Трансформаторные блоки питания: Импульсный трансформатор принцип работы

Содержание

Импульсный трансформатор принцип работы

Принцип работы импульсного трансформатора

Современные электронные и электрические приборы имеют достаточно сложное устройство.

Их эффективную и бесперебойную работу обеспечивает большое количество составляющих.

Одной из них является импульсный трансформатор, принцип работы которого основывается на активном преобразовании электрического тока.

Основная функция

Устройства, работа которых зависит от электрического тока, оснащаются импульсными трансформаторами.

Делается это для того, чтобы обеспечить защиту от короткого замыкания, слишком высокого напряжения, исходящего от сети, и перегревания корпуса электроприборов.

Он присутствует как в технике, используемой в быту (цветных телевизорах, компьютерных мониторах), так и в специальном оборудовании, в основе которого заложено действие импульса (газовых лазерах, магнетронах, триодных генераторах, дифференцирующих трансформаторах).

Механизм действия и виды устройств

Работа импульсного трансформатора обеспечивается за счёт пары катушек, соединённых магнитоводом и имеющих обмотку различной конфигурации.

Количество витков на обмотке определяет мощность электрической энергии, получаемой на выходе.

Первичный контур обмотки принимает на себя однополярные импульсные сигналы. На ней же определяются импульсы с коротким временным интервалом, имеющие прямоугольную форму. Затем эти же импульсы находят отражение на вторичной обмотке. Принцип отражения является основным в работе всех ИТ.

Трансформаторы могут иметь различное устройство.

В зависимости от типа обмотки выделяют следующие разновидности прибора:

  • тороидальный,
  • стержневой,
  • броневой,
  • бронестержневой.

Импульсный трансформатор: принцип действия и функциональные особенности

Трансформатор представляет собой достаточно сложное техническое устройство, основной функцией которого служит преобразование определенных свойств и качеств электрической энергии, таких, как напряжение или крутящий момент. Также современный трансформатор способен превращать переменный ток в постоянный и наоборот.

Среди огромного разнообразия используемых в настоящее времяприборов особо следует выделить их импульсные разновидности.

Импульсный трансформатор широко используется в системах связи, ВТ, устройствах автоматики, для внесения изменений амплитуды импульсов, а также их полярности. Главное условие для успешной работы данного вида прибора состоит в том, что искажение сигнала, который передается с его помощью, должно быть минимальным.

Импульсный трансформатор основывается в своей деятельности на следующем принципе: в то время как на его вход поступают прямоугольные импульсы определенного напряжения, в первичной обмотке постепенно появляется электрический ток, сила которого постепенно начинает увеличиваться. Это, в свою очередь, повлечет за собой изменение магнитного поля и появление электродвижущей силы во вторичной обмотке. В этом случае искажения сигнала практически не происходит, а возможные потери тока настолько малы, что ими можно пренебречь.

Что касается отрицательной части импульса, появление которой неизбежно в то время, как импульсный трансформатор выходит на проектную мощность, то его влияние можно свести к минимуму, установив простой диод во вторичную обмотку. Тем самым и здесь импульс станет максимально близким к прямоугольному.

Импульсный трансформатор отличается от других разновидностей данной технической системы тем, что работает исключительно в ненасыщенном режиме. Его магнитопровод изготавливается из специального сплава, который в обязательном порядке обладает значительной пропускной способностью магнитного поля.

Помимо импульсных, в современной энергетической и электронной промышленности используют следующие основные виды трансформаторов:

  1. Деятельность ни одного современного радиоприбора невозможна без силовых трансформаторов. Их деятельность многогранна: с одной стороны, они необходимы для того, чтобы приемники можно было запитывать от обычной сети с переменным током, а с другой, для того, чтобы повышать или понижать напряжение той или иной частоты в усилителях. С этой функцией связана и важная конструктивная особенность силовых трансформаторов – вместо стальных сердечников здесь используют вставки из магнетита или карбонильного железа.
  2. Еще одной разновидностью прибора, применяемого преимущественно в современных системах слежения и бортовых компьютерах самолетов, является вращающийся трансформатор. Его принцип действия заключается в том, что угол поворота рамки преобразуется в напряжение электрического тока. Внешне вращающийся трансформатор представляет собой небольшую электрическую машину, работающую исключительно от переменного тока. Кроме того, в зависимости от того, где эти трансформаторы применяются, они могут быть как двухполюсными, так и многополюсными.
  3. В зависимости от того, какой ток поступает на первичную обмотку, выделяют трансформаторы переменного и постоянного тока. Основной вид первого типа – автотрансформатор, который состоит исключительно из одной катушки, которая непосредственно включается в электрическую цепь. Данный вид приборов предназначен исключительно для понижения напряжения и только для очень маленьких токов. Трансформатор постоянного тока – это более сложный прибор, состоящий из динамомашины и двигателя. В этом случае первичный ток вырабатывается двигатель, а вторичный – динамомашиной, которая приводится в движение тем же электродвигателем. Нередко встречается ситуация, когда трансформатор постоянного тока представляет собой двигатель и динамомомашину, соединенные между собой одним металлическим каркасом. Делается это для экономии материала, а также для повышение качества работы прибора.

Преимущества импульсного трансформатора

Он имеет небольшие габариты, более стабилен в работе, дает качественное напряжение и независящее от параметров исходной синусоиды.

Устройство импульсного блока питания и его принцип работы

В импульсном блоке питания на входе стоит сетевой фильтр, задача которого не допустить в сеть высокочастотные колебания, вырабатываемые этим устройством. Они могут повлиять на работу рядом расположенных приборов. 

Далее стоит сглаживающий фильтр, который выпрямляет синусоиду. Полученное на его выходе пилообразное напряжение подается на инвертор, преобразуется в импульсы, имеющие положительную и отрицательную полярность. Их параметры (частота и скважность) задаются при помощи блока управления. Частота обычно выбирается высокой — от 10 кГц до 50 кГц. Именно наличие этой ступени преобразования — генерации импульсов — и дало название этому типу преобразователей.

Блок-схема ИИП с формами напряжения в ключевых точках

Высокочастотные импульсы поступают на трансформатор, который является гальванической развязкой от сети. Трансформаторы эти небольшие, так как с возрастанием частоты сердечники нужны все меньше. Причем сердечник может быть набран из ферромагнитных пластин (в линейных БП должен быть из более дорогой электромагнитной стали).

На выходном выпрямителе биполярные импульсы превращаются в положительные, а выходной фильтр на их основе формирует постоянное напряжение. Основное достоинство ИБП в том, что существует обратная связь, которая позволяет регулировать работу устройства таким образом, чтобы напряжение на выходе было близко к идеалу. Это дает возможность получать стабильные параметры на выходе, независимо от того, что имеем на входе.

Схемы импульсных блоков питания

Схема импульсного блока питания содержит пять обязательных блоков плюс обратная связь.

Вариант импульсного источника питания с выходным напряжением 5 В и 12 В и разной полярности

Входной фильтр

Схема простейшего входного фильтра

Конденсаторы используются специальные — X-типа. Икс-конденсаторы были разработаны специально для этих целей. Они выдерживают мгновенные киловольтные всплески напряжения (до 2,5 кВ), гася тем самым помехи между фазой и нейтралью (противофазные помехи). Дроссель — это ферритовый сердечник с намотанными лакированными медными проводами. В нем наводятся токи, нейтрализующие токи помех.

Приведенная выше схема входного фильтра для импульсного источника питания не устраняет помехи, которые возникают между фазой и землей (корпусом) или между нейтралью и корпусом. Для их нейтрализации в схему добавляют два конденсатора Y-типа (которые выдерживают скачки напряжения до 5 кВ). Специальная конструкция Y-конденсатора гарантирует обрыв цепи, а не короткое замыкание, в случае выхода его из строя.

Оба типа конденсаторов (X и Y), который ставят во входных фильтрах, выполняют из специальных негорючих материалов, так как они могут греться до очень высоких температур и могут стать причиной пожара. Именно в этом, да еще в конструктивных особенностях кроется причина их высокой стоимости (по сравнению с обычными).

Схема для компенсации всех типов помех

Но для корректной работы этой схемы необходимо рабочее заземление. Его надо подключить к корпусу блока питания. Без заземления, корпус блока питания будет находиться под напряжением около 110 В. Ток будет очень маленьким, но прикосновения будут ощутимы.

Сетевой выпрямитель и сглаживающий фильтр

Как уже сказано выше, выпрямитель проводит предварительное выпрямление синусоиды. Если установлен один диод, он отсекает нижние (отрицательные) полуволны.

Сравнение однополупериодного и двухполупериодного выпрямителя. 

В самом простом случае выпрямитель — диод Шоттки, но может использоваться и диодный мост с параллельно подключенным конденсатором. Для диодных мостов часто применяют обычные диоды типа 1N4007, но лучше все-таки устанавливать все те же диоды Шоттки. Они «быстрее», так что можно получить лучше результаты на выходе.

Несколько схем фильтров разной степени сложности

Один диод ставят в блоках питания к недорогой технике. На его выходе напряжение имеет вид идущих с некоторыми промежутками положительных полуволн. На выходе диодного моста пульсации намного ниже, так что такой выпрямитель ставят для более требовательных к питанию приборов. Пульсирующее напряжение с выхода диода/диодного моста подается на конденсатор (он должен быть рассчитан на напряжение 270-400 В), который из полуволн делает «зубчики». Тут уже получаем более-менее стабильное постоянное напряжение.

Инвертор или блок ключей

На следующем блоке выпрямленное напряжение преобразуется в импульсы. Частота импульсов высокая — от 10 до 50 кГц. Есть два способа реализации этих блоков: при помощи микросхем, на основе автогенератора (блокинг-генератора).

Еще одна блок-схема ИИП

Во втором случае используется пара транзисторов, которые включаются попеременно, формируя на выходе последовательность импульсов. Частота переключений задается генератором. Такие схемы встречаются и сейчас, но большинство реализуется на микросхемах.

Пример схемы инвертора на транзисторах

Если есть микросхема, зачем городить огород из нескольких десятков деталей. Тем более, что требуемый тип микросхем широко распространен и стоит немного. Это так называемые ШИМ-контроллеры ( TL494, UC384х, Dh421,  TL431, IR2151, IR2153 и др).  К этим микросхемам надо добавить всего-лишь пару полевых транзисторов и несколько мелких деталей и получим требуемый инвертор.

Схема ИИП с ШИМ контроллером для обратноходового и полумостового преобразователей

ШИМ-контроллер отлично встраивается в любой тип схем. Он совместим с обратноходовыми, полумостовыми и мостовыми схемами выпрямителей. Естественно, отличается количество элементов, но все они простые и доступные.В обратноходовых схемах транзисторы должны быть рассчитаны на более высокое напряжение, чем подается на вход.

Устройство импульсного источника напряжения с ШИМ контроллером и двухтактным и мостовым выпрямителем

По полумостовым схемам построены импульсные блоки питания в осветительных приборах, в энергосберегающих и светодиодных лампах, электронный балласт для люминисцентных ламп (ЭПРА). Мостовые схемы применяют в более мощных блоках. Например, в сварочных инверторах.

Есть и более «серьезные» контроллеры, которые параллельно с работой, проверяют параметры входного и выходного напряжения и, при неисправностях, просто блокируют свою работу. Так как в импульсном блоке питания этот компонент, обычно, самый дорогой, это очень неплохо. Заменив неисправные детали (обычно резисторы или конденсаторы), получаем рабочий агрегат.

Силовой трансформатор

Узел трансформатора на блоке питания является одним из самых стабильных. В этом блоке содержится небольшая группа элементов которая нейтрализует выброс тока, который возникает на обмотках трансформатора при смене полярностей.

Эта группа называется «снаббер».

Рассматриваемый блок обведен красным, а снаббер — зеленым

Трансформатор — один из самых надежных элементов. В нем очень редко возникают проблемы. Он может повредиться при пробое инвертора. В этом случае через обмотку течет слишком высокий ток, который и выводит из строя трансформатор.

Схема блока силового трансформатора для ИИП

Работает все это следующим образом:

  • На первом такте работы импульсного источника питания открыт ключ ВТ1 (полевой транзистор с индуцированным каналом n-типа). Ток течет через первичную обмотку трансформатора, заряд накапливается в сердечнике.
  • На втором такте ключ закрывается, ток течет во вторичной обмотке через диод VD2.
  • При переключении на первичной обмотке возникает выброс, который вызван неидеальностью деталей. Тут в работу вступает снаббер. Его задача поглотить этот выброс, так как напряжение может быть достаточно большим и может повредить ключевой транзистор, что приведет к неработоспособности схемы. Ток выброса течет через первичную обмотку трансформатора, диод VD1, через сопротивление R1 и емкость C2.
  • Далее полярность снова меняется, вступает в работу ключ ВТ1.

Номиналы выбираются исходя из параметров трансформатора. Подбор сложный, так что описывать его не имеет смысла. И еще: не во всех схемах есть снаббер, но его наличие увеличивает надежность и стабильность работы импульсного источника питания.

Несколько слов о диодах, которые используют в снабберах. Это может быть обычный диод, подобранный по параметрам, но более надежны схемы со стабилитроном. Еще может быть вариант без резистора и емкости, но с включенным навстречу супрессором (на схеме ниже).

 

Супрессор — это защитный диод, принцип работы похож на стабилитрон, вот только выравнивается импульсный ток и рассеиваемая мощность. Может быть несимметричный и симметричным.

Выходной выпрямитель и фильтр, стабилизатор

Наиболее простой и дешевый способ стабилизации используется в дешевых блоках питания — обратная связь на пассивных элементах. На схеме ниже, это два резистора R6 и R7, подключенные к вспомогательной обмотке силового трансформатора. Не слишком надежно, потому что есть влияние между обмотками, но просто и недорого.

Простой способ стабилизации

Второй вариант стабилизатора выходного напряжения сделан на стабилизаторе VD9 и оптроне HL1. Выходное напряжение складывается из падения на стабилитроне и напряжения на оптроне. Это чуть более надежная схема для ИИП средней мощности.

Стабилизация выхода ИИП при помощи стабилитрона и оптрона

Наиболее стабильные выходные показатели имеют схемы ИИП со стабилизатором  TL431.

TL431 — интегральная схема трёхвыводного регулируемого параллельного стабилизатора напряжения с улучшенной температурной стабильностью. С внешним делителем TL431 способна стабилизировать напряжения от 2,5 до 36 В при токах до 100 мА.

ИБП с использованием микросхемы TL431 более сложные, но надежные. В таких схемах может быть подстроечный переменный резистор, который позволяет изменять выходное напряжение в небольших пределах. Обычно подстройка составляет не более 20%, так как в противном случае схема может быть нестабильной.

Схема со стабильным напряжением на выходе

Если подстройка выходного напряжения не нужна, лучше подстроечный резистор заменить обычным, так как переменные менее надежны.

Понравилась статья? Расскажите друзьям: Оцените статью, для нас это очень важно:

Проголосовавших: 3 чел.
Средний рейтинг: 3.7 из 5.

Мощный блок питания из трансформатора микроволновки своими руками

Этот мастер-класс буден немного противоречив и вызовет не одно разрозненное мнение. Я хочу поделиться тем, как сделать из трансформатора микроволной печи мощный выпрямитель - блок питания, на необходимое мне напряжение.
Очень часто микроволновки выходят из строя и выбрасываются на помойку. У меня сломалась недавно ещё одна и я решил дать вторую жизнь её трансформатору.
Трансформатор там повышающий и обычно преобразует 220 В в высокое напряжение 2000-2500 В, необходимое для возбуждения магнетрона.
Я видел как много людей переделывают данные трансформаторы либо под аппарат для контактной сварки, либо аппарат для дуговой сварки. Но никогда не видел чтобы из него делали мощные блоки питания.
Ведь трансформатор очень мощный, порядка 900 Вт, а это не мало. Вообщем я покажу вам как перемотать трансформатор под необходимое для вас напряжение.

Разбираем трансформатор от микроволновой печи



Обычно трансформатор микроволновки содержит три обмотки. Самая многочисленная, намотанная самым тонким проводом - это повышающая, вторичная, на выходе у которой 2000-2500 В. Она нам не нужна, мы ее удалим. Вторая обмотка, более толстая, с меньшим количеством проволоки по сравнению с вторичкой - это сетевая обмотка на 220 В. Ещё, между этими двумя массивными обмотками, есть самая маленькая, которая состоит из нескольких витков провода. Это низковольтовая обмотка примерно на 6-15 В, выдающее напряжение на накал магнетрона.

Срезаем швы магнитопровода



Необходимо спилить швы, удерживающие между собой «Ш»-образные пластины и «I»-образные. Швы китайского производителя на так крепки как кажутся. Спилить их можно болгаркой или вообще расколоть зубилом с молоткам. Я использовал болгарку, это гуманный способ.

Снимаем катушки




Снимаем все катушки. Если они очень крепко засели - постучите аккуратно резиновым молотком. Нам пригодиться только обмотка на 220 В, остальные удаляем. Ставим обратно первичную обмотку на 220 В и помещаем её вниз «Ш»-образного сердечника.

Расчет вторичной обмотки


Теперь нам необходимо рассчитать количество витков вторичной обмотки. Для этого нужно узнать коэффициент трансформации. Обычно, в таких трансформаторах он равен единице, следовательно один виток провода будет выдавать один вольт. Но это не всегда так и нужно это перепроверить.
Берем любой провод и наматываем 10 витков провода на сердечник. Затем собираем сердечник и зажимаем его струбциной, чтобы он не развалился. Обязательно через предохранитель подаем 220 В на первичную обмотку. А в это время замеряем напряжение на выходе 10 -ти витковой обмотки. В теории должно быть 10 В. Если нет, значит коэффициент трансформации не такой как обычно и вам нужно производить расчеты для вычисления напряжения для вашей обмотки. Все это не сложно, математика пятый класс.
У меня имеется в наличии два трансформатора. Один я буду делать на 500 В, другой на 36 В. Вы же можете сделать на любое другое напряжение.

Намотка катушки трансформатора на 500 В


Коэффициент трансформации у моего экземпляра один к одному. И чтобы намотать обмотку на 500 В мне нужно соответственно сделать 500 витков провода на катушке. Берем провод.

Конечно не такой, а смотанный на барабане. Прикидываем силу тока и объем катушки. Из этих значений выбираем диаметр провода.

Вот такое простенькое приспособление я собрал для намотки катушки. Сам сердечник из дерева, боковины из оргстекла. Закрепить его можно на дрель или шуруповерт.

Намотал, собрал, подключил. Замеряю выходное напряжение, почти попал - 513 В, что для меня приемлемо.

Трансформатор на 36 В


Обмотку на 36 В можно намотать и вручную, взяв соответствующий провод. Чтобы одеть и распрямить обмотку на сердечнике можно использовать такие клинья, смотрите фото.

После того как обмотка вся натянется, в образовавшиеся отверстия, после снятия клиньев положите плотно спрессованную бумагу. Это мой примитивный способ. Обмотку потом рекомендую пропитать эпоксидкой, иначе будет сильно гудеть.

Работа над ошибками


Я перемотал обмотку, чтобы сделать её более плотной и мощной. Для этого я намотал её двойным проводом, вместо одного толстого. В конце я их соединю.

После того как все обмотки закреплены, пришло время собрать сердечник трансформатора. Для этого закрепляем всю конструкцию струбциной и свариваем дуговой сваркой те же места что и были раньше. Делать толстый шов не нужно, все должно выглядеть как и было.
Далее, для моего выпрямителя мне понадобятся:


Я буду нагружать выпрямитель на 20 А, естественно диодный мост нужно установить на радиатор.
Так же, если вы будете использовать металлический корпус как и я, то не забудьте его заземлить.

О безопасности


Будьте осторожный при подключении трансформатора, никогда не торопитесь и все дважды проверяйте. Подключайте трансформатор только через предохранитель, чтобы избежать возможного замыкания цепи. Не дотрагивайтесь до токоведущих частей во время работы трансформатора.
Также при обработке металла обязательно будьте внимательны и используйте средства защиты органов зрения.
Помните, что все действия вы делаете на свой страх и риск!
Всего доброго!
Original article in English

Как перемотать трансформатор из блока питания ПК

Перед тем как начать перемотку трансформатора, его нужно разобрать. О простом методе разборки импульсного трансформатора из блока питания ПК можно прочитать тут.

Итак, разобрали трансформатор. Далее нужно нам разобраться для чего или подо что мы будем перематывать импульсный трансформатор.

Можно перемотать трансформатор для самого блока питания ПК, делается это для того, чтобы повысить выходное напряжение, при переделке БП ПК в регулируемый. В данном случае можно первичную обмотку оставить родной. Чаще всего, первичная обмотка импульсных трансформаторов из БП ПК разделена на две части. То есть, сначала мотается половина первичной обмотки, потом мотаются вторичные обмотки и сверху мотается вторая половина первичной обмотки. Так же, первичные полуобмотки могут иметь экран, в виде медной фольги.

Так вот, разматывая родные вторичные обмотки, можно посчитать количество витков, далее перемотать вторичную обмотку уже на несколько витков больше и восстановить верхнюю половину первичной обмотки. Тем самым мы сэкономим лакированный провод.

Лично я при переделке блоков питания ПК в регулируемый перематываю первичную и вторичную обмотки с нуля, пересчитывая их в программе Lite-CalcIT. При новом расчете следует учесть тот факт, что частота ШИМ у блоков питания ПК 30-36 кГц.

Приведу пример расчета и намотки импульсного трансформатора на сердечнике от БП ПК.

Скачиваем и запускаем программу Lite-CalcIT. Вбиваем  нужные нам напряжения и диаметры обмоточных проводов. Также указываем схему преобразования и схему выпрямления. Частота преобразования в моем случае 50 кГц, если трансформатор рассчитывается для переделки БП ПК в регулируемый, то следует указать частоту преобразования 30 кГц, иначе из-за малого количества витков, сердечник войдет в насыщение и по первичной обмотке начнет протекать очень большой ток холостого хода.

Вторичных обмотки будет две, с отводом от середины. Номинальное напряжение указывается для одной обмотки. В моем расчете номинальное напряжение стоит 32 Вольта, это значит, что после выпрямления, относительно среднего вывода мы получим +32 Вольта и -32 Вольта. Так как я рассчитываю трансформатор под импульсный источник питания УНЧ, то мне нужно двухполярное питание +-32 Вольта, соответственно схема выпрямления указана двухполярной, со средней точкой.

Если рассчитывать трансформатор под переделку БП ПК, то ничего в программе менять не нужно, за исключением частоты (30 кГц), то есть будем иметь также две вторичных обмотки.  Единственное, что изменится, это схема выпрямления, она будет однополярная со средней точкой.

Далее указываем габариты и другие параметры сердечника, добытого из БП ПК.

Ничего в расчете сложного нет.  В ходе него я получил следующие параметры:

- Число витков первичной обмотки 38;

-Число витков вторичной обмотки  10+10 двумя жилами указанного провода.

Начинаем мотать транс.

38 Витков первичной обмотки в один слой не влезут на мой каркас, поэтому мотать  буду в два слоя по 18 витков.

Подпаиваем к контакту провод и мотаем 18 витков,  один к другому.  Если смотреть на каркас сверху, то мотаю по часовой стрелке все обмотки.

Далее кладу слой изоляции. Изоляцию использую, какая есть, либо лавсановая пленка из ненужных обрезков витой пары, либо скотч.

После чего, не меняя направления, мотаем к основанию каркаса еще 18 витков, один к другому. Припаиваем контакт.

Кладем изоляцию. Все, первичка готова.

Пример намотки первичной обмотки на частоту 30 кГц.

По расчетам я получил количество витков первичной обмотки, равное 48.  В первый слой я положил 35 витков.

Далее слой изоляции и остальные 13 витков, равномерно расположенных по всей длине каркаса.

Изолируем первичную обмотку от вторичной.

 

P.S. Если в один слой не влезает расчетное количество витков, то можно разделить на две равные половины, или мотать в один слой такое количество витков, которое влезет на всю длину каркаса. Остальное количество витков, которое не влезло, распределяем равномерно по всей длине каркаса сердечника.

Мотаем вторичную обмотку импульсного трансформатора.

Подпаиваем два провода к выводу нашего транса от БП ПК.

Мотаем в ту же сторону, что и первичную обмотку (в моем случае по часовой стрелке), 10 витков.

Оставляем хвост и изолируем.

 

Далее подпаиваем еще два провода к другим контактам.

Мотаем еще 10 витков, но уже в противоположную сторону предыдущей обмотки.

Оставляем хвост.

Теперь давайте разберемся, если нам отвод от середины не был бы нужен, то мы мотали бы от основания до верха по часовой стрелке 10 витков, потом слой изоляции, и далее в том же направлении еще 10 витков до основания каркаса.

В принципе можно и с отводом от середины так мотать, кому как удобней короче.

P.S. Обмотки должны быть намотаны, как можно симметрично и равномерно распределены по каркасу. Если полуобмотки получаться несимметричными, то будет разное напряжение в плечах.

Едем дальше. Опять изолируем вторичку, хотя крайнюю обмотку можно не изолировать, так лучше проходит охлаждение трансформатора.

Косу, которая получилась, перед  скручиванием необходимо зачистить от лака. Далее скрутить и залудить. При желании можно надеть термоусадку.


Похожие статьи

Драйвер и импульсный блок питания. Отличия, принцип работы. Что лучше выбрать?

Многие довольно часто путают блоки питания и драйвера, подключая светодиоды и светодиодные ленты не от тех источников что нужно.

В итоге через небольшой промежуток времени они выходят из строя, а вы и не подозреваете в чем была причина и начинаете ошибочно грешить на «некачественного» производителя.

Рассмотрим подробнее в чем их отличия и когда нужно применять тот или иной источник питания. Но для начала кратко разберемся в типах блоков питания.

Трансформаторный блок

Сегодня уже довольно редко можно встретить применение трансформаторного БП. Схема их сборки и работы довольно проста и понятна.

Самый главный элемент здесь, безусловно трансформатор. В домашних условиях он преобразует напряжение 220В в напряжение 12 или 24В. То есть, идет прямое преобразование одного напряжения в другое.

Частота сети при этом, привычные нам всем 50 Герц.

Далее за ним стоит выпрямитель. Он выпрямляет синусоиду переменного напряжения и на выходе выдает «постоянку». То есть 12В, подаваемые к потребителю, это уже постоянное напряжение 12V, а не переменное.

У такой схемы 3 главных достоинства:

  • незамысловатость конструкции
  • относительная надежность

Однако есть здесь и недостатки, которые заставили разработчиков задуматься и придумать что-то более современное.

  • во-первых это большой вес и приличные габариты
  • как следствие первого недостатка - большой расход металла на сборку всей конструкции
  • ну и ухудшает все дело низкий косинус фи и низкий КПД

Именно поэтому и были изобретены импульсные источники питания. Здесь уже несколько иной принцип работы.

Импульсные блоки питания

Во-первых, выпрямление напряжения происходит сразу же. То есть, подается на вход переменно 220В и тут же на входе преобразуется в постоянное 220V.

Далее стоит генератор импульсов. Главная его задача - создать искусственно переменное напряжение с очень большой частотой. В несколько десятков или даже сотен килогерц (от 30 до 150кГц). Сравните это с привычными нам 50 Гц в домашних розетках.

Кстати за счет такой огромной частоты, мы практически не слышим гул импульсных трансформаторов. Объясняется это тем, что человеческое ухо способно различать звук до 20кГц, не более.

Третий элемент в схеме - импульсный трансформатор. Он по форме и конструкции напоминает обычный. Однако главное его отличие - это маленькие габаритные размеры.

Это как раз таки и достигается за счет высокой частоты.

Из этих трех элементов самым главным является генератор импульсов. Без него, не было бы такого относительно маленького блока питания.

Преимущества импульсных блоков:

  • маленькая цена, если конечно сравнивать по мощности его, и такой же блок собранный на обычном трансформаторе
  • напряжение питания можно подавать в большом разбросе
  • при качественном производителе блока питания, у импульсных ИБП более высокий косинус фи

Есть и недостатки:

  • усложненность сборочной схемы
  • сложная конструкция
  • если вам попался не качественный импульсный блок, то он будет выдавать в сеть кучу высокочастотных помех, которые будут влиять на работу остального оборудования
Проще говоря, блок питания что обычный, что импульсный - это устройство у которого на выходе строго одно напряжение. Его конечно можно "подкрутить", но в не больших диапазонах.

Для светодиодных же светильников такие блоки не подойдут. Поэтому для их питания используются драйверы.

В чем отличия драйвера от блока питания

Почему же для светодиодов нельзя применять простой БП, и для чего нужен именно драйвер?

Драйвер - это устройство похожее на блок питания.

Однако, как только в него подключаешь нагрузку, он заставляет стабилизироваться на одном уровне не напряжение, а ток!

Светодиоды "питаются" электрическим током. Также у них есть такая характеристика, как падение напряжения.

Если вы видите на светодиоде надпись 10мА и 2,7В, то это означает, что максимально допустимый ток для него 10мА, не более.

При протекании тока такой величины, на светодиоде потеряется 2,7 Вольт. Именно потеряется, а не требуется для работы. Добьетесь стабилизации тока и светодиод будет работать долго и ярко.

Более того, светодиод - это полупроводник. И сопротивление этого полупроводника зависит от напряжения, которое на него подано. Изменяется сопротивление по графику - вольтамперной характеристике.

Если на нее посмотреть, то становится видно, даже если вы не намного увеличите или уменьшите напряжение, это резко, в разы изменит величину тока.

Причем зависимость не прямо пропорциональная. 

Казалось бы, один раз выставь точное напряжение и можно получить номинальный ток, который необходим для светодиода. При этом, он не будет превышать предельные величины. Вроде бы и обычный блок с этим должен справиться.

Однако у всех светодиодов уникальные параметры и характеристики. При одном и том же напряжении они могут "кушать" разный ток.

Мало того, эти параметры еще способны меняться при изменении окружающей температуры.

А температурный диапазон работы светодиодных светильников очень большой.
Например, зимой на улице может быть -30 градусов, а летом уже все +40. И это в одном и том же месте.

Поэтому, если вы такие светильники подключите от обычного импульсного блока питания, а не от драйвера, то режим их работы будет абсолютно не предсказуем.

Работать они конечно будут, но в каком режиме светоотдачи и насколько долго неизвестно. Заканчивается такая работа всегда одинаково - выгоранием светодиода.

Кстати, при превышении температуры световой поток у светодиодных светильников всегда падает, даже у тех, которые подключены через драйвер. У некачественных экземпляров световой поток падает очень сильно, стоит им поработать около часа и нагреться.

У качественных изделий световой поток с нагревом уменьшается слабо, но все же уменьшается.

Поэтому каждому светильнику после запуска, нужно дать время, чтобы он вышел на свой рабочий режим и световой поток стабилизировался. Его изменение должно быть не более 10% от начального.

Многие недобросовестные производители хитрят и измеряют эти параметры сразу после включения, когда поток еще максимальный.

Если вам нужно соединить несколько светодиодов, то подключаются они последовательно. Это необходимо, чтобы через все элементы, несмотря на их разные ВАХ (вольт-амперные характеристики), протекал один и тот же ток.

А уже эту последовательную цепочку подключают к драйверу. Данные цепочки можно комбинировать различными способами. Создавать последовательно-параллельные или гибридные схемы.

Недостатки драйверов

Безусловно и у драйверов есть свои неоспоримые недостатки:

  • во-первых они рассчитаны только на определенный ток и мощность 

А это значит, что для каждого драйвера каждый раз придется подбирать определенное количество светодиодов. Если один из них случайно выйдет из строя в процессе работы, то драйвер весь ток запустит на оставшиеся.

Что приведет к их перегреву и последующему выгоранию. То есть потеря одного светодиода влечет за собой поломку всей цепочки.

Бывают и универсальные модели драйверов, для них не важно количество светодиодов, главное чтобы их общая мощность не превышала допустимую. Но они гораздо дороже.

  • узкоспециализированность на светодиодах 

Простые блоки питания можно использовать для разных нужд, везде где необходимы 12В и более, например для систем видеонаблюдения.

Основное же предназначение драйверов - это светодиоды.

А есть бездрайверные заводские светильники? Есть. Не так давно на рынке появилось немало таких Led светильников и прожекторов.

Однако энергоэффективность у них не очень высокая, на уровне обычных люминесцентных ламп. И как он поведет себя при возможных перепадах параметров в наших сетях, большой вопрос.

Светодиодные ленты — подключение от блока питания или драйвера?

Отдельный вопрос это светодиодные ленты. Для них вовсе не нужны драйвера, и как известно они подключаются от привычных нам блоков питания 12-36 Вольт.

Казалось бы в чем подвох? Там же тоже стоят светодиоды.

А дело в том, что драйвер уже автоматически присутствует в самой ленте.

Все вы видели на светодиодных лентах впаянные сопротивления (резисторы).

Они как раз таки и отвечают за ограничение тока до номинальной величины. Одно сопротивление устанавливается на три последовательно подключенных светодиода.

Такие участки ленты, рассчитанные на напряжение 12 Вольт называют кластерами. Эти отдельные кластеры на всем протяжении ленты подключены между собой в параллель.

И именно благодаря такому параллельному соединению, на все светодиоды подается одинаковое напряжение 12В. Благодаря кластеризации при монтаже низковольтной ленты, ее спокойно можно отрезать на мелкие кусочки, состоящие минимум из 3-х светодиодов.

Казалось бы, решение найдено и где здесь недостаток? А главный недостаток такого устройства - эти резисторы не проделывают никакой полезной работы.

Они лишь дополнительно нагревают окружающее пространство и сам светодиод возле него. Именно поэтому светодиодные ленты не светят так ярко, как нам хотелось бы. Вследствие чего, их используют лишь как дополнительный свет интерьера.

Сравните 60-70 люмен/ватт у светодиодных лент, против 120-140 лм/вт у светильников и решений на основе драйверов.

Возникает вопрос, а можно ли найти ленту без сопротивлений и подключить к ней драйвер отдельно? Да, такие устройства например применяют в светодиодных панелях.

Их часто монтируют в подвесном потолке и не только. Применяются они без сопротивлений. Еще их называют токовыми светодиодными линейками.

Именно токовыми. Здесь все отдельные участки линеек подключаются последовательно на один драйвер. И все прекрасно работает.

Блок питания для радиостанции | Трансивер.ру

После выбора достаточно мощной автомобильной радиостанции, которую пользователь предполагает использовать в качестве настольной, непременно возникает вопрос, к какому блоку питания ее подключить?

Вначале не станем рассматривать какой-то конкретный источник питания, а обозначим принципиальные различия между различными классами блоков питания, доступными для приобретения на рынке этих устройств.

Трансформаторные блоки питания

Трансформаторный класс блоков питания англоязычные иностранцы называют “линейным источником питания” – Linear Power Supplies. Этот класс устройств намного тяжелее, чем импульсные блоки питания, поскольку они используют большие трансформаторы для преобразования входного сетевого напряжения переменного тока в требуемое более низкое переменное напряжение (АС). Получаемый результат затем обрабатывается с помощью ряда выпрямителей, фильтров, стабилизаторов и защитных устройств, и в итоге на выходе получаем очень чистое постоянное напряжение (DC), без каких либо помех и пульсаций. Эти устройства в основном используются в звуковых системах высокого класса (Hi-Fi и Hi-End), испытательном оборудовании и любых других устройствах, которым нужно чистое и не зашумленное напряжение постоянного тока. Но из-за их размера и веса эти блоки питания могут быть показаться вам громоздкими.

Импульсные блоки питания

Этот класс источников питания появился на рынке предложений около четырех десятилетий назад и на сегодняшний день являются наиболее популярным, как среди предложений, так и среди выбора покупателей. И это не удивительно, поскольку разработчикам этих устройств удалось свести шум, создаваемый этими источниками, к минимуму. Причем это равнозначно относится как к акустическому шуму, создаваемому вентилятором охлаждения, так и к зашумленности выходного напряжения. Как и прежде, сегодня, одним из наиболее распространенных направлений применения для этого класса, является компьютерные блоки питания.

Для сравнения, типовой трансформаторный источник питания с максимальной нагрузкой на выходе до 5 А, весит чуть больше двух килограмм из-за тяжелых трансформаторов, а импульсный источник питания на 25-30 А имеет примерно сопоставимый вес. Еще одно преимущество современных качественных импульсных источников питания заключается в том, что они меньше греются при нагрузках, близких к максимальным значениям.

В свое время использование импульсных блоков питания для радиостанций считалось неприемлемым из-за генерируемого ими высокочастотного и низкочастотного шума. Тем не менее у тех блоков питания этого типа, что предлагаются для использования совместно с радиостанциями, эти шумы сведены до минимума. К тому же, многие из импульсных источников питания имеют опцию, называемую «смещение помехи» (noise offset). То есть, если на определенной частоте обнаружена помеха, создаваемая импульсным источником питания, ее можно вручную сдвинуть вверх или вниз по частоте.

В предложениях на рынке имеются немало совсем небольших импульсных блоков питания, внешне похожих на блоки зарядки для ноутбуков, которые я не берусь рекомендовать для работы с приемопередатчиками. Эти импульсные источники питания обычно обеспечивают номинальное напряжение 12,6 В при токе потребления до 3 А. например, при использовании этого блока питания с радиостанцией Leixen VV898, с выходной мощностью 10 Вт, ток потребления составил чуть более 1 А в режиме передачи. То есть для применения с трансиверами с низким энергопотреблением он работает вполне нормально. Однако, когда подключили к нему радиостанцию с выходной мощностью 25 Вт, то, как и ожидалось, напряжение просело и радиостанция выдала на выходе 11 Вт, потому как при этой мощности значение тока потребления составляет чуть более 4 А. Также для подобных случаев очень важно, что при наличии перегрузок блока питания вполне возможен выход из строя последнего. Конечно же можно ограничить выходную мощность радиостанции установив в меню ее настроек более низкое значение выходной мощности, но я все же рекомендую потратиться на более мощный источник питания (5 А, но более желателен БП на 10 А), обеспечив тем самым бесперебойную работу комплекта радиостанция-блок питания, и избавиться от риска выхода из строя блок питания или даже радиостанции…

В качестве мощного кабеля, подключаемого к винтовым клеммам блока питания, следует использовать кабель с сечением равным максимальному току или даже несколько выше, с запасом. При токе потребления до 25…30 А для подключения к разъему клеммной группы вполне допустимо использовать качественные штыревые разъемы с подпружиненными контактами.

И в завершение рассмотрим десяток устройств из предлагаемых для использования совместно с радиостанциями:

 

Блок питания MFJ-4103

  • Тип: Импульсный
  • Выходное напряжение: 13,8 В DC
  • Максимально допустимые значения выходного тока:
    длительный режим – до 2,0 А
    кратковременное максимальное значение – до 2,9 А
  • Сетевое напряжение: 110…240 В 50 Гц
  • Размеры: 105х66х35 мм
  • Вес: 0,28 кг

Блок питания Optim PS-10

  • Тип: Трансформаторный
  • Выходное напряжение: 13,8 В DC
  • Максимально допустимые значения выходного тока:
    длительный режим – до 8 А
    кратковременное максимальное значение – до 10 А
  • Сетевое напряжение: 220 В 50 Гц
  • Размеры: 140x110x250 мм
  • Вес: 4 кг

Блок питания RM LPS 120S

  • Тип: Трансформаторный
  • Выходное напряжение: 5…15 В DC
  • Максимально допустимые значения выходного тока:
    длительный режим – до 14 А
    кратковременное максимальное значение – до 20 A
  • Сетевое напряжение: 220 В 50 Гц
  • Размеры: 170x283x115 мм
  • Вес: 4.9 кг

Блок питания Kenwood PS-60

  • Тип: Импульсный
  • Выходное напряжение: 13.8 В DC
  • Максимально допустимые значения выходного тока:
    длительный режим – до 20 А
    кратковременное максимальное значение – до 25 А
  • Сетевое напряжение: 100-240 В 50 Гц
  • Размеры: 176х109х228 мм
  • Вес: 2.5 кг

Блок питания ICOM PS-126

  • Тип: Импульсный
  • Выходное напряжение: 13.8 В DC
  • Максимально допустимые значения выходного тока:
    длительный режим – до 20 А
    кратковременное максимальное значение – до 25 А
  • Сетевое напряжение: 220 В 50 Гц
  • Размеры: 94x111x287 мм
  • Вес: 3 кг

Блок питания Optim DM-30

  • Тип: Импульсный
  • Выходное напряжение:
    9…15 В DC (разъем автомобильного прикуривателя с током до 10А)
    9…15В DC (задние клеммы, до 30 А)
  • Максимально допустимые значения выходного тока:
    длительный режим – до 25 А
    кратковременное максимальное значение – до 30 А
  • Сетевое напряжение: 220 В 50 Гц
  • Размеры: 190x69x181 мм
  • Вес: 2,3 кг

Блок питания Diamond GSV-3000

  • Тип: Трансформаторный
  • Выходное напряжение: 5…15 В DC
  • Максимально допустимые значения выходного тока:
    длительный режим – до 28 А
    кратковременное максимальное значение – до 34 А
  • Сетевое напряжение: 240 В 50 Гц
  • Размеры: 250х150х240 мм
  • Вес: 10 кг

Блок питания Alinco DM-340MV

  • Тип: Трансформаторный
  • Выходное напряжение:
    13,8 В DC (разъемы до 6 А, до 10 А и до 35А)
    1…15 В DC (разъем до 6 А)
  • Максимально допустимые значения выходного тока:
    длительный режим – до 30 А
    кратковременное максимальное значение – до 35 А
  • Сетевое напряжение: 220 В 50 Гц
  • Размеры: 235x153x230 мм
  • Вес: 9,4 кг

 

Блок питания Alinco DM-330FX

  • Тип: Импульсный
  • Выходное напряжение:
    5 В DC (2 USB-порта с током др 2А)
    13,8 (разъем автомобильного прикуривателя с током до 10А)
    9…15В DC (задние клеммы, до 35 А)
  • Максимально допустимые значения выходного тока:
    длительный режим – до 30 А
    кратковременное максимальное значение – до 35 А
  • Сетевое напряжение: 250 В 50 Гц
  • Размеры:190x69x181 мм
  • Вес: 2,5 кг

Блок питания MFJ-4275MVX

  • Тип: Импульсный
  • Выходное напряжение:
    4…16В DC (разъем автомобильного прикуривателя с током до 10А)
    4…16В DC (2 передних зажима, до 10 А)
    4…16В DC для зарядки аккумуляторов (задние клеммы, до 20 А)
    4…16В DC (передние клеммы, до 40 А)
    4…16В DC (передние клеммы, до 75 А)
  • Максимально допустимые значения выходного тока:
    длительный режим – до 70 А
    кратковременное максимальное значение – до 75 А
  • Сетевое напряжение: 220 В 50 Гц
  • Размеры: 255 х 280 х 155 мм
  • Вес: 4.8 кг

Что же выбрать? Устройство с минимумом излишеств и бюджетной ценой или с большей мощностью, с запасом на будущее, с возможностью регулировок и различными уже сформированными типами подключений?

Я не возьмусь советовать, что либо из этого, как и твердо настаивать на выборе какого либо одного из классов источников питания – трансформаторного или импульсного, поскольку при принятии окончательного решения вам придется самим подумать об этом.

Facebook

Twitter

Вконтакте

Одноклассники

Pinterest

Автор публикации

0

QTH - г. Донецк, ДНР.

Комментарии: 10Публикации: 1013Регистрация: 11-08-2015Замечания по проектированию источника питания

- MCI Transformer Corporation

Базовое руководство по применению источника питания

Используются четыре основных типа блоков питания:

  • Нерегулируемый линейный
  • Регулируемый линейный
  • Феррорезонанс
  • Режим переключения

Различия между четырьмя типами включают постоянное выходное напряжение, экономическую эффективность, размер, вес и колебания. В этом руководстве объясняется каждый тип источника питания, описывается принцип работы и выделяются преимущества и недостатки каждого из них.

1. Нерегулируемый линейный источник питания

Нерегулируемые источники питания содержат четыре основных компонента: трансформатор, выпрямитель, конденсатор фильтра и резистор утечки.

Блок питания этого типа из-за своей простоты является наименее дорогостоящим и наиболее надежным для требований низкого энергопотребления. Недостаток в том, что выходное напряжение непостоянно. Оно будет варьироваться в зависимости от входного напряжения и тока нагрузки, и пульсации не подходят для электронных приложений.Пульсации можно уменьшить, заменив конденсатор фильтра на фильтр IC (индуктор-конденсатор), но стоимость этого изменения сделает использование регулируемого линейного источника питания более экономичным.

2. Регулируемый линейный источник питания

Стабилизированный линейный источник питания идентичен нерегулируемому линейному источнику питания, за исключением того, что вместо спускного резистора используется трехконтактный стабилизатор.

Регулируемый линейный источник питания решает все проблемы нерегулируемого источника питания, но не так эффективен, потому что трехконтактный регулятор будет рассеивать избыточную мощность в виде тепла, которое должно быть учтено в конструкции источника питания.Выходное напряжение имеет незначительные пульсации, очень маленькую регулировку нагрузки и высокую надежность, что делает его идеальным выбором для использования в маломощных электронных устройствах.

3. Источники питания феррорезонансные

Феррорезонансный источник питания очень похож на нерегулируемый источник питания, за исключением характеристик феррорезонансного трансформатора.

Феррорезонансный трансформатор будет обеспечивать постоянное выходное напряжение в широком диапазоне входного напряжения трансформатора.Проблемы с использованием феррорезонансного источника питания заключаются в том, что он очень чувствителен к незначительным изменениям в частоте сети и не может быть переключен с 50 Гц на 60 Гц, и что трансформаторы рассеивают больше тепла, чем обычные трансформаторы. Эти источники питания тяжелее и будут иметь более слышимый шум от резонанса трансформатора, чем регулируемые линейные источники питания.

4. Импульсные источники питания

Импульсный источник питания включает выпрямитель, конденсатор фильтра, последовательный транзистор, регулятор, трансформатор, но он более сложен, чем другие источники питания, которые мы обсуждали.Схема ниже представляет собой простую блок-схему и не отображает все компоненты источника питания.

Переменное напряжение выпрямляется до нерегулируемого постоянного напряжения с помощью последовательного транзистора и регулятора. Этот постоянный ток прерывается до постоянного высокочастотного напряжения, что позволяет резко уменьшить размер трансформатора и позволяет использовать источник питания гораздо меньшего размера. Недостатки этого типа источника питания состоят в том, что все трансформаторы должны изготавливаться по индивидуальному заказу, а сложность источника питания не подходит для низкопроизводительных или экономичных приложений с низким энергопотреблением.


Выпрямительные схемы для регулируемых линейных источников питания

Исходя из нашего предыдущего описания, регулируемый линейный источник питания является наиболее экономичной конструкцией с низким энергопотреблением, низким уровнем пульсаций и низким уровнем регулирования, который подходит для электронных приложений. В этом разделе мы объясним четыре основных используемых схемы выпрямления:

      • Полуволна
      • Полноволновой центральный отвод
      • Полноволновой мост
      • Двойное дополнение

1.Полуволновые схемы

Так как конденсаторный входной фильтр потребляет ток из схемы выпрямления только короткими импульсами, частота импульсов вдвое меньше, чем у двухполупериодной схемы, поэтому пиковый ток этих импульсов настолько велик, что эту схему не рекомендуется использовать для Мощность постоянного тока более 1/2 Вт.

2. Полноволновые схемы с центральным ответвлением

Двухполупериодный выпрямитель одновременно использует только половину обмотки трансформатора.Номинальный вторичный ток трансформатора должен в 1,2 раза превышать постоянный ток источника питания. Напряжение вторичной обмотки трансформатора должно быть примерно в 0,8 раза больше напряжения постоянного тока нерегулируемого источника питания на каждую сторону центрального ответвления, или трансформатор должно быть в 1,6 раза больше напряжения постоянного тока на центральном ответвлении.

3. Полноволновой мост

Двухполупериодная мостовая схема выпрямления является наиболее рентабельной, поскольку для нее требуется трансформатор с более низким номиналом в ВА, чем двухполупериодный выпрямитель.В двухполупериодном мосте вся вторичная обмотка трансформатора используется в каждом полупериоде, в отличие от двухполупериодного центрального отвода, который использует только половину вторичной обмотки в каждом полупериоде. Номинальный вторичный ток трансформатора должен в 1,8 раза превышать постоянный ток источника питания. Напряжение вторичной обмотки трансформатора должно быть примерно в 0,8 раза больше постоянного напряжения нерегулируемого источника питания.

4. Двойной дополнительный выпрямитель

Двойной дополнительный выпрямитель используется для питания положительного и отрицательного выходного постоянного тока.

Трансформаторы | RS Components

У нас есть большой ассортимент электрических трансформаторов.Вы можете выбрать монтаж на печатной плате, тороидальный монтаж, монтаж на шасси или на DIN-рейку. Также вы можете найти на нашем сайте серию предохранительных трансформаторов и трансформаторы на 110 В. Они доступны от таких брендов, как Block, EPCOS, Wurth Elektronik и нашего собственного RS PRO.

Что такое трансформатор?

Трансформатор - это электрическое устройство, которое передает электричество из одной цепи в другую, изменяя магнитное поле. Они используются в жилых и промышленных помещениях.

Какие типы трансформаторов доступны?

Мы предлагаем ряд типов трансформаторов:

  • Аудио: для увеличения и уменьшения напряжения в усилителях и высокочастотных звуковых и голосовых схемах
  • Автотрансформатор: также известный как понижающий трансформатор, они маленькие, дешевые и легкие из-за наличия только одной катушки в отличие от катушек с вторичной обмоткой
  • Монтаж на шасси: поставляются разных размеров с отверстиями для монтажа на шасси
  • Трансформаторы тока: измеряет ток другой цепи
  • Монтаж на DIN-рейку и панель: возможность установки на плоскую поверхность, панель или DIN-рейку через монтажные отверстия
  • LAN Ethernet: изоляция и преобразование сигнала для передачи и правильного приема напряжения через Ethernet
  • Освещение: трансформаторы, специально разработанные для работы с освещением, чаще всего диммерные переключатели
  • PCB: трансформаторы на печатных платах управляют движением напряжения или тока через h плата
  • Место безопасности: обеспечение защиты трансформаторов за счет отключения источника питания от сети минимизация ударов и перегрузок
  • Импульсный источник питания (SMPS): используется в основном в ПК для переключения с переменного или постоянного тока на постоянный ток
  • Телекоммуникации: изоляция по напряжению перед передачей для использования в домах
  • Тороидальный: трансформаторы в форме кольца или бублика
  • Трансформаторы для настенного монтажа: для использования во взрывоопасных зонах или в суровых промышленных условиях

У нас также есть ряд симуляторов для микросхем и трансформаторных линий, формирователи катушек, монтажные комплекты, крышки клеммников, ферритовые сердечники, а также вариационные щетки, циферблаты и ручки разъемов.

Каков срок службы электрических трансформаторов?

У них нет движущихся частей, но они находятся под постоянным напряжением от вибрации и температуры, расширяясь и сжимаясь 60 раз в секунду. Независимо от этого, они часто могут длиться десятилетиями.

Трансформаторы силовые | MPJA.COM

Категории
Close Outs!

Еженедельная распродажа

Новые продукты

Ардуино

Raspberry Pi

Электронные корпуса и боксы

Кабель, шнуры и провода

Химическая промышленность, электроника

Компоненты электронные

Разъемы

Компьютерные аксессуары

Модули охлаждения термоэлектрические Пельтье

Счетчики и таймеры

Электронные комплекты

Вентиляторы осевые

Предохранители электронные

Радиаторы

Термоусадочные трубки

ЖК-дисплеи

Светодиодные фонарики

Светодиодные и Светодиодные Дисплеи

Лазеры и линзы

Магниты

Электронные двигатели и компоненты

Панельные счетчики и измерительные шунты

Печатные платы

Шнуры питания

Блоки питания

19 "стоечные системы

Реле - Power

Паяльное оборудование

Колонки и сирены

Шаговые двигатели и драйверы

Переключатели электронные

Телефон

Испытательное оборудование электронное

Термостаты цифровые

Инструменты электронные

Трансформаторы Силовые

УФ лампы

Клапаны и цилиндр

Видео, видеонаблюдение и безопасность

Уникальные предметы

Еженедельный флаер
Сортировать по Цена низкая-> высокая Цена высокая-> низкая Название A-> Z Название Z-> A Код товара A-> Z Код товара Z-> A Популярность Самые популярные

Силовые трансформаторы, перечисленные на нашем веб-сайте, - это те трансформаторы, которые вы найдете и используете в электронном оборудовании, а не те, которые используются местной энергетической компанией.Силовой трансформатор представляет собой две или более катушек проволоки, намотанных вокруг общего стального сердечника и используемых для изменения более высокого напряжения на более низкое, от более низкого к более высокому или того и другого и обеспечения изоляции. Для установки в корпусе со встроенной вилкой переменного тока и клеммных колодок низкого напряжения, используемых в системах сигнализации и т. Д., Обратитесь в наш отдел поставки вилок. Наши силовые трансформаторы рассчитаны на работу от сети 120/240 В, 47-63 Гц (AKA 110/220 В). Силовые трансформаторы имеют несколько различных номиналов; на VA (вольт-ампер), VAR (вольт-ампер-реактивный) и W (ватт).Самый распространенный рейтинг - VA. В простых схемах VAR близок к нулю, W и VA будут почти равны; поэтому трансформатор 12 В / 24 ВА может иметь номинальную мощность примерно 24 Вт или 12 В при токе 2 А. Чем меньше трансформатор, тем большую роль играют внутреннее сопротивление и КПД. Силовой трансформатор мощностью менее 30 ВА может иметь потери 20-30% без нагрузки до полной нагрузки, поэтому вы рассчитываете соответствующий трансформатор и никогда не используйте его на максимальной мощности. Линия считается подключенной к входной стороне или первичной обмотке.Затем результат называется вторичным. Силовые трансформаторы могут иметь несколько обмоток. Обычным является двойная первичная обмотка, где у вас есть 2 обмотки, это позволяет вам подключать их параллельно для использования 110–120 В или последовательно для 220–240 В переменного тока. Первичная обмотка также может быть обмоткой с отводом, где обмотка представляет собой одну обмотку с дополнительными соединениями, доступными для регулировки для линии высокого / низкого напряжения или для 110/220 В. Также распространена вторичная обмотка с несколькими обмотками, которая обеспечивает изолированные обмотки для нескольких цепей, таких как питание +12 В и -24 В.Обмотки могут быть идентичными, чтобы их можно было соединять параллельно при 2-кратном токе или последовательно при 2-кратном напряжении. Технические характеристики обычно указаны как: 12/24 В при 4/2 А, что означает 12 В при 4 А параллельно или 24 В при 2 А серии. Место соединения последовательного соединения можно использовать в качестве центрального ответвителя (CT). В некоторых трансформаторах соединение является внутренним, поэтому параллельное соединение обмоток невозможно. Они указаны как 12-0-12, что означает 24 В по всей обмотке или 12 между концом и центральным ответвлением (CT). Вторичная обмотка силового трансформатора может быть подключена к схеме выпрямителя, чтобы обеспечить нам импульсный выход постоянного тока.Добавив конденсатор, можно сгладить пульсации. Это исходное постоянное напряжение зависит от номинала вторичной обмотки и типа используемой схемы фильтрации и выпрямления. Схема выпрямителя / фильтра влияет на вторичный и выходной ток, и они могут сильно отличаться. Двухполупериодный центральный ответвитель, входной фильтр с конденсатором: вторичный ток силового трансформатора равен 1,2 X требуемых выходных ампер. Требуется 2 выпрямителя. Это одна из наиболее часто используемых схем. Для двухполупериодного мостового входного фильтра: вторичный ток силового трансформатора равен 1.8 X требуемых выходных ампер. Требуется 4 выпрямителя. Это также один из наиболее часто используемых. Двухполупериодный входной фильтр с центральным ответвлением: вторичный ток силового трансформатора составляет 0,7 X требуемых выходных ампер. Для входного фильтра с двухполупериодным мостовым дросселем: вторичный ток силового трансформатора равен требуемому выходному току. Для источника питания 2 А потребуется трансформатор номиналом 2 X 1,8 = минимальный номинальный вторичный ток 3,6 А. Силовые трансформаторы, переменные трансформаторыНаши силовые трансформаторы по правильной цене! Каждому настольному компьютеру нужен трансформатор переменного тока, когда вам нужно переменное напряжение источника.Силовые трансформаторы, переменные трансформаторы

Узнать больше ...


LGB G Scale Trains Источники питания и трансформаторы

Ваша валюта: USDEURJPYBGNCZKDKKGBPHUFPLNRONSEKCHFNOKHRKRUBTRYAUDBRLCADCNYHKDIDRINRKRWMXNMYRNZDPHPSGDTHBZARILS

Вид продукта: ImagesList

Сортировать по: Число: от самого низкого до самого высокого Число: от самого высокого до самого низкого Цена: от самого низкого до самого высокого Цена: от самого высокого до самого низкого Шкала: от самого низкого до самого высокого Масштаб: от самого высокого к самому низкому

Категория: Проволока

Номер: 50131

Масштаб: G

Категория: Источники питания и трансформаторы

Номер: 51079

Масштаб: G

Категория: Источники питания и трансформаторы

Номер: 51099

Масштаб: G

Категория: Источники питания и трансформаторы

Номер: 52120

Масштаб: G

Категория: Источники питания и трансформаторы

Номер: 52121

Масштаб: G

Категория: Источники питания и трансформаторы

Номер: 55017

Масштаб: G

Категория: Источники питания и трансформаторы

Номер: 55057

Масштаб: G

Категория: Источники питания и трансформаторы

Номер: 55068

Масштаб: G

Категория: Источники питания и трансформаторы

Номер: 55429

Масштаб: G

Категория: Системы стартера DCC

Номер: 60175

Масштаб: G

Категория: Системы стартера DCC

Номер: 60195

Масштаб: G

Категория: Системы стартера DCC

Номер: 60226

Масштаб: G

Категория: Декодеры / Аксессуары DCC

Номер: 60881

Масштаб: G

Категория: Декодеры / Аксессуары DCC

Номер: 60882

Масштаб: G

Категория: Источники питания и трансформаторы

Номер: 66367

Масштаб: G

Конструкция импульсных источников питания

Описание Тип блока питания Помогите
Входное напряжение преобразуется в более низкое выходное напряжение. Понижающий преобразователь Помощь с понижающим / понижающим преобразователем
Входное напряжение преобразуется в более высокое выходное напряжение. Повышающий преобразователь Помощь для
Повышающий преобразователь
Входное напряжение преобразуется в отрицательное напряжение. Buck-Boost Преобразователь
Помощь для
Buck-Boost
Несколько изолированных выходных напряжений, до прибл. Возможно 250. Обратный преобразователь Помощь для
Обратный преобразователь
Одно электрически изолированное напряжение, прибл.100 Вт. одиночный транзистор
Прямой преобразователь
Помощь для
одиночный транзистор
Прямой преобразователь
Одно электрически изолированное напряжение, прибл. 1 кВт. Двухтранзисторный
Прямой преобразователь
Помощь для
Двухтранзисторный прямой преобразователь
Одно электрически изолированное напряжение до нескольких кВт. Полумост
Двухтактный преобразователь
Помощь для
Полумост
Двухтактный преобразователь
Одно электрически изолированное напряжение до нескольких кВт. Полный мост
Двухтактный преобразователь
Помощь для
Полный мост
Двухтактный преобразователь
Импульсный источник питания для синусоидального сетевого тока. Предварительный регулятор коэффициента мощности (PFC) Помощь для
Коэффициент мощности
Предварительный регулятор
Расчет индуктора L на макс. ток I. Индуктор
расчет
Помогите с
Индуктор
расчет

Производитель / поставщик трехфазного трансформатора.№1 в Великобритании среди трансформаторов

Первый выбор для сетевых и трехфазных трансформаторов

AM Transformers - это британские производители трансформаторов и дистрибьюторы качественной трансформаторной продукции.

Изготовлено в соответствии с международными и британскими стандартами безопасности.
Сверхбыстрая отправка и поставка 3-фазных трансформаторов и других трансформаторов.
Услуги по проектированию и производству трансформаторов на заказ.
Бесплатная техническая поддержка опытных специалистов по всем нашим продуктам.
Консультации и рекомендации по отраслевым решениям в ряде отраслей.

Мы можем поставить трансформаторы широкого спектра типов в любых количествах. Подходит для самых разных целей. Если вы не уверены, какой тип трансформатора лучше всего подходит для ваших нужд, наш технический отдел будет рад посоветовать вам наиболее подходящий тип трансформатора, соответствующий вашим требованиям. .

Мы можем предоставить однофазные трансформаторы и трехфазные трансформаторы, инкапсулированные трансформаторы, трансформаторы большой мощности, индивидуально разработанные трансформаторы, тороидальные трансформаторы, коммуникационные и модемные трансформаторы, звуковые трансформаторы, адаптеры переменного / постоянного тока, адаптеры переменного / переменного тока, преобразователи постоянного / постоянного тока, шасси монтаж трансформаторов, трансформаторов для печатных плат, индукторов и дросселей.Этот список можно продолжить. Более подробное руководство по нашему ассортименту трансформаторов можно найти на страницах, посвященных нашей продукции.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *