Транзисторы для импульсных блоков питания: выбор и применение MOSFET-транзисторов

Как выбрать подходящий MOSFET-транзистор для импульсного блока питания. Какие параметры транзисторов важны для разных типов преобразователей. На что обратить внимание при выборе корпуса транзистора.

Содержание

Ключевые параметры MOSFET-транзисторов для импульсных источников питания

При проектировании импульсных источников питания выбор подходящих MOSFET-транзисторов играет критически важную роль. Основные параметры, на которые следует обратить внимание:

  • Максимальное напряжение сток-исток (V(BR)DSS)
  • Максимальный постоянный ток стока (ID)
  • Сопротивление открытого канала (RDS(on))
  • Заряд затвора (QG)
  • Входная и проходная емкости (CISS, CRSS)
  • Времена переключения (td(on), tr, td(off), tf)
  • Тепловые характеристики (TJ(max), RTH_JC)

Правильный выбор этих параметров обеспечивает оптимальную работу преобразователя с точки зрения эффективности, теплового режима и надежности.

Выбор корпуса MOSFET-транзистора для импульсного блока питания

При выборе корпуса MOSFET-транзистора для импульсного источника питания необходимо учитывать следующие факторы:


  • Рассеиваемая мощность и требования к охлаждению
  • Расстояние между выводами (для высоковольтных применений)
  • Размеры и объем корпуса источника питания
  • Стоимость

Для мощных применений часто используются корпуса TO-220 или TO-247 с возможностью установки на радиатор. В компактных устройствах преимущественно применяются SMD-корпуса типа PowerFLAT, DPAK, D2PAK. Выбор конкретного типа зависит от требуемой мощности рассеяния и доступного пространства на плате.

Особенности выбора высоковольтных MOSFET-транзисторов

При выборе высоковольтных MOSFET-транзисторов для импульсных источников питания важно учитывать следующие аспекты:

  • Запас по напряжению пробоя с учетом температурной зависимости
  • Выбор рабочей температуры перехода ниже максимально допустимой
  • Анализ области безопасной работы (SOA)
  • Оптимизация сопротивления открытого канала RDS(on) и динамических параметров

Для высоковольтных применений часто используются транзисторы с технологией MDmesh или аналогичной, позволяющей снизить RDS(on) без ухудшения пробивного напряжения.


Выбор низковольтных MOSFET-транзисторов для DC/DC преобразователей

В DC/DC преобразователях обычно используются два MOSFET-транзистора — верхний и нижний ключи. Их выбор имеет свои особенности:

  • Для верхнего ключа важны динамические параметры и низкий заряд затвора
  • Для нижнего ключа критично низкое сопротивление открытого канала RDS(on)
  • Необходимо оптимизировать баланс между статическими и динамическими потерями

Правильный выбор транзисторов позволяет повысить эффективность преобразователя, особенно на высоких частотах коммутации.

Методика выбора оптимального MOSFET-транзистора

Для выбора оптимального MOSFET-транзистора для конкретного применения рекомендуется следующая методика:

  1. Определение требуемых напряжения и тока
  2. Расчет максимальной допустимой мощности рассеяния
  3. Предварительный выбор сопротивления RDS(on)
  4. Анализ динамических параметров
  5. Оценка общих потерь на тестовой плате
  6. Оптимизация выбора по размеру и стоимости

Такой подход позволяет найти оптимальный баланс между характеристиками, размером и ценой транзистора для конкретного применения в импульсном источнике питания.


Современные технологии MOSFET-транзисторов для импульсных источников питания

Ведущие производители постоянно совершенствуют технологии MOSFET-транзисторов для улучшения их характеристик:

  • Технология STripFET для низковольтных транзисторов
  • Технология MDmesh для высоковольтных транзисторов
  • Технологии CoolMOS, DTMOS, SuperFet и аналогичные

Эти технологии позволяют снизить сопротивление открытого канала, улучшить динамические характеристики и повысить эффективность работы транзисторов в импульсных преобразователях. При выборе транзистора важно учитывать преимущества современных технологий.

Оценка эффективности MOSFET-транзисторов в импульсных источниках питания

Для оценки эффективности работы MOSFET-транзисторов в импульсных источниках питания используются следующие подходы:

  • Расчет статических и динамических потерь
  • Измерение температуры перехода в реальном устройстве
  • Анализ КПД преобразователя при различных нагрузках
  • Сравнение характеристик транзисторов на тестовых платах

Комплексная оценка позволяет выбрать оптимальный транзистор, обеспечивающий максимальную эффективность работы импульсного источника питания в заданных условиях.



Мощные полевые и биполярные транзисторы PHILIPS для импульсных источников питания

В ассортименте фирмы PHILIPS имеется целая гамма высоковольтных транзисторов, предназначенных для использования в импульсных силовых цепях питания телевизоров, видеомагнитовонов, мониторов и другой бытовой аппаратуры. Все они обычно выполнены либо по биполярной технологии, либо по технологии MOSFET — полевой МОП-транзистор с изолированным затвором.

Эти транзисторы в большинстве своем служат в устройствах формирования рабочих напряжений, в том числе для питания оконечных каскадов усилителей мощности звукового сигнала.

Наиболее экономично высоковольтные транзисторы работают в двухтактном преобразователе с прерывающимся тюком дросселя.

Максимальное значение напряжения на коллекторе транзистора в таком преобразователе равно сумме подводимого выпрямленного напряжения питающей сети и напряжения пикового броска. Амплитуда напряженияэтого броска зависит от начальной индуктивности трансформатора преобразователя и от емкости сглаживающего пульсации конденсатора, подключенного в цепи коллектора транзистора. Для используемого напряжения электросети устанавливается минимально необходимое напряжение коллектор-эмиттер, которое только может выдержать транзистор. При увеличении индуктивности трансформатора или при уменьшении емкости конденсатора надежность транзистора по мощности и частоте повышается.

Мощные полевые МОП-транзисторы с изолированным затвором для блоков питания

Сетевое напряжение 110/220 Вольт требует применения транзисторов с рабочим напряжением не менее 400 Вольт. Таким напряжением обладают мощные транзисторы серии Power MOSFET. При сетевом напряжении 220/240 Вольт рабочее напряжение транзистора должно быть не менее 800 Вольт и только в особых случаях (при ограничении напряжения на коллекторе) допускается применение транзистора той же серии с напряжением около 600 Вольт. Основные параметры указанных транзисторов даны в таблице ниже:

ТранзисторМаксимальное напряжение
сток-исток, В
Максимальное сопротивление
между стоком и истоком
открытого транзистора, Ом
Ток стока, А
BUK454-400B4001,81,5
BUK455-400B4001,02,5
BUK437-400B4000,56,5
BUK454-800A8006,01,0
BUK456-800A8003,01,5
BUK456-800B8002,04,0
BUK438-800A8001,54,0

Биполярные транзисторы для импульсных блоков питания

При напряжении питающей сети 220/240 Вольт в двухтактных преобразователях рекомендуют использовать транзистор, рассчитанный на напряжение 1000 В. Транзисторы, основные характеристики которых приведены в таблице 2, предназначены именно для этих целей. Если начальная индуктивность трансформатора велика и напряжение может превышать 1000 Вольт, лучше использовать транзисторы BU603 и BU903 с напряжением 1350 Вольт.

Таблица 2

ТранзисторМаксимальное напряжение коллектора, когда потенциал базы ниже или равен потенциалу эмиттера, В Максимальное напряжение коллектора, когда потенциал базы выше потенциала эмиттера, ВТок коллектора, АМинимальный коэффициент усиления потокуМаксимальное напряжение коллектор-эмиттер при насыщении транзистора, В
BUX851000450151,0
BUT11A10004502,551,5
BUT18A1000450451,5
BUT12A1000450551,5
BUW13A1000450851,5
BU6031350550262,0
BU90313505503,262,0

Критерии выбора транзистора для блока питания

Главным критерием выбора служат максимальные значения токов и напряжений, допустимые для выбранного транзистора. При выборе типа транзистора (MOSFET или биполярный) следует руководствоваться простотой его управления, стоимостью и требованием минимальной энергии при работе в наиболее сложных схемах. Следует также обращать внимание и на возможность переключения с малыми потерями на частотах ниже 50 кГц.

Играют роль также размеры прибора. Так, в устройствах питания от сети 110/120В наибольшее распространение получили транзисторы типа MOSFET с напряжением 400 В, в устройствах с напряжением питания 220/240 В преобладают биполярные транзисторы, хотя и здесь транзисторы MOSFET, рассчитанные на напряжение 800 Вольт, не менее популярны.

С помощью данных таблицы 3 можно выбрать транзистор для двухтактного преобразователя источника питания с учетом указанных выше критериев:

Таблица 3

Мощность, Вт110/120220/240
50BUK454-400BBUK454-800B; BUX85
100 BUK455-400BBUK456-800A; BUT11A/BU603
120BUK437-400BBUK438-800B; BUT11A
150BUK437-400BBUK438-800B; BUT18A/BU903
200BUK437-400BBUK438-800B; BUT12A/BUW13A
Корпуса и цоколевка мощных транзисторов Philips для блоков питания

Тиристоры, симисторы, динисторы Philips основные характеристики и типы корпусов

Полный datasheet симистора BT134 с возможностью скачать бесплатно даташит в pdf формате или смотреть в онлайн справочнике по электронным компонентам на Времонт.su

Выбор полевых транзисторов STMicroelectronics

Введение

Основные параметры электронных преобразовательных схем определяются характеристиками применяемых ключевых полупроводниковых элементов. В преобразователях силовой электроники в качестве ключевых элементов широко используются полевые транзисторы с изолированным затвором (MOSFET) (рис. 1). Основными преимуществами MOSFET по сравнению с другими ключевыми элементами являются высокое быстродействие и низкая потребляемая мощность в цепи управления.

Рис. 1. Области применения MOSFET в силовой электронике

MOSFET производят многие ведущие компании мира, в том числе компания STMicroelectronics (STM), которфая длительное время является одним из лидеров мировой полупроводниковой промышленности. Ведущее место этой компании обусловлено постоянным совершенствованием технического уровня выпускаемой продукции, разработкой новых технологий производства полупроводниковых компонентов и непрерывным расширением продуктовых линеек. На сегодня STMicroelectronics является компанией, производящей одно из самых эффективных высоковольтных семейств MOSFET в мире.

Рис. 2. Развитие технологии STripFET компании STMicroelectronics

Семейства низковольтных транзисторов STM имеют общее название STripFET и отличаются индексом, который соответствует порядковому номеру поколения технологии (рис. 2) [1]. Технология STripFET III была представлена в 2005 г., структура транзистора приведена на рис. 3а. Транзисторы STripFET V появились в 2008 г. У них было снижено сопротивление слоя металла благодаря увеличению его толщины, улучшена структура затвора, использован вертикальный контакт μ-trench, что привело к снижению сопротивления канала и уменьшению полного заряда затвора. В этом же году начали производиться транзисторы серии F4, выполненные по технологии STripFET DeepGATE. В последующем эта технология была усовершенствована до STripFET VI DeepGATE с затвором в виде канавки (Trench MOSFET), структура которого приведена на рис. 3б. Данная технология за счет исключения паразитного сопротивления RJFET позволяет значительно снизить сопротивление канала и повысить плотность структуры кристалла. Однако в применениях с большой индуктивной нагрузкой по-прежнему используют транзисторы пятого поколения, выдерживающие большие энергии лавинного пробоя.

Рис. 3. Структура транзисторов STripFET:
а) планарная,
б) DeepGATE

Высоковольтные транзисторы STM представлены серией MDmesh [3]. Эта серия в настоящее время насчитывает четыре поколения транзисторов (рис. 4), и уже анонсировано пятое поколение. Концепция MDmesh основана на использовании глубоких р-областей под базой транзистора (рис. 5). За счет увеличения площади р-n-перехода можно снизить сопротивление эпитаксиального слоя без уменьшения пробивного напряжения. Таким образом, преодолевается противоречие между сопротивлением канала и пробивным напряжением. Концепция MDmesh в настоящее время используется многими ведущими компаниями и известна под названиями CoolMos (Infineon), DTMOS (Toshiba), SuperFet и SupreMos (Fairchild), Gen9 (Vishay) и пр. Компания «Микроника» тоже в их числе и реализует эту концепцию с использованием глубокой канавки, заполненной поликремнием, легированным бором в процессе роста, а также производит обычные планарные высоковольтные транзисторы для специального применения [2].

Рис. 4. Развитие технологии MDmesh

Рис. 5. Структура транзистора MDmesh

Одно из основных применений MOSFET нашли в импульсных источниках питания (Switched Mode Power Supply, SMPS) [4], в LED-драйверах [5], в которых используются как высоковольтные, так и низковольтные транзисторы в ключевом режиме. Типовой импульсный источник питания (рис. 6) состоит из предварительного AC/DC-преобразователя входного переменного тока с корректором мощности, на выходе которого формируется высокое напряжение, как правило, 400 В. Поэтому AC/DC-преобразователь содержит высоковольтные MOSFET. Далее DC/DC-преобразователь понижает высокое напряжение до необходимого уровня. Затем конечный DC/DC-преобразователь формирует выходные напряжения 1,2-12 В, необходимые большинству современных электронных приборов. Данный преобразователь требует наличия низковольтных MOSFET.

Рис. 6. Блок-схема системы питания с различными входными напряжениями конечных DC/DC-преобразователей

Многие применения требуют наличия различных режимов работы: режим низкой рассеиваемой мощности (резервный или «спящий») и нормальный режим, обеспечивающий максимальную эффективность работы. Некоторые применения требуют наличия одного выходного напряжения, другим нужны несколько. При выборе типа применяемого источника питания (ИП) важным параметром является выходная мощность. С целью обеспечения оптимальности показателя цена/качество для различных применений в зависимости от выходной мощности разработаны различные типы преобразователей напряжения.

Правильный и оптимальный выбор MOSFET, учет особенностей их применения обеспечивает сокращение сроков разработки и достижение необходимых параметров преобразователей напряжения.

В данной работе предлагается методика выбора высоковольтных MOSFET компании STMicroelectronics для импульсных ИП.

 

Параметры MOSFET

Основные параметры MOSFET, которые определяют характеристики проектируемого импульсного ИП и выбору которых необходимо уделять основное внимание, показаны в таблице 1. Выбор необходимого уровня этих параметров определяется функциональным назначением прибора, входными/выходными напряжениями и токами, частотой работы, выходной мощностью, необходимостью обеспечения как максимально допустимой мощности рассеяния, так и минимальных потерь MOSFET на проводимость и переключение. Различие в выходной мощности преобразователей, требование наличия баланса между рассеянием и потерями мощности обуславливают различные требования для корпусов.

Таблица 1. Основные параметры MOSFET
ПараметрОбозначение
Статические параметры
Максимальное напряжение «сток-исток»V(BR)DSS
Максимальный постоянный ток стокаID
Максимальное напряжение на затвореVGS
Сопротивление «сток-исток» в открытом режимеRDS(ON)
Параметры переключения
Задержка включенияtd(on)
Время нарастания сигналаtr
Задержка выключенияtd(off)
Время спадаtf
Динамические параметры
Суммарный заряд затвораQG
Входная емкостьCISS
Входное сопротивление затвораRG
Проходная емкость (емкость Миллера)CRSS
Тепловые параметры
Максимальная температура переходаTJ(MAX)
Тепловое сопротивление «переход-корпус»RTH_JC

Далее будут рассмотрены вопросы, касающиеся выбора типа корпуса, параметров высоковольтных MOSFET для предварительных AC/DC-преобразователей и выбора параметров низковольтных MOSFET для конечных DC/DC-преобразователей.

Выбор типа корпуса

Выбор типа корпуса для MOSFET главным образом определяется следующими показателями: рассеиваемой мощностью, расстоянием между выводами, размером, стоимостью [6].

Рассеяние мощности, охлаждение

Тип корпуса MOSFET для использования в конкретном применении выбирают исходя из требуемой мощности рассеяния. Мощные корпуса Т0-220 и особенно ТО-247 со встроенным радиатором и форсированным отводом могут рассеивать большое количество тепла — 1,5 и 2,0 Вт соответственно — без внешних радиаторов. Однако в импульсных ИП современных электронных устройств, где большое значение имеет занимаемый объем, в основном применяются корпуса для поверхностного монтажа (SMD). В таблице 2 показаны тепловые параметры основных типов SMD-корпусов компании ST.

Таблица 2. Тепловые параметры основных типов корпусов SMD компании STM
КорпусПлощадь монтажа, мм2Мин. рекомендуемая площадь теплоотвода на плате, мм2TJMAX, °CTTHJ-PCB*, °C/BтTTHJ-PCB**, C/BтPD, Вт
D2PAK21012017534,042,04,4
Power S0-101406017535,050,04,3
DPAK804517550,062,03,0
PowerFLAT 5×5251515031,260,04,0
PowerFLAT 6×5302315031,260,04,0
SOT-223501515038,056,63,3
PowerSO-8302315042,056,63,0
SO-8302315050,01002,5
TSS0P8201515083,51001,5

Примечания:
* — с использованием теплоотвода на плате площадью 600 мм2;
** — с использованием теплоотвода на плате минимальной рекомендуемой площади.

Расстояние между выводами корпуса

Расстояние между выводами должно соответствовать напряжению, используемому в данном применении.

Размер, объем корпуса

Размеры корпуса MOSFET также могут определяться параметрами (размер/объем/высота) корпуса источника питания. Например, в адаптерах для ноутбуков используются корпуса DPAK или D2PAK для обеспечения минимальной высоты.

Стоимость

Как правило, меньший корпус дешевле, чем корпус большего размера. Также технология поверхностного монтажа более эффективна по стоимости при производстве плат ИП. Полностью изолированный корпус транзистора позволяет снизить стоимость сборки тепловых радиаторов, так как исключает необходимость размещения изоляционной прокладки между корпусом транзистора и радиатором.

 

Выбор параметров высоковольтных MOSFET

Выбор величины пробивного напряжения

При выборе уровня пробивного напряжения необходимо учитывать следующие факторы:

  • Лавинное напряжение пробоя BVDSS, которое всегда несколько выше максимального — допустимого напряжения «сток-исток» VDS, т. е. существует некоторый запас. Температурные зависимости пробивного напряжения транзистора BVDSS, как правило, приведены в спецификациях. На рис. 7a, б приведены температурные зависимости пробивного напряжения для 600-В MOSFET ST STB10NK60Z и STE70NM60. По этим зависимостям можно определить пробивное напряжение транзистора при рабочих температурах перехода +100…+120 °С. Обычно эта величина на 4-7% выше пробивного напряжения при комнатной температуре. Однако следует отметить, что если прибор будет использоваться в аппаратуре при отрицательных температурах, то необходимо, чтобы пробивное напряжение транзистора на этих температурах было выше, чем максимальное напряжение на стоке, для предотвращения лавинного пробоя транзистора в момент включения аппаратуры.
  • Минимальное пробивное напряжение V(BR)DSS, указанное в спецификации на транзистор для комнатной температуры и имеющее такой же положительный температурный коэффициент, как и BVDSS.
  • Уровень выбросов напряжения (spike), обусловленный наличием индуктивностей и паразитных емкостей в плате применения. Уровень выбросов напряжения не должен превышать 70-90% от минимального пробивного напряжения V(BR)DSS.

Рис. 7. Зависимости нормализованного пробивного напряжения от температуры:
а) для транзистора STB10NK60Z;
б) для транзистора STE70NM60

Выбор рабочей температуры перехода

Рабочая температура перехода не должна достигать максимальной рабочей температуры, определенной в спецификации, но для обеспечения запаса по надежности рабочая температура должна быть ниже максимальной. Снижение рабочей температуры на 20-30 °С может приводить к увеличению среднего времени наработки до отказа на порядок. С другой стороны, сопротивление транзистора в открытом состоянии RDS(ON) повышается с ростом температуры перехода, что ведет к потерям проводимости. По этим причинам рекомендуется рабочая температура перехода, составляющая 55-65% от максимально допустимой.

Выбор уровня тока

В большинстве применений MOSFET не подвергается воздействию максимального тока по той причине, что для снижения потерь мощности на проводимость выбирают транзистор с низким сопротивлением, у которого максимальный ток выше, чем необходимо. Тем не менее требуется проверить область надежной работы (Safe Operating Area, SOA) выбранного MOSFET на предмет соответствия уровней необходимых тока и напряжения области устойчивой работы транзистора (рис. 8а).

Рис. 8. Транзистор STB10NK60Z:
а) SOA;
б) зависимость тока стока от напряжения затвора при напряжении на стоке 25 В

Далее следует проанализировать передаточную характеристику транзистора (рис. 8б), чтобы убедиться в том, что напряжение на затворе транзистора достаточно для его полного открытия, т. е. транзистор должен быть способен пропустить максимальный импульсный ток в схеме применения во всех режимах работы конечного устройства. Особенно в режимах различной защиты или короткого замыкания на выходе устройства, когда питающее напряжение схемы управления, а соответственно и напряжение на затворе транзистора, может уменьшаться. Если транзистор не удовлетворяет этому требованию, необходимо выбрать другой транзистор с более высоким уровнем тока.

Выбор уровня сопротивления в открытом состоянии R

DS(ON) и динамических параметров

Выбор правильного уровня RDS(ON) — одна из самых главных задач в разработке схемы применения. Граница по RDS(ON) определяется максимально допустимой мощностью рассеяния для конкретного применения и максимальной температурой перехода MOSFET. Потери мощности MOSFET разделяются на потери проводимости и потери на переключение.

Потери проводимости легко вычисляются, исходя из значений сопротивления RDS(ON) и величины тока стока. Некоторая проблема может возникнуть при расчете потерь на переключение. Эти потери определяются как характеристиками самого MOSFET, так и конструкцией платы. В частности, такими характеристиками, как динамические параметры транзистора, нелинейной выходной емкостью «исток-сток», суммарным сопротивлением затвора транзистора, паразитными емкостями и индуктивностями платы применения. В связи с этим выбор MOSFET по сопротивлению — это сложный процесс, который может потребовать несколько итераций. Входными данными этого процесса являются выходная мощность, форма импульса тока, конструкция платы применения. Также должна быть известна рабочая частота переключения транзистора, которая соответствует другим параметрам, таким как электромагнитные шумы или магнитные потери, но не связана с потерями мощности MOSFET; должна быть выбрана конструкция радиатора, для которого известно тепловое сопротивление RTH_CA.

Одним из наиболее корректных и практичных путей определения оптимального уровня сопротивления в сочетании с определенными динамическими параметрами MOSFET является оценка общей мощности потерь по измерению рабочей температуры перехода в тестовой плате применения. Конечно, такие измерения соответствуют только данному применению, и для каждого применения необходима соответствующая плата, так как паразитные параметры различны для разных применений. Сутью данного метода является предварительный выбор транзистора по расчетной максимально допустимой мощности рассеяния с учетом используемых условий применения (температур перехода и окружающей среды; конструкции радиатора) с последующей оценкой реальной общей мощности потерь.

Алгоритм определения оптимального уровня сопротивления RDS(ON) следующий:

  1. Вычисление максимальной мощности рассеяния для данной конструкции радиатора и рабочей температуры перехода по формуле:

    где Tjmax — максимальная температура перехода, ТА — температура окружающей среды, RTH_JC — тепловое сопротивление «переход-корпус», RTH_CA — тепловое сопротивление «корпус-окружающая среда».

    Так как тип MOSFET еще не выбран, для расчета необходимо определить некоторое желаемое значение RTH_JC

  2. Вычисление необходимого RDS(ON), удовлетворяющего максимальной мощности рассеяния, проводится для конкретной формы импульса тока. Для первого приближения учитываются только потери проводимости, так как на данном этапе еще неизвестен тип транзистора, а потери на переключение зависят от его конкретного типа. Важно проводить вычисления сначала для рабочей температуры перехода, а потом провести ее пересчет для комнатной.

    Для дискретного режима проводимости (рис. 9а) потери составляют:

    где D = ton × f, f — частота работы преобразователя.

    Для постоянного режима проводимости (рис. 9б) потери составляют:

    Рис. 9. Форма сигнала:
    а) для дискретного режима проводимости;
    б) для постоянного режима проводимости

    Исходя из приведенных формул потерь можно определить необходимое значение RDS(ON) для рабочей температуры и затем для +25 °С.

    Например, при дискретном режиме проводимости для рабочей температуры RDS(ON) определяется следующим образом:

    где Pcond = Ptot и для +25 °С:

    где α — это температурный фактор для данного типа транзисторов.

  3. Выбор типа транзистора, удовлетворяющего рассчитанному сопротивлению, по данным RDS(ON) из спецификаций на транзисторы компании STMicroelectronics.
  4. Транзисторы со сходным уровнем сопротивления могут иметь различный уровень динамики: различные времена нарастания и спада сигнала. При первичном выборе важно обратить внимание, что частотные свойства транзистора должны соответствовать частоте работы источника напряжения и иметь при этом некоторый запас в 15-20%. Первичную оценку необходимой частоты транзистора можно сделать по следующему соотношению:

    то есть максимальное значение каждого из четырех параметров переключения должно быть меньше, чем четверть периода работы преобразователя.

  5. Далее проводится оценка общей мощности потерь для выбранного транзистора путем имитации работы данного блока источника на тестовой плате с контролем рабочей температуры перехода. Если измеренная температура не выше той, что использована в расчете максимальной мощности рассеяния, то выбранный тип MOSFET удовлетворяет требованиям.

    При необходимости можно провести оптимизацию по размеру транзистора, проверив на соответствие требованиям MOSFET с более высоким сопротивлением, что соответствует меньшему размеру и меньшей стоимости.

  6. Если измеренная температура выше, то необходимо выбрать транзистор либо с более низким сопротивлением, либо в зависимости от соотношения стоимостей с лучшими динамическими параметрами, и проверить на соответствие требованиям. Либо для более эффективного охлаждения можно поменять радиатор теплоотвода на более мощный.

    Правильный тип MOSFET найден, когда следующий транзистор с более высоким RDS(ON) не удовлетворит требованиям по температуре перехода.

 

Выбор параметров низковольтных MOSFET

Низковольтные MOSFET составляют основу DC/DC-преобразователей, формирующих конечные выходные напряжения. Это накладывает свою специфику на выбор MOSFET для таких применений.

Типовая схема DC/DC-преобразователя показана на рис. 10 [7]. В этой схеме основным является транзистор верхнего ключа SW1 (high side MOSFET), а транзистор нижнего ключа SW2 (low side MOSFET) является синхронизирующим. Наличие транзистора нижнего ключа значительно снижает потери энергии в DC/DC-преобразователе. При этом основные режимы работы транзисторов различны, поэтому различны и параметры, определяющие выбор необходимого транзистора.

Рис. 10. Типовая схема синхронного DC/DC-преобразователя

Выбор параметров MOSFET верхнего ключа

Транзистор верхнего ключа работает главным образом в режиме переключения, поэтому для него наиболее важны динамические параметры: низкий заряд затвора, низкие внутренние емкости и, соответственно, малые времена переключения. Хорошие динамические параметры обеспечивают высокую скорость переключения, малые динамические потери и в итоге высокую эффективность преобразователя в целом. При этом уменьшение значения такого важного параметра, как сопротивление RDS(ON), не является определяющим для повышения эффективности. Поэтому сопротивление MOSFET верхнего ключа может быть достаточно высоким для оптимизации цены и размера.

Потери энергии на переключение определяются выражением:

где VIN — входное напряжение, IOUT — выходной ток, QG — заряд затвора, fSW—частота преобразователя и IGATE ток затвора.

В выражении (7) только заряд затвора QG является параметром непосредственно MOSFET. Оценку влияния заряда затвора QG и сопротивления RDS(ON) транзистора верхнего ключа на эффективность DC/DC-преобразователя можно сделать исходя из анализа таблицы 3 и рис. 11, где в качестве примера приведены значения параметров QG и RDS(ON) MOSFET верхних ключей и соответствующие им кривые эффективности. Из представленных данных видно, что лучшую эффективность имеет транзистор SW12 с минимальным значением QG, несмотря на то, что у этого транзистора значение RDS(ON) не наименьшее.

Рис. 11. Зависимость эффективности DC/DC-преобразователя с параметрами MOSFET верхнего ключа согласно таблице 3 от величины выходного тока для частоты fSW=300 кГц (Vout = 1,25 В]

При повышении частоты работы преобразователя его эффективность снижается из-за повышения в целом потерь на переключение, но важность обеспечения высокой скорости переключения повышается, как это видно на рис. 12.

Рис. 12. Зависимость эффективности DC/DC-преобразователя с параметрами MOSFET верхнего ключа согласно таблице 3 от величины выходного тока для частоты fSW = 440 кГц (Vout = 1,25 В]

Таблица 3. Значения QG и RDS(ON) MOSFET верхних ключей SW1 DC/DC-преобразователя
ТранзисторV(BR)DSS, ВRDS(ON), mOmQG,SW, нКл
SW 11309,26,85
SW 127,34,65
SW 137,69,25
SW 147,07

Также необходимо отметить важность оптимального выбора сопротивления согласующего резистора RG EXT между драйвером и MOSFET верхнего ключа. Значение этого сопротивления является компромиссным для обеспечения высокой скорости переключения и эффективности (низкое RG EXT) и обеспечения устойчивого переключения и минимизации уровня выброса (phase node spike) выходного напряжения (высокое RG EXT), который определяется энергией, запасенной в паразитных индуктивностях во время выключения верхнего транзистора и наблюдается при его включении (рис. 13, 14). Выбор входного сопротивления проводится при анализе работы преобразователя на тестовой плате путем сравнения скорости переключения, эффективности, уровня выброса напряжения.

Рис. 13. Процесс возникновения выброса выходного напряжения:
а) при выключении верхнего транзистора паразитные индуктивности заряжаются;
б) при его включении разряжаются

Рис. 14. Выброс выходного напряжения на стоке MOSFET нижнего ключа при включении MOSFET верхнего ключа

Выбор параметров MOSFET нижнего ключа

Так как MOSFET нижнего ключа большую часть времени является открытым, то потери проводимости, определяемые величиной сопротивления RDS(ON), вносят основной вклад в рассеяние мощности. Для снижения величины сопротивления в зависимости от необходимого уровня выходного тока можно использовать один или несколько транзисторов нижнего ключа.

Для нижнего ключа потери проводимости определяются как

Параметр D для современных конвертеров очень низкий (0,1-0,2%), и потери проводимости определяются главным образом сопротивлением. Поэтому минимизация RDS(ON) является критической для оптимальной работы MOSFET нижнего ключа. Как и в случае MOSFET верхнего ключа, в качестве примера в таблице 4 приведены значения параметров двух MOSFET нижнего ключа и соответствующие им кривые эффективности на рис. 15 при использовании для обоих случаев одного и того же транзистора верхнего ключа SW11. Отметим, что транзистор SW21 соответствует критерию для транзистора верхнего ключа: низкое значение заряда затвора. Как видно на рис. 15, для малых выходных токов, когда значительный вклад дают потери на переключение и управление затвора, эффективность транзистора SW21 несколько выше благодаря низкому QG. Однако для средних и больших токов выше эффективность уже транзистора SW22 — благодаря низкому значению RDS(ON).

Рис. 15. Зависимость эффективности преобразователя с параметрами MOSFET нижнего ключа согласно таблице 4 от величины выходного тока (Vout = 1,25 В]

Таблица 4. Значения QG и RDS(ON)MOSFET нижних ключей SW2 DC/DC-преобразователя
ТранзисторV(BR)DSS, ВRDS(ON), mOmQG,SW, нКл
SW1125138,5
SW2130615
SW22255,218

Еще одним критическим параметром, определяющим поведение MOSFET нижнего ключа, является переходная емкость Миллера CGD. Выше уже упоминался выброс напряжения при включении MOSFET верхнего ключа. Для уменьшения величины выброса необходимо также снижать скорость переключения MOSFET нижнего ключа. Это можно достичь путем увеличения емкости Миллера. На рис. 16 а, б приведены характеристики сигналов на обоих транзисторах для двух разных значений CGD и показано, что увеличение емкости CGD с 190 до 315 пФ уменьшает уровень выброса напряжения с 30,7 до 18,8 В.

Рис. 16. Осциллограмма переключения транзисторов верхнего и нижнего ключей:
а) для CGD 190 пФ уровень выброса напряжения Vphase 30,7 В;
б) для CGD 315 пФ уровень выброса напряжения Vphase 18,8 В

С другой стороны, слишком высокое значение CGD приводит к значительному росту заряда затвора и, соответственно, росту потерь на переключение и управление. Это необходимо учитывать для высокочастотных применений или когда используется несколько MOSFET нижнего ключа.

Примером выбора низковольтных транзисторов верхнего и нижнего ключей для DC/DC-преобразователей являются ST транзисторы широко распространенной 30-В серии в корпусе DPAK — STD60N3LH5 и STD95N3LLH6 соответственно (табл. 5).

Таблица 5. Сравнительные параметры транзисторов STMicroelectronics
ТипономиналV(BR)DSS, BRDS(ON) MAX, (VGS = 10 В), ВID MAX, APD MAX, ВтQG TYP, нКл
STD40NF03L300,011405535
STD40NF3LL0,011408040
STD60N3LH50,00848608,8
STD65N3LLH50,006965508
STD75N3LLH60,008756017
STD85N3LH50,065807014
STD86N3LH50,005807014
STD95N3LLH60,042807020

Видно, что транзистор STD60N3LH5 имеет практически минимальное QG, а транзистор STD95N3LLH6 — минимальное RDS(ON).

Также из спецификаций на данные транзисторы следует, что STD95N3LLH6 имеет значительную емкость Миллера 280 пФ против 32 пФ у STD60N3LH5. Следовательно, в качестве транзистора верхнего ключа целесообразно использовать MOSFET STD60N3LH5, а в качестве транзистора нижнего ключа — STD95N3LLH6.

 

Заключение

Описанные в данной статье критерии и особенности выбора как высоковольтных, так и низковольтных MOSFET компании STMicroelectronics с учетом особенностей их применения позволяют с практической точки зрения подойти к первоначальному подбору и окончательному определению необходимых оптимальных типов транзисторов. Обращено внимание на некоторые особенности выбора и применения транзисторов исходя из их режимов работы в импульсных ИП.

Литература
  1. Захаров Ю. Новые MOSFET: нет лавинному пробою // Новости электроники. 2010. № 12.
  2. http://te.vrn.ru/projects.htm /ссылка утрачена/
  3. Managing the best in class MDmesh V and MDmesh II super junction technologies: driving and layout key notes. 
  4. Рудаковский Д., Котов В., Битно Л. Распределенная система электропитания на основе AC/DC- и DC/DC-преобразователей компании «Микроника» // Компоненты и технологии. 2012. № 6.
  5. Цевелюк Е., Котов В. Обзор LED-драйверов для светодиодных ламп широкого применения // Полупроводниковая светотехника. 2012. № 5.
  6. R. Gulino. Guidelines for using ST’s MOSFET SMD package. 
  7. F. Fusillo, F. Scrimizzi. Power MOSFETs:best choice guide for VRM applications. 

Простой метод выбора ключевых транзисторов для импульсных источников питания


На фотке — метод «ошибок трудных». Шурик, это не наш метод!
При проектировании или сборке по готовой схеме ИИП одним из острых вопросов является выбор ключей. И если по остальным деталям можно как-то подстроиться (мотать трансформатор в 2 провода вместо 1, если не хватает сечения или ставить два конденсатора параллельно вместо одного, если не хватает емкости и т.д.), то с ключами не так-то всё и просто. Неправильный выбор ведет к большому БУМУ (вспоминая знаменитый фильм Люка Бессона: «Бада-бум!») из-за теплового или электрического пробоя. И здесь тоже не всё просто. Электрический пробой произойдет сразу (или почти сразу), а вот тепловой можно ждать долго, и случится он в самый неподходящий ответственный момент.

В первый раз я задался вопросом выбора ключей около 8 лет назад. Куда же я пошел первым делом? В интернет, естественно, ага. В общем и целом могу теперь сказать так: зря я это сделал. Вопрос выбора ключей для импульсной техники в интернете оброс кучей недостоверных фактов, мифов и неправильными интерпретациями графиков в даташитах.
Мой способ выбора ключей тоже неидеальный и неполный. Однако в подавляющем большинстве случаев в радиолюбительской практике его окажется достаточно и даже за глаза, сами рады не будете.
Начнем!

Содержание / Contents

Создайте тему на любом форуме, связанным с радиоэлектроникой, с вопросом: «Как выбрать ключи в ИИП?».
Ответы будут самые разнообразные: от «выбирай ключи по напряжению и максимальному току» до «выбирай ключи по графику Maximum Safe Operating Area». Сюда входят все вариации типа «выбирай на ток вдвое больше максимального тока первичной обмотки» до «надо чтобы мощность, выделяемая при падении напряжения на сопротивлении открытого перехода, была меньше максимальной рассеиваемой мощности корпуса».

Вот весь этот бред читают новички и далее «делятся опытом» с другими. Жуть, да и только.
Вот, к примеру, знаменитый график Maximum Safe Operating Area (оно же ОБР, область безопасной работы) для ключа IRFS840B:


Посмотрите на него внимательно. Посмотрите, какие оси создают этот график. Посмотрели? Больше никогда не смотрите в его сторону.
На этот график призывают смотреть люди, пришедшие из аналоговой линейной техники, линейных усилителей или линейных стабилизаторов.

Чем может быть полезен этого график для разработки импульсных преобразователей или импульсных же усилителей (они же D-класс или цифровые)? Ничем.
А, ну не совсем так: этот напоминание о том, что у полевых транзисторов отсутствует вторичный пробой и что транзистор может быть пробит как при превышении максимального рабочего напряжения, так и при превышении максимального тока через него.
Много это нам дало? Не-а, вообще ничего, это всё в начале даташита указывается словами.

Надо сказать честно, что тот график в отдельных даташитах действительно вводит в заблуждение неподготовленного человека, ибо иногда к таким графикам идет ещё один, указывающий зависимость выхода за ОБР от частоты работы транзистора. Но это всё для линейной техники, для тех ситуаций, когда есть недооткрытое или недозакрытое состояние транзисторов, когда есть некие переходные процессы.

Мы же собираемся делать технику, которая использует только 2 состояния транзистора: полностью открытое и полностью закрытое, никаких средних значений. Исходя из того, что график ОБР нам лишний раз напоминает: вторичного пробоя у полевых транзисторов нет. Следовательно, изначально нас сдерживают только 2 параметра: максимальная рабочая температура кристалла Tj, указывающая на то, когда начнется тепловой пробой, и максимальное рабочее напряжение исток-сток Vdss, определяющее, когда начнется электрический пробой.
Косвенно удерживает параметр ток стока Id, который влияет на нагрев кристалла.

Теперь, попробуем разобраться с вопросом подбора транзистора. С вопросом максимального напряжение ни у кого не должно возникнуть сомнений. Просто для страховки берем ключ на 200 Вольт больше, чем максимальное действующее напряжение в схеме. Например, в ИИП я советую 600-вольтовые ключи, не ниже.

Вопрос в том, что делать с температурой. Она таки считается! Для теплового расчета надо всего лишь узнать, сколько Ватт потерь получится при работе ключа и как сильно надо его охладить, чтобы не случилось теплового пробоя.
Если результат меньше Tj, то использовать такой транзистор можно. Если больше, увы и ах, но надо выбирать дальше.

Из чего состоит нагревание? Для начала из статических потерь, связанных с сопротивлением перехода Rds on, которое влияет на падение напряжения на переходе, в зависимости от протекающего через ключ тока. Это падение напряжение вызывает выделение мощности на кристалле и нагрев транзистора в открытом состоянии. Считается как произведение квадрата среднего тока импульса Iимп на сопротивление перехода Rds on и коэффициента заполнения Кзап. Последний показывает, какую часть времени транзистор открыт.

В большинстве радиолюбительских конструкции мостовых и полумостовых преобразователей и усилителей Кзап не выше 0.45, а дальнейшее увеличение его не приводит ни к чему особенно хорошему, кроме сильной боли в голове или ж
Так, ладно, со статическими потерями разобрались.

Теперь динамические потери. Эти потери — основная проблема в преобразователях на полевых транзисторах с жесткой коммутацией ключей. Они возникают в момент включения и выключения ключа. Так сказать, потери на переходных процессах. И чем выше частота преобразования, тем выше динамические потери. А ниже делать частоту тоже не хочется, ведь тогда вырастают размеры трансформатора.

Есть резонансные или квазирезонансные схемы, позволяющие значительно снизить динамические потери, но это уже сложная техника, к которой никак не подходит выражение «простой расчет».

Итак, динамические потери состоят из потерь при включении и потерь при выключении. Считается как произведение тока в начале (Ir) или конце (If) импульса, напряжения питания (Uпит) и времени нарастания (Tr) или спада (Tf), разделенное на двойной период импульса. Хочу сразу заметить: отдельно считаются потери при включении и отдельно при выключении, а потом суммируются.

Теперь охлаждение. Основная проблема охлаждения — тепловое сопротивление между разными материалами. У транзистора таких мест 2: между кристаллом и корпусом транзистора, а так же между корпусом транзистора и радиатором. Эти значения табличные и не требующие вычислений. Первое значение берется из даташита на транзистор. Второе тоже можно взять оттуда, если оно там имеется. Если нет, то берётся усредненное значение.

Итак, потери подсчитаны, пора применять в деле. Первым делом, складываем потери динамические и статические, получаем общие потери — это сколько Ватт надо отвести от кристалла.

Затем складываем тепловые сопротивления.

Теперь умножаем общие потери на тепловое сопротивление. Получившийся результат — та температура, которую нужно «сдувать» с радиатора. Вычтем из ожидаемой рабочей температуры получившуюся, и на выходе нас ждет ожидаемая температура радиатора.
Именно по ней можно оценить, подходит или нет транзистор.

Как? Очень просто. Ожидаемая температура радиатора не может быть ниже температуры окружающей среды при естественном охлаждении. То есть, если у вас получился результат +24°, а на улице +32° то всё, кранты! Транзисторы ждёт тепловой пробой, потому как никакой супервентилятор не сможет охладить радиатор до 24 градусов, если температура воздуха выше. Совсем печально, если результат получился отрицательным. Если у вас нет фреоновой или азотной системы охлаждения, лучше выбрать другой транзистор.

Разумеется, в деле, подобном этому, есть свои тонкости и особенности. В целом, можно это охарактеризовать выражением «не доводи до крайностей», которое весьма полно объясняет чего нельзя делать, чтобы не бабахнуло.

В первую очередь это касается температур. Tj — это максимальная рабочая температура кристалла транзистора, фактически потолок его работоспособности. Было бы как минимум нелепо использовать это значение при расчете. Никогда не загоняйте параметры в угол, всегда оставляйте место для маневра.

Я, к примеру, использую в расчёте температуру на 5-10° ниже, и обзываю ее «Температура ожидаемая» — Tож.. Так как наиболее часто Tj указывается в районе 125° Цельсия, я использую в расчете 115-120°.

Далее, температуру окружающей среды для оценки тоже не следует брать наобум. Есть утвержденные ГОСТы, хотя можно просто принять для средней полосы +35° и +45° для южных регионов. Это для того, чтобы в набитом людьми помещении летом техника не сгорела синим пламенем. Ну и для случаев колебания температур.
Для работы на открытом воздухе под солнцепеком есть еще более жесткие условия, но это уже за рамками радиолюбительства.

Далее о напряжениях. Всегда стоит сделать запас прочности по допустимому напряжению. Опять-таки, в даташите параметр Vdss — предельный. И подбор транзистора строго под выпрямленное напряжение сети может сыграть злую шутку. Посчитаем: при напряжении в сети 220 Вольт на выходе мостового выпрямителя будет 310 Вольт. Однако в реальности в сети редко бывает 220 Вольт, и скачки до 20%, увы, обыденное явление. И что же будет, если напряжение в сети увеличится на эти 20%? На выходе выпрямителя будет уже 378 Вольт. Добавим сюда шум от сварочника и, вуаля, 400-вольтовый ключ искрится и взрывается.

Мне довелось отремонтировать очень много усилителей, в которых многочисленные дядюшки Ляо экономили на транзисторах. Не делайте так, разочарований будет куда больше экономии.

Как-то блуждая по просторам интернета, я наткнулся на аппноут IR, рекомендовавший выбирать ключи с запасом в 200 — 250 Вольт от максимального напряжения в схеме. Увы, этот аппноут я не сохранил, а затем найти его не смог. У кого-то есть сомнения, что он вообще существует, но сама рекомендация звучит достаточно трезво, пусть и относительно недёшево.

Теперь о сопротивлении перехода. В открытом состоянии идеальный ключ должен пропускать весь ток без потерь. Увы, живём мы в неидеальном мире. В настолько неидеальном, что маркетологи с удовольствием этим пользуются. Открывая даташит любого полевого транзистора можно увидеть маленькую характеристику Rds on, написанную большим шрифтом. Так вот: это сопротивление перехода при некоей „комнатной“ температуре в 20-25 градусов. Для того же IRFS840B указывается 0,8 Ома.

Это всё красиво только на словах, на деле кристалл в процессе работы будет нагреваться, что неизбежно приведет к увеличению сопротивления открытого перехода. Об этом мало кто помнит, но именно на это надо опираться, при выборе подходящего транзистора.
Чаще всего в даташитах не указывают эти печальные цифры, а лишь приводят график температурного коэффициента сопротивления ТКС, вот он для выбранного нами транзистора:


Как видно на графике, при нагревании сопротивление открытого перехода быстро увеличивается, и для рекомендованных мною максимальных рабочих 120° ТКС открытого канала уже составляет 2,1 Ома, а значит из приятных 0,8 Ом уже получаются малоприятные 1,68 Ома. Печаль, да и только, но с этим надо считаться.

Ну и последняя из тонкостей. Обязательно учитывайте крайние характеристики транзистора. В таблицах даташита всегда указывается три значения: минимальное, типичное и максимальное (или лучшее, типичное и худшее). Это касается практически всего. Например, время открытия и время закрытия. Причем с маркетинговой точки зрения делается упор именно на типичное время открытия и закрытия. Так, например, для IRFS840B типичное время нарастания составляет 65 нс, что и пишется всюду, хотя отдельные экземпляры доходят до 140 нс, что более чем в 2 раза дольше! Соответственно, для расчета необходимо использовать именно худшее значение, если нет желания отбирать транзисторы для конструкции.

Для выбора ключевого транзистора необходимо:
  1. Всегда помнить о неидеальности условий окружающей среды
  2. Использовать в расчете параметры наихудших экземпляров
  3. Всегда оставлять запас и место для маневров
  4. Иметь ввиду тепловые изменения параметров
  5. Не давать кристаллу перегреваться
  6. Не допускать перенапряжения из-за плохой сети

Все остальное считается и выбирается.

И вот здесь у меня для вас есть бонус. Так как я всё же ленив, то сделал таблицу в Excel, которая сама всё посчитает. Остается только сделать вывод о пригодности или непригодности транзистора.

▼ thermal_calc.zip  2.33 Kb ⇣ 232
Краткая инструкция по использованию: редактируются только желтые ячейки, данные вписываются исходя из проектируемой конструкции (частота преобразования, напряжение питания, коэффициент заполнения) и из даташита на транзистор (все остальное).
В зеленых ячейках получаем результаты. Как интерпретировать, читайте выше.

Для преобразователей с жесткой коммутацией ключей (традиционные) ток в начале импульса (Ir) и ток в конце импульса (If) равны среднему току импульса.

Для нетрадиционных вариантов типа резонансных ZVC и прочих — согласно расчету, вплоть до 0.
Для примера, в таблицу уже внесены данные на полюбившийся IRFS840B, в полумостовом преобразователе с жесткой коммутацией ключей со средним током первичной обмотки 2А.

Очень надеюсь, что этот маленький опус поможет выбрать транзисторы правильно и при этом не убить нервы.
Всем удачи! Спасибо за внимание!

Камрад, рассмотри датагорские рекомендации

🌼 Полезные и проверенные железяки, можно брать

Опробовано в лаборатории редакции или читателями.

 

Какие транзисторы выбрать для импульсного источника питания — Меандр — занимательная электроника

Основные типы полупроводниковых ключей

Исторически сложилось, что в большинстве схем источников питания, в качестве ключевого элемента (или проходного транзистора в линейном стабилизаторе) использовался биполярный транзистор. По современным стандартам такие транзисторы не отличаются высоким быстродействием. Но у структур n-p-n и p-n-p есть большой плюс – дешевизна.

В последнее время широкое распространение в импульсных источниках питания получили мощные МОП – транзисторы (или mosfet, или полевые транзисторы с изолированным затвором). Эти полевые транзисторы характеризуются достаточно высокой скоростью переключения. N- канальные приборы имеют более низкую стоимость по сравнению с  Р — канальными приборами, зато с последними можно использовать более простые схемы управления.

Несмотря на то, что мощный полевой транзистор с изолированным затвором все же вытесняет биполярный из схемотехнических решений импульсных источников питания, дискуссии о том, какой же прибор лучше в данном применении ведутся и сегодня. Сводятся дискуссии к следующему:

  1. биполярный транзистор – полупроводниковый прибор с токовым управлением. Для того, чтобы перевести в режим насыщения (транзистор открыт) и поддерживать его в этом состоянии, необходим базовый ток. МОП-транзистор – полупроводниковый прибор с потенциальным управлением. Для того, чтобы открыть МОП-транзистор, необходимо приложить потенциал к затвору (вспомним, что затвор изолирован от p-n перехода). Следовательно, предпочтительнее использовать МОП-структуры;
  2. требования к управлению биполярным транзистором могут фактически оказаться легче осуществить во многих случаях. Например, для открывания биполярного транзистора структуры n-p-n, необходимо, чтобы потенциал на его базе превышал потенциал эмиттера на 0,8 В. В тоже время для N-канальной МОП-структуры, необходимо прикладывать потенциал на несколько вольт превышающий потенциал истока. Следовательно, предпочтительнее использовать биполярный транзистор.
  3. основное преимущество биполярных транзисторов, используемых в качестве силовых ключей, является следствием их низкого быстродействия. Спектр электромагнитного излучения «биполяров» значительно уже, чем МОП-транзисторов.
  4. в мощных источниках питания, когда необходимо получить высокое значение выходного тока преимущество отдается биполярным транзисторам. Это связано с тем, что в одинаковых условиях, потери мощности будут выше на МОП-структуре.

В 80-х годах прошлого столетия был создан комбинированный полупроводниковый прибор в состав которого входила управляющая МОП-структура и биполярный выходной каскад. Этот прибор получил название – биполярный транзистор с изолированным затвором (insulated gate bipolar transistor) или IGBT – транзистор.

В открытом состоянии, последовательное сопротивление IGBT – транзистора  значительно меньше, чем у транзистора, выполненного на МОП-структуре, а скорость переключения превосходит скорость переключения биполярных транзисторов для аналогичных применений. Схемотехника IGBT сегодня получила большое распространение (наряду с биполярным транзистором) в мощных импульсных преобразователях.

Полупроводниковые силовые ключи далеки от идеала

Несмотря на все их преимущества полупроводниковых силовых ключей, они, конечно по своим характеристикам, далеки от «идеального» переключателя. Мы упоминали, что применение любого типа полупроводникового прибора, используемого в качестве силового ключа, приводит к потере мощности.

Так например, в отличии от механического выключателя, маленькая, но вполне измеряемая величина тока утечки, когда полупроводниковый прибор находится в режиме отсечки (ключ разомкнут) приводит к потери мощности.

В режиме насыщения (ключ замкнут), происходят потери мощности при протекании прямого тока через прибор.

В режиме переключения, когда полупроводниковый прибор переходит из одного состояния в другое, также имеет место потери мощности (длительность переходного процесса при переключении имеет определенные значения, т. е. не равна 0).

В конечном итоге, при разработке импульсного источника питания, необходимо свести к минимуму три вида упомянутых потерь и тем самым добиться максимального КПД. Однако разработка импульсного источника питания представляет собой набор компромиссов. Например, при выборе силового ключа, мы останавливаемся на транзисторе с малым падением напряжения и добиваемся сверх малых потерь мощности в режиме насыщения. Казалось, такой выбор, бесспорно, приведет к выигрышу эффективности. Однако большие потер, обусловленные «медленностью» выбранного транзистора (большие потери при переключении) не позволят получить предполагаемую эффективность.

При серийном производстве, важнейшим критерием при проектировании, является себестоимость изделия. И достаточно часто, для серийного изделия, предпочтение отдается более дешевому устройству, несмотря на его не самые высокие параметры.

Подводя черту, необходимо сказать, что выбор конкретного схемотехнического решения и элементной базы, целиком лежит на разработчике. Именно инженер, основываясь на своем опыте, принимает то или иное решение.

Защита импульсных БП с функцией плавного пуска

Схема
  Устройство защиты предназначено для импульсных блоков питаний, позволяет плавно включать нагрузку и отключать её при повышенном сетевом напряжении.
  Как правило в импульсных блоках питаний на входе стоит мостовой выпрямитель переменного сетевого напряжения, к которому подключен конденсатор большой ёмкости. При включении в сеть блока питания через выпрямитель течёт огромный ток для зарядки этого конденсатора, в некоторых случаях это может привести к пробою одного или нескольких диодов моста, что чревато негативными последствиями для остальных узлов питания, в наиблагоприятном варианте событий сгорит входной плавкий предохранитель, а если его нет или вместо него впаяна перемычка, как это часто бывает в аппаратуре китайского производства? В таких случаях нам поможет нехитрая схема защиты, которая изображена на рисунке вверху. Работает она следующим образом. Диоды D1-D4 на схеме это выпрямительный мост в вашем блоке питания, а конденсатор C это сглаживающий конденсатор из того же блока питания, поэтому номиналы не указаны, так как в разных блоках питаний они разные. Что происходит при включении устройства в сеть? А начинается всё с протекания тока через конденсатор C и резистор R4, это приводит к тому, что полевой транзистор Q1 открывается и таким образом шунтирует затвор IGBT транзистора Q2 на минус питания, он запирается и не пропускает ток в нагрузку Rload. Проходит некоторое время, конденсатор C зарядится, ток через сопротивление R4 прекратится течь ток, он закроется и через сопротивление R3 начнёт поступать отпирающее напряжение на транзистор Q2, он откроется, начнёт поступать ток в нагрузку. Одновременно с этим процессом резистор R4 оказывается подключенным к минусу питания через транзистор Q2 и таким образом транзистор Q1 запирается и не принимает участия в дальнейшей работе устройства. Стабилитроны D5 и D6 используются для защиты затворов транзисторов. Теперь перейдём к функции защиты от повышенного напряжения питающей сети 220 вольт. В этом нам поможет регулируемый стабилитрон TL431, IC1 на схеме. Как известно, напряжение сети 220 вольт после выпрямления и сглаживания становится равным 300-310 вольт. Напряжение срабатывания IC1 задаётся номиналами R1 и R2 на схеме, при указанных на схеме номиналах оно будет около 380 вольт, его можно изменить, если понадобится. Как только напряжение питания повысится, срабатывает регулируемый стабилитрон TL431, он замкнёт затвор транзистора Q2 на минус питания, транзистор запрётся и не будет пропускать ток в нагрузку, таким образом защитит аппаратуру от повышенного напряжения сети. Как видите, всё просто. Правильно собранное устройство защиты в наладке не нуждается, оно заработает сразу. В качестве IGBT транзистора Q2 можно использовать транзистор типа GP10NC60KD или аналогичный. Транзисторы на радиаторы устанавливать не требуется, на них рассеивается небольшая мощность.

Импульсные источники питания на микросхемах и транзисторах

Импульсные источники питания стали фактически непременным атрибутом любой современной бытовой техники, потребляющей от сети мощность свыше 100 Вт. В эту категорию попадают компьютеры, телевизоры, мониторы.

Для создания импульсных источников питания, примеры конкретного воплощения которых будут приведены ниже, применяются специальные схемные решения.

Так, для исключения сквозных токов через выходные транзисторы некоторых импульсных источников питания используют специальную форму импульсов, а именно, биполярные импульсы прямоугольной формы, имеющие между собой промежуток во времени.

Продолжительность этого промежутка должна быть больше времени рассасывания неосновных носителей в базе выходных транзисторов, иначе эти транзисторы будут повреждены. Ширина управляющих импульсов с целью стабилизации выходного напряжения может изменяться с помощью обратной связи.

Обычно для обеспечения надежности в импульсных источниках питания используют высоковольтные транзисторы, которые в силу технологических особенностей не отличаются в лучшую сторону (имеют низкие частоты переключения, малые коэффициенты передачи по току, значительные токи утечки, большие падения напряжения на коллекторном переходе в открытом состоянии).

Особенно это касается устаревших ныне моделей отечественных транзисторов типа КТ809, КТ812, КТ826, КТ828 и многих других. Стоит сказать, что в последние годы появилась достойная замена биполярным транзисторам, традиционно используемых в выходных каскадах импульсных источников питания.

Это специальные высоковольтные полевые транзисторы отечественного, и, главным образом, зарубежного производства. Кроме того, существуют многочисленные микросхемы для импульсных источников питания.

Генератор импульсов

Рис. 1. Генератор импульсов — схема.

Биполярные симметричные импульсы регулируемой ширины позволяет получить генератор импульсов по схеме на рис. 1. Устройство может быть использовано в схемах авторегулирования выходной мощности импульсных источников питания. На микросхеме DD1 (К561ЛЕ5/К561ЛА7) собран генератор прямоугольных импульсов со скважностью, равной 2.

Симметрии генерируемых импульсов добиваются регулировкой резистора R1. Рабочую частоту генератора (44 кГц) при необходимости можно изменить подбором емкости конденсатора С1.

На элементах DA1.1, DA1.3 (К561КТЗ) собраны компараторы напряжения; на DA1.2, DA1.4 — выходные ключи. На входы компараторов-ключей DA1.1, DA1.3 в противофазе через формирующие RC-диодные цепочки (R3, С2, VD2 и R6, C3, VD5) подаются прямоугольные импульсы. Заряд конденсаторов С2, C3 происходит по экспоненциальному закону через R3 и R5, соответственно; разряд — практически мгновенно через диоды VD2 и VD5.

Когда напряжение на конденсаторе С2 или C3 достигнет порога срабатывания компараторов-ключей DA1.1 или DA1.3, соответственно, происходит их включение, и резисторы R9 и R10, а также управляющие входы ключей DA1.2 и DA1.4 подключаются к положительному полюсу источника питания.

Поскольку включение ключей производится в противофазе, такое переключение происходит строго поочередно, с паузой между импульсами, что исключает возможность протекания сквозного тока через ключи DA1.2 и DA1.4 и управляемые ими транзисторы преобразователя, если генератор двухполярных импульсов используется в схеме импульсного источника питания.

Плавное регулирование ширины импульсов осуществляется одновременной подачей стартового (начального) напряжения на входы компараторов (конденсаторы С2, C3) с потенциометра R5 через диодно-ре-зистивные цепочки VD3, R7 и VD4, R8. Предельный уровень управляющего напряжения (максимальную ширину выходных импульсов) устанавливают подбором резистора R4.

Сопротивление нагрузки можно подключить по мостовой схеме — между точкой соединения элементов DA1.2, DA1.4 и конденсаторами Са, Сб. Импульсы с генератора можно подать и на транзисторный усилитель мощности.

При использовании генератора двухполярных импульсов в схеме импульсного источника питания в состав резистивного делителя R4, R5 следует включить регулирующий элемент — полевой транзистор, фотодиод оптрона и т.д., позволяющий при уменьшении/увеличении тока нагрузки автоматически регулировать ширину генерируемого импульса, управляя тем самым выходной мощностью преобразователя.

Импульсный источник питания

В качестве примера практической реализации импульсных источников питания приведем описания и схемы некоторых из них. Импульсный источник питания (рис. 2) состоит из выпрямителей сетевого напряжения, задающего генератора, формирователя прямоугольных импульсов регулируемой длительности, двухкаскадного усилителя мощности, выходных выпрямителей и схемы стабилизации выходного напряжения.

Задающий генератор выполнен на микросхеме типа К555ЛАЗ (элементы DD1.1, DD1.2) и вырабатывает прямоугольные импульсы частотой 150 кГц. На элементах DD1.3, DD1.4 собран RS-триггер, на выходе которого частота вдвое меньше — 75 кГц. Узел управления длительностью коммутирующих импульсов реализован на микросхеме типа К555ЛИ1 (элементы DD2.1, DD2.2), а регулировка длительности осуществляется с помощью оптрона U1.

Выходной каскад формирователя коммутирующих импульсов собран на элементах DD2.3, DD2.4. Максимальная мощность на выходе формирователя импульсов достигает 40 мВт.

Предварительный усилитель мощности выполнен на транзисторах ѴТ1, ѴТ2 типа КТ645А, а оконечный — на транзисторах ѴТЗ, ѴТ4 типа КТ828 или более современных. Выходная мощность каскадов — 2 и 60…65 Вт, соответственно.

На транзисторах ѴТ5, ѴТ6 и оптроне U1 собрана схема стабилизации выходного напряжения. Если напряжение на выходе источника питания ниже нормы (12 В), стабилитроны VD19, VD20 (КС182+КС139) закрыты, транзистор ѴТ5 закрыт, транзистор ѴТ6 открыт, через светодиод (U1.2) оптрона протекает ток, ограниченный сопротивлением R14; сопротивление фотодиода (U1.1) оптрона минимально.

Сигнал, снимаемый с выхода элемента DD2.1 и поступающий на входы схемы совпадения DD2.2 напрямую и через регулируемый элемент задержки (R3 — R5, С4, VD2, U1.1), в силу его малой постоянной времени поступает практически одновременно на входы схемы совпадения (элемент DD2.2). На выходе этого элемента формируются широкие управляющие импульсы.

Рис. 2. Схема импульсного источника питания на транзисторах и микросхемах.

На первичной обмотке трансформатора Т1 (выходах элементов DD2.3, DD2.4) формируются двухполярные импульсы регулируемой длительности.

Если по какой-либо причине напряжение на выходе источника питания будет увеличиваться сверх нормы, через стабилитроны VD19, VD20 начнет протекать ток, транзистор VT5 приоткроется, VT6 — закроется, уменьшая ток через светодиод оптрона U1.2. При этом возрастает сопротивление фотодиода оптрона U1.1.

Длительность управляющих импульсов уменьшается, и происходит уменьшение выходного напряжения (мощности). При коротком замыкании нагрузки светодиод оптрона гаснет, сопротивление фотодиода оптрона максимально, а длительность управляющих импульсов — минимальна. Кнопка SB1 предназначена для запуска схемы.

При максимальной длительности положительные и отрицательные управляющие импульсы не перекрываются во времени, поскольку между ними существует временная просечка, обусловленная наличием резистора R3 в формирующей цепи.

Тем самым снижается вероятность протекания сквозных токов через выходные относительно низкочастотные транзисторы оконечного каскада усиления мощности, которые имеют большое время рассасывания избыточных носителей на базовом переходе.

Выходные транзисторы установлены на ребристые теплоотводящие радиаторы с площадью не менее 200 см2. В базовые цепи этих транзисторов желательно установить сопротивления величиной 10…51 Ом.

Каскады усиления мощности и схема формирования двухполярных импульсов получают питание от выпрямителей, выполненных на диодах VD5 — VD12 и элементах R9 — R11, С6 — С9, С12, VD3, VD4.

Трансформаторы Т1, Т2 выполнены на ферритовых кольцах К10x6x4,5 3000НМ; ТЗ — К28х16х9 3000НМ. Первичная обмотка трансформатора Т1 содержит 165 витков провода ПЭЛШО 0,12, вторичные — 2×65 витков ПЭЛ-2 0,45 (намотка в два провода). Первичная обмотка трансформатора Т2 содержит 165 витков провода ПЭВ-2 0,15 мм, вторичные — 2×40 витков того же провода.

Первичная обмотка трансформатора ТЗ содержит 31 виток провода МГШВ, продетого в кембрик и имеющего сечение 0,35 мм2, вторичная обмотка имеет 3×6 витков провода ПЭВ-2 1,28 мм (параллельное включение). При подключении обмоток трансформаторов необходимо правильно их фазировать. Начала обмоток показаны на рисунке звездочками.

Источник питания работоспособен в диапазоне изменения сетевого напряжения 130…250 В. Максимальная выходная мощность при симметричной нагрузке достигает 60…65 Вт (стабилизированное напряжение положительной и отрицательной полярности 12 6 и стабилизированное напряжение переменного тока частотой 75 кГц, снимаемые со вторичной обмотки трансформатора Т3). Напряжение пульсаций на выходе источника питания не превышает 0,6 В.

При налаживании источника питания сетевое напряжение на него подают через разделительный трансформатор или феррорезонансный стабилизатор с изолированным от сети выходом. Все перепайки в источнике допустимо производить только при полном отключении устройства от сети.

Последовательно с выходным каскадом на время налаживания устройства рекомендуется включить лампу накаливания 60 Вт на 220 В. Эта лампа защитит выходные транзисторы в случае ошибок в монтаже. Оптрон U1 должен иметь напряжение пробоя изоляции не менее 400 В. Работа устройства без нагрузки не допускается.

Сетевой импульсный источник питания

Сетевой импульсный источник питания (рис. 3) разработан для телефонных аппаратов с автоматическим определителем номера или для других устройств с потребляемой мощностью 3…5 Вт, питаемых напряжением 5…24 В.

Источник питания защищен от короткого замыкания на выходе. Нестабильность выходного напряжения не превышает 5% при изменении напряжения питания от 150 до 240 В и тока нагрузки в пределах 20… 100% от номинального значения.

Управляемый генератор импульсов обеспечивает на базе транзистора ѴТЗ сигнал частотой 25…30 кГц.

Дроссели L1, L2 и L3 намотаны на магнитопроводах типа К10x6x3 из пресс-пермаллоя МП140. Обмотки дросселя L1, L2 содержат по 20 витков провода ПЭТВ 0,35 мм и расположены каждая на своей половине кольца с зазором между обмотками не менее 1 мм. Дроссель L3 наматывают проводом ПЭТВ 0,63 мм виток к витку в один слой по внутреннему периметру кольца.

Рис 3. Схема сетевого импульсного источника питания.

Трансформатор Т1 выполнен на магнитопроводе Б22 из феррита М2000НМ1. Его обмотки наматывают на разборном каркасе виток к витку проводом ПЭТВ и пропитывают клеем. Первой наматывают в несколько слоев обмотку I, содержащую 260 витков провода 0,12 мм.

Таким же проводом наматывают экранирующую обмотку с одним выводом (на рис. 3 показана пунктирной линией), затем наносят клей БФ-2 и обматывают одним слоем лакот-кани. Обмотку III наматывают проводом 0,56 мм. Для выходного напряжения 5 В она содержит 13 витков. Последней наматывают обмотку II. Она содержит 22 витка провода 0,15…0,18 мм. Между чашками обеспечивают немагнитный зазор.

Источник высокого напряжения 30…35 кВ

Для создания высокого напряжения (30…35 кВ при токе нагрузки до 1 мА) для питания электроэффлювиальной люстры (люстры А. Л. Чижевского) предназначен источник питания постоянного тока на основе специализированной микросхемы типа К1182ГГЗ (рис. 4).

Источник питания состоит из выпрямителя сетевого напряжения на диодном мосте VD1, конденсатора фильтра С1 и высоковольтного полумостового автогенератора на микросхеме DA1 типа К1182ГГЗ. Микросхема DA1 совместно с трансформатором Т1 преобразует постоянное выпрямленное сетевое напряжение в высокочастотное (30…50 кГц) импульсное.

Выпрямленное сетевое напряжение поступает на микросхему DA1, а стартовая цепочка R2, С2 запускает автогенератор микросхемы. Цепочки R3, C3 и R4, С4 задают частоту генератора.

Резисторы R3 и R4 стабилизируют длительность полупериодов генерируемых импульсов. Выходное напряжение повышается обмоткой L4 трансформатора и подается на умножитель напряжения на диодах VD2 — VD7 и конденсаторах С7 — С12. Выпрямленное напряжение подается на нагрузку через ограничительный резистор R5.

Конденсатор сетевого фильтра С1 рассчитан на рабочее напряжение 450 В (К50-29), С2 — любого типа на напряжение 30 В. Конденсаторы С5, С6 выбирают в пределах 0,022…0,22 мкФ на напряжение не менее 250 В (К71-7, К73-17).

Конденсаторы умножителя С7 — С12 типа КВИ-3 на напряжение 10 кВ. Возможна замена на конденсаторы типов К15-4, К73-4, ПОВ и другие на рабочее напряжение 10 кВ или выше.

Рис. 4. Схема высоковольтного импульсного источника постоянного тока 30-35 кВ.

Высоковольтные диоды VD2 — VD7 типа КЦ106Г (КЦ105Д). Ограничительный резистор R5 типа КЭВ-1. Его можно заменить тремя резисторами типа МЛТ-2 по 10 МОм.

В качестве трансформатора используется телевизионный строчный трансформатор, например, ТВС-110ЛА. Высоковольтную обмотку оставляют, остальные удаляют и на их месте размещают новые обмотки. Обмотки L1, L3 содержат по 7 витков провода ПЭЛ 0,2 /им, а обмотка L2 — 90 витков такого же провода.

Цепочку резисторов R5, ограничивающих ток короткого замыкания, рекомендуется включить в «минусовой» провод, который подводится к люстре. Этот провод должен иметь высоковольтную изоляцию.

Корректор коэффициента мощности

Устройство, именуемое корректором коэффициента мощности (рис. 5), собрано на основе специализированной микросхемы TOP202YA3 (фирма Power Integration) и обеспечивает коэффициент мощности не менее 0,95 при мощности нагрузки 65 Вт. Корректор приближает форму тока, потребляемую нагрузкой, к синусоидальной.

Рис. 5. Схема корректора коэффициента мощности на микросхеме TOP202YA3.

Максимальное напряжение на входе — 265 В. Средняя частота преобразователя — 100 кГц. КПД корректора — 0,95.

Схема источника питания с микросхемой Power Integration

Схема источника питания с микросхемой той же фирмы Power Integration показана на рис. 6. В устройстве применен полупроводниковый ограничитель напряжения — 1,5КЕ250А.

Преобразователь обеспечивает гальваническую развязку выходного напряжения от напряжения сети. При указанных на схеме номиналах и элементах устройство позволяет подключать нагрузку, потребляющую 20 Вт при напряжении 24 В.

КПД преобразователя приближается к 90%. Частота преобразования — 100 кГц. Устройство защищено от коротких замыканий в нагрузке.

Рис. 6. Схема импульсного источника питания на микросхеме фирмы Power Integration.

Выходная мощность преобразователя определяется типом используемой микросхемы, основные характеристики которых приведены в табл. 5.1.

Таблица 1. Характеристики микросхем серии TOP221Y TOP227Y.

Тип
микросхемы
Рмах, Вт Ток срабатывания
защиты, А
Rcи  открытого
транзистора, Ом
TOP221Y 7 0,25 31,2
TOP222Y 15 0,5 15,6
TOP223Y 30 1 7,8
T0P224Y 45 1,5 5,2
T0P225Y 60 2 3,9
TOP226Y 75 2,5 3,1
T0P227Y 90 3 2.6

Высокоэффективный преобразователь напряжения

На основе одной из микросхем ТОР200/204/214 фирмы Power Integration может быть собран простой и высокоэффективный преобразователь напряжения (рис. 7) с выходной мощностью до 100 Вт.

Рис. 7. Схема импульсного Buck-Boost преобразователя на микросхеме ТОР200/204/214.

Преобразователь содержит сетевой фильтр (С1, L1, L2), мостовой выпрямитель (VD1 — VD4), собственно сам преобразователь U1, схему стабилизации выходного напряжения, выпрямители и выходной LC-фильтр.

Входной фильтр L1, L2 намотан в два провода на феррито-вом кольце М2000 (2×8 витков). Индуктивность полученной катушки — 18…40 мГн. Трансформатор Т1 выполнен на ферритовом сердечнике со стандартным каркасом ETD34 фирмы Siemens или Matsushita, хотя можно использовать и иные импортные сердечники типа ЕР, ЕС, EF или отечественные Ш-образные ферритовые сердечники М2000. Обмотка I имеет 4×90 витков ПЭВ-2 0,15 мм; II — 3×6 того же провода; III — 2×21 витков ПЭВ-2 0,35 мм. Все обмотки наматывают виток к витку. Между слоями должна быть обеспечена надежная изоляция.

Источник: Шустов М. А. Практическая схемотехника. Преобразователи напряжения.

Схемотехника блоков питания персональных компьютеров. Часть 2.

Высокочастотный преобразователь (инвертор)

В первой части нашего рассказа о схемотехнике блоков питания персональных компьютеров мы познакомились со схемой входного сетевого выпрямителя и фильтра. Давайте продолжим изучение компьютерного блока питания. Здесь мы разберёмся в том, как работает высокочастотный преобразователь – инвертор.

Постоянное напряжение 310 вольт, снимаемое с сетевого выпрямителя, подаётся на высокочастотный преобразователь. Высокочастотный преобразователь — это двухтактный инвертор, выполненный по схеме полумоста. Преобразователь работает на частоте в десятки килогерц и нагружен на высокочастотный силовой трансформатор.

Частота преобразования выбирается порядка 18 – 50 КГц, что подразумевает маленькие размеры силового трансформатора и небольшие величины ёмкостей конденсаторов фильтров. Один из плюсов импульсного блока питания является высокий КПД, достигающий 80% и экономичность, поскольку блок потребляет энергию только в то время, когда один из транзисторов преобразователя открыт. Когда он закрыт, энергию на нагрузку отдаёт конденсатор фильтра вторичной цепи.

Управление полумостовым инвертором осуществляется ШИМ-контроллером (Узел управления). Об узле управления блоком питания будет рассказано в следующей части.

Итак, высокочастотный преобразователь работает следующим образом: на него приходит постоянное напряжение 310 вольт с сетевого выпрямителя и конденсаторов фильтра. Одновременно в базовые цепи мощных транзисторов подаются прямоугольные импульсы положительной полярности и с частотой следования допустим 20 кГц. С этой частотой транзисторы как ключевые элементы открываются и закрываются.

На первичной обмотке трансформатора Т2 присутствует импульсное высокое напряжение с той же частотой 20 кГц. Трансформатор, естественно, понижающий и на его вторичных обмотках, которых несколько, формируются все необходимые для работы компьютера питающие напряжения, после этого все напряжения выпрямляются, фильтруются и подаются на системную плату.

Мощные ключевые транзисторы инвертора являются своеобразными «мускулами» блока питания. Именно через ключевые транзисторы инвертора «прокачивается» вся мощность, которая потребляется компьютером. Ключевые транзисторы устанавливаются на радиатор для принудительного охлаждения во время работы, а сам радиатор обдувается вентилятором.

В качестве ключевых транзисторов инвертора могут применяться как биполярные, так и полевые MOSFET транзисторы. Обычно же используются биполярные транзисторы.

Взглянем на схему. На ней изображена часть схемы ИБП марки GT-150W.

Биполярные транзисторы VT1 и VT2 поочерёдно открываются с частотой в десятки килогерц. Трансформатор T2 — импульсный силовой трансформатор. Он же обеспечивает гальваническую развязку от электросети. Импульсный силовой трансформатор заметно выделяется на фоне других трансформаторов, установленных на печатной плате. Найти его не сложно.

Со вторичных обмоток трансформатора T2 снимается пониженное переменное напряжение. На схеме показаны элементы одного из выходных выпрямителей +12 вольт (VD6, VD7, L1, C5). Электролитические конденсаторы C6, C7 — это конденсаторы сетевого фильтра и выпрямителя, речь о котором шла в первой части.

Трансформатор T1 — согласующий. Он является промежуточным звеном между микросхемой ШИМ-контроллера и мощными ключевыми транзисторами VT1, VT2. Габариты его заметно меньше, чем у трансформатора T2. Диоды VD4 и VD5 предохраняют мощные транзисторы от напряжения обратной полярности. У мощных полевых транзисторов эти диоды, как правило, уже встроены, поэтому на печатной плате диоды VD4, VD5 можно и не обнаружить. Так же защитные диоды встраивают в некоторые мощные биполярные транзисторы. Всё зависит от марки транзистора.

Схема запуска.

Узел управления инвертора питается выходным напряжением блока, но в момент включения все напряжения отсутствуют. Начальный запуск может осуществляться разными способами. Рассмотрим более подробно схему запуска инвертора, которая «заводит» мощный каскад инвертора.

После включения блока питания на базы транзисторов VT1, VT2 подаётся напряжение через делитель, выполненный на резисторах R3 — R6. При этом транзисторы «приоткрываются». При этом ещё начинается заряд конденсатора C4. Ток заряда конденсатора C4 проходя через часть вторичной обмотки (II) трансформатора T1 наводит в ней (обмотке II) и обмотке III напряжение. Это напряжение открывает один из транзисторов (VT1 или VT2). Какой именно из транзисторов откроется зависит от характеристик элементов каскада.

В результате открытия одного из ключевых транзисторов во вторичной обмотке трансформатора T2 появляется импульс тока, который проходит через один из диодов (VD6 или VD7) и заряжает конденсатор C3. Напряжения на C3 достаточно для питания узла управления в момент пуска инвертора. Далее в работу включается узел управления, который и начинает управлять транзисторами VT1 и VT2 в штатном режиме.

Вот так хитроумно реализована схема запуска инвертора.

В мощном каскаде наиболее частой неисправностью является выход из строя транзисторов, поскольку они работают в достаточно тяжёлом тепловом режиме. Ну, и, конечно, слабое звено это электролитические конденсаторы, которые со временем «высыхают» и теряют ёмкость. Также элктролиты выходят из строя из-за превышения рабочего напряжения.

НазадДалее

Главная &raquo Мастерская &raquo Текущая страница

 

Простой импульсный транзисторный источник питания на 12 В

Это простой импульсный транзисторный источник питания на 12 В. — спросил один из моих друзей. Можно ли построить импульсный источник питания постоянного тока с двумя транзисторами? Приложения IC, что иногда сложно. A Some number IC сложно найти и очень дорого. При рассмотрении Заявлений какое-то время.

Нам не нужно использовать сильноточный . и иметь достаточно места для установки схем. В подборке используются транзисторы.Таким образом, как альтернатива экономии и исключительно хорошее соотношение цены и качества.

Малая схема импульсного источника питания 12 В

Принцип работы
На рисунке 1 показана конструкция импульсного регулятора, который представляет собой понижающий преобразователь постоянного тока , преобразующий напряжение с 15-20 вольт в напряжение 12 вольт .


Рисунок 1 Импульсный регулятор постоянного тока из схемы понижающего преобразователя

Важными компонентами являются T1, которые действуют как переключатели и имеют общие компоненты.Основными являются транзисторы L1, D1, NPN + PNP, действующие с обратной связью друг с другом. Увеличена частота генераторов или до Делает переключатель работать непрерывно. Только в этой цепи катушки нет вверх, потому что есть детектор напряжения с C2, R4 и стабилитрон D2 (C12) для контроля постоянного напряжения
.

Когда мы подаем на эту схему постоянный ток , транзистор T2 вызывает смещение. Поскольку ток, протекающий через R5 для смещения, превращает T2 (BC550) в ударную проводимость по току на T1.(2N2905). Это заставляет T1 протекать ток через вывод эмиттера к выводу базы.

Затем ток проходит через базу Q2 (BC550). Таким образом, этот случай эквивалентен блоку Q2 (BC550) для управления смещением T1. Это заставляет Q1 (2N2905) подавать ток на коллектор катушки L1.

В то время как база Q2 имеет фиксированный опорный стабилитрон для поддержания постоянного напряжения
между эмиттером и землей или выходом. Нам нужен фиксированный стабилизатор 12 В, поэтому мы используем стабилитрон на 12 В.

Когда выходное напряжение повышается до 12 вольт . В результате получается напряжение эмиттера Т2. Это то же самое. В результате Т2 отключается. Прекратить проведение. И при условии, что T1 остановит ток.

Теперь катушка начнет подавать ток., Накапливаться в C1 с помощью выпрямителя D1 (BTA43). И если сравнить электрический потенциал с землей. Слева от L1 отрицательное напряжение и ушел ток L1. Произойдет рабочий новый раунд.

Если рассматривать эту систему.Установлено, что производительность этой схемы более чем на 90% вполне удовлетворительна.

Что еще?

См. Схему импульсного источника питания на более высокомощных транзисторах.

Схема импульсного стабилизатора 5 В с использованием транзистора BC337

Это схема импульсного стабилизатора 5 В с использованием транзистора, уменьшающего размер напряжения или схема понижающего преобразователя напряжения. Сделайте выходное напряжение таким, чтобы напряжение на входе было немного больше, как показано на рисунке схемы, оно уменьшит напряжение на 6-18 В с оставленного 5 В.Это дает ток 100 мА. При работе в сменных формах Стратегия работает следующим образом.


Старая схема


Новая схема

Как только мы вводим напряжение в схему транзистора, Q1 и Q2 подключаются как нестабильный мультивибратор, схема будет генерировать частотный выход на коллекторе Q2 перед отправкой на базовый вывод Q3. Q3, который будет действовать как двухпозиционный переключатель, Q4 работает, подавая напряжение для определения контакта коллектора, но должен пройти до базы R6 Q4.

Когда базовый вывод Q4 имеет низкое напряжение, Q4 начинает работать, C3 будет заряжаться через катушку L1. Выходное напряжение будет постоянно увеличиваться, но при напряжении более 5 вольт Q5 будет работать, так как напряжение смещения на базе вывода будет таким, как у ZD1. Транзистор Q1 остановлен, база вывода эквивалентна земле. Частота отключения цепи выходит, Q4 перестанет работать.

Потому что напряжение на базовом выводе Q4 через выход R5 не имеет напряжения., Q5 так что перестань работать. Тогда Q1 снова работает. И поведение, оно будет похоже на первое. Заставить цикл сделать это. Тем не менее, они очень высокие, поэтому на нем должно появиться выходное напряжение 5 вольт.


Расположение компонентов (без печатной платы)

Список компонентов
Размер резисторов ¼W + 5%
R1, R4, R7: 4,7 кОм
R2, R3: 47K
R5: 1K
R6: 100 Ом
Конденсаторы
C1: 0,0015 мкФ 50 В Полиэстер
C2: 0,01 мкФ 50 В, Полиэстер
C3: 470 мкФ 16 В, электролитические
Полупроводниковые
Q1, Q2, Q3, Q5: BC548, 45 В 100 мА Транзистор NPN
Q4: BC337, 45 В 800 мА Транзистор PNP
D1: 1N4001, 1A 50V Диод
ZD1: 5.1В 500мВт, стабилитрон
Прочие комплектующие
Тороидальный сердечник трансформатора L1 диаметром 2,5-3,0 см.
Медная проволока диаметром 0,4 мм.

Примечание:

Нам не нужно разрабатывать печатную плату для этой схемы. Если вы не хотите разрабатывать собственную печатную плату. Или использовать универсальную печатную плату, что сложно.

Я бы порекомендовал понижающий понижающий регулятор источника питания постоянного тока. Вход: 4-40 В, выход: 1,5-35 В. Это наборы DIY, доступные для использования. Надеюсь, это руководство будет вам полезно.

Хотя схемы не те.Это также может быть импульсный регулятор постоянного тока.

ПОЛУЧИТЬ ОБНОВЛЕНИЕ ПО ЭЛЕКТРОННОЙ ПОЧТЕ

Я всегда стараюсь сделать Electronics Learning Easy .

Транзистор с 2 источниками напряжения (блоки питания)

Транзистор с 2 источниками напряжения (блоки питания)
Сеть обмена стеков

Сеть Stack Exchange состоит из 178 сообществ вопросов и ответов, включая Stack Overflow, крупнейшее и пользующееся наибольшим доверием онлайн-сообщество, где разработчики могут учиться, делиться своими знаниями и строить свою карьеру.

Посетить Stack Exchange
  1. 0
  2. +0
  3. Авторизоваться Подписаться

Electrical Engineering Stack Exchange — это сайт вопросов и ответов для профессионалов в области электроники и электротехники, студентов и энтузиастов.Регистрация займет всего минуту.

Зарегистрируйтесь, чтобы присоединиться к этому сообществу

Кто угодно может задать вопрос

Кто угодно может ответить

Лучшие ответы голосуются и поднимаются наверх

Спросил

Просмотрено 366 раз

\ $ \ begingroup \ $

Можно ли использовать транзистор в качестве реле? Под этим я подразумеваю использование батареи 3 В для управления затвором, чтобы отдельная батарея 12 В могла пропускать ток в другие части схемы.Или транзистор должен использовать только один источник питания? Некоторые примеры были бы замечательными.

JRE

53.1k88 золотых знаков8181 серебряный знак141141 бронзовый знак

Создан 05 июл.

\ $ \ endgroup \ $ 3 \ $ \ begingroup \ $

смоделировать эту схему — Схема создана с помощью CircuitLab

Ваша нагрузка R1.Вы также можете использовать транзистор PNP.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *