Транзистор с общей базой принцип работы: Что такое транзистор? (принцип действия, назначение и применение, как выглядит)

Содержание

Что такое транзистор? (принцип действия, назначение и применение, как выглядит)

Радиоэлектронный элемент из полупроводникового материала с помощью входного сигнала создает, усиливает, изменяет импульсы в интегральных микросхемах и системах для хранения, обработки и передачи информации. Транзистор — это сопротивление, функции которого регулируются напряжением между эмиттером и базой или истоком и затвором в зависимости от типа модуля.

Виды транзисторов

Преобразователи широко применяются в производстве цифровых и аналоговых микросхем для обнуления статического потребительского тока и получения улучшенной линейности. Типы транзисторов различаются тем, что одни управляются изменением напряжения, вторые регулируются отклонением тока.

Полевые модули работают при повышенном сопротивлении постоянного тока, трансформация на высокой частоте не увеличивает энергетические затраты. Если говорить, что такое транзистор простыми словами, то это модуль с высокой границей усиления. Эта характеристика у полевых видов больше, чем у биполярных типов. У первых нет рассасывания носителей заряда , что ускоряет работу.

Полевые полупроводники применяются чаще из-за преимуществ перед биполярными видами:

  • мощного сопротивления на входе при постоянном токе и высокой частоте, это уменьшает потери энергии на управление;
  • отсутствия накопления неосновных электронов, из-за чего ускоряется работа транзистора;
  • переноса подвижных частиц;
  • стабильности при отклонениях температуры;
  • небольших шумов из-за отсутствия инжекции;
  • потребления малой мощности при работе.

Виды транзисторов и их свойства определяют назначение. Нагревание преобразователя биполярного типа увеличивает ток по пути от коллектора к эмиттеру. У них коэффициент сопротивления отрицательный, а подвижные носители текут к собирающему устройству от эмиттера. Тонкая база отделена p-n-переходами, а ток возникает только при накоплении подвижных частиц и их инжекции в базу. Некоторые носители заряда захватываются соседним p-n-переходом и ускоряются, так рассчитаны параметры транзисторов.

Полевые транзисторы имеют еще один вид преимущества, о котором нужно упомянуть для чайников. Их соединяют параллельно без выравнивания сопротивления. Резисторы для этой цели не применяются, так как показатель растет автоматически при изменении нагрузки. Для получения высокого значения коммутационного тока набирается комплекс модулей, что используется в инверторах или других устройствах.

Нельзя соединять параллельно биполярный транзистор, определение функциональных параметров ведет к тому, что выявляется тепловой пробой необратимого характера. Эти свойства связаны с техническими качествами простых p-n каналов. Модули соединяются параллельно с применением резисторов для выравнивания тока в эмиттерных цепях. В зависимости от функциональных черт и индивидуальной специфики в классификации транзисторов выделяют биполярные и полевые виды.

Биполярные транзисторы

Биполярные конструкции производятся в виде полупроводниковых приборов с тремя проводниками. В каждом из электродов предусмотрены слои с дырочной p-проводимостью или примесной n-проводимостью. Выбор комплектации слоев определяет выпуск p-n-p или n-p-n типов приборов. В момент включения устройства разнотипные заряды одновременно переносятся дырками и электронами, задействуется 2 вида частиц.

Носители движутся за счет механизма диффузии. Атомы и молекулы вещества проникают в межмолекулярную решетку соседнего материала, после чего их концентрация выравнивается по всему объему. Перенос совершается из областей с высоким уплотнением в места с низким содержанием.

Электроны распространяются и под действием силового поля вокруг частиц при неравномерном включении легирующих добавок в массе базы. Чтобы ускорить действие прибора, электрод, соединенный со средним слоем, делают тонким. Крайние проводники называют эмиттером и коллектором. Обратное напряжение, характерное для перехода, неважно.

Полевые транзисторы

Полевой транзистор управляет сопротивлением с помощью электрического поперечного поля, возникающего от приложенного напряжения. Место, из которого электроны движутся в канал, называется истоком, а сток выглядит как конечная точка вхождения зарядов. Управляющее напряжение проходит по проводнику, именуемому затвором. Устройства делят на 2 вида:

  • с управляющим p-n-переходом;
  • транзисторы МДП с изолированным затвором.

Приборы первого типа содержат в конструкции полупроводниковую пластину, подключаемую в управляемую схему с помощью электродов на противоположных сторонах (сток и исток). Место с другим видом проводимости возникает после подсоединения пластины к затвору. Вставленный во входной контур источник постоянного смещения продуцирует на переходе запирающее напряжение.

Источник усиливаемого импульса также находится во входной цепи. После перемены напряжения на входе трансформируется соответствующий показатель на p-n-переходе. Модифицируется толщина слоя и площадь поперечного сечения канального перехода в кристалле, пропускающем поток заряженных электронов. Ширина канала зависит от пространства между обедненной областью (под затвором) и подложкой. Управляющий ток в начальной и конечной точках регулируется изменением ширины обедненной области.

Транзистор МДП характеризуется тем, что его затвор отделен изоляцией от канального слоя. В полупроводниковом кристалле, называемом подложкой, создаются легированные места с противоположным знаком. На них установлены проводники — сток и исток, между которыми на расстоянии меньше микрона расположен диэлектрик. На изоляторе нанесен электрод из металла — затвор. Из-за полученной структуры, содержащей металл, диэлектрический слой и полупроводник транзисторам присвоена аббревиатура МДП.

Устройство и принцип работы для начинающих

Технологии оперируют не только зарядом электричества, но и магнитным полем, световыми квантами и фотонами. Принцип действия транзистора заключается в состояниях, между которыми переключается устройство. Противоположный малый и большой сигнал, открытое и закрытое состояние — в этом заключается двойная работа приборов.

Вместе с полупроводниковым материалом в составе, используемого в виде монокристалла, легированного в некоторых местах, транзистор имеет в конструкции:

  • выводы из металла;
  • диэлектрические изоляторы;
  • корпус транзисторов из стекла, металла, пластика, металлокерамики.

До изобретения биполярных или полярных устройств использовались электронные вакуумные лампы в виде активных элементов. Схемы, разработанные для них, после модификации применяются при производстве полупроводниковых устройств. Их можно было подключить как транзистор и применять, т. к. многие функциональные характеристики ламп годятся при описании работы полевых видов.

Преимущества и недостатки замены ламп транзисторами

Изобретение транзисторов является стимулирующим фактором для внедрения инновационных технологий в электронике. В сети используются современные полупроводниковые элементы, по сравнению со старыми ламповыми схемами такие разработки имеют преимущества:

  • небольшие габариты и малый вес, что важно для миниатюрной электроники;
  • возможность применить автоматизированные процессы в производстве приборов и сгруппировать этапы, что снижает себестоимость;
  • использование малогабаритных источников тока из-за потребности в низком напряжении;
  • мгновенное включение, разогревание катода не требуется;
  • повышенная энергетическая эффективность из-за снижения рассеиваемой мощности;
  • прочность и надежность;
  • слаженное взаимодействие с дополнительными элементами в сети;
  • стойкость к вибрации и ударам.

Недостатки проявляются в следующих положениях:

  • кремниевые транзисторы не функционируют при напряжении больше 1 кВт, лампы эффективны при показателях свыше 1-2 кВт;
  • при использовании транзисторов в мощных сетях радиовещания или передатчиках СВЧ требуется согласование маломощных усилителей, подключенных параллельно;
  • уязвимость полупроводниковых элементов к воздействию электромагнитного сигнала;
  • чувствительная реакция на космические лучи и радиацию, требующая разработки стойких в этом плане радиационных микросхем.

Схемы включения

Чтобы работать в единой цепи транзистору требуется 2 вывода на входе и выходе. Почти все виды полупроводниковых приборов имеют только 3 места подсоединения. Чтобы выйти из трудного положения, один из концов назначается общим. Отсюда вытекают 3 распространенные схемы подключения:

  • для биполярного транзистора;
  • полярного устройства;
  • с открытым стоком (коллектором).

Биполярный модуль подключается с общим эмиттером для усиления как по напряжению, так и по току (ОЭ). В других случаях он согласовывает выводы цифровой микросхемы, когда существует большой вольтаж между внешним контуром и внутренним планом подключения. Так работает подсоединение с общим коллектором, и наблюдается только рост тока (ОК). Если нужно повышение напряжения, то элемент вводится с общей базой (ОБ). Вариант хорошо работает в составных каскадных схемах, но в однотранзисторных проектах ставится редко.

Полевые полупроводниковые приборы разновидностей МДП и с использованием p-n-перехода включаются в контур:

  • с общим эмиттером (ОИ) — соединение, аналогичное ОЭ модуля биполярного типа
  • с единым выходом (ОС) — план по типу ОК;
  • с совместным затвором (ОЗ) — похожее описание ОБ.

В планах с открытым стоком транзистор включается с общим эмиттером в составе микросхемы. Коллекторный вывод не подсоединяется к другим деталям модуля, а нагрузка уходит на наружный разъем. Выбор интенсивности вольтажа и силы тока коллектора производится после монтажа проекта. Приборы с открытым стоком работают в контурах с мощными выходными каскадами, шинных драйверах, логических схемах ТТЛ.

Для чего нужны транзисторы?

Область применение разграничена в зависимости от типа прибора — биполярный модуль или полевой. Зачем нужны транзисторы? Если необходима малая сила тока, например, в цифровых планах, используют полевые виды. Аналоговые схемы достигают показателей высокой линейности усиления при различном диапазоне питающего вольтажа и выходных параметров.

Областями установки биполярных транзисторов являются усилители, их сочетания, детекторы, модуляторы, схемы транзисторной логистики и инверторы логического типа.

Места применения транзисторов зависят от их характеристик. Они работают в 2 режимах:

  • в усилительном порядке, изменяя выходной импульс при небольших отклонениях управляющего сигнала;
  • в ключевом регламенте, управляя питанием нагрузок при слабом входном токе, транзистор полностью закрыт или открыт.

Вид полупроводникового модуля не изменяет условия его работы. Источник подсоединяется к нагрузке, например, переключатель, усилитель звука, осветительный прибор, это может быть электронный датчик или мощный соседний транзистор. С помощью тока начинается работа нагрузочного прибора, а транзистор подсоединяется в цепь между установкой и источником. Полупроводниковый модуль ограничивает силу энергии, поступающей к агрегату.

Сопротивление на выходе транзистора трансформируется в зависимости от вольтажа на управляющем проводнике. Сила тока и напряжение в начале и конечной точке цепи изменяются и увеличиваются или уменьшаются и зависят от типа транзистора и способа его подсоединения. Контроль управляемого источника питания ведет к усилению тока, импульса мощности или увеличению напряжения.

Транзисторы обоих видов используются в следующих случаях:

  1. В цифровом регламенте. Разработаны экспериментальные проекты цифровых усилительных схем на основе цифроаналоговых преобразователей (ЦАП).
  2. В генераторах импульсов. В зависимости от типа агрегата транзистор работает в ключевом или линейном порядке для воспроизведения прямоугольных или произвольных сигналов, соответственно.
  3. В электронных аппаратных приборах. Для защиты сведений и программ от воровства, нелегального взлома и использования. Работа проходит в ключевом режиме, сила тока управляется в аналоговом виде и регулируется с помощью ширины импульса. Транзисторы ставят в приводы электрических двигателей, импульсные стабилизаторы напряжения.

Монокристаллические полупроводники и модули для размыкания и замыкания контура увеличивают мощность, но функционируют только как переключатели. В цифровых устройствах применяют транзисторы полевого типа в качестве экономичных модулей. Технологии изготовления в концепции интегральных экспериментов предусматривают производство транзисторов на едином чипе из кремния.

Миниатюризация кристаллов ведет к ускорению действия компьютеров, снижению количества энергии и уменьшению выделения тепла.

Что собой представляет, как устроен и работает биполярный транзистор

Структура, носители, принципы и режимы работы: нормальный режим (в
активной области), режимы отсечки и насыщения. За счёт чего усиливает
биполярный транзистор?

Сначала хотел приписать в названии темы: «для начинающих» или «для чайников», но, поразмыслив, пришёл к выводу: «А ведь далеко не каждый электронщик, считающий себя продвинутыми, понимает: как технологически устроен биполярный транзистор, за счёт чего он обладает усилительными свойствами, что влияет на характеристики транзистора и откуда появился этот загадочный зверь — «дырка»«.

Начнём с определения: Биполярный транзистор — это полупроводниковый электронный прибор, работающий по принципу взаимодействия двух, вплотную расположенных на кристалле p-n переходов. А коли прибор полупроводниковый, то это значит, что, как ни крути, а изготовлен транзистор из полупроводниковых материалов таких как: кремний, германий, индий и т.д. А что это такое — полупроводниковый материал или по-простому полупроводник?

Полупроводники по своим свойствам занимают промежуточное положение между проводниками и диэлектриками. При температурах, не сильно отличающихся от абсолютного нуля (-273,15°C), полупроводники обладают свойствами диэлектриков. Однако даже при незначительном повышении температуры, сопротивление полупроводника быстро уменьшается, и он начинает проводить электрический ток — т.е. становится проводящим. За счёт чего это происходит?

С ростом температуры кристалл полупроводника получает некоторую долю энергии в виде тепла, достаточную для того, чтобы часть отрицательно заряженных электронов покинуло свои атомы и перешло в межатомное пространство. Такие электроны называются свободными, а атомы кристаллической решётки, от которых отпочковались электроны,

приобретают несбалансирован- ный положительный заряд и получают условное название — «дырка».

Таким образом, при температурах выше -273,15°C в кристалле чистого полупроводника содержится некоторое количество зарядов обоих знаков — свободные электроны и дырки. Если кристалл не содержит примесей, то в любой момент времени количество свободных электронов равно числу имеющихся в кристалле дырок.
Другое дело, если к чистому полупроводнику подмешать некое вещество! В зависимости от свойств этой примеси мы можем получить: либо концентрацию дырок, намного превышающую концентрацию электронов (полупроводник p-типа), либо наоборот — превышение концентрации электронов над концентрацией дырок (полупроводник n-типа).

Итак, p-полупроводник (от англ. positive) — это полупроводник с положительным дырочным типом проводимости, а n-полупроводник (от англ. negative) — с отрицательным электронным типом проводимости

.

Ну вот, а теперь можно переходить к описанию структурной схемы транзистора.


Рис.1

Как следует из рисунка Рис.1, биполярные транзисторы — это приборы, изготовленные на основе трёхслойной полупроводниковой структуры. В зависимости от порядка чередования областей, различают изделия двух типов проводимости: прямой (p-n-p) и обратной (n-p-n).
Легко заметить, что подобная комбинация полупроводников в транзисторе напоминает встречно-последовательное соединение двух диодов с общим катодом (p-n-p) либо анодом (n-p-n). Эта аналогия справедлива лишь в одном случае — она позволяет легко тестировать транзистор на предмет его живучести при помощи обычного омметра или мультиметра.

Рассмотрим цепь, иллюстрирующую работу n-p-n транзистора типа в различных режимах.


Рис.2 а) Режим отсечки тр-ра б) Активный режим тр-ра в) Режим насыщения тр-ра

На Рис.2 приведено классическое включение транзистора n-p-n типа по схеме с общим эмиттером. Положительный вывод источника питания через нагрузку (в качестве которой в нашем случае выступает светодиод) подключается к коллектору транзистора, отрицательный — к эмиттеру полупроводника и для кучи — к земляной шине.

Подадим нулевое смещение на базу транзистора (Рис.2 а)), посредством чего введём его в режим отсечки, соответствующий условию Uэб . В этом случае и эмиттерный, и коллекторный p-n-переходы оказываются запертыми, и в коллекторной цепи будет протекать лишь незначительный обратный ток Iко ≈ току обратно смещённого диода. Основные носители заряда (электроны в коллекторной/эмиттерной областях и дырки в базовой) сидят в отведённых областях и никуда выбираться не собираются, ввиду отсутствия воздействия на них какого-либо электрического поля.

Другое дело если мы подадим между базой и эмиттером транзистора небольшое напряжение Uэб > 0,6—0,7 В (Рис.2 б)) и тем самым переведём его в активный (нормальный) режим. В данном режиме переход база-эмиттер оказывается включённым в прямом направлении (открыт), а переход база-коллектор — в обратном (закрыт):
Поскольку прослойка р-полупроводника базы технологически сделана очень тонкой, положительное напряжение, приложенное к базе, сможет «дотянуться» своим электрическим полем до значительно большей по размеру n-области эмиттера. Под действием этого поля электроны из эмиттера направляются к базе и проникают внутрь неё. Малая часть электронов встречается и рекомбинирует (нейтрализуется) с дырками, являющимися основными носителями базы, но в связи с её малыми размерами (а соответственно и малым количеством дырок) бОльшая часть электронов проходит сквозь базу и доходит-таки до коллекторного перехода.

Уменьшение числа дырок в базе, происходящее в результате рекомбинации, компенсируется источником питания Bat2 и обуславливает ток базы, который, как мы уже поняли — значительно меньше тока эмиттера, который находится в прямой зависимости к интенсивности потока электронов.
Далее под действием электрического поля, создаваемого положительным потенциалом источника Bat1, электроны проникают из базы через p-n-переход в коллектор транзистора, выходят наружу и через источник питания замыкаются обратно в область эмиттера.
Если дальше повышать напряжение на базе, то количество электронов, участвующих в процессе циркуляции по цепи также увеличится. Результатом будет являться незначительное (в абсолютном выражении) увеличение тока базы и значительное увеличение тока коллектора.
А поскольку ток в цепи прямопропорционален интенсивности потока носителей заряда, то, исходя из всего вышесказанного и в соответствии с первым законом Кирхгофа, в транзисторе всегда существует следующее соотношение между токами:
Iк = Iэ — Iб
.
Величина отношения токов коллектора и эмиттера характеризует такой параметр транзистора, как — коэффициент передачи тока α = Iк / Iэ. Из формул следует, что коэффициент передачи тока транзистора всегда меньше единицы и принимает значение ≈ 0,9-0,99.

Усиливающее свойство транзистора заключается в том, что посредством относительно малого тока базы можно управлять большим током коллектора. Причём, в активном режиме — изменение тока коллектора прямо пропорционально изменению тока базы: ΔIк = ΔIб x h21э , где h31э (или β) — статический коэффициент передачи тока транзистора. Этот параметр является справочным и для разных полупроводников составляет величину от 10—12 до 200—300.

И последний режим работы транзистора — режим насыщения (Рис 2 в)) или по-умному — режим двойной инжекции.
При дальнейшем повышении уровня напряжения на базе, ток в коллекторной цепи Iк также увеличивается, что приводит (согласно закону Ома) к пропорциональному увеличению падения напряжения на нагрузке и, как следствие — уменьшению напряжения Uк.
При определённом уровне этого напряжения Uк, коллекторный переход база-коллектор начнёт переходить в прямосмещённое (открытое) состояние, т.е. оба p-n перехода транзистора окажутся открытыми. Уровень напряжения на базе, при котором начинается этот процесс, называется Uбэ.нас, является справочной величиной и указывается при неком фиксированном токе коллектора.
Физически, это прямое смещение КП приводит к тому, что не только эмиттер будет засылать (инжектировать) электроны в базу, но и коллектор — тоже. Движение этих коллекторных электронов противоположно направлению диффузионного тока эмиттера и активно препятствует дальнейшему повышению тока транзистора.

В результате этого противостояния, ток коллектора практически перестаёт зависеть от дальнейшего увеличения уровня напряжения на базе и фиксируется на уровне, называемом Iк.нас. Ещё один паспортный параметр, характеризующий работу транзистора в режиме насыщения — Uкэ.нас показывает величину падения напряжения между коллектором и эмиттером при заданном токе коллектора.
В связи с тем, что величина тока Iк.нас может принимать значения, значительно превышающие токи транзистора, находящегося линейном режиме, следует внимательно относиться к выбору коллекторной нагрузки, чтобы не превысить максимально допустимых значений мощностей как самого транзистора, так и нагрузки. В случае, изображённом на Рис 2 в), этот выходной ток будет явно выше 20мА, допустимых для светодиода, что собственно говоря, и отображено на схеме.

Рис.3

Ну и под занавес приведу пример работы транзисторного каскада ОЭ в активном режиме (Рис.3).
Переменный резистор R1 принимает значения от 0 (в верхнем положении) до 680кОм (в нижнем).
В первом приближении — изменением значения напряжения Uбэ можно пренебречь и считать его равным Uбэ ≈ 0,6 В.
Тогда, согласно закону Ома, в верхнем положении потенциометра ток базы будет равен:
Iб ≈ (UBat1 — Uбэ)/(R1+R2) = (9в-0,6в)/51к = 0,16 мА,
а в нижнем:
Iб ≈ (UBat1 — Uбэ)/(R1+R2) = (9в-0,6в)/(51к +680к) = 0,011 мА,
А поскольку мы помним, что

Iк = Iб x h21э, то в верхнем положении R1 — Iк = 16мА, т.е. яркость светодиода близка к максимальной.
В нижнем положении R1 — Iк = 1,1мА, т.е. светодиод не светится, либо светится очень слабо.
В промежуточных положениях ручки потенциометра — токи, а соответственно и яркость свечения, также принимают промежуточные значения.

На следующей странице рассмотрим эквивалентную схему транзистора, а также свойства и характеристики различных типов усилительных каскадов.

 

4,5,6. Схема включения транзистора с общей базой и её коэффициенты.

При рассмотрении усилительных свойств переменных сигналов транзисторов схемы их включения можно рассматривать без источников питания, поскольку в сравнении с другими сопротивления источников оказываются весьма малыми.

Включение транзистора возможно по трём схемам: с общим эмиттером (ОЭ), с общей базой (ОБ) и общим коллектором (ОК).

Схему усилительной ячейки на транзисторе с общей базой можно применять на высоких частотах, однако она имеет коэффициент усиления по току меньше 1 и малое входное сопротивление.

Коэффициент усиления по току:

Kiб=iвх/iвых=ik/iэ=α<1

К

Uвых

оэффициент усиления по напряжению:

KUб=Uвых/iвх=ikRHб/iэRвхбRH/Rвх>1

коэффициент усиления по мощности:

KPб=KiKU=α2 RHб/Rвхб>1

Здесь Rнб – сопротивление нагрузочного резистора

в схеме с общей базой; Rвхб – входное сопротивление усилительного каскада.

Как выводить формулы:

Общие формулы, независимые от схемы включения транзистора:

— коэффициент усилительного каскада по току Ki=iвых/iвх

— коэффициент усиления по напряжению KU=Uвых/Uвх i, u

— коэффициент усиления по мощности KP=KiKU мгновенные значения

— входное сопротивление каскада Rвх=Uвх/iвх

За основной электрод, от которого отсчитываются напряжения, в данной схеме принимается база. Эмиттерная цепь – входная, а коллекторная – выходная.

Отсюда Kiб=iвых/iвх=ik/iэ=α , где ik – ток коллектора, iэ – ток эмиттера.

Соотношение между токами эмиттера, коллектора и базы для схемы с общей базой: iэ=ik+iб, где iб – ток базы.

Входящее в выражение для коэффициента усиления по напряжению входное сопротивление для этой схемы оказывается равным Rвхб=Uэб/iэ=Rэб. Это сопротивление открытого pn-перехода. Rэб~ 10-100 Ом.

В усилителях на транзисторах сопротивление коллекторного перехода RH>> сопротивления слоя базы Rб>> сопротивления эмиттерного перехода Rэ. Поэтому KU>1.

В соответствии с условными положительными направлениями напряжений нетрудно установить, что сигналы на входе и на выходе схемы с общей базой совпадают по фазе.

7,8,9. Схема включения транзистора с общим эмиттером и её коэффициенты.

Наиболее часто используют схему с общим эмиттером, с помощью которой возможно осуществить усиление по току, по напряжению и наибольшее по сравнению с другими схемам усиление по мощности. У схемы ОЭ малое входное сопротивление, порядка сотен Ом.

Во многих справочниках по транзисторам даётся коэффициент усиления по току для схемы ОЭ: β=ik/iб. β~10-100.

Связь β c α можно выразить из системы: α=ik/iэ β=α/(1-α),

iэ=ik+iб или α=β/(1+ β)

За основной электрод, от которого отсчитываются напряжения, в данной схеме принимается эмиттер. Цепь базы – входная, а коллекторная цепь– выходная.

Тогда коэффициент усиления по току Kiэ=ik/iб=β=α/(1-α).

Так какα~0.91-0.99, коэффициент усиления по току в схеме с общим эмиттером оказывается больше 1 эта схема может быть использована для усиления тока.

Выражение для коэффициента усиления по напряжению для этой схемы:

Kuэ=Uвых/Uвх=ikRHэ/(iбRвхэ)=β RHэ/Rвхэ.

Входное сопротивление в этой схеме: Rвхэ=Uвх/iвх=Uэб/iб

Выразим ток базы через ток эмиттера: iб=iэ(1-α)

Подставим в выражение для входного сопротивления: Rвхэ= Uэб/iэ(1-α)=Rэб/(1-α)=Rэб(1+ β)

Тогда KUэ=βRHэ/(1+ β)RэбRHэ/ Rэб.

СопротивлениеRэб открытого перехода обычно << нагрузочного сопротивления RHэ, поэтому KUэ>1 схема ОЭ может быть использована и для усиления напряжения.

Коэффициент усиления по мощности:

Kpэ=KiэKUэ=β2RHэ/(1+ β)RЭб2 RHэ/(1-α)RЭб.

Если проанализировать это выражение, то можно доказать, что схема ОЭ может быть использована и для усиления мощности.

При этом в соответствии с условным положительным направлением напряжение в схеме ОЭ входной и выходной сигналы находятся в противофазе, то есть сдвинуты относительно друг друга на угол, равный 1800.

Конфигурация

с общей базой (CB) или усилитель с общей базой

Общая база Конфигурация

В общая базовая конфигурация, эмиттер — входной терминал, коллектор — это выходной терминал, а базовый терминал — подключен как общий терминал для входа и выхода. Тот означает, что клемма эмиттера и клемма общей базы известны как входные клеммы, тогда как клемма коллектора и общий базовый терминал известен как выходной терминал.

В общая базовая конфигурация, базовая клемма заземлена, поэтому общая базовая конфигурация также известна как заземленная база конфигурация. Иногда упоминается общая базовая конфигурация к усилителю общей базы, усилителю CB или CB конфигурация.

входной сигнал подается между выводами эмиттера и базы в то время как соответствующий выходной сигнал снимается через коллекторные и базовые клеммы.Таким образом, базовый терминал транзистор является общим для входных и выходных клемм и поэтому она называется общей базовой конфигурацией.

напряжение питания между базой и эмиттером обозначается V BE а напряжение питания между коллектором и базой обозначается Автор: V CB .

As упоминалось ранее, в каждой конфигурации база-эмиттер соединение J E всегда смещено вперед и коллектор-база J C всегда обратный предвзято.Поэтому в общей базовой конфигурации переход база-эмиттер J E имеет прямое смещение и коллектор-база J C имеет обратное смещение.

общая базовая конфигурация для обоих NPN и PNP транзисторы показаны на рисунке ниже.

От приведенные выше принципиальные схемы транзисторов npn и pnp, он может видно, что для транзисторов npn и pnp вход применяется к эмиттеру, а вывод берется из коллектор.Общей клеммой для обеих цепей является база.

Текущий поток в общей базе усилителя

Для для понимания, давайте рассмотрим транзистор NPN в общая базовая конфигурация.

npn-транзистор образуется, когда одиночный p-тип полупроводниковый слой зажат между двумя n-типами полупроводниковые слои.

переход база-эмиттер J E смещен вперед напряжение питания В ВЕ при коллектор-база переход J C обратно смещен напряжением питания В CB .

Срок к напряжению прямого смещения V BE , свободные электроны (основные носители) в области эмиттера испытывают сила отталкивания от отрицательной клеммы аккумулятора аналогично отверстия (большинство перевозчиков) в базовом регионе испытывают сила отталкивания от положительного вывода аккумулятор.

As в результате свободные электроны начинают перетекать от эмиттера к базе аналогично дырки начинают перетекать от базы к эмиттеру. Таким образом бесплатно электроны, которые текут от эмиттера к базе и дыркам протекающие от базы к эмиттеру, проводят электрические текущий. Фактический ток переносится свободными электронами. которые перетекают от эмиттера к базе.Однако мы следуем обычный текущее направление от базы к эмиттеру. Таким образом электрический ток создается в области базы и эмиттера.

свободные электроны, которые текут от эмиттера к базе, будут Совместите с отверстиями в области основания аналогично отверстиям которые текут от базы к эмиттеру, будут сочетаться с электроны в эмиттерной области.

От На рисунке выше видно, что ширина базовой области очень тонкий. Поэтому лишь небольшой процент бесплатных электроны из области эмиттера объединятся с дырками в базовый регион и оставшееся большое количество свободных электроны пересекают базовую область и попадают в коллектор область. Большое количество свободных электронов, вошедших в регион коллектора испытает притягательную силу от положительный полюс аккумуляторной батареи.Следовательно, бесплатные электроны в области коллектора будут течь к положительный полюс аккумуляторной батареи. Таким образом, электрический ток равен производится в коллекторском регионе.

электрический ток, производимый в области коллектора, в основном за счет свободных электронов из области эмиттера аналогично электрический ток, производимый в базовой области, также в первую очередь за счет свободных электронов из эмиттерной области.Следовательно, ток эмиттера больше, чем базовый ток и ток коллектора. Ток эмиттера — это сумма тока базы и коллектора.

I E = I B + I C

ср Знайте, что ток эмиттера — это входной ток, а ток коллектора ток — это выходной ток.

выходной ток коллектора меньше входного эмиттера ток, поэтому текущий коэффициент усиления этого усилителя фактически меньше 1.Другими словами, усилитель с общей базой ослабляет электрический ток, а не усиливает его.

база-эмиттер разветвление J E на входе действует как передний смещенный диод. Таким образом, усилитель с общей базой имеет низкий входное сопротивление (низкое сопротивление входящему току). На С другой стороны, переход коллектор-база J C при выходная сторона действует как обратная смещенный диод.Таким образом, усилитель с общей базой имеет высокий выходное сопротивление.

Следовательно, то усилитель с общей базой обеспечивает низкий входной импеданс и высокий выходное сопротивление.

Транзисторы с низким входным сопротивлением и высоким выходным сопротивлением обеспечивают высокий коэффициент усиления по напряжению.

Даже хотя коэффициент усиления по напряжению высокий, коэффициент усиления по току очень низкий и общий коэффициент усиления мощности общего базового усилителя низкий. по сравнению с другими конфигурациями транзисторных усилителей.

транзисторные усилители с общей базой в основном используются в приложения, где требуется низкий входной импеданс.

Усилитель с общей базой в основном используется как усилитель напряжения или текущий буфер.

Это тип схемы транзистора не очень распространен и не является так же широко используются, как и две другие конфигурации транзисторов.

Принцип работы pnp-транзистора с конфигурацией CB: То же, что и npn-транзистор с конфигурацией CB. Единственный разница в том, что свободные электроны npn-транзистора проводят большую часть ток, тогда как в транзисторе pnp отверстия проводят больше всего тока.

Кому полностью описать поведение транзистора с CB конфигурации, нам понадобится два набора характеристик: они

  • Ввод характеристики
  • Выход характеристики.

Ввод характеристики

входные характеристики описывают взаимосвязь между входными ток (I E ) и входное напряжение ( ВЕ ).

Первый, проведите вертикальную линию и горизонтальную линию. Вертикальная линия представляет ось y, а горизонтальная линия представляет ось x. В принимается входной ток или ток эмиттера (I E ) по оси ординат (вертикальная линия), а входное напряжение (В BE ) снимается по оси х (горизонтальная линия).

Кому определить входные характеристики, выходное напряжение В CB (напряжение коллектор-база) поддерживается постоянным на уровне нуля вольт и входное напряжение V BE увеличивается с нуля вольт на разные уровни напряжения. Для каждого уровня напряжения входное напряжение ( ВЕ ), входной ток (I E ) записывается на бумаге или в любой другой форме.

Тогда кривая между входным током I E и входным напряжением V BE при постоянном выходном напряжении V CB (0 вольт).

Далее, выходное напряжение (В CB ) увеличено с нуля вольт до определенного уровня напряжения (8 вольт) и поддерживается постоянным на 8 вольт. При увеличении выходного напряжения ( CB V), входное напряжение (V BE ) поддерживается постоянным на нуле вольт.После мы сохранили выходное напряжение ( V CB ) постоянная при 8 вольт, входное напряжение V BE равно увеличился от нуля вольт до разных уровней напряжения. За каждый уровень входного напряжения (V BE ), входной ток (I E ) записывается на бумаге или в любом другая форма.

А Затем строится кривая между входным током I E и входное напряжение В BE при постоянном выходном напряжении В CB (8 вольт).

Это повторяется для более высоких фиксированных значений выходного напряжения (V CB ).

Когда выходное напряжение ( В, CB ) равно нулю и переход эмиттер-база J E смещен вперед входное напряжение (В BE ), переход эмиттер-база действует как обычный диод p-n перехода. Итак, входные характеристики такие же, как и передние характеристики нормального pn переходной диод.

Падение напряжения кремниевого транзистора составляет 0,7 вольт и на германиевом транзисторе 0,3 вольта. В нашем случае это кремниевый транзистор. Итак, из приведенного выше графика мы видим, что после 0,7 В небольшое увеличение входного напряжения (В BE ) быстро увеличит входной ток (I E ).

Когда выходное напряжение (В CB ) увеличено с нуля вольт до определенного уровня напряжения (8 вольт), эмиттер ток будет увеличиваться, что, в свою очередь, уменьшает ширина обедненной области на переходе эмиттер-база.В следствии, падение напряжения будет уменьшено. Следовательно, кривые смещен влево для более высоких значений вывода напряжение В CB .

Выход характеристики

выходные характеристики описывают взаимосвязь между выходной ток (I C ) и выходное напряжение ( CB В).

Первый, проведите вертикальную линию и горизонтальную линию. Вертикальная линия представляет ось y, а горизонтальная линия представляет ось x. В выходной ток или ток коллектора (I C ) берется по оси ординат (вертикальная линия), а выходное напряжение (В CB ) снимается по оси абсцисс (горизонтальная линия).

Кому определить выходные характеристики, входной ток или ток эмиттера I E поддерживается постоянным равным нулю мА и выходное напряжение V CB увеличено с нуля вольт на разные уровни напряжения.Для каждого уровня напряжения выходное напряжение В CB , выходной ток (I C ) записывается.

А Затем строится кривая между выходным током I C и выходное напряжение В CB при постоянном входном токе I E (0 мА).

Когда ток эмиттера или входной ток I E равен 0 мА транзистор работает в области отсечки.

Далее, входной ток (I E ) увеличен с 0 мА до 1 мА, регулируя входное напряжение V BE и входное ток I E поддерживается постоянным на уровне 1 мА. В то время как увеличение входного тока I E , выходного напряжения V CB остается неизменным.

После мы сохранили входной ток (I E ) постоянным на уровне 1 мА, выходное напряжение (В CB ) увеличено с нуля вольт на разные уровни напряжения.Для каждого уровня напряжения выходное напряжение ( CB V), выходной ток (I C ) записывается.

А Затем строится кривая между выходным током I C и выходное напряжение В CB при постоянном входном токе I E (1 мА). Эта область известна как активная область транзистор.

Это повторяется для более высоких фиксированных значений входного тока I E (Я.е. 2 мА, 3 мА, 4 мА и так далее).

От Из приведенных выше характеристик мы видим, что при постоянном входной ток I E , при выходном напряжении V CB увеличивается, выходной ток I C остается постоянный.

в область насыщения, оба перехода эмиттер-база J E и переход коллектор-база J C смещены в прямом направлении.Из приведенного выше графика мы видим, что внезапное увеличение ток коллектора при выходном напряжении В CB составляет переход коллектор-база J C смещен вперед.

Ранний эффект

Срок для прямого смещения переход база-эмиттер J E действует как диод с прямым смещением и из-за обратного смещения коллектор-база J C действует как обратносмещенный диод.

Следовательно, то ширина истощения область на переходе база-эмиттер J E очень мала, тогда как ширина обедненной области на коллектор-база J C очень большой.

Если выходное напряжение V CB приложено к коллектор-базовый переход J C дополнительно увеличен, ширина области обеднения еще больше увеличивается.Базовый регион слабо легирован по сравнению с областью коллектора. Так что область истощения проникает больше в базовую область и меньше в коллекторный регион. В результате ширина основания регион уменьшается. Эта зависимость базовой ширины от вывода напряжение ( V CB ) известно как ранний эффект.

Если выходное напряжение V CB приложено к коллектор-база J C сильно увеличена, ширина основания может быть уменьшена до нуля и вызывает напряжение пробой в транзисторе.Это явление известно как удар через.

Транзистор параметры

Динамический ввод сопротивление (r i )

динамический входное сопротивление определяется как отношение изменения входного напряжение или напряжение эмиттера (В BE ) на соответствующее изменение входного тока или тока эмиттера (I E ), с выходным напряжением или напряжением коллектора (В CB ) держится на постоянном уровне.

Входное сопротивление общей базы усилитель очень низкий.

Динамический вывод сопротивление (r o )

динамический вывод сопротивление определяется как отношение изменения выходного напряжения или напряжение коллектора (В CB ) к соответствующему изменение выходного тока или тока коллектора (I C ), при сохранении входного тока или тока эмиттера (I E ) при постоянном.

Выходное сопротивление общего базовый усилитель очень высокий.

Текущее усиление (α)

текущий усиление транзистора в конфигурации CB определяется как соотношение выходного тока или тока коллектора (I C ) к входному току или току эмиттера (I E ).

текущий коэффициент усиления транзистора в конфигурации CB меньше чем единство.Типичный коэффициент усиления по току обычного базового усилителя составляет 0,98.


Конфигурация транзистора — общая база, коллектор и эмиттер

Мы знаем, что транзистор состоит из трех выводов, а именно эмиттера, коллектора и базы, и они обозначаются буквами E, C и B.Но в приложениях с транзисторами нам требуются четыре вывода, два вывода для входа и оставшиеся два вывода для вывода. Чтобы решить эту проблему, мы используем один терминал для действий i / p и o / p. Используя эту концепцию, мы проектируем схемы, которые будут предлагать требуемые характеристики, и эти конфигурации называются конфигурациями транзисторов.

Конфигурации транзисторов

Типы конфигураций транзисторов

Три различных типа конфигураций транзисторов:


  • Конфигурация транзистора с общей базой
  • Конфигурация транзистора с общим эмиттером
  • Конфигурация транзистора с общим коллектором

Теперь мы обсудим вышеупомянутые три конфигурации транзисторов с диаграммами.

Типы конфигураций транзисторов

Конфигурация транзисторов с общей базой (CB)

Конфигурация транзисторов с общей базой дает низкое значение I / P при высоком импедансе O / P. Когда напряжение CB-транзистора высокое, коэффициент усиления по току и общий коэффициент усиления мощности также низки по сравнению с другими конфигурациями транзисторов. Основная особенность транзистора B заключается в том, что i / p и o / p транзистора находятся в фазе. На следующей схеме показана конфигурация транзистора CB.В этой схеме базовая клемма является взаимной для обеих схем i / p и o / p.

Конфигурация транзистора с общей базой

Коэффициент усиления по току цепи выключателя вычисляется методом, связанным с концепцией CE, и обозначается буквой альфа (α). Это соотношение между током коллектора и током эмиттера. Коэффициент усиления по току рассчитывается по следующей формуле.

Альфа — это отношение тока коллектора (выходной ток) к току эмиттера (входной ток). Альфа рассчитывается по формуле:

α = (∆Ic) / ∆IE

Например, если ток i / p (IE) в токе общей базы изменится с 2 мА на 4 мА, а ток отключения (IC) изменяется с 2 мА на 3.8 мА коэффициент усиления тока будет 0,90

Коэффициент усиления тока выключателя меньше 1. Когда ток эмиттера протекает через клемму базы и не действует как ток коллектора. Этот ток всегда меньше, чем вызвавший его ток эмиттера. Коэффициент усиления общей базовой конфигурации всегда меньше 1. Следующая формула используется для расчета текущего усиления CE (α), когда задано значение CB, то есть (β).

Конфигурация транзистора с общим коллектором (CC)

Конфигурация транзистора с общим коллектором также известна как эмиттерный повторитель, потому что эмиттерное напряжение этого транзистора следует за выводом базы транзистора.В качестве буфера обычно используются высокий импеданс i / p и низкий импеданс o / p. Коэффициент усиления по напряжению этого транзистора равен единице, коэффициент усиления по току высокий, а сигналы o / p синфазны. На следующей схеме показана конфигурация транзистора CC. Клемма коллектора является взаимной для цепей i / p и o / p.

Конфигурация транзистора с общим коллектором

Коэффициент усиления по току цепи CC обозначается знаком (γ) и рассчитывается по следующей формуле.

Это усиление связано с усилением тока выключателя, равным бета (β), а усиление цепи CC вычисляется, когда значение b задается по следующей формуле

Когда транзистор подключен в любой из трех основных конфигураций, таких как CE , CB и CC, тогда существует связь между альфа, бета и гамма.Эти отношения приведены ниже.

Например, текущее значение усиления для значения общей базы (α) составляет 0,90, тогда значение бета может быть рассчитано как

Таким образом, изменение тока базы этого транзистора приведет к изменению тока коллектора, который будет равен девяти. раз больше. Если мы хотим использовать тот же транзистор в CC, мы можем рассчитать гамму по следующему уравнению.

Конфигурация транзистора с общим эмиттером (CE)

Конфигурация транзистора с общим эмиттером является наиболее широко используемой конфигурацией.Схема CE-транзистора дает средние уровни импеданса i / p и o / p. Коэффициент усиления как по напряжению, так и по току можно определить как средний, но o / p противоположно i / p, которое составляет 1800 изменений фазы. Это дает хорошую производительность и часто считается наиболее часто используемой конфигурацией. На следующей схеме показана конфигурация транзистора CE. В такой схеме вывод эмиттера является взаимным как для i / p, так и для o / p.

Конфигурация транзистора с общим эмиттером

В следующей таблице ниже показаны конфигурации транзисторов с общим эмиттером, общей базой и общим коллектором.

Коэффициент усиления по току схемы с общим эмиттером (CE) обозначается с помощью бета (β). Это соотношение между током коллектора и током базы. Следующая формула используется для расчета бета (β). Дельта используется для указания небольшого изменения.

Например, если ток i / p (IB) в CE изменяется с 50 мА до 75 мА, а ток включения / выключения (IC) изменяется с 2,5 мА до 3,6 мА, коэффициент усиления по току (b) будет 44. Из приведенного выше коэффициента усиления по току мы можем сделать вывод, что изменение тока базы вызывает изменение тока коллектора, которое в 44 раза больше.

Это все о различных типах конфигураций транзисторов, которые включают общую базу, общий коллектор и общий эмиттер. Мы уверены, что вы лучше понимаете эту концепцию. Кроме того, любые вопросы относительно этой концепции или проектов электроники, пожалуйста, дайте свои ценные предложения, комментируя в разделе комментариев ниже. У вас есть вопрос, какова функция транзистора?

Режимы работы и принцип работы

Основным устройством в области электрики и электроники является регулируемый клапан, который позволяет слабым сигналом регулировать больший поток, аналогично соплу, которое регулирует поток воды из насосов, трубок и другие.В свое время этот регулируемый клапан, который применялся в области электричества, представлял собой вакуумные лампы. Внедрение и использование электронных ламп были хорошими, но с этим были большие сложности и потребление огромной электроэнергии, которая передавалась в виде тепла, что сокращало срок службы лампы. В качестве компенсации этой проблемы транзистор был устройством, которое обеспечило хорошее решение, удовлетворяющее требованиям всей электрической и электронной промышленности. Это устройство было изобретено «Уильямом Шокли» в 1947 году.Чтобы обсудить больше, давайте углубимся в подробную тему о том, что такое транзистор, реализации транзистора в качестве переключателя и многих характеристик.

Что такое транзистор?

Транзистор — это трехконтактное полупроводниковое устройство, которое можно использовать для коммутации приложений, усиления слабых сигналов, а тысячи и миллионы транзисторов соединены между собой и встроены в крошечную интегральную схему / микросхему, которая делает память компьютера.Переключатель транзистора, который используется для размыкания или замыкания цепи, что означает, что транзистор обычно используется в качестве переключателя в электронных устройствах только для приложений с низким напряжением из-за его низкого энергопотребления. Транзистор работает как переключатель, когда он находится в областях отсечки и насыщения.


Типы биполярных транзисторов

По сути, транзистор состоит из двух PN-переходов, эти переходы формируются путем размещения полупроводникового материала N-типа или P-типа между парой полупроводниковых материалов противоположного типа.

Транзисторы с биполярным переходом подразделяются на типы

Транзистор имеет три вывода: база, эмиттер и коллектор. Эмиттер — это сильно легированный вывод, и он испускает электроны в базовую область. Клемма базы слегка легирована и пропускает инжектированные эмиттером электроны на коллектор. Коллекторный вывод промежуточно легирован и собирает электроны с базы.

Транзистор типа NPN представляет собой композицию из двух легированных полупроводниковых материалов N-типа между легированным полупроводниковым слоем P-типа, как показано выше.Точно так же транзисторы типа PNP представляют собой композицию из двух легированных полупроводниковых материалов P-типа между легированным полупроводниковым слоем N-типа, как показано выше. Функционирование транзисторов NPN и PNP одинаково, но они различаются по смещению и полярности источника питания.


Транзистор в качестве переключателя

Если в схеме используется BJT-транзистор в качестве переключателя, то смещение транзистора, NPN или PNP, настроено для работы транзистора с обеих сторон кривых ВАХ, показанных ниже.Транзистор может работать в трех режимах: в активной области, в области насыщения и в области отсечки. В активной области транзистор работает как усилитель. Как транзисторный ключ, он работает в двух областях: область насыщения (полностью включен) и область отсечки (полностью выключена). Транзистор как схема переключателя — транзистор

как переключатель

Оба типа транзисторов NPN и PNP могут работать как переключатели. В некоторых приложениях силовой транзистор используется в качестве коммутационного инструмента.В этом состоянии может не потребоваться использование другого сигнального транзистора для управления этим транзистором.

Рабочие режимы транзисторов

Из приведенных выше характеристик видно, что розовая заштрихованная область в нижней части кривых представляет область отсечки, а синяя область слева представляет область насыщения транзистора. эти области транзистора определены как

Область отсечки

Условиями работы транзистора являются нулевой входной базовый ток (IB = 0), нулевой выходной ток коллектора (Ic = 0) и максимальное напряжение коллектора (VCE), что приводит к в большом слое истощения и отсутствие тока, протекающего через устройство.

Следовательно, транзистор переключен в положение «Полностью ВЫКЛ». Таким образом, мы можем определить область отсечки при использовании биполярного транзистора в качестве переключателя, поскольку соединения NPN-транзисторов имеют обратное смещение, VB <0,7 В и Ic = 0. Аналогично, для транзисторов PNP потенциал эмиттера должен быть –ve по отношению к базе транзистора.

Cut-Off Mode

Затем мы можем определить «область отсечки» или «режим OFF» при использовании биполярного транзистора в качестве переключателя, как если бы оба перехода были смещены в обратном направлении, IC = 0 и VB <0.7v. Для транзистора PNP потенциал эмиттера должен быть отрицательным по отношению к клемме базы.

Характеристики области отсечки

Характеристики области отсечки:

  • Как база, так и входные клеммы заземлены, что означает «0».
  • Уровень напряжения на переходе база-эмиттер ниже 0,7 В
  • Переход база-эмиттер находится в обратном смещении
  • Здесь транзистор работает как ОТКРЫТЫЙ переключатель
  • Когда транзистор полностью ВЫКЛЮЧЕН, он перемещается в область отсечки
  • Переход база-коллектор в состоянии обратного смещения
  • На клемме коллектора не будет протекания тока, что означает Ic = 0
  • Значение напряжения на переходе эмиттер-коллектор и на выходных клеммах равно «1»
Область насыщения

In В этой области транзистор будет смещен так, что будет приложена максимальная величина базового тока (IB), что приведет к максимальному току коллектора (IC = VCC / RL), а затем к минимальному значению коллектор-эмиттер. падение напряжения (VCE ~ 0).В этом состоянии обедненный слой становится настолько маленьким, насколько возможно и максимальным током, протекающим через транзистор. Поэтому транзистор включен «полностью».

Saturation Mode

Определение «области насыщения» или «режима включения» при использовании биполярного NPN-транзистора в качестве переключателя, поскольку оба перехода имеют прямое смещение, IC = максимум, и VB> 0,7v. Для транзистора PNP потенциал эмиттера должен быть + ve по отношению к базе. Это , работающий транзистора как переключатель .

Характеристики области насыщения

Характеристики насыщения :

  • И база, и входные клеммы подключены к Vcc = 5 В
  • Уровень напряжения на переходе база-эмиттер больше 0,7 В
  • База эмиттерный переход находится в состоянии прямого смещения
  • Здесь транзистор функционирует как ЗАКРЫТЫЙ переключатель
  • Когда транзистор полностью выключен, он перемещается в область насыщения
  • Переход база-коллектор находится в состоянии прямого смещения
  • Текущий ток на клемме коллектора Ic = (Vcc / RL)
  • Значение напряжения на переходе эмиттер-коллектор, а на выходных клеммах равно «0»
  • Когда напряжение на переходе коллектор-эмиттер равно «0», это означает идеальное условие насыщения

Кроме того, работу транзистора как переключателя можно подробно объяснить следующим образом:

Транзистор как переключатель — NPN

В зависимости от значения приложенного напряжения на краю базы транзистора происходит переключение.Когда имеется хорошее напряжение, которое составляет ~ 0,7 В между эмиттером и краями базы, то поток напряжения от коллектора к краю эмиттера равен нулю. Таким образом, транзистор в этом состоянии работает как переключатель, а ток, протекающий через коллектор, считается током транзистора.

Таким же образом, когда на входной вывод не подается напряжение, транзистор работает в области отсечки и работает как разомкнутая цепь. В этом методе переключения подключенная нагрузка контактирует с точкой переключения, где она действует как контрольная точка.Таким образом, когда транзистор переходит в состояние «ВКЛ», ток будет протекать от вывода источника к земле через нагрузку.

NPN-транзистор в качестве переключателя

Чтобы прояснить этот метод переключения, давайте рассмотрим пример.

Предположим, что транзистор имеет значение сопротивления базы 50 кОм, сопротивление на краю коллектора составляет 0,7 кОм, а приложенное напряжение составляет 5 В, а бета-значение принимается равным 150. На краю базы сигнал, который изменяется от 0 до 5 В. применяется. Это соответствует тому, что выход коллектора наблюдается путем изменения значений входного напряжения, которые составляют 0 и 5 В.Рассмотрим следующую диаграмму.

Когда V CE = 0, тогда I C = V CC / R C

IC = 5 / 0,7

Таким образом, ток на клемме коллектора составляет 7,1 мА

При значении бета 150 , тогда Ib = Ic / β

Ib = 7,1 / 150 = 47,3 мкА

Таким образом, базовый ток составляет 47,3 мкА

При указанных выше значениях максимальное значение тока на клемме коллектора составляет 7,1 мА в Состояние между коллектором и эмиттером равно нулю, а значение тока базы равно 47.3 мкА. Таким образом, было доказано, что когда значение тока на краю базы увеличивается выше 47,3 мкА, то транзистор NPN переходит в область насыщения.

Предположим, что транзистор имеет входное напряжение 0 В. Это означает, что базовый ток равен «0», и когда эмиттерный переход заземлен, эмиттер и базовый переход не будут находиться в состоянии прямого смещения. Итак, транзистор находится в выключенном состоянии, а значение напряжения на краю коллектора составляет 5 В.

Vc = Vcc — (IcRc)

= 5-0

Vc = 5V

Предположим, что транзистор имеет входное напряжение 5V.Здесь значение тока на краю базы можно узнать, используя принцип напряжения Кирхгофа.

Ib = (Vi — Vbe) / Rb

Когда рассматривается кремниевый транзистор, он имеет Vbe = 0,7 В

Итак, Ib = (5-0,7) / 50

Ib = 56,8 мкА

Таким образом , было доказано, что когда значение тока на краю базы увеличивается выше 56,8 мкА, то транзистор NPN переходит в область насыщения при условии на входе 5 В.

Транзистор как переключатель — PNP

Функциональные возможности переключения для транзисторов PNP и NPN аналогичны, но отличие состоит в том, что в транзисторе PNP ток протекает от клеммы базы.Эта конфигурация переключения используется для отрицательного заземления. Здесь базовая кромка имеет соединение с отрицательным смещением в соответствии с кромкой эмиттера. Когда напряжение на клемме базы больше -ve, будет протекать ток базы. Чтобы было ясно, что когда существуют клапаны с очень минимальным или отрицательным напряжением, тогда это делает транзистор закороченным, если не разомкнутым, либо высоким импедансом.

В этом типе подключения нагрузка связана с коммутационным выходом вместе с контрольной точкой.Когда транзистор PNP находится в состоянии ВКЛ, ток будет течь от источника к нагрузке, а затем к земле через транзистор.

Транзистор PNP в качестве переключателя

Как и при переключении транзистора NPN, вход транзистора PNP также находится на краю базы, в то время как вывод эмиттера соединен с фиксированным напряжением, а вывод коллектора соединен с землей через нагрузку. На рисунке ниже поясняется схема.

Здесь клемма базы всегда находится в состоянии отрицательного смещения в соответствии с фронтом эмиттера и базой, которую он подключил к отрицательной стороне, а эмиттер — к положительной стороне входного напряжения.Это означает, что напряжение от базы к эмиттеру отрицательное, а напряжение от эмиттера к коллектору положительное. Таким образом, проводимость транзистора будет, когда напряжение эмиттера будет более положительным, чем напряжение на выводах базы и коллектора. Таким образом, напряжение на базе должно быть более отрицательным, чем на других клеммах.

Чтобы узнать значение токов коллектора и базы, нам понадобятся следующие выражения.

Ic = Ie — Ib

Ic = β. Ib

Где Ub = Ic / β

Чтобы прояснить этот метод переключения, давайте рассмотрим пример.

Предположим, что цепи нагрузки требуется 120 мА, а бета-значение транзистора равно 120. Тогда значение тока, необходимое для перехода транзистора в режим насыщения, равно

Ib = Ic / β

= 120 мА / 100 мА / сек.

Ib = 1 мАмп

Таким образом, при токе базы 1 мАмпер транзистор полностью находится в состоянии ВКЛ. В то время как в практических сценариях для правильного насыщения транзистора требуется примерно 30-40 процентов большего тока.Это означает, что базовый ток, необходимый для устройства, составляет 1,3 мА.

Операция переключения транзистора Дарлингтона

В некоторых случаях коэффициент усиления постоянного тока в устройстве BJT очень минимален для прямого переключения напряжения или тока нагрузки. Из-за этого используются переключающие транзисторы. В этом состоянии небольшое транзисторное устройство включено для включения и выключения переключателя и повышенного значения тока для регулирования выходного транзистора.

Чтобы увеличить коэффициент усиления сигнала, два транзистора соединены по принципу «комплементарной конфигурации сложения усиления».В этой конфигурации коэффициент усиления является результатом работы двух транзисторов.

Транзистор Дарлингтона

Транзисторы Дарлингтона обычно входят в состав двух биполярных транзисторов типа PNP и NPN, где они соединены таким образом, что значение усиления исходного транзистора умножается на значение усиления второго транзисторного устройства.

Это дает результат, в котором устройство работает как отдельный транзистор с максимальным усилением по току даже для минимального значения базового тока.Полный коэффициент усиления по току устройства переключения Дарлингтона является произведением значений коэффициента усиления по току как PNP, так и NPN транзисторов, и это представлено как:

β = β1 × β2

С учетом вышеизложенного, транзисторы Дарлингтона имеют максимальное β и коллектор. текущие значения потенциально связаны с переключением одного транзистора.

Например, когда входной транзистор имеет значение усиления по току 100, а второй имеет значение усиления 50, то общий коэффициент усиления по току равен

β = 100 × 50 = 5000

Итак, когда нагрузка ток составляет 200 мА, тогда значение тока в транзисторе Дарлингтона на клемме базы составляет 200 мА / 5000 = 40 мкА, что является большим уменьшением по сравнению с прошлым значением 1 мА для одного устройства.

Конфигурации Дарлингтона

В транзисторе Дарлингтона есть в основном два типа конфигурации, а именно:

Конфигурация переключателя транзистора Дарлингтона демонстрирует, что выводы коллектора двух устройств соединены с выводом эмиттера исходного транзистора, который имеет соединение с базовым краем второго транзисторного устройства. Таким образом, значение тока на выводе эмиттера первого транзистора будет формироваться, когда входной ток второго транзистора, таким образом, будет находиться в состоянии «включено».

Входной транзистор, который является первым, получает свой входной сигнал на клемме базы. Входной транзистор обычно усиливается и используется для управления следующими выходными транзисторами. Второе устройство усиливает сигнал, что приводит к максимальному значению усиления по току. Одной из важнейших особенностей транзистора Дарлингтона является его максимальное усиление по току по сравнению с одним устройством BJT.

Помимо возможности максимальной коммутации напряжения и тока, другим дополнительным преимуществом является максимальная скорость переключения.Эта операция переключения позволяет использовать устройство специально для цепей инвертора, двигателя постоянного тока, цепей освещения и регулирования шагового двигателя.

Разница, которую следует учитывать при использовании транзисторов Дарлингтона по сравнению с обычными одинарными типами BJT при реализации транзистора в качестве переключателя, заключается в том, что входное напряжение на переходе базы и эмиттера должно быть больше, что составляет почти 1,4 В для кремниевого типа. устройство, так как из-за последовательного соединения двух PN-переходов.

Некоторые из общих практических применений транзистора в качестве переключателя

В транзисторе, если ток не течет в цепи базы, ток не может течь в цепи коллектора. Это свойство позволит использовать транзистор в качестве переключателя. Транзистор можно включать и выключать, меняя базу. Есть несколько применений схем переключения, работающих на транзисторах. Здесь я рассмотрел транзистор NPN, чтобы объяснить несколько приложений, в которых используется транзисторный переключатель.

Световой выключатель

Схема разработана с использованием транзистора в качестве переключателя для зажигания лампы при ярком освещении и ее выключения в темноте и светозависимого резистора (LDR) в делителе потенциала. Когда окружающая темнота, сопротивление LDR становится высоким. Затем транзистор выключается. Когда LDR подвергается воздействию яркого света, его сопротивление падает до меньшего значения, что приводит к увеличению напряжения питания и увеличению тока базы транзистора. Теперь транзистор включен, коллекторный ток течет и лампочка загорается.

Переключатель с подогревом

Одним из важных компонентов цепи переключателя с подогревом является термистор. Термистор — это тип резистора, который реагирует в зависимости от окружающей температуры. Его сопротивление увеличивается при низкой температуре и наоборот. Когда термистор нагревается, его сопротивление падает, а базовый ток увеличивается, после чего увеличивается ток коллектора, и срабатывает сирена. Эта конкретная схема подходит как система пожарной сигнализации.

Переключатель с подогревом
Управление двигателем постоянного тока (драйвер) в случае высоких напряжений

Предположим, что на транзистор не подается напряжение, тогда транзистор отключается, и ток через него не течет. Следовательно, реле остается в выключенном состоянии. Питание на двигатель постоянного тока подается от нормально замкнутой (NC) клеммы реле, поэтому двигатель будет вращаться, когда реле находится в состоянии ВЫКЛ. Подача высокого напряжения на базу транзистора BC548 вызывает включение транзистора и включение катушки реле.

Практический пример

Здесь мы узнаем значение базового тока, необходимого для полного перехода транзистора в состояние ВКЛ., Когда нагрузке требуется ток 200 мА, когда входное значение увеличивается до 5 В. Также знайте стоимость руб.

Значение базового тока транзистора составляет

Ib = Ic / β с учетом β = 200

Ib = 200 мА / 200 = 1 мА

Значение базового сопротивления транзистора Rb = (Vin — Vbe) / Ib

Rb = (5-0.7) / 1 × 10 -3

Rb = 4,3 кОм

Транзисторные переключатели широко используются в различных приложениях, например, для связи оборудования с большим током или высоким напряжением, такого как двигатели, реле или освещение, до минимума значение напряжения, цифровые ИС или используемые в логических элементах, таких как элементы И или ИЛИ. Кроме того, когда выходной сигнал логического элемента равен + 5 В, тогда как устройству, которое необходимо регулировать, может потребоваться напряжение питания 12 или даже 24 В.

Или такой нагрузке, как двигатель постоянного тока, может потребоваться контроль скорости с помощью нескольких непрерывных импульсов. Транзисторные переключатели позволяют выполнять эту операцию быстрее и проще по сравнению с традиционными механическими переключателями.

Зачем использовать транзистор вместо переключателя?

При использовании транзистора вместо переключателя даже минимальная величина базового тока регулирует более высокий ток нагрузки на выводе коллектора. Используя транзисторы вместо переключателя, эти устройства поддерживаются реле и соленоидами.Тогда как в случае, когда необходимо регулировать более высокие уровни токов или напряжений, используются транзисторы Дарлингтона.

В целом, вкратце, некоторые из условий, которые применяются при работе транзистора в качестве переключателя, следующие:

  • При использовании BJT в качестве переключателя, тогда необходимо использовать либо неполное, либо полное состояние ВКЛ.
  • При использовании транзистора в качестве переключателя минимальное значение базового тока регулирует повышенный ток нагрузки коллектора.
  • При реализации транзисторов для переключения в качестве реле и соленоидов лучше использовать маховиковые диоды.
  • Для регулирования больших значений напряжения или тока лучше всего подходят транзисторы Дарлингтона.

И эта статья предоставила исчерпывающую и ясную информацию о транзисторе, рабочих областях, работе как коммутатор, характеристиках и практическом применении. Другая важная и связанная с этим тема, которую необходимо знать, — что такое цифровой логический транзисторный переключатель и его рабочая принципиальная схема?

Работа транзисторов в качестве усилителя и переключателя

Первый транзистор с биполярным переходом был изобретен в 1947 году в лабораториях Bell.«Две полярности» сокращенно обозначают как биполярный, отсюда и название Транзистор с биполярным переходом . BJT — трехконтактное устройство с коллектором (C), базой (B) и эмиттером (E). Для идентификации выводов транзистора требуется схема выводов конкретной части BJT. Он будет доступен в таблице данных. Существует два типа BJT — NPN и PNP транзисторов. В этом уроке мы поговорим о транзисторах PNP. Давайте рассмотрим два примера транзисторов PNP — 2N3906 и PN2907A, показанных на изображениях выше.

В зависимости от процесса изготовления конфигурация выводов может измениться, и эти детали доступны в соответствующем техническом описании транзистора. В основном все транзисторы PNP имеют указанную выше конфигурацию контактов. По мере увеличения номинальной мощности транзистора к корпусу транзистора необходимо прикрепить необходимый радиатор. Несмещенный транзистор или транзистор без напряжения, приложенного к клеммам, аналогичен двум диодам, соединенным друг с другом, как показано на рисунке ниже.Наиболее важным применением транзистора PNP является переключение на стороне высокого напряжения и комбинированный усилитель класса B.

Диод D1 имеет свойство обратной проводимости, основанное на прямой проводимости диода D2. Когда ток течет через диод D2 от эмиттера к базе, диод D1 определяет ток, и пропорциональный ток может течь в обратном направлении от вывода эмиттера к выводу коллектора при условии, что на выводе коллектора приложен потенциал земли.Константа пропорциональности — это усиление (β).

Работа транзисторов PNP:

Как обсуждалось выше, транзистор представляет собой устройство с регулируемым током, которое имеет два обедненных слоя с определенным барьерным потенциалом, необходимым для диффузии обедненного слоя. Потенциал барьера для кремниевого транзистора составляет 0,7 В при 25 ° C и 0,3 В при 25 ° C для германиевого транзистора. В основном используется кремний, потому что это самый распространенный элемент на Земле после кислорода.

Внутреннее управление:

Конструкция pnp-транзистора заключается в том, что области коллектора и эмиттера легированы материалом p-типа, а базовая область легирована небольшим слоем материала n-типа. Область эмиттера сильно легирована по сравнению с областью коллектора. Эти три области образуют два стыка. Это переход коллектор-база (CB) и переход база-эмиттер.

Когда отрицательный потенциал VBE применяется к переходу база-эмиттер, уменьшающийся с 0 В, электроны и дырки начинают накапливаться в области истощения.Когда потенциал падает ниже 0,7 В, достигается барьерное напряжение и происходит диффузия. Следовательно, электроны текут к положительному выводу, и ток базы (IB) противоположен потоку электронов. Кроме того, ток от эмиттера к коллектору начинает течь, если на выводе коллектора подано напряжение VCE. Транзистор PNP может действовать как переключатель и усилитель.

Рабочий регион по сравнению с режимом работы:

1. Активная область, IC = β × IB– Работа усилителя

2.Область насыщения, IC = ток насыщения — переключение (полностью включено)

3. Область отключения, IC = 0 — переключение (полностью выключено)

Транзистор как переключатель:

PNP-транзистор используется для работы в качестве переключателя высокого напряжения. Чтобы объяснить с помощью модели PSPICE, был выбран транзистор PN2907A . Первое, что нужно иметь в виду — использовать в базе резистор, ограничивающий ток. Более высокие базовые токи повредят BJT. Из таблицы данных максимальный непрерывный ток коллектора составляет -600 мА, а соответствующее усиление (hFE или β) указано в таблице данных в качестве условий тестирования.Также доступны соответствующие напряжения насыщения и базовые токи.

Этапы выбора компонентов:

1. Найдите ток коллектора — это ток, потребляемый вашей нагрузкой. В этом случае это будет 200 мА (параллельные светодиоды или нагрузки) и резистор = 60 Ом.

2. Чтобы перевести транзистор в состояние насыщения, необходимо отвести достаточный базовый ток, чтобы транзистор был полностью открыт. Расчет тока базы и соответствующего резистора, который будет использоваться.

Принцип работы биполярного переходного транзистора

и его эквивалентной схемы

Биполярный переходной транзистор (BJT):

A Биполярный транзистор (BJT) имеет три вывода, подключенных к трем областям легированного полупроводника. В транзисторе N-P-N тонкая и слегка легированная база P-типа зажата между сильно легированным эмиттером N-типа и другим коллектором N-типа; в то время как в транзисторе PNP тонкая и слегка легированная база N-типа зажата между сильно легированным P-типом эмиттером r и другим P-типа collecto r .Далее мы будем рассматривать только NPN BJT.

Рисунок 1. Биполярный переходной транзистор (BJT)

Принцип работы BJT:

Рис 2. Биполярный транзистор n-p-n (BJT)

На рисунке 2 показан транзистор n-p-n r, смещенный в активной области (см. смещение транзистора), переход BE смещен в прямом направлении, а переход CB с обратным смещением. Ширина обедненной области BE-перехода мала по сравнению с шириной CB-перехода.

Прямое смещение в BE-переходе снижает барьерный потенциал и заставляет электроны течь от эмиттера к базе.Поскольку основание тонкое и слегка легированное, оно состоит из очень небольшого количества дырок, поэтому некоторые электроны из эмиттера (около 2%) рекомбинируют с дырками, присутствующими в области базы, и вытекают из клеммы базы.

Это основной ток, он течет из-за рекомбинации электронов и дырок (обратите внимание, что направление обычного тока противоположно направлению потока электронов). Оставшееся большое количество электронов пересечет коллекторный переход с обратным смещением и составит ток коллектора.Таким образом, по KCL,

Базовый ток очень мал по сравнению с током эмиттера и коллектора.

Здесь основными носителями заряда являются электроны. Транзистор p-n-p работает так же, как и транзистор n-p-n, с той лишь разницей, что большинство носителей заряда — это дырки, а не электроны. Лишь небольшая часть тока протекает из-за основных носителей заряда, а большая часть тока течет из-за неосновных носителей заряда в BJT. Следовательно, они называются устройствами неосновных операторов связи

.

Схема эквивалента BJT:

Инжир.3 Эквивалентная схема BJT

p-n переход представлен диодом. Поскольку транзистор имеет два p-n перехода, это эквивалентно двум диодам, соединенным спина к спине. Это называется двухдиодной аналогией BJT.

Обратная связь важна для нас.

Введение в транзисторы NPN — инженерные проекты

Привет друзья! Это платформа, на которой мы будем держать вас в курсе ценной информации, связанной с разработкой и технологиями, чтобы вы время от времени возвращались.Сегодня я собираюсь открыть подробности о транзисторе Introduction to NPN. Это транзистор с биполярным переходом, который в основном используется для усиления и переключения и состоит из трех полупроводниковых слоев, один из которых является полупроводниковым слоем, легированным P, а два других — легированным азотом. Слой с примесью фосфора зажат между двумя слоями с примесью азота. Основная функция: Малый ток на одной клемме используется для управления большой на других клеммах. Этот процесс используется с целью усиления. Основные носители заряда: Электроны BJT (биполярный переходный транзистор) делятся на два типа: NPN-транзистор и PNP-транзистор. Оба транзистора различаются по своему электрическому составу и конструкции, однако оба они так или иначе используются для усиления и переключения. В этом уроке мы рассмотрим NPN-транзистор, как он работает, принципиальную схему, кривая выходных характеристик и приложений.

Введение в транзистор NPN

  • Транзистор NPN — это биполярный переходной транзистор, который в основном используется для усиления и переключения.Как следует из названия, проводимость осуществляется движением и носителей заряда, то есть электронов и дырок, однако электроны являются основными носителями заряда в транзисторе NPN.
  • Он состоит из трех слоев, то есть двух слоев, легированных азотом, и одного слоя, легированного Р. Слой с примесью P представляет собой базу транзистора, а два других слоя представляют собой эмиттер и коллектор соответственно.
  • Транзистор NPN поставляется с тремя выводами, называемыми эмиттером, базой и коллектором, которые используются для внешнего соединения с цепями, в которых небольшой ток на стороне базы используется для управления большим током на стороне коллектора и эмиттера.
  • Все три вывода в NPN-транзисторе различаются по размеру и концентрации легирующего вещества. Вывод эмиттера сильно легирован и через устройство проходит 100% тока.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *