катушки Тесла с полупроводниковыми ключами.Полупроводниковые элементы плохо функционируют на повышенных частотах.
  • Накапливание энергии перед возникновением электрической дуги. Чем больше размер тороида, тем больше энергии накоплено. В момент пробоя воздуха тороид выдает эту накопленную энергию в электрическую дугу, при этом увеличивая ее.
  • Образование электростатического поля, отталкивающего дугу от вторичной обмотки. Часть этой функции исполняет вторичная обмотка. Однако тороид помогает ей в этом. Поэтому электрическая дуга не бьет во вторичную обмотку по кратчайшему пути.

Обычно наружный диаметр тороида в два раза больше диаметра вторичной обмотки. Тороиды производят из алюминиевой гофры и других материалов.

Вторичная обмотка трансформатора Тесла является основным элементом конструкции. Обычно длина обмотки относится к ее диаметру 5 : 1. Диаметр проводника для катушки выбирают из расчета, чтобы разместилось около 1000 витков, которые должны располагаться плотно между собой. Витки обмотки покрывают несколькими слоями лака или эпоксидной смолы. В качестве каркаса выбирают ПВХ-трубы, которые можно купить в строительном магазине.

Защитное кольцо служит для предохранения от выхода из строя электронных элементов в случае попадания электрической дуги в первичную обмотку. Защитное кольцо устанавливается, если размер стримера (электрической дуги) больше длины вторичной катушки. Это кольцо выполнено в виде медного незамкнутого проводника, заземленного отдельным проводом на общее заземление.

Первичная обмотка чаще всего выполняется из медной трубки, применяемой в кондиционерах. Сопротивление первичной обмотки должно быть небольшим, так как по ней будет проходить большая сила тока. Трубку чаще всего выбирают толщиной 6 мм. Также можно использовать для намотки проводники большого сечения. Первичная обмотка является своеобразным элементом подстройки в таких катушках Тесла, в которых первый контур резонансный. Поэтому место подключения питания выполняют с учетом его перемещения, с помощью которого меняют частоту резонанса первого контура.

Форма первичной обмотки может быть различной: конической, плоской или цилиндрической.

Катушка Тесла должна иметь заземление. Если его не будет, то стримеры будут бить в саму катушку, для замыкания тока.

Колебательный контур образован конденсатором совместно с первичной обмоткой. В этот контур также подключен разрядник, который является нелинейным элементом. Во вторичной обмотке также образован контур колебаний, в котором конденсатором выступает емкость тороида и межвитковая емкость катушки. Чаще всего для предохранения от электрического пробоя вторичную обмотку покрывают лаком или эпоксидной смолой.

В результате катушка Тесла, или другими словами трансформатор, состоит из двух контуров колебаний, связанных между собой. Это и придает трансформатору Тесла необычные свойства, и является основным отличительным качеством от обычных трансформаторов.

При достижении напряжения пробоя между электродами разрядника, образуется электрический лавинообразный пробой газа. При этом происходит разряд конденсатора на катушку через разрядник. Вследствие этого цепь контура колебаний, который состоит из конденсатора и первичной обмотки, остается замкнутой на разрядник. В этой цепи возникают колебания высокой частоты. Во вторичной цепи образуются резонансные колебания, в результате чего возникает высокое напряжение.

Во всех видах катушки Тесла главным элементом являются контуры: первичный и вторичный. Однако генератор колебаний высокой частоты может отличаться по конструкции.

Катушка Тесла по сути дела состоит из двух катушек, не имеющих металлического сердечника. Коэффициент трансформации катушки Тесла в несколько десятков раз выше отношения числа витков обеих обмоток. Поэтому выходное напряжение трансформатора достигает нескольких миллионов вольт, что и обеспечивает мощные электрические разряды длиной в несколько метров. Важным условием является образование контура колебаний первичной обмоткой и конденсатором, вхождение в резонанс этого контура с вторичной обмоткой.

Виды эффектов от катушки Тесла

  • Дуговой разряд – возникает во многих случаях. Он характерен ламповым трансформаторам.
  • Коронный разряд является свечением воздушных ионов в электрическом поле повышенного напряжения, образует голубоватое красивое свечение вокруг элементов устройства с высоким напряжением, а также имеющим большую кривизну поверхности.
  • Спарк по-другому называют искровым разрядом. Он протекает от терминала на землю, либо на заземленный предмет, в виде пучка ярких разветвленных полосок, быстро исчезающих или меняющихся.
  • Стримеры – это тонкие слабо светящиеся разветвляющиеся каналы, содержащие ионизированные атомы газа и свободные электроны. Они не уходят в землю, а протекают в воздух. Стримером называют ионизацию воздуха, образуемую полем трансформатора высокого напряжения.

Действие катушки Тесла сопровождается треском электрического тока. Стримеры могут превращаться в искровые каналы. Это сопровождается большим увеличением тока и энергии. Канал стримера быстро расширяется, давление резко повышается, поэтому образуется ударная волна. Совокупность таких волн подобен треску искр.

Малоизвестные эффекты катушки Тесла

Некоторые люди считают трансформатор Тесла каким-то особенным устройством, обладающим исключительными свойствами. Также есть мнение, что такое устройство способно стать генератором энергии и вечным двигателем.

Иногда говорят, что при помощи такого трансформатора можно передавать электрическую энергию на значительные расстояния, не используя провода, а также создать антигравитацию. Такие свойства не подтверждены и не проверены наукой, но Тесла говорил о скорой доступности таких способностей для человека.

В медицине при длительном воздействии токов высокой частоты и напряжения могут образоваться хронические заболевания и другие отрицательные явления. Также нахождение человека в поле высокого напряжения негативно сказывается на его здоровье. Можно отравиться газами, выделяемыми при функционировании трансформатора без вентиляции.

Применение
  • Величина напряжения на выходе катушки Тесла иногда достигает миллионов вольт, что формирует значительные воздушные электрические разряды длиной в несколько метров. Поэтому такие эффекты применяют в качестве создания показательных шоу.
  • Катушка Тесла нашла применение в медицине в начале прошлого века. Больных обрабатывали маломощными токами высокой частоты. Такие токи протекают по поверхности кожи, оказывают оздоравливающее и тонизирующее влияние, не причиняя при этом никакого вреда организму человека. Однако мощные токи высокой частоты оказывают негативное влияние.
  • Катушка Тесла применяется в военной технике для оперативного уничтожения электронной техники в здании, на корабле, танке. При этом на короткий промежуток времени создается мощный импульс электромагнитных волн. В результате в радиусе нескольких десятков метров сгорают транзисторы, микросхемы и другие электронные компоненты. Это устройство действует абсолютно бесшумно. Существуют такие данные, что частота тока при функционировании такого устройства может достигать 1 ТГц.
  • Иногда такой трансформатор применяется для розжига газоразрядных ламп, а также поиска течи в вакууме.

Эффекты катушки Тесла иногда используют в съемках фильмов, компьютерных играх. В настоящее время катушка Тесла не нашла широкого применения на практике в быту.

Катушка Тесла на будущее

В настоящее время остаются актуальными вопросы, которыми занимался ученый Тесла. Рассмотрение этих проблемных вопросов дает возможность студентам и инженерам институтов взглянуть на проблемы науки более широко, структурировать и обобщать материал, отказаться от шаблонных мыслей.

Взгляды Тесла актуальны сегодня не только в технике и науке, но и для работ в новых изобретениях, применения новых технологий на производстве. Наше будущее даст объяснение явлениям и эффектам, открытым Теслой. Он заложил для третьего тысячелетия основы новейшей цивилизации.

Похожие темы

Трансформатор Тесла: принцип работы и схема

Тесла-трансформатор представляет собой высоковольтный резонансный прибор, работающий на высокой частоте. Конструкция агрегата относительно простая. Подобные приборы демонстрируют разряды электричества, красиво смотрящиеся в темноте. Трансформаторы типа Тесла испускают настоящие молнии. Поэтому его использование сводится к декоративным функциям. Особенности чудо-прибора интересно узнать каждому.

История изобретения

Резонансный трансформатор Тесла появился в результате многолетней работы ученого и экспериментатора Н. Тесла. Он стремился найти способ передавать электричество на большие расстояния без проводов. В 1891 году изобретатель продемонстрировал наглядные эксперименты, проводимые в этом направлении.

Практическое применение его трудов (по мнению самого ученого) заключалось в обеспечении светом любого здания, частного дома и прочих объектов посредством тока высокого напряжения и частоты. Ученый раскрывал особенности получения, применения подобных токов, применения их для электроснабжения.

Постепенно ученый начал задумываться об использовании открытого способа для передачи электричества на большие расстояния. На разработку теории исследователь потратил несколько лет. Ученый проводил множество экспериментов, совершал каждый элемент схемы. Экспериментатор трудился над созданием прерывателей, контроллеров цепей, стойких конденсаторов высокого вольтажа. Замысел исследователь в жизнь так и не воплотил в том масштабе, в каком было изначально задумано.

Однако каждый его патент, статья, лекция были сохранены. Их можно сегодня перечитать, обдумать. Например, патент № 649621 и №787412 представлен в интернете. Документы размещены в открытом доступе для широкой общественности. Видео работы агрегата в действии легко отыскать в сети.

Основной принцип, открытый великим изобретателем, ныне применяется для изготовления люминесцентных осветителей.

Схема и основные компоненты

Чтобы понять, как работает трансформатор Тесла, необходимо рассмотреть его устройство. В схему входит две обмотки – вторичная и первичная. Контуры выполнены из медной проволоки толщиной 0,1-0,2 мм².

К первичной обмотке подводится переменный ток. Это позволяет получить магнитное поле, передающее электричество от первой ко второй катушке. В этот момент вторичная обмотка будет производить контур колебательного типа. Обмотка будет накапливать получаемое электричество. Некоторое время нагрузка будет здесь храниться как определенное напряжение.

Схема резонансного трансформатора Тесла может иметь разное строение катушек. Контуры обладают схожими чертами. Тороидальные разновидности катушек Тесла представлены на фото.

Трансформатор конструкции Николы Тесла содержит в составе тороид. Элемент выполняет три основные функции:

  1. Способствует накоплению электричества перед тем, как будет получен стример. Большие габариты позволяют тороиду вместить значительное количество энергии. В устройстве часто применяется прерыватель.
  2. Уменьшает резонансную частоту.
  3. Образует электростатическое поле, отталкивающее стример. В некоторых типах конструкций эту функцию выполняет вторичная катушка.

Для подобных устройств важно выдерживать правильное соотношение между диаметром и длиной вторичной катушки. Пропорция должна составлять 1:4. Защитное кольцо схемы препятствует выходу электроники из строя. Деталь выглядит как специальное кольцо, изготовленное из меди.

Для правильной работы трансформатора Тесла защитное кольцо должно заземляться. Стримеры замыкают ток, ударяясь в землю. Если контур надежен, молнии ударяют непосредственно в агрегат.

В первичной обмотке определяется небольшое сопротивление. Это обеспечивает на практике надежную передачу электроэнергии. Точка подключения характеризуется высокой подвижностью. Это позволяет менять резонансную частоту. Понимая соотношение представленных элементов, удастся вникнуть в принцип работы трансформатора Тесла.

Принцип работы

Емкостной трансформатор Тесла характеризуется определенным принципом работы. Он заряжает конденсатор при помощи дросселя. Чем меньше уровень индуктивности, тем быстрее будет происходить зарядка. Спустя некоторое время его показатели напряжения значительно увеличиваются. В разряднике появится дуга. Она станет хорошим проводником.

Емкостным аппаратам требуется обеспечивать заряд аккумулятора от аккумулятора высокого напряжения. Обычные батарейки для этого не подходят. Питание первичной цепи выполняется различными способами. Это может быть статический искровой промежуток с подключением к высоковольтному прибору от микроволнового нагревателя. Также для этих целей применяются схемы из транзисторов на программируемых контроллерах.

Работающий аппарат при сочетании катушки и конденсатора характеризуется хорошим контуром. За счет образовавшейся нагрузки возникают колебания. В этот момент в конденсаторе и катушке произойдет энергообмен. Ее первая часть исчезнет в виде тепловых лучей. Вторая часть электричества проявится в разряднике. Индуктивность будет способствовать образованию еще одного контура. Частота всех компонентов должна быть одинаковой.

Первый контур передает свою нагрузку. Амплитуда колебаний будет равняться нулю. Обменом энергии этот процесс не заканчивается. После исчезновения дуги остаточная энергия может быть заперта. Весь процесс может повторяться. При сильной связи скорость обмена энергией будет высокой.

Некоторые поклонники творческих идей великого изобретателя утверждают, что КПД емкостного трансформатора Тесла составляет более 100%. Однако это не так. Коэффициент полезного действия, которым характеризуется данное устройство, подчиняется законам сохранения энергии. Поэтому такое утверждение не имеет под собой никаких оснований.

Применение

Помимо декоративного применения представленного устройства существует и практическая польза от его эксплуатации. Коронный разряд заряжает воздух озоном. Это освежает атмосферу в помещении. При этом не стоит допускать длительное воздействие прибора. Большое содержание озона приводит к плохому самочувствию.

Также применение представленного устройства позволяет реанимировать работу вышедшей из строя люминесцентной лампы. Если приблизить прибор к осветительному прибору, последний снова будет функционировать. Однако не стоит подносить близко к излучателю мобильные устройства. Это может вывести гаджет из строя.

Это уникальное, до конца не изведанное изобретение. Его применение должно выполняться с осторожностью. Простота конструкции позволяет собрать прибор самостоятельно.

принцип работы, как собрать в домашних условиях, схема

О том, что физик Никола Тесла был гениальным изобретателем и значительно опередил свое время, слышали многие. К сожалению, по ряду причин большинство его изобретений так и не увидели свет. Но одно из самых неоднозначных – катушка Тесла, сохранилось до наших времен и нашло применение в медицине, военной отрасли и световых шоу.

Описание прибора

Если очень коротко, то катушка Тесла (КТ) – это резонансный трансформатор, создающий высокочастотный ток. Есть информация, что в своих экспериментах военные довели катушку до мощности в 1 Тгц.

Огромная катушка Тесла

Тут стоит затронуть такой вопрос – зачем Тесла ее изобрел? Согласно записям ученый работал над технологией беспроводной передачи электроэнергии. Вопрос крайне актуальный для всего человечества. В теории с помощью эфира две мощные КТ, размещенные в паре километров друг от друга, смогут передавать электричество. Для этого они должны быть настроены на одинаковую частоту. Также есть мнение, что КТ может стать своего рода вечным двигателем.

Внедрение данной технологии сделает все имеющиеся сегодня АЭС, ТЭС, ГЭС и прочие просто ненужными. Человечеству не придется сжигать твердые ископаемые, подвергаться риску радиационного заражения, перекрывать русла рек. Но ответ на вопрос, почему никто не развивает данную технологию, остается за конспирологами.

Настольная катушка Тесла, продающаяся сегодня в качестве сувенира

Принцип работы

Сегодня многие домашние электрики пытаются собрать КТ, при этом не всегда понимая принцип работы трансформатора Тесла, из-за чего терпят фиаско. На самом деле КТ недалеко ушла от обычного трансформатора.

Есть две обмотки – первичная и вторичная. Когда к первичной обмотке подводят переменное напряжение от внешнего источника, вокруг нее создается магнитное поле или, как его еще называют, колебательный контур. Когда заряд пробьет разрядник, через магнитное поле энергия начнет перетекать к вторичной обмотке, где будет образовываться второй колебательный контур. Часть накапливаемой в контуре энергии будет представлена напряжением. Ее величина будет прямо пропорциональна времени образования контура.

Таким образом, в КТ имеется два связанных между собой колебательных контура, что и является определяющей характеристикой при сравнении с обычными трансформаторами. Их взаимодействие создает ионизирующий эффект, из-за чего мы видим стримеры (разряды молний).

Устройство катушки

Трансформатор Тесла, схема которого будет представлена ниже, состоит из двух катушек, тороида, защитного кольца и, конечно, заземления.

Эскиз настольной КТ

Необходимо рассмотреть каждый элемент в отдельности:

  • первичная катушка располагается в самом низу. К ней подводится питание. Она обязательно заземляется. Делается из металла с малым сопротивлением;
  • вторичная катушка. Для обмотки используют эмалированную медную проволоку примерно на 800 витков. Таким образом витки не расплетутся и не поцарапаются;
  • тороид. Данный элемент уменьшает резонансную частоту, накапливает энергию и увеличивает рабочее поле.
  • защитное кольцо. Представляет из себя незамкнутый виток медного провода. Устанавливается, если длина стримера больше длины вторичной обмотки;
  • заземление. Если включить незаземленную катушку, стримеры (разряды тока) не будут бить в воздух, а создадут замкнутое кольцо.
Чертеж КТ

Самостоятельное изготовление

Итак, простейший способ изготовления катушки Теслы для чайников своими руками. Часто в интернете можно увидеть суммы, превышающие стоимость неплохого смартфона, но на деле трансформатор на 12V, который даст возможность насладиться включением светильника без использования розетки, можно собрать из кучи гаражного хлама.

Что должно получиться в итоге

Понадобится медная эмалированная проволока. Если эмалированной не найти, тогда дополнительно понадобится обычный лак для ногтей. Диаметр провода может быть от 0.1 до 0.3 мм. Чтобы соблюсти количество витков понадобиться около 200 метров. Намотать можно на обычную ПВХ-трубу диаметром от 4 до 7 см. Высота от 15 до 30 см. Также придется прикупить транзистор, например, D13007, пара резисторов и проводов. Неплохо было бы обзавестись кулером от компьютера, который будет охлаждать транзистор.

Теперь можно приступить к сборке:

  1. отрезать 30 см трубы;
  2. намотать на нее проволоку. Витки должны быть как можно плотнее друг к другу. Если проволока не покрыта эмалью, покрыть в конце лаком. Сверху трубы конец провода продеть через стенку и вывести наверх так, чтобы он торчал на 2 см выше поставленной трубы.;
  3. изготовить платформу. Подойдет обычная плита из ДСП;
  4. можно делать первую катушку. Нужно взять медную трубу 6 мм, выгнуть ее в три с половиной витка и закрепить на каркасе. Если диаметр трубки меньше, то витков должно быть больше. Ее диаметр должен быть на 3 см больше второй катушки. Закрепить на каркасе. Тут же закрепить вторую катушку;
  5. способов изготовления тороида довольно много. Можно использовать медные трубки. Но проще взять обычную алюминиевую гофру и металлическую перекладину для крепления на выпирающем конце проволоки. Если проволока слишком хлипкая, чтобы удержать тороид, можно использовать гвоздь, как на картинке ниже;
  6. не стоит забывать про защитное кольцо. Хотя если один конец первичного контура заземлить, от него можно отказаться;
  7. когда конструкция готова, транзистор соединяется по схеме, крепится к радиатору или кулеру, далее нужно подвести питание и монтаж окончен.
Первую катушку можно сделать плоской, как на картинке

В качестве питания установки многие используют обычную крону Дюрасель.

Трансформатор Тесла своими руками, простейшая схема

Расчет катушки

Расчет КТ обычно производится при изготовлении трансформатора промышленной величины. Для домашних экспериментов достаточно использовать приведенные выше рекомендации.

Сам расчет подскажет оптимальное количество витков для вторичной катушки в зависимости от витков первой, индуктивность каждой катушки, емкость контуров и, самое важное, необходимую рабочую частоту трансформатора и емкость конденсатора.

Пример расчета КТ

Меры безопасности

Собрав КТ, перед запуском нужно принять некоторые меры предосторожности. Во-первых, нужно проверить проводку в помещении, где планируется подключение трансформатора. Во-вторых, проверить изоляцию обмоток.

Также стоит помнить, о простейших мерах предосторожности. Напряжение вторичной обмотки в среднем равняется 700А, 15А для человека уже смертельно. Дополнительно стоит подальше убрать все электроприборы, попав в зону работы катушки, они с большой вероятностью сгорят.

КТ ­– это революционное открытие своего времени, недооцененное в наши дни. Сегодня трансформатор Тесла служит лишь для развлечения домашних электриков и в световых представлениях. Сделать катушку можно самостоятельно из подручных средств. Понадобятся ПВХ труба, несколько сотен метров медного провода, пара метров медных труб, транзистор и пара резисторов.

Схема трансформатора Тесла. Трансформатор Тесла

Катушка Тесла – это резонансный трансформатор, который создает высокое напряжение высокой частоты. Изобретен Теслой в 1896 году. Работа этого устройства вызывает очень красивые эффекты, подобные управляемой молнии, а их размеры и сила зависят от питаемого напряжения и электрической схемы.

В домашних условиях сделать катушку Тесла несложно, при этом эффекты ее очень красивые. Готовые и мощные такие приборы продаются в этом китайском магазине .

Не используя провода, с помощью предлагаемого высокочастотного трансформатора можно поддерживать свечение газонаполненных ламп (к примеру лампы дневного света). Кроме того, на конце обмотки формируется красивая высоковольтная искра, к которой можно прикасаться руками. Вследствие того, что входное напряжение на представленном генераторе будет невысоким, он относительно безопасен.

Техника безопасности при работе представленной схемы катушки Тесла

Помните, что нельзя включать это устройство около телефонов, компьютеров и других электронных аппаратов, так как они могут выйти из строя под действием его излучения.

Простая схема генератора Теслы

Для сборки схемы необходимы:

1. Медный эмалированный провод толщиной 0,1-0,3 мм, длиной 200 м.

2. Пластиковая труба диаметром 4-7 cм, длиной 15 см для каркаса вторичной обмотки.

3. Пластиковая труба диаметром 7-10 cм, длиной 3-5 см для каркаса первичной обмотки.

4. Радиодетали: транзистор D13007 и охлаждающий радиатор для него; переменный резистор на 50 кОм; постоянный резистор на 75 Ом и 0,25 вт; блок питания напряжением на выходе 12-18 вольт и током 0,5 ампера;
5. Паяльник, оловянный припой и канифоль.

Подобрав нужные детали, начните с намотки катушки. Наматывать следует на каркас виток к витку без перехлёстов и заметных пробелов, примерно 1000 витков, но не менее 600. После этого нужно обеспечить изоляцию и закрепить намотку, лучше всего для этого использовать лак, которым покрыть обмотку в несколько слоёв.

Для первичной обмотки (L1) используется более толстый провод диаметром 0,6 мм и более, обмотка 5-12 витков, каркас для неё подбирается хотя бы на 5мм толще вторичной обмотки.

Далее соберите схему, как на рисунке выше. Транзистор подойдет любой NPN, можно и PNP, но в этом случае необходимо поменять полярность питания, автор схемы использовал BUT11AF, из отечественных, которые ничем не уступают, хорошо подходят КТ819, КТ805.
Для питания качера – любой блок питания 12-30В с током от 0,3 А.

Параметры авторской обмотки Тесла

Вторичная – 700 витков проводом толщиной 0,15 мм на каркасе 4 см.
Первичная – 5 витков проводом 1,5мм на каркасе 5 см.
Питание – 12-24 В с током до 1 А.

Видео канала “How-todo”.

Катушка Тесла представляет собой высокочастотный резонансный трансформатор без ферромагнитного сердечника, с помощью которого можно получить высокое напряжение на вторичной обмотке. Под действием высокого напряжения в воздухе происходит электрический пробой, подобно разряду молнии. Устройство изобретено Николой Теслой, и носит его имя.

По типу коммутирующего элемента первичного контура, катушки Тесла подразделяются на искровые (SGTC – Spark gap Tesla coil), транзисторные (SSTC – Solid state Tesla coil, DRSSTC – Dual resonant solid state Tesla coil). Я буду рассматривать только искровые катушки, являющиеся самыми простыми и распространенными. По способу заряда контурного конденсатора, искровые катушки делятся на 2 типа: ACSGTC – Spark gap Tesla coil, а также DCSGTC – Spark gap Tesla coil. В первом варианте, заряд конденсатора осуществляется переменным напряжением, во втором используется резонансный заряд с подведением постоянного напряжения.


Сама катушка представляет собой конструкцию из двух обмоток и тора. Вторичная обмотка цилиндрическая, наматывается на диэлектрической трубе медным обмоточным проводом, в один слой виток к витку, и имеет обычно 500-1500 витков. Оптимальное соотношение диаметра и длины обмотки равно 1:3,5 – 1:6. Для увеличения электрической и механической прочности, обмотку покрывают эпоксидным клеем или полиуретановым лаком. Обычно размеры вторичной обмотки определяют исходя из мощности источника питания, то есть высоковольтного трансформатора. Определив диаметр обмотки, из оптимального соотношения находят длину. Далее подбирают диаметр обмоточного провода, так чтобы количество витков примерно равнялось общепринятому значению. В качестве диэлектрической трубы обычно применяют канализационные пластиковые трубы, но можно изготовить и самодельную трубу, при помощи листов чертежного ватмана и эпоксидного клея. Здесь и далее речь идет о средних катушках, мощностью от 1 кВт и диаметром вторичной обмотки от 10 см.

На верхний конец трубы вторичной обмотки устанавливают полый проводящий тор, обычно выполненный из алюминиевой гофрированной трубы для отвода горячих газов. В основном диаметр трубы подбирают равным диаметру вторичной обмотки. Диаметр тора обычно составляет 0,5-0,9 от длины вторичной обмотки. Тор имеет электрическую емкость, которая определяется его геометрическими размерами, и выступает в роли конденсатора.

Первичная обмотка располагается у нижнего основания вторичной обмотки, и имеет спиральную плоскую или коническую форму. Обычно состоит из 5-20 витков толстого медного или алюминиевого провода. В обмотке протекают высокочастотные токи, вследствие чего скин-эффект может иметь значительное влияние. Из-за высокой частоты ток распределяется преимущественно в поверхностном слое проводника, тем самым уменьшается эффективная площадь поперечного сечения проводника, что приводит к увеличению активного сопротивления и уменьшению амплитуды электромагнитных колебаний. Поэтому лучшим вариантом для изготовления первичной обмотки будет полая медная трубка, или плоская широкая лента. Над первичной обмоткой по внешнему диаметру иногда устанавливают незамкнутое защитное кольцо (Strike Ring) из того же проводника, и заземляют. Кольцо предназначено для предотвращения попадания разрядов в первичную обмотку. Разрыв необходим для исключения протекания тока по кольцу, иначе магнитное поле, созданное индукционным током, будет ослаблять магнитное поле первичной и вторичной обмотки. От защитного кольца можно отказаться, если заземлить один конец первичной обмотки, при этом попадание разряда не причинит вреда компонентам катушки.

Коэффициент связи между обмотками зависит от их взаимного расположения, чем они ближе, тем больше коэффициент. Для искровых катушек типичное значение коэффициента равно K=0,1-0,3. От него зависит напряжение на вторичной обмотке, чем больше коэффициент связи, тем больше напряжение. Но увеличивать коэффициент связи выше нормы не рекомендуется, так как между обмотками начнут проскакивать разряды, повреждающие вторичную обмотку.


На схеме представлен простейший вариант катушки Тесла типа ACSGTC.
Принцип действия катушки Тесла основан на явлении резонанса двух индуктивно связанных колебательных контуров. Первичный колебательный контур состоит из конденсатора С1, первичной обмотки L1, и коммутируется разрядником, в результате чего образуется замкнутый контур. Вторичный колебательный контур образован вторичной обмоткой L2 и конденсатором С2 (тор обладающий емкостью), нижний конец обмотки обязательно заземляется. При совпадении собственной частоты первичного колебательного контура с частотой вторичного колебательного контура, происходит резкое возрастание амплитуды напряжения и тока во вторичной цепи. При достаточно высоком напряжении происходит электрический пробой воздуха в виде разряда, исходящего из тора. При этом важно понимать, что представляет собой замкнутый вторичный контур. Ток вторичного контура течет по вторичной обмотке L2 и конденсатору С2 (тор), далее по воздуху и земле (так как обмотка заземлена), замкнутый контур можно описать следующим образом: земля-обмотка-тор-разряд-земля. Таким образом, захватывающие электрические разряды представляют собой часть контурного тока. При большом сопротивлении заземления разряды, исходящие из тора будут бить прямо по вторичной обмотке, что не есть хорошо, поэтому нужно делать качественное заземление.

После того как размеры вторичной обмотки и тора определены, можно посчитать собственную частоту колебаний вторичного контура. Здесь надо учитывать, что вторичная обмотка кроме индуктивности обладает некоторой емкостью из-за немалых размеров, которую надо учитывать при расчете, емкость обмотки необходимо сложить с емкостью тора. Далее надо прикинуть параметры катушки L1и конденсатора C1первичного контура, так чтобы собственная частота первичного контура была близка к частоте вторичного контура. Емкость конденсатора первичного контура обычно составляет 25-100 нФ, исходя из этого, рассчитывают количество витков первичной обмотки, в среднем должно получиться 5-20 витков. При изготовлении обмотки необходимо увеличить количество витков, по сравнению с расчетным значением, для последующей настройки катушки в резонанс. Рассчитать все эти параметры можно по стандартным формулам из учебника физики, также в сети есть книги по расчету индуктивности различных катушек. Существуют и специальные программы калькуляторы для расчета всех параметров будущей катушки Тесла.

Настройка осуществляется путем изменения индуктивности первичной обмотки, то есть один конец обмотки подсоединен к схеме, а другой никуда не подключается. Второй контакт выполняют в виде зажима, который можно перекидывать с одного витка на другой, тем самым используется не вся обмотка, а только ее часть, соответственно меняется индуктивность, и собственная частота первичного контура. Настройку выполняют во время предварительных запусков катушки, о резонансе судят по длине выдаваемых разрядов. Существует также метод холодной настройки резонанса при помощи ВЧ генератора и осциллографа или ВЧ вольтметра, при этом катушку запускать не надо. Необходимо взять на заметку, что электрический разряд обладает емкостью, вследствие чего собственная частота вторичного контура может немного уменьшаться во время работы катушки. Заземление также может оказывать небольшое влияние на частоту вторичного контура.

Разрядник является коммутирующим элементом в первичном колебательном контуре. При электрическом пробое разрядника под действием высокого напряжения, в нем образуется дуга, которая замыкает цепь первичного контура, и в нем возникают высокочастотные затухающие колебания, в течение которых напряжение на конденсаторе С1 постепенно уменьшается. После того как дуга гаснет, контурный конденсатор С1 вновь начинает заряжаться от источника питания, при следующем пробое разрядника начинается новый цикл колебаний.

Разрядник подразделяется на два типа: статический и вращающийся. Статический разрядник представляет собой два близко расположенных электрода, расстояние между которыми регулируют так чтобы электрический пробой между ними происходил в то время, когда конденсатор С1 заряжен до наибольшего напряжения, или немного меньше максимума. Ориентировочное расстояние между электродами определяют исходя из электрической прочности воздуха, которая составляет около 3 кВ/мм при стандартных условиях окружающей среды, а также зависит от формы электродов. Для переменного сетевого напряжения, частота срабатываний статического разрядника (BPS – beats per second) составит 100Гц.

Вращающийся разрядник (RSG – Rotary spark gap) выполняется на основе электродвигателя, на вал которого насажен диск с электродами, с каждой стороны диска устанавливаются статические электроды, таким образом, при вращении диска, между статическими электродами будут пролетать все электроды диска. Расстояние между электродами делают минимальным. В таком варианте можно регулировать частоту коммутаций в широких пределах управляя электродвигателем, что дает больше возможностей по настройке и управлению катушкой. Корпус двигателя необходимо заземлить, для защиты обмотки двигателя от пробоя, при попадании высоковольтного разряда.

В качестве контурного конденсатора С1 применяют конденсаторные сборки (MMC – Multi Mini Capacitor) из последовательно и параллельно соединенных высоковольтных высокочастотных конденсаторов. Обычно применяют керамические конденсаторы типа КВИ-3, а также пленочные К78-2. В последнее время намечен переход на бумажные конденсаторы типа К75-25, которые неплохо показали себя в работе. Номинальное напряжение конденсаторной сборки для надежности должно быть в 1,5-2 раза больше амплитудного напряжения источника питания. Для защиты конденсаторов от перенапряжения (высокочастотные импульсы) устанавливают воздушный разрядник параллельно всей сборке. Разрядник может представлять собой два небольших электрода.

В качестве источника питания для зарядки конденсаторов используется высоковольтный трансформатор Т1, или несколько последовательно или параллельно соединенных трансформаторов. В основном начинающие тесластроители используют трансформатор из микроволновой печи (MOT – Microwave Oven Transformer), выходное переменное напряжение которого составляет ~2,2 кВ, мощность около 800 Вт. В зависимости от номинального напряжения контурного конденсатора, МОТы соединяют последовательно от 2 до 4 штук. Применение только одного трансформатора не целесообразно, так как из-за небольшого выходного напряжения зазор в разряднике будет очень малым, итогом будут нестабильные результаты работы катушки. Моты имеют недостатки в виде слабой электропрочности, не рассчитаны для работы в длительном режиме, сильно греются при большой нагрузке, поэтому часто выходят из строя. Более разумно использовать специальные масляные трансформаторы типа ОМ, ОМП, ОМГ, которые имеют выходное напряжение 6,3 кВ, 10 кВ, и мощность 4 кВт, 10 кВт. Можно также изготовить самодельный высоковольтный трансформатор. При работе с высоковольтными трансформаторами не следует забывать о технике безопасности, высокое напряжение опасно для жизни, корпус трансформатора необходимо заземлить. При необходимости последовательно с первичной обмоткой трансформатора можно установить автотрансформатор, для регулировки напряжения зарядки контурного конденсатора. Мощность автотрансформатора должна быть не меньше мощности трансформатора T1.

Дроссель Lд в цепи питания необходим для ограничения тока короткого замыкания трансформатора при пробое разрядника. Чаще всего дроссель находится в цепи вторичной обмотки трансформатора T1. Вследствие высокого напряжения, необходимая индуктивность дросселя может принимать большие значения от единиц до десятков Генри. В таком варианте он должен обладать достаточной электропрочностью. С таким же успехом дроссель можно установить последовательно с первичной обмоткой трансформатора, соответственно здесь не требуется высокая электропрочность, необходимая индуктивность на порядок ниже, и составляет десятки, сотни миллигенри. Диаметр обмоточного провода должен быть не меньше диаметра провода первичной обмотки трансформатора. Индуктивность дросселя рассчитывают из формулы зависимости индуктивного сопротивления от частоты переменного тока.

Фильтр низких частот (ФНЧ) предназначен для исключения проникновения высокочастотных импульсов первичного контура в цепь дросселя и вторичной обмотки трансформатора, то есть для их защиты. Фильтр может быть Г-образным или П-образным. Частоту среза фильтра выбирают на порядок меньше резонансной частоты колебательных контуров катушки, но при этом частота среза должна быть намного больше частоты срабатывания разрядника.


При резонансном заряде контурного конденсатора (тип катушки – DCSGTC), используют постоянное напряжение, в отличии от ACSGTC. Напряжение вторичной обмотки трансформатора T1 выпрямляют с помощью диодного моста и сглаживают конденсатором Св. Емкость конденсатора должна быть на порядок больше емкости контурного конденсатора С1, для уменьшения пульсаций постоянного напряжения. Величина емкости обычно составляет 1-5 мкФ, номинальное напряжение для надежности выбирают в 1,5-2 раза больше амплитудного выпрямленного напряжения. Вместо одного конденсатора можно использовать конденсаторные сборки, желательно не забывая про выравнивающие резисторы при последовательном соединении нескольких конденсаторов.

В качестве диодов моста применяют последовательно соединенные высоковольтные диодные столбы типа КЦ201 и др. Номинальный ток диодных столбов должен быть больше номинального тока вторичной обмотки трансформатора. Обратное напряжение диодных столбов зависит от схемы выпрямления, по соображениям надежности обратное напряжение диодов должно быть в 2 раза больше амплитудного значения напряжения. Возможно изготовление самодельных диодных столбов путем последовательного соединения обычных выпрямительных диодов (например 1N5408, Uобр = 1000 В, Iном = 3 А), с применением выравнивающих резисторов.
Вместо стандартной схемы выпрямления и сглаживания можно собрать удвоитель напряжения из двух диодных столбов и двух конденсаторов.

Принцип работы схемы резонансного заряда основан на явлении самоиндукции дросселя Lд, а также применения диода отсечки VDо. В момент времени, когда конденсатор C1 разряжен, через дроссель начинает течь ток, возрастая по синусоидальному закону, при этом в дросселе накапливается энергия в виде магнитного поля, а конденсатор при этом заряжается, накапливая энергию в виде электрического поля. Напряжение на конденсаторе возрастает до напряжения источника питания, при этом через дроссель течет максимальный ток, и падение напряжения на нем равно нулю. При этом ток не может прекратиться мгновенно, и продолжает течь в том же направлении из-за наличия самоиндукции дросселя. Зарядка конденсатора продолжается до удвоенного значения напряжения источника питания. Диод отсечки необходим для предотвращения перетекания энергии от конденсатора обратно в источник питания, так как между конденсатором и источником питания появляется разность потенциалов равная напряжению источника питания. На самом деле напряжение на конденсаторе не достигает удвоенного значения, из-за наличия падения напряжения на диодном столбе.

Применение резонансного заряда позволяет более эффективно и равномерно передавать энергию на первичный контур, при этом для получения одинакового результата (по длине разряда), для DCSGTC требуется меньшая мощность источника питания (трансформатор Т1), чем для ACSGTC. Разряды приобретают характерный плавный изгиб, вследствие стабильного питающего напряжения, в отличии от ACSGTC, где очередное сближение электродов в RSG может приходиться по времени на любой участок синусоидального напряжения, включая попадание на нулевое или низкое напряжение и как следствие переменная длина разряда (рваный разряд).

Ниже на картинке представлены формулы для расчета параметров катушки Тесла:

Предлагаю ознакомиться с моим опытом постройки .

Знаменитый изобретатель Никола Тесла имеет немало заслуг перед наукой и техникой, но только одно изобретение носит его имя. Это резонансный трансформатор, известный также как« катушка Теслы».

Трансформатор Теслы состоит из первичной и вторичной обмоток, схемы, обеспечивающей питание первичной обмотки на резонансной частоте вторичной, и, опционально, дополнительной емкости на высоковольтном выходе вторичной обмотки. Острие, укрепленное на дополнительной емкости, повышает напряженность электрического поля, облегчая пробой воздуха. Дополнительная емкость снижает рабочую частоту, уменьшая нагрузку на транзисторы, и, по некоторым данным, повышает длину разрядов. В качестве каркаса вторичной обмотки используется кусок канализационной ПВХ-трубы. Вторичная обмотка состоит примерно из 810 витков эмалированного провода диаметром 0,45 мм. Первичная обмотка состоит из восьми витков провода сечением 6 мм2. Схема питания основана на принципе автоколебаний и построена на силовых транзисторах.

Суть изобретения Теслы проста. Если питать трансформатор током с частотой, равной резонансной для его вторичной обмотки, напряжение на выходе возрастает в десятки и даже сотни раз. Фактически оно ограничено электрической прочностью окружающего воздуха (или иной среды) и самого трансформатора, а также потерями на излучение радиоволн. Наиболее известна катушка в области шоу-бизнеса: она способна метать молнии!

Форма и содержание

Трансформатор выглядит весьма необычно — он словно специально сконструирован для шоу-бизнеса. Вместо привычного массивного железного сердечника с толстыми обмотками — длинная полая труба из диэлектрика, на которую провод намотан всего в один слой. Такой странный вид вызван необходимостью обеспечить максимальную электрическую прочность конструкции.

Кроме необычного внешнего вида, трансформатор Теслы имеет еще одну особенность: в нем обязательно есть некая система, создающая в первичной обмотке ток именно на резонансной частоте вторичной. Сам Тесла использовал так называемую искровую схему (SGTC, Spark Gap Tesla Coil). Ее принцип заключается в зарядке конденсатора от источника питания с последующим подключением его к первичной обмотке. Вместе они создают колебательный контур.

Емкость конденсатора и индуктивность обмотки подбираются так, чтобы частота колебаний в этом контуре совпадала с необходимой. Коммутация осуществляется с помощью искрового промежутка: как только напряжение на конденсаторе достигает определенного значения, в промежутке возникает искра, замыкающая контур. Часто можно увидеть утверждения, что «искра содержит полный спектр частот, так что там всегда есть и резонансная, за счет чего и работает трансформатор». Но это не так — без правильного подбора емкости и индуктивности действительно высокого напряжения на выходе не получить.

Решив сделать свой трансформатор Теслы, мы остановились на более прогрессивной схеме — транзисторной. Транзисторные генераторы потенциально позволяют получить любую форму и частоту сигнала в первичной обмотке.

Выбранная нами схема состоит из микросхемы драйвера силовых транзисторов, маленького трансформатора для развязки этого драйвера от питающего напряжения 220 В и полумоста из двух силовых транзисторов и двух пленочных конденсаторов. Трансформатор мотается на кольце из феррита с рабочей частотой не менее 500 кГц, на нем делается три обмотки по 10−15 витков провода. Очень важно подключить транзисторы к обмоткам трансформатора так, чтобы они работали в противофазе: когда один открыт, другой закрыт.

Нужная частота возникает за счет обратной связи со вторичной обмоткой (схема основана на автоколебаниях). Обратная связь может осуществляться двумя способами: с помощью или трансформатора тока из 50−80 витков провода на таком же ферритовом кольце, как и разделительный трансформатор, через которое проходит провод заземления нижней части вторичной обмотки, или… просто кусочка проволоки, которая выполняет роль антенны, улавливающей испускаемые вторичной обмоткой радиоволны.

Мотаем на ус

В качестве каркаса первичной обмотки мы взяли канализационную трубу из ПВХ диаметром 9 см и длиной 50 см. Для намотки используем эмалированный медный провод диаметром 0,45 мм. Каркас и катушку обмоточного провода размещаем на двух параллельных осях. В качестве оси каркаса выступал кусок ПВХ-трубы меньшего диаметра, а роль оси катушки с проводом выполнила завалявшаяся в редакции стрела от лука.

Существуют три варианта первичной обмотки: плоская спираль, короткая винтовая и коническая обмотка. Первая обеспечивает максимальную электрическую прочность, но в ущерб силе индуктивной связи. Вторая, напротив, создает наилучшую связь, но чем она выше — тем больше шансов, что произойдет пробой между нею и вторичной обмоткой. Коническая обмотка — промежуточный вариант, позволяющий получить наилучший баланс между индуктивной связью и электрической прочностью. Рекордные напряжения мы получить не рассчитывали, так что выбор пал на винтовую обмотку: она позволяет добиться максимального КПД и проста в изготовлении.

В качестве проводника взяли провод питания аудиоаппаратуры с сечением 6 мм², восемь витков которого намотали на отрезок ПВХ-трубы большего диаметра, чем у каркаса вторичной обмотки, и закрепили обычной изолентой. Такой вариант нельзя считать идеальным, ведь ток высокой частоты течет лишь по поверхности проводников (скин-эффект), так что правильнее делать первичную обмотку из медной трубы. Но наш способ прост в изготовлении и при не слишком больших мощностях вполне работает.

Управление

Для обратной связи мы изначально планировали использовать трансформатор тока. Но он оказался неэффективным при малых мощностях катушки. А в случае антенны сложнее обеспечить первоначальный импульс, который запустит колебания (в случае трансформатора через его кольцо можно пропустить еще один провод, на который на долю секунды замыкать обычную батарейку). В итоге у нас получилась смешанная система: один выход трансформатора был подключен к входу микросхемы, а провод второго не был ни к чему подключен и служил антенной.

Короткие замыкания, пробитие транзисторов и прочие неприятности изначально предполагались очень даже возможными, так что дополнительно был изготовлен пульт управления с амперметром переменного тока на 10 А, автоматическим предохранителем на 10 А и парой «неонок»: одна показывает, есть ли напряжение на входе в пульт, а другая — идет ли ток к катушке. Такой пульт позволяет удобно включать и выключать катушку, отслеживать основные параметры, а также дает возможность многократно снизить частоту походов к щитку для включения «выбитых» автоматов.

Последняя опциональная деталь трансформатора — дополнительная емкость в виде проводящего шара или тора на высоковольтном выходе вторичной обмотки. Во многих статьях можно прочесть, что она способна существенно удлинить разряд (кстати, это широкое поле для экспериментов). Мы сделали такую емкость на 7 пФ, собрав вместе две стальные чашки-полусферы (из магазина IKEA).

Сборка

Когда все компоненты изготовлены, конечная сборка трансформатора не составляет никакой проблемы. Единственная тонкость — заземление нижнего конца вторичной обмотки. Увы, не во всех отечественных домах есть розетки с отдельными контактами земли. А там, где есть, эти контакты не всегда реально подключены (проверить это можно с помощью мультиметра: между контактом и проводом фазы должно быть около 220 В, а между ним и нулевым проводом — почти нуль).

Если у вас такие розетки есть (у нас в редакции нашлись), то заземлять нужно именно с их помощью, используя для подключения катушки соответствующую вилку. Часто советуют заземлять на батарею центрального отопления, но это категорически не рекомендуется, поскольку в некоторых случаях может привести к тому, что батареи в доме будут бить током ни о чем не подозревающих соседей.

Но вот наступает ответственный момент включения… И сразу же появляется первая жертва молнии — транзистор схемы питания. После замены выясняется, что схема в принципе вполне работоспособна, хотя и на небольших мощностях (200−500 Вт). При выходе на проектную мощность (порядка 1−2 кВт) транзисторы взрываются с эффектной вспышкой. И хотя эти взрывы не представляют опасности, режим «секунда работы — 15 минут замены транзистора» не является удовлетворительным. Тем не менее с помощью этого трансформатора вполне можно почувствовать себя в роли Зевса-громовержца.

Благородные цели

Хотя в наше время трансформатор Теслы, по крайней мере в его исходном виде, чаще всего находит применение в разнообразных шоу, сам Никола Тесла создавал его для куда более важных целей. Трансформатор является мощным источником радиоволн с частотой от сотни килогерц до нескольких мегагерц. На основе мощных трансформаторов Теслы планировалось создание системы радиовещания, беспроводного телеграфа и беспроводной телефонии.

Но наиболее грандиозный проект Теслы, связанный с использованием его трансформатора, — создание глобальной системы беспроводного энергоснабжения. Как он считал, достаточно мощный трансформатор или система трансформаторов сможет в глобальном масштабе менять заряд Земли и верхних слоев атмосферы.

В такой ситуации установленный в любой точке планеты трансформатор, имеющий такую же резонансную частоту, как и передающий, будет источником тока, и линии электропередач станут не нужны.

Именно стремление создать систему беспроводной передачи энергии погубило знаменитый проект Wardenclyff. Инвесторы были заинтересованы в появлении только окупаемой системы связи. А передатчик энергии, которую мог бы неконтролируемо принимать любой желающий по всему миру, напротив, грозил убытками электрическим компаниям и производителям проводов. А один из основных инвесторов был акционером Ниагарской ГЭС и заводов по производству меди…

Катушка тесла

Разряды с провода на терминале

Трансформа́тор Те́сла — единственное из изобретений Николы Тесла , носящих его имя сегодня. Это классический резонансный трансформатор , производящий высокое напряжение при высокой частоте. Оно использовалось Теслой в нескольких размерах и вариациях для его экспериментов. «Трансформатор Тесла» также известен под названием «катушка Теслы» (англ. Tesla coil ). В России часто используют следующие сокращения: ТС (от Tesla coil ), КТ (катушка Тесла), просто тесла и даже ласкательно — катька. Прибор был заявлен патентом № 568176 от 22 сентября 1896 года, как «Аппарат для производства электрических токов высокой частоты и потенциала».

Описание конструкции

Схема простейшего трансформатора Теслы

В элементарной форме трансформатор Теслы состоит из двух катушек , первичной и вторичной, и обвязки, состоящей из разрядника (прерывателя, часто встречается английский вариант Spark Gap), конденсатора , тороида (используется не всегда) и терминала (на схеме показан как «выход»).

Первичная катушка построена из 5-30 (для VTTC — катушки Теслы на лампе — число витков может достигать 60) витков провода большого диаметра или медной трубки, а вторичная из многих витков провода меньшего диаметра. Первичная катушка может быть плоской (горизонтальной), конической или цилиндрической (вертикальной). В отличие от многих других трансформаторов , здесь нет никакого ферромагнитного сердечника. Таким образом, взаимоиндукция между двумя катушками гораздо меньше, чем у обычных трансформаторов с ферромагнитным сердечником. У данного трансформатора также практически отсутствует магнитный гистерезис , явления задержки изменения магнитной индукции относительно изменения тока и другие недостатки, вносимые присутствием в поле трансформатора ферромагнетика.

Первичная катушка вместе с конденсатором образует колебательный контур , в который включён нелинейный элемент — разрядник (искровой промежуток). Разрядник, в простейшем случае, обыкновенный газовый; выполненный обычно из массивных электродов (иногда с радиаторами), что сделано для большей износостойкости при протекании больших токов через электрическую дугу между ними.

Вторичная катушка также образует колебательный контур, где роль конденсатора выполняет ёмкостная связь между тороидом, оконечным устройством, витками самой катушки и другими электропроводящими элементами контура с Землей. Оконечное устройство (терминал) может быть выполнено в виде диска, заточенного штыря или сферы. Терминал предназначен для получения предсказуемых искровых разрядов большой длины. Геометрия и взаимное положение частей трансформатора Теслы сильно влияет на его работоспособность, что аналогично проблематике проектирования любых высоковольтных и высокочастотных устройств.

Функционирование

Трансформатор Теслы рассматриваемой простейшей конструкции, показанной на схеме, работает в импульсном режиме. Первая фаза — это заряд конденсатора до напряжения пробоя разрядника. Вторая фаза — генерация высокочастотных колебаний.

Заряд

Заряд конденсатора производится внешним источником высокого напряжения, защищённым дросселями и построенным обычно на базе повышающего низкочастотного трансформатора. Так как часть электрической энергии, накопленной в конденсаторе, уйдёт на генерацию высокочастотных колебаний, то ёмкость и максимальное напряжение на конденсаторе пытаются максимизировать. Напряжение заряда ограничено напряжением пробоя разрядника, которое (в случае воздушного разрядника) можно регулировать, изменяя расстояние между электродами или их форму. Типовое максимальное напряжение заряда конденсатора — 2-20 киловольт. Знак напряжения для заряда обычно не важен, так как в высокочастотных колебательных контурах электролитические конденсаторы не применяются. Более того, во многих конструкциях знак заряда меняется с частотой бытовой сети электроснабжения ( или Гц).

Генерация

После достижения между электродами разрядника напряжения пробоя в нём возникает лавинообразный электрический пробой газа. Конденсатор разряжается через разрядник на катушку. После разряда конденсатора напряжение пробоя разрядника резко уменьшается из-за оставшихся в газе носителей заряда. Практически, цепь колебательного контура первичной катушки остаётся замкнутой через разрядник, до тех пор, пока ток создаёт достаточное количество носителей заряда для поддержания напряжения пробоя существенно меньшего, чем амплитуда напряжения колебаний в LC контуре. Колебания постепенно затухают, в основном из-за потерь в разряднике и ухода электромагнитной энергии на вторичную катушку. Во вторичной цепи возникают резонансные колебания, что приводит к появлению на терминале высоковольтного высокочастотного напряжения !

В качестве генератора ВЧ напряжения, в современных трансформаторах Теслы используют ламповые (VTTC — Vacuum Tube Tesla Coil) и транзисторные (SSTC — Solid State Tesla Coil, DRSSTC — Dual Resonance SSTC) генераторы. Это даёт возможность уменьшить габариты установки, повысить управляемость, снизить уровень шума и избавиться от искрового промежутка. Также существует разновидность трансформаторов Теслы, питаемая постоянным током. В аббревиатурах названий таких катушек присутствуют буквы DC, например DC DRSSTC. В отдельную категорию также относят магниферные катушки Теслы.

Многие разработчики в качестве прерывателя (разрядника) используют управляемые электронные компоненты, такие как транзисторы, модули на MOSFET транзисторах, электронные лампы , тиристоры .

Использование трансформатора Теслы

Разряд трансформатора Теслы

Разряд с конца провода

Выходное напряжение трансформатора Теслы может достигать нескольких миллионов вольт . Это напряжение в резонансной частоте способно создавать внушительные электрические разряды в воздухе, которые могут иметь многометровую длину. Эти явления очаровывают людей по разным причинам, поэтому трансформатор Теслы используется как декоративное изделие.

Трансформатор использовался Теслой для генерации и распространения электрических колебаний, направленных на управление устройствами на расстоянии без проводов (радиоуправление), беспроводной передачи данных (радио) и беспроводной передачи энергии . В начале XX века трансформатор Теслы также нашёл популярное использование в медицине . Пациентов обрабатывали слабыми высокочастотными токами, которые протекая по тонкому слою поверхности кожи не причиняют вреда внутренним органам (см. Скин-эффект), оказывая при этом тонизирующее и оздоравливающее влияние. Последние исследования механизма воздействия мощных ВЧ токов на живой организм показали негативность их влияния.

В наши дни трансформатор Теслы не имеет широкого практического применения. Он изготовляется многими любителями высоковольтной техники и сопровождающих её работу эффектов. Также он иногда используется для поджига газоразрядных ламп и для поиска течей в вакуумных системах.

Трансформатор Теслы используется военными для быстрого уничтожения всей электроники в здании,танке,корабле.Создается на доли секунды мощный электромагнитный импульс в радиусе нескольких десятков метров.В результате перегорают все микросхемы и транзисторы,полупроводниковая электроника.Данное устройство работает совершенно бесшумно.В прессе появилось сообщение, что частота тока при этом достигает 1 Терагерц.

Эффекты, наблюдаемые при работе трансформатора Теслы

Во время работы катушка Теслы создаёт красивые эффекты, связанные с образованием различных видов газовых разрядов . Многие люди собирают трансформаторы Теслы ради того, чтобы посмотреть на эти впечатляющие, красивые явления. В целом катушка Теслы производит 4 вида разрядов:

  1. Стримеры (от англ. Streamer ) — тускло светящиеся тонкие разветвлённые каналы, которые содержат ионизированные атомы газа и отщеплённые от них свободные электроны. Протекает от терминала (или от наиболее острых, искривлённых ВВ-частей) катушки прямо в воздух, не уходя в землю, так как заряд равномерно стекает с поверхности разряда через воздух в землю. Стример — это, по сути дела, видимая ионизация воздуха (свечение ионов), создаваемая ВВ-полем трансформатора.
  2. Спарк (от англ. Spark ) — это искровой разряд . Идёт с терминала (или с наиболее острых, искривлённых ВВ частей) непосредственно в землю или в заземлённый предмет. Представляет собой пучок ярких, быстро исчезающих или сменяющих друг друга нитевидных, часто сильно разветвлённых полосок — искровых каналов. Также имеет место быть особый вид искрового разряда — скользящий искровой разряд.
  3. Коронный разряд — свечение ионов воздуха в электрическом поле высокого напряжения. Создаёт красивое голубоватое свечение вокруг ВВ-частей конструкции с сильной кривизной поверхности.
  4. Дуговой разряд — образуется во многих случаях. Например, при достаточной мощности трансформатора, если к его терминалу близко поднести заземлённый предмет, между ним и терминалом может загореться дуга (иногда нужно непосредственно прикоснуться предметом к терминалу и потом растянуть дугу, отводя предмет на большее расстояние). Особенно это свойственно ламповым катушкам Теслы. Если катушка недостаточно мощна и надёжна, то спровоцированный дуговой разряд может повредить её компоненты.

Часто можно наблюдать (особенно вблизи мощных катушек), как разряды идут не только от самой катушки (её терминала и т. д.), но и в её сторону от заземлённых предметов. Также на таких предметах может возникать и коронный разряд . Редко можно наблюдать также тлеющий разряд . Интересно заметить, что разные химические вещества, нанесённые на разрядный терминал, способны менять цвет разряда. Например, натрий меняет обычный окрас спарка на оранжевый, а бром — на зелёный.

Работа резонансного трансформатора сопровождается характерным электрическим треском. Появление этого явления связано с превращением стримеров в искровые каналы (см. статью искровой разряд), который сопровождается резким возрастанием силы тока и количества энергии, выделяющегося в них. Каждый канал быстро расширяется, в нём скачкообразно повышается давление, в результате чего на его границах возникает ударная волна. Совокупность ударных волн от расширяющихся искровых каналов порождает звук, воспринимаемый как «треск» искры.

Неизвестные эффекты трансформатора Теслы

Многие люди считают, что катушки Теслы — это особенные артефакты с исключительными свойствами. Существует мнение, что трансформатор Теслы может быть генератором свободной энергии и является вечным двигателем, исходя из того, что сам Тесла считал, что его генератор берёт энергию из эфира (особой невидимой материи в которой распространяются электромагнитные волны) через искровой промежуток. Иногда можно услышать, что с помощью «Катушки Теслы» можно создать антигравитацию и эффективно передавать электроэнергию на большие расстояния без проводов. Данные свойства пока никак не проверены и не подтверждены наукой. Однако, сам Тесла говорил о том, что такие способности скоро будут доступны человечеству с помощью его изобретений. Но впоследствии посчитал, что люди не готовы к этому.

Также очень распространён тезис о том, что разряды, испускаемые трансформаторами Теслы, полностью безопасны, и их можно трогать руками. Это не совсем так. В медицине также используют «катушки Теслы» для оздоровления кожи. Это лечение имеет положительные плоды и благотворно действует на кожу, но конструкция медицинских трансформаторов сильно разнится с конструкцией обычных. Лечебные генераторы отличает очень высокая частота выходного тока, при которой толщина скин-слоя (см. Скин-эффект) безопасно мала, и крайне малая мощность. А толщина скин-слоя для среднестатистической катушки Теслы составляет от 1 мм до 5 мм и её мощности хватит для того, чтобы разогреть этот слой кожи, нарушить естественные химические процессы. При долгом воздействии подобных токов могут развиться серьёзные хронические заболевания, злокачественные опухоли и другие негативные последствия. Кроме того, надо отметить, что нахождение в ВЧ ВВ поле катушки (даже без непосредственного контакта с током) может негативно влиять на здоровье. Важно отметить, что нервная система человека не воспринимает высокочастотный ток и боль не чувствуется, но тем не менее это может положить начало губительным для человека процессам. Также существует опасность отравления газами, образующимися во время работы трансформатора в закрытом помещении без притока свежего воздуха. Плюс ко всему, можно обжечься, так как температуры разряда обычно достаточно для небольшого ожога (а иногда и для большого), и если человек всё же захочет «поймать» разряд, то это следует делать через какой-нибудь проводник (например, металлический прут). В этом случае непосредственного контакта горячего разряда с кожей не будет, и ток сначала потечет через проводник и только потом через тело.

Трансформатор Теслы в культуре

В фильме Джима Джармуша «Кофе и сигареты » один из эпизодов строится на демонстрации трансформатора Теслы. По сюжету, Джек Уайт , гитарист и вокалист группы «The White Stripes » рассказывает Мег Уайт, барабанщице группы о том, что земля является проводником акустического резонанса (теория электромагнитного резонанса — идея, которая занимала ум Теслы многие годы), а затем «Джек демонстрирует Мэг машину Теслы».

В игре Command & Conquer: Red Alert советская сторона может строить оборонительное сооружение в виде башни со спиралевидным проводом, которая поражает противника мощными электрическими разрядами. Еще в игре присутствуют танки и пехотинцы, использующие эту технологию. Tesla coil (в одном из переводов — башня Тесла ) является в игре исключительно точным, мощным и дальнобойным оружием, однако потребляет относительно высокое количество энергии. Для увеличения мощности и дальности поражения можно «заряжать» башни. Для этого отдайте приказ Воину Тесла (это пехотинец) подойти и постоять рядом с башней. Когда воин дойдет до места, он начнет зарядку башни. При этом анимация будет как при атаке, но молнии из его рук будут желтого цвета.

Каждый человек, вероятнее всего, слышал о том, что такое трансформатор Тесла, который также зачастую называется катушкой Тесла. Эту катушку можно увидеть во многих фильмах, компьютерных играх и телевизионных передачах. Однако мало слышать о том, что существует нечто подобное. Если вас спросят, что именно делает трансформатор Тесла, сможете ли вы дать на этот вопрос ответ? Скорее всего, нет, а если и сможете, то вряд ли вы сумеете рассказать достаточно подробностей. Именно поэтому и существует данная статья. С ее помощью вы сможете узнать все о трансформаторе Тесла, о том, как он устроен, для чего используется, как функционирует и так далее. Естественно, если вы учились по физической специализации, то для вас эти данные не будут новостью, однако большинство людей все же не в курсе деталей, касающихся катушки Тесла. А ведь это очень интересные данные, которые позволят вам расширить кругозор. Как легко можно догадаться, изобретателем этого устройства стал великий ученый Никола Тесла, который запатентовал свое изобретение в 1896 году, описав его как устройство, предназначенное для производства электрических токов высокой частоты. По сути, именно этим катушка Тесла и является, и об этом вы, вероятнее всего, уже знали. Поэтому стоит взглянуть на более интересные и менее известные данные.

В чем суть?

Для начала необходимо объяснить суть работы катушки Тесла. Она может выглядеть по-разному, однако многие люди отмечают, что, так или иначе, она смотрится очень эффектно даже в режиме спокойствия. Что уж говорить о том, когда она приводится в действие, и вокруг нее образуются видимые разряды электричества. Но как именно это происходит? Трансформатор Тесла работает за счет резонансных электромагнитных волн, образующихся в двух обмотках катушки, первичной и вторичной. Первичная обмотка представляет собой часть искрового колебательного центра. Что касается вторичной, то ее роль исполняет уже прямая катушка провода. Когда частота колебаний первичного и вторичного контура совпадает, между концами катушки появляется высокое переменное напряжение, которое вы можете увидеть невооруженным взглядом. Если вам не очень понятно то, как работает трансформатор Тесла, то для примера можно взять обычные качели. С их помощью объяснить работу будет гораздо проще. Если вы раскачиваете качели с помощью принудительных колебаний, то амплитуда будет пропорциональна вашему усилию. Если же вы решите раскачивать качели в режиме свободных колебаний, каждый раз подталкивая качели в необходимый момент, то амплитуда возрастет в несколько раз. То же самое происходит и с катушкой Тесла: при резонансе колебаний двух обмоток возникает гораздо более сильный ток.

Конструкция трансформатора

Второй момент, который необходимо принять во внимание, когда рассматривается трансформатор Тесла, — схема. Как именно устроена катушка? На самом деле устройство этого трансформатора может быть самым разнообразным, поэтому сейчас вы узнаете о том, как устроена его простейшая версия, которую вы затем можете совершенствовать так, как вам будет этого хотеться. Итак, простейший трансформатор Тесла состоит из нескольких элементов, а именно из входного трансформатора, катушки индуктивности, включающей в себя первичную и вторичную обмотку, а также из разрядника, конденсатора и терминала. Собственно говоря, ток начинает свое движение от входного трансформатора, являющегося источником питания, откуда через разрядник и конденсатор попадает на катушку индуктивности, а оттуда передается на терминал уже в умноженном размере. Причем терминал зачастую выбирается таким, чтобы он лучше всего мог передать подобное напряжение, например, он может быть в форме шара или диска. Как вы понимаете, это самый простой трансформатор Тесла — схема является подтверждением этого. В катушке Тесла может быть больше элементов. Там может присутствовать, например, тороид, который не описан в этой схеме, так как он не является ключевым элементом. Что касается основных элементов, то они все были указаны.

Функционирование

Итак, теперь вы знаете, как устроен трансформатор Тесла. Принцип работы его вам также понятен в целом, но можно и углубиться в детали. Как именно он функционирует? Оказывается, он работает в импульсном режиме. Что это означает? Это значит, что сначала происходит заряд конденсатора до того момента, когда совершится пробой разрядника, и электричество пройдет на катушку индуктивности. Тогда начинается вторая фаза, в ходе которой генерируются высокочастотные колебания. Обратите внимание, что разрядник должен располагаться параллельно источнику питания, благодаря чему он замыкает цепь, когда на катушку поступает ток, тем самым исключая источник питания из цепи. Зачем это нужно? Если остается частью цепи, это может значительно снижать напряжение на выходе из трансформатора. Естественно, результат все равно будет, однако он при этом окажется далеко не самым впечатляющим. Вот так функционирует трансформатор Тесла. Принцип работы вам теперь полностью понятен, однако все еще остаются некоторые детали, которые могут вас заинтересовать.

Заряд для трансформатора

Как вы уже могли заметить, если вы планируете создать мощный трансформатор Тесла, то для этого потребуется учесть абсолютно все детали, так как любые отклонения от нормы будут приводить к тому, что выходное напряжение будет недостаточно высоким, из-за чего эффект будет менее впечатляющим. И особое внимание необходимо уделить стартовому заряду, то есть подбору источника питания. Именно в данном случае нужно подобрать правильный конденсатор, чтобы выходное напряжение было идеальным, а конденсатор себя не «закорачивал». Существует даже трансформатор Тесла с самозапиткой, так что разнообразию конструкций нет пределов. Так что вам стоит помнить, что в данном случае рассматривается самая простая конструкция катушки Тесла.

Генерация

Ну и последнее, на что стоит взглянуть более детально — это непосредственно сам процесс генерации высокочастотного тока. Итак, питание трансформатора Тесла происходит за счет выбранного источника питания, который передает заряд в конденсатор, где он накапливается до того момента, как происходит пробой, в результате которого конденсатор через разрядник разряжается на первичную катушку. Так как напряжение разрядника резко снижается, цепь замыкается, и, как уже было сказано выше, источник питания исключается из цепи. В это время на первичной катушке возникают высокочастотные колебания, которые затем передаются на вторичную катушку, из-за чего колебания становятся резонансными, и на терминале возникает ток высокого напряжения. Вот так работает самый простой трансформатор Тесла, однако существует большое количество самых разнообразных его модификаций.

Модификации

Для начала вам стоит узнать о том, что классический вариант катушки Тесла, который был описан выше, обозначается следующим образом — SGTC. Последние две буквы расшифровываются как Tesla Coil, что переводится непосредственно как «катушка Тесла». Эти две буквы будут присутствовать в каждом из сокращений, а меняются только первые две. В данном случае SG обозначает Spark Gap, то есть эта катушка Тесла работает на искровом промежутке, создаваемом разрядником. Однако далеко не всегда дела обстоят именно так, поэтому необходимо рассмотреть различные варианты, такие как трансформатор Тесла на транзисторах или на полупроводниках. Первая модификация, на которую можно обратить внимание — это RSGTC, то есть катушка, которая работает на роторном искровом промежутке. В данном случае для питания используется электродвигатель, который вращает диск с электродами. Есть также VTTC, которая известна как ламповая катушка Тесла, работающая за счет электронных ламп. Этот вариант не требует высокого напряжения, а также отличается тишиной работы. Следующий вариант — это SSTC, то есть катушка Тесла, которая работает за счет генератора, основанного на полупроводниках. Эта модификация является одной из самых интересных в плане эффектности, так как с помощью силовых ключей вы можете изменять форму разряда. Модификацией этой версии катушки Тесла является DRSSTC. В данном случае используется двойной резонанс, что дает гораздо более внушительные размеры разряда. Отдельно стоит взглянуть на QCW DRSSTC — эта катушка Тесла характеризуется «плавной накачкой», то есть плавным, а не резким нарастанием всех параметров. В каждом из этих случаев расчет трансформатора Тесла будет отличаться, точно так же, как и его конструкций и, соответственно, его схема.

Использование катушки Тесла

Но как же может быть использована энергия трансформатора Тесла? Этот вопрос задает себе каждый человек, который впервые видит работу этого устройства. Собственно говоря, любование невероятными разрядами, которые имеют огромные размеры и выглядят очень впечатляюще, и является одним из самых главных и популярных способов использования. Этот трансформатор позволяет устроить настоящее шоу, которое способно очаровать любого человека, ведь это не магия, а чистейшая наука. Так что смело можно сказать, что одна из главных ролей трансформатора Тесла является декорация и развлечение. Однако оказывается, что существуют и другие способы использования этой технологии. Например, изначально катушки Тесла использовались для радиоуправления, беспроводной передачи данные и для передачи энергии. Естественно, со временем появлялись более эффективные способы выполнения каждой из этих функций, поэтому постепенно использование катушки Тесла становилось все менее и менее актуальным. Также стоит отметить, что ее использовали в медицине. Дело в том, что высокочастотный разряд, когда его пропускали по коже, не оказывал негативного влияния на внутренние органы человека, но при этом тонизировал кожу человека. В современном мире катушка Тесла уже фактически не используется с практической точки зрения из-за трудностей поддержания постоянной ее работы. Иногда она используется для поджига газоразрядных ламп или же в вакуумных системах, где трансформатор помогает найти течи. Таким образом, применение трансформатора Тесла в современном мире все же в большинстве случаев является декоративным, развлекательным и познавательным.

Эффекты

Вы уже представляете себе устройство трансформатора Тесла, потому на эту тему нет смысла говорить что-то еще. Однако это не значит, что сама по себе тема катушки Тесла исчерпала себя. Например, можно взглянуть на то, какие именно разряды создаются в результате ее деятельности. Оказывается, они не являются случайными: всего выделяют четыре основных вида. Во-первых, вы можете увидеть стримеры, которые представляют собой тусклые разветвленные каналы, которые уходят от терминала в воздух. По сути, они представляют собой визуализацию ионизации воздуха. Во-вторых, вы можете заметить спарки — это искровые разряды, которые уходят с терминала прямо в землю. Отличить их можно за счет того, что они очень сильно выделяются внешне — это пучок ярких искровых каналов. В-третьих, существует коронный разряд — так называется свечение ионов непосредственно в поле высокого напряжения. Ну и, наконец, имеется еще и дуговой разряд, который возникает, если к трансформатору поднести какой-либо заземленный предмет. Этот прием используют многие, когда катушка Тесла применяется для развлекательных мероприятий.

Влияние на здоровье

Выше было указано, что после изобретения катушки Тесла ее использовали в медицинских целях, однако многие источники сообщают, что трансформатор Тесла является смертельно опасным. Кто же прав, а кто обманывает? В большинстве случаев высокое напряжение является для человека смертельным, так как оно ведет к образованию ожогов, а также к остановке сердца. Однако некоторые типы трансформаторов Тесла обладают так называемым скин-эффектом, который позволяет электричеству воздействовать лишь на поверхность предмета, а в данном случае — на кожу человека. Как уже было сказано выше, это тонизирует кожу и омолаживает ее. Опять же, медицинских подтверждений этого факта нет, однако об этом очень много писали в свое время.

Катушка Тесла как часть культуры

Даже если вы не увлекаетесь наукой, все равно, вероятнее всего, уже видели катушку Тесла, так как она используется в самых разнообразных сферах развлечений. В первую очередь ее можно увидеть во многих фильмах, которые выходили на экраны кинотеатров в самые разные годы. Одним из самых известных фильмов, в которых очень важную роль отыграл трансформатор Тесла, стала экранизация одноименного романа «Престиж». Также очень часто катушку Тесла можно встретить в компьютерных играх, где она чаще всего выступает в роли мощного оружия. Более того, вы можете встретить трансформаторы Тесла даже в музыкальном искусстве. Оказывается, вы можете изменять звучание электрического разряда, увеличивая и уменьшая частоту тока. И некоторые исполнители и музыкальные группы используют это, чтобы записывать музыку. А тот, кто не хочет все усложнять, прибегает к помощи катушки Тесла, чтобы создать реалистичные звуки разрядов молний, как это сделала, например, известная певица Бьорк. Таким образом, в современном мире трансформаторы Тесла используются очень широко, однако нельзя сказать, что они применяются по назначению. Свое время в качестве функционального устройства катушка Тесла уже отжила, и она, по сути, должна была кануть в Лету, как и большинство старых устройств. Однако благодаря визуальным эффектам, которые она создает, катушка Тесла смогла дожить до сегодняшнего дня, и ее продолжают использовать постоянно, пусть и в качестве предмета развлечения. Стоит также отметить, что она используется и в обучающих целях, так как именно на ней можно наглядно продемонстрировать начинающим физикам, как выглядит электрический разряд, как он себя ведет и так далее. Проще говоря, трансформатор Тесла — это устройство, которое просуществовало сто лет и не потеряло своей актуальности даже в двадцать первом веке, который всем известен своим невероятным прогрессом в области высоких технологий.

Катушка тесла принцип работы: описание, характеристики

Автор Почемучка На чтение 23 мин. Просмотров 116

Огромная катушка Тесла

Если очень коротко, то катушка Тесла (КТ) – это резонансный трансформатор, создающий высокочастотный ток. Есть информация, что в своих экспериментах военные довели катушку до мощности в 1 Тгц.

Огромная катушка Тесла

Тут стоит затронуть такой вопрос – зачем Тесла ее изобрел? Согласно записям ученый работал над технологией беспроводной передачи электроэнергии. Вопрос крайне актуальный для всего человечества. В теории с помощью эфира две мощные КТ, размещенные в паре километров друг от друга, смогут передавать электричество. Для этого они должны быть настроены на одинаковую частоту. Также есть мнение, что КТ может стать своего рода вечным двигателем.

Внедрение данной технологии сделает все имеющиеся сегодня АЭС, ТЭС, ГЭС и прочие просто ненужными. Человечеству не придется сжигать твердые ископаемые, подвергаться риску радиационного заражения, перекрывать русла рек. Но ответ на вопрос, почему никто не развивает данную технологию, остается за конспирологами.

Настольная катушка Тесла, продающаяся сегодня в качестве сувенира

Для работы двух Катушек Тесла используется два миди канала — первый и второй. Каждая Катушка Тесла воспроизводит по одной ноте последовательно из своей миди дорожки.

Любой звук это механическая волна в воздухе, которая характеризуется амплитудой и частотой. Определенной музыкальной ноте, которую играет музыкальный инструмент, соответствует своя частота, амплитуда при этом определяет громкость ноты. Например, ноте ДО малой октавы соответствует частота 130,81Гц, а ноте ЛЯ первой октавы соответствует частота 440Гц.

Любой повторяющийся процесс с частотой 440Гц, который вызовет колебания воздуха, будет восприниматься ухом похожим на ноту ЛЯ. Музыкальная Катушка Тесла работает именно по этому принципу.

Для проигрывания практически любой мелодии достаточно двух Катушек Тесла, каждая из которых независимо воспроизводит свою ноту, создавая стереозвучание.

ВАЖНО! В один момент времени одна Катушка Тесла может воспроизводить только одну ноту, это следует помнить при написании музыки (при этом возможно проигрывать на одной Катушке Тесла несколько нот одновременно, но это искажает звук и усложняет проект, поэтому этот режим не используется).

Как проигрывается музыка?

Для работы двух Катушек Тесла используется два миди канала — первый и второй. Каждая Катушка Тесла воспроизводит по одной ноте последовательно из своей миди дорожки.

Ноты поступают в пульт управления Катушками Тесла по миди кабелю. При этом пульт можно подключить к миди-синтезатору и проигрывать музыку в реальном времени, или подключить к компьютеру и проигрывать заранее записанные миди треки.

Катушки Тесла имеют ограниченный диапазон проигрывания нот. Рекомендуется использовать ноты от С1 (ДО контроктавы) до h5 (CИ первой октавы). Ноты в других октавах проигрываться пультом не будут. Это связано с плохим восприятием на слух очень низких нот и очень большой нагрузкой по мощности при более высоких нотах.

Рекомендуется оставлять оригинальный музыкальный трек, который будет воспроизводиться параллельно через мощные колонки. Это позволяет заполнить паузы, добавить басы и повысить узнаваемость мелодии.

Пример создания композиции в программе Cubase

Для примера ниже показаны обработанная композиция Баха Токката и фуга ре минор и видео с исполнением этой композиции.

В медицине при длительном воздействии токов высокой частоты и напряжения могут образоваться хронические заболевания и другие отрицательные явления. Также нахождение человека в поле высокого напряжения негативно сказывается на его здоровье. Можно отравиться газами, выделяемыми при функционировании трансформатора без вентиляции.

Одним из знаменитых изобретений Николы Тесла была катушка Тесла. Это изобретение представляет собой резонансный трансформатор, который образует высокочастотное повышенное напряжение. В 1896 году на изобретение выдан патент, который имел название аппарата для образования электрического тока высокого потенциала и частоты.

Разновидности

Со времен Николы Тесла появилось много различных видов трансформаторов Тесла. Рассмотрим распространенные основные виды таких трансформаторов, как катушка Тесла.

VTTC – катушка на основе электронной лампы, которая является коммутирующим элементом. Подобные трансформаторы способны функционировать в постоянном режиме и выдавать разряды большой толщины. Такой тип питания обычно применяют для создания катушек высокой частоты. Они создают эффект стримера в виде факела.

SSTC – катушка, в конструкции которой в качестве ключа используется полупроводниковый элемент в виде мощного транзистора. Такой вид трансформаторов также способен функционировать в постоянном режиме. Внешняя форма стримеров от такого устройства бывает самой различной. Управление с полупроводниковым ключом более простое, существуют такие катушки Тесла, которые умеют играть музыку.

DRSSTC – трансформатор, имеющий два контура резонанса. Роль ключей играют также полупроводниковые компоненты. Это наиболее сложный в настройке и управлении трансформатор, однако, он используется для создания впечатляющих эффектов. При этом большой резонанс получается в первом контуре. Во втором контуре образуется наиболее яркие толстые и длинные стримеры в виде молний.

Устройство и работа

Элементарный трансформатор Тесла включает в себя две катушки, тороид, конденсатор, разрядник, защитное кольцо и заземление.

Тороид выполняет несколько функций:
  • Снижение частоты резонанса, особенно для вида катушки Тесла с полупроводниковыми ключами.Полупроводниковые элементы плохо функционируют на повышенных частотах.
  • Накапливание энергии перед возникновением электрической дуги. Чем больше размер тороида, тем больше энергии накоплено. В момент пробоя воздуха тороид выдает эту накопленную энергию в электрическую дугу, при этом увеличивая ее.
  • Образование электростатического поля, отталкивающего дугу от вторичной обмотки. Часть этой функции исполняет вторичная обмотка. Однако тороид помогает ей в этом. Поэтому электрическая дуга не бьет во вторичную обмотку по кратчайшему пути.

Обычно наружный диаметр тороида в два раза больше диаметра вторичной обмотки. Тороиды производят из алюминиевой гофры и других материалов.

Вторичная обмотка трансформатора Тесла является основным элементом конструкции. Обычно длина обмотки относится к ее диаметру 5 : 1. Диаметр проводника для катушки выбирают из расчета, чтобы разместилось около 1000 витков, которые должны располагаться плотно между собой. Витки обмотки покрывают несколькими слоями лака или эпоксидной смолы. В качестве каркаса выбирают ПВХ-трубы, которые можно купить в строительном магазине.

Защитное кольцо служит для предохранения от выхода из строя электронных элементов в случае попадания электрической дуги в первичную обмотку. Защитное кольцо устанавливается, если размер стримера (электрической дуги) больше длины вторичной катушки. Это кольцо выполнено в виде медного незамкнутого проводника, заземленного отдельным проводом на общее заземление.

Форма первичной обмотки может быть различной: конической, плоской или цилиндрической.

Катушка Тесла должна иметь заземление . Если его не будет, то стримеры будут бить в саму катушку, для замыкания тока.

Колебательный контур образован конденсатором совместно с первичной обмоткой. В этот контур также подключен разрядник, который является нелинейным элементом. Во вторичной обмотке также образован контур колебаний, в котором конденсатором выступает емкость тороида и межвитковая емкость катушки. Чаще всего для предохранения от электрического пробоя вторичную обмотку покрывают лаком или эпоксидной смолой.

В результате катушка Тесла, или другими словами трансформатор, состоит из двух контуров колебаний, связанных между собой. Это и придает трансформатору Тесла необычные свойства, и является основным отличительным качеством от обычных трансформаторов.

При достижении напряжения пробоя между электродами разрядника, образуется электрический лавинообразный пробой газа. При этом происходит разряд конденсатора на катушку через разрядник. Вследствие этого цепь контура колебаний, который состоит из конденсатора и первичной обмотки, остается замкнутой на разрядник. В этой цепи возникают колебания высокой частоты. Во вторичной цепи образуются резонансные колебания, в результате чего возникает высокое напряжение.

Во всех видах катушки Тесла главным элементом являются контуры: первичный и вторичный. Однако генератор колебаний высокой частоты может отличаться по конструкции.

Катушка Тесла по сути дела состоит из двух катушек, не имеющих металлического сердечника. Коэффициент трансформации катушки Тесла в несколько десятков раз выше отношения числа витков обеих обмоток. Поэтому выходное напряжение трансформатора достигает нескольких миллионов вольт, что и обеспечивает мощные электрические разряды длиной в несколько метров. Важным условием является образование контура колебаний первичной обмоткой и конденсатором, вхождение в резонанс этого контура с вторичной обмоткой.

Виды эффектов от катушки Тесла

Действие катушки Тесла сопровождается треском электрического тока. Стримеры могут превращаться в искровые каналы. Это сопровождается большим увеличением тока и энергии. Канал стримера быстро расширяется, давление резко повышается, поэтому образуется ударная волна. Совокупность таких волн подобен треску искр.

Малоизвестные эффекты катушки Тесла

Некоторые люди считают трансформатор Тесла каким-то особенным устройством, обладающим исключительными свойствами. Также есть мнение, что такое устройство способно стать генератором энергии и вечным двигателем.

Иногда говорят, что при помощи такого трансформатора можно передавать электрическую энергию на значительные расстояния, не используя провода, а также создать антигравитацию. Такие свойства не подтверждены и не проверены наукой, но Тесла говорил о скорой доступности таких способностей для человека.

В медицине при длительном воздействии токов высокой частоты и напряжения могут образоваться хронические заболевания и другие отрицательные явления. Также нахождение человека в поле высокого напряжения негативно сказывается на его здоровье. Можно отравиться газами, выделяемыми при функционировании трансформатора без вентиляции.

Применение
  • Величина напряжения на выходе катушки Тесла иногда достигает миллионов вольт, что формирует значительные воздушные электрические разряды длиной в несколько метров. Поэтому такие эффекты применяют в качестве создания показательных шоу.
  • Катушка Тесла нашла применение в медицине в начале прошлого века. Больных обрабатывали маломощными токами высокой частоты. Такие токи протекают по поверхности кожи, оказывают оздоравливающее и тонизирующее влияние, не причиняя при этом никакого вреда организму человека. Однако мощные токи высокой частоты оказывают негативное влияние.
  • Катушка Тесла применяется в военной технике для оперативного уничтожения электронной техники в здании, на корабле, танке. При этом на короткий промежуток времени создается мощный импульс электромагнитных волн. В результате в радиусе нескольких десятков метров сгорают транзисторы, микросхемы и другие электронные компоненты. Это устройство действует абсолютно бесшумно. Существуют такие данные, что частота тока при функционировании такого устройства может достигать 1 ТГц.
  • Иногда такой трансформатор применяется для розжига газоразрядных ламп, а также поиска течи в вакууме.

Эффекты катушки Тесла иногда используют в съемках фильмов, компьютерных играх. В настоящее время катушка Тесла не нашла широкого применения на практике в быту.

Катушка Тесла на будущее

В настоящее время остаются актуальными вопросы, которыми занимался ученый Тесла. Рассмотрение этих проблемных вопросов дает возможность студентам и инженерам институтов взглянуть на проблемы науки более широко, структурировать и обобщать материал, отказаться от шаблонных мыслей.

Взгляды Тесла актуальны сегодня не только в технике и науке, но и для работ в новых изобретениях, применения новых технологий на производстве. Наше будущее даст объяснение явлениям и эффектам, открытым Теслой. Он заложил для третьего тысячелетия основы новейшей цивилизации.

Вот самые распространенные типы катушек Тесла в зависимости от способа управления ими:

Сегодня трансформатором Тесла называют высокочастотный высоковольтный резонансный трансформатор, и в сети можно найти множество примеров ярких реализаций этого необычного устройства. Катушка без ферромагнитного сердечника, состоящая из множества витков тонкого провода, увенчанная тором, испускает настоящие молнии, впечатляя изумленных зрителей. Но все ли помнят, как и для чего создавался изначально этот удивительный прибор?

История данного изобретения начинается с конца 19 века, когда гениальный ученый-экспериментатор Никола Тесла, работая в США, только поставил перед собой задачу научиться передавать электрическую энергию на большие расстояния без проводов.

Указать конкретный год, когда именно пришла к ученому эта идея, вряд ли можно точно, однако известно, что 20 мая 1891 года Никола Тесла выступил с подробной лекцией в Колумбийском университете, где представил сотрудникам Американского института электроинженеров свои идеи, и кое-что проиллюстрировал, показав наглядные эксперименты.

Целью первых демонстраций было — показать новый способ получения света посредством использования для этого токов высокой частоты и высокого напряжения, а также раскрыть особенности этих токов. Справедливости ради отметим, что современные энергосберегающие люминесцентные лампы работают именно на принципе, который как раз и предложил для получения света Тесла.

Окончательная теория относительно именно беспроводной передачи электрической энергии вырисовывалась постепенно, ученый потратил несколько лет жизни, доводя до ума свою технологию, много экспериментируя и совершенствуя кропотливо каждый элемент схемы, он разрабатывал прерыватели, изобретал стойкие высоковольтные конденсаторы, придумывал и модифицировал контроллеры цепей, но так и не смог воплотить свой замысел в жизнь в том масштабе, в каком хотел.

Однако теория до нас дошла. Доступны дневники, статьи, патенты и лекции Николы Тесла, в которых можно найти исходные подробности относительно данной технологии. Принцип действия резонансного трансформатора можно узнать, прочитав например патенты Николы Тесла №787412 или №649621, уже доступные сегодня в сети.

Если попробовать кратко разобраться в том, как же работает трансформатор Тесла, рассмотреть его устройство и принцип действия, то в этом нет ничего сложного.

Вторичная обмотка трансформатора изготавливается из провода в изоляции (например из эмальпровода), который укладывается виток к витку в один слой на полый цилиндрический каркас, отношение высоты каркаса к его диаметру обычно берут равным от 6 к 1 до 4 к 1.

После намотки вторичную обмотку покрывают эпоксидной смолой или лаком. Первичная обмотка изготавливается из провода относительно большого сечения, она содержит обычно от 2 до 10 витков, и укладывается в форму плоской спирали, либо наматывается подобно вторичной — на цилиндрический каркас диаметром несколько большим, чем у вторичной.

Высота первичной обмотки, как правило, не превышает 1/5 высоты вторичной. К верхнему выводу вторичной обмотки подключают тороид, а нижний ее вывод заземляют. Далее рассмотрим все более подробно.

Например: вторичная обмотка навита на каркас диаметром 110 мм, эмальпроводом ПЭТВ-2 диаметром 0,5 мм, и содержит 1200 витков, таким образом высота ее получается равной примерно 62 см, а длина провода составляет около 417 метров. Пусть первичная обмотка содержит 5 витков толстой медной трубки, навитых на диаметр 23 см, и имеет высоту 12 см.

Далее изготавливают тороид. Его емкость в идеале должна быть такой, чтобы резонансной частоте вторичного контура (заземленная вторичная катушка вместе с тороидом и окружающей средой) соответствовала бы длина провода вторичной обмотки так, что эта длина равнялась бы четверти длины волны (для нашего примера частота получается равной 180 кГц).

Для точного расчета полезной может стать специальная программа для рассчета катушек Тесла, например VcTesla или inca. К первичной обмотке подбирается высоковольтный конденсатор, емкость которого вместе с индуктивностью первичной обмотки образовывала бы колебательный контур, собственная частота которого была бы равна резонансной частоте вторичного контура. Обычно берут близкий по емкости конденсатор, а настройку осуществляют подбором витков первичной обмотки.

Суть работы трансформатора Тесла в каноническом виде заключается в следующем: конденсатор первичного контура заряжается от подходящего источника высокого напряжения, затем он соединяется коммутатором с первичной обмоткой, и так повторяется много раз в секунду.

В результате каждого цикла коммутации возникают затухающие колебания в первичном контуре. Но первичная катушка является для вторичного контура индуктором, поэтому электромагнитные колебания возбуждаются соответственно и во вторичном контуре.

Поскольку вторичный контур настроен в резонанс с первичными колебаниями, то на вторичной обмотке возникает резонанс напряжений, а значит коэффициент трансформации (соотношение витков первичной обмотки и охваченных ею витков вторичной обмотки) нужно умножить еще и на Q – добротность вторичного контура, тогда получится значение реального соотношения напряжения на вторичной обмотке к напряжению на первичной.

А так как длина провода вторичной обмотки равна четверти длины волны индуцируемых в ней колебаний, то именно на тороиде будет находиться пучность напряжения (а в точке заземления — пучность тока), и именно там может иметь место максимально эффектный пробой.

Для питания первичной цепи используют разные схемы, от статичного искрового промежутка (разрядника) с питанием от МОТов (МОТ — высоковольтный трансформатор от микроволновой печи) до резонансных транзисторных схем на программируемых контроллерах с питанием выпрямленным сетевым напряжением, однако суть от этого не меняется.

Вот самые распространенные типы катушек Тесла в зависимости от способа управления ими:

VTTC (ВТТЦ, Vacuum Tube Tesla Coil) – трансформатор Тесла на электронной лампе. В качестве коммутирующего элемента здесь используется мощная радиолампа, например ГУ-81. Такие трансформаторы могут работать в непрерывном режиме и производить довольно толстые разряды. Данный тип питания чаще всего используют для построения высокочастотных катушек, которые из-за типичного вида своих стримеров получили название “факельники”.

SSTC (ССТЦ, Solid State Tesla Coil) – трансформатор Тесла, в котором в качестве ключевого элемента применяются полупроводники. Обычно это IGBT или MOSFET транзисторы. Данный тип трансформаторов может работать в непрерывном режиме. Внешний вид стримеров, создаваемых такой катушкой может быть самым разным. Этим типом трансформаторов Тесла проще управлять, например можно играть на них музыку.

DRSSTC (ДРССТЦ, Dual Resonant Solid State Tesla Coil) – трансформатор Тесла с двумя резонансными контурами, здесь в качестве ключей используются, как и в SSTC, полупроводники. ДРССТЦ – наиболее сложный в управлении и настройке тип трансформаторов Тесла.

Для получения более эффективной и эффектной работы трансформатора Тесла применяют именно схемы топологии DRSSTC, когда мощный резонанс достигается и в самом первичном контуре, а во вторичном соответственно — более яркая картина, более длинные и толстые молнии (стримеры).

Сам Тесла как мог пытался добиться именно такого режима работы своего трансформатора, и зачатки этой идеи можно увидеть в патенте № 568176, где применяются зарядные дроссели, Тесла потом развивал схему именно по этому пути, то есть стремился максимально эффективно использовать первичную цепь, создавая в ней резонанс. Об этих экспериментах ученого можно прочитать в его дневнике (в печатном виде уже изданы записи ученого об экспериментах в Колорадо-Спрингс, которые он проводил с 1899 по 1900 год).

Говоря о практическом применении трансформатора Тесла не стоит ограничиваться лишь восхищением эстетическим характером получаемых разрядов, и относиться к устройству как к декоративному. Напряжение на вторичной обмотке трансформатора может достигать миллионов вольт, это в конце концов — эффективный источник сверхвысокого напряжения.

Сам Тесла разрабатывал свою систему для передачи электроэнергии на большие расстояния без проводов, используя проводимость верхних воздушных слоев атмосферы. Предполагалось наличие и приемного трансформатора аналогичной конструкции, который бы понижал принятое высокое напряжение до приемлемого для потребителя значения, об этом можно узнать, прочитав патент Тесла №649621.

Особого внимания заслуживает характер взаимодействия трансформатора Тесла с окружающей средой. Вторичный контур является открытым контуром, и система термодинамически отнюдь не является изолированной, она даже не закрытая, это — открытая система. Современные исследования в этом направлении ведутся многими исследователями, и точка на этом пути еще не поставлена.

Основной принцип, открытый великим изобретателем, ныне применяется для изготовления люминесцентных осветителей.

Применение

Помимо декоративного применения представленного устройства существует и практическая польза от его эксплуатации. Коронный разряд заряжает воздух озоном. Это освежает атмосферу в помещении. При этом не стоит допускать длительное воздействие прибора. Большое содержание озона приводит к плохому самочувствию.

Также применение представленного устройства позволяет реанимировать работу вышедшей из строя люминесцентной лампы. Если приблизить прибор к осветительному прибору, последний снова будет функционировать. Однако не стоит подносить близко к излучателю мобильные устройства. Это может вывести гаджет из строя.

Это уникальное, до конца не изведанное изобретение. Его применение должно выполняться с осторожностью. Простота конструкции позволяет собрать прибор самостоятельно.

Цель
Изготовить катушку Тесла, которую можно использовать как наглядное пособие на уроках физики для демонстрации электромагнитных явлений.

Работа победителя Городской открытой научно-практической конференции «Инженеры будущего» в секции «Прикладная физика, энергетика, биофизика, бионика» среди учащихся 7–9 классов

Цель
Изготовить катушку Тесла, которую можно использовать как наглядное пособие на уроках физики для демонстрации электромагнитных явлений.

Задачи:
1. Исследовать материал по данной теме.
2. Познакомиться с принципом работы катушки Тесла.
3. Создать действующую модель катушки Тесла
4. Провести опыты, демонстрирующие работу катушки Тесла.

Оснащение и оборудование, использованное при создании работы
1. Изолированный эмалированный медный
провод диаметра 1,2 мм
2. Изолированный медный эмалированный
провод диаметром 0,2 мм
3. Резистор 15 Ом
4. Переменный резистор B50K
5. Транзистор 13007A
6. Радиатор
7. 10 батареек типа «Крона»
8. Клеевой пистолет
9. Паяльник
10. Люминесцентная лампа
11. Газоразрядные трубки

Работа была представлена:
— Конкурс исследовательских работ и творческих проектов обучающихся колледжей и старших школьников «Искусство познания» – 1 место.
— Московский городской конкурс научно-исследовательских и проектных работ обучающихся – призер финала.
— Научно-практическая конференции «Инженеры будущего» – победитель.
— 21-я Региональная научно-практическая конференция школьников «Творчество юных» – 3 место.

Перспективы развития результатов работы
Собранную модель можно использовать как наглядное пособие на уроках физики для демонстрации электромагнитных явлений. С помощью данного устройства можно проводить эффектные эксперименты, которые вызовут интерес обучающихся, повысят их познавательную активность, позволят обучение сделать наглядным, понятным, интересным.

Особое мнение

«Участие в конференции «Инженеры будущего» стало очень значимым для меня, я получил опыт выступления, опыт стендовой защиты, опыт участия в мероприятии такого высокого уровня», – говорит автор работы.

Задачи:

Смотреть похожие работы

Исследовательская работа «Паровые двигатели и загрязнение окружающей среды»

Исследовательская работа «Математическое моделирование экологических проблем»

Исследовательская работа «Применение ветрогенераторов для зарядки тяговых аккумуляторных батарей»

Исследовательская работа «Создание калькулятора пропорций ингредиентов блюд в программе Microsoft Excel»

Сведения об издании
  • Наименование издания: «Наука и образование ON-LINE»
    Сетевое издание (сайт) зарегистрировано Роскомнадзором, свидетельство ЭЛ № ФС 77 — 70153 от 30.06.2017 (предыдущее Эл№ФC77-49690 от 26 апреля 2012). Возрастная категория сайта 6+
    Корман М.О. — Ответственный редактор
    Учредитель: ООО «МЦНИП»
    Гл.редактор: Скопин О.В.
Лицензия на образовательную деятельность

Лицензия на осуществление образовательной деятельности №1686 от 01.11.2019.

Вот такая схема работы катушки Тесла.

Если рассматривать катушку Тесло с исторической точки зрения, становится не ясно, почему ученый не развил идею до конца. Ведь это готовый способ передачи энергии на расстоянии без проводов, что существенно уменьшает потери на монтаж сетей, расходники, столбы и изоляцию.

При этом можно было бы забыть о перерывах с электроснабжением, энергию легко и просто получилось бы доставить в любую точку планеты. Как показывает историческая реальность, ученого интересовало совсем другое применение собственного изобретения. Ученый пытался доказать существование эфира, некой субстанции, которая пронизывает все мироздание.

Согласно теории Тесло эта среда упруга, что делает возможным распространение электромагнитных волн. Одной из утопичных идей ученого была выработка энергии из эфира напрямую. Тесла предлагал установить две катушки на полюсах, что в теории должно было создать огромное магнитное поле по всей Земле.

Так электричество могло бы попасть в любую точку планеты. Катушку ученый придумать успел, а вот создавать приемники для них не стал, занимаясь разработкой получения энергии из эфира.

Разрядник является коммутирующим элементом в первичном колебательном контуре. При электрическом пробое разрядника под действием высокого напряжения, в нем образуется дуга, которая замыкает цепь первичного контура, и в нем возникают высокочастотные затухающие колебания, в течение которых напряжение на конденсаторе С1 постепенно уменьшается. После того как дуга гаснет, контурный конденсатор С1 вновь начинает заряжаться от источника питания, при следующем пробое разрядника начинается новый цикл колебаний.


Катушка Тесла представляет собой высокочастотный резонансный трансформатор без ферромагнитного сердечника, с помощью которого можно получить высокое напряжение на вторичной обмотке. Под действием высокого напряжения в воздухе происходит электрический пробой, подобно разряду молнии. Устройство изобретено Николой Теслой, и носит его имя.

На верхний конец трубы вторичной обмотки устанавливают полый проводящий тор, обычно выполненный из алюминиевой гофрированной трубы для отвода горячих газов. В основном диаметр трубы подбирают равным диаметру вторичной обмотки. Диаметр тора обычно составляет 0,5-0,9 от длины вторичной обмотки. Тор имеет электрическую емкость, которая определяется его геометрическими размерами, и выступает в роли конденсатора.

Разрядник является коммутирующим элементом в первичном колебательном контуре. При электрическом пробое разрядника под действием высокого напряжения, в нем образуется дуга, которая замыкает цепь первичного контура, и в нем возникают высокочастотные затухающие колебания, в течение которых напряжение на конденсаторе С1 постепенно уменьшается. После того как дуга гаснет, контурный конденсатор С1 вновь начинает заряжаться от источника питания, при следующем пробое разрядника начинается новый цикл колебаний.

В качестве источника питания для зарядки конденсаторов используется высоковольтный трансформатор Т1, или несколько последовательно или параллельно соединенных трансформаторов. В основном начинающие тесластроители используют трансформатор из микроволновой печи (MOT – Microwave Oven Transformer), выходное переменное напряжение которого составляет

Ниже на картинке представлены формулы для расчета параметров катушки Тесла:

Предлагаю ознакомиться с моим опытом постройки катушки Тесла своими руками.

Для изготовления плоской катушки предварительно готовят основание, на которое последовательно укладывают два медных провода сечением 1,5 мм параллельно плоскости основания. Сверху укладку лакируют, продлевая срок службы. Внешне этот прибор представляет собой ёмкость из двух вложенных друг в друга спиральных обкладок, подключаемых к источнику питания.

Изготовление катушки Тесла своими руками в домашних условиях

Проектирование и создание устройства не представляет сложности для людей, знакомых с принципами электротехники и электричества. Однако даже новичку под силу будет справиться с этой задачей, если провести грамотные расчёты и скрупулёзно следовать пошаговой инструкции. В любом случае до начала работ следует обязательно ознакомиться с правилами техники безопасности для работ с высоким напряжением.

Схема

Катушка тесла представляет собой две катушки без сердечника, посылающих большой импульс тока. Первичная обмотка состоит из 10 витков, вторичная — из 1000. Включение в схему конденсатора позволяет снизить до минимума потери искрового заряда. Выходная разность потенциалов превышает миллионы вольт, что позволяет получать эффектные и зрелищные электрические разряды.

Инструменты и материалы

Для сбора и последующего функционирования катушки Тесла понадобится подготовить следующие материалы и оборудование:

  • трансформатор с выходным напряжением от 4 кВ 35 мА;
  • болты и металлический шарик для разрядника;
  • конденсатор с рассчитанными параметрами ёмкости не ниже 0,33 µF 275 В;
  • ПВХ труба диаметром 75 мм;
  • эмалированная медная проволока сечением 0,3–0,6 мм — пластиковая изоляция предотвращает пробой;
  • полый металлический шар;
  • толстый кабель или трубка из меди сечением 6 мм.

Пошаговая инструкция по изготовлению катушки

Алгоритм изготовления катушки состоит из следующих этапов:

Тщательно следуйте руководству, и проблем не возникнет:

Принцип работы

Катушки, которые вы создали, имеют колебательный контур. Если к первой катушке подвести напряжение, то она создаст собственное магнитное поле. С его помощью передается энергия от одной катушки к другой.

Вторичная катушка создает вместе с емкостью такой же контур, который способен накапливать энергию, которую передала первичная. Все работает по простой схеме – чем больше энергии способна передать первая катушка, а вторая – накопить, то тем больше будет напряжение. И результат будет более зрелищный.

Как говорилось выше, чтобы прибор начал работать, его необходимо подключить к питающему трансформатору. Для того, чтобы направить разряды, которые выдает генератор Тесла, нужно рядом разместить металлический предмет. Но делать это так, чтобы они не соприкасались. Если рядом положить лампочку, то она будет светиться. Но только в том случае, если напряжения будет достаточно.

Чтобы сделать самостоятельно изобретение Тесла, нужно делать математические расчеты, поэтому нужно иметь опыт. Или же найти инженера, который поможет правильно вывести формулы.

Источники

Источник — http://rusenergetics.ru/ustroistvo/katushka-tesla
Источник — http://tesla-sochi.ru/fizicheskiy-printsip-rabotyi-muzyikalnyih-katushek-tesla/
Источник — http://electrosam.ru/glavnaja/jelektrotehnika/katushka-tesla/
Источник — http://electrik.info/main/fakty/1092-chto-takoe-transformator-tesla.html
Источник — http://protransformatory.ru/vidy/tesla
Источник — http://profil.mos.ru/inj/proekty/katushka-tesla.html
Источник — http://eee-science.ru/item-work/2019-1602/
Источник — http://principraboty.ru/princip-raboty-katushki-tesla-kak-rabotaet-katushka-induktivnosti/
Источник — http://radiolaba.ru/vyisokoe-napryazhenie/katushka-tesla-kratkaya-teoriya.html
Источник — http://elektro.guru/osnovy-elektrotehniki/katushka-tesla-svoimi-rukami.html
Источник — http://slarkenergy.ru/oborudovanie/transformator/tesla-svoimi-rukami.html

Принцип работы катушек Теслы

Принцип работы катушек Теслы

Трансформа́тор Те́слы, также катушка Теслы (англ. Tesla coil) — устройство, изобретённое Николой Тесла и носящее его имя. Является резонансным трансформатором, производящим высокоенапряжение высокой частоты. Прибор был запатентован 22 сентября 1896 года как «Аппарат для производства электрических токов высокой частоты и потенциала»

Работу резонансного трансформатора можно объяснить на примере обыкновенных качелей. Если их раскачивать в режиме принудительных колебаний, то максимально достигаемая амплитуда будет пропорциональна прилагаемому усилию. Если раскачивать в режиме свободных колебаний, то при тех же усилиях максимальная амплитуда вырастает многократно. Так и с трансформатором Теслы — в роли качелей выступает вторичный колебательный контур, а в роли прилагаемого усилия — генератор. Их согласованность («подталкивание» строго в нужные моменты времени) обеспечивает первичный контур или задающий генератор (в зависимости от устройства). Простейший трансформатор Тесла состоит из двух катушек — первичной и вторичной, а также разрядника (прерывателя, часто встречается английский вариант Spark Gap), конденсатора, тороида (используется не всегда) и терминала (на схеме показан как «выход»). Первичная катушка обычно содержит несколько витков провода большого диаметра или медной трубки, а вторичная около 1000 витков провода меньшего диаметра. Первичная катушка может быть плоско (горизонтальной), конической или цилиндрической (вертикальной). В отличие от обычных трансформаторов, здесь нет ферромагнитного сердечника. Таким образом взаимоиндукция между двумя катушками гораздо меньше, чем у трансформаторов с ферромагнитным сердечником. Первичная катушка вместе с конденсатором образует колебательный контур, в который включён нелинейный элемент — разрядник. Разрядник, в простейшем случае обыкновенный газовый, представляет собой два массивных электрода с регулируемым зазором. Электроды должны быть устойчивы к протеканию больших токов через электрическую дугу между ними и иметь хорошее охлаждение. Вторичная катушка также образует колебательный контур, где роль конденсатора главным образом выполняют ёмкость тороида и собственная межвитковая ёмкость самой катушки. Вторичную обмотку часто покрывают слоем эпоксидной смолы или лака для предотвращения электрического пробоя.
Терминал может быть выполнен в виде диска, заточенного штыря или сферы и предназначен для получения предсказуемых искровых разрядов большой длины. Таким образом, трансформатор Тесла представляет собой два связанных колебательных контура, что и определяет его замечательные свойства и является главным его отличием от обычных трансформаторов. Для полноценной работы трансформатора эти два колебательных контура должны быть настроены на одну резонансную частоту. Обычно в процессе настройки подстраивают первичный контур под частоту вторичного путём изменения ёмкости конденсатора и числа витков первичной обмотки до получения максимального напряжения на выходе трансформатора.
                          Трансформатор Тесла рассматриваемой простейшей конструкции, показанной на схеме, работает в импульсном режиме. Первая фаза — это заряд конденсатора до напряжения пробоя разрядника. Вторая фаза — генерация высокочастотных колебаний в первичном контуре. Разрядник включенный параллельно, замыкая источник питания (трансформатор), исключает его из контура, иначе источник питания вносит определенные потери в первичный контур и этим снижает его добротность. На практике это влияние может в разы уменьшить длину разряда, поэтому в грамотно построенной схеме трансформатора Тесла разрядник всегда ставится параллельно источнику питания.
                           Заряд конденсатора производится внешним источником высокого напряжения на базе повышающего низкочастотного трансформатора. Емкость конденсатора выбирается таким образом, чтобы вместе с индуктором она составляла резонансный контур с частотой резонанса, равной высоковольтному контуру. Однако емкость будет отличаться от расчетной, так как часть энергии тратится на «накачку» второго контура. Напряжение заряда ограничено напряжением пробоя разрядника, которое (в случае воздушного разрядника) можно регулировать, изменяя расстояние между электродами или их форму. Обычно напряжение заряда конденсатора лежит в диапазоне 2-20 киловольт. Знак напряжения при заряде конденсатора имеет значение в том смысле, что он не должен сильно «закорачивать» конденсатор, на котором напряжение постоянно меняет знак — Колебательный контур
                           После достижения между электродами разрядника напряжения пробоя, в нём возникает лавинообразный электрический пробой газа.Конденсатор разряжается через разрядник на катушку. После разряда конденсатора, напряжение пробоя разрядника резко уменьшается из-за оставшихся в газе носителей заряда (ионов). Поэтому цепь колебательного контура, состоящего из первичной катушки и конденсатора, остаётся замкнутой через разрядник, и в ней возникают высокочастотные колебания. Колебания постепенно затухают, в основном из-за потерь в разряднике и ухода электромагнитной энергии на вторичную катушку, но продолжаются до тех пор, пока ток создаёт достаточное количество носителей заряда для поддержания напряжения пробоя разрядника существенно меньшего, чем амплитуда напряжения колебаний в LC контуре. Во вторичной цепи возникают резонансные колебания, что приводит к появлению на терминале высокого напряжения.
                                                                                                                                                     (По материалам Википедии)

TESLACOIL27.RU

Принцип работы катушек Теслы

Трансформа́тор Те́слы, также катушка Теслы (англ. Tesla coil) — устройство, изобретённое Николой Тесла и носящее его имя. Является резонансным трансформатором, производящим высокоенапряжение высокой частоты. Прибор был запатентован 22 сентября 1896 года как «Аппарат для производства электрических токов высокой частоты и потенциала»

Работу резонансного трансформатора можно объяснить на примере обыкновенных качелей. Если их раскачивать в режиме принудительных колебаний, то максимально достигаемая амплитуда будет пропорциональна прилагаемому усилию. Если раскачивать в режиме свободных колебаний, то при тех же усилиях максимальная амплитуда вырастает многократно. Так и с трансформатором Теслы — в роли качелей выступает вторичный колебательный контур, а в роли прилагаемого усилия — генератор. Их согласованность («подталкивание» строго в нужные моменты времени) обеспечивает первичный контур или задающий генератор (в зависимости от устройства). Простейший трансформатор Тесла состоит из двух катушек — первичной и вторичной, а также разрядника (прерывателя, часто встречается английский вариант Spark Gap), конденсатора, тороида (используется не всегда) и терминала (на схеме показан как «выход»). Первичная катушка обычно содержит несколько витков провода большого диаметра или медной трубки, а вторичная около 1000 витков провода меньшего диаметра. Первичная катушка может быть плоско (горизонтальной), конической или цилиндрической (вертикальной). В отличие от обычных трансформаторов, здесь нет ферромагнитного сердечника. Таким образом взаимоиндукция между двумя катушками гораздо меньше, чем у трансформаторов с ферромагнитным сердечником. Первичная катушка вместе с конденсатором образует колебательный контур, в который включён нелинейный элемент — разрядник. Разрядник, в простейшем случае обыкновенный газовый, представляет собой два массивных электрода с регулируемым зазором. Электроды должны быть устойчивы к протеканию больших токов через электрическую дугу между ними и иметь хорошее охлаждение. Вторичная катушка также образует колебательный контур, где роль конденсатора главным образом выполняют ёмкость тороида и собственная межвитковая ёмкость самой катушки. Вторичную обмотку часто покрывают слоем эпоксидной смолы или лака для предотвращения электрического пробоя.
Терминал может быть выполнен в виде диска, заточенного штыря или сферы и предназначен для получения предсказуемых искровых разрядов большой длины. Таким образом, трансформатор Тесла представляет собой два связанных колебательных контура, что и определяет его замечательные свойства и является главным его отличием от обычных трансформаторов. Для полноценной работы трансформатора эти два колебательных контура должны быть настроены на одну резонансную частоту. Обычно в процессе настройки подстраивают первичный контур под частоту вторичного путём изменения ёмкости конденсатора и числа витков первичной обмотки до получения максимального напряжения на выходе трансформатора. Трансформатор Тесла рассматриваемой простейшей конструкции, показанной на схеме, работает в импульсном режиме. Первая фаза — это заряд конденсатора до напряжения пробоя разрядника. Вторая фаза — генерация высокочастотных колебаний в первичном контуре. Разрядник включенный параллельно, замыкая источник питания (трансформатор), исключает его из контура, иначе источник питания вносит определенные потери в первичный контур и этим снижает его добротность. На практике это влияние может в разы уменьшить длину разряда, поэтому в грамотно построенной схеме трансформатора Тесла разрядник всегда ставится параллельно источнику питания. Заряд конденсатора производится внешним источником высокого напряжения на базе повышающего низкочастотного трансформатора. Емкость конденсатора выбирается таким образом, чтобы вместе с индуктором она составляла резонансный контур с частотой резонанса, равной высоковольтному контуру. Однако емкость будет отличаться от расчетной, так как часть энергии тратится на «накачку» второго контура. Напряжение заряда ограничено напряжением пробоя разрядника, которое (в случае воздушного разрядника) можно регулировать, изменяя расстояние между электродами или их форму. Обычно напряжение заряда конденсатора лежит в диапазоне 2-20 киловольт. Знак напряжения при заряде конденсатора имеет значение в том смысле, что он не должен сильно «закорачивать» конденсатор, на котором напряжение постоянно меняет знак — Колебательный контур. После достижения между электродами разрядника напряжения пробоя, в нём возникает лавинообразный электрический пробой газа.Конденсатор разряжается через разрядник на катушку. После разряда конденсатора, напряжение пробоя разрядника резко уменьшается из-за оставшихся в газе носителей заряда (ионов). Поэтому цепь колебательного контура, состоящего из первичной катушки и конденсатора, остаётся замкнутой через разрядник, и в ней возникают высокочастотные колебания. Колебания постепенно затухают, в основном из-за потерь в разряднике и ухода электромагнитной энергии на вторичную катушку, но продолжаются до тех пор, пока ток создаёт достаточное количество носителей заряда для поддержания напряжения пробоя разрядника существенно меньшего, чем амплитуда напряжения колебаний в LC контуре. Во вторичной цепи возникают резонансные колебания, что приводит к появлению на терминале высокого напряжения.

(По материалам Википедии)


Катушка Тесла своими руками — как сделать в домашних условиях?

Для того, чтобы самостоятельно создать генератор Тесла, необходимо иметь такие детали:

  • трансформатор;
  • конденсатор;
  • разрядник;
  • первичная катушка, которая должна иметь низкую индуктивность;
  • вторичная катушка, должна иметь высокую индуктивность;
  • конденсатор вторичный, должен иметь небольшую емкость;
  • проволока разных диаметров;
  • несколько трубок из пластика или картона;
  • обычная шариковая ручка;
  • паяльник;
  • фольга;
  • металлическое кольцо;
  • штырь, чтобы заземлить прибор;
  • металлический штырь, чтобы ловить заряд;

Пошаговая инструкция по сборке

Для того, чтобы изобретение работало исправно и не представляло угрозы, нужно тщательно додерживаться всех инструкций и быть очень осторожным.

Тщательно следуйте руководству, и проблем не возникнет:

  1. Выбрать подходящий трансформатор. Он определяет размер катушки, которую вы сможете сделать. Вам нужен такой, чтобы мог выдавать как минимум 5-15 Вт, и ток 30-100 миллиампер.
  2. Первый конденсатор. Его можно создать с помощью более мелких конденсаторов, скреплённых наподобие цепи. Они будут равномерно накапливать энергию в вашем первичном контуре. Но для этого они должны быть одинаковыми. Конденсатор можно снять с нерабочего телевизора, купить в магазине или сделать самостоятельно с помощью обычной пленки и фольги из алюминия. Чтобы ваш конденсатор был максимально мощным, он должен заряжаться постоянно. Заряд должен подаваться каждую секунду по 120 раз.
  3. Разрядник. Для одиночного разрядника можно взять провод, толщина которого больше 6 миллиметров. Это нужно, чтобы электроды смогли выдержать тепло, которое будет выделяться. Электроды можно охлаждать с помощью потока холодного воздуха, использовав фен, пылесос, кондиционер.
  4. Обмотка первой катушки. Вам нужна специальная форма, вокруг которой нужно намотать медную проволоку. Ее можно взять из старого ненужного электрического прибора или купить новую в магазине. Форма, на которую будет наматываться проволока должна быть либо в форме цилиндра или конуса. От длины проволоки напрямую зависит индуктивность катушки. А первичная, как уже написано выше, должна быть с низкой индукцией. Витков должно быть немного, и проволока может быть и не цельной, иногда используют куски, скрепляя их.
  5. Уже можно собрать созданные приборы в одно целое, присоединив их один к другому, как звенья в цепи. Если все сделано правильно, то они должны создать первичный колебательный контур, который будут передавать электроды.
  6. Вторичная катушка. Создается также, как и первая, на форму наматывается проволока, витков должно быть больше. Ведь вторая катушка нужна намного больше и выше, чем первая. Она не должна создавать вторичный контур, наличие которого может привести к сгоранию первичной катушки. Не забывайте о том, что эти катушки должны быть одинаковой частоты, чтобы исправно работать и не сгореть во время включения прибора.
  7. Другой конденсатор. Его форма может быть как круглой, так и сферической. Делается также, как и для первичной катушки.
  8. Соединение. Для создания вторичного контура нужно соединить оставшиеся катушку и конденсатор в одно целое. Но, необходимо заземлить контур, чтобы не нанести вред приборам, которые подключены в сеть. Заземлять нужно как можно дальше от проводки, которая размещена по всему дому. Заземлить очень просто – нужно воткнуть штырь в землю.
  9. Дроссель. Необходимо сделать дроссель, чтобы не поломать разрядником всю электросеть. Создать просто – плотно намотать проволоку на шариковую ручку.
  10. Собрать все вместе:
    • первичную и вторичную катушки;
    • трансформатор;
    • дроссели;
  11. Нужно разместить обе катушки рядом и присоединить к ним трансформатор с помощью дросселей. Если вторая катушка получилась больше первой, то первую можно разместить внутри.

Прибор начнет работать после подключения трансформатора.

Устройство

схема простейшего трансформатора Тесла

Данный прибор состоит из нескольких деталей:

  • 2 разных катушек: первичная и вторичная;
  • разрядника;
  • конденсатора;
  • тороида;
  • терминала;

Также, в состав первичной входят провод, диаметр которого больше 6 миллиметров и медная трубка. Чаще всего, она создается именно горизонтальной, но бывает еще вертикальной и в форме конуса. Для другой катушки используют намного больше провода, диаметр которого меньше, чем у первой.

Для создания трансформатора Тесла, не используют ферромагнитного сердечника, и таким образом, уменьшают индукцию между первичной и вторичной катушками. Если использовать ферромагнитный сердечник, то взаимоиндукция будет намного сильнее. А это не подходит для создания и нормального функционирования прибора Тесла.

Колебательный контур образуется благодаря первой катушке и подключенному к ней конденсатору. Также, в него входит и один нелинейный элемент, а именно – обычный газовый разрядник.

Вторичная образует такой же контур, но вместо конденсата используется емкость тороида, и сам межвитковой промежуток в катушке. Кроме того, такая катушка, чтобы не допустить электрический пробой, покрывается специальной защитой – эпоксидной смолой.

Терминал обычно используется в виде диска, но он может быть сделан и в виде сферы. Он необходим, чтобы получить длинные разряды из искр.

В этом приборе используются 2 колебательных контура, что и отличает это изобретение от всех остальных трансформаторов, которые состоят только из одного. Для того, чтобы данный трансформатор работал исправно, эти контуры должны иметь одну и ту же частоту.

Принцип работы

Катушки, которые вы создали, имеют колебательный контур. Если к первой катушке подвести напряжение, то она создаст собственное магнитное поле. С его помощью передается энергия от одной катушки к другой.

Вторичная катушка создает вместе с емкостью такой же контур, который способен накапливать энергию, которую передала первичная. Все работает по простой схеме – чем больше энергии способна передать первая катушка, а вторая – накопить, то тем больше будет напряжение. И результат будет более зрелищный.

Как говорилось выше, чтобы прибор начал работать, его необходимо подключить к питающему трансформатору. Для того, чтобы направить разряды, которые выдает генератор Тесла, нужно рядом разместить металлический предмет. Но делать это так, чтобы они не соприкасались. Если рядом положить лампочку, то она будет светиться. Но только в том случае, если напряжения будет достаточно.

Чтобы сделать самостоятельно изобретение Тесла, нужно делать математические расчеты, поэтому нужно иметь опыт. Или же найти инженера, который поможет правильно вывести формулы.

Практические советы

  1. Если опыта нет, то лучше не начинайте работу самостоятельно. Помочь вам сможет инженер.
  2. Будьте очень аккуратны, ведь разряды, которые выдает генератор Тесла, могут обжечь.
  3. Такое изобретение способно вывести из строя все подключенные устройства, перед включением будет лучше убрать их подальше.
  4. Все металлические предметы, которые находятся недалеко от включенного устройства, могут обжигать.

Статья была полезна?

0,00 (оценок: 0)

Принцип работы, схема и приложения

Мир беспроводных технологий уже здесь! Бесчисленные беспроводные приложения, такие как освещение с беспроводным питанием, беспроводные умные дома, беспроводные зарядные устройства и т. Д., Развиваются благодаря беспроводным технологиям. В 1891 году самое известное открытие катушки Тесла было изобретено изобретателем Никола Тесла. Тесла был одержим беспроводной передачей энергии, что привело к изобретению катушки Тесла. Эта катушка не требует сложной схемы, поэтому она является частью нашей повседневной жизни, такой как дистанционное управление, смартфоны, компьютеры, рентгеновские лучи, неоновые и флуоресцентные лампы и так далее.


Что такое катушка Тесла?

Определение: Катушка Тесла — это радиочастотный генератор, который приводит в действие двойной резонансный трансформатор с воздушным сердечником для получения высокого напряжения при малых токах.

тесла-катушка

Чтобы лучше понять, давайте определим, что такое радиочастотный генератор. В первую очередь, мы знаем, что электронный генератор — это устройство, которое генерирует электрические сигналы либо синусоидальной, либо прямоугольной формы. Этот электронный генератор генерирует сигналы в радиочастотном диапазоне от 20 кГц до 100 ГГц, известный как радиочастотный генератор.

Принцип работы катушки Тесла

Эта катушка может обеспечивать выходное напряжение до нескольких миллионов вольт в зависимости от размера катушки. Катушка Тесла работает по принципу достижения состояния, называемого резонансом. Здесь первичная обмотка излучает огромное количество тока во вторичную обмотку, чтобы управлять вторичной цепью с максимальной энергией. Точно настроенная схема помогает направлять ток из первичной во вторичную цепь с настроенной резонансной частотой.

Схема катушки Тесла

Эта катушка состоит из двух основных частей — первичной катушки и вторичной катушки, каждая из которых имеет свой собственный конденсатор.Искровой разрядник соединяет катушки и конденсаторы. Функциональность разрядника заключается в генерации искры для возбуждения системы.

Принципиальная схема катушки Тесла

Рабочая катушка Тесла

В этой катушке используется специальный трансформатор, называемый резонансным трансформатором, радиочастотным трансформатором или колебательным трансформатором.

Первичная катушка подключена к источнику питания, а вторичная катушка трансформатора слабо соединена, чтобы обеспечить ее резонанс. Конденсатор, подключенный параллельно цепи трансформатора, действует как схема настройки или LC-цепь для генерации сигналов с определенной частотой.

Первичная обмотка трансформатора, иначе называемая резонансным трансформатором, повышается для генерирования очень высоких уровней напряжения в диапазоне от 2 кВ до 30 кВ, которое, в свою очередь, заряжает конденсатор. При накоплении огромного количества заряда в конденсаторе, в конечном итоге, пробивается воздух искрового промежутка. Конденсатор испускает огромное количество тока через катушку Тесла (L1, L2), которая, в свою очередь, генерирует высокое напряжение на выходе.

Частота колебаний

Комбинация конденсатора и первичной обмотки «L1» схемы образует настроенную схему.Эта настроенная схема гарантирует, что как первичная, так и вторичная цепи точно настроены для резонанса на одной и той же частоте. Резонансные частоты первичного «f1» и вторичного контуров «f2» равны,

.

f1 = 1 / 2π L1C1 и f2 = 1 / 2π L2C2

Поскольку вторичный контур не регулируется, для Настройте первичный контур до тех пор, пока оба контура не будут резонировать на одной и той же частоте.Следовательно, частота первичной обмотки такая же, как и вторичной.

f = 1 / 2π√L1C1 = 1 / 2π L2C2

Условие для первичного и вторичного резонанса на одной и той же частоте:

L1C1 = L2C2

Выходное напряжение резонансного трансформатора не зависит от отношения числа витков, как в обычном трансформаторе. Как только цикл начинается и лонжерон срабатывает, энергия первичной цепи накапливается в первичном конденсаторе «C1», а напряжение, при котором происходит пробой искры, составляет «V1».

W1 = 1 / 2C1V1 2

Аналогично, энергия во вторичной катушке равна,

W2 = 1 / 2C2V2 2

При отсутствии потерь энергии W2 = W1. Упрощая приведенное выше уравнение, получаем

V2 = V1√C1 / C2 = V1√L2 / L1

В приведенном выше уравнении пиковое напряжение может быть достигнуто, когда пробоя воздуха не происходит. Пиковое напряжение — это напряжение, при котором воздух разрушается и начинает проводить.

Преимущества / недостатки катушки Тесла

Преимущества

  • Обеспечивает равномерное распределение напряжения по катушкам обмотки.
  • Увеличивает напряжение в медленном темпе и, следовательно, без повреждений.
  • Отличная производительность.
  • Использование трехфазных выпрямителей для более высоких мощностей может обеспечить колоссальное распределение нагрузки.

Недостатки

  • Катушка Тесла представляет несколько опасностей для здоровья из-за высокочастотного излучения высокого напряжения, включая ожог кожи, повреждение нервной системы и сердца.
  • Влечет за собой высокие затраты на покупку большого сглаживающего конденсатора постоянного тока.
  • Построение цепи занимает много времени, так как она должна быть идеальной для резонанса.

Применение катушки Тесла

В настоящее время эти катушки не требуют больших сложных схем для выработки высокого напряжения. Тем не менее, небольшие катушки Тесла находят свое применение в целом ряде секторов.

  • Сварка алюминия
  • Автомобили используют эти катушки для зажигания свечей зажигания
  • Созданы вентиляторы катушек Тесла, используемые для создания искусственного освещения, звуков, подобных музыке. Катушки Тесла в индустрии развлечений и образования используются в качестве аттракционов на ярмарках электроники и научных музеях.
  • Высоковакуумные системы и дуговые зажигалки
  • Детекторы утечки вакуумной системы

Часто задаваемые вопросы

1).Что делают катушки Тесла?

Эта катушка представляет собой радиочастотный генератор, который приводит в действие резонансный трансформатор для генерации высокого напряжения при низком токе.

2). Может ли катушка Тесла заряжать телефон?

В наши дни смартфоны выпускаются со встроенной беспроводной зарядкой, в которой используется принцип катушки Тесла.

3). Катушка Тесла опасна?

Катушка и ее оборудование очень опасны, поскольку они создают очень высокие напряжения и токи, которые не могут быть обеспечены человеческим телом.

4).Почему катушки тесла создают музыку?

Обычно эта катушка превращает воздух вокруг себя в плазму, которая изменяет громкость и заставляет волны распространяться во всех направлениях, создавая звук / музыку. Это происходит на высокой частоте от 20 до 100 кГц.

5). Как Tesla передавала электричество по беспроводной сети?

Искровой разрядник используется для соединения конденсаторов и двух катушек. Поскольку мощность подается через трансформатор, он вырабатывает необходимый ток и питает всю цепь.

Таким образом, это все об обзоре катушки Тесла, которую можно использовать для выработки электричества высокого напряжения, низкого тока и высокой частоты. Катушка Тесла может передавать электричество по беспроводной сети на расстояние до нескольких километров. Мы позаботились о том, чтобы эта статья дала читателю представление о работе катушки Тесла, ее преимуществах и недостатках, а также о ее применении. Поистине, его изобретение беспроводной передачи электроэнергии изменило способ общения в мире.

Беспроводное электричество? Как работает катушка Тесла

Среди своих многочисленных инноваций Никола Тесла мечтал создать способ подачи энергии в мир без прокладки проводов по всему миру.Изобретатель был близок к этому, когда его эксперименты «безумного ученого» с электричеством привели к созданию катушки Тесла.

Катушка Тесла, первая система, которая могла передавать электричество без проводов, была поистине революционным изобретением. Первые радиоантенны и телеграфия использовали это изобретение, но вариации катушки также могут делать вещи, которые просто классные — например, стрелять молниями, посылать электрические токи через тело и создавать электронные ветры.

Тесла разработал катушку в 1891 году, до того, как обычные трансформаторы с железным сердечником стали использоваться для питания таких устройств, как системы освещения и телефонные цепи.Эти обычные трансформаторы не могут выдерживать высокую частоту и высокое напряжение, которые могут выдерживать более свободные катушки в изобретении Теслы. Концепция катушки на самом деле довольно проста и использует электромагнитную силу и резонанс. Используя медную проволоку и стеклянные бутылки, электрик-любитель может построить катушку Тесла, которая может вырабатывать четверть миллиона вольт. [Инфографика: Как работает катушка Тесла]

Установка

Катушка Тесла состоит из двух частей: первичной катушки и вторичной катушки, каждая со своим собственным конденсатором.(Конденсаторы хранят электрическую энергию так же, как батареи.) Две катушки и конденсаторы соединены искровым разрядником — воздушным зазором между двумя электродами, который генерирует электрическую искру. Внешний источник, подключенный к трансформатору, питает всю систему. По сути, катушка Тесла — это две разомкнутые электрические цепи, подключенные к искровому разряднику.

Катушка Тесла требует источника питания высокого напряжения. Обычный источник питания, питаемый через трансформатор, может производить ток необходимой мощности (не менее тысячи вольт).

В этом случае трансформатор может преобразовывать низкое напряжение основного источника питания в высокое напряжение.

Как катушки Тесла генерируют электрические поля высокого напряжения. (Изображение предоставлено Россом Торо, художником по инфографике)

Как это работает

Источник питания подключен к первичной катушке. Конденсатор первичной катушки действует как губка и впитывает заряд. Сама первичная обмотка должна выдерживать большие заряды и сильные скачки тока, поэтому обмотка обычно изготавливается из меди, которая является хорошим проводником электричества.В конце концов, конденсатор накапливает такой заряд, что нарушает сопротивление воздуха в искровом промежутке. Затем, подобно выдавливанию намокшей губки, ток течет из конденсатора по первичной катушке и создает магнитное поле.

Огромное количество энергии заставляет магнитное поле быстро разрушаться и генерировать электрический ток во вторичной катушке. Напряжение, пронизывающее воздух между двумя катушками, создает искры в искровом промежутке. Энергия колеблется между двумя катушками несколько сотен раз в секунду и накапливается во вторичной катушке и конденсаторе.В конце концов, заряд вторичного конденсатора становится настолько высоким, что он вырывается из-под впечатляющего всплеска электрического тока.

Результирующее высокочастотное напряжение может осветить люминесцентные лампы на расстоянии нескольких футов без подключения электрического провода. [Фото: Историческая лаборатория Николы Теслы в Уорденклиффе]

В идеально спроектированной катушке Тесла, когда вторичная катушка достигает своего максимального заряда, весь процесс должен начаться заново, и устройство должно стать самоподдерживающимся.Однако на практике этого не происходит. Нагретый воздух в искровом промежутке отводит часть электричества от вторичной катушки обратно в промежуток, так что в конечном итоге в катушке Тесла закончится энергия. Вот почему катушку необходимо подключить к внешнему источнику питания.

Принцип, лежащий в основе катушки Тесла, заключается в достижении явления, называемого резонансом. Это происходит, когда первичная обмотка направляет ток во вторичную обмотку как раз в нужное время, чтобы максимизировать энергию, передаваемую вторичной обмотке.Думайте об этом как о времени, когда нужно подтолкнуть кого-то на качели, чтобы заставить их взлететь как можно выше.

Установка катушки Тесла с регулируемым поворотным искровым разрядником дает оператору больше контроля над напряжением производимого ею тока. Вот как катушки могут создавать сумасшедшие молнии и даже могут быть настроены для воспроизведения музыки, приуроченной к всплескам тока.

В то время как катушка Тесла больше не имеет практического применения, изобретение Тесла полностью произвело революцию в понимании и использовании электричества.Радиоприемники и телевизоры до сих пор используют вариации катушки Тесла.

Следуйте за Келли Дикерсон в Twitter . Следуйте за нами @livescience , Facebook & Google+ . Оригинальная статья на Live Science .

Как работают катушки Тесла | RealClearScience

Тесла на заднем плане изучает хвастовство. (Фото: Викимедиа)

Представьте себе затворника, всю ночь истекающего потом в темной лаборатории, освещенного только потрескивающими искрами, которые вылетают из огромных машин и бросают лиловое сияние на его лицо.Это Никола Тесла, архетип безумного ученого. Его изобретения наполняют мир вокруг нас; они играют важную роль в нашей современной электросети. Это тихие, надежные, незаметные машины.

Но, пожалуй, самым известным его изобретением является катушка Тесла (см. Фото выше), устройство, которое производит красивые летающие дуги электрической энергии. Как это работает?

Принципы, лежащие в основе катушки Тесла, относительно просты. Просто имейте в виду, что электрический ток — это поток электронов, а разница в электрическом потенциале (напряжении) между двумя точками — это то, что толкает этот ток.Ток подобен воде, а напряжение — холму. Большое напряжение — это крутой холм, по которому потечет поток электронов. Небольшое напряжение похоже на почти плоскую равнину, на которой почти нет потока воды.

Мощность катушки Тесла заключается в процессе, называемом электромагнитной индукцией , то есть изменяющееся магнитное поле создает электрический потенциал, который заставляет ток течь. И наоборот, протекающий электрический ток создает магнитное поле. Когда электричество протекает через намотанную катушку с проволокой, оно генерирует магнитное поле, которое заполняет область вокруг катушки по определенной схеме, показанной линиями ниже:

Фотография изменена из Национальной лаборатории Лос-Аламоса.

Аналогичным образом, если магнитное поле течет через центр свернутого в спираль провода, в проводе генерируется напряжение, которое вызывает протекание электрического тока.

Электрический потенциал («холм»), создаваемый в катушке с проволокой магнитным полем, проходящим через ее центр, увеличивается с количеством витков проволоки. Изменяющееся магнитное поле внутри катушки из 50 витков будет генерировать в десять раз больше напряжения, чем в катушке всего из пяти витков. (Однако меньший ток может фактически протекать через более высокий потенциал, чтобы сохранить энергию.)

Именно так работает обычный электрический трансформатор переменного тока, который можно найти в каждом доме. Постоянно колеблющийся электрический ток, протекающий из электросети, наматывается через серию витков вокруг железного кольца для создания магнитного поля. Железо обладает магнитной проницаемостью, поэтому магнитное поле почти полностью содержится в железе. Кольцо направляет магнитное поле (обозначено зеленым цветом ниже) вокруг и через центр противоположной катушки с проводом.

Фото: Викимедиа

Соотношение катушек на одной стороне к другой определяет изменение напряжения.Чтобы перейти от напряжения домашней стены 120 В к, скажем, 20 В для использования в адаптере питания ноутбука, на выходной стороне катушки будет в 6 раз меньше витков, чтобы снизить напряжение до одной шестой от исходного уровня.

Катушки

Тесла делают то же самое, но с гораздо более резким изменением напряжения. Во-первых, они используют предварительно изготовленный высоковольтный трансформатор с железным сердечником для перехода от настенного тока со 120 В до примерно 10 000 В. Провод с напряжением 10 000 вольт наматывается на одну очень большую (первичную) катушку всего с несколькими витками.Вторичная катушка содержит тысячи витков тонкой проволоки. Это увеличивает напряжение от 100000 до одного миллиона вольт. Этот потенциал настолько велик, что железный сердечник обычного трансформатора не может его вместить. Вместо этого между катушками есть только воздух, что можно увидеть на катушке Тесла ниже:

Большая (первичная) катушка с несколькими витками находится внизу. Вторичная катушка с тысячами витков — это вертикально стоящий цилиндр, отделенный от нижней катушки воздухом.(Фото: Викимедиа)

Катушка Тесла требует еще одного: конденсатора, который накапливает заряд и зажигает все это одной огромной искрой. Схема катушки содержит конденсатор и небольшое отверстие, называемое искровым разрядником. Когда катушка включена, электричество течет по цепи и наполняет конденсатор электронами, как батарея. Этот заряд создает в цепи собственный электрический потенциал, который пытается перекрыть искровой промежуток. Это может произойти только тогда, когда в конденсаторе накоплен очень большой заряд.

В конце концов, накопилось столько заряда, что нарушается электрическая нейтральность воздуха в середине искрового промежутка. Цепь замыкается на мгновение, и огромное количество тока вырывается из конденсатора и проходит через катушки. Это создает очень сильное магнитное поле в первичной катушке.

Катушка вторичного провода использует электромагнитную индукцию для преобразования этого магнитного поля в электрический потенциал, настолько высокий, что он может легко разорвать молекулы воздуха на его концах и толкнуть их электроны по дуге, создавая огромные пурпурные искры.Купол в верхней части устройства заставляет вторичную катушку проводов более полно получать энергию от первой катушки. С помощью некоторых тщательных математических расчетов количество передаваемой электроэнергии может быть увеличено до максимума.

Летящие синие стримеры электронов стекают с катушки через горячий воздух в поисках проводящего места для приземления. Они нагревают воздух и превращают его в плазму светящихся ионных нитей, прежде чем рассеяться в воздухе или попасть в ближайший проводник.

Создается потрясающее световое шоу, а также громкое жужжание и потрескивание, которые можно использовать для воспроизведения музыки.Электрическое зрелище настолько ошеломляет, что Тесла, как известно, использовал свое устройство, чтобы напугать и заворожить посетителей своей лаборатории.

Тесла, возможно, не изобрел луч смерти или бесплатную бесконечную силу, но он разработал простую, но блестящую машину, чтобы продемонстрировать чистую мощь и красоту электричества.

Что такое катушка Тесла | Принципиальная схема катушки Тесла | Принцип работы катушки Тесла

Беспроводная технология широко используется в наше время. Сегодня мы используем множество беспроводных приложений, таких как освещение, беспроводные умные дома, беспроводные зарядные устройства и т. Д.от методов с беспроводным питанием. В 1891 году великий ученый Никола Тесла открыл катушку Тесла.

Тесла считается страстью беспроводных технологий, поэтому он изобрел эту катушку. Часть схемы, используемая в этой катушке, не такая сложная, как та, которую мы используем в повседневной жизни, например, пульт дистанционного управления, смартфон, компьютер, рентген, неон и т. Д.

В сегодняшней статье мы поговорим о том, что такое катушка Тесла, каков принцип работы, каковы ее преимущества и недостатки и многое другое.

Что такое катушка Тесла?

Определение: Катушка Тесла — это радиочастотный генератор. Которая приводит в действие резонансный трансформатор двойной настройки с воздушным сердечником для выработки высокого напряжения с малыми токами.

Чтобы лучше понять это, давайте определим, что такое радиочастотный генератор. Все мы знаем, что электронный генератор — это устройство, используемое для генерации электрических сигналов синусоидальной или прямоугольной формы. Этот электронный генератор генерирует сигналы в радиочастотном диапазоне от 20 кГц до 100 ГГц, также известный как радиочастотный генератор.

Также читайте: Что такое конденсатор фильтра? | Работа конденсатора фильтра | Схема конденсатора фильтра | Применение конденсатора фильтра

Принципиальная схема катушки Тесла:

Катушка Тесла состоит из двух основных катушек, одной первичной катушки и другой вторичной катушки. Обе эти катушки имеют собственные конденсаторы. Катушка и конденсатор соединены с помощью искрового промежутка. Функциональность искрового промежутка заключается в генерации искры для стимуляции системы.Функциональность искрового промежутка заключается в генерации искры для стимуляции системы.

Также читайте: Что такое однофазный трансформатор | Строительство однофазного трансформатора | Применение однофазного трансформатора

Принцип работы катушки Тесла:

Сколько миллионов вольт будет производить эта катушка, зависит от ее размера. Катушка Тесла работает по принципу достижения состояния, называемого резонансом. Таким образом, первичная обмотка производит большой ток во вторичной обмотке, так что вторичная обмотка может работать с максимальной энергией.

Точно настроенная схема помогает направлять ток из первичной во вторичную цепь на настроенной резонансной частоте.

Работа катушки Тесла:

В этой катушке используется специальный трансформатор, известный как резонансный трансформатор, радиочастотный трансформатор или генератор колебаний. Первичная катушка подключена к основному источнику питания. Вторичная обмотка трансформатора подключена неплотно, чтобы обеспечить ее резонанс.

Конденсатор, подключенный параллельно трансформатору, действует как цепь настройки или LC-цепь для генерации сигнала определенной частоты.

Резонансный трансформатор мощностью от 2 до 30 кВ используется для создания высокого напряжения в трансформаторе, который, в свою очередь, заряжает конденсатор. По мере того, как конденсатор заряжается больше, он в конечном итоге разрывает воздух в искровом промежутке. С помощью конденсаторной катушки Тесла (L1, L2) излучается большой ток, который, в свою очередь, создает высокое напряжение на выходе.

Применения катушки Тесла:

Эти катушки не требуют больших сложных схем для выработки высокого напряжения.Маленькие катушки Тесла используются в различных областях, а именно:

  • Эта катушка используется для зажигания свечей зажигания автомобиля.
  • В течеискателях вакуумных систем.
  • В высоковакуумных системах и дуговых зажигалках.
  • При сварке алюминия.
  • Изготовлены вентиляторы из катушек Тесла, используемых для создания искусственного освещения.

Преимущества катушки Тесла:

Преимущества катушки Тесла следующие:

  • Высокая производительность.
  • Напряжение нарастает медленнее, поэтому вероятность повреждения меньше.
  • Распределяет одинаковое напряжение по всем катушкам обмотки.
  • мощностей Использование трехфазных выпрямителей для более высоких мощностей может обеспечить колоссальное распределение нагрузки.

Недостатки катушки Тесла:

Недостатки катушек Тесла следующие:

  • Создание схемы занимает много времени, так как она должна быть идеальной, чтобы резонировать.
  • Покупка сглаживающего конденсатора постоянного тока большей емкости требует больших затрат.
  • Высоковольтное излучение радиочастоты в катушке Тесла представляет множество рисков для здоровья. К ним относятся повреждение нервной системы, ожоги кожи и сердца.
Часто задаваемые вопросы (FAQ):

1. Что делает катушка Тесла?

Катушка Тесла — это радиочастотный генератор, который приводит в действие резонансный трансформатор для генерации высокого напряжения при низком токе.

2. Может ли катушка Тесла заряжать телефон?

Смартфоны

выпускаются со встроенной беспроводной зарядкой, в которой используется принцип катушки Тесла.

3. Опасна ли катушка Тесла?

Катушка и ее оборудование очень опасны, поскольку они создают очень высокие напряжения и токи, которые не могут быть обеспечены человеческим телом.

4. Как Tesla передавала электричество по беспроводной сети?

Искровой разрядник используется для соединения конденсаторов и двух катушек. Поскольку мощность подается через трансформатор, он вырабатывает необходимый ток и питает всю цепь.

5. Может ли катушка Тесла убить вас?

Это означает, что каждая часть катушки Тесла может быть безжалостной при использовании большого оборудования, такого как силовые трансформаторы, во время работы системы.

6. Катушки Тесла незаконны?

Если катушка Тесла способна заглушить подножку, катушка Тесла может быть конфискована FCC, если она мешает законному использованию радиоактивного спектра поблизости.

7. Катушки Тесла болят?

Высокое напряжение и ток вырабатываются с использованием нормального напряжения и тока катушки Тесла. Выходное напряжение маленькой катушки обычно находится в диапазоне от 500 000 до 1 000 000 вольт. Поскольку ожоги связаны с частотами, катушка Тесла может вызвать серьезные ожоги без какой-либо боли.

Понравился пост? Поделитесь этим с вашими друзьями!

Рекомендуемое чтение —

ТЕОРИЯ ОПЕРАЦИИ

Катушки Тесла — простые устройства. Вам не нужна докторская степень. в области электротехники Инженерное дело, чтобы понять, как они работают.

Базовая установка включает в себя основные части: первичная обмотка и вторичная обмотка. Вторичная катушка имеет МНОГО больше обмоток. чем первичная обмотка и находится внутри обмоток первичная обмотка.Эта концентрическая конфигурация образует трансформатор. Трансформатор этого типа преобразует небольшое напряжение на первичной катушке в напряжение на вторичной обмотке. Напряжение на вторичной катушке напрямую пропорционально отношению обмоток вторичной обмотки к обмоткам на первичной. Вау, это был полный рот. Короче, напряжение на вторичная обмотка будет намного больше, чем на первичной обмотке. Этот потому что первичная обмотка обычно имеет только 2-10 обмоток, а вторичная насчитывает аж 1000.Также следует отметить, что электрическое подключение отсутствует. существует между первичной и вторичной обмотками, они МАГНИТНО СВЯЗАНЫ. Магнитная связь означает, что энергия передается между первичными и вторичные катушки через общее магнитное поле.

На стороне первичной обмотки цепь состоит только из первичной обмотки. сам, конденсатор и источник высокого напряжения. Правильно подключив конденсатора и первичной обмотки получается резонансный контур. Срок резонансный контур подразумевает, что контур будет генерировать напряжение, которое будет колебаться со временем.Кроме того, термин «резонансный» подразумевает, что существует некоторая частота, на которой амплитуда колебательного напряжения будет максимальная, резонансная частота. Идея резонанса не ограничена к электричеству. Вы можете думать о поведении первичной цепи как о очень очень похоже на то, как катать ребенка на качелях. Когда вы вкладываете немного энергии в ребенок (толкая) ребенка и качели будут колебаться. Если вы продолжите чтобы добавить энергии ребенку / качели в нужное время, вы можете заставить ребенка может качаться выше; тогда вы добавите энергии в систему ребенка / качели на его резонансной частоте.Электрический аналог этой детской / качели поведение используется в первичном контуре. Путем зарядки конденсатора (например, толкая ребенка) на резонансной частоте катушки, большой выход напряжение появляется на первичной катушке. В результате еще большее напряжение присутствует на вторичной обмотке из-за вышеупомянутого трансформатора действие между двумя.

Вторичная сторона состоит из тех же элементов схемы, что и первичная боковая сторона. Вторичная катушка и конденсатор. Есть одно четкое отличие тем не менее, как они связаны.Конденсатор и вторичная катушка соединены вместе в верхней части вторичной обмотки. Дно вторичного подключен к «земле»; стейк буквально вбивают в землю. В конденсатор используемый уникален. Почти все конденсаторы имеют две «клеммы», конденсатор во вторичной цепи использует только одну клемму. Теперь, выбрав правильные значения для конденсатора и вторичной катушки, резонансный частоту вторичной цепи можно сделать идентичной частоте первичный контур. Это сделано для того, чтобы можно было развить максимальное напряжение. в верхней части вторичного контура.

Теперь при срабатывании первичной цепи возникает очень большое напряжение. появиться на конденсаторе вторичной цепи. Это напряжение высокое достаточно, чтобы окружающий воздух проводил электрический ток, и вы получить желаемые молнии.

На фото справа — катушка Тесла в действии. Длинный цилиндр посередине вторичная обмотка. Поверх вторичной обмотки находится деталь в форме пончика. металла, который действует как одиночный оконечный конденсатор. Как видите это это место, где возникает напряжение и исходят дуги.Если вы последуете большой болт в центре изображения вы увидите, что он поражает верхняя обмотка первичной обмотки. Если вы слева от основного катушки вы можете увидеть первичные конденсаторы (они выглядят как две серые коробки.

Вы можете спросить себя, какой длины может быть дуга от катушки. В Ответ в том, что это зависит от ряда факторов. Сначала соотношение первичная и вторичная обмотки катушки имеют сильное влияние на напряжение (и, следовательно, дуги), появляющиеся в верхней части вторичной обмотки.Второй, чем больше энергии вы можете вложить в первичную катушку, тем дольше можно делать дуги. Наконец, это зависит от того, насколько хорошо резонансные частоты первичной и второй цепей согласованы. Чем лучше совпадение, чем длиннее дуга. Последний из двух факторов имеет прямой аналог с системой ребенок / качели, о которой говорилось ранее. Предполагая, что вы нажимаете на в нужный момент, чем сильнее ты, тем выше может качаться ребенок. Суммируя, нужно вовремя подтолкнуть ребенка или неважно как ты сильный.

Наконец, я подумал, что вас могут заинтересовать некоторые типичные длины дуги. из катушек. Средняя современная «гаражная» катушка обычно колеблется от 1 фута. до 10-футовых дуг. Некоторые из выставочных катушек способны образовывать дугу. до 30 мин. Самая длинная дуга, которую я когда-либо слышал, составляет 135 футов. В 135-футовые болты были сделаны из катушки Николы Тесла в Колорадо-Спрингс. Поставить мощность, участвующая в генерации такой дуги в перспективе, в какой-то момент Тесла потреблял столько энергии от электростанции, что расплавлял генератор.

ДОМ

(PDF) Магнитная связь в трансформаторах Тесла

apr.ccsenet.org Applied Physics Research Vol. 8, № 6; 2016

105

4. Выводы

Магнитная связь между обмотками трансформаторов Тесла значительно варьируется от нуля до единицы,

, несмотря на частое утверждение, что идеальное значение составляет 0,6. Фактическое выбранное значение зависит от требований

к приложению и, в свою очередь, оказывает очень значительное влияние на конструктивную форму, принятую в любой практической реализации

, и различные возникающие проблемы надежности.Детали, проиллюстрированные в документе:

, таким образом, являются важным дополнением к многим легкодоступным теоретическим исследованиям и обеспечивают ценную информацию о

как для тех, кто уже работает в этой области, так и для тех, кто находится на ранних этапах разработки или использования

. Трансформатор

Тесла впервые.

Список литературы

Андреев Ю., Буянов Ю. И., Ефремов А. М., Кошелев В., Ковальчук Б., Сухушин К.,… Зорин В.Б.

(1997). Генератор мощного сверхширокополосного электромагнитного излучения. 11-я Международная конференция по импульсному питанию IEEE

. Сборник технических статей, 1, 730-735.

Абрамян Э.А. (1971). Ускорители трансформаторного типа для интенсивных электронных пучков. IEEE Transactions on

Nuclear Science, 18, 447-455.

Баттрам, М. Т., и Рохвайн, Г. Дж. (1979). Работа генератора импульсов средней мощности 300 кВ, 100 Гц, 30 кВт.IEEE

Транзакции на электронных устройствах, 26, 1503-1508.

Крейвен Р. М. (2014). Исследование схем вторичной обмотки двухкатушечного трансформатора Тесла (докторская диссертация).

Университет Лафборо, Лестершир, Великобритания.

Glasoe, G. N., & Lebacqz, J. V. (1948). Генераторы импульсов. Макгроу-Хилл, США.

Гровер, Ф. (1947). Расчет индуктивности. Компания Ван Ностранд, Нью-Йорк, США.

Хоффманн, К. Р. Дж. (1975). Генератор высокого напряжения с трансформатором Тесла.Обзор научных инструментов, 46,

1-4.

Ломас Р. (2000). Человек, который изобрел двадцатый век: Никола Тесла, забытый гений электричества.

Лондон: издание новой книги заголовков.

Мартин Т. (1971). Номинальный импульсный генератор на один мегавольт. IEEE Transactions on Nuclear Science, 18,

104-105.

Новак, Б., М., Ван, М., Смит, И. Р., и Сеньор, П. (2014). Генератор Blumlein импульсной мощности

с приводом от Теслы мощностью 10 ГВт.IEEE Transactions on Plasma Science, 42 (10), 2876-2885.

Пэн, Дж. К., Лю, Г. З., Сун, X. X., и Су, Дж. К. (2011). Ускоритель интенсивных электронных пучков с высокой частотой следования импульсов

на основе трансформатора Тесла с высокой степенью связи. Лазер и пучки частиц, 29, 55-60.

Сарджант, У. Дж., И Доллингер, Р. Э. (1989). Электроника высокой мощности. Нью-Йорк: TAB Professional и

Reference Books.

Саркар П., Брейдвуд С., Смит И. Р., Новак Б. М., Миллер Р. и Крейвен Р. М. (2006). Компактная полумегавольтная трансформаторная система

с батарейным питанием для генерации ЭМИ. IEEE Transactions on Plasma

Science, 34, 1832-1837.

Сарджант, У. Дж., И Доллингер, Р. Э. (1989). Электроника высокой мощности. Нью-Йорк: TAB Professional и

Reference Books.

Скотт, М. Дж., О’Лафлин, Л., и Коупленд, Р. (1995). Двойной резонансный трансформатор на 350 кВ для зарядки 40 пФ

PFL с частотой повторения в килогерцах.Сборник технических документов, 1995 (2), 1466-1471.

Скелдон, К. (2000). Разработка портативного аппарата с катушкой Тесла. Европейский журнал физики, 2000,

125-143.

Су, Дж., Чжан, X., Ли, Р., Као, Л., Сун, X., Ван, Л.,… Сонг, X. (2016). Генератор длинных импульсов мощностью 8 ГВт на базе трансформатора Тесла и сети формирования импульсов

. Review of Scientific Instruments, 85 (6), 063303.

Авторские права

Авторские права на эту статью принадлежат автору (авторам), журналу предоставлены права на первую публикацию.

Это статья в открытом доступе, распространяемая в соответствии с условиями лицензии Creative Commons Attribution

(http://creativecommons.org/licenses/by/4.0/).

Что такое катушка Тесла, как она работает?

Катушка Тесла, одно из самых важных изобретений Николы Тесла, направлено на беспроводную передачу электроэнергии за счет увеличения электрического напряжения, с выходом с высокой частотой низкой плотностью тока.

С этим принципом , изобретение радиоантенны , флуоресцентные и неоновые лампы и магнитный резонанс (магнитный резонанс-MR) , рентгеновский снимок , основа устройств , используемых в беспроводной передаче данных был основан.

Катушка Тесла состоит из: трансформатора высокого напряжения , искрового разрядника , высоковольтного конденсатора , первичной катушки обмоток меньше , чем вторичной обмотки и вторичной обмотки, подключенной к высоковольтному выходу энергии проводника (тороид).

Провод первичной обмотки имеет на большую площадь поперечного сечения , чем вторичная обмотка. Проводящий провод наматывается вокруг диэлектрика указанного диаметра, и магнитное поле создается путем обеспечения потока тока проводника в спиральной форме .

Рисунок 1 — Схема катушки Тесла

Функционирование катушки Тесла можно резюмировать следующим образом: Рисунок 1 ; Трансформатор высокого напряжения заряжается конденсатором высокого напряжения .Как только напряжения на искровом промежутке, отрегулированные в соответствии с пиковым напряжением конденсатора, выравниваются, между искровыми промежутками возникает короткое замыкание . И первичная обмотка с конденсатором становится параллельной цепью .

Первичная катушка полностью заряженного конденсатора находится под напряжением, а вторичная катушка находится под действием энергии и магнитного поля . Вторичный резонансный контур, состоящий из первичного параллельного резонансного контура в виде LC и емкости тороида с высоковольтным выходом вторичной катушки относительно линии заземления

резонанса попадают в частоту.

Следовательно,

и

условие будет выполнено.

Высокое напряжение электрическая энергия с высокой резонансной частотой возникает на выходе схемы и рассеяние дуги осуществляется на тороиде. Таким образом, Никола Тесла мог передавать высокочастотную электрическую энергию высокого напряжения, чего не могли добиться генераторы, используя катушек с воздушным сердечником .

По переключению катушки Тесла; Катушка Тесла с искровым зазором , Твердотельная катушка Тесла , использующая полупроводниковые силовые компоненты, такие как транзистор-MOSFET-IGBT, и генератор с обратной связью , подающий синусоидальный ток на трансформатор.

Катушка

Тесла имеет электромагнитное поле вокруг тороидной части. Электроны в соседней люминесцентной лампе движутся, и лампа загорается. Однако из-за потерь эффективность освещения будет низкой.

В рабочей системе катушек Тесла; высокое напряжение , высокое электромагнитное поле , дуги, которые могут достигать больших расстояний , высоковольтный конденсатор взрыв , производство токсичного газа озона , ожог и пожар и другие чрезвычайные опасности могут возникнуть.Следовательно, , экспериментов с катушкой Тесла не должны проводиться людьми, у которых недостаточно технических знаний.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *