Транзистор картинки. Транзисторы: виды, устройство, применение и основные характеристики

Что такое транзистор и как он работает. Какие бывают типы транзисторов. Как выглядят транзисторы разных видов. Где применяются транзисторы в электронике. Какими основными параметрами характеризуются транзисторы.

Содержание

История создания и значение транзистора

Транзистор — это полупроводниковый прибор, который произвел настоящую революцию в электронике. Первый работающий транзистор был создан в 1947 году учеными Уолтером Браттейном, Джоном Бардином и Уильямом Шокли. Несмотря на свой непрезентабельный внешний вид, это изобретение открыло новую эру в развитии электроники.

Транзистор стал первым твердотельным устройством, способным усиливать, генерировать и преобразовывать электрические сигналы. В отличие от электронных ламп, транзисторы не имеют подверженных вибрации частей и обладают компактными размерами. Это сделало их крайне привлекательными для применения в электронных схемах.

Основные типы транзисторов

Транзисторы делятся на два основных класса:


  • Биполярные транзисторы
  • Полевые транзисторы (униполярные)

Основой обоих типов является полупроводниковый материал. Наиболее распространенные материалы для производства транзисторов:

  • Кремний
  • Германий
  • Арсенид галлия (GaAs)

Кремниевые транзисторы получили наибольшее распространение благодаря своим характеристикам. Однако с развитием технологий появляются и новые перспективные материалы.

Биполярные транзисторы

Биполярные транзисторы бывают двух типов проводимости:

  • n-p-n — транзисторы обратной проводимости
  • p-n-p — транзисторы прямой проводимости

Биполярный транзистор имеет три электрода:

  • Эмиттер (E)
  • База (B)
  • Коллектор (C)

Принцип работы биполярного транзистора основан на взаимодействии двух p-n переходов. Небольшие изменения тока базы вызывают значительные изменения тока коллектора, что обеспечивает усиление сигнала.

Полевые транзисторы

Полевые транзисторы бывают:

  • С каналом n-типа
  • С каналом p-типа

По типу затвора полевые транзисторы делятся на:

  • С изолированным затвором (IGBT)
  • С p-n переходом в качестве затвора

IGBT-транзисторы в свою очередь бывают:


  • Со встроенным каналом
  • С индуцированным каналом

Принцип работы полевого транзистора основан на управлении проводимостью канала с помощью электрического поля. Это обеспечивает очень высокое входное сопротивление.

Обозначение транзисторов на схемах

На принципиальных схемах транзисторы обозначаются следующим образом:

  • Биполярные n-p-n: стрелка на эмиттере направлена от базы
  • Биполярные p-n-p: стрелка на эмиттере направлена к базе
  • Полевые с каналом n-типа: стрелка на затворе направлена к каналу
  • Полевые с каналом p-типа: стрелка на затворе направлена от канала

Обозначения выводов:

  • E или Э — эмиттер
  • B или Б — база
  • C или К — коллектор
  • S или И — исток
  • D или С — сток
  • G или З — затвор

Основные характеристики транзисторов

Ключевые параметры транзисторов включают:

  • Максимальное напряжение коллектор-эмиттер (для биполярных) или сток-исток (для полевых)
  • Максимальный ток коллектора/стока
  • Коэффициент усиления по току (для биполярных)
  • Крутизна характеристики (для полевых)
  • Граничная частота усиления
  • Максимальная рассеиваемая мощность
  • Входная и выходная емкость

Эти параметры определяют возможности применения транзистора в различных схемах.


Режимы работы транзисторов

Транзисторы могут работать в двух основных режимах:

  1. Ключевой режим — транзистор либо полностью открыт, либо полностью закрыт. Используется для управления мощными нагрузками.
  2. Усилительный (динамический) режим — небольшие изменения входного сигнала вызывают значительные изменения выходного. Применяется для усиления сигналов.

Выбор режима зависит от конкретного применения транзистора в схеме.

Примеры популярных транзисторов

2N3055 — биполярный n-p-n транзистор

Характеристики:

  • Корпус TO-3
  • Максимальное напряжение коллектор-эмиттер: 70 В
  • Максимальный ток коллектора: 15 А
  • Коэффициент усиления: 15-70
  • Граничная частота: 3 МГц

Применяется в выходных каскадах мощных усилителей звука, инверторах.

KT315 — маломощный биполярный n-p-n транзистор

Характеристики:

  • Корпус KT-13 или TO-92
  • Максимальное напряжение коллектор-эмиттер: 60 В
  • Максимальный ток коллектора: 100 мА
  • Коэффициент усиления: до 350
  • Граничная частота: не менее 250 МГц

Широко применяется в маломощных схемах в ключевом и усилительном режимах.


IRF3205 — мощный полевой n-канальный MOSFET

Характеристики:

  • Корпус TO-220
  • Максимальное напряжение сток-исток: 55 В
  • Максимальный ток стока: 75 А
  • Сопротивление открытого канала: 8 мОм
  • Емкость затвора: 3250 пФ

Используется в силовых ключах высокочастотных преобразователей, инверторах.

Применение транзисторов в электронике

Благодаря своим уникальным свойствам транзисторы нашли широчайшее применение в электронике:

  • Усилители сигналов (аудио, радио, видео)
  • Генераторы сигналов
  • Стабилизаторы напряжения
  • Преобразователи уровней сигналов
  • Ключевые элементы в цифровых схемах
  • Силовые ключи в импульсных источниках питания
  • Инверторы напряжения
  • Регуляторы мощности

Транзисторы являются основой большинства современных интегральных микросхем, что позволило создать компактную и энергоэффективную электронику.

Рекомендации по эксплуатации транзисторов

Для обеспечения надежной работы транзисторов следует соблюдать ряд правил:

  • Не допускать превышения предельно допустимых электрических нагрузок
  • Обеспечивать эффективный теплоотвод для мощных транзисторов
  • Защищать от перенапряжений с помощью быстродействующих диодов
  • Соблюдать температурный режим при монтаже и эксплуатации
  • Использовать транзисторы с запасом по мощности и другим параметрам
  • При необходимости применять параллельное включение транзисторов для увеличения мощности

Соблюдение этих рекомендаций позволит обеспечить длительную и надежную работу электронных устройств на транзисторах.



Как выглядят транзисторы фото — Инженер ПТО

Внешний вид и обозначение транзистора на схемах

На фото справа вы видите первый работающий транзистор, который был создан в 1947 году тремя учёными – Уолтером Браттейном, Джоном Бардином и Уильямом Шокли.

Несмотря на то, что первый транзистор имел не очень презентабельный вид, это не помешало ему произвести революцию в радиоэлектронике.

Трудно предположить, какой бы была нынешняя цивилизация, если бы транзистор не был изобретён.

Транзистор является первым твёрдотельным устройством, способным усиливать, генерировать и преобразовывать электрический сигнал. Он не имеет подверженных вибрации частей, обладает компактными размерами. Это делает его очень привлекательным для применения в электронике.

Это было маленькое вступление, а теперь давайте разберёмся более подробно в том, что же представляет собой транзистор.

Сперва стоит напомнить о том, что транзисторы делятся на два больших класса. К первому относятся так называемые биполярные, а ко второму – полевые (они же униполярные). Основой как полевых, так и биполярных транзисторов является полупроводник. Основной же материал для производства полупроводников — это германий и кремний, а также соединение галлия и мышьяка — арсенид галлия (

GaAs).

Стоит отметить, что наибольшее распространение получили транзисторы на основе кремния, хотя и этот факт может вскоре пошатнуться, так как развитие технологий идёт непрерывно.

Так уж случилось, но вначале развития полупроводниковой технологии лидирующее место занял биполярный транзистор. Но не многие знают, что первоначально ставка делалась на создание полевого транзистора. Он был доведён до ума уже позднее. О полевых MOSFET-транзисторах читайте здесь.

Не будем вдаваться в подробное описание устройства транзистора на физическом уровне, а сперва узнаем, как же он обозначается на принципиальных схемах. Для новичков в электронике это очень важно.

Для начала, нужно сказать, что биполярные транзисторы могут быть двух разных структур.

Это структура P-N-P и N-P-N. Пока не будем вдаваться в теорию, просто запомните, что биполярный транзистор может иметь либо структуру P-N-P, либо N-P-N.

На принципиальных схемах биполярные транзисторы обозначаются вот так.

Как видим, на рисунке изображены два условных графических обозначения. Если стрелка внутри круга направлена к центральной черте, то это транзистор с P-N-P структурой. Если же стрелка направлена наружу – то он имеет структуру N-P-N.

Маленький совет.

Чтобы не запоминать условное обозначение, и сходу определять тип проводимости (p-n-p или n-p-n) биполярного транзистора, можно применять такую аналогию.

Сначала смотрим, куда указывает стрелка на условном изображении. Далее представляем, что мы идём по направлению стрелки, и, если упираемся в «стенку» – вертикальную черту – то, значит, «Прохода Нет»! «Нет» – значит p-n-p (П-

Н-П ).

Ну, а если идём, и не упираемся в «стенку», то на схеме показан транзистор структуры n-p-n. Похожую аналогию можно использовать и в отношении полевых транзисторов при определении типа канала (n или p). Про обозначение разных полевых транзисторов на схеме читайте тут.

Обычно, дискретный, то есть отдельный транзистор имеет три вывода. Раньше его даже называли полупроводниковым триодом. Иногда у него может быть и четыре вывода, но четвёртый служит для подключения металлического корпуса к общему проводу. Он является экранирующим и не связан с другими выводами. Также один из выводов, обычно это коллектор (о нём речь пойдёт далее), может иметь форму фланца для крепления к охлаждающему радиатору или быть частью металлического корпуса.

Вот взгляните. На фото показаны различные транзисторы ещё советского производства, а также начала 90-ых.

А вот это уже современный импорт.

Каждый из выводов транзистора имеет своё назначение и название: база, эмиттер и коллектор.

Обычно эти названия сокращают и пишут просто Б (База), Э (Эмиттер), К (Коллектор). На зарубежных схемах вывод коллектора помечают буквой C, это от слова Collector — «сборщик» (глагол Collect — «собирать»). Вывод базы помечают как B, от слова Base (от англ. Base — «основной»). Это управляющий электрод. Ну, а вывод эмиттера обозначают буквой E, от слова Emitter — «эмитент» или «источник выбросов». В данном случае эмиттер служит источником электронов, так сказать, поставщиком.

В электронную схему выводы транзисторов нужно впаивать, строго соблюдая цоколёвку. То есть вывод коллектора запаивается именно в ту часть схемы, куда он должен быть подключен. Нельзя вместо вывода базы впаять вывод коллектора или эмиттера. Иначе не будет работать схема.

Как узнать, где на принципиальной схеме у транзистора коллектор, а где эмиттер? Всё просто. Тот вывод, который со стрелкой – это всегда эмиттер. Тот, что нарисован перпендикулярно (под углом в 90 0 ) к центральной черте – это вывод базы. А тот, что остался – это коллектор.

Также на принципиальных схемах транзистор помечается символом VT или Q. В старых советских книгах по электронике можно встретить обозначение в виде буквы V или T. Далее указывается порядковый номер транзистора в схеме, например, Q505 или VT33. Стоит учитывать, что буквами VT и Q обозначаются не только биполярные транзисторы, но и полевые в том числе.

Далее узнаем, как найти транзисторы на печатной плате электронного прибора.

В реальной электронике транзисторы легко спутать с другими электронными компонентами, например, симисторами, тиристорами, интегральными стабилизаторами, так как те имеют такие же корпуса. Особенно легко запутаться, когда на электронном компоненте нанесена неизвестная маркировка.

В таком случае нужно знать, что на многих печатных платах производится разметка позиционирования и указывается тип элемента. Это так называемая шелкография. Так на печатной плате рядом с деталью может быть написано Q305. Это значит, что этот элемент транзистор и его порядковый номер в принципиальной схеме – 305. Также бывает, что рядом с выводами указывается название электрода транзистора. Так, если рядом с выводом есть буква E, то это эмиттерный электрод транзистора. Таким образом, можно чисто визуально определить, что же установлено на плате – транзистор или совсем другой элемент.

Как уже говорилось, это утверждение справедливо не только для биполярных транзисторов, но и для полевых. Поэтому, после определения типа элемента, необходимо уточнять класс транзистора (биполярный или полевой) по маркировке, нанесённой на его корпус.


Полевой транзистор FR5305 на печатной плате прибора. Рядом указан тип элемента — VT

Любой транзистор имеет свой типономинал или маркировку. Пример маркировки: КТ814. По ней можно узнать все параметры элемента. Как правило, они указаны в даташите (datasheet). Он же справочный лист или техническая документация. Также могут быть транзисторы этой же серии, но чуть с другими электрическими параметрами. Тогда название содержит дополнительные символы в конце, или, реже, в начале маркировки. (например, букву А или Г).

Зачем так заморачиваться со всякими дополнительными обозначениями? Дело в том, что в процессе производства очень сложно достичь одинаковых характеристик у всех транзисторов. Всегда есть определённое, пусть и, небольшое, но отличие в параметрах. Поэтому их делят на группы (или модификации).

Строго говоря, параметры транзисторов разных партий могут довольно существенно различаться. Особенно это было заметно ранее, когда технология их массового производства только оттачивалась.

Внешний вид и обозначение транзистора на схемах

На фото справа вы видите первый работающий транзистор, который был создан в 1947 году тремя учёными – Уолтером Браттейном, Джоном Бардином и Уильямом Шокли.

Несмотря на то, что первый транзистор имел не очень презентабельный вид, это не помешало ему произвести революцию в радиоэлектронике.

Трудно предположить, какой бы была нынешняя цивилизация, если бы транзистор не был изобретён.

Транзистор является первым твёрдотельным устройством, способным усиливать, генерировать и преобразовывать электрический сигнал. Он не имеет подверженных вибрации частей, обладает компактными размерами. Это делает его очень привлекательным для применения в электронике.

Это было маленькое вступление, а теперь давайте разберёмся более подробно в том, что же представляет собой транзистор.

Сперва стоит напомнить о том, что транзисторы делятся на два больших класса. К первому относятся так называемые биполярные, а ко второму – полевые (они же униполярные). Основой как полевых, так и биполярных транзисторов является полупроводник. Основной же материал для производства полупроводников — это германий и кремний, а также соединение галлия и мышьяка — арсенид галлия (GaAs).

Стоит отметить, что наибольшее распространение получили транзисторы на основе кремния, хотя и этот факт может вскоре пошатнуться, так как развитие технологий идёт непрерывно.

Так уж случилось, но вначале развития полупроводниковой технологии лидирующее место занял биполярный транзистор. Но не многие знают, что первоначально ставка делалась на создание полевого транзистора. Он был доведён до ума уже позднее. О полевых MOSFET-транзисторах читайте здесь.

Не будем вдаваться в подробное описание устройства транзистора на физическом уровне, а сперва узнаем, как же он обозначается на принципиальных схемах. Для новичков в электронике это очень важно.

Для начала, нужно сказать, что биполярные транзисторы могут быть двух разных структур. Это структура P-N-P и N-P-N. Пока не будем вдаваться в теорию, просто запомните, что биполярный транзистор может иметь либо структуру P-N-P, либо N-P-N.

На принципиальных схемах биполярные транзисторы обозначаются вот так.

Как видим, на рисунке изображены два условных графических обозначения. Если стрелка внутри круга направлена к центральной черте, то это транзистор с P-N-P структурой. Если же стрелка направлена наружу – то он имеет структуру N-P-N.

Маленький совет.

Чтобы не запоминать условное обозначение, и сходу определять тип проводимости (p-n-p или n-p-n) биполярного транзистора, можно применять такую аналогию.

Сначала смотрим, куда указывает стрелка на условном изображении. Далее представляем, что мы идём по направлению стрелки, и, если упираемся в «стенку» – вертикальную черту – то, значит, «Прохода Нет»! «Нет» – значит p-n-p (П-Н-П ).

Ну, а если идём, и не упираемся в «стенку», то на схеме показан транзистор структуры n-p-n. Похожую аналогию можно использовать и в отношении полевых транзисторов при определении типа канала (n или p). Про обозначение разных полевых транзисторов на схеме читайте тут.

Обычно, дискретный, то есть отдельный транзистор имеет три вывода. Раньше его даже называли полупроводниковым триодом. Иногда у него может быть и четыре вывода, но четвёртый служит для подключения металлического корпуса к общему проводу. Он является экранирующим и не связан с другими выводами. Также один из выводов, обычно это коллектор (о нём речь пойдёт далее), может иметь форму фланца для крепления к охлаждающему радиатору или быть частью металлического корпуса.

Вот взгляните. На фото показаны различные транзисторы ещё советского производства, а также начала 90-ых.

А вот это уже современный импорт.

Каждый из выводов транзистора имеет своё назначение и название: база, эмиттер и коллектор. Обычно эти названия сокращают и пишут просто Б (База), Э (Эмиттер), К (Коллектор). На зарубежных схемах вывод коллектора помечают буквой C, это от слова Collector — «сборщик» (глагол Collect — «собирать»). Вывод базы помечают как B, от слова Base (от англ. Base — «основной»). Это управляющий электрод. Ну, а вывод эмиттера обозначают буквой E, от слова Emitter — «эмитент» или «источник выбросов». В данном случае эмиттер служит источником электронов, так сказать, поставщиком.

В электронную схему выводы транзисторов нужно впаивать, строго соблюдая цоколёвку. То есть вывод коллектора запаивается именно в ту часть схемы, куда он должен быть подключен. Нельзя вместо вывода базы впаять вывод коллектора или эмиттера. Иначе не будет работать схема.

Как узнать, где на принципиальной схеме у транзистора коллектор, а где эмиттер? Всё просто. Тот вывод, который со стрелкой – это всегда эмиттер. Тот, что нарисован перпендикулярно (под углом в 90 0 ) к центральной черте – это вывод базы. А тот, что остался – это коллектор.

Также на принципиальных схемах транзистор помечается символом VT или Q. В старых советских книгах по электронике можно встретить обозначение в виде буквы V или T. Далее указывается порядковый номер транзистора в схеме, например, Q505 или VT33. Стоит учитывать, что буквами VT и Q обозначаются не только биполярные транзисторы, но и полевые в том числе.

Далее узнаем, как найти транзисторы на печатной плате электронного прибора.

В реальной электронике транзисторы легко спутать с другими электронными компонентами, например, симисторами, тиристорами, интегральными стабилизаторами, так как те имеют такие же корпуса. Особенно легко запутаться, когда на электронном компоненте нанесена неизвестная маркировка.

В таком случае нужно знать, что на многих печатных платах производится разметка позиционирования и указывается тип элемента. Это так называемая шелкография. Так на печатной плате рядом с деталью может быть написано Q305. Это значит, что этот элемент транзистор и его порядковый номер в принципиальной схеме – 305. Также бывает, что рядом с выводами указывается название электрода транзистора. Так, если рядом с выводом есть буква E, то это эмиттерный электрод транзистора. Таким образом, можно чисто визуально определить, что же установлено на плате – транзистор или совсем другой элемент.

Как уже говорилось, это утверждение справедливо не только для биполярных транзисторов, но и для полевых. Поэтому, после определения типа элемента, необходимо уточнять класс транзистора (биполярный или полевой) по маркировке, нанесённой на его корпус.


Полевой транзистор FR5305 на печатной плате прибора. Рядом указан тип элемента — VT

Любой транзистор имеет свой типономинал или маркировку. Пример маркировки: КТ814. По ней можно узнать все параметры элемента. Как правило, они указаны в даташите (datasheet). Он же справочный лист или техническая документация. Также могут быть транзисторы этой же серии, но чуть с другими электрическими параметрами. Тогда название содержит дополнительные символы в конце, или, реже, в начале маркировки. (например, букву А или Г).

Зачем так заморачиваться со всякими дополнительными обозначениями? Дело в том, что в процессе производства очень сложно достичь одинаковых характеристик у всех транзисторов. Всегда есть определённое, пусть и, небольшое, но отличие в параметрах. Поэтому их делят на группы (или модификации).

Строго говоря, параметры транзисторов разных партий могут довольно существенно различаться. Особенно это было заметно ранее, когда технология их массового производства только оттачивалась.

Здравствуйте, дорогие читатели. В данной статье рассмотрим виды транзисторов и область их применения. И так…

Транзистор, это радиоэлектронный компонент из полупроводникового материала, обычно с тремя выводами, способный от небольшого входного сигнала управлять значительным током в выходной цепи. Это позволяет использовать его для усиления, генерирования, коммутации и преобразования электрических сигналов. В настоящее время транзистор является основой схемотехники подавляющего большинства электронных устройств и интегральных микросхем.

Виды транзисторов

О том что такое транзистор, читайте в статье «Что означает слово транзистор? Назначение и устройство.» Здесь лишь отметим, в большинстве применений транзисторы заменили собой вакуумные лампы, свершилась настоящая кремниевая революция в создании интегральных микросхем. Так, сегодня в аналоговой технике чаще используют биполярные транзисторы, а в цифровой технике — преимущественно полевые.

Устройство и принцип действия полевых и биполярных транзисторов — это так же темы отдельных статей, поэтому останавливаться на данных тонкостях не будем, а рассмотрим предмет с чисто практической точки зрения на конкретных примерах.

Полевые и биполярные транзисторы

По технологии изготовления транзисторы подразделяются на два типа: полевые и биполярные. Биполярные в свою очередь делятся по проводимости на n-p-n – транзисторы обратной проводимости, и p-n-p – транзисторы прямой проводимости. Полевые транзисторы бывают, соответственно, с каналом n-типа и p-типа. Затвор полевого транзистора может быть изолированным (IGBT-транзисторы) или в виде p-n-перехода. IGBT-транзисторы бывают со встроенным каналом или с индуцированным каналом.

Виды транзисторов, p –n–p и n–p–n проводимость

Области применения транзисторов определяются их характеристиками, а работать транзисторы могут в двух режимах: в ключевом или в усилительном. В первом случае транзистор в процессе работы или полностью открыт или полностью закрыт, что позволяет управлять питанием значительных нагрузок, используя малый ток для управления. А в усилительном, или по-другому — в динамическом режиме, используется свойство транзистора изменять выходной сигнал при малом изменении входного, управляющего сигнала. Далее рассмотрим примеры различных транзисторов.

2N3055 – биполярный n-p-n-транзистор в корпусе ТО-3

Популярен в качестве элемента выходных каскадов высококачественных звуковых усилителей, где он работает в динамическом режиме. Как правило, используется совместно с комплементарным p-n-p собратом MJ2955. Данный транзистор может работать и в ключевом режиме, например в трансформаторных НЧ инверторах 12 на 220 вольт 50 Гц, пара 2n3055 управляет двухтактным преобразователем.

Примечательно, что напряжение коллектор-эмиттер для данного транзистора в процессе работы может достигать 70 вольт, а ток 15 ампер. Корпус ТО-3 позволяет удобно закрепить его на радиатор в случае необходимости. Статический коэффициент передачи тока — от 15 до 70, этого достаточно для эффективного управления даже мощными нагрузками, при том, что база транзистора выдерживает ток до 7 ампер. Данный транзистор может работать на частотах до 3 МГц.

КТ315 — легенда среди отечественных биполярных транзисторов малой мощности

Данный транзистор n-p-n – типа впервые увидел свет 1967 году, и по сей день пользуется популярностью в радиолюбительской среде. Комплементарной парой к нему является КТ361. Идеален для динамических и ключевых режимов в схемах малой мощности.

При максимально допустимом напряжении коллектор-эмиттер 60 вольт, этот высокочастотный транзистор способен пропускать через себя ток до 100 мА, а граничная частота у него не менее 250 МГц. Коэффициент передачи тока достигает 350, при том, что ток базы ограничен 50 мА.

Изначально транзистор выпускался только в пластмассовом корпусе KT-13, 7 мм в ширину и 6 мм высотой, но в последнее время можно его встретить и в корпусе ТО-92.

КП501 — полевой n-канальный транзистор малой мощности с изолированным затвором

Имеет обогащенный n-канал, сопротивление которого составляет от 10 до 15 Ом, в зависимости от модификации (А,Б,В). Предназначен данный транзистор, как его позиционирует производитель, для использования в аппаратуре связи, в телефонных аппаратах и другой радиоэлектронной аппаратуре.

Этот транзистор можно назвать сигнальным. Небольшой корпус ТО-92, максимальное напряжение сток-исток — до 240 вольт, максимальный ток стока — до 180 мА. Емкость затвора менее 100 пф. Особенно примечательно то, что пороговое напряжение затвора составляет от 1 до 3 вольт, что позволяет реализовать управление с очень-очень малыми затратами. Идеален в качестве преобразователя уровней сигналов.

irf3205 – n-канальный полевой транзистор, изготовленный по технологии HEXFET

Популярен в качестве силового ключа для повышающих высокочастотных инверторов, например автомобильных. Посредством параллельного включения нескольких корпусов представляется возможность построения преобразователей, рассчитанных на значительные токи.

Максимальный ток для одного такого транзистора достигает 75А (ограничение вносит конструкция корпуса ТО-220), а максимальное напряжение сток-исток составляет 55 вольт. Сопротивление канала при этом всего 8 мОм. Емкость затвора в 3250 пф требует применения мощного драйвера для управления на высоких частотах, но сегодня это не является проблемой.

FGA25N120ANTD мощный биполярный транзистор с изолированным затвором (IGBT-транзистор)

Способен выдержать напряжение сток-исток 1200 вольт, максимальный ток стока составляет 50 ампер. Особенность изготовления современных IGBT-транзисторов такого уровня позволяет отнести их к классу высоковольтных.

Область применения — силовые преобразователи инверторного типа, такие как индукционные нагреватели, сварочные аппараты и другие высокочастотные преобразователи, рассчитанные на питание высоким напряжением. Идеален для мощных мостовых и полумостовых резонансных преобразователей, а также для работы в условиях жесткого переключения, имеется встроенный высокоскоростной диод.

Рекомендации по эксплуатации транзисторов

Значения большинства параметров транзисторов зависят от реального режима работы и температуры, причем с увеличением температуры параметры транзисторов могут меняться. В справочнике приведены, как правило, типовые (усредненные) зависимости параметров транзисторов от тока, напряжения, температуры, частоты и т. п.

Для обеспечения надежной работы транзисторов необходимо принимать меры, исключающие длительные электрические нагрузки, близкие к предельно допустимым. Например заменять транзистор на аналогичный но меньшей мощности не стоит, это касается не только мощностей, но и других параметров транзистора. В некоторых случаях для увеличения мощности транзисторы можно включать параллельно, когда эмиттер соединяется с эмиттером, коллектор с коллектором и база – с базой. Перегрузки могут быть вызваны разными причинами, например от перенапряжения, для защиты от перенапряжения часто применяют быстродействующие диоды.

Что касается нагрева и перегрева транзисторов, температурный режим транзисторов не только оказывает влияние на значение параметров, но и определяет надежность их эксплуатации. Следует стремиться к тому, чтобы транзистор при работе не перегревался, в выходных каскадах усилителей транзисторы обязательно нужно ставить на большие радиаторы. Защиту транзисторов от перегрева нужно обеспечивать не только во время эксплуатации, но и во время пайки. При лужении и пайке следует принимать меры, исключающие перегрев транзистора, транзисторы во время пайки желательно держать пинцетом, для защиты от перегрева.

Мы рассмотрели здесь только несколько видов транзисторов, и это лишь мизерная часть из обилия моделей электронных компонентов, представленных на рынке сегодня.

Так или иначе, вы с легкостью сможете подобрать подходящий транзистор для своих целей. Документация на них доступна сегодня в сети в виде даташитов, в которых исчерпывающе представлены все характеристики. Типы корпусов современных транзисторов различны, и для одной и той же модели зачастую доступны как SMD исполнение, так и выводное.

Видео, виды транзисторов

Как выглядят транзисторы фото

Внешний вид и обозначение транзистора на схемах

На фото справа вы видите первый работающий транзистор, который был создан в 1947 году тремя учёными – Уолтером Браттейном, Джоном Бардином и Уильямом Шокли.

Несмотря на то, что первый транзистор имел не очень презентабельный вид, это не помешало ему произвести революцию в радиоэлектронике.

Трудно предположить, какой бы была нынешняя цивилизация, если бы транзистор не был изобретён.

Транзистор является первым твёрдотельным устройством, способным усиливать, генерировать и преобразовывать электрический сигнал. Он не имеет подверженных вибрации частей, обладает компактными размерами. Это делает его очень привлекательным для применения в электронике.

Это было маленькое вступление, а теперь давайте разберёмся более подробно в том, что же представляет собой транзистор.

Сперва стоит напомнить о том, что транзисторы делятся на два больших класса. К первому относятся так называемые биполярные, а ко второму – полевые (они же униполярные). Основой как полевых, так и биполярных транзисторов является полупроводник. Основной же материал для производства полупроводников – это германий и кремний, а также соединение галлия и мышьяка – арсенид галлия (GaAs).

Стоит отметить, что наибольшее распространение получили транзисторы на основе кремния, хотя и этот факт может вскоре пошатнуться, так как развитие технологий идёт непрерывно.

Так уж случилось, но вначале развития полупроводниковой технологии лидирующее место занял биполярный транзистор. Но не многие знают, что первоначально ставка делалась на создание полевого транзистора. Он был доведён до ума уже позднее. О полевых MOSFET-транзисторах читайте здесь.

Не будем вдаваться в подробное описание устройства транзистора на физическом уровне, а сперва узнаем, как же он обозначается на принципиальных схемах. Для новичков в электронике это очень важно.

Для начала, нужно сказать, что биполярные транзисторы могут быть двух разных структур. Это структура P-N-P и N-P-N. Пока не будем вдаваться в теорию, просто запомните, что биполярный транзистор может иметь либо структуру P-N-P, либо N-P-N.

На принципиальных схемах биполярные транзисторы обозначаются вот так.

Как видим, на рисунке изображены два условных графических обозначения. Если стрелка внутри круга направлена к центральной черте, то это транзистор с P-N-P структурой. Если же стрелка направлена наружу – то он имеет структуру N-P-N.

Маленький совет.

Чтобы не запоминать условное обозначение, и сходу определять тип проводимости (p-n-p или n-p-n) биполярного транзистора, можно применять такую аналогию.

Сначала смотрим, куда указывает стрелка на условном изображении. Далее представляем, что мы идём по направлению стрелки, и, если упираемся в «стенку» – вертикальную черту – то, значит, «Прохода Нет»! «Нет» – значит p-n-p (П-Н-П ).

Ну, а если идём, и не упираемся в «стенку», то на схеме показан транзистор структуры n-p-n. Похожую аналогию можно использовать и в отношении полевых транзисторов при определении типа канала (n или p). Про обозначение разных полевых транзисторов на схеме читайте тут.

Обычно, дискретный, то есть отдельный транзистор имеет три вывода. Раньше его даже называли полупроводниковым триодом. Иногда у него может быть и четыре вывода, но четвёртый служит для подключения металлического корпуса к общему проводу. Он является экранирующим и не связан с другими выводами. Также один из выводов, обычно это коллектор (о нём речь пойдёт далее), может иметь форму фланца для крепления к охлаждающему радиатору или быть частью металлического корпуса.

Вот взгляните. На фото показаны различные транзисторы ещё советского производства, а также начала 90-ых.

А вот это уже современный импорт.

Каждый из выводов транзистора имеет своё назначение и название: база, эмиттер и коллектор. Обычно эти названия сокращают и пишут просто Б (База), Э (Эмиттер), К (Коллектор). На зарубежных схемах вывод коллектора помечают буквой C, это от слова Collector – «сборщик» (глагол Collect – «собирать»). Вывод базы помечают как B, от слова Base (от англ. Base – «основной»). Это управляющий электрод. Ну, а вывод эмиттера обозначают буквой E, от слова Emitter – «эмитент» или «источник выбросов». В данном случае эмиттер служит источником электронов, так сказать, поставщиком.

В электронную схему выводы транзисторов нужно впаивать, строго соблюдая цоколёвку. То есть вывод коллектора запаивается именно в ту часть схемы, куда он должен быть подключен. Нельзя вместо вывода базы впаять вывод коллектора или эмиттера. Иначе не будет работать схема.

Как узнать, где на принципиальной схеме у транзистора коллектор, а где эмиттер? Всё просто. Тот вывод, который со стрелкой – это всегда эмиттер. Тот, что нарисован перпендикулярно (под углом в 90 0 ) к центральной черте – это вывод базы. А тот, что остался – это коллектор.

Также на принципиальных схемах транзистор помечается символом VT или Q. В старых советских книгах по электронике можно встретить обозначение в виде буквы V или T. Далее указывается порядковый номер транзистора в схеме, например, Q505 или VT33. Стоит учитывать, что буквами VT и Q обозначаются не только биполярные транзисторы, но и полевые в том числе.

Далее узнаем, как найти транзисторы на печатной плате электронного прибора.

В реальной электронике транзисторы легко спутать с другими электронными компонентами, например, симисторами, тиристорами, интегральными стабилизаторами, так как те имеют такие же корпуса. Особенно легко запутаться, когда на электронном компоненте нанесена неизвестная маркировка.

В таком случае нужно знать, что на многих печатных платах производится разметка позиционирования и указывается тип элемента. Это так называемая шелкография. Так на печатной плате рядом с деталью может быть написано Q305. Это значит, что этот элемент транзистор и его порядковый номер в принципиальной схеме – 305. Также бывает, что рядом с выводами указывается название электрода транзистора. Так, если рядом с выводом есть буква E, то это эмиттерный электрод транзистора. Таким образом, можно чисто визуально определить, что же установлено на плате – транзистор или совсем другой элемент.

Как уже говорилось, это утверждение справедливо не только для биполярных транзисторов, но и для полевых. Поэтому, после определения типа элемента, необходимо уточнять класс транзистора (биполярный или полевой) по маркировке, нанесённой на его корпус.


Полевой транзистор FR5305 на печатной плате прибора. Рядом указан тип элемента – VT

Любой транзистор имеет свой типономинал или маркировку. Пример маркировки: КТ814. По ней можно узнать все параметры элемента. Как правило, они указаны в даташите (datasheet). Он же справочный лист или техническая документация. Также могут быть транзисторы этой же серии, но чуть с другими электрическими параметрами. Тогда название содержит дополнительные символы в конце, или, реже, в начале маркировки. (например, букву А или Г).

Зачем так заморачиваться со всякими дополнительными обозначениями? Дело в том, что в процессе производства очень сложно достичь одинаковых характеристик у всех транзисторов. Всегда есть определённое, пусть и, небольшое, но отличие в параметрах. Поэтому их делят на группы (или модификации).

Строго говоря, параметры транзисторов разных партий могут довольно существенно различаться. Особенно это было заметно ранее, когда технология их массового производства только оттачивалась.

В этой статье мы разберем, чем же примечателен этот маленький кусочек кремния, называемый транзистором. Транзисторы, как известно, делятся на 2 вида полевые и биполярные. Изготавливаются они из полупроводниковых материалов, в частности германия и кремния. И полевые и биполярные транзисторы имеют по 3 вывода. На приведенном ниже рисунке мы можем видеть устройство советского биполярного низкочастотного транзистора типа МП39-МП42.

Транзистор в разрезе

На следующем рисунке изображены транзисторы, также выпущенные в советское время, слева небольшой мощности, в центре и справа рассчитанные на среднюю и большую мощность:

Внешний вид советских транзисторов

Рассмотрим схематическое изображение биполярного транзистора:

Структура биполярных транзисторов

Транзисторы по своей структуре делятся на два типа, n-p-n и p-n-p. Как нам известно из предыдущей статьи, диод представляет собой полупроводниковый прибор с p-n переходом способным пропускать ток в прямом включении и не пропускающий в обратном. Транзистор же представляет собой, условно говоря, два диода соединенных либо катодами, либо анодами, что мы и можем видеть на рисунке ниже.

Транзистор как два диода

Кстати, многие отечественные транзисторы в советское время выпускали с некоторым содержанием золота, так что эту деталь можно назвать драгоценной в прямом смысле слова! Подробнее о содержании драгметаллов смотрите тут. Но для радиолюбителей ценность данного радиоэлемента заключается прежде всего в его функциях.

Золото в транзисторах СССР

Приведу ещё несколько фотографий распространённых транзисторов:


Малой мощности




На этих фото изображены выводные транзисторы, которые впаивают в отверстия в печатной плате. Но существуют транзисторы и для поверхностного или SMD монтажа, в таком случае отверстия не сверлятся и детали припаиваются со стороны печати, один из таких транзисторов в корпусе sot-23 изображен на фотографии ниже, рядом на рисунке можно видеть его сравнительные размеры:

Фото SMD транзистор

Какие существуют схемы включения биполярных транзисторов? Прежде всего это схема (к слову сказать самая распространенная) включения с общим эмиттером. Такое включение обеспечивает большое усиление по напряжению и току:

Схема включения с общим коллектором, это дает нам усиление только по току:

Схема с общим коллектором

И схема включения с общей базой, усиление только по напряжению:

Схема с общей базой

Далее приведен практический пример схемы усилителя на одном транзисторе собранного по схеме с общим эмиттером. Наушники для этого усилителя нужно брать высокоомные Тон–2 с сопротивлением обмотки приблизительно 2 кОм.

Пример усилителя по схеме с общим эмиттером

Биполярные транзисторы могут использоваться в ключевом и усилительном режимах. Выше на схеме пример работы транзистора в усилительном режиме. На приведенном ниже рисунке изображена схема включения транзистора в ключевом режиме:

Схема транзистора в ключевом режиме

Существуют транзисторы, действие которых основано на фотоэлектрическом эффекте, называются они фототранзисторы. Они могут быть в исполнении как с выводом от базы, так и без него. Его схематическое изображение на рисунке:

Схематическое изображение фототранзисторов

А так выглядит один из фототранзисторов:

Полевые транзисторы


Строение полевого транзистора

Привожу первый вариант схематического обозначения полевого транзистора:

Схематическое изображение полевого транзистора

На следующем рисунке изображено современное схематическое изображение (второй вариант) полевых транзисторов с изолированным затвором, слева с каналом n–типа и справа с каналом p-типа.

Изображение на схемах полевых транзисторов с изолированным затвором

Определяют какого типа канал следующим образом, если стрелка направлена в сторону канала, то такой транзистор с каналом n–типа, если же стрелка направлена в обратную, то p-типа. Транзисторы MOSFET (metal-oxide-semiconductor field effect transistor) – это английское название полевых транзисторов МДП (металл-диэлектрик-полупроводник). Дальше на рисунке приведено обозначение и изображен внешний вид мощного полевого Mosfet транзистора:

Схематическое изображение мощного полевого транзистора

Полевые транзисторы имеют высокое входное сопротивление. Они находят все большее применение в современной технике, особенно приёмо-передатчиках. Полевые транзисторы широко применяются и в аналоговых, и в цифровых схемах. Выпускаются современные полевые транзисторы, как и биполярные, в SMD исполнении:

Фото SMD полевой транзистор

Устройства, созданные на основе КМОП транзисторов (полевых транзисторов) очень экономичны и имеют незначительное потребление питания. Привожу схемы включения полевых транзисторов:


С общим истоком



Применяются полевые транзисторы и в усилителях мощности звука, чаще всего в выходных каскадах.

Однопереходные транзисторы


Схематическое изображение однопереходных транзисторов

Применяются однопереходные транзисторы, в устройствах автоматики и импульсной технике. А также находят применение в измерительных устройствах. Автор статьи – AKV.

В этой статье мы разберем, чем же примечателен этот маленький кусочек кремния, называемый транзистором. Транзисторы, как известно, делятся на 2 вида полевые и биполярные. Изготавливаются они из полупроводниковых материалов, в частности германия и кремния. И полевые и биполярные транзисторы имеют по 3 вывода. На приведенном ниже рисунке мы можем видеть устройство советского биполярного низкочастотного транзистора типа МП39-МП42.

Транзистор в разрезе

На следующем рисунке изображены транзисторы, также выпущенные в советское время, слева небольшой мощности, в центре и справа рассчитанные на среднюю и большую мощность:

Внешний вид советских транзисторов

Рассмотрим схематическое изображение биполярного транзистора:

Структура биполярных транзисторов

Транзисторы по своей структуре делятся на два типа, n-p-n и p-n-p. Как нам известно из предыдущей статьи, диод представляет собой полупроводниковый прибор с p-n переходом способным пропускать ток в прямом включении и не пропускающий в обратном. Транзистор же представляет собой, условно говоря, два диода соединенных либо катодами, либо анодами, что мы и можем видеть на рисунке ниже.

Транзистор как два диода

Кстати, многие отечественные транзисторы в советское время выпускали с некоторым содержанием золота, так что эту деталь можно назвать драгоценной в прямом смысле слова! Подробнее о содержании драгметаллов смотрите тут. Но для радиолюбителей ценность данного радиоэлемента заключается прежде всего в его функциях.

Золото в транзисторах СССР

Приведу ещё несколько фотографий распространённых транзисторов:


Малой мощности




На этих фото изображены выводные транзисторы, которые впаивают в отверстия в печатной плате. Но существуют транзисторы и для поверхностного или SMD монтажа, в таком случае отверстия не сверлятся и детали припаиваются со стороны печати, один из таких транзисторов в корпусе sot-23 изображен на фотографии ниже, рядом на рисунке можно видеть его сравнительные размеры:

Фото SMD транзистор

Какие существуют схемы включения биполярных транзисторов? Прежде всего это схема (к слову сказать самая распространенная) включения с общим эмиттером. Такое включение обеспечивает большое усиление по напряжению и току:

Схема включения с общим коллектором, это дает нам усиление только по току:

Схема с общим коллектором

И схема включения с общей базой, усиление только по напряжению:

Схема с общей базой

Далее приведен практический пример схемы усилителя на одном транзисторе собранного по схеме с общим эмиттером. Наушники для этого усилителя нужно брать высокоомные Тон–2 с сопротивлением обмотки приблизительно 2 кОм.

Пример усилителя по схеме с общим эмиттером

Биполярные транзисторы могут использоваться в ключевом и усилительном режимах. Выше на схеме пример работы транзистора в усилительном режиме. На приведенном ниже рисунке изображена схема включения транзистора в ключевом режиме:

Схема транзистора в ключевом режиме

Существуют транзисторы, действие которых основано на фотоэлектрическом эффекте, называются они фототранзисторы. Они могут быть в исполнении как с выводом от базы, так и без него. Его схематическое изображение на рисунке:

Схематическое изображение фототранзисторов

А так выглядит один из фототранзисторов:

Полевые транзисторы


Строение полевого транзистора

Привожу первый вариант схематического обозначения полевого транзистора:

Схематическое изображение полевого транзистора

На следующем рисунке изображено современное схематическое изображение (второй вариант) полевых транзисторов с изолированным затвором, слева с каналом n–типа и справа с каналом p-типа.

Изображение на схемах полевых транзисторов с изолированным затвором

Определяют какого типа канал следующим образом, если стрелка направлена в сторону канала, то такой транзистор с каналом n–типа, если же стрелка направлена в обратную, то p-типа. Транзисторы MOSFET (metal-oxide-semiconductor field effect transistor) – это английское название полевых транзисторов МДП (металл-диэлектрик-полупроводник). Дальше на рисунке приведено обозначение и изображен внешний вид мощного полевого Mosfet транзистора:

Схематическое изображение мощного полевого транзистора

Полевые транзисторы имеют высокое входное сопротивление. Они находят все большее применение в современной технике, особенно приёмо-передатчиках. Полевые транзисторы широко применяются и в аналоговых, и в цифровых схемах. Выпускаются современные полевые транзисторы, как и биполярные, в SMD исполнении:

Фото SMD полевой транзистор

Устройства, созданные на основе КМОП транзисторов (полевых транзисторов) очень экономичны и имеют незначительное потребление питания. Привожу схемы включения полевых транзисторов:


С общим истоком



Применяются полевые транзисторы и в усилителях мощности звука, чаще всего в выходных каскадах.

Однопереходные транзисторы


Схематическое изображение однопереходных транзисторов

Применяются однопереходные транзисторы, в устройствах автоматики и импульсной технике. А также находят применение в измерительных устройствах. Автор статьи – AKV.

Обсудить статью ТРАНЗИСТОРЫ

Приведены таблицы с условным обозначением на схемах наиболее распространённых радиодеталей.

ПОДСЛУШИВАЮЩИЙ ЖУЧОК

Пошаговое изготовление простого подслушивающего жучка – подробная фотоинструкция для начинающих.

РАДИОУПРАВЛЕНИЕ НА МИКРОКОНТРОЛЛЕРЕ

Аппаратура 10-ти командного блока радиоуправления устройствами – схема, фото модулей, прошивка.

Как проверить транзистор мультиметром — картинки, рекомендации, видео

Современные электронные мультиметры имеют специализированные коннекторы для проверки различных радиодеталей, включая транзисторы.

Это удобно, однако, проверка не совсем корректная. Радиолюбители со стажем помнят, как проверить транзистор тестером со стрелочной индикацией. Техника проверки на цифровых приборах не изменилась. Для точного определения состояния полупроводникового прибора, каждые его элемент тестируется отдельно.

Классика вопроса: как проверить биполярный транзистор мультиметром

Этот популярный проводник выполняет две задачи:

  • Режим усиления сигнала. Получая команду на управляющие выводы, прибор дублирует форму сигнала на рабочих контактах, только с большей амплитудой;
  • режим ключа. Подобно водопроводному крану, полупроводник открывает или закрывает путь электрическому току по команде управляющего сигнала.

Полупроводниковые кристаллы соединены в корпусе, образуя p-n переходы. Такая же технология применяется в диодах. По сути – биполярный транзистор состоит из двух диодов, соединенных в одной точке одноименными выводами.
Чтобы понять, как проверить транзистор мультиметром, рассмотрим отличие pnp и npn структуры.

Так называемый «прямой» (см. фото)

С обратным переходом, как изображено на фото

Разумеется, если вы спаяете диоды так, как показано на условной схеме – транзистор не получится. Но с точки зрения проверки исправности – можно представить, что у вас обычные диоды в одном корпусе.

То есть, положив перед собой схему полупроводниковых переходов, вы легко определите не только исправность детали в целом, но и локализуете конкретный неисправный p-n переход. Это поможет понять причину поломки, ведь полупроводник работает не автономно, а в составе электросхемы.

Как проверить биполярный транзистор мультиметром — видео.

Возникает резонный вопрос: Как определить маркировку выводов транзистора, не имея каталога? Такая практика пригодится не только для проверки радиодеталей. При сборке монтажной платы, незнание конструкции транзистора приведет к его перегоранию.

С помощью мультиметра можно определить назначение выводов.

Важно! Это правило работает лишь в случае с исправным транзистором. Впрочем, если деталь неисправна, вам незачем определять названия контактов.

Мультиметр выставляем в режим измерения сопротивления, предел шкалы – 2000 Ом. Выводы прибора – красный плюс, черный минус. Транзистор располагаем любым удобным способом, выводу условно определяем как «левый», «средний», «правый».

Определение базы

Красный щуп на левый контакт, замеряем сопротивление на среднем и правом выводах. В нашем случае это значение «бесконечность» (на индикаторе «1»), и 816 Ом (типичное сопротивление исправного p-n перехода при прямом подключении). Фиксируем результат измерений.

Красный щуп на середину, производим замер левого и правого контактов. С «бесконечностью» все понятно, обращаем внимание на то, что вторая пара показала результат, отличный от первого измерения. Это нормально, эмиттерный и коллекторный переходы имеют разное сопротивление. Об этом позже.

Красный щуп на правый контакт, производим замеры оставшихся комбинаций. В обоих случаях получаем единичку, то есть «бесконечное» сопротивление.

При таком раскладе, база находится на правом выводе. Этих данных недостаточно для пользования деталью. У производителей нет единого стандарта по расположению эмиттера и коллектора, поэтому определяем выводы самостоятельно.

Определение остальных выводов

Черный щуп на «базу», меряем сопротивление переходов. Одна ножка показала 807 Ом (это коллекторный переход), вторая – 816 Ом (эмиттерный переход).

Важно! Эти значения сопротивления не являются константой, в зависимости от производителя и мощности транзистора величина может незначительно отклоняться. Главное правило – сопротивление коллектора относительно базы меньше, чем сопротивление эмиттера.

Точно таким же способом производится проверка исправности биполярного транзистора. В ходе определения контактов, мы заодно проверили исправность детали. Если вам известно расположение выводов – проверяете переходы «база-эмиттер» и «база коллектор», меняя полярность щупов.

При прямом подключении – вы увидите значения, аналогичные предыдущим замерам. При обратном – сопротивление должно быть бесконечным. Если это не так – переходы относительно базы неисправны.
Последняя проверка – переход «эмиттер-коллектор». В обоих направлениях исправная деталь покажет бесконечное сопротивление.

Если в ходе тестирования вы получили именно такие результаты – ваш биполярный транзистор исправен.

Как проверить транзистор мультиметром не выпаивая

Прежде всего, проверьте расположение на монтажной плате остальных радиодеталей, относительно выводов транзистора. Иногда переходы шунтируются резисторами с небольшим сопротивлением.

Если при замерах переходов, сопротивление будет измеряться десятками Ом – транзистор придется выпаивать. Если шунтов нет – см. методику, описанную выше, проверить транзистор на плате не получится.

Как проверить полевой транзистор мультиметром

Полупроводниковые транзисторы – MOSFET (на слэнге радиолюбителей – «мосфеты»), имеют несколько иное расположение p-n переходов. Название выводов также отличается: «сток», «исток», «затвор». Тем не менее, методика проверки прекрасно моделируется диодными аналогиями.

Принципиальное отличие – канал между «истоком» и «стоком» в состоянии покоя имеет небольшую проводимость с фиксированным сопротивлением. Когда «мосфет» получает запирающее напряжение на «затворе», этот переход закрывается. При проверке он принимается открытым (в случае, если транзистор исправен).

Проверить полевой транзистор с помощью тестера можно по такой же методике, что и биполярный. Прибор в положение «измерение сопротивления» с пределом 2000 Ом.

Сопротивление по линии «исток» «сток» проверяется в обе стороны. Значение должно быть в пределах 400-700 Ом, и немного отличаться при смене полярности.

Линия «исток» «затвор» должна иметь проводимость с аналогичным сопротивлением, но только в одном направлении. Такая же ситуация при проверке «сток» «затвор».

Проверить полевой транзистор мультиметром не выпаивая из схемы можно, если нет шунтирующих деталей. Определить их наличие можно визуально. Однако, «мосфеты» обычно окружены т.н. обвесом из управляющих элементов. Поэтому их проверку лучше проводить отдельно от схемы.
P.S.
Если ваш прибор стрелочный – проверка производится также точно.
Метод проверки полевого транзистора от Чип и Дип — видео

About sposport

View all posts by sposport

Загрузка…

Трёхмерные транзисторы. 22нм / Блог компании Intel / Хабр

   На днях компания Intel совершила очередной прорыв в процессоростроении, а точнее, в эволюции транзисторов — логических элементах современных процессоров. Если последние 50 лет в электронике использовались исключительно планарные структуры, то отныне в массовом производстве применяемая структура станет трехмерной. Технология, позволившая и дальше следовать закону Мура, получила название Tri-Gate. По значимости этот шаг сопоставим, разве что, с изобретением интегральной схемы транзисторов.

   Еще совсем недавно процессор можно было представить в виде листа бумаги, производительность которого зависела от количества ячеек-транзисторов, уместившихся на его площади. Чем больше транзисторов-ячеек на таком листе умещалось, тем выше была производительность. Понятное дело, что бесконечно уменьшать размеры транзисторов нельзя – об этом я даже как-то писал отдельную статью, которая «хорошо пошла». Однако в ближайшие годы полупроводниковая промышленность может вздохнуть спокойно и продолжить развитие прежними темпами — сейчас ячейки «можно» располагать в несколько рядов, то есть производительность процессоров будет расти вглубь (ну или ввысь, как в случае с небоскрёбами) и, честно сказать, я даже теряюсь в догадках, почему до этого додумались только сейчас. Впрочем, додумались-то до этого еще в далеком 2002, но именно сегодня речь пошла о массовом воплощении технологии в жизнь.

   Ученые давно признают преимущества 3D-структур — в случае с транзисторами, такой подход позволит следовать закону Мура еще достаточно долгое время. Суть новой технологии очевидна (глаз вооружен):


Транзистор, 32-нм


Транзистор Tri-Gate, 22-нм

   В традиционной планарной структуре транзистора электрический ток может протекать только по узкой поверхности проводника под затвором. В то время как в трёхмерных транзисторах ток распространяется в толще кремниевого выступа, «прорезающего» затвор.

   Результатом такого конструкторского решения является снижение сопротивления транзистора в открытом состоянии, увеличение сопротивления в закрытом и более быстрое переключение между этими состояниями. Вместе с этим стало возможным снижение рабочего напряжения и уменьшение токов утечки. Как следствие — новый уровень энергоэффективности и солидный прирост производительности в сравнении с существующими аналогами.

Транзисторы Tri-Gate (изготовленные по технологии 22-нм) демонстрируют почти 40-процентный прирост быстродействия в сравнении с обычными (изготовленными по технологии 32-нм).

Это при том, что новые чипы будут потреблять почти вдвое меньше энергии (с той же производительностью), чем их 32-нанометровые братья с двухмерной структурой.

1 нм (нанометр) = одна миллиардная метра (1/1 000 000 000м), %username%
А ведь можно сделать, например, вот так:

   «Изобретение транзисторов Tri-Gate и внедрение новой технологии в 22-нм чипы меняют правила игры, — по секрету рассказал мне Пол Отеллини, президент компании Intel. — В сочетании с материалами, обладающими особой диэлектрической проницаемостью, элементами с металлическими затворами, 3D-транзисторы помогут Intel значительно снизить потребление энергии, стоимость чипа в расчете на один транзистор и существенно поднять производительность. Intel продолжит создавать лучшие в мире продукты во всех областях — от мобильных телефонов до суперкомпьютеров»

   Марк Бор, старший почетный исследователь компании: — Новое изобретение не только позволяет впредь следовать закону Мура. Это больше, чем просто переход с одного технологического процесса на другой — новое открытие позволяет конструировать совершенно новые устройства.

   Переход на новые трёхмерные транзисторы будет осуществлен вместе с переходом на новую 22-нанометровую технологическую норму, отражающую размер структур интегральных схем. Первым в мире микропроцессором, изготовленным по этой норме, стал чип под кодовым названием Ivy Bridge, предназначенный в первую очередь для настольных компьютеров. Соответственно, процессоры Intel Core под этим кодовым названием станут первыми массовыми чипами с транзисторами Tri-Gate – их массовое серийное производство планируется начать в конце 2011 года. По крайней мере, в плане технического оснащения к этому почти все готово – ведь чипы могут изготавливаться на обычном литографическом оборудовании.

Что касается мобильных устройств, то для них данную технологию также можно (и нужно) адаптировать – возможно, именно этот шаг начнет серьезно укреплять позиции компании в карманах пользователей.

В качестве бонуса:

Успехов!

Ученые создали двухмерный полевой транзистор на основе одного материала

Современная жизнь была попросту невозможна без транзисторов, крошечных “стандартных блоков”, миллиарды которых находятся на кристаллах чипов, являющихся “мозгом” всех наших электронных устройств. Однако, нынешние технологии, при помощи которых производятся полевые транзисторы (Field-Electronic Transistor, FET), имеющие объемную структуру, практически подошли к пределу их эффективности. На смену традиционной технологии должно прийти нечто новое, и к такому новому можно смело отнести новые условно “двухмерные” полевые транзисторы, созданные исследователями из института Фундаментальных наук (Institute for Basic Science, IBS).

Воспользуйтесь нашими услугами

Но самым интересным в данном случае является то, что все элементы структуры нового транзистора, обладающие как металлическими, так и полупроводниковыми свойствами, изготовлены из одного материала. Все полевые транзисторы можно считать быстродействующими “выключателями”, состоящие из двух металлических электродов, между которыми “зажат” полупроводниковый канал.

По этому каналу проходит управляемый электрический ток, носителем заряда которого, в зависимости от проводимости транзистора, являются электроны или электронные дыры. Размеры каналов современных транзисторов сокращены до размеров в десятки и единицы нанометров, но дальнейшее уменьшение этих элементов уже невозможно в силу ряда ограничений, накладываемых фундаментальными законами физики.

Решением проблемы дальнейшего увеличения эффективности и быстродействия транзисторов может стать замена объемных транзисторов их условно плоскими аналогами. “Транзисторы, изготовленные из плоских полупроводниковых материалов, лишены некоторых отрицательных эффектов, проявляющихся в обычных транзисторах при попытках сокращения их размеров” – Чжи Хо Сунг (Ji Ho Sung), ведущий исследователь, – “Использование отдельных слоев материала или сложных многослойных структур, толщиной в несколько атомов, позволяет получить высокие электрические параметры транзистора, в том числе и ширину электронной запрещенной зоны, которая может достигать значения 1-2 электронвольта”.

Основой новых полевых транзисторов стал теллурид молибдена (MoTe2), полиморфный материал, обладающий металлическими или полупроводниковыми свойствам в его различных формах. Использование одного и того же материала позволило кардинально уменьшить электрическое сопротивления зоны контакта металлических электродов транзистора и полупроводникового канала. Высота потенциального барьера в этом месте была снижена почти в семь раз, со 150 мэВ до 22 мэВ.

Для изготовления опытных образцов новых транзисторов ученые использовали технологию химического осаждения из паровой фазы (chemical vapor deposition, CVD), что позволило создать участки из разных форм теллурида молибдена, обладающие металлическими или полупроводниковыми свойствами. Процесс осаждения проводился в специальной печи, объем которой был заполнен парами соли (NaCl). При температуре в 710 градусов Цельсия на основание осаждался теллурид молибдена металлической формы, а при температуре 670 градусов – полупроводниковой.

Ученые использовали подобную технологию для изготовления больших и более мощных транзисторов. Только для этого они использовали уже два разных материала, диселенид вольфрама (WSe2), который является полупроводниковым материалом, и дителлурид вольфрама (WTe2), который имеет металлические свойства.

А в ближайшем будущем ученые планируют провести дополнительные исследования, направленные на уменьшение переходного сопротивления в области контакта материалов разной проводимости до так называемого теоретического квантового предела. И этот момент является одной из самых главных проблем, с которой сталкиваются все исследователи, работающие с двухмерными материалами, такими, как графен и переходные дихалькогениды.

Воспользуйтесь нашими услугами

Понравилась статья? Тогда поддержите нас, поделитесь с друзьями и заглядывайте по рекламным ссылкам!

60 лет транзистору

Б. М. Малашевич

Трудно найти такую отрасль науки и техники, которая так же стремительно развивалась и оказала такое–же огромное влияние на все стороны жизнедеятельности человека, каждого отдельного и общества в целом, как электроника.

Как самостоятельное направление науки и техники электроника сформировалась благодаря электронной лампе. Сначала появились радиосвязь, радиовещание, радиолокация, телевидение, затем электронные системы управления, вычислительная техника и т.п. Но электронная лампа имеет неустранимые недостатки: большие габариты, высокое энергопотребление, большое время вхождения в рабочий режим, низкую надежность. В результате через 2-3 десятка лет существования ламповая электроника во многих применениях подошла к пределу своих возможностей. Электронной лампе требовалась более компактная, экономичная и надежная замена. И она нашлась в виде полупроводникового транзистора. Его создание справедливо считают одним из величайших достижений научно-технической мысли двадцатого столетия, коренным образом изменившим мир. Оно было отмечено Нобелевской премией по физике, присужденной в 1956 г. американцам Джону Бардину, Уолтеру Браттейну и Уильяму Шокли. Но у нобелевской тройки в разных странах были предшественники .

И это понятно. Появление транзисторов – результат многолетней работы многих выдающихся ученых и специалистов, которые в течении предшествующих десятилетий развивали науку о полупроводниках. Советские ученые внесли в это общее дело огромный вклад. Очень много было сделано школой физики полупроводников академика А.Ф. Иоффе – пионера мировых исследований по физике полупроводников. Еще в 1931 году он опубликовал статью с пророческим названием: «Полупроводники – новые материалы электроники». Немалую заслугу в исследование полупроводников внесли Б.В. Курчатов и В.П. Жузе. В своей работе – «К вопросу об электропроводности закиси меди» в 1932 году они показали, что величина и тип электрической проводимости определяется концентрацией и природой примеси. Советский физик Я.Н. Френкель создал теорию возбуждения в полупроводниках парных носителей заряда: электронов и дырок. В 1931 г. англичанину Уилсону удалось создать т еоретическую модель полупроводника, сформулировав при этом основы «зонной теории полупроводников». В 1938 г. Мотт в Англии, Б.Давыдов в СССР, Вальтер Шоттки в Германии независимо друг от друга предложили теорию выпрямляющего действия контакта металл-полупроводник. В 1939 году Б.Давыдов опубликовал работу «Диффузионная теория выпрямления в полупроводниках». В 1941 г. В. Е. Лашкарев опубликовал статью «Исследование запирающих слоев методом термозонда» и в соавторстве с К. М. Косоноговой – статью «Влияние примесей на вентильный фотоэффект в закиси меди». Он описал физику «запорного слоя» на границе раздела «медь – закись меди», впоследствии названного «p-n» переходом. В 1946 г. В. Лошкарев открыл биполярную диффузию неравновесных носителей тока в полупроводниках. Им же был раскрыт механизм инжекции – важнейшего явления, на основе которого действуют полупроводниковые диоды и транзисторы. Большой вклад в исследование свойств полупроводников внесли И.В.Курчатов, Ю.М.Кушнир, Л.Д.Ландау, В.М.Тучкевича, Ж.И.Алферов и др. Таким образом, к концу сороковых годов двадцатого века основы теоретической базы для создания транзисторов были проработаны достаточно глубоко, чтобы приступать к практическим работам.

Рис. Транзитрон Г.Матаре и Г.Велкера

Первой известной попыткой создания кристаллического усилителя в США предпринял немецкий физик Юлиус Лилиенфельд, запатентовавший в 1930, 1932 и 1933 гг. три варианта усилителя на основе сульфида меди. В 1935 г. немецкий у ченый Оскар Хейл получил британский патент на усилитель на основе пятиокиси ванадия. В 1938 г. немецкий физик Поль создал действующий образец кристаллического усилителя на нагретом кристалле бромида калия. В довоенные годы в Германии и Англии было выдано еще несколько аналогичных патентов. Эти усилители можно считать прообразом современных полевых транзисторов. Однако построить устойчиво работающие приборы не удавалось, т.к. в то время еще не было достаточно чистых материалов и технологий их обработки. В первой половине тридцатых годов точечные триоды изготовили двое радиолюбителей – канадец Ларри Кайзер и тринадцатилетний новозеландский школьник Роберт Адамс. В июне 1948 г. (до обнародования транзистора) изготовили свой вариант точечного германиевого триода, названный ими транзитроном, жившие тогда во Франции немецкие физики Роберт Поль и Рудольф Хилш. В начале 1949 г. было организовано производство транзитронов, применялись они в телефонном оборудовании, причем работали лучше и дольше американских транзисторов. В России в 20-х годах в Нижнем Новгороде О.В.Лосев наблюдал транзисторный эффект в системе из трех – четырех контактов на поверхности кремния и корборунда. В середине 1939 г. он писал: «…с полупроводниками может быть построена трехэлектродная система, аналогичная триоду», но увлекся открытым им светодиодным эффектом и не реализовал эту идею. К транзистору вело множество дорог.

Первый транзистор

Слава направо: Уильям Шокли,
Джон Бардин (сидит), Уолтер Бреттейн.
Фото из http://gete.ru/page_140.html

Выше описанные примеры проектов и образцов транзисторов были результатами локальных всплесков мысли талантливых или удачливых людей, не подкрепленные достаточной экономической и организационной поддержкой и не сыгравшие серьезной роли в развитии электроники. Дж. Бардин, У. Браттейн и У. Шокли оказались в лучших условиях. Они работали по единственной в мире целенаправленной долговременной (более 5 лет) программе с достаточным финансовым и материальным обеспечением в фирме Bell Telephone Laboratories, тогда одной из самых мощных и наукоемких в США. Их работы были начаты еще во второй половине тридцатых годов, работу возглавил Джозеф Бекер, который привлек к ней высококлассного теоретика У. Шокли и блестящего экспериментатора У. Браттейна. В 1939 г. Шокли выдвинул идею изменять проводимость тонкой пластины полупроводника (оксида меди), воздействуя на нее внешним электрическим полем. Это было нечто, напоминающее и патент Ю. Лилиенфельда, и позже сделанный и ставший массовым полевой транзистор. В 1940 г. Шокли и Браттейн приняли удачное решение ограничить исследования только простыми элементами – германием и кремнием. Однако все попытки построить твердотельный усилитель ни к чему не привели, и после Пирл-Харбора (практическое начало Второй мировой войны для США) были положены в долгий ящик. Шоккли и Браттейн были направлены в исследовательский центр, работавший над созданием радаров. В 1945 г. оба возвратились в Bell Labs. Там под руководством Шокли была создана сильная команда из физиков, химиков и инженеров для работы над твердотельными приборами. В нее вошли У. Браттейн и физик-теоретик Дж. Бардин. Шокли сориентировал группу на реализацию своей довоенной идеи. Но устройство упорно отказывалось работать, и Шокли, поручив Бардину и Браттейну довести его до ума, сам практически устранился от этой темы.

Два года упорного труда принесли лишь отрицательные результаты. Бардин предположил, что избыточные электроны прочно оседали в приповерхностных областях и экранировали внешнее поле. Эта гипотеза подсказала дальнейшие действия. Плоский управляющий электрод заменили острием, пытаясь локально воздействовать на тонкий приповерхностный слой полупроводника.

Первый транзистор У. Браттейна и Дж. Бардина

Однажды Браттейн нечаянно почти вплотную сблизил два игольчатых электрода на поверхности германия, да еще перепутал полярность напряжений питания, и вдруг заметил влияние тока одного электрода на ток другого. Бардин мгновенно оценил ошибку. А 16 декабря 1947 г. у них заработал твердотельный усилитель, который и считают первым в мире транзистором. Устроен он был очень просто – на металлической подложке-электроде лежала пластинка германия, в которую упирались два близко расположенных (10-15 мкм) контакта. Оригинально были сделаны эти контакты. Треугольный пластмассовый нож, обернутый золотой фольгой, разрезанной надвое бритвой по вершине треугольника. Треугольник прижимался к германиевой пластинке специальной пружиной, изготовленной из изогнутой канцелярской скрепки. Через неделю, 23 декабря 1947 г. прибор был продемонстрирован руководству фирмы, этот день и считается датой рождения транзистора. Все были рады результатом, кроме Шокли: получилось, что он, раньше всех задумавший полупроводниковый усилитель, руководивший группой специалистов, читавший им лекции по квантовой теории полупроводников – не участвовал в его создании. Да и транзистор получился не такой, как Шокли задумывал: биполярный, а не полевой. Следовательно на соавторство в «звездном» патенте он претендовать не мог.

Прибор работал, но широкой публике эту внешне несуразную конструкцию показывать было нельзя. Изготовили несколько транзисторов в виде металлических цилиндриков диаметром около 13 мм. и собрали на них «безламповый» радиоприемник. 30 июня 1948 г. в Нью-Йорке состоялась официальная презентация нового прибора – транзистора (от англ. Transver Resistor – трансформатор сопротивлений). Но специалисты не сразу оценили его возможности. Эксперты из Пентагона «приговорили» транзистор к использованию лишь в слуховых аппаратах для старичков. Так близорукость военных спасла транзистор от засекречивания. Презентация осталась почти незамеченной, лишь пара абзацев о транзисторе появилась в «Нью-Йорк Тайме» на 46 странице в разделе «Новости радио». Таким было явление миру одного из величайших открытий XX века. Даже изготовители электронных ламп, вложившие многие миллионы в свои заводы, в появлении транзистора угрозы не увидели.

Позже, в июле 1948 года, информация об этом изобретении появилась в журнале «The Physical Review». Но т олько через некоторое в ремя специалисты поняли, что произошло грандиозное событие, определившее дальнейшее развитие прогресса в мире.

Bell Labs сразу оформила патент на это революционное изобретение, но с технологией было масса проблем. Первые транзисторы, поступившие в продажу в 1948 году, не внушали оптимизма – стоило их потрясти, и коэффициент усиления менялся в несколько раз, а при нагревании они и вовсе переставали работать. Но зато им не было равных в миниатюрности. Аппараты для людей с пониженным слухом можно было поместить в оправе очков! Поняв, что вряд ли она сама сможет справиться со всеми технологическими проблемами, Bell Labs решилась на необычный шаг. В начале 1952 года она объявила, что полностью передаст права на изготовление транзистора всем компаниям, готовым выложить довольно скромную сумму в 25 000 долларов вместо регулярных выплат за пользование патентом, и предложила обучающие курсы по транзисторной технологии, помогая распространению технологии по всему миру. Постепенно росла очевидность важности этого миниатюрного устройства. Транзистор оказался привлекательным по следующим причинам: был дешев, миниатюрен, прочен, потреблял мало мощности и мгновенно включался (лампы долго нагревались). В 1953 г. на рынке появилось первое коммерческое транзисторное изделие – слуховой аппарат (пионером в этом деле выступил Джон Килби из ф. Centralab , который через несколько лет сделает первую в мире полупроводниковую микросхему), а в октябре 1954 г. – первый транзисторный радиоприе мник Regency TR1, в нем использовалось всего четыре германиевых транзистора. Немедленно принялась осваивать новые приборы и индустрия вычислительной техники, первой была фирма IBM . Доступность технологии дала свои плоды – мир начал стремительно меняться.

Польза конструктивного честолюбия

У честолюбивого У.Шокли случившееся вызвало вулканический всплеск его творческой энергии. Хотя Дж. Бардин и У.Браттейн нечаянно получили не полевой транзистор, как планировал Шокли, а биполярный, он быстро разобрался в сделанном. Позднее Шокли вспоминал о своей «страстной неделе», в течение которой он создал теорию инжекции, а в новогоднюю ночь изобрел плоскостной биполярный транзистор без экзотических иголочек.

Что бы создать что-то новое, Шокли по-новому взглянул на давно известное – на точечный и плоскостный полупроводниковые диоды, на физику работы плоскостного «p — n» перехода, легко поддающуюся теоретическому анализу. Поскольку точечный транзистор представляет собой два очень сближенные диода, Шокли провел теоретическое исследования пары аналогично сближенных плоскостных диодов и создал основы теории плоскостного биполярного транзистора в кристалле полупроводника, со держащего два «p — n» перехода. Плоскостные транзисторы обладают рядом преимуществ перед точечными: они более доступны теоретическому анализу, обладают более низким уровнем шумов, обеспечивают большую мощность и, главное, более высокие повторяемость параметров и надежность. Но, пожалуй, главным их преимуществом была легко автоматизируемая технология, исключающая сложные операции изготовления, установки и позиционирования подпружиненных иголочек, а также обеспечивавшая дальнейшую миниатюризацию приборов.

30 июня 1948 г. в нью-йоркском офисе Bell Labs изобретение было впервые продемонстрировано руководству компании. Но оказалось, что создать серийноспособный плоскостной транзистор гораздо труднее, чем точечный. Транзистор Браттейна и Бардина – чрезвычайно простое устройство. Его единственным полупроводниковым компонентом был кусочек относительно чистого и вполне тогда доступного германия. А вот техника легирования полупроводников в конце сороковых годов, необходимая для изготовления плоскостного транзистора, еще находилась в младенчестве, поэтому изготовление серийноспособного транзистора «по Шокли» удалось только в 1951 г. В 1954 году Bell Labs разработала процессы окисления, фотолитографии, диффузии, которые на многие годы стали основой производства полупроводниковых приборов.

Первый кремниевый транзистор, 1950 г.

Точечный транзистор Бардина и Браттейна – безусловно огромный прогресс по сравнению с электронными лампами. Но не он стал основой микроэлектроники, век его оказался короток, около 10 лет. Шокли быстро понял сделанное коллегами и создал плоскостной вариант биполярного транзистора, который жив и сегодня и будет жить, пока существует микроэлектроника. Патент на него он получил в 1951 г. А в 1952 г. У. Шокли создал и поле вой транзистор, так же им запатентованный. Так что свое участие в Нобелевской премии он заработал честно.

Число производителей транзисторов росло как снежный ком. Bell Labs, Shockley Semiconductor, Fairchild Semiconductor, Western Electric, GSI (с декабря 1951 г. Texas Instruments), Motorola, Tokyo Cousin (С 1958 г. Sony), NEC и многие другие.

В 1950 г. фирма GSI разработала первый кремниевый транзистор, а с 1954 г., преобразившись в Texas Instruments , начала его серийное производство.

«Холодная война» и ее влияние на электронику

После окончания Второй мировой войны мир раскололся на два враждебных лагеря. В 1950-1953 гг. эта конфронтация вылилась в прямое военное столкновение – Корейскую войну. Фактически это была опосредованная война между США и СССР. В это же время США готовились к прямой войне с СССР. В 1949 г. в США был разработан опубликованный ныне план «Последний выстрел» (Operation Dropshot), фактически план Третье мировой войны, войны термоядерной. План предусматривал прямое нападение на СССР 1 января 1957 г . В течение месяца предполагалось сбросить на наши головы 300 50-килотонных атомных и 200 000 обычных бомб. Для этого план предусматривал разработку специальных баллистических ракет, подводных атомных лодок, авианосцев и многого другого. Так началась развязанная США беспрецедентная гонка вооружений, продолжавшаяся всю вторую половину прошлого века, продолжающаяся, не столь демонстративно, и сейчас.

В этих условиях перед нашей страной, выдержавшей беспрецедентную в моральном и экономическом отношении четырехлетнюю войну и добившейся победы ценой огромных усилий и жертв, возникли новые гигантские проблемы по обеспечению собственной и союзников безопасности. Пришлось срочно, отрывая ресурсы от измученного войной и голодного народа, создавать новейшие виды оружия, содержать в постоянной боеготовности огромную армию. Так были созданы атомные и водородные бомбы, межконтинентальные ракеты, система противоракетной обороны и многое другое. Наши успехи в области обеспечения обороноспособности страны и реальная возможность получения сокрушительного ответного удара вынудили США отказаться от реализации плана «Dropshot» и других ему подобных.

Одним из последствий «холодной войны» была почти полная экономическая и информационная изоляция противостоящих сторон. Экономические и научные связи были весьма слабы, а в области стратегически важных отраслей и новых технологий практически отсутствовали. Важные открытия, изобретения, новые разработки в любой области знаний, которые могли быть использованы в военной технике или способствовать экономическому развитию, засекречивались. Поставки прогрессивных технологий, оборудования, продукции запрещались. В результате советская полупроводниковая наука и промышленность, развивались в условиях почти полной изоляции, фактической блокады от всего того, что делалось в этой области в США, Западной Европе, а затем и Японии.

Следует также отметить, что советская наука и промышленность во многих направлениях тогда занимала лидирующее в мире положение. Наши истребители в корейской войне были лучше американских, наши ракеты были мощнее всех, в космосе в те годы мы были впереди планеты всей, первый в мире компьютер с производительностью выше 1 млн. оп/с был наш, водородную бомбу мы сделали раньше США, баллистическую ракету первой сбила наша система ПРО и т.п. Отстать в электронике означало потянуть назад все остальные отрасли науки и техники.

Значение полупроводниковой техники в СССР понимали прекрасно, но пути и методы ее развития были иными, чем в США. Руководство страны сознавало, что противостояние в холодной войне можно обеспечить путем развития оборонных систем, управляемых надежной, малогабаритной электроникой. В 1959 году были основаны такие заводы полупроводниковых приборов, как Александровский, Брянский, Воронежский, Рижский и др. В январе 1961 г. было принято Постановление ЦК КПСС и СМ СССР «О развитии полупроводниковой промышленности», в котором предусматривалось строительство заводов и НИИ в Киеве, Минске, Ереване, Нальчике и других городах. Причем базой для создания первых предприятий полупроводниковой промышленности стали совершенно не приспособленные для этих целей помещения (здания коммерческого техникума в Риге, Совпартшколы в Новгороде, макаронная фабрика в Брянске, швейная фабрика в Воронеже, ателье в Запорожье и т.д.). Но вернемся к истокам.

Первые советские транзисторы

В годы, предшествующие изобретению транзистора, в СССР были достигнуты значительные успехи в создании германиевых и кремниевых детекторов. В этих работах использовалась оригинальная методика исследования приконтактной области путем введения в нее дополнительной иглы, вследствие чего создавалась конфигурация, в точности повторяющая точечный транзистор. Иногда при измерениях выявлялись и транзисторные характеристики (влияние одного «p — n» перехода на другой близко расположенный), но их отбрасывали как случайные и неинтересные аномалии. Мало в чем наши исследователи уступали американским специалистам, не было у них лишь одного — нацеленности на транзистор, и великое открытие выскользнуло из рук. Начиная с 1947 г. интенсивные работы в области полупроводниковых усилителей велись в ЦНИИ-108 (лаб. С. Г. Калашникова) и в НИИ-160 (НИИ «Исток», Фрязино, лаб. А. В. Красилова). В 1948 г., группа А. В. Красилова, разрабатывавшая германиевые диоды для радиолокационный станций, также получила транзисторный эффект и попыталась объяснить его. Об этом в журнале «Вестник информации» в декабре 1948 ими была опубликована статья «Кристаллический триод» — первая публикация в СССР о транзисторах. Напомним, что первая публикация о транзисторе в США в журнале «The Physical Review» состоялась в июле 1948 г., т.е. результаты работ группы Красилова были независимы и почти одновременны. Таким образом научная и экспериментальная база в СССР была подготовлена к созданию полупроводникового триода (термин «транзистор» был введен в русский язык в середине 60-х годов) и уже в 1949 г. лабораторией А. В. Красилова были разработаны и переданы в серийное производство первые советские точечные германиевые триоды С1 — С4. В 1950 г. образцы германиевых триодов были разработаны в ФИАНе (Б.М. Вул, А. В. Ржанов, В. С. Вавилов и др.), в ЛФТИ (В.М. Тучкевич, Д. Н. Наследов) и в ИРЭ АН СССР (С.Г. Калашников, Н. А. Пенин и др.).

Первый советские промышленные транзистор:
точечный С1Г (слева) и плоскостный П1А (справа)

В мае 1953 г. был образован специализированный НИИ (НИИ-35, позже – НИИ «Пульсар»), учрежден Межведомственный Совет по полупроводникам. В 1955 г. началось промышленное производство транзисторов на заводе «Светлана» в Ленинграде, а при заводе создано ОКБ по разработке полупроводниковых приборов. В 1956 г. московский НИИ-311 с опытным заводом переименован в НИИ «Сапфир» с заводом «Оптрон» и переориентирован на разработку полупроводниковых диодов и тиристоров.

На протяжении 50-х годов в стране были разработаны ряд новых технологий изготовления плоскостных транзисторов: сплавная, сплавно-диффузионная, меза-диффузионная.

Полупроводниковая промышленность СССР развивалась достаточно быстро: в 1955 г. было выпущено 96 тысяч, в 1957 г. – 2,7 млн, а в 1966 г. – более 11 млн. транзисторов. И это было только начало.

Статья помещена в музей 6.01.2008

FGh50N60SFD — мощный IGBT транзистор (600В, 40А, TO-247)

ВНИМАНИЕ: отпускные (оптовые) цены на дискретные элементы резко поднялись на более чем 40%. 

     Пожалуй самые популярные мощные IGBT транзисторы FGh50N60SFD производства фирмы ON Semiconductor (до 2017 года Fairchild). Применяются в широком спектре силового оборудования: инверторные сварочные аппараты, выпрямители, стабилизаторы, мощные блоки питания и зарядные устройства.

     Современная отрасль силовой аппаратуры развивается по нескольким направлениям, основой для которых являются технологии ключевой схемотехники. Современные технические решения должны быть рассчитаны на уровни напряжений не менее 600 вольт при токах коммутации в районе нескольких десятков ампер. При этом необходимо учитывать высокую частоту переключений, что позволяет уменьшить размеры трансформаторов. Также ключевым требованием является стойкость к короткому замыканию.

     Благодаря совмещению структуры биполярного и полевого транзисторов удалось получить своего рода гибрид — Биполярный Транзистор с Изолированным Затвором (по английски IGBT). Типовым и востребованным в современной схемотехнике является IGBT транзистор FGh50N60SFD корпусе ТО-247 со встроенным быстродействующим диодом.

Краткие характеристики
  • Полное наименование: FGh50N60SFDTU IGBT транзистор
  • Максимальное напряжение VCES: 600 Вольт
  • Максимальный ток коллектора IC: 40 Ампер при Тс=100°C (80 Ампер при Тс=25°C)
  • Максимальная мощность: 116 Ватт Тс=100°C (290 Ватт при Тс=25°C)
  • Максимальная температура: 150°C
  • Тип корпуса: TO-247A

Подробные характеристики вы можете найти в прилагаемом datasheet на транзисторы FGh50N60SFD последней ревизии (предоставлен компанией ON Semi) — ссылка на документ внизу текущей страницы.

Распиновка и внешний вид


Рис. №2 Назначение выводов БТИЗ транзистора FGh50N60SFD


Рис. №3 Типовые размеры и форма корпуса оригинальных транзисторов FGh50N60SFD

     В связи с поглощением фирмой ON Semiconductor компании Fairchild в продаже встречаются два вида обозначений транзисторов: с буквой » F « — произведенные до 2018 года и с буквами » ON «, произведенные с 2018 года. Внешний вид обоих вариантов представлен на фотографии ниже.


Рис. №4 Сравнение оригинальных IGBT транзисторов FGh50N60SFD, произведенных до и после 2018 года

Гарантии

Закупка IGBT транзисторов FGh50N60SFD производится исключительно в запечатанных заводских упаковках напрямую у производителя в составе крупнооптовых заказов для производственных сборочных линий.

Мы снимаем на видео вскрытие заводских упаковок и выкладываем на нашем канале на youtube (ссылка внизу страницы).

В 2017 годe компания ON Semiconductor выкупила фирму Fairchild, поэтому все новые оригинальные транзисторы, произведенные после 2017 года, имеют на корпусе логотип «ON» (вместо прежней «F»)!

В настоящее время встречается огромное количество подделок на IGBT транзисторы. Оригинальный FGh50N60SFD не может стоить дешевле отпускной оптовой цены производителя — 1.9334$/шт!


Рис. №5 Отпускная оптовая цена на транзисторы FGh50N60SFD на официальном сайте производителя

      Гарантия надежной работы это 100% оригиналы! При рабочей обвязке работоспособность гарантируется! Встречались случаи неоднократного выхода из строя из-за проблем в схеме — пожалуйста, доверьте ремонт устройства профессиональным мастерам!

     Дополнительной гарантией является тот факт, что мы продаем транзисторы FGh50N60SFD в нашем магазине на торговой площадке ebay (ссылки внизу данной страницы), где очень жестко наказывают за продажу некачественного товара. Покупателями оставлены только положительные отзывы.

Рис. №6 Отзывы покупателей IGBT транзисторов FGh50N60SFD в нашем магазине на ebay

Оптовые поставки

Для желающих купить IGBT транзисторы FGh50N60SFD оптом у нас имеются автоматические скидки:

  • от 10 штук — по 150 руб/шт.
  • от 30 штук (1 рейка) — по 145 руб/шт.
  • от 90 штук (3 рейки) — по 140 руб/шт.
  • от 150 штук (5 реек) — по 130 руб/шт.
  • от 450 штук (1 короб) — по 120 руб/шт.
  • от 900 штук (от 2-х коробок) — по 110 руб/шт.

Для представителей промышленности и сервисных центров по ремонту сварочного оборудования мы производим поставки IGBT транзисторов FGh50N60SFD оптом по самым выгодным ценам. Благодаря большим закупкам на протяжении более 10 лет мы вышли на прямые поставки от производителей. Оптовые поставки производятся в составе ежемесячных контейнеров. Окончательные цены обсуждаются индивидуально.

Статистические данные: величина закупленной партии для промышленного заказчика — 13 тыс штук (в 2016 г.) и 4500 шт (в 2017 г.). Третья закупка произведена в июне 2018 г. (3 коробки по 450 штук в каждой). Текущая партия от 2019 года — 3 коробки по 450 штук (уже с логотипом «ON» на корпусе).

UPD: из-за возросшей популярности пришлось закупить в октябре 2019 г. еще две коробки. 26 октября — в прямом эфире на нашем инстаграм канале будет показана распаковка новых коробок.

Обращений на подозрение брака: 0 человек

Доставка

     Отправка транзисторов FGh50N60SFD производится в любой город России с доставкой от 2 до 7 рабочих дней для срочных заказов и от 5 до 10 дней для обычных. В нашем магазине имеется специальная отправка для небольших радиокомпонентов общим весом до 30 грамм, поэтому до четырех транзисторов могут быть отправлены заказной бандеролью с трек номером для отслеживания местоположения и стоимостью от 80 руб. Данный вид отправки включает картонную книжку, внутрь которой в герметичном пакете помещаются транзисторы. Вся конструкция помещается в пластиковый пакет Почты России.

Заказы с количеством транзисторов от 10 штук отправляются в распиленных пластиковых рейках, помещенных в толстые картонные коробки. На коробку наклеивается адресный ярлык.

Оптовые заказы транзисторов FGh50N60SFD в количестве от 450 штук (одна заводская коробка) отправляются в промышленной упаковке без вскрытия (заводская пломба не нарушается). По желанию покупателя может быть вскрыто и отправлено фото погрузки (после поступления оплаты). 

Ссылки

Что такое фототранзистор »Электроника

Фототранзисторы — это биполярный транзистор, чувствительный к свету — имея усиление транзистора, они намного более чувствительны, чем фотодиоды.


Фототранзистор Включает:
Основы фототранзистора Приложения и схемы Фотодарлингтон Оптопара / оптоизолятор


Фототранзистор — это полупроводниковое устройство, способное определять уровни света и изменять ток, протекающий между эмиттером и коллектором, в зависимости от уровня получаемого света.

Как фототранзисторы, так и фотодиоды могут использоваться для восприятия света, но фототранзистор более чувствителен с учетом усиления, обеспечиваемого тем фактом, что это биполярный транзистор. Это делает фототранзисторы более подходящими для ряда приложений.

Идея фототранзистора известна много лет. Уильям Шокли впервые предложил эту идею в 1951 году, вскоре после открытия обычного биполярного транзистора. Прошло всего два года, прежде чем был продемонстрирован фототранзистор.С тех пор фототранзисторы используются во множестве приложений, и с тех пор их разработка продолжается.

Фототранзисторы

широко доступны и могут быть легко приобретены довольно дешево у дистрибьюторов электронных компонентов — ввиду их использования во многих электронных схемах и приложениях, они доступны как часть стандартного перечня полупроводниковых устройств.

Типичный фототранзистор
Обратите внимание на линзу вверху и на тот факт, что у него только два вывода, потому что база часто остается разомкнутой, а внешнее соединение не предусмотрено.

Применение фототранзисторов

Тот факт, что фототранзисторы просты в использовании и хорошо работают в пределах своих ограничений, означает, что эти полупроводниковые устройства используются в самых разных электронных схемах.

Часто это приложения, где световой луч прерывается, но иногда их можно использовать для определения уровня освещенности.

  • Энкодеры, в которых вращается вращающийся диск со светлыми и темными полосами — это определяет скорость и направление или вращение.
  • Картридеры.
  • Системы безопасности
  • Инфракрасные извещатели.
  • Управление освещением.
  • Оптроны
  • Системы подсчета — световой или инфракрасный луч прерывается для каждого подсчитываемого предмета.
  • Управление освещением.

Конечно, эти электронные компоненты используются во многих других областях.

Первоначальная разработка фототранзистора

Изобретение фототранзистора стало продолжением разработки первого транзистора с точечным контактом.Примерно в то время в Bell Labs проводилось большое количество разработок полупроводников, и фототранзистор разрабатывался одной из этих групп.

Хотя история фототранзистора не так широко освещается, как многие другие ранние разработки полупроводников, это, безусловно, было очень важным событием.

Старинный фототранзистор OCP71 — это был PNP-транзистор OC71 с непрозрачной оболочкой.
Записка из истории фототранзисторов:

Фототранзистор появился в результате первых разработок полупроводников в Bell Telephone Laboratories.Об изобретении впервые было объявлено 30 марта 1950 года.

Подробнее о Изобретение фототранзистора

Работа фототранзистора

Фототранзистор основан на принципе работы биполярного транзистора. Фактически фототранзистор можно сделать, подвергнув полупроводник обычного транзистора свету. Очень ранние фототранзисторы создавались без покрытия пластиковой оболочки биполярного транзистора черной краской.

Типичный небольшой инфракрасный фототранзистор

Фототранзистор работает, потому что свет, падающий на полупроводник, освобождает электроны / дырки и заставляет ток течь в области базы.

Фототранзисторы работают в активном режиме, хотя соединение с базой обычно остается разомкнутым или отключенным, потому что это часто не требуется. База фототранзистора будет использоваться только для смещения транзистора, чтобы протекал дополнительный ток коллектора, и это маскировало бы любой ток, протекающий в результате фотоэффекта.Для работы условия смещения достаточно простые. Коллектор NPN-транзистора сделан положительным по отношению к эмиттеру или отрицательным для PNP-транзистора.

Свет проникает в основную область, где генерируются дырочные электронные пары. Эта генерация в основном возникает в переходе база-коллектор с обратным смещением. Пары дырка-электрон движутся под действием электрического поля и обеспечивают ток базы, заставляя электроны инжектироваться в эмиттер. В результате ток фотодиода умножается на коэффициент усиления транзистора β по току.

Характеристики фототранзистора могут превосходить характеристики фотодиода для некоторых приложений с точки зрения его усиления. В качестве приблизительного ориентира, если фотодиод может пропускать ток около 1 мкА в типичных комнатных условиях, фототранзистор может пропускать ток 100 мкА. Это очень грубые приближения, но они показывают порядок величин различных значений и сравнений.

Одним из недостатков фототранзистора является то, что он очень медленный и его высокочастотная характеристика очень плохая.Фотодиоды — это гораздо более быстрые электронные компоненты, и они используются там, где важна скорость, несмотря на их низкую чувствительность.

Обозначение схемы фототранзистора

Стандартные символы схем необходимы для каждого типа электронных компонентов, что позволяет легко рисовать принципиальные схемы и узнавать их для всех. Символ фототранзистора состоит из основного символа биполярного транзистора с двумя стрелками, указывающими на соединение биполярного транзистора. Это схематично изображает работу фототранзистора.

Обозначение схемы фототранзистора (для устройства на основе транзистора NPN)

Фототранзисторы могут быть основаны как на транзисторах NPN, так и на транзисторах PNP, и поэтому вполне возможно иметь фототранзистор PNP, и для этого направление стрелки на эмиттере меняется на противоположное. обычным способом.

Видно, что показанный символ фототранзистора не указывает на соединение с базой. Часто база остается отключенной, поскольку свет используется для обеспечения протекания тока через фототранзистор.В некоторых случаях база может быть смещена, чтобы установить требуемую рабочую точку. В этом случае база будет отображаться на символе фототранзистора обычным образом.

Структура фототранзистора

Хотя обычные биполярные транзисторы проявляют светочувствительные эффекты при воздействии света, структура фототранзистора специально оптимизирована для фотоприложений. Фототранзистор имеет гораздо большие площади базы и коллектора, чем у обычного транзистора.Эти устройства обычно изготавливались с использованием диффузионной или ионной имплантации.

Планарная фототранзисторная структура с гомопереходом

В ранних фототранзисторах во всем устройстве использовался германий или кремний, что давало структуру с гомопереходом. В более современных фототранзисторах используются полупроводниковые материалы типа III-V, такие как арсенид галлия и подобные. Разновидности NPN-транзисторов более популярны в связи с тем, что используются системы отрицательного заземления, и NPN-транзисторы лучше подходят для этого режима работы.

Гетероструктуры

, в которых используются разные материалы по обе стороны от PN-перехода, также популярны, потому что они обеспечивают высокую эффективность преобразования. Как правило, они изготавливаются путем эпитаксиального выращивания материалов с соответствующей структурой решетки.

Эти фототранзисторы обычно используют мезаструктуру. Иногда переход Шоттки (металлический полупроводник) может использоваться для коллектора в фототранзисторе, хотя в наши дни такая практика менее распространена, поскольку другие структуры предлагают более высокие уровни производительности.

Чтобы обеспечить оптимальное преобразование и, следовательно, чувствительность, контакт эмиттера часто смещен в структуре фототранзистора. Это гарантирует, что максимальное количество света достигает активной области фототранзистора.

Характеристики фототранзистора

Как уже упоминалось, фототранзистор имеет высокий уровень усиления, обусловленный действием транзистора. Для гомоструктур, то есть тех, которые используют один и тот же материал во всем полупроводниковом устройстве, это может быть порядка от 50 до нескольких сотен.

Однако для устройств с гетероструктурой уровни усиления могут возрасти до десяти тысяч. Несмотря на их высокий уровень усиления, устройства с гетероструктурой не получили широкого распространения, поскольку эти полупроводниковые устройства значительно дороже в производстве. Еще одно преимущество всех фототранзисторов по сравнению с лавинным фотодиодом, еще одним устройством, обеспечивающим усиление, заключается в том, что фототранзистор имеет гораздо более низкий уровень шума. Лавинные диоды всех форм известны большим уровнем шума, который они создают в результате лавинообразного процесса.

Одним из основных недостатков фототранзистора является то, что он не имеет особенно хорошей высокочастотной характеристики. Это происходит из-за большой емкости, связанной с переходом база-коллектор. Это соединение должно быть относительно большим, чтобы оно могло улавливать достаточное количество света. Для типичного гомоструктурного устройства полоса пропускания может быть ограничена примерно 250 кГц. Устройства с гетеропереходом имеют гораздо более высокий предел, и некоторые из них могут работать на частотах до 1 ГГц.

Характеристики фототранзистора при разной интенсивности света. Они очень похожи на характеристики обычного биполярного транзистора, но с разными уровнями базового тока, замененными разными уровнями интенсивности света.

В фототранзисторе протекает небольшой ток, даже когда нет света. Это называется темновым током и представляет собой небольшое количество носителей, которые вводятся в эмиттер.Как и фото-генерируемые носители, он также подвергается усилению за счет действия транзистора.

Сводка преимуществ и недостатков фототранзисторов

Хотя эти полупроводниковые устройства используются в огромном количестве электронных устройств, схем и приложений, их преимущества и недостатки необходимо взвесить, чтобы определить, являются ли они правильным электронным компонентом для данного приложения. Фоторезисторы или светозависимые резисторы LDRs; фотодиоды; фотодарлингтоны, фото-полевые транзисторы и даже фототиристоры и симисторы — все это доступно и может подойти для любого конкретного применения.

Преимущества фототранзистора

  • Имеют относительно высокое усиление и поэтому относительно чувствительны.
  • Эти электронные компоненты относительно дешевы, поскольку фактически представляют собой транзистор, открытый для света.
  • Они могут быть включены в интегральную схему.
  • Предложите разумную скорость.

Недостатки фототранзистора

  • Эти устройства не могут работать с высокими напряжениями других полупроводниковых устройств, таких как фототиристоры и симисторы.
  • В приложениях, где они подвергаются скачкам и скачкам переходного напряжения, они открыты для повреждения
  • Не так быстро, как другие светочувствительные электронные компоненты, такие как фотодиоды.

Вот некоторые из основных преимуществ и недостатков этих электронных компонентов.

Фототранзисторы

— это полупроводниковые устройства, основанные на базовом биполярном транзисторе, и они доступны как транзисторы NPN или транзисторы PNP. Наряду с другими электронными компонентами и полупроводниковыми устройствами они доступны практически у всех дистрибьюторов электронных компонентов, и часто их стоимость очень низкая.

Другие электронные компоненты:
Резисторы Конденсаторы Индукторы Кристаллы кварца Диоды Транзистор Фототранзистор Полевой транзистор Типы памяти Тиристор Разъемы Разъемы RF Клапаны / трубки Аккумуляторы Переключатели Реле
Вернуться в меню «Компоненты». . .

Как работают транзисторы (NPN и MOSFET)

Транзистор — полезный и практичный компонент, который можно использовать для создания множества интересных проектов.В этом практическом руководстве вы узнаете, как работают транзисторы, и сможете использовать их в своей следующей схеме.

На самом деле это довольно просто, если вы изучите основы. Мы сосредоточимся на двух наиболее распространенных транзисторах; NPN и MOSFET .

Транзистор работает как электронный переключатель. Он может включать и выключать ток. Проще всего представить себе транзистор как реле без каких-либо движущихся частей. Транзистор похож на реле в том смысле, что вы можете использовать его для включения и выключения чего-либо.

Но транзистор также можно частично включить, что полезно для создания усилителей.

Как работают транзисторы (тип NPN)

Начнем с классического транзистора NPN. Имеет три ножки:

  • База (б)
  • Коллектор (в)
  • Излучатель (д)

Если вы включите его, через него может течь ток от коллектора к эмиттеру. Когда он выключен, ток не может течь.

В приведенном ниже примере схемы транзистор выключен.Это означает, что через него не может протекать ток, поэтому светоизлучающий диод (LED) также выключен.

Чтобы включить транзистор, необходимо напряжение около 0,7 В между базой и эмиттером.

Если бы у вас была батарея 0,7 В, вы могли бы подключить ее между базой и эмиттером, и транзистор включился бы.

Поскольку у большинства из нас нет батареи 0,7 В, как нам включить транзистор?

Легко! Часть транзистора база-эмиттер работает как диод.Диод имеет прямое напряжение , которое он «берет» из имеющегося напряжения. Если вы добавите резистор последовательно, остальная часть напряжения упадет на резисторе.

Таким образом, вы автоматически получите около 0,7 В, добавив резистор.

Это тот же принцип, который вы используете для ограничения тока через светодиод, чтобы он не взорвался.

Если вы также добавите кнопку, вы можете управлять транзистором и, следовательно, светодиодом, включаться и выключаться с помощью кнопки:

Выбор значений компонентов

Чтобы выбрать значения компонентов, вам нужно знать еще одну вещь о том, как работают транзисторы:

Когда ток течет от базы к эмиттеру, транзистор включается, так что больший ток может течь от коллектора к эмиттеру.

Существует связь между величинами двух токов. Это называется усилением транзистора.

Для транзистора общего назначения, такого как BC547 или 2N3904, это может быть около 100.

Это означает, что если у вас есть ток 0,1 мА от базы к эмиттеру, вы можете получить 10 мА (в 100 раз больше), протекающее от коллектора к эмиттеру.

Резистор какого сопротивления нужен для R1, чтобы ток протекал 0,1 мА?

Если батарея 9В, а база-эмиттер транзистора захватывает 0.7 В, на резисторе осталось 8,3 В.

Вы можете использовать закон Ома, чтобы найти номинал резистора:

Треугольник закона Ома

Значит нужен резистор на 83 кОм. Это не стандартное значение, но 82 кОм, и это достаточно близко.

R2 предназначен для ограничения тока светодиода. Вы можете выбрать значение, которое вы выбрали бы, если бы вы подключили светодиод и резистор непосредственно к батарее 9 В, без транзистора. Например, 1 кОм должен работать нормально.

Посмотрите видеообъяснение транзистора, которое я сделал несколько лет назад (простите за олдскульное качество):

Как выбрать транзистор

NPN-транзистор является наиболее распространенным из биполярных транзисторов (BJT) .Но есть еще один транзистор, называемый PNP, который работает точно так же, только все токи идут в противоположном направлении.

При выборе транзистора важно помнить, какой ток транзистор может выдерживать. Это называется током коллектора (I C ).

БЕСПЛАТНЫЙ бонус: Загрузите базовые электронные компоненты [PDF] — мини-книгу с примерами, которые научат вас, как работают основные компоненты электроники.

Как работает полевой МОП-транзистор

MOSFET-транзистор — еще один очень распространенный тип транзисторов. Он также имеет три контакта:

  • Затвор (g)
  • Источник (и)
  • Сток (d)
Символ MOSFET (N-канал)

MOSFET работает аналогично NPN-транзистору, но с одним важным отличием:

В NPN-транзисторе , ток от базы к эмиттеру определяет, сколько тока может протекать от коллектора к эмиттеру.

В полевом МОП-транзисторе напряжение между затвором и истоком определяет, какой ток может протекать от стока к истоку.

Пример: как включить полевой МОП-транзистор

Ниже приведен пример схемы включения полевого МОП-транзистора.

Значение R1 не имеет решающего значения, но около 10 кОм должно работать нормально. R2 устанавливает яркость светодиода. 1 кОм подойдет для большинства светодиодов. Q1 может быть практически любым n-канальным MOSFET, например BS170.

Чтобы включить MOSFET-транзистор, вам необходимо напряжение между затвором и истоком, которое выше порогового напряжения вашего транзистора.Например, BS170 имеет пороговое напряжение затвор-исток , равное 2,1 В. (Вы найдете эту информацию в таблице).

Пороговое напряжение полевого МОП-транзистора — это фактически напряжение, при котором он отключается. Итак, чтобы правильно включить транзистор, вам нужно напряжение немного выше этого.

Насколько выше, зависит от того, какой ток вы хотите иметь (и вы найдете эту информацию в таблице). Если вы поднимете на пару вольт выше порогового значения, этого обычно более чем достаточно для слаботочных вещей, таких как включение светодиода.

Обратите внимание, что даже если вы используете достаточно высокое напряжение для протекания тока 1 А, это не означает, что вы получите 1 А. Это просто означает, что у мог бы быть ток 1А, если бы вы захотели. Но то, что вы к нему подключаете, определяет фактический ток.

Таким образом, вы можете подниматься настолько высоко, насколько хотите, при условии, что вы не превышаете максимально допустимое напряжение затвор-исток (которое составляет 20 В для BS170).

В приведенном выше примере ворота подключаются к напряжению 9 В, когда вы нажимаете кнопку.Это включает транзистор.

Как выключить полевой МОП-транзистор?

Одна важная вещь, которую нужно знать о MOSFET, заключается в том, что он также действует как конденсатор. То есть часть затвор-исток. Когда вы прикладываете напряжение между затвором и истоком, это напряжение остается там до тех пор, пока оно не разрядится.

Без резистора (R1) в приведенном выше примере транзистор не выключился бы. С резистором есть путь для разряда конденсатора затвор-исток, чтобы транзистор снова отключился.

Как выбрать МОП-транзистор

В приведенном выше примере используется полевой МОП-транзистор с N-каналом . P-channel МОП-транзисторы работают одинаково, только ток течет в противоположном направлении, а напряжение затвор-исток должно быть отрицательным, чтобы включить его.

Существуют тысячи различных полевых МОП-транзисторов на выбор. Но если вы хотите построить схему, приведенную выше, и получить конкретную рекомендацию, BS170 и IRF510 — два обычных.

При выборе полевого МОП-транзистора следует учитывать две вещи:

  • Пороговое напряжение затвор-исток .Для включения транзистора требуется более высокое напряжение.
  • Непрерывный ток утечки . Это максимальное количество тока, которое может протекать через транзистор.

Есть и другие важные параметры, о которых следует помнить, в зависимости от того, что вы делаете. Но это выходит за рамки данной статьи. Помните об этих двух параметрах, и у вас будет хорошая отправная точка.

Зачем нужен транзистор?

Мне часто задают вопрос: зачем нам транзистор? Почему бы не подключить светодиод и резистор напрямую к аккумулятору?

Преимущество транзистора в том, что вы можете использовать небольшой ток или напряжение для управления гораздо большими током и напряжением.

Это очень полезно, если вы хотите управлять такими вещами, как двигатели, мощные светодиоды, динамики, реле и многое другое, с Raspberry Pi / Arduino / микроконтроллера. Выходные контакты этих плат обычно могут обеспечить всего несколько миллиампер при напряжении 5 В. Поэтому, если вы хотите управлять уличным освещением 110 В для патио, вы не можете сделать это напрямую с помощью булавки.

Вместо этого вы можете сделать это через реле. Но даже реле обычно требует большего тока, чем может обеспечить вывод. Итак, вам понадобится транзистор для управления реле:

Подключите левую сторону резистора к выходному контакту (например, от Arduino) для управления реле.

Но транзисторы также полезны для более простых схем датчиков, таких как эта схема светового датчика, схема сенсорного датчика или схема H-моста.

Транзисторы используются практически во всех схемах. Это действительно самый важный компонент в электронике.

Транзистор как усилитель

Транзистор — это еще и то, что заставляет работать усилители. Вместо того, чтобы иметь только два состояния (ВКЛ / ВЫКЛ), он также может быть где угодно между «полностью включен» и «полностью выключен».

Это означает, что слабый сигнал почти без энергии может управлять транзистором, чтобы создать гораздо более сильную копию этого сигнала в части коллектор-эмиттер (или сток-исток) транзистора.Таким образом, транзистор может усиливать слабые сигналы.

Ниже представлен простой усилитель для управления динамиком. Чем выше входное напряжение, тем выше ток от базы к эмиттеру и тем выше ток через динамик.

Изменяющееся входное напряжение приводит к изменению силы тока в динамике, что создает звук.

Усилитель с общим эмиттером

Обычно вы добавляете еще пару резисторов к смещению транзистора. В противном случае вы получите много искажений.Но это уже для другой статьи.

Если вы хотите узнать больше об использовании транзистора в качестве усилителя, на сайте electronics-lab.com есть несколько хороших руководств по трем основным настройкам усилителя BJT.

Вопросы?

Вы понимаете, как сейчас работают транзисторы? Или вы все еще в замешательстве? Позвольте мне знать в комментариях ниже.

Транзисторы 101

Транзисторы 101 Изучение транзисторов
(через простую схему драйвера светодиода)

Светодиод

Светодиод — это устройство, показанное выше.Кроме красные, они также могут быть желтыми, зелеными и синими. Буквы LED означают свет Излучающий диод. Что важно помнить о диодах (включая светодиоды) заключается в том, что ток может течь только в одном направлении.

Чтобы светодиод заработал, нужен источник питания и резистор. Если вы попытаетесь использовать светодиод без резистора, вы, вероятно, перегорите светодиод. Светодиод имеет очень маленькое сопротивление поэтому через него будет протекать большое количество тока, если вы не ограничите ток с резистором.Если вы попытаетесь использовать светодиод без источника питания, вы можете быть очень разочарованы.

Итак, в первую очередь сделаем наш Светодиод загорается при настройке схемы ниже.

Шаг 1.) Сначала вам нужно найти положительная ножка светодиода. Самый простой способ сделать это — поискать более длинная нога.

Шаг 2.) Как только вы узнаете, с какой стороны положительный, включите светодиод макет таким образом, положительный отрезок находится в одном ряду, а отрицательный — в другом. (На картинке ниже ряды вертикальные.)

Шаг 3.) Поместите одну ногу 220 резистор Ом (неважно, на какой ноге) в том же ряду, что и отрицательный ножка светодиода. Затем поместите другую ножку резистора в пустой ряд.

Шаг 4.) Отключите блок питания. адаптер от блока питания. Затем поместите заземляющий (черный провод) конец адаптер питания в боковом ряду с синей полосой рядом Это. Затем вставьте положительный (красный провод) конец адаптера источника питания в боковой ряд с красной полосой рядом.

Шаг 5.) Используйте короткую перемычку. (используйте красный цвет, так как он будет подключен к положительному напряжению), чтобы перейти от положительный ряд мощности (тот, рядом с которым есть красная полоса) к положительному ножка светодиода (не в том же отверстии, а в том же ряду). Использовать другой короткая перемычка (используйте черный цвет) для перехода от заземляющего ряда к резистору (нога, не подключенная к светодиоду). См. Картинку ниже если необходимо.

Макетная плата должна выглядеть как на картинке ниже.

Теперь подключите блок питания к стену, а затем подключите другой конец к адаптеру питания и Светодиод должен загореться.Ток течет от положительной ножки светодиода. через светодиод к отрицательной ножке. Попробуйте повернуть светодиод. Должно не загорается. Ток не может течь от отрицательного полюса светодиода к положительная нога.

Люди часто думают, что резистор должен быть первым на пути от положительного к отрицательному, чтобы ограничить количество тока, протекающего через светодиод. Но ток ограничен резистор независимо от того, где находится резистор. Даже когда вы впервые включаете мощность, ток будет ограничен определенной величиной, и его можно найти используя закон Ома.

Вездесущая полезность закона Ома:
[Напряжение (вольт) = ток (амперы) X сопротивление (Ом)]

Закон Ома может использоваться с резисторами найти ток, протекающий по цепи. Закон I = V / R (где I = ток, V = напряжение на резисторе и R = сопротивление). Для В приведенной выше схеме мы можем использовать только закон Ома для резистора, поэтому мы должны использовать то что при горящем светодиоде на нем падение напряжения 1.9 (Кстати: падение напряжения зависит от типа светодиода).Это означает, что если положительный вывод подключен к 5 вольт, отрицательный нога будет на 3,1 вольта (т. е. 5,0–1,9 = 3,1). Теперь, когда мы знаем напряжение на обеих сторонах резистор и может использовать закон Ома для расчета тока. Текущий (5,0-1,9) / 220 = 3,6 / 2000 = 0,0014 Ампер = 14 мА

Это ток, протекающий через путь от 5В к GND. Это означает, что через оба канала проходит 14 мА. Светодиод и резистор (так как они включены последовательно). Если мы хотим изменить ток, протекающий через светодиода (таким образом, изменяя яркость) мы можем поменять резистор.Меньший резистор пропускает больше тока, а резистор большего размера пропускает меньше текущий поток. Будьте осторожны при использовании резисторов меньшего размера, потому что они будут раздражаться. Кроме того, некоторые светодиоды будут повреждены, если вы ими воспользуетесь. за пределами их максимального номинального тока … так что не используйте резистор, который настолько мал что вы будете генерировать чрезвычайно высокий ток (примечание: наш светодиод имеет максимум рабочий ток 20 мА).

Далее мы хотим иметь возможность повернуть светодиод включается и выключается без изменения схемы.Для этого мы научимся использовать другой электронный компонент, транзистор.

Транзистор

Транзисторы — основные компоненты во всей современной электронике. Это просто переключатели, которые мы можем использовать для включения и выключения. Несмотря на то, что они просты, они самый важный электрический компонент. Например, транзисторы почти единственные компоненты, используемые для построения процессора Pentium. Один Pentium 4 имеет около 55 миллионов транзисторов (именно поэтому эти чипы так чертовски горячий).Те, что в Pentium, меньше чем те, которые мы будем использовать, но они работают одинаково.

Транзисторы (2N2222), которые мы будем использовать в наших проектах, выглядят так:

Транзистор имеет три ножки, Коллектор (C), база (B) и эмиттер (E). Иногда они помечены на плоская сторона транзистора. Транзисторы обычно имеют одну круглую сторону и одна плоская сторона. Если плоская сторона обращена к вам, ножка эмиттера Слева опорная ножка находится посередине, а коллекторная ножка находится на справа (примечание: некоторые специальные транзисторы имеют другую конфигурацию контактов, чем пакет ТО-92, описанный выше).

Символ транзистора

В электрические схемы (схемы) для представления NPN транзистора

Базовая схема

База (B) — переключатель включения / выключения для транзистора. Если к базе идет ток, будет путь от коллектора (C) к эмиттеру (E), где может течь ток (Переключатель включен.) Если к базе не течет ток, значит, нет ток может течь от коллектора к эмиттеру.(Переключатель выключен.)

Ниже приведена базовая схема, которую мы будем использовать для всех наших транзисторов.

Чтобы построить эту схему, нам нужно только добавить транзистор и еще один резистор к схеме, которую мы построили выше для светодиода. Перед внесением любых изменений отключите блок питания от адаптера блока питания. на макете. Чтобы вставить транзистор в макет, разъедините ножки немного и поместите его на макет так, чтобы каждая ножка находилась в отдельном ряду. В ножка коллектора должна быть в том же ряду, что и ножка резистора, который подключен к земле (с помощью черной перемычки).Затем переместите перемычку переход от земли к резистору 220 Ом к эмиттеру транзистора.

Затем поместите одну ногу 100 кОм резистор в ряду с базой транзистора и другой ножкой в пустая строка, и ваша макетная плата должна выглядеть, как на картинке ниже.

Теперь наденьте один конец желтой перемычки. провод в положительном ряду (рядом с красной линией), а другой конец — в ряд с ножкой резистора 100 кОм (конец не подключен к База).Снова подключите источник питания, транзистор включится и Загорится светодиод. Теперь переместите один конец желтой перемычки из положительный ряд к основному ряду (рядом с синей линией). Как только ты снимите желтую перемычку с плюса питания, есть ток не течет к базе. Это заставляет транзистор выключиться и ток не может течь через светодиод. Как мы увидим позже, очень через резистор 100 кОм протекает небольшой ток. Это очень важно потому что это означает, что мы можем контролировать большой ток в одной части цепи (ток, протекающий через светодиод) только с небольшим током от Вход.

Назад к закону Ома

Мы хотим использовать закон Ома, чтобы найти ток на пути от входа к базе транзистора и ток, протекающий через светодиод. Для этого нам нужно использовать два основных факты о конкретных транзисторах, которые мы используем:

1.) Если транзистор включен, тогда базовое напряжение на 0,7 вольт выше, чем напряжение эмиттера.

2.) Если транзистор включен, напряжение коллектора на 1,6 вольт выше, чем напряжение эмиттера.

Итак, когда резистор 100 кОм подключен к 5 В постоянного тока, схема будет выглядеть так:

Таким образом, ток, протекающий через резистор 100 кОм, равен (5 — 0,7) / 100000 = 0,000043 A = 0,043 мА.

Ток, протекающий через резистор 220 Ом, равен (3,1 — 1,6) / 220 = 0,0068 А = 6,8 мА.

Если мы хотим, чтобы ток протекал больше через светодиод, мы можем использовать меньший резистор (вместо 220) и мы будет получать больше тока через светодиод без изменения величины тока который идет от входной линии к базовому резистору 100 кОм.Это означает , что мы можем контролировать вещи, которые используют большая мощность (например, электродвигатели) с дешевыми транзисторными схемами малой мощности. Скоро вы узнаете, как использовать компьютер для управления событиями в реальном мире. Несмотря на то выходы стандартного компьютера под управлением Windows не могут обеспечить достаточный ток для включения света и двигателей включения и выключения, компьютер может включать и выключать транзисторы (поскольку для этого требуется слабый ток) и Транзисторы могут управлять большим током для ламп и двигателей. Эта концепция называется усилением и представляет собой фундаментальную концепцию компьютерного интерфейса для эксперименты в реальном мире.

Примечание :
Это руководство во многом основано на том, что изначально появилось на несуществующем веб-сайте www.iguanalabs.com (Посмертное спасибо ребятам из лаборатории игуаны).

Изобретение транзистора — CHM Revolution

Изобретение транзистора

Ученые 20-х годов прошлого века предложили строить усилители из полупроводников. Но они недостаточно хорошо разбирались в материалах, чтобы на самом деле это делать. В 1939 году Уильям Шокли из Bell Labs компании AT&T возродил идею замены электронных ламп.

Под руководством Шокли Джон Бардин и Уолтер Браттейн продемонстрировали в 1947 году первый полупроводниковый усилитель: точечный транзистор с двумя металлическими точками, контактирующими с полоской германия. В 1948 году Шокли изобрел более прочный переходной транзистор, построенный в 1951 году.

Эти трое разделили Нобелевскую премию по физике 1956 года за свои изобретения.

Как работал транзистор Бардина и Браттейна

Транзистор Бардина и Браттейна состоял из полоски германия с двумя близко расположенными золотыми точечными контактами, удерживаемыми пластиковым клином.Они выбрали материал германия, который был обработан так, чтобы содержать избыток электронов, названный N-типом. Когда они заставляли электрический ток проходить через один контакт (называемый эмиттером), он вызывал дефицит электронов в тонком слое (локально изменяя его на P-тип) около поверхности германия. Это изменило количество тока, который мог протекать через контакт коллектора. Небольшое изменение тока через эмиттер вызвало большее изменение тока коллектора. Они создали усилитель тока.

Транзисторы взлетают

Компания AT&T, которая изобрела транзистор, лицензировала технологию в 1952 году. Она надеялась извлечь выгоду из других усовершенствований.

Транзисторы быстро покинули лабораторию и вышли на рынок. Хотя они и дороже электронных ламп, они были идеальными, когда важна портативность и работа от батарей. Слуховой аппарат Sonotone 1952 года был первым в Америке потребительским товаром на транзисторах. AT&T также использовала транзисторные усилители в своей системе междугородной телефонной связи.Вскоре они появились как переключатели, начиная с экспериментального компьютера в Манчестерском университете в 1953 году.

По мере того, как цены падали, количество потребителей увеличивалось. К 1960 году большинство новых компьютеров были транзисторными.

Транзисторы для новичков в электронике

Дом Новичкам Составные части Транзистор

Создано: 30 июля 2012 г.

Доступно несколько типов транзисторов, например БЮТ, полевой транзистор, полевой транзистор. Здесь обсуждается BJT (биполярный переходной транзистор).Есть два типа BJT, а именно NPN и PNP.

Обозначения транзисторов

Символы, используемые в принципиальных схемах для транзисторов NPN и PNP, показаны ниже:

Транзисторные блоки

Транзисторы

могут быть упакованы во множество различных корпусов, некоторые примеры показаны ниже:

У разных пакетов разные имена, например TO-220, TO-18 и т. Д. Это названия корпусов, а не номера деталей транзисторов.

Чем больше корпус, тем большую мощность выдерживает транзистор.

Артикулы транзисторов

У каждого транзистора есть номер детали. На фото ниже показаны два разных транзистора. Они имеют номера деталей 2N2222 и KSP2222 (также доступны как PN2222).

2N2222 упакован в металлическую банку, известную как упаковка TO-18. KSP2222 является эквивалентом 2N2222, но упакован в пластиковую упаковку, известную как упаковка TO-92.

Контакты транзисторов

Транзисторы

имеют три контакта, которые называются эмиттером (e), базой (b) и коллектором (c).На схеме ниже показано, как символы транзисторов 2N2222, BC107, BC108 и BC109 отображаются на физическое устройство.

У разных транзисторов (т. Е. Транзисторов с разными номерами деталей) контакты не обязательно должны быть в одном и том же порядке. Особенно это касается транзисторов в пластиковом корпусе ТО-92.

В качестве примера, когда плоская сторона транзистора KSP2222 (или PN2222) (сторона с напечатанным на ней номером детали) обращена к вам контактами вниз, контакты имеют вид e, b, c (эмиттер, база, коллектор) от слева направо.Контакты другого транзистора могут располагаться в порядке b, c, e слева направо.

Расположение контактов для PN2222 и KSP2222 показано ниже:

Снимок | Транзисторная вики | Фэндом

Снимок

Характеристики

+ линза вспышки
+ усилитель Reflex
+ скремблер данных (некоторые версии)

Уязвимости

— Открытая ячейка (задняя)

Настройки

Освещение с расширенным динамическим диапазоном.

«Что они делают с этими снимками …?» — Неизвестно

Снимок — это тип Процесса, напоминающий массив камер с несколькими объективами.

  • Снимки могут уклоняться от большинства атак, но впоследствии становятся уязвимыми
  • Snapshot 2.0 увеличивает емкость клипа
  • Снимки пытаются сохранять определенное расстояние от пользователя
  • Снимки атакуют прогнозируемую пользователем позицию, а не текущую позицию
  • Snapshot 3.0 использует генератор неопределенности для скрытия во время поворота ()

Снимки представляют собой белые кружки, парящие в воздухе.Они содержат красное ядро, предположительно содержащее Ячейку и линзу, используемую для фотографирования.

Этот конкретный процесс часто делает «снимки» красного цвета, которые ненадолго отображаются прямо на экране. Более поздние версии также включают возможность «карабкаться» по области планирования во время хода (). Количество «шума», создаваемого Snapshot во время Turn (), похоже, зависит от того, насколько близко или далеко от него находится красный. Чем дальше от него находится красный, тем больше он скрывается, что затрудняет определение его точного местоположения с больших расстояний.И наоборот, чем ближе к нему кажется красный, тем больше он закрывает остальную часть поля планирования, затрудняя атаку других целей в этой области. Его основная атака — это одновременный выпуск нескольких последовательных выстрелов в Красного, который наносит средний урон, чем дольше вы остаетесь на пути снарядов.

Версии [править | править источник]

  • Версия 2.0: изображения большего размера
  • Версия 3.0: Генератор неопределенности
  • Несколько снимков собраны вокруг плакатов Рэда.Если их не беспокоить, они начинают фотографировать плакаты, и Неизвестный задается вопросом, нравится ли она им.
  • Их внутреннее название — «зонер».

Полное руководство по их использованию в электронике

Здесь вы найдете полное руководство по транзисторам.

В этом руководстве по транзисторам я расскажу вам об основах транзисторов, различных типах, наиболее популярных частях и способах их использования в схемах.

Это часть нашей серии «Основы», посвященной диодам и транзисторам.

Что такое транзистор?

Давайте начнем с простого для понимания определения транзистора. Чтобы дать определение транзистору, мы хотим взглянуть на общую картину и на то, как она вписывается в электронику.

Мы можем определить это следующим образом:

транзистор = электронное устройство, которое может использоваться для переключения или усиления электрической энергии

# 1 Уроки: из транзисторов получаются отличные переключатели и усилители, и два основных типа из них:

Биполярные переходные транзисторы (BJT) — вы используете ток для управления

полевых транзисторов (FET) — вы используете напряжение для управления

Транзистор — это фундаментальный строительный блок современной электроники.Когда он был изобретен, он привел к электронной революции, которая открыла новую эру технологий.

Транзисторный радиоприемник был одним из первых, кто революционизировал эту технологию. Размер радиоприемника резко уменьшился, поскольку больше не нужно было использовать электронные лампы

Без транзистора не существовало бы современной электроники.

Кто изобрел транзистор?

Вы можете спросить: а когда же был изобретен транзистор? В отношении изобретения транзистора есть три важные даты:

1927 — Юлиус Лилиенфельд запатентовал полевой транзистор, но не смог произвести его в то время из-за ограничений технологии.

1947 — Уильям Шокли, Джон Бардин и Уолтер Браттейн изобрели транзистор с точечным контактом в компании Bell Telephone Laboratories, Inc.

1956 — Нобелевская премия по физике присуждена Шокли, Бардину и Браттейну за транзистор.

Что делает транзистор?

Две основные функции транзистора — усилитель и переключатель, работают как с отдельными транзисторами, так и с их комбинациями.

Соединение нескольких транзисторов с другими электрическими компонентами, такими как резисторы и диоды, может даже создать логические вентили.

Далее мы рассмотрим каждый из них более подробно

Транзисторный усилитель

Каждый раз, когда вы хотите использовать немного чего-то, чтобы получить еще больше, это называется усилением.

Рассмотрим аналогию с механическим рычагом. Когда вам нужно выполнить механическую работу над чем-то, если вы добавите рычаги воздействия, вы сможете усилить свою работу.

Физика транзисторов позволяет нам использовать напряжение или ток для управления передачей электрической энергии в транзисторе.

В результате мы можем использовать небольшое напряжение или ток для управления гораздо большим напряжением или током. Это то, что мы называем усилителем.

Мы рассмотрим это более подробно, когда рассмотрим различные типы транзисторов позже.

Транзисторный переключатель

Одна из лучших особенностей транзисторов, позволяющих использовать современную цифровую электронику, заключается в том, что транзистор может действовать как переключатель.

Когда вы включаете выключатель света в своем доме, вы делаете небольшую механическую работу руками, которая позволяет электричеству течь через ваши лампочки.

Использование транзистора в качестве переключателя, подобного выключателю света, позволяет нам использовать напряжение или ток для его включения или выключения, что затем позволяет току течь через другую часть схемы.

Соединение множества разных переключателей вместе в различных комбинациях позволяет нам создавать всевозможные логические вентили, которые мы рассмотрим далее.

Транзисторный вентиль

Типичный логический вентиль в наши дни состоит из нескольких транзисторов, а также других компонентов. Создание логических вентилей в схемах претерпело долгую эволюцию по мере того, как технологии производства становились все лучше и лучше.

Логические вентили транзисторов в наши дни обычно изготавливаются из полевых МОП-транзисторов, а точнее — из КМОП. Мы рассмотрим их подробно позже.

Транзистор И затвор, например, может быть выполнен как минимум с двумя транзисторами. Чтобы увидеть, как другие вентили могут быть сделаны из транзисторов, ознакомьтесь с этим замечательным средством.

С годами развития транзисторы становятся все меньше и меньше. Например, еще в 1971 году транзисторы были 10 микрометров.

По состоянию на 2014 год они составляют 14 нанометров с ожидаемыми 10 нанометрами к 2017 году.Если посчитать, то всего за 46 лет размер уменьшится примерно на 1000 человек.

Имейте в виду, что это то, что можно производить. Есть группы исследований и разработок, которые достигли размера транзисторов в 1 нанометр. Это самый маленький из известных транзисторов на 2017 год.

Уменьшение размера транзистора позволяет размещать все больше и больше транзисторов в таких устройствах, как центральные процессоры (ЦП) в компьютерах.

Общая тенденция уменьшения размера компонентов, ведущая к удвоению количества, которое вы можете разместить на устройстве, известна как закон Мура.Всегда интересно увидеть количество транзисторов в устройствах за разные годы.

Например, количество транзисторов современных процессоров Intel исчисляется миллиардами и продолжает расти. Популярный процессор i7 содержит около 1,75 миллиарда транзисторов.

Кроме того, способ оптимизации количества транзисторов, используемых в затворах, называется логикой проходных транзисторов.Технология всегда расширяет границы, позволяя получить больше при меньшем размере и меньшем количестве компонентов. Это приводит к тому, что в одном и том же физическом пространстве помещается больше возможностей.

Обозначение транзистора

Итак, как выглядит схема транзистора? Давай выясним.

Чтобы упростить задачу, мы рассмотрим 6 различных типов транзисторов, с которыми вы чаще всего сталкиваетесь.

Символ транзистора NPN и символ транзистора PNP являются наиболее распространенными. Они являются частью биполярной семьи.

Также будет включать N-канальный JFET и P-канальный JFET, которые представляют собой полевые транзисторы с переходным затвором.

И наконец, что не менее важно, у нас есть полевые МОП-транзисторы с N-каналом и P-каналом, которые представляют собой металлооксидные полупроводниковые полевые транзисторы.

Обратите внимание на то, что на схеме для NMOS и PMOS (MOSFET) пунктирная линия в середине означает, что они находятся в расширенном режиме. Если бы они были прямыми линиями без тире, это были бы транзисторы с режимом истощения.

Мы рассмотрим каждый из этих типов транзисторов более подробно. Вот символы для каждого из них:

Обратите внимание, что направление стрелки на символах обычно определяет n-тип по сравнению с p-типом.

Распиновка транзистора

Как видно из символьной диаграммы, у нас есть несколько разных выводов для каждого типа транзистора.

Для биполярного транзистора три основных контакта — это база (B), коллектор (C) и эмиттер (E).

В то время как для полевых транзисторов (JFETs и MOSFET) выводы нашего источника (S), затвора (G) и стока (D).

Мы рассмотрим, что эти выводы делают в следующем разделе.

Как работает транзистор?

Мы рассмотрели, что такое транзисторы, для чего они нужны и какие символы мы используем для них в схемах. Теперь давайте рассмотрим, как работает транзистор более подробно.

Мы рассмотрим некоторые основы работы с транзисторами, а затем покажем вам режимы работы каждого типа.

Вся цель транзистора состоит в том, чтобы позволить вам использовать немного электрической энергии для управления гораздо большим количеством электрической энергии.

Мы можем сделать это либо в двоичном режиме (включен или выключен), как в переключателе, либо мы можем использовать полный диапазон работы транзистора и создать усилитель.

С учетом сказанного, есть два основных транзистора типы, которые работают по-разному. Мы собираемся поддерживать теорию на высоком уровне, чтобы вы могли использовать ее на практике в электронике.

Если вас интересует вся физика, лежащая в основе этого, есть целые области изучения полупроводников и много книг, которые вы можете изучить.Помните, что люди делают карьеру из этого материала.

Биполярный переходной транзистор

Первый тип называется биполярным переходным транзистором (БЮТ). Биполярный транзистор использует как электронные, так и дырочные носители, как и диоды.

Дырки и носители создаются полупроводниковыми материалами, известными как P-тип (дырки) и N-тип (электроны).

Материалы как N-типа, так и P-типа ведут себя определенным образом, и, если их сложить вместе, можно получить еще более интересные эффекты.

Типичный диод обычно представляет собой материал N-типа и P-типа вместе. В то время как BJT — это их три вместе.Транзисторы бывают как типа NPN, так и PNP.

Например, NPN — это именно то, как оно названо, где есть сэндвич из материала N-типа, P-типа и N-типа вместе взятых.

В свое время германиевые транзисторы были обычным способом изготовления биполярных транзисторов.Однако сейчас кремниевые транзисторы стали нормой.

Несколько ключевых моментов, касающихся BJT, заключаются в том, что hfe (иногда называемый бета) — это быстрый индикатор способности транзистора к усилению, также известный как усиление постоянного тока.

Кроме того, насыщение транзистора просто означает, что больше тока через базу не даст больше тока через коллектор и эмиттер.

Теперь давайте посмотрим на транзисторы NPN и PNP, чтобы лучше понять, как они работают.

Транзистор NPN

NPN — это именно то, как его называют, где есть сэндвич из материалов N-типа, P-типа и N-типа, соединенных вместе.Пример конструкции можно увидеть ниже.

Конструкция этого устройства устроена так, что ток обычно не течет между двумя материалами N-типа, потому что материал P-типа разделяет их.

Что интересно, так это то, что когда мы манипулируем материалом P-типа током, мы можем создать мост между двумя материалами N-типа, который позволяет току течь между ними.

Например, для типичного одиночного NPN , если мы подадим на базу около 0,7 Вольт, то ток будет течь через базу к эмиттеру.

Это, в свою очередь, позволит току легче проходить через материал P-типа. Это позволяет току течь от коллектора к эмиттеру в качестве конечного результата. Это позволяет манипулировать материалами.

Основы, которые вам нужно знать здесь на высоком уровне, следующие:

Для BJT NPN, когда ток течет от базы к эмиттеру, он включает транзистор и позволяет гораздо больше. ток течет от коллектора к эмиттеру.

Вот почему мы часто называем BJT устройствами с регулируемым током.

NPN Operation

Теперь давайте рассмотрим несколько общих способов работы с NPN. Мы знаем, что контакты — это база (B), коллектор (C) и эмиттер (E).

  • Cut Off («off»): Emitter> Base
  • Saturation («on»): Emitter Collector
  • Forward Active («пропорционально»): Emitter
  • Reverse Active («отрицательный пропорциональный»): Emitter> Base> Collector

Для этих различных режимов переключатель будет использовать режимы отсечки и насыщения.

Усилитель будет использовать прямой активный режим, в котором ток от коллектора к эмиттеру пропорционален току от базы к эмиттеру.

Обратный активный режим — это когда ток течет от эмиттера к коллектору, что является обратным нормальному активному режиму. Этот режим используется нечасто.

Ключевым моментом здесь является то, что напряжение между базой и эмиттером (Vbe), обычно около 0,7 В, является одним из основных ингредиентов для включения NPN.

Конечно, поведение NPN намного сложнее, но это это общий вынос.

Транзистор PNP

Аналогичным образом, PNP имеют порядок материалов P-типа, N-типа и P-типа, как показано ниже.

PNP похожи на NPN, но направление тока другое.

Основная идея этого устройства заключается в том, что два материала P-типа разделены между собой N-типом, что означает, что ток не будет нормально течь между двумя материалами P-типа.

Однако, когда мы добавляем ток в смесь, мы можем управлять материалом N-типа, чтобы он действовал как мост между материалами P-типа, позволяя току течь.

Вот наш главный вывод:

Для BJT PNP, когда ток течет от эмиттера к базе, гораздо больше тока может течь от эмиттера к коллектору.

Работа PNP

Далее мы рассмотрим различные способы работы PNP. Мы помним, что контакты — это база (B), коллектор (C) и эмиттер (E).

  • Отсечка («выкл.»): Эмиттер <База> Коллектор
  • Насыщенность («Вкл.»): Эмиттер> База <Коллектор
  • Активный вперед («пропорциональный»): Излучатель> База> Коллектор
  • Обратно Активный («отрицательный пропорциональный»): Эмиттер <База <Коллектор

PNP аналогичен NPN, но токи меняются местами.Использование NPN гораздо более распространено, но иногда вы можете встретить PNP.

Часто NPN и PNP используются вместе, чтобы получить более сложное поведение схемы. Хорошим примером является схема двухтактного усилителя.

Опять же, PNP немного сложнее, но для большинства схем это все, что вам нужно знать

Полевой транзистор

Что может быть круче, чем манипулирование материалом с помощью тока? Вместо этого манипулируем напряжением! Именно это мы и делаем с полевыми транзисторами (FET).

Полевые транзисторы

позволяют нам использовать электрическое поле для управления электропроводностью канала в них, который управляет переключателем.

Давайте подробнее рассмотрим два основных типа полевых транзисторов.

JFET-транзистор

Переходный полевой транзистор (JFET) — очень простое устройство.

Основная идея состоит в том, что полевой транзистор JFET обычно проводит ток между источником и стоком, если на затвор не подается напряжение.

Это означает, что JFET обычно включен, пока напряжение на затворе не отключит его.

Напряжение создает электрическое поле, которое «зажимает» канал, по которому течет ток. Точно так же, как если бы вы зажали садовый шланг, чтобы вода не протекала через него.

Здесь есть два аромата, где материал N-типа или P-типа может использоваться для канала. Тип материала будет определять, какое напряжение необходимо приложить к затвору.

N-канальный JFET

Типичная конструкция n-канального JFET представлена ​​ниже.

Основные сведения о N-канальном JFET:

  • Напряжение между источником и стоком вызывает протекание тока. Повышение напряжения увеличивает ток до определенного момента. В режиме насыщения ток остается неизменным при увеличении напряжения от стока до источника, Vds.
  • Подача напряжения на затвор и источник ограничит общий ток от источника до стока в зависимости от величины напряжения. Как только напряжение затвора к источнику достигнет напряжения отсечки, ток не будет течь от источника к стоку.Это отключает устройство.

Чтобы разобраться в этом, посмотрите эту потрясающую визуализацию.

P-Channel JFET

Напротив, типичная конструкция JFET с p-каналом показана ниже.

P-канальный JFET работает очень похоже на N-канальный JFET, за исключением того, что токи и напряжения меняются местами.

МОП-транзистор

Гораздо более популярной формой полевого транзистора является металлооксидный полупроводниковый полевой транзистор (МОП-транзистор).Иногда люди для краткости называют их МОП-транзисторами.

Как мы увидим, МОП-часть имени происходит от структуры транзистора, что упрощает запоминание его общей функции.

МОП-транзистор обычно выключен до тех пор, пока напряжение на затворе не включит транзистор и позволяет току течь между источником и стоком.

Они обычно используются в цифровой электронике и процессорах.

Существует две формы полевого МОП-транзистора. Это N-канал (NMOS) и P-канал (PMOS).Давайте теперь подробно рассмотрим различия.

NMOS-транзистор

Для NMOS у нас есть простая структура, в которой исток и сток представляют собой материал N-типа, и они разделены материалом P-типа. Поверх разделения находится оксидный слой, а поверх него — металлический слой, который является воротами.

Вы можете увидеть эту структуру ниже.

По сути, всякий раз, когда на Воротах Источника присутствует напряжение (Vgs), создаваемое электрическое поле воздействует на материал P-типа, образуя канал между двумя другими материалами N-типа, которые являются Источником и Стоком.

Это напряжение создает канал и позволяет току течь по нему между Источником и Стоком.

Далее давайте более подробно рассмотрим различные режимы работы для режима расширения NMOS.

Основными переменными являются Vgs (напряжение от затвора до источника), Vth (пороговое напряжение Vgs), Vds (напряжение от стока до источника) и Vds-sat (напряжение насыщения Vds).

  • Отсечка: Vgs
  • Омический: Vgs> Vth и Vds
  • Насыщение : Vgs> Vth и Vds> Vds-sat, канал полностью сформирован, увеличение Vds не вызывает увеличения тока

Здесь можно найти отличную визуализацию для этих режимов.В таблице данных для вашей части NMOS должно быть несколько графиков, отображающих ток стока (Id) в зависимости от Vds, с линиями, представляющими разные Vgs.

Отличным примером сильноточного NMOS является IRLML6344TRPBF.

Если вы откроете таблицу данных для этой части, вы увидите, что для этого требуется, чтобы напряжение Vgs было выше 1,1 вольт (Vth). Кривая показывает нам, что для разных уровней Vgs выше этого порогового напряжения мы получаем разные кривые тока стока.

В большинстве случаев напряжение Vds-sat составляет около 1 В, и именно здесь кривые переходят в плоскую линию.

Для CMOS, когда напряжение на затворе высокое, транзистор включен, а когда напряжение на затворе низкое, транзистор выключен.

Транзистор PMOS

Для PMOS он очень похож на NMOS, за исключением того, что материалы типа N и P поменяны местами. Вы можете увидеть структуру ниже.

PMOS работает очень похоже на NMOS, за исключением того, что некоторые вещи работают наоборот. Давайте посмотрим на разные режимы.

Основными переменными являются Vgs (напряжение от затвора до источника), Vth (пороговое напряжение Vgs), Vds (напряжение от стока до источника) и Vds-sat (напряжение насыщения Vds).

  • Отсечка: Vgs> -Vth, ток не течет от источника к стоку
  • Омический: Vgs <-Vth и -Vds> -Vds-sat, канал формируется на основе Vgs, -Vds более отрицательное значение вызывает больший ток линейно
  • Насыщенность: Vgs <-Vth и -Vds <-Vds-sat, канал полностью сформирован, -Vds становится более отрицательным, не вызывает больше тока

Вот основной момент:

Для PMOS, когда напряжение на затворе высокое, транзистор выключен, а когда напряжение на затворе низкое, транзистор включен.

Транзистор CMOS

Что произойдет, если объединить NMOS и PMOS в одной детали? Вы получаете очень удобный компонент.

Фактически, комплементарная MOS (CMOS) лежит в основе процессоров, SRAM и логических микросхем. Использование КМОП дает множество технических преимуществ, подробности см. Здесь

Упаковка транзисторов

Транзисторы выпускаются в различных вариантах корпусов, включая сквозное отверстие, поверхностный монтаж и монтаж на шасси.

В большинстве конструкций электроники используется поверхностный монтаж.Однако любители часто используют варианты со сквозным отверстием.

Для более высокого рассеивания мощности может потребоваться установка через отверстие или монтаж на шасси для отвода тепла от схемы

Распространенным корпусом со сквозными отверстиями является TO-92, который имеет пластиковый корпус с тремя выводами. Популярным корпусом для поверхностного монтажа является SOT-23, который также имеет 3 контакта.

Самые популярные транзисторы

Транзистор Дарлингтона

Допустим, вам нужен усилитель или переключатель тока NPN, но найденные вами одиночные транзисторы просто не имеют достаточно высокого коэффициента усиления (hfe), чтобы вывести низкотоковый вход на высокий выходной ток.

Мы знаем, что мы можем усилить ток одним транзистором, тогда почему мы не можем сделать это дважды, чтобы получить еще больше?

Ответ — мы можем. Несколько транзисторов вызывают несколько ступеней усиления, которые умножаются друг на друга, что дает нам гораздо больший общий коэффициент усиления.

Это так же просто, как соединить два коллектора NPN вместе и подключить эмиттер первого к основанию второго.

Символ Дарлингтона показан ниже, чтобы проиллюстрировать эту установку.

Оказывается, это очень мощный аппарат. Конечно, мы могли бы создать его с двумя дискретными транзисторами, но он сэкономит намного больше места, если будет выполнен на той же интегральной схеме.

Например, с FZT605TA мы могли бы использовать 1 миллиампер для управления первым транзистором, который усиливается для управления вторым транзистором и позволяет нам управлять током, протекающим от коллектора к эмиттеру, более 1 ампер.

Это усиление более чем в 1000 раз!

Силовой транзистор

Когда мы говорим силовой транзистор, мы обычно подразумеваем транзисторы, которые могут обрабатывать более 1 А на выходной стороне.Это означает, что для BJT, тока коллектора и эмиттера, а также для полевых транзисторов, ток источника и стока имеет максимальное значение более 1 А.

Некоторые вещи, на которые следует обратить внимание при поиске такого транзистора, — это его внутреннее сопротивление и максимальное тепловыделение.

Кроме того, если вы имеете дело с большим количеством тепла, есть ли у него упаковка, позволяющая подключать его к радиатору?

Корпус TO220 — это знаменитый корпус со сквозными отверстиями, в котором есть хорошая металлическая посадочная площадка и отверстие для винта для установки различных радиаторов.

Транзисторы серии TIP являются популярным вариантом BJT в этом классе деталей. Вот несколько отличных примеров:

Транзистор TIP31 — ток коллектора макс = 3 А, hfe = 10, максимальная мощность = 2 Вт, л чернил

Транзистор TIP120 — ток коллектора макс = 5 А, hfe = 1000, максимальная мощность = 2 Вт, ссылка

Если вам нужен силовой полевой транзистор, то популярным выбором будет IRLML6344TRPBF. Он имеет максимальный ток стока 5 А и максимальную мощность 1,3 Вт. FET — это расширенный режим NMOS.

Фототранзистор

Если вы хотите преобразовать фотоны в ток, наиболее распространенным способом является использование фотодиода. Однако иногда диод не производит большого тока из-за количества света, которому он подвергается.

Поскольку мы уже знаем, что из транзисторов получаются отличные усилители тока, почему бы не использовать транзистор, чтобы довести выходной ток до желаемого уровня?

Здесь явно два варианта.

1. Как разработчик схем, мы могли бы использовать фотодиод с транзистором, чтобы получить более высокий выходной ток диода.Их часто называют схемами усилителя фототока.

2. Другой вариант заключается в том, что для специализированных случаев производители фактически делают отдельные детали (например, PT15-21B / TR8), в которых просто вырезано окно, чтобы подвергать транзистор фотонам, которые напрямую воздействуют на транзистор в детали. . Он также известен как оптический транзистор.

В зависимости от ситуации вы можете выбрать, какой из них использовать, исходя из ваших требований.

Есть некоторые фототранзисторы, предлагаемые в диапазоне видимого света.Чаще они предназначены для инфракрасного диапазона спектра. Таким образом, они невидимы для человеческого глаза. Скорее всего, ваш ТВ-приемник для вашего пульта дистанционного управления использует один из них.

Если вы можете найти решение, состоящее из одной детали, по приемлемой цене и для необходимой длины волны света, тогда сделайте это. В противном случае вы всегда можете использовать фотодиод и транзистор вместе, чтобы усилить ток с фотодиода.

Оказывается, Sharp выпустила отличное приложение для этих типов схем, которое охватывает все различные варианты.Вы можете найти его здесь: SMA99017

Оптоизоляторы

Кроме того, оптоизоляторы (также известные как оптопары) — это части, которые работают за счет встроенных в корпус светодиода и фототранзистора.

См. Например, FOD817. Таким образом, вы получаете настоящую электрическую изоляцию, поскольку внутренние части взаимодействуют только с помощью фотонов.

Photointerruptor

С механической стороны, если вам нужен способ обнаружить что-то в движении, которое может точно пройти через прорезь в материале , то фотопрерыватель — это изящное маленькое устройство.

Он работает так же, имея светодиод и фототранзистор, так что ваша схема может определять, когда свет между ними прерывается, а когда нет. GP1S094HCZ0F — отличный тому пример.

2n2222 Транзистор

На протяжении многих лет одним из самых популярных транзисторов для малых токов и малой мощности был транзистор 2n2222. Его также часто называют 2n2222a. Эта часть является BJT NPN.

Вот типичные характеристики 2n2222a:

  • Максимальный ток коллектора = 0.8 А
  • Максимальная мощность = 0,5 Вт
  • Коэффициент усиления постоянного тока = 100
  • Пробой между коллектором и эмиттером = 40 В

Деталь до сих пор очень популярна. Большинство людей выбирают вариант в пластиковом корпусе, поскольку он намного экономичнее. Эта версия известна как Pn2222a, а примером является PN2222ABU.

2n3055 Транзистор

Если вам нужен сильноточный транзистор, то 2n3055 — отличный вариант. Это BJT NPN и поставляется в мощной упаковке TO-3.

Вот типичные характеристики 2 n30 55:

  • Максимальный ток коллектора = 15 А
  • Максимальная мощность = 115 Вт
  • Коэффициент усиления постоянного тока = 20
  • Пробой коллектора к эмиттеру = 60 Вольт

2n3904 Транзистор

Другой чрезвычайно популярный слаботочный транзистор — 2n3904. Это также BJT NPN.

Этот транзистор — один из лучших вариантов для усилителей тока цепи общего назначения, если он соответствует вашим требованиям.

Вот типичные характеристики транзистора 3904:

  • Максимальный ток коллектора = 0,2 А
  • Максимальная мощность = 0,625 Вт
  • Коэффициент усиления постоянного тока = 100
  • Пробой коллектора к эмиттеру = 40 Вольт

Деталь предлагается в пластиковом корпусе TO-92, что делает ее очень экономичной для большинства применений, где требуются детали со сквозными отверстиями. Любители часто выбирают этот транзистор.

Транзистор 2n3906 является версией PNP, и здесь можно найти один из самых популярных транзисторов.

2n4401 Транзистор

Если вам нужен транзистор общего назначения, но требуется немного больше тока, чем у 2n3904, то 2n4401 — хороший выбор.

Вот типичные характеристики для 2n4401:

  • Максимальный ток коллектора = 0,6 А
  • Максимальная мощность = 0,625 Вт
  • Усиление постоянного тока = 100
  • Пробой между коллектором и эмиттером = 40 В

BC547 Транзистор

Еще один популярный слаботочный транзистор — BC547.Это также BJT NPN. Он известен своим сверхвысоким коэффициентом усиления по току.

Вот типичные характеристики BC547:

  • Максимальный ток коллектора = 0,1 А
  • Максимальная мощность = 0,5 Вт
  • Усиление постоянного тока = 420
  • Пробой коллектора к эмиттеру = 45 В

Использование транзисторов

Теперь, когда мы ознакомились с большей частью теории и с различными частями, давайте рассмотрим некоторые полезные схемы транзисторов.

Прежде чем мы перейдем к некоторым учебным пособиям по транзисторам, давайте рассмотрим очень базовую концепцию, которую важно знать дальше.

Смещение транзистора

Проще говоря, смещение транзистора устанавливает уровни напряжения и / или тока на оптимальную точку так, чтобы транзистор должным образом усиливал сигнал переменного тока по своему вкусу.

Очевидно, это во многом зависит от используемого транзистора, а также от окружающей цепи и напряжений.

Лучший совет — внимательно изучить техническое описание транзистора, так как там можно найти все напряжения и токи для различных режимов.

В таблицах данных также обычно есть несколько отличных примеров схем, которые вы можете использовать в качестве справочника для своего проекта

Следующий совет — использовать программное обеспечение типа SPICE для моделирования вашей схемы. Удивительно, чему вы можете научиться, когда можете быстро преодолеть массивный отказ с молниеносной скоростью с помощью программного обеспечения для моделирования.

Следующее лучшее решение — смонтировать схему и поэкспериментировать. Вы можете пойти на больший риск, если имеете дело с дешевыми запчастями на случай, если что-то взорвется.Однако, если вы имеете дело с дорогими деталями, которые трудно заменить, то сначала выполните описанные выше варианты.

Схема транзисторного усилителя

Если у вас есть слабый сигнал, который вам нужно усилить или даже управлять динамиком, тогда использование транзистора — вариант.

По сути, вы используете транзистор для тяжелой работы с током.

Есть несколько способов сделать это:

  1. Emitter F ollower — один из наиболее распространенных, также известный как обычный коллектор, см. Пример
  2. Common Emitter — см. Пример
  3. Push Pull — см. Пример

Для простых усилителей лучше всего использовать транзистор.Если вам нужно более продвинутое усиление, вам действительно стоит подумать об использовании операционного усилителя. Таким образом вы сможете лучше контролировать полосу пропускания и уровень шума в цепи.

Если вы этого еще не знали, операционные усилители в основном состоят из транзисторов. В S pa rkfun есть отличная статья, в которой они познакомят вас с самыми основными схемами усиления, а в конечном итоге соберут все вместе и покажут основы внутреннего устройства операционного усилителя.

Есть причина, по которой операционные усилители имеют много транзисторов. в них, чтобы контролировать все маленькие эффекты.Не бойтесь использовать операционный усилитель по назначению.

Операционный усилитель общего назначения будет стоить столько же, сколько один или два транзистора, так что зачем создавать сложную схему усилителя из транзисторов, если можно просто взять операционный усилитель и получить гораздо лучший результат.

Транзисторный переключатель NPN

Часто у нас есть процессор или микроконтроллер с цифровым выводом, который может подавать только около 10–20 мА (проверьте свое техническое описание). Следовательно, мы не можем напрямую управлять чем-либо с большим током.

Транзистор — отличный буфер, который мы можем использовать для усиления тока для управления вещами. Например, вентилятор, обогреватель или другое устройство со средним или большим током. BJT NPN является популярным выбором для таких ситуаций.

Пример конструкции

В следующей транзисторной схеме NPN мы используем NPN для управления большим током вентилятора, позволяя нам управлять вентилятором с помощью слаботочного цифрового вывода.

В этом примере мы используем BJT в качестве переключателя NPN, поскольку два рабочих состояния либо включены, либо выключены.

На схеме видно, что распиновка транзистора NPN такова, что база подключена к управляющему сигналу с помощью резистора, коллектор подключен к нижнему концу вентилятора, а эмиттер подключен к земле.

Выбор транзистора

Итак, как выбрать подходящий транзистор для работы? В этом случае мы рассмотрим несколько ключевых характеристик, и нам нужно снизить номинальные характеристики, выбрав для нашего транзистора значения 2x-3x.

  • Максимальный ток от коллектора к эмиттеру должен быть в 2–3 раза больше тока через вентилятор.Пример: если вентилятор потребляет 0,15 А, NPN должен иметь ток коллектора (Ic) max более 0,3 А.
  • ВЧ должно быть достаточно высоким, чтобы, по крайней мере, быть током через вентилятор, деленным на ток с нашего цифрового вывода. Пример: если наш вентилятор потребляет 0,15 А, и мы можем подавать 0,01 А через наш цифровой вывод, тогда hfe должно быть больше 15 (0,15 / 0,01)
  • Максимальное напряжение пробоя коллектора NPN-эмиттер (Vce) должно быть в 2 раза больше. -3x напряжение питания нашего вентилятора. Пример: если у нас есть вентилятор на 12 В, то нам понадобится максимальное напряжение 24 В или больше

Это основные вещи, на которые следует обращать внимание при выборе транзистора для этой схемы.Имейте в виду, что в разработку этой схемы было вложено гораздо больше, над чем кто-то давно работал.

Когда мы смотрим на доступные детали, мы обнаруживаем, что PN2222ABU отвечает всем нашим требованиям. Он имеет Ic = 1 А макс., Vce = 40 В макс. И hfe = 50 мин при Ic = 0,15 А.

Чтобы получить дополнительную маржу, мы можем разделить hFE на 2, что станет 25. Это больше, чем наши требуемые 15, что мы и хотим.

Значит, нам, вероятно, сойдет с рук 0.006 А базового тока для управления током коллектора 0,15 А (0,15 / 25). Мы планируем использовать базовый ток 0,01 А, что еще больше переведет нас в режим насыщения.

Что делать, если ваш вентилятор или нагрузка потребляют намного больший ток, чем в нашем примере? Возможно, вам понадобится более мощный NPN. TIP120 — это чудовище с минимальным hFE 1000 на многих токах коллектора. Это также не намного дороже, чем наш предыдущий выбор.

Выбор резистора

Для пытливых умов, чтобы выбрать правильное значение резистора, R1, нам нужно заглянуть в лист данных транзистора и увидеть максимальное напряжение между базой и эмиттером, Vbe.Для этого транзистора его 1,2 Вольт.

Затем, какой бы логический уровень мы ни использовали, мы можем рассчитать резистор. Например:

3.3 Вольтовая логика — 0.6 В Vbe = 2.7 В

Теперь мы берем:

2.7 В / 0,01 А Базовый ток = 270 Ом для R1

Это ограничивает ток с нашего цифрового вывода до 0,01 А макс. 0,6 Vbe, а ток составляет 0,008 ампер мин при 1,2 Vbe. Мы должны быть в насыщении NPN для обоих из них.

Выбор диода

Диод присутствует из-за индуктивной нагрузки вентилятора.Диод не нужен, если нагрузка представляет собой нагреватель, светодиод или другую резистивную нагрузку.

Типичным диодом для D1 в этой ситуации является 1N4001. Он имеет прямой ток 1 А и максимальное обратное смещение 50 В.

Транзистор hFE

При выборе правильного транзистора hFE:

В большинстве интернет-источников есть практическое правило рассматривать каждый транзистор как имеющий hfe, равный 10. Это своего рода глупо, так как частично лишается необходимости иметь много разных транзисторов. Выбери из.

Какой нормальный путь выбрать для определения того, имеет ли транзистор достаточно высокое hfe и какой базовый ток требуется, — это посмотреть в таблице данных.

Вы хотите найти кривые насыщения, сопоставить максимальный ток коллектора для вашей схемы и определить базовый ток, который переводит транзистор в режим полного насыщения. Кривая будет похожа на хоккейную клюшку.

Насыщение означает, что больший базовый ток не дает больше коллекторного тока на кривой.Пройдите немного дальше по кривой после того, как она выровнена ровно. Это золотая середина.

В некоторых таблицах данных нет этих кривых, поэтому вам придется полагаться на таблицу, которая сообщает вам hFE при определенных токах коллектора. Это типичный сценарий.

Попробуйте сопоставить ток коллектора вашей схемы в таблице, а затем выберите минимальное значение hFE. В целях безопасности вы можете разделить hFE на 2, чтобы дать себе достаточно места для ошибки.

Многие люди ошибаются здесь и получают ток коллектора из таблицы, который не соответствует их схеме, поэтому hfe, которое они используют, неправильное. .

Затем соберите и протестируйте свою схему, чтобы убедиться, что она работает правильно. Попробуйте поменять местами несколько транзисторов с одинаковым номером детали, чтобы убедиться, что все они работают.Схема должна работать, а транзистор не должен нагреваться.

Если ваша схема требует, чтобы вы подавали ток через транзистор (вместо потребляемого тока для NPN), вы можете вместо этого сделать схему переключения транзистора PNP. Хотя это не так часто, как использование NPN в этой ситуации .

Тестирование транзисторов

Время от времени вам может потребоваться убедиться, что часть транзистора работает правильно.

Оказывается, довольно легко проверить транзистор, если вы можете изолировать часть от цепи. Далее мы рассмотрим некоторые методы:

Как проверить транзистор

Есть два основных способа проверить транзистор, и мы рассмотрим их оба. Важно удалить транзистор из схемы.

Если он в цепи, эти тесты, вероятно, не будут работать эффективно

Ручной метод мультиметра

Большинство современных мультиметров имеют режим проверки диодов.Иногда это сочетается с измерением сопротивления или это может быть отдельный режим регулятора. Ниже приведен пример счетчика Craftsman. Обратите внимание на символы диодов, кнопку и режим регулятора.

Чтобы проверить транзистор, нам нужно удалить его из схемы. В противном случае тест может быть неточным.

Чтобы измерить наш транзистор, мы делаем следующие 4 шага:

1. Мы переводим нашу ручку-селектор в режим измерения диодов. В зависимости от нашего измерителя нам может потребоваться дополнительно нажать кнопку режима вверху, чтобы перейти от звукового сигнала к диодному режиму.Визуальный дисплей должен сообщить нам, в каком режиме мы находимся.

2. Для NPN поместите красный датчик на вывод Base, а черный датчик на вывод эмиттера. Обычно вы должны измерять от 0,4 до 1 В в зависимости от транзистора.

3. Для PNP поместите красный щуп на вывод эмиттера, а черный щуп на вывод основания. Обычно вы должны измерять от 0,4 до 1 В в зависимости от транзистора.

4. Для NPN или PNP поместите один датчик на коллектор, а другой датчик на излучатель.Здесь вы не должны получить достоверное прочтение. Поменяйте местами датчики, и снова вы не должны получить правильные показания.

Если транзистор проходит эти шаги, это хорошо. Если нет, то это плохо.

Автоматический метод мультиметра

В этом методе мы воспользуемся преимуществами тестера транзисторов, встроенного во многие мультиметры. Конечно, вам понадобится мультиметр, поддерживающий эту возможность.

Этот тест предназначен для деталей со сквозным отверстием. Если ваша деталь монтируется на поверхность, вам понадобится тестовые провода для подключения вашей детали к измерителю.

Если в вашем глюкометре есть эта функция, то где-нибудь на элементах управления вы найдете несколько отверстий с прорезями с метками для NPN и PNP. См. Пример ниже для счетчика мастера.

Этот тест состоит из трех этапов:

1. Сначала переместите ручку переключателя в раздел, обозначенный «hFE». Это переводит измеритель в транзисторный режим.

2. Затем обратите внимание на то, что отверстия помечены внизу для разных выводов NPN и PNP. Вам просто нужно совместить эти отверстия с выводами детали.Есть две строки: одна для NPN и одна для PNP.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *