Универсальная плата управления лабораторными бп из атх: Встраиваемая универсальная плата управления лабораторными блоками питания.

Содержание

Блок питания-зарядное из ATX переделанного в AT

В интернете немало информации про переделку компьютерных блоков питания ATX-AT в лабораторные блоки питания и в зарядные устройства. Перечитал не один десяток статей про переделку, но практически нет информации про самостоятельную сборку из деталей этих самых БП ПК. Почему же так, ведь ATX отличный донор для хорошего блока питания, а если он собран будет на какой нибудь левой ШИМ, её всегда можно заменить на TL494, на новенькой аккуратной плате. А главное своей плате

У меня сгорел блок питания ATX 400Вт. Добавил его еще к пяти собратьям, понял что надо с ними что то делать. Начать решил с крайнего 400Вт Бп, меня привлекло в нем две шины 12В 12А и 15А, что в сумме давало 27А. Но оказалось, что обе шины подключены к одному выходу 12В и врятли там наберутся нужные Амперы.Но может хоть 20А выжму подумал я и решился собирать блок питания.

Условия сборки:
— сделать AT из ATX
— плата универсальная для дальнейших доработок
— минимум деталей
— шим только TL494

— стабилизация по напряжению 12В,14,4В и току до 20А

Поискав в тырнете схемы блоков питания AT, выбрал схему и немного переделал

Ничего особенного не сделал с блоком.
— Исключил лишние обвязки 5В 3,3В и др.
— Переделал цепи делителей вокруг компараторов ошибки TL494. Добавил возможность: переключать напряжения 12,6В и 14,4В, плавно регулировать ток нагрузки
— Ну и в целом перевел ATX на 3528, в AT на TL494. Одно не давало покоя, на какой частоте работал донор. Но потом выяснилось, что формула расчета частоты у 3528 такая же как и у TL494 F=1.1/RC. По схеме частота 73кГц


Принялся разводить плату. После часов мучения получилась такая плата.

Скачать печатную плату
Пароль от архива jhg561bvlkm556
На что стоило обратить внимание при разводке, так это на распиновку развязывающего трансформатора силовых транзисторов. Сравнил платы разных блоков питания, из 6 только 2 трансформатора одинаковой распиновки. В остальном сложности нет. Травил плату раствором медного купороса, как это сделать здесь

Плата на данный момент финальная и не разу в сборке не была. Первая версия платы чуть легче, на ней отсутствуют цепи вокруг усилителей ошибки, но управление осуществляется с другой платы через транзистор оптопары с 14 ноги Vref на 4 ногу DT. Вторая версия исключает оптопару и управление осуществляется через делители на дополнительной плате, через ножки TL494 1,2,3,15,16. Первая и вторая версия платы блока питания рабочие и сто процентов проверенны. Поэтому будьте внимательны, проверьте новую версию платы перед изготовлением. Если есть ошибки пишите через форму Обратной связи, все исправлю.

И немного слов о пуске. Безопасный первый пуск блока питания прошел по традиции через лампочку накаливания, все заработало. На выходе без стабилизации получилось 19В. Следующий пуск был через предохранитель, на выходе появилось 24,2В. Подключил в нагрузку 4,2А 24В лампы с машины. Напряжение просело на 0,2В

При подключении стабилизации 14,4В в нагрузку давал 8,4А напряжение просело на 0,2В. Фотку к сожалению не сделал.
На ограничение тока тоже нормально реагирует. Больше 10А еще не нагружал, Нечем. Пока фото нет

Ну и еще пару фотографий собранной платы перед первыми тестами

Видео собранного блока питания-зарядное из ATX

На этом пока все. Следующие фото и обновления как будет время
С ув. Admin-чек

Похожие материалы: Загрузка…

Переделка компьютерных БП с ШИМ-контроллерами типа DR-B2002, DR-B2003, SG6105 в лабораторные источники питания. Ремонтируем и модернизируем бюджетные источники питания — оптимизация пк — компьютер и периферия —

Материалы этой статьи были изданы в журнале Радиоаматор — 2013, № 11

В статье представлена простая конструкция ШИМ-регулятора, с помощью которой можно легко переделать компьютерный блок питания, собранный на контроллере, отличном от популярного TL494, в частности, DR-B2002, DR-B2003, SG6105 и прочих, в лабораторный с регулируемым выходным напряжением и ограничением тока в нагрузке. Также здесь я поделюсь опытом переделки компьютерных БП и опишу испытанные способы увеличения их максимального выходного напряжения.

В радиолюбительской литературе имеется множество схем переделки устаревших компьютерных блоков питания (БП) в зарядные устройства и лабораторные источники питания (ИП). Но все они касаются тех БП, в которых узел управления построен на базе микросхемы ШИМ-контроллера типа TL494, или его аналогов DBL494, KIA494, КА7500, КР114ЕУ4. Нами было переделано больше десятка таких БП. Хорошо показали себя зарядные устройства, изготовленные по схеме, описанной М. Шумиловым в статье «Компьютерный блок питания – зарядное устройство», (Радио — 2009, № 1) с добавлением стрелочного измерительного прибора для измерения выходного напряжения и зарядного тока. На основе этой же схеме изготавливались первые лабораторные источники питания, пока не попала в поле зрения «Универсальная плата управления лабораторными блоками питания» (Радио-ежегодник — 2011, № 5, стр. 53). По этой схеме можно было изготавливать гораздо более функциональные источники питания. Специально для этой схемы регулятора был разработан цифровой ампервольтметр, описанный в статье «Простой встраиваемый ампервольтметр на PIC16F676».

Но все хорошее когда-нибудь кончается и в последнее время все чаще стали попадаться компьютерные БП, в которых были установлены другие ШИМ-контроллеры, в частности, DR-B2002, DR-B2003, SG6105. Возник вопрос: как можно использовать эти БП для изготовления лабораторных ИП? Поиск схем и общение с радиолюбителями не позволил продвинуться в этом направлении, хотя и удалось найти краткое описание и схему включения таких ШИМ-контроллеров в статье «ШИМ-контроллеры SG6105 и DR-B2002 в компьютерных ИП». Из описания стало понятно, что эти контроллеры гораздо сложнее TL494 и пытаться управлять ими извне для регулирования выходного напряжения вряд ли возможно. Поэтому от этой идеи было решено отказаться. Однако при изучении схем «новых» БП было отмечено, что построение схемы управления двухтактным полумостовым преобразователем выполнено аналогично «старым» БП – на двух транзисторах и разделительном трансформаторе.

Была предпринята попытка вместо микросхемы DR-B2002 установить TL494 со своей стандартной обвязкой, подключив коллекторы выходных транзисторов TL494 к базам транзисторов схемы управления преобразователем БП. В качестве обвязки TL494 для обеспечения регулирования выходного напряжения была выбрана неоднократно проверенная выше упомянутая схема М. Шумилова. Такое включение ШИМ-контроллера позволяет отключить все имеющиеся в БП блокировки и схемы защиты, к тому же эта схема очень проста.

Попытка замены ШИМ-контроллера увенчалась успехом – БП заработал, регулировка выходного напряжения и ограничение тока также работали, как и в переделанных БП «старого» образца.

Описание схемы устройства

Конструкция и детали

Блок ШИМ-регулятора собран на печатной плате из односторонне фольгированного стеклотекстолита размером 40х45 мм. Чертеж печатной платы и схема расположения элементов показаны на рисунке. Чертеж показан со стороны установки компонентов.

Плата рассчитана на установку выводных компонентов. Особых требований к ним не предъявляется. Транзистор VT1 может быть заменен на любой другой аналогичный по параметрам биполярный транзистор прямой проводимости. На плате предусмотрена установка подстроечных резисторов R5 разных типоразмеров.

Монтаж и наладка

Крепление платы осуществляется в удобном месте одним винтом поближе к месту установки ШИМ-контроллера. Автор нашел удобным крепить плату к одному из радиаторов БП. Выходы PWM1, PWM2 запаивают прямо в соответствующие отверстия ранее установленного ШИМ-контроллера — выводы которых идут к базам транзисторов управления преобразователем (выводы 7 и 8 микросхемы DR-B2002). Подключения вывода Vcc осуществляется к точке, в которой имеется выходное напряжение схемы дежурного питания, значение которого может находиться в пределах 13…24В.

Регулировка выходного напряжения ИП осуществляется потенциометром R5, минимальное выходное напряжение зависит от номинала резистора R7. Резистором R8 можно осуществить ограничение максимального выходного напряжения. Значение максимального выходного тока регулируется подбором номинала резистора R3 – чем меньше его сопротивление, тем больше будет максимальный выходной ток БП.

Порядок переделки компьютерного БП в лабораторный ИП

Работа по переделке БП связана с работой в цепях с высоким напряжением, поэтому настоятельно рекомендуется подключать БП к сети через разделительный трансформатор мощностью не менее 100Вт. Кроме того, для исключения выхода из строя ключевых транзисторов в процессе наладки ИП, подключать его к сети следует через «предохранительную» лампу накаливания на 220В мощностью 100Вт. Ее можно подпаять к БП вместо сетевого предохранителя.

Прежде, чем приступить к переделке компьютерного БП желательно убедиться в его исправности. Перед включением к выходным цепям +5В и +12В следует подключить автомобильные лампочки на 12В мощностью до 25 Вт. Затем подключить БП к сети и соединить вывод PS-ON (обычно зеленого цвета) с общим проводом. В случае исправности БП «предохранительная» лампа кратковременно вспыхнет, БП заработает и загорятся лампы в нагрузке +5В, +12В. Если после включения «предохранительная» лампа загорится в полный накал, возможен пробой силовых транзисторов, диодов выпрямительного моста и т. д.

Далее следует найти на плате БП точку, в которой имеется выходное напряжение схемы дежурного питания. Его значение может находиться в пределах 13…24В. Из этой точки в дальнейшем будем брать питание для блока ШИМ-регулятора и вентилятора охлаждения.

Затем следует выпаять штатный ШИМ-контроллер и подключить к плате БП блок ШИМ-регулятора согласно схемы (рис. 1). Вход P_IN подключают к 12-вольтовому выходу БП. Теперь необходимо проверить работу регулятора. Для этого следует подключить к выходу P_OUT нагрузку в виде автомобильной лампочки, движок резистора R5 вывести до отказа влево (в положение минимального сопротивления) и подключить БП к сети (опять же через «предохранительную» лампу). Если лампа нагрузки загорится, следует убедиться в исправности схемы регулировки. Для этого нужно осторожно повернуть движок резистора R5 вправо, при этом желательно контролировать выходное напряжение вольтметром, чтобы не сжечь нагрузочную лампу. Если выходное напряжение регулируется, значит блок ШИМ-регулятора работает и можно продолжать модернизацию БП.

Выпаиваем все провода нагрузки БП, оставив по одному проводу в цепях +12 В и общий для подключения блока ШИМ-регулятора. Выпаиваем: диоды (диодные сборки) в цепях +3,3 В, +5 В; диоды выпрямителей -5 В, -12 В; все конденсаторы фильтров. Электролитические конденсаторы фильтра цепи +12 В следует заменить на конденсаторы аналогичной емкости, но с допустимым напряжением 25 В или более в зависимости от предполагаемого максимального выходного напряжения изготавливаемого лабораторного ИП. Далее следует установить нагрузочный резистор, показанный на схеме рис. 1 как R2, необходимый для обеспечения устойчивой работы ИП без внешней нагрузки. Мощность нагрузки должна быть около 1 Вт. Сопротивление резистора R2 можно рассчитать исходя из максимального выходного напряжения ИП. В самом простом случае подойдет 2-х ваттный резистор сопротивлением 200-300 Ом.

Далее можно выпаять элементы обвязки старого ШИМ-контроллера и прочие радиодетали из неиспользуемых выходных цепей БП. Чтобы не выпаять случайно что-нибудь «полезное» рекомендуется отпаивать детали не полностью, а по одному выводу, и лишь убедившись в работоспособности ИП, удалять деталь полностью. По поводу дросселя фильтра L1, автор обычно ничего с ним не делает и использует штатную обмотку цепи +12 В. Это связано с тем, что в целях безопасности максимальный выходной ток лабораторного ИП обычно ограничивается на уровне, не превышающем паспортный для цепи +12 В БП.

После очистки монтажа рекомендуется увеличить емкость конденсатора фильтра С1 источника питания дежурного режима, заменив его на конденсатор номиналом 50 В/100 мкФ. Кроме того, если установленный в схеме диод VD1 маломощный (в стеклянном корпусе), его рекомендуется заменить на более мощный, выпаянный из выпрямителя цепи -5 В или -12 В. Также следует подобрать сопротивление резистора R1 для комфортной работы вентилятора охлаждения М1.

Опыт переделки компьютерных БП показал, что с применением различных схем управления ШИМ-контроллером, максимальное выходное напряжение ИП будет находиться в пределах 21…22 В. Этого более чем достаточно для изготовления зарядных устройств для автомобильных аккумуляторов, однако для лабораторного источника питания все же маловато. Для получения повышенного выходного напряжения многие радиолюбители предлагают использовать мостовую схему выпрямления выходного напряжения, но это связано с установкой дополнительных диодов, стоимость которых довольно высока. Я считаю этот метод нерациональным и используею другой способ повышения выходного напряжения ИП – модернизацию силового трансформатора.

Есть два основных способа модернизации силового трансформатора ИП. Первый способ удобен тем, что для его реализации не требуется разборка трансформатора. Он основан на том факте, что обычно вторичная обмотка мотается в несколько проводов и есть возможность ее «расслоить». Схематично вторичные обмотки силового трансформатора показаны на рис. а). Это наиболее часто встречающаяся схема. Обычно 5-вольтовая обмотка имеет по 3 витка, намотанных в 3-4 провода (обмотки «3,4»-«общ.» и «общ.»-«5,6»), а 12-вольтовая – дополнительно по 4 витка в один провод (обмотки «1»-«3,4» и «5,6»-«2»).

Для этого трансформатор выпаивают, аккуратно распаивают отводы 5-вольтовой обмотки и расплетают «косичку» общего провода. Задача состоит в том, чтобы разъединить параллельно включенные 5-вольтовые обмотки и включить все или часть из них последовательно, как это показано на схеме рис. б).

Выделить обмотки не составляет труда, но вот правильно сфазировать их довольно трудно. Автор использует для этой цели низкочастотный генератор синусоидального сигнала и осциллограф или милливольтметр переменного тока. Подключив выход генератора, настроенного на частоту 30…35 кГц, к первичной обмотке трансформатора, с помощью осциллографа или милливольтметра контролируют напряжение на вторичных обмотках. Комбинируя подключение 5-вольтовых обмоток добиваются увеличения выходного напряжения по сравнению с исходным на требуемую величину. Таким способом можно добиться увеличения выходного напряжения БП до 30…40 В.

Второй способ модернизации силового трансформатора – это его перемотка. Это единственный способ получить выходное напряжение ИП более 40 В. Самой трудной задачей здесь является разъединение ферритового сердечника. Автор взял на вооружение способ вываривания трансформатора в воде в течение 30-40 минут. Но прежде, чем вываривать трансформатор следует хорошо продумать способ разъединения сердечника, учитывая тот факт, что после вываривания он будет очень горячим, к тому же горячий феррит становится очень хрупким. Для этого предлагается вырезать из жести две клиновидные полоски, которые затем можно будет вставить в зазор между сердечником и каркасом, и с их помощью разъединить половинки сердечника. В случае разламывания или откалывания частей ферритового сердечника особо расстраиваться не стоит, так как его успешно можно склеить циакриланом (т. н. «суперклеем»).

После освобождения катушки трансформатора необходимо смотать вторичную обмотку. У импульсных трансформаторов есть одна неприятная особенность — первичная обмотка намотана в два слоя. Сначала на каркас намотана первая часть первичной обмотки, затем экран, затем все вторичные обмотки, снова экран и вторая часть первичной обмотки. Поэтому нужно аккуратно смотать вторую часть первичной обмотки, при этом обязательно запомнив ее подключение и направление намотки. Затем снять экран, выполненный в виде слоя медной фольги с припаянным проводом, ведущим к выводу трансформатора, который предварительно следует отпаять. И, наконец, смотать вторичные обмотки до следующего экрана. Теперь обязательно нужно хорошо просушить катушку струей горячего воздуха для испарения воды, проникшей в обмотку во время вываривания.

Количество витков вторичной обмотки будет зависеть от требуемого максимального выходного напряжения ИП из расчета примерно 0,33 витка/В (то есть 1 виток — 3 В). Например, автор намотал 2х18 витков провода ПЭВ-0,8 и получил максимальное выходное напряжение ИП около 53 В. Сечение провода будет зависеть от требования к максимальному выходному току ИП, а также от габаритов каркаса трансформатора.

Вторичную обмотку мотают в 2 провода. Конец одного провод сразу запаивают на первый вывод каркаса, а второй оставляют с запасом 5 см для формирования «косички» нулевого вывода. Закончив намотку, запаивают конец второго провода на второй вывод каркаса и формируют «косичку» таким образом, чтобы количество витков обеих полуобмоток обязательно было одинаковым.

Теперь следует восстановить экран, намотать смотанную ранее вторую часть первичной обмотки трансформатора, соблюдая исходное подключение и направление намотки, и собрать магнитопровод трансформатора. Если разводка вторичной обмотки запаяна правильно (на выводы 12-вольтовой обмотки), то можно впаять трансформатор в плату БП и проверить его работоспособность.

Введение

Большой плюс компьютерного блока питания состоит в том, что он стабильно работает при изменении сетевого напряжения от 180 до 250 В, причем некоторые экземпляры работают и при большем разбросе напряжений. От блока мощностью 200 Вт реально получить полезный ток нагрузки 15-17 А, а в импульсном (кратковременном режиме повышенной нагрузки) – вплоть до 22 А. Компьютерные БП типового ряда, соответствующие стандарту ATX12 и предназначенные для использования в ПК на базе процессоров Intel Pentium IV и ниже, чаще всего выполнены на микросхемах 2003, AT2005Z, SG6105, KA3511, LPG-899, DR-B2002, IW1688. Подобные устройства содержат меньшее количество дискретных элементов на плате, имеют меньшую стоимость, чем построенные на основе популярного ШИМ – микросхемы TL494. В данном материале мы рассмотрим несколько подходов по ремонту вышеупомянутых блоков питания и дадим несколько практических советов.

Блоки и схемы

Компьютерный блок питания можно применять не только по прямому назначению, но и в виде источников для широкого спектра электронных конструкций для дома, требующих для своей работы постоянного напряжения 5 и 12 В. Путем незначительной переделки, описанной ниже, сделать это совсем не трудно. А приобрести БП ПК можно отдельно как в магазине, так и бывший в употреблении на любом радиорынке (если не хватает собственных «закромов») за символическую цену.

Этим блок питания компьютера выгодно отличается в перспективе применения в домашней лаборатории радиомастера от всех других промышленных вариантов. Для примера мы возьмем блоки JNC моделей LC-B250ATX и LC-B350ATX, а также InWin IP-P300AQ2, IP-P350AQ2, IP-P400AQ2, IP-P350GJ20, которые используют в своей конструкции микросхему 2003 IFF LFS 0237E. В некоторых других встречаются BAZ7822041H или 2003 BAY05370332H. Все эти микросхемы конструктивно отличаются друг от друга назначением выводов и «начинкой», но принцип работы у них одинаковый. Так микросхема 2003 IFF LFS 0237E (далее будем называть ее 2003) – это ШИМ (широтно-импульсный модулятор сигналов) в корпусе DIP-16. До недавнего времени большинство бюджетных компьютерных БП производства китайских фирм выполнялось на основе микросхемы ШИМ-контроллера TL494 фирмы Texas Instruments (http://www.ti.com) или ее аналогов других фирм-производителей, таких как Motorola, Fairchild, Samsung и прочих. Эта же микросхема имеют отечественный аналог КР1114ЕУ4 и КР1114ЕУ3 (цоколевка выводов в отечественном исполнении различная). Изучим для начала методы диагностики и тестирования неполадок

Как изменить входное напряжение

Сигнал, уровень которого пропорционален мощности нагрузки преобразователя, снимается со средней точки первичной обмотки разделительного трансформатора Т3, далее через диод D11 и резистор R35 поступает на корректирующую цепочку R42R43R65C33, после которой подается на вывод PR микросхемы. Поэтому в данной схеме устанавливать приоритет защиты по какому-либо одному напряжению затруднительно. Здесь пришлось бы сильно изменить схему, что нерентабельно по затратам времени.

В других схемах компьютерных БП, к примеру, в LPK-2-4 (300 Вт), напряжение с катода сдвоенного диода Шоттки типа S30D40C, выпрямителя выходного напряжения +5 В, поступает на вход UVac микросхемы U2 и используется для контроля входного питающим переменным напряжением БП. Регулируемое выходное напряжение бывает полезно для домашней лаборатории. К примеру, для питания от компьютерного БП электронных устройств для легкового автомобиля, где напряжение в бортовой сети (при работающем двигателе) 12.5-14 В. Чем больше уровень напряжения, тем больше полезная мощность электронного устройства. Особенно это важно для радиостанций. Для примера рассмотрим адаптацию популярной радиостанции (трансивера) к нашему БП LC-B250ATX – повышение напряжения по шине 12 В до 13.5-13.8 В.

Припаиваем подстроечный резистор, к примеру, СП5-28В (желательно с индексом «В» в обозначении – признак линейности характеристики) сопротивлением 18-22 кОм между выводом 6 микросхемы U2 и шиной +12 В. На выход +12 В устанавливаем автомобильную лампочку 5-12 Вт в качестве эквивалента нагрузки (можно подключить и постоянный резистор 5-10 Ом с мощностью рассеяния от 5 Вт и выше). После рассмотренной незначительной доработки БП вентилятор можно не подключать и саму плату в корпус не вставлять. Запускаем БП, к шине +12 В подключаем вольтметр и контролируем напряжение. Вращением движка переменного резистора устанавливаем выходное напряжение 13.8 В.

Выключаем питание и замеряем омметром получившееся сопротивление подстроечного резистора. Теперь между шиной +12 В и выводом 6 микросхемы U2 припаиваем постоянный резистор соответствующего сопротивления. Таким же образом можно скорректировать напряжение по выходу +5 В. Сам же ограничительный резистор подключают к выводу 4 микросхемы 2003 IFF LFS 0237E.

Принцип работы схемы 2003


Напряжение питания Vcc (вывод 1) на микросхему U2 поступает от источника дежурного напряжения +5V_SB. На отрицательный вход усилителя ошибки IN микросхемы (вывод 4) поступает сумма выходных напряжений ИП +3.3 В, +5 В и +12 В. Сумматор выполнен соответственно на резисторах R57, R60, R62. Управляемый стабилитрон микросхемы U2 используется в схеме оптронной обратной связи в источнике дежурного напряжения +5V_SB, второй стабилитрон используется в схеме стабилизации выходного напряжения +3.3V. Схема управления выходным полумостовым преобразователем БП выполнена по двухтактной схеме на транзисторах Q1, Q2 (обозначение на печатной плате) типа Е13009 и трансформаторе Т3 типа EL33-ASH по стандартной схеме, применяемой в компьютерных блоках.

Взаимозаменяемые транзисторы – MJE13005, MJE13007, Motorola MJE13009 выпускают многие зарубежные фирмы-производители, поэтому вместо аббревиатуры MJE в маркировке транзистора могут присутствовать символы ST, PHE, KSE, HA, MJF и другие. Для питания схемы используется отдельная обмотка трансформатора дежурного режима Т2 типа EE-19N. Чем большую мощность имеет трансформатор Т3 (чем толще провод использован в обмотках), тем больше выходной ток самого блока питания. В некоторых печатных платах, которые мне приходилось ремонтировать, «раскачивающие» транзисторы имели наименование 2SC945 и Н945Р, 2SC3447, 2SC3451, 2SC3457, 2SC3460(61), 2SC3866, 2SC4706, 2SC4744, BUT11A, BUT12A, BUT18A, BUV46, MJE13005, а обозначение на плате было указано как Q5 и Q6. И при этом на плате было всего 3 транзистора! Сама же микросхема 2003 IFF LFS 0237E была обозначена как U2, и при этом на плате нет ни одного обозначения U1 или U3. Однако оставим эту странность в обозначении элементов на печатных плата на совести китайского производителя. Сами обозначения не принципиальны. Главное отличие рассматриваемых блоков питания типа LC-B250ATX – наличие на плате одной микросхемы типа 2003 IFF LFS 0237E и внешний вид платы.

В микросхеме применен управляемый стабилитрон (выводы 10, 11), аналогичный TL431. Он используется для стабилизации цепи питания 3.3 В. Отмечу, что в моей практике ремонта блоков питания вышеупомянутая схема – самое слабое место в компьютерном БП. Однако прежде чем менять микросхему 2003, рекомендую сначала проверить саму цепь.

Диагностика ATX блоков питания на микросхеме 2003

Если блок питания не запускается, то нужно в первую очередь снять крышку корпуса и проверить оксидные конденсаторы и другие элементы на печатной плате внешним осмотром. Оксидные (электролитические) конденсаторы явно подлежат замене, если их корпуса вздуты и если они имеют сопротивление менее 100 кОм. Определяется это «прозвонкой» омметром, к примеру, моделью М830 в соответствующем режиме измерений. Одна из часто встречающихся неисправностей БП на основе микросхемы 2003 – отсутствие стабильного запуска. Запуск производится кнопкой Power на передней панели системного блока, при этом контакты кнопки замыкаются, причем вывод 9 микросхемы U2 (2003 и аналогичной) соединяется с «корпусом» общим проводом.

В «косе» это, как правило, зеленый и черный провода. Для того чтобы быстро восстановить работоспособность устройства, достаточно отсоединить от печатной платы вывод 9 микросхемы U2. Теперь БП должен включаться стабильно путем нажатия на клавишу задней панели системного блока. Этот метод хорош тем, что позволяет и далее без ремонта, который не всегда выгоден материально, использовать морально устаревший компьютерный БП, или тогда, когда блок используется не по назначению, к примеру, для питания электронных конструкций в домашней радиолюбительской лаборатории.

Если перед включением питания удерживать нажатой кнопку «reset» и отпускать через несколько секунд, то системой будет имитироваться увеличение задержки сигнала Power Good. Так можно проверить причины неисправности потери данных в СМОS (ведь не всегда «виновата» батарейка). Если данные, к примеру, время, периодически теряются, то следует проверить задержку при отключении. Для этого «reset» нажимается перед отключением питания и удерживается еще несколько секунд, имитируя ускорение снятия сигнала Power Good. Если при таком выключении данные сохраняются, дело в большой задержке при выключении.

Увеличение мощности

На печатной плате установлены два высоковольтных электролитических конденсатора емкостью 220 мкФ. Для улучшения фильтрации, ослабления импульсных помех и в итоге для обеспечения устойчивости компьютерного БП к максимальным нагрузкам эти конденсаторы заменяют на аналоги большей емкости, к примеру, 680 мкФ на рабочее напряжение 350 В. Пробой, потеря емкости или обрыв оксидного конденсатора в схеме БП уменьшает или сводит на нет фильтрацию питающего напряжения. Напряжение на обкладках оксидного конденсатора в устройствах БП порядка 200 В, а емкость находится в диапазоне 200-400 мкФ. Китайские производители (VITO, Feron и другие) устанавливает, как правило, самые дешевые пленочные конденсаторы, не сильно заботясь ни о температурном режиме, ни о надежности устройства. Оксидный конденсатор в данном случае применяется в устройстве БП в качестве высоковольтного фильтра питания, поэтому должен быть высокотемпературным. Несмотря на рабочее напряжение, указанное на таком конденсаторе 250-400 В (с запасом, как и положено), он все равно «сдает» по причине своего низкого качества.

Для замены рекомендую оксидные конденсаторы фирм КХ, CapXon, а именно HCY CD11GH и ASH-ELB043 – это высоковольтные оксидные конденсаторы, специально разработанные для применения в электронных устройствах питания. Даже если внешний осмотр не позволил найти неисправные конденсаторы, мы следующим шагом все равно выпаиваем кондеры на шине +12 В и вместо них устанавливаем аналоги большей емкости: 4700 мкФ на рабочее напряжение 25 В. Сам участок печатной платы БП ПК с оксидными конденсаторами по питанию, подлежащими замене, представлен на рисунке 4. Вентилятор мы аккуратно снимаем и устанавливаем наоборот – так, чтобы он дул внутрь, а не наружу. Такая модернизация улучшает охлаждение радиоэлементов и в итоге повышает надежность устройства при длительной эксплуатации. Капля машинного или бытового масла в механических деталях вентилятора (между крыльчаткой и осью электродвигателя) не помешает. По моему опыту, можно сказать, что значительно уменьшается шум нагнетателя при работе.

Замена диодных сборок на более мощные

На печатной плате блока питания диодные сборки установлены на радиаторах. В центре установлена сборка UF1002Г (по питанию 12 В), справа на этом радиаторе установлена диодная сборка D92-02, обеспечивающая питание –5 В. Если такое напряжение в домашней лаборатории не нужно, данную сборку типа можно безвозвратно выпаять. В целом D92-02 рассчитана на ток до 20 А и напряжение 200 В (в импульсном кратковременном режиме в разы больший), поэтому она вполне подходит для установки вместо UF1002Г (ток до 10 А).

Диодную сборку Fuji D92-02 можно заменить, например, на S16C40C, S15D40C или S30D40C. Все они, в данном случае, для замены подходят. У диодов с барьером Шоттки меньше падение напряжения и, соответственно, нагрев.

Особенность замены в том, что «штатная» диодная сборка по выходу (шина 12 В) UF1002Г имеет полностью пластмассовый корпус из композита, поэтому крепится к общему радиатору или проводящей ток пластине с помощью термопасты. А диодная сборка Fuji D92-02 (и аналогичные) имеет металлическую пластину в корпусе, что предполагает особую осторожность при ее установке на радиатор, то есть через обязательную изолирующую прокладку и диэлектрическую шайбу под винт. Причина выхода из строя диодных сборок UF1002Г состоит в выбросах напряжения на диодах с амплитудой, увеличивающейся при работе БП под нагрузкой. При малейшем превышении допустимого обратного напряжения диоды Шотки получают необратимый пробой, поэтому рекомендуемая замена на более мощные диодные сборки в случае перспективного использования БП с мощной нагрузкой вполне оправдана. Наконец, есть один совет, который позволит проверить работоспособность защитного механизма. Закоротим тонким проводом, к примеру, МГТФ-0.8, шину +12 В на корпус (общий провод). Так должно полностью пропасть напряжение. Чтобы оно восстановилось – выключим БП на пару минут для разряда высоковольтных конденсаторов, снимем шунт (перемычку), удалим эквивалент нагрузки и включим БП снова; он заработает в штатном режиме. Переделанные таким образом компьютерные блоки питания работают годами в режиме 24 часа с полной нагрузкой.

Вывод питания

Положим, необходимо использовать блок питания в бытовых целях и требуется вывести из блока две клеммы. Я сделал это с помощью двух (одинаковой длины) отрезков ненужного провода сетевого питания компьютерного БП и подключил к клеммнику все три предварительно пропаянные жилы в каждом проводнике. Для уменьшения потери мощности в проводниках, идущих от БП к нагрузке, подойдет и другой электрический кабель с медной (меньше потери) многожильный кабель – к примеру, ПВСН 2×2.5, где 2.5 – это есть сечение одного проводника. Также можно не выводить провода на клеммник, а выход 12 В подключить в корпусе БП ПК к неиспользуемому разъему сетевого кабеля монитора ПК.
Назначение выводов микросхемы 2003
PSon 2 — Вход сигнала PS_ON, управляющего работой БП: PSon=0, БП включен, присутствуют все выходные напряжения; PSon=1, БП выключен, присутствует только дежурное напряжение +5V_SB
V33-3 — Вход напряжения +3.3 В
V5-4 — Вход напряжения +5 В
V12-6 — Вход напряжения +12 В
OP1/OP2-8/7 — Выходы управления двухтактным полумостовым преобразователем БП
PG-9 — Тестирование. Выход с открытым коллектором сигнала PG (Power Good): PG=0, одно или несколько выходных напряжений не соответствуют норме; PG=1, выходные напряжения БП находятся в заданных пределах
Vref1-11 — Управляющий электрод управляемого стабилитрона
Fb1-10 — Катод управляемого стабилитрона
GND-12 — Общий провод
COMP-13 — Выход усилителя ошибки и отрицательный вход компаратора ШИМ
IN-14 — Отрицательный вход усилителя ошибки
SS-15 — Положительный вход усилителя ошибки, подключен к внутреннему источнику Uref=2.5 В. Вывод используется для организации «мягкого старта» преобразователя
Ri-16 — Вход для подключения внешнего резистора 75 кОм
Vcc-1 — Напряжение питания, подключается к дежурному источнику +5V_SB
PR-5 — Вход для организации защиты БП

Рассказать в:

В статье представлена простая конструкция ШИМ-регулятора, с помощью которой можно легко переделать компьютерный блок питания, собранный на контроллере, отличном от популярного tl494, в частности, dr-b2002, dr-b2003, sg6105 и прочих, в лабораторный с регулируемым выходным напряжением и ограничением тока в нагрузке. Также здесь я поделюсь опытом переделки компьютерных БП и опишу испытанные способы увеличения их максимального выходного напряжения.

В радиолюбительской литературе имеется множество схем переделки устаревших компьютерных блоков питания (БП) в зарядные устройства и лабораторные источники питания (ИП). Но все они касаются тех БП, в которых узел управления построен на базе микросхемы ШИМ-контроллера типа tl494, или его аналогов dbl494, kia494, КА7500, КР114ЕУ4. Нами было переделано больше десятка таких БП. Хорошо показали себя зарядные устройства, изготовленные по схеме, описанной М. Шумиловым в статье «Простой встраиваемый ампервольтметр на pic16f676».

Но все хорошее когда-нибудь кончается и в последнее время все чаще стали попадаться компьютерные БП, в которых были установлены другие ШИМ-контроллеры, в частности, dr-b2002, dr-b2003, sg6105. Возник вопрос: как можно использовать эти БП для изготовления лабораторных ИП? Поиск схем и общение с радиолюбителями не позволил продвинуться в этом направлении, хотя и удалось найти краткое описание и схему включения таких ШИМ-контроллеров в статье«ШИМ-контроллеры sg6105 и dr-b2002 в компьютерных ИП».Из описания стало понятно, что эти контроллеры гораздо сложнее tl494 и пытаться управлять ими извне для регулирования выходного напряжения вряд ли возможно. Поэтому от этой идеи было решено отказаться. Однако при изучении схем «новых» БП было отмечено, что построение схемы управления двухтактным полумостовым преобразователем выполнено аналогично «старым» БП — на двух транзисторах и разделительном трансформаторе.

Была предпринята попытка вместо микросхемы dr-b2002 установить tl494 со своей стандартной обвязкой, подключив коллекторы выходных транзисторов tl494 к базам транзисторов схемы управления преобразователем БП. В качестве обвязки tl494 для обеспечения регулирования выходного напряжения была выбрана неоднократно проверенная выше упомянутая схема М. Шумилова. Такое включение ШИМ-контроллера позволяет отключить все имеющиеся в БП блокировки и схемы защиты, к тому же эта схема очень проста.

Попытка замены ШИМ-контроллера увенчалась успехом — БП заработал, регулировка выходного напряжения и ограничение тока также работали, как и в переделанных БП «старого» образца.

Описание схемы устройства

Конструкция и детали

Блок ШИМ-регулятора собран на печатной плате из односторонне фольгированного стеклотекстолита размером 40х45 мм. Чертеж печатной платы и схема расположения элементов показаны на рисунке. Чертеж показан со стороны установки компонентов.

Плата рассчитана на установку выводных компонентов. Особых требований к ним не предъявляется. Транзистор vt1 может быть заменен на любой другой аналогичный по параметрам биполярный транзистор прямой проводимости. На плате предусмотрена установка подстроечных резисторов r5 разных типоразмеров.

Монтаж и наладка

Крепление платы осуществляется в удобном месте одним винтом поближе к месту установки ШИМ-контроллера. Автор нашел удобным крепить плату к одному из радиаторов БП. Выходы pwm1, pwm2 запаивают прямо в соответствующие отверстия ранее установленного ШИМ-контроллера — выводы которых идут к базам транзисторов управления преобразователем (выводы 7 и 8 микросхемы dr-b2002). Подключения вывода vcc осуществляется к точке, в которой имеется выходное напряжение схемы дежурного питания, значение которого может находиться в пределах 13…24В.

Регулировка выходного напряжения ИП осуществляется потенциометром r5, минимальное выходное напряжение зависит от номинала резистора r7. Резистором r8 можно осуществить ограничение максимального выходного напряжения. Значение максимального выходного тока регулируется подбором номинала резистора r3 — чем меньше его сопротивление, тем больше будет максимальный выходной ток БП.

Порядок переделки компьютерного БП в лабораторный ИП

Работа по переделке БП связана с работой в цепях с высоким напряжением, поэтому настоятельно рекомендуется подключать БП к сети через разделительный трансформатор мощностью не менее 100Вт. Кроме того, для исключения выхода из строя ключевых транзисторов в процессе наладки ИП, подключать его к сети следует через «предохранительную» лампу накаливания на 220В мощностью 100Вт. Ее можно подпаять к БП вместо сетевого предохранителя.

Прежде, чем приступить к переделке компьютерного БП желательно убедиться в его исправности. Перед включением к выходным цепям +5В и +12В следует подключить автомобильные лампочки на 12В мощностью до 25 Вт. Затем подключить БП к сети и соединить вывод ps-on (обычно зеленого цвета) с общим проводом. В случае исправности БП «предохранительная» лампа кратковременно вспыхнет, БП заработает и загорятся лампы в нагрузке +5В, +12В. Если после включения «предохранительная» лампа загорится в полный накал, возможен пробой силовых транзисторов, диодов выпрямительного моста и т. д.

Далее следует найти на плате БП точку, в которой имеется выходное напряжение схемы дежурного питания. Его значение может находиться в пределах 13…24В. Из этой точки в дальнейшем будем брать питание для блока ШИМ-регулятора и вентилятора охлаждения.

Затем следует выпаять штатный ШИМ-контроллер и подключить к плате БП блок ШИМ-регулятора согласно схемы (рис. 1). Вход p_in подключают к 12-вольтовому выходу БП. Теперь необходимо проверить работу регулятора. Для этого следует подключить к выходу p_out нагрузку в виде автомобильной лампочки, движок резистора r5 вывести до отказа влево (в положение минимального сопротивления) и подключить БП к сети (опять же через «предохранительную» лампу). Если лампа нагрузки загорится, следует убедиться в исправности схемы регулировки. Для этого нужно осторожно повернуть движок резистора r5 вправо, при этом желательно контролировать выходное напряжение вольтметром, чтобы не сжечь нагрузочную лампу. Если выходное напряжение регулируется, значит блок ШИМ-регулятора работает и можно продолжать модернизацию БП.

Выпаиваем все провода нагрузки БП, оставив по одному проводу в цепях +12 В и общий для подключения блока ШИМ-регулятора. Выпаиваем: диоды (диодные сборки) в цепях +3,3 В, +5 В; диоды выпрямителей -5 В, -12 В; все конденсаторы фильтров. Электролитические конденсаторы фильтра цепи +12 В следует заменить на конденсаторы аналогичной емкости, но с допустимым напряжением 25 В или более в зависимости от предполагаемого максимального выходного напряжения изготавливаемого лабораторного ИП. Далее следует установить нагрузочный резистор, показанный на схеме рис. 1 как r2, необходимый для обеспечения устойчивой работы ИП без внешней нагрузки. Мощность нагрузки должна быть около 1 Вт. Сопротивление резистора r2 можно рассчитать исходя из максимального выходного напряжения ИП. В самом простом случае подойдет 2-х ваттный резистор сопротивлением 200-300 Ом.

Далее можно выпаять элементы обвязки старого ШИМ-контроллера и прочие радиодетали из неиспользуемых выходных цепей БП. Чтобы не выпаять случайно что-нибудь «полезное» рекомендуется отпаивать детали не полностью, а по одному выводу, и лишь убедившись в работоспособности ИП, удалять деталь полностью. По поводу дросселя фильтра l1, автор обычно ничего с ним не делает и использует штатную обмотку цепи +12 В. Это связано с тем, что в целях безопасности максимальный выходной ток лабораторного ИП обычно ограничивается на уровне, не превышающем паспортный для цепи +12 В БП.

После очистки монтажа рекомендуется увеличить емкость конденсатора фильтра С1 источника питания дежурного режима, заменив его на конденсатор номиналом 50 В/100 мкФ. Кроме того, если установленный в схеме диод vd1 маломощный (в стеклянном корпусе), его рекомендуется заменить на более мощный, выпаянный из выпрямителя цепи -5 В или -12 В. Также следует подобрать сопротивление резистора r1 для комфортной работы вентилятора охлаждения М1.

Опыт переделки компьютерных БП показал, что с применением различных схем управления ШИМ-контроллером, максимальное выходное напряжение ИП будет находиться в пределах 21…22 В. Этого более чем достаточно для изготовления зарядных устройств для автомобильных аккумуляторов, однако для лабораторного источника питания все же маловато. Для получения повышенного выходного напряжения многие радиолюбители предлагают использовать мостовую схему выпрямления выходного напряжения, но это связано с установкой дополнительных диодов, стоимость которых довольно высока. Я считаю этот метод нерациональным и используею другой способ повышения выходного напряжения ИП — модернизацию силового трансформатора.

Есть два основных способа модернизации силового трансформатора ИП. Первый способ удобен тем, что для его реализации не требуется разборка трансформатора. Он основан на том факте, что обычно вторичная обмотка мотается в несколько проводов и есть возможность ее «расслоить». Схематично вторичные обмотки силового трансформатора показаны на рис. а). Это наиболее часто встречающаяся схема. Обычно 5-вольтовая обмотка имеет по 3 витка, намотанных в 3-4 провода (обмотки «3,4»-«общ.» и «общ.»-«5,6»), а 12-вольтовая — дополнительно по 4 витка в один провод (обмотки «1»-«3,4» и «5,6»-«2»).

Для этого трансформатор выпаивают, аккуратно распаивают отводы 5-вольтовой обмотки и расплетают «косичку» общего провода. Задача состоит в том, чтобы разъединить параллельно включенные 5-вольтовые обмотки и включить все или часть из них последовательно, как это показано на схеме рис. б).

Выделить обмотки не составляет труда, но вот правильно сфазировать их довольно трудно. Автор использует для этой цели низкочастотный генератор синусоидального сигнала и осциллограф или милливольтметр переменного тока. Подключив выход генератора, настроенного на частоту 30…35 кГц, к первичной обмотке трансформатора, с помощью осциллографа или милливольтметра контролируют напряжение на вторичных обмотках. Комбинируя подключение 5-вольтовых обмоток добиваются увеличения выходного напряжения по сравнению с исходным на требуемую величину. Таким способом можно добиться увеличения выходного напряжения БП до 30…40 В.

Второй способ модернизации силового трансформатора — это его перемотка. Это единственный способ получить выходное напряжение ИП более 40 В. Самой трудной задачей здесь является разъединение ферритового сердечника. Автор взял на вооружение способ вываривания трансформатора в воде в течение 30-40 минут. Но прежде, чем вываривать трансформатор следует хорошо продумать способ разъединения сердечника, учитывая тот факт, что после вываривания он будет очень горячим, к тому же горячий феррит становится очень хрупким. Для этого предлагается вырезать из жести две клиновидные полоски, которые затем можно будет вставить в зазор между сердечником и каркасом, и с их помощью разъединить половинки сердечника. В случае разламывания или откалывания частей ферритового сердечника особо расстраиваться не стоит, так как его успешно можно склеить циакриланом (т. н. «суперклеем»).

После освобождения катушки трансформатора необходимо смотать вторичную обмотку. У импульсных трансформаторов есть одна неприятная особенность — первичная обмотка намотана в два слоя. Сначала на каркас намотана первая часть первичной обмотки, затем экран, затем все вторичные обмотки, снова экран и вторая часть первичной обмотки. Поэтому нужно аккуратно смотать вторую часть первичной обмотки, при этом обязательно запомнив ее подключение и направление намотки. Затем снять экран, выполненный в виде слоя медной фольги с припаянным проводом, ведущим к выводу трансформатора, который предварительно следует отпаять. И, наконец, смотать вторичные обмотки до следующего экрана. Теперь обязательно нужно хорошо просушить катушку струей горячего воздуха для испарения воды, проникшей в обмотку во время вываривания.

Количество витков вторичной обмотки будет зависеть от требуемого максимального выходного напряжения ИП из расчета примерно 0,33 витка/В (то есть 1 виток — 3 В). Например, автор намотал 2х18 витков провода ПЭВ-0,8 и получил максимальное выходное напряжение ИП около 53 В. Сечение провода будет зависеть от требования к максимальному выходному току ИП, а также от габаритов каркаса трансформатора.

Вторичную обмотку мотают в 2 провода. Конец одного провод сразу запаивают на первый вывод каркаса, а второй оставляют с запасом 5 см для формирования «косички» нулевого вывода. Закончив намотку, запаивают конец второго провода на второй вывод каркаса и формируют «косичку» таким образом, чтобы количество витков обеих полуобмоток обязательно было одинаковым.

Теперь следует восстановить экран, намотать смотанную ранее вторую часть первичной обмотки трансформатора, соблюдая исходное подключение и направление намотки, и собрать магнитопровод трансформатора. Если разводка вторичной обмотки запаяна правильно (на выводы 12-вольтовой обмотки), то можно впаять трансформатор в плату БП и проверить его работоспособность.

АРХИВ:Скачать

Раздел: [Блоки питания (импульсные)]
Сохрани статью в:

зарядное устройство из компьютерного блока питания своими руками

В различных ситуациях требуются разные по напряжению и мощности ИП. Поэтому многие покупают или делают такой, чтоб хватило на все случаи.

И проще всего взять за основу компьютерный. Данный лабораторный блок питания с характеристиками 0-22 В 20 А переделан с небольшой доработкой из компьютерного АТХ на ШИМ 2003. Для переделки использовал JNC mod. LC-B250ATX. Идея не нова и в интернете множество подобных решений, некоторые были изучены, но окончательное получилось свое. Результатом очень доволен. Сейчас ожидаю посылку из Китая с совмещенными индикаторами напряжения и тока, и, соответственно, заменю. Тогда можно будет назвать мою разработку ЛБП — зарядное для автомобильных АКБ.

Схема регулируемого блока питания:


Первым делом выпаял все провода выходных напряжений +12, -12, +5, -5 и 3,3 В. Выпаял все, кроме +12 В диоды, конденсаторы, нагрузочные резисторы.


Заменил входные высоковольтные электролиты 220 х 200 на 470 х 200. Если есть, то лучше ставить бОльшую емкость. Иногда производитель экономит на входном фильтре по питанию — соответственно рекомендую допаять, если отсутствует.


Выходной дроссель +12 В перемотал. Новый — 50 витков проводом диаметром 1 мм, удалив старые намотки. Конденсатор заменил на 4700 мкф х 35 В.


Так как в блоке имеется дежурное питание с напряжениями 5 и 17 вольт, то использовал их для питания 2003-й и по узлу проверки напряжений.


На вывод 4 подал прямое напряжение +5 вольт с «дежурки» (т.е. соединил его с выводом 1). С помощью резисторного 1,5 и 3 кОм делителя напряжения от 5 вольт дежурного питания сделал 3,2 и подал его на вход 3 и на правый вывод резистора R56, который потом выходит на вывод 11 микросхемы.

Установив микросхему 7812 на выход 17 вольт с дежурки (конденсатор С15) получил 12 вольт и подключил к резистору 1 Ком (без номера на схеме), который левым концом подключается к выводу 6 микросхемы. Также через резистор 33 Ом запитал вентилятор охлаждения, который просто перевернул, чтоб он дул внутрь. Резистор нужен для того, чтоб снизить обороты и шумность вентилятора.


Всю цепочку резисторов и диодов отрицательных напряжений (R63, 64, 35, 411, 42, 43, C20, D11, 24, 27) выпаял из платы, вывод 5 микросхемы закоротил на землю.

Добавил регулировку напряжения и индикатор выходного напряжения из китайского интернет магазина. Только необходимо запитать последний от дежурки +5 В, а не от измеряемого напряжения (он начинает работать от +3 В). Испытания блока питания

Испытания проводились одновременным подключением нескольких автомобильных ламп (55+60+60) Вт.

Это примерно 15 Ампер при 14 В. Проработал минут 15 без проблем. В некоторых источниках рекомендуют изолировать общий провод выхода 12 В от корпуса, но тогда появляется свист. Используя в качестве источника питания автомобильной магнитолы не заметил никаких помех ни на радио, ни в других режимах, а 4*40 Вт тянет отлично. С уважением, Петровский Андрей.

Переделка atx в лабораторный бп подробно

Основа современного бизнеса — получение больших прибылей при сравнительно низких вложениях. Хотя этот путь и губителен для собственных отечественных разработок и промышленности, но бизнес есть бизнес. Тут либо вводи меры по предотвращению проникновения дешевых запцацак, либо делать на этом деньги. К примеру, если необходим дешевый блок питания, то не нужно изобретать и конструировать, убивая деньги, — просто нужно посмотреть на рынок распространенного китайского барахла и попытаться на его основе построить то, что необходимо. Рынок, как никогда, завален старыми и новыми компьютерными блока питания различной мощности. В этом блоке питания есть все что нужно — различные напряжения (+12 В, +5 В, +3,3 В, -12 В, -5 В), защиты этих напряжений от перенапряжения и от превышения тока. При этом компьютерные блоки питания типа ATX или TX имеют малый вес и небольшой размер. Конечно, блоки питания импульсные, но высокочастотных помех практически нет. При этом можно идти штатным проверенным способом и ставить обычный трансформатор с несколькими отводами и кучей диодных мостов, а регулирование осуществлять переменным резистором большой мощности. С точки зрения надежности трансформаторные блоки намного надежнее импульсных, ведь в импульсном блоки питания в несколько десятков раз больше деталей, чем в трансформаторном блоке питания типа СССР и если каждый элемент по надежности несколько меньше единицы, то общая надежность является произведением всех элементов и как результат — импульсные блоки питания по надежности намного меньше трансформаторных в несколько десятков раз. Кажется, что если так, то нечего городить огород и следует отказаться от импульсных блоков питания. Но тут более важным фактором, чем надежность, в нашей действительности является гибкость производства, а импульсные блоки достаточно просто могут трансформироваться и перестраиваться под совершенно любую технику в зависимости от требований производства. Вторым фактором является торговля запцацками. При достаточном уровне конкуренции производитель стремится отдать товар по себестоимости, при этом достаточно точно рассчитать время гарантии с тем, чтобы оборудование выходило из строя на следующей неделе, после окончания гарантии и клиент покупал бы запчасти по завышенным ценам. Порой доходит до того, что легче купить новую технику, чем чинить у производителя его бэушку.

Для нас вполне нормально вместо сгоревшего блока питания вкрутить транс или подпереть красную кнопку пуска газа в духовках «Дефект» столовой ложкой, а не покупать новую часть. Наш менталитет четко просекают китайцы и стремятся делать свои товары неремонтопригодными, но мы как на войне, умудряемся ремонтировать и усовершенствовать их ненадежную технику, а если уже все — «труба», то хоть какую-нить запцацку снять и вкидануть в другое оборудование.

Мне стал нужен блок питания для проверки электронных компонентов с регулируемым напряжением до 30 В. Был трансформатор, но регулировать через резак — несерьезно, да и вольтаж будет плавать на разных токах, а вот был старенький блоки питания ATX от компа. Зародилась идея приспособить комповский блок под регулируемый источник питания. Прогуглив тему, нашел несколько переделок, но все они предлагали радикально выкинуть всю защиту и фильтры, а мы бы хотелось сохранить весь блок на случай, если придется использовать его по прямому назначению. Поэтому я начал эксперименты. Цель — не вырезая начинку создать регулируемый блок питания с пределами изменения напряжений от 0 до 30 В.

Часть 1. Так себе.

Блок для опытов попался достаточно старый, слабый, но напичканный множеством фильтров. Блок был в пыли и поэтому перед запуском я его вскрыл и почистил. Вид деталей подозрений не вызвал. Раз все устраивает — можно делать пробный пуск и измерить все напряжения.

+3,3 В — оранжевый

По входу блока стоит предохранитель, а рядом напечатан тип блока LC16161D.

Блок типа ATX имеет разъем для подсоединения его к материнской плате. Простое включение блока в розетку не включает сам блок. Материнская плата замыкает два контакта на разъеме. Если их замкнуть — блок включится и вентилятор — индикатор включения — начнет вращение. Цвет проводов, которые нужно замыкать для включения, указан на крышке блока, но обычно это «черный» и «зеленый». Нужно вставить перемычку и включить блок в розетку. Если убрать перемычку блок отключится.

Блок TX включается от кнопки, которая находится на кабеле, выходящем из блока питания.

Понятно, что блок рабочий и прежде чем начать переделку, нужно выпаять предохранитель, стоящий по входу, и впаять вместо него патрон с лампочкой накаливания. Чем больше по мощности лампа, тем меньше напряжения будет на ней падать при тестах. Лампа защитит блок питания от всех перегрузок и пробоев и не даст выгореть элементам. При этом импульсные блоки практически нечувствительны к падению напряжения в питающей сети, т.е. лампа хоть и будет светить и кушать киловатты, но по выходным напряжениям просадки от лампы не будет. Лампа у меня на 220 В, 300 Вт.

Блоки строятся на управляющей микросхеме TL494 или ее аналог KA7500 . Также часто используется компоратор на микрухе LM339 . Вся обвязка приходит сюда и именно здесь придется делать основные изменения.

Напряжения в норме, блок рабочий. Приступаем к усовершенствованию блока по регулированию напряжений. Блок импульсный и регулирование происходит за счет регулирования длительности открытия входных транзисторов. Кстати, всегда думал, что колебают всю нагрузку полевые транзисторы, но, на самом деле, используются также быстрые переключающиеся биполярные транзисторы типа 13007, которые устанавливаются и в энергосберегающих лампах. В схеме блока питания нужно найти резистор между 1 ножкой микросхемы TL494 и шиной питания +12 В. В данной схеме он обозначается R34 = 39,2 кОм. Рядом установлен резистор R33 = 9 кОм, который связывает шину +5 В и 1 ножку микросхемы TL494. Замена резистора R33 ни к чему не приводит. Нужно заменить резистор R34 переменным резистором 40 кОм, можно и больше, но поднять напряжение по шине +12 В получилось только до уровня +15 В, поэтому в завышении сопротивления резистора смысла нет. Здесь идея в том, что чем выше сопротивление, тем выше выходное напряжение. При этом до бесконечности напряжение не увеличится. Напряжение между шинами +12 В и -12 В изменяется от 5 до 28 В.

Найти нужный резистор можно проследив дорожки по плате, либо при помощи омметра.

Выставляем переменный впаянный резистор в минимальное сопротивление и обязательно подключаем вольтметр. Без вольтметра тяжело определить изменение напряжений. Включаем блок и на вольтметре на шине +12 В установилось напряжение 2,5 В, при этом вентилятор не крутится, а блок питания немного поет на высокой частоте, что указывает на работу ШИМ на сравнительно небольшой частоте. Крутим переменный резистор и видим увеличение напряжений на всех шинах. Вентилятор включается примерно на +5 В.

Замеряем все напряжения по шинам

Напряжения в норме, кроме шины -12 В, и их можно варьировать для получения необходимых напряжений. Но компьютерные блоки сделаны так, чтобы по отрицательным шинам защита срабатывала при достаточно малых токах. Можно взять автомобильную лампочку на 12 В и включить между шиной +12 В и шиной 0. При увеличении напряжения лампочка станет светить все более ярко. При этом постепенно будет светить и лампа, включенная вместо предохранителя. Если включить лампочку между шиной -12 В и шиной 0, то при малом напряжении лампочка светится, но при определенном токе потребления блок уйдет в защиту. Защита срабатывает на ток порядка 0,3 А. Защита по току выполнена на резистивно-диодном делителе, чтобы его обмануть, нужно отключить диод между шиной -5 В и средней точкой, которая соединяет шину -12 В с резистором. Можно обрубить два стабилитрона ZD1 и ZD2. Стабилитроны применены как защита от перенапряжения и конкретно здесь через стабилитрон идет и защита по току. По крайней мере с шины — 12 В удалось взять 8 А, но это чревато пробоем микрухи обратной связи. В итоге путь тупиковый обрубать стабилитроны, а вот диод — вполне.

Для проверки блока нужно использовать переменную нагрузку. Наиболее рациональным является кусок спирали от нагревателя. Витой нихром — вот все что нужно. Для проверки включается нихром через амперметр между выводом -12 В и +12 В, регулируем напряжение и измеряем ток.

Выходные диоды для отрицательных напряжений значительно меньше тех, которые используются для положительных напряжений. Нагрузка соответственно также ниже. Более того, если в положительных каналах стоят сборки из диодов Шоттки, то в отрицательных каналах впаян обычный диод. Порой его припаивают к пластинке — типа радиатор, но это бред и для того чтобы поднять ток в канале -12 В нужно заменить диод, на что-то более сильное, но при этом сборки из диодов Шоттки у меня сгорели, а вот обычные диоды вполне неплохо тянули. Следует отметить, что защита не срабатывает, если нагрузка включена между разными шинами без шины 0.

Последним тестом является защита от короткого замыкания. Коротим накоротко блок. Защита работает только на шине +12 В, ведь стабилитроны отключили практически всю защиту. Все остальные шины по короткому не отключают блок. В итоге получен регулируемый блок питания из компьютерного блока с заменой одного элемента. Быстро, а значит экономически целесообразно. При тестах выяснилось, что если быстро крутить ручку регулировки, то ШИМ не успевает перестроиться и выбивает микруху обратной связи KA5H0165R , а лампа загорается очень ярко, затем входные силовые биполюсные транзисторы KSE13007 могут вылететь, если вместо лампы предохранитель.

Короче, все работает, но достаточно ненадежно. В таком виде нужно использовать только регулируемую шину +12 В и неинтересно медленно крутить ШИМ.

Часть 2. Более-менее.

Вторым экспериментом стал древнющий блок питания TX. Такой блок имеет кнопочку для включения — достаточно удобно. Переделку начинаем с перепайки резистора между +12 В и первой ножкой микрухи TL494. Резистор от +12 В и 1 ножкой ставится переменный на 40 кОм. Это дает возможность получить регулируемые напряжения. Все защиты остаются.

Далее нужно изменить пределы тока для отрицательных шин. Я впаял резистор, который выпаял из шины +12 В, и впаял в разрыв шины 0 и 11 ножкой микрухи TL339. Там уже стоял один резистор. Предел токов изменился, но при подключении нагрузки напряжение на шине -12 В сильно падало при увеличении тока. Скорее всего просаживает всю линию отрицательного напряжения. Потом я заменил перепаянный резак на переменный резистор — для подбора срабатываний по току. Но получилось неважно — нечетко срабатывает. Надо будет попробовать убрать этот дополнительный резистор.

Измерение параметров дало следующие результаты:

Собственно, идея сделать лабораторный блок питания с регулируемым выходным напряжением и током из компьютерного – не нова. В интернете встречается немало вариантов подобных переделок.

Преимущества очевидны:
1. Такие блоки питания буквально «валяются под ногами».
2. Они содержат в себе все основные компоненты, а главное, готовые импульсные трансформаторы.
3. Они имеют превосходные массогабаритные характеристики – подобный трансформаторный блок питания весил бы более 10 кг (этот 1,3 кг всего).

Правда, они не лишены и недостатков:
1. Из-за импульсного преобразования – выходное напряжение содержит богатый спектр высокочастотных помех, что делает их ограниченно применимыми для питания радиостанций.
2. Не позволяют гарантированно получить низкое напряжение на выходе (менее 5 В) при малых токах нагрузки. Это относится только к АТ блокам питания, в которых нет дежурного источника. В ATX напряжение регулируется от 0 В.

И, тем не менее, такой блок питания прекрасно подходит для питания автомобильной электроники в домашних условиях, при проверке и отладке электронных устройств. А наличие режима стабилизации тока позволяет использовать его как универсальное зарядное устройство для большой гаммы аккумуляторов!

Выходное напряжение — от 1 до 20 В
Выходной ток — до 10 А
Масса 1,3 кг

Внимание: это первая статья про переделку блока питания. Читайте также вторую часть!

Для начала, давайте разберёмся, какие блоки питания годятся для переделки. Лучшим образом, для лабораторного блока питания годятся как раз старые блоки питания AT или ATX, собранные на ШИМ-контроллере TL494 (он же: μPC494, μА494, KIA494, AZ494AP, M5T494P, UTC51494, KA7500, AZ7500BP, IR3M02, МВ3759, КР1114ЕУ4 и др. аналогах) мощностью 200 – 250 Вт. Таких встречается большинство! Современные ATX12B, на 350 – 450 Вт, конечно тоже не проблема переделать, но всё же они лучше годятся для блоков питания с фиксированным выходным напряжением (например, 13,8 В).

Для дальнейшего понимания сути переделки, рассмотрим принцип работы блока питания для компьютера.

Более-менее стандартизированные блоки питания (PC/XT, AT, PS/2) для компьютеров появились в начале 80-х годов благодаря компании IBM, и просуществовали до 1996 года. Давайте рассмотрим их принцип действия по структурной схеме:

Сетевое напряжение поступает в блок питания через фильтр электромагнитных помех, который препятствует распространению высокочастотных помех от импульсного преобразователя в питающую сеть. За ним следует выпрямитель и сглаживающий фильтр, на выходе которого получаем постоянное напряжение 310 В. Это напряжение поступает на полумостовой инвертор, который преобразует его в прямоугольные импульсы и подаёт на первичную обмотку понижающего трансформатора T1.

Напряжения со вторичных обмоток трансформатора поступают на выпрямители и сглаживающие фильтры. В итоге, на выходе мы получаем необходимые постоянные напряжения.

При подаче питания, в начальный момент, инвертор запускается в режиме автогенерации, а после появления напряжений на вторичных выпрямителях, в работу включатся ШИМ-контроллер (TL494), который синхронизирует работу инвертора, подавая запускающие импульсы в базы ключевых транзисторов через развязывающий трансформатор T2.

В блоке питания используется широтно-импульсное регулирование выходного напряжения. Для увеличения напряжения на выходе, контроллер увеличивает длительность (ширину) импульсов запуска, а для уменьшения – уменьшает.

Стабилизация выходного напряжения в таких блоках питания часто осуществляется только по одному выходному напряжению (+5 В, как самому важному), иногда по двум (+5 и +12), но с приоритетом +5 В. Для этого, на вход компаратора контроллера (вывод 1 TL494, через делитель) поступает выходное напряжение. Контроллер подстраивает ширину импульсов запуска, для поддержания этого напряжения на необходимом уровне.

Также, блок питания имеет систему защиты 2 видов. Первую – от превышения суммарной мощности и короткого замыкания, и вторую, от перенапряжения на выходах. В случае перегрузки, схема останавливает работу генератора импульсов в ШИМ-контроллере (подавая +5 В на вывод 4 TL494).

Кроме того, блок питания содержит узел (на схеме не показан), формирующий на выходе сигнал POWER_GOOD («напряжения в норме»), после выхода блока питания на рабочий режим, разрешающий запуск процессора в компьютере.

Блок питания AT (PC/XT, PS/2) имеет всего 12 основных проводов для подключения к материнской плате (2 разъёма по 6 контактов). В 1995 году компания Intel с ужасом обнаружила, что существующие блоки питания не справляются с возросшей нагрузкой, и ввела стандарт на 20-ти/24-контактный разъём. Кроме того, мощности стабилизатора +3,3 В на материнской плате для питания процессора также перестало хватать, и его перенесли в блок питания. Ну и Microsoft, ввела в операционную систему Windows, режимы управления питанием Advanced Power Management (APM)… Так, в 1996 году появился современный блок питания ATX.

Рассмотрим отличия блока питания ATX от старых AT по его структурной схеме:

Режим Advanced Power Management (APM) потребовал отказаться от сетевого выключателя и ввести в блок питания второй импульсный преобразователь – источник дежурного напряжения +5 В. Этот маломощный блок питания работает всегда, когда сетевая вилка включена в сеть. Первичное напряжение на него поступает от того же выпрямителя и фильтра, что и на основной инвертор.

Кроме того, питание на ШИМ-контроллер в ATX поступает от этого же дежурного источника (не стабилизированные 12 — 22 В), а автозапуск инвертора отсутствует. Поэтому, блок питания стартует только при наличии импульсов запуска от контроллера. Включение основного блока питания осуществляется включением генератора импульсов ШИМ-контроллера сигналом PS_ON (замыканием его на массу) через схему защиты.

При переделке БП ATX, источник дежурного напряжения нужно сохранить. Во-первых, он будет питать достаточным напряжением ШИМ-контроллер при установке на выходе основного выпрямителя очень низкого напряжения (вплоть до 0 В). Во-вторых, от него можно запитать вентилятор, через 12 В стабилизатор. Характерные особенности переделки именно ATX БП изложены во второй части статьи.

Вот, и все основные отличия.

Как выбрать блок питания для переделки?

Как известно, блоки питания изготавливаются в Китае. А это может повлечь за собой отсутствие некоторых компонентов, которые они сочли «лишними»:

1. На входе может отсутствовать фильтр электромагнитных помех. Самое главное в фильтре – это дроссель, намотанный на ферритовом кольце. Обычно, его прекрасно видно сквозь лопасти вентилятора. Вместо него могут оказаться проволочные перемычки. Наличие фильтра – косвенный признак качественного блока питания!

2. Также, нужно посмотреть на размер понижающего трансформатора (тот который побольше). От него зависит максимальная мощность блока питания. Высота его должна быть не менее 3 см. Встречаются блоки питания с трансформатором высотой менее 2 см. Мощность таких 75 Вт, даже если написано 200.

3. Для проверки работоспособности блока питания подключите к нему нагрузку. Я использую автомобильные лампы фар мощностью 50 – 55 Вт напряжением 12 В. Обязательно одну подсоедините к цепи +5 В (красный провод), а вторую, к цепи +12 В (жёлтый провод). Включите блок питания. Отсоедините разъём вентилятора (или, если на нём сэкономили китайцы, просто остановите рукой). Блок питания не должен пищать.

Спустя минуту отключите его от сети и пощупайте рукой температуру радиаторов и дросселя групповой фильтрации в фильтре вторичных напряжений. Дроссель должен быть холодный, а радиаторы тёплыми, но не раскалёнными!

Я использовал блок питания 1994 года выпуска мощностью 230 Вт – тогда ещё не экономили.

Переделка блока питания

Начать нужно с чистки блока питания от пыли. Для этого отсоедините (отпаяйте) от платы сетевые провода и провода к переключателю 110/220 – он нам больше не понадобится, т.к. в положении 220 В выключатель разомкнут. Выньте плату из корпуса. Пылесос, жёсткая кисточка, и вперёд!

Далее, нужно попытаться найти электрическую принципиальную схему вашего блока питания, или хотя бы максимально на неё похожую (отличаются они не существенно). Она вам поможет ориентироваться в номиналах «отсутствующих» компонентов. Рекомендую искать здесь. Я не исключаю, что, как и мне, вам придётся некоторые узлы срисовывать с платы.

Далее нужно выполнить несколько общих модификаций по установке недостающих частей и умощнению цепей первичного напряжения и инвертора. Рассмотрим на примере электрической схемы моего блока питания.

Номиналы заменяемых компонентов на схеме выделены красным цветом. У вновь устанавливаемых компонентов, красным цветом выделены позиционные обозначения.

1. Проверьте наличие всех конденсаторов и дросселя в фильтре электромагнитных помех. При отсутствии – установите их (у меня отсутствовал только C2). Я также установил второй, дополнительный фильтр помех, выполненный в виде гнезда для подключения сетевого шнура.

2. Посмотрите типы используемых диодов в выпрямителе (D1 – D4). Если там стоят диоды с током до 1 А (например, 1N4007) – замените их минимум на 2-х амперные, или установите диодный мост. У меня стоял 2-х амперный мост.

3. В подавляющем большинстве блоков питания в фильтре первичного напряжения установлены конденсаторы ёмкостью не более 200 мкФ (С5 – С6). Для отдачи полной мощности, замените их конденсаторами ёмкостью 470 – 680 мкФ, подходящими по размерам, напряжением не менее 200 В. Предпочтение следует отдавать группе 105°C.

4. Транзисторы в полумостовом инверторе (Q1, Q2) могут быть самые разнообразные. В принципе, большинство из них греется не криминально. Для снижения нагрева, их можно заменить на более мощные – например, 2SC4706, установив их на радиатор, через изолирующие прокладки. Я пошёл ещё дальше и заменил оба радиатора на более эффективные.

5. В процессе испытания блока питания под максимальной нагрузкой, у меня нагрелся и лопнул конденсатор С7 (обычно это 1 мкФ 250 В). Этот конденсатор не должен греться вообще. Я думаю, он был неисправен, но заменил его всё же на 2,2 мкФ 400 В.

Теперь рассмотрим структурную схему переделанного блока питания:

Для модификации нам потребуется удалить все вторичные выпрямители, кроме одного (правда, заменив в нём почти все компоненты), удалить схему PS_ON (что бы БП ключался автоматически), переделать схему защиты, добавить схему управления, шунт (R1, входит в состав амперметра) и измерительные приборы. Элементы схемы POWER_GOOG тоже можно удалить. Теперь подробнее.

Для снятия выходного напряжения используется 12-ти вольтовая обмотка понижающего трансформатора T1. В наиболее мощных и качественных БП, цепи выпрямителя и фильтра +12 В уже имеют второй дроссель и достаточно места для установки электролитических конденсаторов. Но если в цепи фильтра +12 В нет второго дросселя, то лучший вариант — монтировать всё на месте 5-ти вольтового, а затем, перекинуть на него выводы обмотки 12 В. Ниже я опишу именно второй вариант.

Выпрямитель вторичных напряжений и фильтр, после переделки должны выглядеть следующим образом:

1. Выпаяйте все элементы выпрямителей и фильтров +5, +12 и -12 В. За исключением демпферных цепочек R1, C1, R2, С2 и R3, C3 и дросселя L2. Впоследствии, при выходном напряжении порядка 20 В я заметил нагрев резистора R1 и заменил его на 22 Ом.

2. Отрежьте дорожки, ведущие от 5-ти вольтовых отводов обмотки трансформатора T1 к диодной сборке выпрямителя +5 В, сохранив при этом её соединение с диодами выпрямителя –5 В (он нам ещё понадобится).

3. На месте диодной сборки выпрямителя +5 В (D3) установите сборку на диодах Шоттки на ток 2х30 А и обратное напряжение не менее 100 В, например, 63CPQ100, 60CPQ150. (Штатная 5-ти вольтовая сборка диодов имеет обратное напряжение всего 40 В, а штатные диоды в выпрямителе 12 В рассчитаны на слишком слабый ток – их использовать нельзя.) Эта сборка практически не греется при работе.

4. Соедините толстыми проволочными перемычками выводы 12-ти вольтовой обмотки с установленной диодной сборкой. Демпферные цепи R1, C1, подключенные к этой обмотке, сохранены.

5. В фильтре, вместо штатных, установите электролитические конденсаторы (C5, C6) ёмкостью 1000 – 2200 мкФ на напряжение не менее 25 В. А также добавьте керамические конденсаторы C4 и C7. Установите вместо штатного, нагрузочный резистор 100 Ом, мощностью 2 Вт.

6. Если в процессе проверки блока питания под нагрузкой, дроссель групповой фильтрации (L1) не нагревался, то его достаточно перемотать. Смотайте с него все обмотки, считая витки. (Обычно, 5 В обмотки содержат 10 витков, а 12 В – 20 витков.) Намотайте новую обмотку двумя проводами, сложенными вместе диаметром 1,0 – 1,3 мм (аналогично штатной 5-ти вольтовой) и числом витков 25-27. Если в процессе работы будет греться, то увеличьте число витков до 50-ти.

Если же дроссель грелся, то его сердечник испорчен (есть такая проблема у порошкового железа – «спекается») то придётся искать новый сердечник из порошкового железа (не ферритовый!). Мне пришлось купить кольцевой сердечник белого цвета чуть большего диаметра и намотать новую обмотку. Вообще не греется.

7. Дроссель L2 остаётся штатный, от 5-ти вольтового фильтра (обычно это несколько витков на ферритовом стержне).

8. Для питания вентилятора в БП AT используется 5-ти вольтовая обмотка, и разводка выпрямителя –5 В, которую переделываем в +12. Диоды используются штатные, от выпрямителя –5 В (D1, D2), их необходимо запаять обратной полярностью. Дроссель уже не нужен – запаяйте перемычку. А на место штатного конденсатора фильтра, установите конденсатор ёмкостью 470 мкФ 16 В, естественно, обратной полярностью. Бросьте перемычку от выхода фильтра (бывш. –5 В), к разъёму вентилятора. Непосредственно около разъёма, установите керамический конденсатор C9. Напряжение на вентиляторе у меня составляет +11,8 В, при малых токах нагрузки оно снижается.

Это самый простой способ получить «стабильные» +12 В в регулируемом БП AT для вентилятора. Если же вы переделываете БП ATX то используйте для питания вентилятора напряжение (12-22 В) дежурного источника напряжения, включив вентилятор, если требуется, через стабилизатор 12 В, например 7812. Только увеличьте ёмкости конденсаторов в этом источнике раз в 10. Подробнее этот вопрос изложен во второй части статьи.

Если в вашем БП вентилятор получал питание от схемы управления по температуре, то лучше сохранить её. Это уменьшит шум от работы БП при малых нагрузках.

9. В цепи питания ШИМ-контроллера (Vcc), необходимо увеличить ёмкости конденсаторов фильтров C10 и C11. Напряжение с конденсатора C10 (Vdd) используется для питания цифровых амперметра и вольтметра.

Если вы переделываете БП ATX, в котором имеется источник дежурного напряжения (+5V_SB), – сохраните его! В штатной схеме он используется как второй (параллельный) источник питания для ШИМ-контроллера (развязанный через диод). Это позволит сохранять высокое напряжение питания ШИМ, даже при низком напряжении на выходе блока питания (основного выпрямителя). Подробнее этот вопрос изложен во второй части статьи.

9zip.ru Радиотехника, электроника и схемы своими руками Практика переделки компьютерных блоков питания в регулируемые лабораторные

В комментариях к популярной статье о переделке компьютерных блоков питания часто задают вопросы и сетуют на неудачи. Чтобы показать, что переделка действительно возможна и она вовсе несложна, мы подготовили ещё одну статью, с иллюстрациями и пояснениями.

Напомним, что переделывать можно любые блоки, как AT, так и ATX. Первые отличаются просто отсутствием дежурки. Как следствие, TL494 в них питается непосредственно с выхода силового трансформатора, и, опять же, как следствие, — при регулировке на малых нагрузках ей просто не будет хватать питания, т.к. скважность импульсов на первичке трансформатора будет слишком мала. Введение отдельного источника питания для микросхемы решает проблему, но требует дополнительное место в корпусе.

Блоки питания ATX здесь выгодно отличаются тем, что ничего не нужно добавлять, нужно лишь убрать лишнее и добавить, грубо говоря, два переменных резистора.

На переделке — компьютерный блок питания ATX MAV-300W-P4. Задача — переделать в лабораторный 0-24В, по току — тут уж как получится. Говорят, что удаётся получать 10А. Что ж, проверим.


Нажмите на схему для увеличения
Схема блока питания легко гуглится, но можно обойтись и без неё, ведь мы знаем, что от TL494 нам понадобятся входы обоих компараторов, а это — выводы 1, 2, 15, 16, и их общий выход 3, который принято использовать для коррекции. Освобождаем также вывод 4, так как обычно он задействован под различные защиты. Однако, висящие на нём конденсатор C22 и резистор R46 оставляем для плавного запуска. Отпаиваем только диод D17, отключая следилку за напряжениями от TL-ки.


Добавляем резисторы, регуляторы, шунт. В качестве последнего использованы два SMD резистора на 0,025 Ом параллельно, которые включены в разрыв минусовой дорожки от трансформатора.

Блок питания включаем в сеть через лампу накаливания мощностью 200Вт, которая предназначена для защиты от пробоя силовых транзисторов в случае внештатной ситуации. На холостом ходу напряжение прекрасно регулируется практически от 0 до 24 вольт. А что же будет под нагрузкой? Подключаем несколько мощных галогенок и видим, что напряжение регулируется уже до 20 вольт. Это ожидаемо, ведь мы используем 12-вольтовые обмотки и выпрямитель со средней точкой. На мощной нагрузке ШИМ уже на пределе и получить больше уже невозможно.

Что же делать? Можно просто использовать блок питания для питания не очень мощных нагрузок. Но что же делать, если очень хочется получить заветные 10 ампер, тем более, что на этикетке блока питания они как раз заявлены для линии 12 вольт? Всё очень просто: меняем выпрямитель на классический мостик из четырёх диодов, тем самым увеличивая амплитуду напряжения на его выходе. Для этого понадобится установить ещё два диода. На схеме видно, что такие диоды как раз были установлены, это D24 и D25, по линии -12 вольт. К сожалению, их расположение на плате для нашего случая неудачное, поэтому придётся использовать диоды в «транзисторных» корпусах и либо устанавливать на них отдельные радиаторы, либо крепить к общему радиатору и припаивать проводками. Требования к диодам те же: быстрые, мощные, на требуемое напряжение.

С переделанным выпрямителем напряжение даже с мощной нагрузкой регулируется от 0 до 24 вольт, регулировка тока также работает.

Осталось решить ещё одну проблему — питание вентилятора. Оставлять блок питания без активного охлаждения нельзя, потому что силовые транзисторы и выпрямительные диоды нагреваются соответственно нагрузке. Штатно вентилятор питался от линии +12 вольт, которую мы превратили в регулируемую с диапазоном напряжений несколько более широким, чем нужно вентилятору. Поэтому самое простое решение — питать его от дежурки. Для этого заменяем конденсатор C13 на более ёмкий, увеличив его ёмкость в 10 раз. Напряжение на катоде D10 — 16 вольт, его и берём для вентилятора, только через резистор, сопротивление которого нужно подобрать так, чтобы на вентиляторе было 12 вольт. Бонусом с этого БП можно вывести хорошую пятивольтовую линию питания +5VSB.

Требования к дросселю те же: с ДГС сматываем все обмотки и наматываем новую: от 20 витков, 10 проводов диаметром 0,5мм впараллель. Конечно, такая толстая жила может не влезть в кольцо, поэтому количество параллельных проводов можно уменьшать соответственно вашей нагрузке. Для максимального тока в 10 ампер индуктивность дросселя должна быть в районе 20uH.


В качестве шунта можно использовать шунт, встроенный в амперметр, и наоборот — шунт можно использовать для подключения амперметра без встроенного шунта. Сопротивление шунта — в районе 0,01 Ом. Уменьшая сопротивление резистора R, можно увеличить диапазон регулировки напряжения в большую сторону.

Схема переделки компьютерного блока питания в лабораторный

Автор admin На чтение 32 мин Просмотров 88 Опубликовано

Здравствуйте, сейчас я расскажу о переделке ATX блока питания модели codegen 300w 200xa в лабораторный блок питания с регулировкой напряжения от 0 до 24 Вольт, и ограничением тока от 0,1 А до 5 Ампер. Выложу схему, которая у меня получилась, может кто чего улучшит или добавит. Выглядит сама коробка вот так, хотя наклейка, может быть синей или другого цвета.

Причем платы моделей 200xa и 300x почти одинаковы. Под самой платой есть надпись CG-13C, может быть CG-13A. Возможно, есть другие модели похожие на эту, но с другими надписями.

Выпаивание ненужных деталей

Изначально схема выглядела вот так:

Нужно убрать всё лишнее, провода atx разъёма, отпаять и смотать ненужные обмотки на групповом дросселе стабилизации. Под дросселем на плате, где написано +12 вольт ту обмотку и оставляем, остальные сматываем. Отпаять косу от платы (основного силового трансформатора), не в коем случае не откусывайте её. Снять радиатор вместе с диодами Шоттки, а после того как уберём все лишнее, будет выглядеть вот так:

Конечная схема после переделки, будет выглядеть вот так:

В общем выпаиваем все провода, детали.

Делаем шунт

Делаем шунт, с которого будем снимать напряжение. Смысл шунта в том, что падение напряжения на нём, говорит ШИМ-у о том, как нагружен по току – выход БП. Например сопротивление шунта у нас получилось 0,05 (Ом), если измерить напряжение на шунте в момент прохождения 10 А то напряжение на нём будет:

U=I*R = 10*0,05 = 0,5 (Вольт)

Про манганиновый шунт писать не буду, поскольку его не покупал и у меня его нет, использовал две дорожки на самой плате, замыкаем дорожки на плате как на фото, для получения шунта. Понятное дело, что лучше использовать манганиновый, но и так работает более чем нормально.

Ставим дроссель L2 (если есть) после шунта

Вообще их рассчитывать надо, но если что – на форуме где-то проскакивала программа по расчету дросселей.

Подаём общий минус на ШИМ

Можно не подавать, если он уже звонится на 7 ноге ШИМ. Просто на некоторых платах на 7 выводе не было общего минуса после выпайки деталей (почему – не знаю, мог ошибаться, что не было:)

Припаиваем к 16 выводу ШИМ провод

Припаиваем к 16 выводу ШИМ – провод, и данный провод подаём на 1 и 5 ножку LM358

Между 1 ножкой ШИМ и выходом плюс, припаиваем резистор

Данный резистор будет ограничивать напряжение выдаваемое БП. Этот резистор и R60 образует делитель напряжения, который будет делить выходное напряжение и подавать его на 1 ножку.

Входы ОУ(ШИМ) на 1-й и 2-й ножках у нас служат для задачи выходного напряжения.

На 2-ю ножку приходит задача по выходному напряжению БП, поскольку на вторую ножку максимально может прийти 5 вольт (vref) то обратное напряжение должно приходить на 1-ю ножку тоже не больше 5 вольт. Для этого нам и нужен делитель напряжения из 2х резисторов, R60 и тот что мы установим с выхода БП на 1 ногу.

Как это работает: допустим переменным резистором выставили на вторую ногу ШИМ 2,5 Вольта, тогда ШИМ будет выдавать такие импульсы (повышать выходное напряжение с выхода БП) пока на 1 ногу ОУ не придёт 2,5 (вольта). Допустим если этого резистора не будет, блок питания выйдет на максимальное напряжение, потому как нет обратной связи с выхода БП. Номинал резистора 18,5 кОм.

Устанавливаем на выход БП конденсаторы и нагрузочный резистор

Нагрузочный резистор можно поставить от 470 до 600 Ом 2 Ватта. Конденсаторы по 500 мкф на напряжение 35 вольт. Конденсаторов с требуемым напряжением у меня не было, поставил по 2 последовательно по 16 вольт 1000 мкф. Припаиваем конденсаторы между 15-3 и 2-3 ногами ШИМ.

Припаиваем диодную сборку

Ставим диодную сборку ту, что и стояла 16С20C или 12C20C, данная диодная сборка рассчитана на 16 ампер (12 ампер соответственно), и 200 вольт обратного пикового напряжения. Диодная сборка 20C40 нам не подойдет – не думайте её ставить – она сгорит (проверено 🙂 ).

Если у вас есть какие либо другие диодные сборки смотрите чтоб обратное пиковое напряжение было минимум 100 В ну и на ток, какой по больше. Обычные диоды не подойдут – они сгорят, это ультро-быстрые диоды, как раз для импульсного блока питания.

Ставим перемычку для питания ШИМ

Поскольку мы убрали кусок схемы который отвечал за подачу питания на ШИМ PSON, нам надо запитать ШИМ от дежурного блока питания 18 В. Собственно, устанавливаем перемычку вместо транзистора Q6.

Припаиваем выход блока питания +

Затем разрезаем общий минус который идёт на корпус. Делаем так, чтоб общий минус не касался корпуса, иначе закоротив плюс, с корпусом БП, всё сгорит.

Припаиваем провода, общий минус и +5 Вольт, выход дежурки БП

Данное напряжение будем использовать для питания вольт-амперметра.

Припаиваем провода, общий минус и +18 вольт к вентилятору

Данный провод через резистор 58 Ом будем использовать для питания вентилятора. Причём вентилятор нужно развернуть так, чтоб он дул на радиатор.

Припаиваем провод от косы трансформатора на общий минус

Припаиваем 2 провода от шунта для ОУ LM358

Припаиваем провода, а также резисторы к ним. Данные провода пойдут на ОУ LM357 через резисторы 47 Ом.

Припаиваем провод к 4 ножке ШИМ

При положительном +5 Вольт напряжении на данном входе ШИМ, идёт ограничение предела регулирования на выходах С1 и С2, в данном случае с увеличением на входе DT идёт увеличение коэффициента заполнения на С1 и С2 (нужно смотреть как транзисторы на выходе подключены). Одним словом – останов выхода БП. Данный 4-й вход ШИМ (подадим туда +5 В) будем использовать для остановки выхода БП в случае КЗ (выше 4,5 А) на выходе.

Собираем схему усиления тока и защиты от КЗ

Внимание: это не полная версия – подробности, в том числе фотографии процесса переделки, смотрите на форуме.

Автор материала: xz

Обсудить статью ЛАБОРАТОРНЫЙ БП С ЗАЩИТОЙ ИЗ ОБЫЧНОГО КОМПЬЮТЕРНОГО

Речь пойдёт о технологии переделки компьютерного блока питания (БП) в лабораторный БП.

Три года назад я опубликовал статью «Лабораторный блок питания из БП АТ», к которой читатели проявили огромный интерес! Стоит только сказать, что повторивших этот БП уже более 20 человек! Да не у всех получилось всё сразу, но я отвечал на комментарии к статье, помогая разобраться в проблемах. В итоге радость от работающего БП получили все!

Хочу сказать огромное спасибо моим читателям, что задавали вопросы! Во-первых, мои ответы на комментарии превратились в кладезь знаний для всех! Именно поэтому, я просил писать вопросы в статье, а не в личной переписке. Во-вторых, вы помогли мне усовершенствовать данную конструкцию! Ещё раз всем спасибо, кто задавал вопросы и высказывал предложения по усовершенствованию.

Отдельная благодарность Юрию Вячеславовичу Evergreen747 , который наравне со мною помогает отвечать на ваши многочисленные вопросы!

Тот блок питания делался много лет назад (намного раньше, чем была написана первая статья!). К тому же я переделал всего один экземпляр БП AT, и не было возможности набрать статистики по проблемам, которые могут встретиться в других вариантах таких блоков. Вы же мне очень помогли это сделать.

Недостатки первой конструкции лабораторного БП, прежде всего, связаны с отсутствием дежурного источника питания. Это выражается в том, что БП не держит низкое напряжение на выходе при малых токах нагрузки. Типично на холостом ходу выставить напряжение ниже 5…8 В не удаётся. Второе – это неустойчивая работа в режиме стабилизации тока, особенно в момент перехода из режима стабилизации напряжения: появляется пульсация выходного напряжения, иногда сопровождающаяся треском или писком…

Тот блок питания прекрасно подходит для питания мощных потребителей и зарядки аккумуляторных батарей, но для работы с маломощной электроникой, требующей низкого напряжения питания – он немного грубоват. Поэтому я сделал новый блок питания, внеся доработки, а старый перевёл на «постоянную работу» в гараж.

Новый вариант БП

Всё дальнейшее повествование будет основано на том, что вы хорошо изучили первую статью о переделке БП AT – я повторяться не буду, а расскажу лишь о модификациях прежней конструкции с практической стороны на примере создания нового БП. Так что кто не читал – идите по ссылке и изучайте. Первая статья для вас так и должна остаться «библией»!

Итак, разгребая хлам на работе, заинтересовал меня один БП ATX 400W: он не из самых современных, а выполнен на обычной TL494 (то, что нам нужно!), схема защиты – на LM339 (не плохо), у него добротный фильтр по питанию, крупный трансформатор, большая ёмкость конденсаторов в фильтре (470 мкФ 200 В), а также солидные радиаторы – что обещало действительно хорошую выходную мощность. Его я и препарировал!

Начал, естественно, с пылесоса… Затем, внимательнее изучил внутренности: выполнен он очень добротно – все входные цепи, выпрямитель сетевого напряжения, конденсаторы фильтра, силовые транзисторы преобразователя (MJE13009) уже стоят «по максимуму», значит умощнять его не придётся.

После включил его, нагрузив цепи +5V и +12V лампочками 12 В 35 Вт (очень удобно использовать миниатюрные галогеновые лампочки для люстр – они без проблем втыкаются прямо в разъёмы Mini-Fit) – работает! За минуту работы с такой нагрузкой при отключенном вентиляторе ничего не нагрелось – отлично.

Далее начал искать его принципиальную схему. Посмотрел основные моменты слаботочной части: хоть в нём и стоят две самые распространённые для БП ATX микросхемы (TL494 и LM339), но схема включения LM339 сильно отличалась (их действительно много вариантов). Защита по мощности через диод от среднего отвода запускающего трансформатора вела как раз к ней, а нам нужно её сохранить! Ничего страшного – начал срисовывать этот кусок схемы с печатной платы. Хуже нет копаться в чужом монтаже…

Ага, защита по превышению мощности выполнена на первом компараторе LM339, второй компаратор является триггером (защёлкой) и на него же заведена защита от перенапряжения. Выход защиты заведён на выв. 4 TL494 (что нам и нужно!). На двух оставшихся компараторах сделана индикация Power_Good. Схема включения БП (PS_ON) выполнена на двух транзисторах и также заведена на выв. 4. Удачная схема! Теперь ясно что оставить, а что сохранить:

В данном случае мне повезло: схема защиты по мощности работает через выв. 4 TL494. Но если вы внимательно посмотрите на схему входных цепей защиты, то увидите, что сигнал со среднего вывода запускающего трансформатора через R20 и D22 поступает на два делителя напряжения, и первый из них (на резисторах 47 и 6,2 кОм) заведён также и на выв. 16 TL494, который нам нужно высвободить. В данном случае это грубая «аварийная защита», дублирующая схему на компараторах LM339 и её можно спокойно убирать, выпаяв этот делитель.

Второй же делитель (R48–R50), перед входом компаратора (выв. 7 LM339) нужно превратить в регулируемый, для возможности настройки порога срабатывания защиты. Для этого можно заменить постоянный резистор в любом из его плеч на подстроечный с номиналом в 2 раза больше. Я заменил резистор верхнего плеча (47 кОм) на подстроечный 100 кОм.

В схеме защиты от перенапряжения достаточно заменить стабилитрон ZD3, подключенный к цепи +12V на КС522А. Кстати, для проверки работоспособности этой защиты достаточно закоротить стабилитрон пинцетом – БП должен выключиться.

Если в вашем БП схема защиты выполнена с использованием второго компаратора TL494 (выв. 15 и 16), который нам нужно высвободить для петли регулировки тока – то рекомендую собирать самую распространённую и многократно проверенную схему защиты на двух транзисторах. Вот полная схема БП в хорошем разрешении, в котором используется данная схема защиты. А вот, что должно остаться от защиты:

Сигнал берётся от среднего вывода трансформатора T2, через диод D22 и далее по цепочке поступает на базу Q10. А с коллектора Q8 через диод D29 поступает на выв. 4 TL494. Также на базу Q10 заведена защита от перенапряжения с выхода выпрямителя: стабилитрон КС522А и резистор 1-1,5 кОм включенные последовательно.

Что касается выпрямителя и фильтра выходного напряжения, то здесь меня также ждала удача: выпрямитель +12V имел разводку на плате для размещения двух выпрямительных диодных сборок параллельно (зеркально, с каждой стороны радиатора) в корпусе TO-220. В схеме фильтра уже присутствовал второй дроссель (на ферритовом стержне) и имелось достаточное место для установки электролитических конденсаторов взамен штатных. Значит, делаем фильтр на его же месте, в соответствии с рекомендациями в первой статье.

Диодные сборки для выпрямителя подобрал SBR20100CT (20 А, 100 В, корпус TO-220) из имеющихся дома от других компьютерных БП. Установил два корпуса в параллель, как это и позволяла печатная плата.

Дроссель групповой фильтрации я выпаял, и смотал с кольца родные обмотки (обмотка +12V содержала 12 витков). После намотал новую обмотку эмалированным проводом Ø1,0 мм на этом же кольце – 25 витков в два провода, сложенных вместе — всё, как рекомендовано в первой статье. Это, как раз 2 слоя намотки: на внешней стороне кольца витки второго слоя располагаются между витками первого слоя. Мотать рекомендую «от середины» к каждому концу обмотки – так короче концы проводов которые нужно пропускать через кольцо. Провод нужно хорошо натягивать, что бы он плотно прилегал к кольцу.

У меня имеется много конденсаторов с промышленных плат 1500 мкФ 35 В – их я и поставил в фильтр взамен штатных. В принципе, такой ёмкости уже достаточно. Также добавил керамические конденсаторы параллельно им, и установил резистор 100 Ом 2 Вт для устойчивой работы БП без внешней нагрузки. Этот резистор должен быть поднят над платой на всю длину его выводов – он может нагреваться при установке предельных значений напряжения.

Единственное, что нужно не забыть сделать в БП ATX – это убрать цепь вольтдобавки от выпрямителя +12V, которая питает микросхему ШИМ TL494 (выв. 12). Обычно это диод или диод последовательно с резистором в несколько Ом. В отличие от штатной схемы – выходное напряжение нашего БП будет регулируемым, и эта цепь только добавит нестабильности питания для ШИМ. Пульсации на выходе от этого увеличиваются. Пусть ШИМ питается только от дежурного источника.

Стал просматривать ещё раз схемы на сайте и наткнулся на схему аналогичного БП… Бывает! Ничего общего в названии, но отличие лишь в порядке нумерации элементов на плате и значениях ёмкости больших электролитических конденсаторов (не удивительно, схема от БП мощностью 300 Вт) – остальное один в один. Покажу и на примере всей схемы, что было удалено, а что оставлено.

И так, силовая (высоковольтная) часть у нас в порядке. Выходной выпрямитель и фильтр подготовлен. Защита от превышения мощности и перенапряжения имеется. Схема выключения БП выпаяна. Осталось сделать схему управления.

На этом этапе рекомендую испытать БП

Это выявит возможные ошибки в переделанной части, позволит определиться с максимальной нагрузочной способностью БП, проверить температурный режим его элементов, и работу схемы защиты. Вы будете полностью уверены в полной работоспособности БП до установки платы управления.

Для этого нужно подключить простейший делитель напряжения из двух резисторов (15 и 4,7 кОм) и потенциометр (10…50 кОм) к первому компаратору TL494 (выв. 1 и 2), как показано на схеме ниже. Чтобы исключить влияние второго компаратора, выв. 16 нужно заземлить, а на выв. 15 подать небольшое напряжение. В некоторых БП это уже сделано – так что не торопитесь резать эти цепи! В моём БП в штатной схеме на выв. 15 было уже подано +5 В, а выв. 16 остался заземлён через резистор 6,2 кОм от бывшего делителя.

Пробное включение в сеть производите через лампу накаливания 220 В 100 Вт, включенную вместо предохранителя. Это позволит избежать выхода из строя силовых транзисторов. В случае превышения тока, лампа просто зажжётся, сохранив дорогостоящие транзисторы. Естественно, БП запитанный через лампочку не позволит нагрузить его, так что испытание под нагрузкой нужно производить уже без лампочки.

Сделайте пробное включение. Если БП не запускается, то проверяйте сначала наличие напряжения 300…310 В на конденсаторах сетевого выпрямителя, затем наличие напряжения питания +12 В (или выше), которое поступает от источника дежурного напряжения на вывод 12 TL494, и затем отсутствие напряжения на выв. 4 – если оно там присутствует, то значит, защита запрещает работу ШИМ. Если ошибок нет – то выходное напряжение будет плавно регулироваться потенциометром в диапазоне от 0 до 20…21 В. Если это так, то можно отключать лампочку, ставить предохранитель обратно и переходить к испытаниям БП под нагрузкой.

Но сначала позаботьтесь об охлаждении силовых элементов! Вентилятор можно расположить сбоку от радиаторов, что бы он их хорошо продувал. Питание на вентилятор можно взять от дежурного источника (с выхода выпрямителя, питающего TL494), убедившись, что там, около 12 В.

В качестве нагрузки БП я использую толстую (около 1 мм) нихромовую проволоку, подсоединяясь к ней «крокодилами». Сопротивление меняю – изменяя расстояние между точками подключения – получается классический реохорд. Достаточно 2 м длины. Проволока будет накаляться (иногда докрасна) – так что позаботьтесь, чтобы она свободно висела не соприкасалась с окружающими предметами. При нагрузках более 10 А, я использую две сложенные вместе проволоки.

Нагружайте БП постепенно, контролируя напряжение и ток! Следите за нагревом силовых элементов. Лучший вариант – когда при предельных мощностях радиатор с силовыми транзисторами, радиатор с выпрямительными диодами и дроссель на кольце нагреваются примерно в равной степени. Не забывайте, что радиатор силовых транзисторов находится под потенциалом сети питания!

Подавляющее большинство компьютерных БП тянет ток 10 А при напряжении 20 В, т.е. 200 Вт мощности по бывшей 12V обмотке. Лучший вариант – контролировать осциллографом скважность импульсов на вторичной обмотке. Пределом следует считать примерно 90% заполнение (не бойтесь, 100% не даст выставить логика работы TL494). У моего БП предельная мощность по этой обмотке составила 250 Вт. Порог срабатывания защиты я настроил на 220…230 Вт.

Нагрев элементов был не столь существенный и я пошёл дальше. Попробовал нагрузить БП током 20 А при напряжении 10 В (те же 200 Вт) – диоды выпрямителя и дроссель стали греться больше, но терпимо. И тогда я решил сделать предел регулировки тока 20 А. Это позволит в диапазоне выходных напряжений от 0 до 10 В нагружать БП током 20 А. Выше этого напряжения предельный ток будет спадать (это ограничит нам схема защиты по перегрузке) до уровня 10 А при 20 В. Например, при напряжении 14 В блок может отдать в нагрузку ток 16 А, что очень заманчиво!

Многие жалуются на треск и писк, при определённых напряжениях и токах нагрузки. Испытывая БП на различных нагрузках я тоже с этим столкнулся и решил глубже изучить этот вопрос.

Писк – это самовозбуждение в петле регулировки выходного напряжения: от выходной «+» клеммы, до выв. 1 TL494 (включая внутренний компаратор в ней, т.е. как бы до выв. 3 TL494). Самовозбуждение проявляется появлением пульсаций напряжения на выходных клеммах БП, что прекрасно видно осциллографом. Прежде всего, это связано с цепочками отрицательной обратной связи (ООС) между выв. 2 и 3 и выв. 15 и 3, которые определяют коэффициент усиления в петле регулировки. В своей первой конструкции я оттуда выбросил резисторы, а зря!

Нужно сохранить штатную цепочку между выв. 2 и 3 TL494. У меня в старой схеме (конденсатор 0,1 мкФ) не лучший вариант, нужно поставить туда конденсатор в районе 0,022…0,047 мкФ и резистор 33…68 кОм, включенные последовательно. Резистор нужно подобрать по минимуму самовозбуждения (писка). Вместо резистора я ставил подстроечный 100 кОм, и загоняя БП в режим максимального «писка» (подбирая сочетание выходного напряжения и тока нагрузки БП), меняя сопротивление этого резистора находил минимум (проще смотреть осциллографом амплитуду пульсаций на выходе БП). У меня, например, идеальная цепочка получилась при сочетании 0,033 мкФ и 43 кОм.

Позднее, аналогично я подобрал и номиналы в петле ООС регулировки тока – RC цепочку между выв. 15 и 3 TL494. У меня идеальная цепочка получилась при сочетании 0,15 мкФ и 4,7 кОм. Конденсаторы этих цепочек должны отличаться по ёмкости, иначе, при одинаковых цепочках, появляется самовозбуждение на границе перехода из режима стабилизации напряжения в режим стабилизации тока – компараторы внутри TL494 начинают как бы «бороться» между собой, кому из них регулировать напряжение на выходе.

Также причиной самовозбуждения являются просадки напряжения по проводнику массы на плате между выпрямителем выходного напряжения и минусом питания TL494. Пробуйте соединить короткой толстой перемычкой (провод сечением не менее 1,5 мм²) средний вывод вторичной обмотки трансформатора (косичку), сидящий на земле, с землёй вблизи выв. 7 микросхемы TL494. Также точка, куда припаивается провод земли от переменных резисторов регулировки напряжения и тока должна быть выбрана вблизи выв. 7. Проверку лучше делать прямо на ходу: берёте кусок провода сечением 2,5 мм² длиной сантиметров 10-12, изгибаете дугой и пробуете соединять эти точки между собой.

Ну и третье – это наводки на провода цепи регулировки выходного напряжения от трансформатора – попробуйте повесить конденсатор 0,01 мкФ между выв. 2 и 7 (земля). Делайте именно в этом порядке! Т.к. иногда, установка перемычки, например, полностью убирает самовозбуждение, и после этого RC цепочку ООС уже не подобрать по минимуму.

В итоге я снизил размах пульсаций при токе нагрузки 10 А и напряжении 20 В в режиме стабилизации напряжения ниже 5 мВ, и в режиме стабилизации тока ниже 15 мВ. Это очень высокие показатели!

После испытания БП можно переходить к сборке платы управления. В первом варианте я отказался от использования дифференциального усилителя в петле регулировки тока, дабы уменьшить количество проводов. А зря! Коэффициент стабилизации тока оказался невысоким, плюс падение напряжения на проводах земли дополнительно вносило погрешность. Поэтому в новой схеме я включил оба операционных усилителя (ОУ) по дифференциальной схеме. Требования к типу ОУ остаются прежними, как написано в первой статье.

Усилитель в цепи регулировки напряжения (DA1.1) остался неизменным. При указанных номиналах резисторов (R1=R3 и R2=R4) предел регулировки напряжения соответствует 20,0 В. Для точной работы дифференциального усилителя нужно сохранять равенство этих сопротивлений в парах. Резисторы с номиналом 4,9 кОм составлены из двух, включенных последовательно (например, 3,9 и 1 кОм, или 4,7 кОм и 200 Ом и т.п.).

Усилитель в цепи регулировки тока собран по аналогичной дифференциальной схеме включения ОУ (DA1.2), что требует подключения его входов отдельными тонкими проводами непосредственно к клеммам шунта. Амперметр я использовал прежний SAH0012R-50, поэтому шунт остался точно таким же 75ШИП1-50-0.5 с сопротивлением 1,5 миллиОма. При этом шунте и указанных в схеме номиналах резисторов (R5=R7 и R6=R8) предел регулировки тока составляет 20 А. Чтобы уменьшить предел регулировки тока до 10 А нужно уменьшить сопротивление резисторов R5, R7 до 110 Ом. В случае использования амперметра с другим шунтом, отличающимся по сопротивлению, чтобы задать верхний предел регулировки тока, потребуется изменить сопротивление резисторов R5 и R7 (или R6 и R8), сохраняя равенство их сопротивлений между собой.

Индикацию перехода в режим стабилизации тока я перенёс в цепь регулировки напряжения, поменяв входы компаратора (DA1.4) между собой. В принципе – это не принципиально…

Как и в прошлой конструкции, переменные резисторы регулировки напряжения и тока (R10 и R11), а также R12–R14, C2 и C3 расположены на отдельной плате, расположенной на передней панели корпуса. Файл платы в формате Sprint-Layout можно скачать от сюда. Цепочки C4, R15 (штатная) и C5, R16 расположены на плате БП вблизи микросхемы TL494. Остальное расположено на отдельной плате, которую можно скачать от сюда. Монтаж выполнен на SMD элементах.

Хочу ещё раз подчеркнуть, что питание и землю на схему управления нужно брать от точек на плате БП в непосредственной близости от выв. 12 и 7 TL494. Земля к переменным резисторам регулировки тока и напряжения на передней панели также должна браться вблизи выв. 7 TL494. Корпус переменных резисторов должен быть заземлён.

Дежурный источник питания

Теперь поговорим о внутреннем питании ШИМ, платы управления, вольтметра, амперметра и вентилятора. В принципе, суммарный потребляемый ток этих элементов не высокий – его прекрасно потянет дежурный источник питания. Но нужно учитывать импульсный характер нагрузки, который имеет, прежде всего, вентилятор, и измерительные приборы (за счёт динамического режима работы светодиодных цифровых индикаторов). Пульсации в цепи питания ШИМ и платы управления нам ни к чему, поэтому их нужно развязать между собой.

Я пошёл ещё дальше: дежурный источник питания имеет два выхода: стабилизированный +5V_SB и второй, напряжением около 12 В, который стабилизирован параметрически (косвенно). Первый нам не нужен, а используется, как раз второй! Поэтому я перенёс цепи стабилизации напряжения с выхода +5V_SB на второй выход и настроил их на напряжение 12 В. (Если вам нужно для каких-либо целей +5 В, то можно установить интегральный стабилизатор LM7805 от этой цепи.)

Собственно, идея сделать лабораторный блок питания с регулируемым выходным напряжением и током из компьютерного – не нова. В интернете встречается немало вариантов подобных переделок.

Преимущества очевидны:
1. Такие блоки питания буквально «валяются под ногами».
2. Они содержат в себе все основные компоненты, а главное, готовые импульсные трансформаторы.
3. Они имеют превосходные массогабаритные характеристики – подобный трансформаторный блок питания весил бы более 10 кг (этот 1,3 кг всего).

Правда, они не лишены и недостатков:
1. Из-за импульсного преобразования – выходное напряжение содержит богатый спектр высокочастотных помех, что делает их ограниченно применимыми для питания радиостанций.
2. Не позволяют гарантированно получить низкое напряжение на выходе (менее 5 В) при малых токах нагрузки. Это относится только к АТ блокам питания, в которых нет дежурного источника. В ATX напряжение регулируется от 0 В.

И, тем не менее, такой блок питания прекрасно подходит для питания автомобильной электроники в домашних условиях, при проверке и отладке электронных устройств. А наличие режима стабилизации тока позволяет использовать его как универсальное зарядное устройство для большой гаммы аккумуляторов!

Выходное напряжение — от 1 до 20 В
Выходной ток — до 10 А
Масса 1,3 кг

Внимание: это первая статья про переделку блока питания. Читайте также вторую часть!

Для начала, давайте разберёмся, какие блоки питания годятся для переделки. Лучшим образом, для лабораторного блока питания годятся как раз старые блоки питания AT или ATX, собранные на ШИМ-контроллере TL494 (он же: μPC494, μА494, KIA494, AZ494AP, M5T494P, UTC51494, KA7500, AZ7500BP, IR3M02, МВ3759, КР1114ЕУ4 и др. аналогах) мощностью 200 – 250 Вт. Таких встречается большинство! Современные ATX12B, на 350 – 450 Вт, конечно тоже не проблема переделать, но всё же они лучше годятся для блоков питания с фиксированным выходным напряжением (например, 13,8 В).

Для дальнейшего понимания сути переделки, рассмотрим принцип работы блока питания для компьютера.

Более-менее стандартизированные блоки питания (PC/XT, AT, PS/2) для компьютеров появились в начале 80-х годов благодаря компании IBM, и просуществовали до 1996 года. Давайте рассмотрим их принцип действия по структурной схеме:

Сетевое напряжение поступает в блок питания через фильтр электромагнитных помех, который препятствует распространению высокочастотных помех от импульсного преобразователя в питающую сеть. За ним следует выпрямитель и сглаживающий фильтр, на выходе которого получаем постоянное напряжение 310 В. Это напряжение поступает на полумостовой инвертор, который преобразует его в прямоугольные импульсы и подаёт на первичную обмотку понижающего трансформатора T1.

Напряжения со вторичных обмоток трансформатора поступают на выпрямители и сглаживающие фильтры. В итоге, на выходе мы получаем необходимые постоянные напряжения.

При подаче питания, в начальный момент, инвертор запускается в режиме автогенерации, а после появления напряжений на вторичных выпрямителях, в работу включатся ШИМ-контроллер (TL494), который синхронизирует работу инвертора, подавая запускающие импульсы в базы ключевых транзисторов через развязывающий трансформатор T2.

В блоке питания используется широтно-импульсное регулирование выходного напряжения. Для увеличения напряжения на выходе, контроллер увеличивает длительность (ширину) импульсов запуска, а для уменьшения – уменьшает.

Стабилизация выходного напряжения в таких блоках питания часто осуществляется только по одному выходному напряжению (+5 В, как самому важному), иногда по двум (+5 и +12), но с приоритетом +5 В. Для этого, на вход компаратора контроллера (вывод 1 TL494, через делитель) поступает выходное напряжение. Контроллер подстраивает ширину импульсов запуска, для поддержания этого напряжения на необходимом уровне.

Также, блок питания имеет систему защиты 2 видов. Первую – от превышения суммарной мощности и короткого замыкания, и вторую, от перенапряжения на выходах. В случае перегрузки, схема останавливает работу генератора импульсов в ШИМ-контроллере (подавая +5 В на вывод 4 TL494).

Кроме того, блок питания содержит узел (на схеме не показан), формирующий на выходе сигнал POWER_GOOD («напряжения в норме»), после выхода блока питания на рабочий режим, разрешающий запуск процессора в компьютере.

Блок питания AT (PC/XT, PS/2) имеет всего 12 основных проводов для подключения к материнской плате (2 разъёма по 6 контактов). В 1995 году компания Intel с ужасом обнаружила, что существующие блоки питания не справляются с возросшей нагрузкой, и ввела стандарт на 20-ти/24-контактный разъём. Кроме того, мощности стабилизатора +3,3 В на материнской плате для питания процессора также перестало хватать, и его перенесли в блок питания. Ну и Microsoft, ввела в операционную систему Windows, режимы управления питанием Advanced Power Management (APM)… Так, в 1996 году появился современный блок питания ATX.

Рассмотрим отличия блока питания ATX от старых AT по его структурной схеме:

Режим Advanced Power Management (APM) потребовал отказаться от сетевого выключателя и ввести в блок питания второй импульсный преобразователь – источник дежурного напряжения +5 В. Этот маломощный блок питания работает всегда, когда сетевая вилка включена в сеть. Первичное напряжение на него поступает от того же выпрямителя и фильтра, что и на основной инвертор.

Кроме того, питание на ШИМ-контроллер в ATX поступает от этого же дежурного источника (не стабилизированные 12 — 22 В), а автозапуск инвертора отсутствует. Поэтому, блок питания стартует только при наличии импульсов запуска от контроллера. Включение основного блока питания осуществляется включением генератора импульсов ШИМ-контроллера сигналом PS_ON (замыканием его на массу) через схему защиты.

При переделке БП ATX, источник дежурного напряжения нужно сохранить. Во-первых, он будет питать достаточным напряжением ШИМ-контроллер при установке на выходе основного выпрямителя очень низкого напряжения (вплоть до 0 В). Во-вторых, от него можно запитать вентилятор, через 12 В стабилизатор. Характерные особенности переделки именно ATX БП изложены во второй части статьи.

Вот, и все основные отличия.

Как выбрать блок питания для переделки?

Как известно, блоки питания изготавливаются в Китае. А это может повлечь за собой отсутствие некоторых компонентов, которые они сочли «лишними»:

1. На входе может отсутствовать фильтр электромагнитных помех. Самое главное в фильтре – это дроссель, намотанный на ферритовом кольце. Обычно, его прекрасно видно сквозь лопасти вентилятора. Вместо него могут оказаться проволочные перемычки. Наличие фильтра – косвенный признак качественного блока питания!

2. Также, нужно посмотреть на размер понижающего трансформатора (тот который побольше). От него зависит максимальная мощность блока питания. Высота его должна быть не менее 3 см. Встречаются блоки питания с трансформатором высотой менее 2 см. Мощность таких 75 Вт, даже если написано 200.

3. Для проверки работоспособности блока питания подключите к нему нагрузку. Я использую автомобильные лампы фар мощностью 50 – 55 Вт напряжением 12 В. Обязательно одну подсоедините к цепи +5 В (красный провод), а вторую, к цепи +12 В (жёлтый провод). Включите блок питания. Отсоедините разъём вентилятора (или, если на нём сэкономили китайцы, просто остановите рукой). Блок питания не должен пищать.

Спустя минуту отключите его от сети и пощупайте рукой температуру радиаторов и дросселя групповой фильтрации в фильтре вторичных напряжений. Дроссель должен быть холодный, а радиаторы тёплыми, но не раскалёнными!

Я использовал блок питания 1994 года выпуска мощностью 230 Вт – тогда ещё не экономили.

Переделка блока питания

Начать нужно с чистки блока питания от пыли. Для этого отсоедините (отпаяйте) от платы сетевые провода и провода к переключателю 110/220 – он нам больше не понадобится, т.к. в положении 220 В выключатель разомкнут. Выньте плату из корпуса. Пылесос, жёсткая кисточка, и вперёд!

Далее, нужно попытаться найти электрическую принципиальную схему вашего блока питания, или хотя бы максимально на неё похожую (отличаются они не существенно). Она вам поможет ориентироваться в номиналах «отсутствующих» компонентов. Рекомендую искать здесь. Я не исключаю, что, как и мне, вам придётся некоторые узлы срисовывать с платы.

Далее нужно выполнить несколько общих модификаций по установке недостающих частей и умощнению цепей первичного напряжения и инвертора. Рассмотрим на примере электрической схемы моего блока питания.

Номиналы заменяемых компонентов на схеме выделены красным цветом. У вновь устанавливаемых компонентов, красным цветом выделены позиционные обозначения.

1. Проверьте наличие всех конденсаторов и дросселя в фильтре электромагнитных помех. При отсутствии – установите их (у меня отсутствовал только C2). Я также установил второй, дополнительный фильтр помех, выполненный в виде гнезда для подключения сетевого шнура.

2. Посмотрите типы используемых диодов в выпрямителе (D1 – D4). Если там стоят диоды с током до 1 А (например, 1N4007) – замените их минимум на 2-х амперные, или установите диодный мост. У меня стоял 2-х амперный мост.

3. В подавляющем большинстве блоков питания в фильтре первичного напряжения установлены конденсаторы ёмкостью не более 200 мкФ (С5 – С6). Для отдачи полной мощности, замените их конденсаторами ёмкостью 470 – 680 мкФ, подходящими по размерам, напряжением не менее 200 В. Предпочтение следует отдавать группе 105°C.

4. Транзисторы в полумостовом инверторе (Q1, Q2) могут быть самые разнообразные. В принципе, большинство из них греется не криминально. Для снижения нагрева, их можно заменить на более мощные – например, 2SC4706, установив их на радиатор, через изолирующие прокладки. Я пошёл ещё дальше и заменил оба радиатора на более эффективные.

5. В процессе испытания блока питания под максимальной нагрузкой, у меня нагрелся и лопнул конденсатор С7 (обычно это 1 мкФ 250 В). Этот конденсатор не должен греться вообще. Я думаю, он был неисправен, но заменил его всё же на 2,2 мкФ 400 В.

Теперь рассмотрим структурную схему переделанного блока питания:

Для модификации нам потребуется удалить все вторичные выпрямители, кроме одного (правда, заменив в нём почти все компоненты), удалить схему PS_ON (что бы БП ключался автоматически), переделать схему защиты, добавить схему управления, шунт (R1, входит в состав амперметра) и измерительные приборы. Элементы схемы POWER_GOOG тоже можно удалить. Теперь подробнее.

Для снятия выходного напряжения используется 12-ти вольтовая обмотка понижающего трансформатора T1. В наиболее мощных и качественных БП, цепи выпрямителя и фильтра +12 В уже имеют второй дроссель и достаточно места для установки электролитических конденсаторов. Но если в цепи фильтра +12 В нет второго дросселя, то лучший вариант — монтировать всё на месте 5-ти вольтового, а затем, перекинуть на него выводы обмотки 12 В. Ниже я опишу именно второй вариант.

Выпрямитель вторичных напряжений и фильтр, после переделки должны выглядеть следующим образом:

1. Выпаяйте все элементы выпрямителей и фильтров +5, +12 и -12 В. За исключением демпферных цепочек R1, C1, R2, С2 и R3, C3 и дросселя L2. Впоследствии, при выходном напряжении порядка 20 В я заметил нагрев резистора R1 и заменил его на 22 Ом.

2. Отрежьте дорожки, ведущие от 5-ти вольтовых отводов обмотки трансформатора T1 к диодной сборке выпрямителя +5 В, сохранив при этом её соединение с диодами выпрямителя –5 В (он нам ещё понадобится).

3. На месте диодной сборки выпрямителя +5 В (D3) установите сборку на диодах Шоттки на ток 2х30 А и обратное напряжение не менее 100 В, например, 63CPQ100, 60CPQ150. (Штатная 5-ти вольтовая сборка диодов имеет обратное напряжение всего 40 В, а штатные диоды в выпрямителе 12 В рассчитаны на слишком слабый ток – их использовать нельзя.) Эта сборка практически не греется при работе.

4. Соедините толстыми проволочными перемычками выводы 12-ти вольтовой обмотки с установленной диодной сборкой. Демпферные цепи R1, C1, подключенные к этой обмотке, сохранены.

5. В фильтре, вместо штатных, установите электролитические конденсаторы (C5, C6) ёмкостью 1000 – 2200 мкФ на напряжение не менее 25 В. А также добавьте керамические конденсаторы C4 и C7. Установите вместо штатного, нагрузочный резистор 100 Ом, мощностью 2 Вт.

6. Если в процессе проверки блока питания под нагрузкой, дроссель групповой фильтрации (L1) не нагревался, то его достаточно перемотать. Смотайте с него все обмотки, считая витки. (Обычно, 5 В обмотки содержат 10 витков, а 12 В – 20 витков.) Намотайте новую обмотку двумя проводами, сложенными вместе диаметром 1,0 – 1,3 мм (аналогично штатной 5-ти вольтовой) и числом витков 25-27. Если в процессе работы будет греться, то увеличьте число витков до 50-ти.

Если же дроссель грелся, то его сердечник испорчен (есть такая проблема у порошкового железа – «спекается») то придётся искать новый сердечник из порошкового железа (не ферритовый!). Мне пришлось купить кольцевой сердечник белого цвета чуть большего диаметра и намотать новую обмотку. Вообще не греется.

7. Дроссель L2 остаётся штатный, от 5-ти вольтового фильтра (обычно это несколько витков на ферритовом стержне).

8. Для питания вентилятора в БП AT используется 5-ти вольтовая обмотка, и разводка выпрямителя –5 В, которую переделываем в +12. Диоды используются штатные, от выпрямителя –5 В (D1, D2), их необходимо запаять обратной полярностью. Дроссель уже не нужен – запаяйте перемычку. А на место штатного конденсатора фильтра, установите конденсатор ёмкостью 470 мкФ 16 В, естественно, обратной полярностью. Бросьте перемычку от выхода фильтра (бывш. –5 В), к разъёму вентилятора. Непосредственно около разъёма, установите керамический конденсатор C9. Напряжение на вентиляторе у меня составляет +11,8 В, при малых токах нагрузки оно снижается.

Это самый простой способ получить «стабильные» +12 В в регулируемом БП AT для вентилятора. Если же вы переделываете БП ATX то используйте для питания вентилятора напряжение (12-22 В) дежурного источника напряжения, включив вентилятор, если требуется, через стабилизатор 12 В, например 7812. Только увеличьте ёмкости конденсаторов в этом источнике раз в 10. Подробнее этот вопрос изложен во второй части статьи.

Если в вашем БП вентилятор получал питание от схемы управления по температуре, то лучше сохранить её. Это уменьшит шум от работы БП при малых нагрузках.

9. В цепи питания ШИМ-контроллера (Vcc), необходимо увеличить ёмкости конденсаторов фильтров C10 и C11. Напряжение с конденсатора C10 (Vdd) используется для питания цифровых амперметра и вольтметра.

Если вы переделываете БП ATX, в котором имеется источник дежурного напряжения (+5V_SB), – сохраните его! В штатной схеме он используется как второй (параллельный) источник питания для ШИМ-контроллера (развязанный через диод). Это позволит сохранять высокое напряжение питания ШИМ, даже при низком напряжении на выходе блока питания (основного выпрямителя). Подробнее этот вопрос изложен во второй части статьи.

Схема защиты по превышению суммарной мощности остаётся без изменений. Вообще, в блоках питания встречается великое множество вариантов реализации схем защиты по превышению мощности. Не пытайтесь её переделать по этой схеме! Я лишь показал на примере схемы защиты своего БП. Сохраните вашу родную, добавив неё цепочку защиты от перенапряжения.

Изменяется только схема защиты от перенапряжения на выходе. Вот, окончательная схема:

Переделка компьютерных бп с шим-контроллерами типа dr-b2002, dr-b2003, sg6105 в лабораторные источники питания. Переделка компьютерных БП с ШИМ-контроллерами типа DR-B2002, DR-B2003, SG6105 в лабораторные источники питания Описание схемы устройства

Микросхема ULN2003 (ULN2003a) по сути своей является набором мощных составных ключей для применения в цепях индуктивных нагрузок. Может быть применена для управления нагрузкой значительной мощности, включая электромагнитные реле, двигатели постоянного тока, электромагнитные клапаны, в схемах управления различными и другие.

Микросхема ULN2003 — описание

Краткое описание ULN2003a. Микросхема ULN2003a — это транзисторная сборка Дарлингтона с выходными ключами повышенной мощности, имеющая на выходах защитные диоды, которые предназначены для защиты управляющих электрических цепей от обратного выброса напряжения от индуктивной нагрузки.

Каждый канал (пара Дарлингтона) в ULN2003 рассчитан на нагрузку 500 мА и выдерживает максимальный ток до 600 мА. Входы и выходы расположены в корпусе микросхемы друг напротив друга, что значительно облегчает разводку печатной платы.

ULN2003 относится к семейству микросхем ULN200X. Различные версии этой микросхемы предназначены для определенной логики. В частности, микросхема ULN2003 предназначена для работы с TTL логикой (5В) и логических устройств CMOS. Широкое применение ULN2003 нашло в схемах управления широким спектром нагрузок, в качестве релейных драйверов, драйверов дисплея, линейных драйверов и т. д. ULN2003 также используется в драйверах шаговых двигателей.

Структурная схема ULN2003

Принципиальная схема

Характеристики

  • Номинальный ток коллектора одного ключа — 0,5А;
  • Максимальное напряжение на выходе до 50 В;
  • Защитные диоды на выходах;
  • Вход адаптирован к всевозможным видам логики;
  • Возможность применения для управления реле.

Аналог ULN2003

Ниже приводим список чем можно заменить ULN2003 (ULN2003a):

  • Зарубежный аналог ULN2003 — L203, MC1413, SG2003, TD62003.
  • Отечественным аналогом ULN2003a — является микросхема .

Микросхема ULN2003 — схема подключения

Зачастую микросхему ULN2003 используют при управлении шаговым двигателем. Ниже приведена схема включения ULN2003a и шагового двигателя.

Рассказать в:

В статье представлена простая конструкция ШИМ-регулятора, с помощью которой можно легко переделать компьютерный блок питания, собранный на контроллере, отличном от популярного tl494, в частности, dr-b2002, dr-b2003, sg6105 и прочих, в лабораторный с регулируемым выходным напряжением и ограничением тока в нагрузке. Также здесь я поделюсь опытом переделки компьютерных БП и опишу испытанные способы увеличения их максимального выходного напряжения.

В радиолюбительской литературе имеется множество схем переделки устаревших компьютерных блоков питания (БП) в зарядные устройства и лабораторные источники питания (ИП). Но все они касаются тех БП, в которых узел управления построен на базе микросхемы ШИМ-контроллера типа tl494, или его аналогов dbl494, kia494, КА7500, КР114ЕУ4. Нами было переделано больше десятка таких БП. Хорошо показали себя зарядные устройства, изготовленные по схеме, описанной М. Шумиловым в статье «Простой встраиваемый ампервольтметр на pic16f676».

Но все хорошее когда-нибудь кончается и в последнее время все чаще стали попадаться компьютерные БП, в которых были установлены другие ШИМ-контроллеры, в частности, dr-b2002, dr-b2003, sg6105. Возник вопрос: как можно использовать эти БП для изготовления лабораторных ИП? Поиск схем и общение с радиолюбителями не позволил продвинуться в этом направлении, хотя и удалось найти краткое описание и схему включения таких ШИМ-контроллеров в статье«ШИМ-контроллеры sg6105 и dr-b2002 в компьютерных ИП».Из описания стало понятно, что эти контроллеры гораздо сложнее tl494 и пытаться управлять ими извне для регулирования выходного напряжения вряд ли возможно. Поэтому от этой идеи было решено отказаться. Однако при изучении схем «новых» БП было отмечено, что построение схемы управления двухтактным полумостовым преобразователем выполнено аналогично «старым» БП — на двух транзисторах и разделительном трансформаторе.

Была предпринята попытка вместо микросхемы dr-b2002 установить tl494 со своей стандартной обвязкой, подключив коллекторы выходных транзисторов tl494 к базам транзисторов схемы управления преобразователем БП. В качестве обвязки tl494 для обеспечения регулирования выходного напряжения была выбрана неоднократно проверенная выше упомянутая схема М. Шумилова. Такое включение ШИМ-контроллера позволяет отключить все имеющиеся в БП блокировки и схемы защиты, к тому же эта схема очень проста.

Попытка замены ШИМ-контроллера увенчалась успехом — БП заработал, регулировка выходного напряжения и ограничение тока также работали, как и в переделанных БП «старого» образца.

Описание схемы устройства

Конструкция и детали

Блок ШИМ-регулятора собран на печатной плате из односторонне фольгированного стеклотекстолита размером 40х45 мм. Чертеж печатной платы и схема расположения элементов показаны на рисунке. Чертеж показан со стороны установки компонентов.

Плата рассчитана на установку выводных компонентов. Особых требований к ним не предъявляется. Транзистор vt1 может быть заменен на любой другой аналогичный по параметрам биполярный транзистор прямой проводимости. На плате предусмотрена установка подстроечных резисторов r5 разных типоразмеров.

Монтаж и наладка

Крепление платы осуществляется в удобном месте одним винтом поближе к месту установки ШИМ-контроллера. Автор нашел удобным крепить плату к одному из радиаторов БП. Выходы pwm1, pwm2 запаивают прямо в соответствующие отверстия ранее установленного ШИМ-контроллера — выводы которых идут к базам транзисторов управления преобразователем (выводы 7 и 8 микросхемы dr-b2002). Подключения вывода vcc осуществляется к точке, в которой имеется выходное напряжение схемы дежурного питания, значение которого может находиться в пределах 13…24В.

Регулировка выходного напряжения ИП осуществляется потенциометром r5, минимальное выходное напряжение зависит от номинала резистора r7. Резистором r8 можно осуществить ограничение максимального выходного напряжения. Значение максимального выходного тока регулируется подбором номинала резистора r3 — чем меньше его сопротивление, тем больше будет максимальный выходной ток БП.

Порядок переделки компьютерного БП в лабораторный ИП

Работа по переделке БП связана с работой в цепях с высоким напряжением, поэтому настоятельно рекомендуется подключать БП к сети через разделительный трансформатор мощностью не менее 100Вт. Кроме того, для исключения выхода из строя ключевых транзисторов в процессе наладки ИП, подключать его к сети следует через «предохранительную» лампу накаливания на 220В мощностью 100Вт. Ее можно подпаять к БП вместо сетевого предохранителя.

Прежде, чем приступить к переделке компьютерного БП желательно убедиться в его исправности. Перед включением к выходным цепям +5В и +12В следует подключить автомобильные лампочки на 12В мощностью до 25 Вт. Затем подключить БП к сети и соединить вывод ps-on (обычно зеленого цвета) с общим проводом. В случае исправности БП «предохранительная» лампа кратковременно вспыхнет, БП заработает и загорятся лампы в нагрузке +5В, +12В. Если после включения «предохранительная» лампа загорится в полный накал, возможен пробой силовых транзисторов, диодов выпрямительного моста и т. д.

Далее следует найти на плате БП точку, в которой имеется выходное напряжение схемы дежурного питания. Его значение может находиться в пределах 13…24В. Из этой точки в дальнейшем будем брать питание для блока ШИМ-регулятора и вентилятора охлаждения.

Затем следует выпаять штатный ШИМ-контроллер и подключить к плате БП блок ШИМ-регулятора согласно схемы (рис. 1). Вход p_in подключают к 12-вольтовому выходу БП. Теперь необходимо проверить работу регулятора. Для этого следует подключить к выходу p_out нагрузку в виде автомобильной лампочки, движок резистора r5 вывести до отказа влево (в положение минимального сопротивления) и подключить БП к сети (опять же через «предохранительную» лампу). Если лампа нагрузки загорится, следует убедиться в исправности схемы регулировки. Для этого нужно осторожно повернуть движок резистора r5 вправо, при этом желательно контролировать выходное напряжение вольтметром, чтобы не сжечь нагрузочную лампу. Если выходное напряжение регулируется, значит блок ШИМ-регулятора работает и можно продолжать модернизацию БП.

Выпаиваем все провода нагрузки БП, оставив по одному проводу в цепях +12 В и общий для подключения блока ШИМ-регулятора. Выпаиваем: диоды (диодные сборки) в цепях +3,3 В, +5 В; диоды выпрямителей -5 В, -12 В; все конденсаторы фильтров. Электролитические конденсаторы фильтра цепи +12 В следует заменить на конденсаторы аналогичной емкости, но с допустимым напряжением 25 В или более в зависимости от предполагаемого максимального выходного напряжения изготавливаемого лабораторного ИП. Далее следует установить нагрузочный резистор, показанный на схеме рис. 1 как r2, необходимый для обеспечения устойчивой работы ИП без внешней нагрузки. Мощность нагрузки должна быть около 1 Вт. Сопротивление резистора r2 можно рассчитать исходя из максимального выходного напряжения ИП. В самом простом случае подойдет 2-х ваттный резистор сопротивлением 200-300 Ом.

Далее можно выпаять элементы обвязки старого ШИМ-контроллера и прочие радиодетали из неиспользуемых выходных цепей БП. Чтобы не выпаять случайно что-нибудь «полезное» рекомендуется отпаивать детали не полностью, а по одному выводу, и лишь убедившись в работоспособности ИП, удалять деталь полностью. По поводу дросселя фильтра l1, автор обычно ничего с ним не делает и использует штатную обмотку цепи +12 В. Это связано с тем, что в целях безопасности максимальный выходной ток лабораторного ИП обычно ограничивается на уровне, не превышающем паспортный для цепи +12 В БП.

После очистки монтажа рекомендуется увеличить емкость конденсатора фильтра С1 источника питания дежурного режима, заменив его на конденсатор номиналом 50 В/100 мкФ. Кроме того, если установленный в схеме диод vd1 маломощный (в стеклянном корпусе), его рекомендуется заменить на более мощный, выпаянный из выпрямителя цепи -5 В или -12 В. Также следует подобрать сопротивление резистора r1 для комфортной работы вентилятора охлаждения М1.

Опыт переделки компьютерных БП показал, что с применением различных схем управления ШИМ-контроллером, максимальное выходное напряжение ИП будет находиться в пределах 21…22 В. Этого более чем достаточно для изготовления зарядных устройств для автомобильных аккумуляторов, однако для лабораторного источника питания все же маловато. Для получения повышенного выходного напряжения многие радиолюбители предлагают использовать мостовую схему выпрямления выходного напряжения, но это связано с установкой дополнительных диодов, стоимость которых довольно высока. Я считаю этот метод нерациональным и используею другой способ повышения выходного напряжения ИП — модернизацию силового трансформатора.

Есть два основных способа модернизации силового трансформатора ИП. Первый способ удобен тем, что для его реализации не требуется разборка трансформатора. Он основан на том факте, что обычно вторичная обмотка мотается в несколько проводов и есть возможность ее «расслоить». Схематично вторичные обмотки силового трансформатора показаны на рис. а). Это наиболее часто встречающаяся схема. Обычно 5-вольтовая обмотка имеет по 3 витка, намотанных в 3-4 провода (обмотки «3,4»-«общ.» и «общ.»-«5,6»), а 12-вольтовая — дополнительно по 4 витка в один провод (обмотки «1»-«3,4» и «5,6»-«2»).

Для этого трансформатор выпаивают, аккуратно распаивают отводы 5-вольтовой обмотки и расплетают «косичку» общего провода. Задача состоит в том, чтобы разъединить параллельно включенные 5-вольтовые обмотки и включить все или часть из них последовательно, как это показано на схеме рис. б).

Выделить обмотки не составляет труда, но вот правильно сфазировать их довольно трудно. Автор использует для этой цели низкочастотный генератор синусоидального сигнала и осциллограф или милливольтметр переменного тока. Подключив выход генератора, настроенного на частоту 30…35 кГц, к первичной обмотке трансформатора, с помощью осциллографа или милливольтметра контролируют напряжение на вторичных обмотках. Комбинируя подключение 5-вольтовых обмоток добиваются увеличения выходного напряжения по сравнению с исходным на требуемую величину. Таким способом можно добиться увеличения выходного напряжения БП до 30…40 В.

Второй способ модернизации силового трансформатора — это его перемотка. Это единственный способ получить выходное напряжение ИП более 40 В. Самой трудной задачей здесь является разъединение ферритового сердечника. Автор взял на вооружение способ вываривания трансформатора в воде в течение 30-40 минут. Но прежде, чем вываривать трансформатор следует хорошо продумать способ разъединения сердечника, учитывая тот факт, что после вываривания он будет очень горячим, к тому же горячий феррит становится очень хрупким. Для этого предлагается вырезать из жести две клиновидные полоски, которые затем можно будет вставить в зазор между сердечником и каркасом, и с их помощью разъединить половинки сердечника. В случае разламывания или откалывания частей ферритового сердечника особо расстраиваться не стоит, так как его успешно можно склеить циакриланом (т. н. «суперклеем»).

После освобождения катушки трансформатора необходимо смотать вторичную обмотку. У импульсных трансформаторов есть одна неприятная особенность — первичная обмотка намотана в два слоя. Сначала на каркас намотана первая часть первичной обмотки, затем экран, затем все вторичные обмотки, снова экран и вторая часть первичной обмотки. Поэтому нужно аккуратно смотать вторую часть первичной обмотки, при этом обязательно запомнив ее подключение и направление намотки. Затем снять экран, выполненный в виде слоя медной фольги с припаянным проводом, ведущим к выводу трансформатора, который предварительно следует отпаять. И, наконец, смотать вторичные обмотки до следующего экрана. Теперь обязательно нужно хорошо просушить катушку струей горячего воздуха для испарения воды, проникшей в обмотку во время вываривания.

Количество витков вторичной обмотки будет зависеть от требуемого максимального выходного напряжения ИП из расчета примерно 0,33 витка/В (то есть 1 виток — 3 В). Например, автор намотал 2х18 витков провода ПЭВ-0,8 и получил максимальное выходное напряжение ИП около 53 В. Сечение провода будет зависеть от требования к максимальному выходному току ИП, а также от габаритов каркаса трансформатора.

Вторичную обмотку мотают в 2 провода. Конец одного провод сразу запаивают на первый вывод каркаса, а второй оставляют с запасом 5 см для формирования «косички» нулевого вывода. Закончив намотку, запаивают конец второго провода на второй вывод каркаса и формируют «косичку» таким образом, чтобы количество витков обеих полуобмоток обязательно было одинаковым.

Теперь следует восстановить экран, намотать смотанную ранее вторую часть первичной обмотки трансформатора, соблюдая исходное подключение и направление намотки, и собрать магнитопровод трансформатора. Если разводка вторичной обмотки запаяна правильно (на выводы 12-вольтовой обмотки), то можно впаять трансформатор в плату БП и проверить его работоспособность.

АРХИВ:Скачать

Раздел: [Блоки питания (импульсные)]
Сохрани статью в:

зарядное устройство из компьютерного блока питания своими руками

В различных ситуациях требуются разные по напряжению и мощности ИП. Поэтому многие покупают или делают такой, чтоб хватило на все случаи.

И проще всего взять за основу компьютерный. Данный лабораторный блок питания с характеристиками 0-22 В 20 А переделан с небольшой доработкой из компьютерного АТХ на ШИМ 2003. Для переделки использовал JNC mod. LC-B250ATX. Идея не нова и в интернете множество подобных решений, некоторые были изучены, но окончательное получилось свое. Результатом очень доволен. Сейчас ожидаю посылку из Китая с совмещенными индикаторами напряжения и тока, и, соответственно, заменю. Тогда можно будет назвать мою разработку ЛБП — зарядное для автомобильных АКБ.

Схема регулируемого блока питания:


Первым делом выпаял все провода выходных напряжений +12, -12, +5, -5 и 3,3 В. Выпаял все, кроме +12 В диоды, конденсаторы, нагрузочные резисторы.


Заменил входные высоковольтные электролиты 220 х 200 на 470 х 200. Если есть, то лучше ставить бОльшую емкость. Иногда производитель экономит на входном фильтре по питанию — соответственно рекомендую допаять, если отсутствует.


Выходной дроссель +12 В перемотал. Новый — 50 витков проводом диаметром 1 мм, удалив старые намотки. Конденсатор заменил на 4700 мкф х 35 В.


Так как в блоке имеется дежурное питание с напряжениями 5 и 17 вольт, то использовал их для питания 2003-й и по узлу проверки напряжений.


На вывод 4 подал прямое напряжение +5 вольт с «дежурки» (т.е. соединил его с выводом 1). С помощью резисторного 1,5 и 3 кОм делителя напряжения от 5 вольт дежурного питания сделал 3,2 и подал его на вход 3 и на правый вывод резистора R56, который потом выходит на вывод 11 микросхемы.

Установив микросхему 7812 на выход 17 вольт с дежурки (конденсатор С15) получил 12 вольт и подключил к резистору 1 Ком (без номера на схеме), который левым концом подключается к выводу 6 микросхемы. Также через резистор 33 Ом запитал вентилятор охлаждения, который просто перевернул, чтоб он дул внутрь. Резистор нужен для того, чтоб снизить обороты и шумность вентилятора.


Всю цепочку резисторов и диодов отрицательных напряжений (R63, 64, 35, 411, 42, 43, C20, D11, 24, 27) выпаял из платы, вывод 5 микросхемы закоротил на землю.

Добавил регулировку напряжения и индикатор выходного напряжения из китайского интернет магазина. Только необходимо запитать последний от дежурки +5 В, а не от измеряемого напряжения (он начинает работать от +3 В). Испытания блока питания

Испытания проводились одновременным подключением нескольких автомобильных ламп (55+60+60) Вт.

Это примерно 15 Ампер при 14 В. Проработал минут 15 без проблем. В некоторых источниках рекомендуют изолировать общий провод выхода 12 В от корпуса, но тогда появляется свист. Используя в качестве источника питания автомобильной магнитолы не заметил никаких помех ни на радио, ни в других режимах, а 4*40 Вт тянет отлично. С уважением, Петровский Андрей.

Введение

Большой плюс компьютерного блока питания состоит в том, что он стабильно работает при изменении сетевого напряжения от 180 до 250 В, причем некоторые экземпляры работают и при большем разбросе напряжений. От блока мощностью 200 Вт реально получить полезный ток нагрузки 15-17 А, а в импульсном (кратковременном режиме повышенной нагрузки) – вплоть до 22 А. Компьютерные БП типового ряда, соответствующие стандарту ATX12 и предназначенные для использования в ПК на базе процессоров Intel Pentium IV и ниже, чаще всего выполнены на микросхемах 2003, AT2005Z, SG6105, KA3511, LPG-899, DR-B2002, IW1688. Подобные устройства содержат меньшее количество дискретных элементов на плате, имеют меньшую стоимость, чем построенные на основе популярного ШИМ – микросхемы TL494. В данном материале мы рассмотрим несколько подходов по ремонту вышеупомянутых блоков питания и дадим несколько практических советов.

Блоки и схемы

Компьютерный блок питания можно применять не только по прямому назначению, но и в виде источников для широкого спектра электронных конструкций для дома, требующих для своей работы постоянного напряжения 5 и 12 В. Путем незначительной переделки, описанной ниже, сделать это совсем не трудно. А приобрести БП ПК можно отдельно как в магазине, так и бывший в употреблении на любом радиорынке (если не хватает собственных «закромов») за символическую цену.

Этим блок питания компьютера выгодно отличается в перспективе применения в домашней лаборатории радиомастера от всех других промышленных вариантов. Для примера мы возьмем блоки JNC моделей LC-B250ATX и LC-B350ATX, а также InWin IP-P300AQ2, IP-P350AQ2, IP-P400AQ2, IP-P350GJ20, которые используют в своей конструкции микросхему 2003 IFF LFS 0237E. В некоторых других встречаются BAZ7822041H или 2003 BAY05370332H. Все эти микросхемы конструктивно отличаются друг от друга назначением выводов и «начинкой», но принцип работы у них одинаковый. Так микросхема 2003 IFF LFS 0237E (далее будем называть ее 2003) – это ШИМ (широтно-импульсный модулятор сигналов) в корпусе DIP-16. До недавнего времени большинство бюджетных компьютерных БП производства китайских фирм выполнялось на основе микросхемы ШИМ-контроллера TL494 фирмы Texas Instruments (http://www.ti.com) или ее аналогов других фирм-производителей, таких как Motorola, Fairchild, Samsung и прочих. Эта же микросхема имеют отечественный аналог КР1114ЕУ4 и КР1114ЕУ3 (цоколевка выводов в отечественном исполнении различная). Изучим для начала методы диагностики и тестирования неполадок

Как изменить входное напряжение

Сигнал, уровень которого пропорционален мощности нагрузки преобразователя, снимается со средней точки первичной обмотки разделительного трансформатора Т3, далее через диод D11 и резистор R35 поступает на корректирующую цепочку R42R43R65C33, после которой подается на вывод PR микросхемы. Поэтому в данной схеме устанавливать приоритет защиты по какому-либо одному напряжению затруднительно. Здесь пришлось бы сильно изменить схему, что нерентабельно по затратам времени.

В других схемах компьютерных БП, к примеру, в LPK-2-4 (300 Вт), напряжение с катода сдвоенного диода Шоттки типа S30D40C, выпрямителя выходного напряжения +5 В, поступает на вход UVac микросхемы U2 и используется для контроля входного питающим переменным напряжением БП. Регулируемое выходное напряжение бывает полезно для домашней лаборатории. К примеру, для питания от компьютерного БП электронных устройств для легкового автомобиля, где напряжение в бортовой сети (при работающем двигателе) 12.5-14 В. Чем больше уровень напряжения, тем больше полезная мощность электронного устройства. Особенно это важно для радиостанций. Для примера рассмотрим адаптацию популярной радиостанции (трансивера) к нашему БП LC-B250ATX – повышение напряжения по шине 12 В до 13.5-13.8 В.

Припаиваем подстроечный резистор, к примеру, СП5-28В (желательно с индексом «В» в обозначении – признак линейности характеристики) сопротивлением 18-22 кОм между выводом 6 микросхемы U2 и шиной +12 В. На выход +12 В устанавливаем автомобильную лампочку 5-12 Вт в качестве эквивалента нагрузки (можно подключить и постоянный резистор 5-10 Ом с мощностью рассеяния от 5 Вт и выше). После рассмотренной незначительной доработки БП вентилятор можно не подключать и саму плату в корпус не вставлять. Запускаем БП, к шине +12 В подключаем вольтметр и контролируем напряжение. Вращением движка переменного резистора устанавливаем выходное напряжение 13.8 В.

Выключаем питание и замеряем омметром получившееся сопротивление подстроечного резистора. Теперь между шиной +12 В и выводом 6 микросхемы U2 припаиваем постоянный резистор соответствующего сопротивления. Таким же образом можно скорректировать напряжение по выходу +5 В. Сам же ограничительный резистор подключают к выводу 4 микросхемы 2003 IFF LFS 0237E.

Принцип работы схемы 2003


Напряжение питания Vcc (вывод 1) на микросхему U2 поступает от источника дежурного напряжения +5V_SB. На отрицательный вход усилителя ошибки IN микросхемы (вывод 4) поступает сумма выходных напряжений ИП +3.3 В, +5 В и +12 В. Сумматор выполнен соответственно на резисторах R57, R60, R62. Управляемый стабилитрон микросхемы U2 используется в схеме оптронной обратной связи в источнике дежурного напряжения +5V_SB, второй стабилитрон используется в схеме стабилизации выходного напряжения +3.3V. Схема управления выходным полумостовым преобразователем БП выполнена по двухтактной схеме на транзисторах Q1, Q2 (обозначение на печатной плате) типа Е13009 и трансформаторе Т3 типа EL33-ASH по стандартной схеме, применяемой в компьютерных блоках.

Взаимозаменяемые транзисторы – MJE13005, MJE13007, Motorola MJE13009 выпускают многие зарубежные фирмы-производители, поэтому вместо аббревиатуры MJE в маркировке транзистора могут присутствовать символы ST, PHE, KSE, HA, MJF и другие. Для питания схемы используется отдельная обмотка трансформатора дежурного режима Т2 типа EE-19N. Чем большую мощность имеет трансформатор Т3 (чем толще провод использован в обмотках), тем больше выходной ток самого блока питания. В некоторых печатных платах, которые мне приходилось ремонтировать, «раскачивающие» транзисторы имели наименование 2SC945 и Н945Р, 2SC3447, 2SC3451, 2SC3457, 2SC3460(61), 2SC3866, 2SC4706, 2SC4744, BUT11A, BUT12A, BUT18A, BUV46, MJE13005, а обозначение на плате было указано как Q5 и Q6. И при этом на плате было всего 3 транзистора! Сама же микросхема 2003 IFF LFS 0237E была обозначена как U2, и при этом на плате нет ни одного обозначения U1 или U3. Однако оставим эту странность в обозначении элементов на печатных плата на совести китайского производителя. Сами обозначения не принципиальны. Главное отличие рассматриваемых блоков питания типа LC-B250ATX – наличие на плате одной микросхемы типа 2003 IFF LFS 0237E и внешний вид платы.

В микросхеме применен управляемый стабилитрон (выводы 10, 11), аналогичный TL431. Он используется для стабилизации цепи питания 3.3 В. Отмечу, что в моей практике ремонта блоков питания вышеупомянутая схема – самое слабое место в компьютерном БП. Однако прежде чем менять микросхему 2003, рекомендую сначала проверить саму цепь.

Диагностика ATX блоков питания на микросхеме 2003

Если блок питания не запускается, то нужно в первую очередь снять крышку корпуса и проверить оксидные конденсаторы и другие элементы на печатной плате внешним осмотром. Оксидные (электролитические) конденсаторы явно подлежат замене, если их корпуса вздуты и если они имеют сопротивление менее 100 кОм. Определяется это «прозвонкой» омметром, к примеру, моделью М830 в соответствующем режиме измерений. Одна из часто встречающихся неисправностей БП на основе микросхемы 2003 – отсутствие стабильного запуска. Запуск производится кнопкой Power на передней панели системного блока, при этом контакты кнопки замыкаются, причем вывод 9 микросхемы U2 (2003 и аналогичной) соединяется с «корпусом» общим проводом.

В «косе» это, как правило, зеленый и черный провода. Для того чтобы быстро восстановить работоспособность устройства, достаточно отсоединить от печатной платы вывод 9 микросхемы U2. Теперь БП должен включаться стабильно путем нажатия на клавишу задней панели системного блока. Этот метод хорош тем, что позволяет и далее без ремонта, который не всегда выгоден материально, использовать морально устаревший компьютерный БП, или тогда, когда блок используется не по назначению, к примеру, для питания электронных конструкций в домашней радиолюбительской лаборатории.

Если перед включением питания удерживать нажатой кнопку «reset» и отпускать через несколько секунд, то системой будет имитироваться увеличение задержки сигнала Power Good. Так можно проверить причины неисправности потери данных в СМОS (ведь не всегда «виновата» батарейка). Если данные, к примеру, время, периодически теряются, то следует проверить задержку при отключении. Для этого «reset» нажимается перед отключением питания и удерживается еще несколько секунд, имитируя ускорение снятия сигнала Power Good. Если при таком выключении данные сохраняются, дело в большой задержке при выключении.

Увеличение мощности

На печатной плате установлены два высоковольтных электролитических конденсатора емкостью 220 мкФ. Для улучшения фильтрации, ослабления импульсных помех и в итоге для обеспечения устойчивости компьютерного БП к максимальным нагрузкам эти конденсаторы заменяют на аналоги большей емкости, к примеру, 680 мкФ на рабочее напряжение 350 В. Пробой, потеря емкости или обрыв оксидного конденсатора в схеме БП уменьшает или сводит на нет фильтрацию питающего напряжения. Напряжение на обкладках оксидного конденсатора в устройствах БП порядка 200 В, а емкость находится в диапазоне 200-400 мкФ. Китайские производители (VITO, Feron и другие) устанавливает, как правило, самые дешевые пленочные конденсаторы, не сильно заботясь ни о температурном режиме, ни о надежности устройства. Оксидный конденсатор в данном случае применяется в устройстве БП в качестве высоковольтного фильтра питания, поэтому должен быть высокотемпературным. Несмотря на рабочее напряжение, указанное на таком конденсаторе 250-400 В (с запасом, как и положено), он все равно «сдает» по причине своего низкого качества.

Для замены рекомендую оксидные конденсаторы фирм КХ, CapXon, а именно HCY CD11GH и ASH-ELB043 – это высоковольтные оксидные конденсаторы, специально разработанные для применения в электронных устройствах питания. Даже если внешний осмотр не позволил найти неисправные конденсаторы, мы следующим шагом все равно выпаиваем кондеры на шине +12 В и вместо них устанавливаем аналоги большей емкости: 4700 мкФ на рабочее напряжение 25 В. Сам участок печатной платы БП ПК с оксидными конденсаторами по питанию, подлежащими замене, представлен на рисунке 4. Вентилятор мы аккуратно снимаем и устанавливаем наоборот – так, чтобы он дул внутрь, а не наружу. Такая модернизация улучшает охлаждение радиоэлементов и в итоге повышает надежность устройства при длительной эксплуатации. Капля машинного или бытового масла в механических деталях вентилятора (между крыльчаткой и осью электродвигателя) не помешает. По моему опыту, можно сказать, что значительно уменьшается шум нагнетателя при работе.

Замена диодных сборок на более мощные

На печатной плате блока питания диодные сборки установлены на радиаторах. В центре установлена сборка UF1002Г (по питанию 12 В), справа на этом радиаторе установлена диодная сборка D92-02, обеспечивающая питание –5 В. Если такое напряжение в домашней лаборатории не нужно, данную сборку типа можно безвозвратно выпаять. В целом D92-02 рассчитана на ток до 20 А и напряжение 200 В (в импульсном кратковременном режиме в разы больший), поэтому она вполне подходит для установки вместо UF1002Г (ток до 10 А).

Диодную сборку Fuji D92-02 можно заменить, например, на S16C40C, S15D40C или S30D40C. Все они, в данном случае, для замены подходят. У диодов с барьером Шоттки меньше падение напряжения и, соответственно, нагрев.

Особенность замены в том, что «штатная» диодная сборка по выходу (шина 12 В) UF1002Г имеет полностью пластмассовый корпус из композита, поэтому крепится к общему радиатору или проводящей ток пластине с помощью термопасты. А диодная сборка Fuji D92-02 (и аналогичные) имеет металлическую пластину в корпусе, что предполагает особую осторожность при ее установке на радиатор, то есть через обязательную изолирующую прокладку и диэлектрическую шайбу под винт. Причина выхода из строя диодных сборок UF1002Г состоит в выбросах напряжения на диодах с амплитудой, увеличивающейся при работе БП под нагрузкой. При малейшем превышении допустимого обратного напряжения диоды Шотки получают необратимый пробой, поэтому рекомендуемая замена на более мощные диодные сборки в случае перспективного использования БП с мощной нагрузкой вполне оправдана. Наконец, есть один совет, который позволит проверить работоспособность защитного механизма. Закоротим тонким проводом, к примеру, МГТФ-0.8, шину +12 В на корпус (общий провод). Так должно полностью пропасть напряжение. Чтобы оно восстановилось – выключим БП на пару минут для разряда высоковольтных конденсаторов, снимем шунт (перемычку), удалим эквивалент нагрузки и включим БП снова; он заработает в штатном режиме. Переделанные таким образом компьютерные блоки питания работают годами в режиме 24 часа с полной нагрузкой.

Вывод питания

Положим, необходимо использовать блок питания в бытовых целях и требуется вывести из блока две клеммы. Я сделал это с помощью двух (одинаковой длины) отрезков ненужного провода сетевого питания компьютерного БП и подключил к клеммнику все три предварительно пропаянные жилы в каждом проводнике. Для уменьшения потери мощности в проводниках, идущих от БП к нагрузке, подойдет и другой электрический кабель с медной (меньше потери) многожильный кабель – к примеру, ПВСН 2×2.5, где 2.5 – это есть сечение одного проводника. Также можно не выводить провода на клеммник, а выход 12 В подключить в корпусе БП ПК к неиспользуемому разъему сетевого кабеля монитора ПК.
Назначение выводов микросхемы 2003
PSon 2 — Вход сигнала PS_ON, управляющего работой БП: PSon=0, БП включен, присутствуют все выходные напряжения; PSon=1, БП выключен, присутствует только дежурное напряжение +5V_SB
V33-3 — Вход напряжения +3.3 В
V5-4 — Вход напряжения +5 В
V12-6 — Вход напряжения +12 В
OP1/OP2-8/7 — Выходы управления двухтактным полумостовым преобразователем БП
PG-9 — Тестирование. Выход с открытым коллектором сигнала PG (Power Good): PG=0, одно или несколько выходных напряжений не соответствуют норме; PG=1, выходные напряжения БП находятся в заданных пределах
Vref1-11 — Управляющий электрод управляемого стабилитрона
Fb1-10 — Катод управляемого стабилитрона
GND-12 — Общий провод
COMP-13 — Выход усилителя ошибки и отрицательный вход компаратора ШИМ
IN-14 — Отрицательный вход усилителя ошибки
SS-15 — Положительный вход усилителя ошибки, подключен к внутреннему источнику Uref=2.5 В. Вывод используется для организации «мягкого старта» преобразователя
Ri-16 — Вход для подключения внешнего резистора 75 кОм
Vcc-1 — Напряжение питания, подключается к дежурному источнику +5V_SB
PR-5 — Вход для организации защиты БП

Материалы этой статьи были изданы в журнале Радиоаматор — 2013, № 11

В статье представлена простая конструкция ШИМ-регулятора, с помощью которой можно легко переделать компьютерный блок питания, собранный на контроллере, отличном от популярного TL494, в частности, DR-B2002, DR-B2003, SG6105 и прочих, в лабораторный с регулируемым выходным напряжением и ограничением тока в нагрузке. Также здесь я поделюсь опытом переделки компьютерных БП и опишу испытанные способы увеличения их максимального выходного напряжения.

В радиолюбительской литературе имеется множество схем переделки устаревших компьютерных блоков питания (БП) в зарядные устройства и лабораторные источники питания (ИП). Но все они касаются тех БП, в которых узел управления построен на базе микросхемы ШИМ-контроллера типа TL494, или его аналогов DBL494, KIA494, КА7500, КР114ЕУ4. Нами было переделано больше десятка таких БП. Хорошо показали себя зарядные устройства, изготовленные по схеме, описанной М. Шумиловым в статье «Компьютерный блок питания – зарядное устройство», (Радио — 2009, № 1) с добавлением стрелочного измерительного прибора для измерения выходного напряжения и зарядного тока. На основе этой же схеме изготавливались первые лабораторные источники питания, пока не попала в поле зрения «Универсальная плата управления лабораторными блоками питания» (Радио-ежегодник — 2011, № 5, стр. 53). По этой схеме можно было изготавливать гораздо более функциональные источники питания. Специально для этой схемы регулятора был разработан цифровой ампервольтметр, описанный в статье «Простой встраиваемый ампервольтметр на PIC16F676».

Но все хорошее когда-нибудь кончается и в последнее время все чаще стали попадаться компьютерные БП, в которых были установлены другие ШИМ-контроллеры, в частности, DR-B2002, DR-B2003, SG6105. Возник вопрос: как можно использовать эти БП для изготовления лабораторных ИП? Поиск схем и общение с радиолюбителями не позволил продвинуться в этом направлении, хотя и удалось найти краткое описание и схему включения таких ШИМ-контроллеров в статье «ШИМ-контроллеры SG6105 и DR-B2002 в компьютерных ИП». Из описания стало понятно, что эти контроллеры гораздо сложнее TL494 и пытаться управлять ими извне для регулирования выходного напряжения вряд ли возможно. Поэтому от этой идеи было решено отказаться. Однако при изучении схем «новых» БП было отмечено, что построение схемы управления двухтактным полумостовым преобразователем выполнено аналогично «старым» БП – на двух транзисторах и разделительном трансформаторе.

Была предпринята попытка вместо микросхемы DR-B2002 установить TL494 со своей стандартной обвязкой, подключив коллекторы выходных транзисторов TL494 к базам транзисторов схемы управления преобразователем БП. В качестве обвязки TL494 для обеспечения регулирования выходного напряжения была выбрана неоднократно проверенная выше упомянутая схема М. Шумилова. Такое включение ШИМ-контроллера позволяет отключить все имеющиеся в БП блокировки и схемы защиты, к тому же эта схема очень проста.

Попытка замены ШИМ-контроллера увенчалась успехом – БП заработал, регулировка выходного напряжения и ограничение тока также работали, как и в переделанных БП «старого» образца.

Описание схемы устройства

Конструкция и детали

Блок ШИМ-регулятора собран на печатной плате из односторонне фольгированного стеклотекстолита размером 40х45 мм. Чертеж печатной платы и схема расположения элементов показаны на рисунке. Чертеж показан со стороны установки компонентов.

Плата рассчитана на установку выводных компонентов. Особых требований к ним не предъявляется. Транзистор VT1 может быть заменен на любой другой аналогичный по параметрам биполярный транзистор прямой проводимости. На плате предусмотрена установка подстроечных резисторов R5 разных типоразмеров.

Монтаж и наладка

Крепление платы осуществляется в удобном месте одним винтом поближе к месту установки ШИМ-контроллера. Автор нашел удобным крепить плату к одному из радиаторов БП. Выходы PWM1, PWM2 запаивают прямо в соответствующие отверстия ранее установленного ШИМ-контроллера — выводы которых идут к базам транзисторов управления преобразователем (выводы 7 и 8 микросхемы DR-B2002). Подключения вывода Vcc осуществляется к точке, в которой имеется выходное напряжение схемы дежурного питания, значение которого может находиться в пределах 13…24В.

Регулировка выходного напряжения ИП осуществляется потенциометром R5, минимальное выходное напряжение зависит от номинала резистора R7. Резистором R8 можно осуществить ограничение максимального выходного напряжения. Значение максимального выходного тока регулируется подбором номинала резистора R3 – чем меньше его сопротивление, тем больше будет максимальный выходной ток БП.

Порядок переделки компьютерного БП в лабораторный ИП

Работа по переделке БП связана с работой в цепях с высоким напряжением, поэтому настоятельно рекомендуется подключать БП к сети через разделительный трансформатор мощностью не менее 100Вт. Кроме того, для исключения выхода из строя ключевых транзисторов в процессе наладки ИП, подключать его к сети следует через «предохранительную» лампу накаливания на 220В мощностью 100Вт. Ее можно подпаять к БП вместо сетевого предохранителя.

Прежде, чем приступить к переделке компьютерного БП желательно убедиться в его исправности. Перед включением к выходным цепям +5В и +12В следует подключить автомобильные лампочки на 12В мощностью до 25 Вт. Затем подключить БП к сети и соединить вывод PS-ON (обычно зеленого цвета) с общим проводом. В случае исправности БП «предохранительная» лампа кратковременно вспыхнет, БП заработает и загорятся лампы в нагрузке +5В, +12В. Если после включения «предохранительная» лампа загорится в полный накал, возможен пробой силовых транзисторов, диодов выпрямительного моста и т. д.

Далее следует найти на плате БП точку, в которой имеется выходное напряжение схемы дежурного питания. Его значение может находиться в пределах 13…24В. Из этой точки в дальнейшем будем брать питание для блока ШИМ-регулятора и вентилятора охлаждения.

Затем следует выпаять штатный ШИМ-контроллер и подключить к плате БП блок ШИМ-регулятора согласно схемы (рис. 1). Вход P_IN подключают к 12-вольтовому выходу БП. Теперь необходимо проверить работу регулятора. Для этого следует подключить к выходу P_OUT нагрузку в виде автомобильной лампочки, движок резистора R5 вывести до отказа влево (в положение минимального сопротивления) и подключить БП к сети (опять же через «предохранительную» лампу). Если лампа нагрузки загорится, следует убедиться в исправности схемы регулировки. Для этого нужно осторожно повернуть движок резистора R5 вправо, при этом желательно контролировать выходное напряжение вольтметром, чтобы не сжечь нагрузочную лампу. Если выходное напряжение регулируется, значит блок ШИМ-регулятора работает и можно продолжать модернизацию БП.

Выпаиваем все провода нагрузки БП, оставив по одному проводу в цепях +12 В и общий для подключения блока ШИМ-регулятора. Выпаиваем: диоды (диодные сборки) в цепях +3,3 В, +5 В; диоды выпрямителей -5 В, -12 В; все конденсаторы фильтров. Электролитические конденсаторы фильтра цепи +12 В следует заменить на конденсаторы аналогичной емкости, но с допустимым напряжением 25 В или более в зависимости от предполагаемого максимального выходного напряжения изготавливаемого лабораторного ИП. Далее следует установить нагрузочный резистор, показанный на схеме рис. 1 как R2, необходимый для обеспечения устойчивой работы ИП без внешней нагрузки. Мощность нагрузки должна быть около 1 Вт. Сопротивление резистора R2 можно рассчитать исходя из максимального выходного напряжения ИП. В самом простом случае подойдет 2-х ваттный резистор сопротивлением 200-300 Ом.

Далее можно выпаять элементы обвязки старого ШИМ-контроллера и прочие радиодетали из неиспользуемых выходных цепей БП. Чтобы не выпаять случайно что-нибудь «полезное» рекомендуется отпаивать детали не полностью, а по одному выводу, и лишь убедившись в работоспособности ИП, удалять деталь полностью. По поводу дросселя фильтра L1, автор обычно ничего с ним не делает и использует штатную обмотку цепи +12 В. Это связано с тем, что в целях безопасности максимальный выходной ток лабораторного ИП обычно ограничивается на уровне, не превышающем паспортный для цепи +12 В БП.

После очистки монтажа рекомендуется увеличить емкость конденсатора фильтра С1 источника питания дежурного режима, заменив его на конденсатор номиналом 50 В/100 мкФ. Кроме того, если установленный в схеме диод VD1 маломощный (в стеклянном корпусе), его рекомендуется заменить на более мощный, выпаянный из выпрямителя цепи -5 В или -12 В. Также следует подобрать сопротивление резистора R1 для комфортной работы вентилятора охлаждения М1.

Опыт переделки компьютерных БП показал, что с применением различных схем управления ШИМ-контроллером, максимальное выходное напряжение ИП будет находиться в пределах 21…22 В. Этого более чем достаточно для изготовления зарядных устройств для автомобильных аккумуляторов, однако для лабораторного источника питания все же маловато. Для получения повышенного выходного напряжения многие радиолюбители предлагают использовать мостовую схему выпрямления выходного напряжения, но это связано с установкой дополнительных диодов, стоимость которых довольно высока. Я считаю этот метод нерациональным и используею другой способ повышения выходного напряжения ИП – модернизацию силового трансформатора.

Есть два основных способа модернизации силового трансформатора ИП. Первый способ удобен тем, что для его реализации не требуется разборка трансформатора. Он основан на том факте, что обычно вторичная обмотка мотается в несколько проводов и есть возможность ее «расслоить». Схематично вторичные обмотки силового трансформатора показаны на рис. а). Это наиболее часто встречающаяся схема. Обычно 5-вольтовая обмотка имеет по 3 витка, намотанных в 3-4 провода (обмотки «3,4»-«общ.» и «общ.»-«5,6»), а 12-вольтовая – дополнительно по 4 витка в один провод (обмотки «1»-«3,4» и «5,6»-«2»).

Для этого трансформатор выпаивают, аккуратно распаивают отводы 5-вольтовой обмотки и расплетают «косичку» общего провода. Задача состоит в том, чтобы разъединить параллельно включенные 5-вольтовые обмотки и включить все или часть из них последовательно, как это показано на схеме рис. б).

Выделить обмотки не составляет труда, но вот правильно сфазировать их довольно трудно. Автор использует для этой цели низкочастотный генератор синусоидального сигнала и осциллограф или милливольтметр переменного тока. Подключив выход генератора, настроенного на частоту 30…35 кГц, к первичной обмотке трансформатора, с помощью осциллографа или милливольтметра контролируют напряжение на вторичных обмотках. Комбинируя подключение 5-вольтовых обмоток добиваются увеличения выходного напряжения по сравнению с исходным на требуемую величину. Таким способом можно добиться увеличения выходного напряжения БП до 30…40 В.

Второй способ модернизации силового трансформатора – это его перемотка. Это единственный способ получить выходное напряжение ИП более 40 В. Самой трудной задачей здесь является разъединение ферритового сердечника. Автор взял на вооружение способ вываривания трансформатора в воде в течение 30-40 минут. Но прежде, чем вываривать трансформатор следует хорошо продумать способ разъединения сердечника, учитывая тот факт, что после вываривания он будет очень горячим, к тому же горячий феррит становится очень хрупким. Для этого предлагается вырезать из жести две клиновидные полоски, которые затем можно будет вставить в зазор между сердечником и каркасом, и с их помощью разъединить половинки сердечника. В случае разламывания или откалывания частей ферритового сердечника особо расстраиваться не стоит, так как его успешно можно склеить циакриланом (т. н. «суперклеем»).

После освобождения катушки трансформатора необходимо смотать вторичную обмотку. У импульсных трансформаторов есть одна неприятная особенность — первичная обмотка намотана в два слоя. Сначала на каркас намотана первая часть первичной обмотки, затем экран, затем все вторичные обмотки, снова экран и вторая часть первичной обмотки. Поэтому нужно аккуратно смотать вторую часть первичной обмотки, при этом обязательно запомнив ее подключение и направление намотки. Затем снять экран, выполненный в виде слоя медной фольги с припаянным проводом, ведущим к выводу трансформатора, который предварительно следует отпаять. И, наконец, смотать вторичные обмотки до следующего экрана. Теперь обязательно нужно хорошо просушить катушку струей горячего воздуха для испарения воды, проникшей в обмотку во время вываривания.

Количество витков вторичной обмотки будет зависеть от требуемого максимального выходного напряжения ИП из расчета примерно 0,33 витка/В (то есть 1 виток — 3 В). Например, автор намотал 2х18 витков провода ПЭВ-0,8 и получил максимальное выходное напряжение ИП около 53 В. Сечение провода будет зависеть от требования к максимальному выходному току ИП, а также от габаритов каркаса трансформатора.

Вторичную обмотку мотают в 2 провода. Конец одного провод сразу запаивают на первый вывод каркаса, а второй оставляют с запасом 5 см для формирования «косички» нулевого вывода. Закончив намотку, запаивают конец второго провода на второй вывод каркаса и формируют «косичку» таким образом, чтобы количество витков обеих полуобмоток обязательно было одинаковым.

Теперь следует восстановить экран, намотать смотанную ранее вторую часть первичной обмотки трансформатора, соблюдая исходное подключение и направление намотки, и собрать магнитопровод трансформатора. Если разводка вторичной обмотки запаяна правильно (на выводы 12-вольтовой обмотки), то можно впаять трансформатор в плату БП и проверить его работоспособность.

Читайте также…

Лабораторный блок питания DIY: полное руководство

Хороший лабораторный блок питания может стоить вам более 100 долларов. Тем не менее, вы можете построить его самостоятельно с частями на сумму около 25 долларов. Существуют десятки руководств по превращению блока питания компьютера в лабораторию. настольный блок, так что же делает его особенным? У этого есть более полный набор индикаторы и (на мой взгляд) более удачное расположение лицевой панели.

 

Из-за размера этого руководства я разделил его на 3 основных раздела:

Просто следуйте пошаговым инструкциям, чтобы собрать собственный лабораторный блок питания.

Это конструкция логической схемы, которая управляет состояниями «Режим ожидания», «Вкл.» и «Неисправность». Индикатор света.

Хватит скучать! Вот несколько интересных идей, которые вы можете добавить к существующему блоку питания.

Есть три причины для самостоятельной сборки блока питания: цена (дешевый компьютерный блок питания стоит около 15 долларов), практика и самовыражение. Вы получите строго регулируемый сильноточный Поставка на долю стоимости «настоящего», и это будет однозначно ваш.Это предложение будет выдавать +3,3 В, +5 В и +12 В — 3 распространенных напряжения в дизайне цифровой электроники — помимо -12В и возможно -5В. Вы можете комбинировать эти напряжения, соединив два напряжения клеммы вместе; конечное напряжение будет эквивалентно их разнице.

Да, это очень длинная и техническая статья, но я надеюсь, что вы сможете извлечь из нее что-то полезное. Ты не нужно понимать объяснения, если вы правильно следуете инструкциям.

АКТУАЛЬНО! Большие конденсаторы внутри блока питания могут оставаться заряженными в течение нескольких дней. и могут нанести очень неприятный или даже смертельный удар током, если коснуться чего-либо, связанного с ними! Не пытайтесь выполнить этот учебник самостоятельно, если только вы не уверены в этом факте. Обязательно прощупайте все возможные точки контакта с вольтметром и правильно разрядите конденсаторы.

Прочитайте весь этот учебник, прежде чем начать.

Для успешного продолжения проекта вам потребуется следующее:

  • Блок питания ATX , примерно 15 долларов США от Newegg.
  • Изолированные соединительные стойки , желательно разных цветов. Вам понадобится по одному для каждой шины напряжения, что составляет 4 или 5, и равное количество заземлений (всего 8 или 10).
  • Светодиоды : Я использовал один двухцветный красный и зеленый с общим катодом и один желтый.
  • Резисторы : Один резистор 5 Ом 10 Вт типа «песчаная отмель»; несколько резисторов 100 Ом 1/4 Вт для светодиодов. (Используйте более высокое сопротивление для диммерных светодиодов.)
  • Выключатель SPST с круглым отверстием для использования в качестве выключателя питания.
  • TTL IC 74LS02 и держатель микросхемы DIP , использование описано ниже
  • Набор для пайки с утюгом, припоем и, возможно, пылесосом для удаления припоя
  • Термоусадка и изолента . Термоусадка предпочтительнее, но можно использовать и скотч.
  • Кабельные стяжки , которые пригодятся позже
  • Отвертка , для удаления винтов. Тип необходимой отвертки зависит от типа винтов, найденных в вашем конкретном блоке питания.
  • Общие инструменты для проволоки , включая кусачки, инструмент для зачистки проводов или ножницы.

2. Снимите печатную плату

Удалите крышку вашего источника питания. Будьте осторожны, не прикасайтесь к чему-либо внутри. Вставьте черный щуп вашего вольтметра, желательно аналогового, в любой черный провод в Molex. разъем. Установите измеритель на 500 В постоянного тока и прикоснитесь красным щупом к различным точкам на печатной плате, включая радиаторы (они могут быть не изолированы) и особенно выводы конденсаторов.Если вы заметили стрелка выше нуля, конденсатор необходимо разрядить с помощью резистора.

Возьмитесь за пучок проводов, выходящий из блока питания, и аккуратно поднимите его из отверстия в передней части блока питания. Блок. Вы можете обрезать их сейчас; оставьте около 6 дюймов до 1 фута каждого провода. Затем найдите любые другие провода. внутри агрегата. Некоторые устройства имеют дочерние платы, установленные по бокам (просто снимите плату). Все единицы иметь не менее 2 проводов, подключенных к входу переменного тока; отпаяйте их от разъема (не от платы) и разблокируйте их.Вместо этого вы можете удалить сам разъем, например переключатель 115/230 В. Также снимите вентилятор, ослабив винты снаружи корпуса.

Когда все провода учтены, открутите 4 винта, которыми плата крепится к корпусу. Поднимите плату одним или обоими радиаторами (убедившись, что они каким-то образом «случайно» не подключены к конденсатор!) и будьте осторожны, чтобы случайно ничего не коснуться. Снимите пластиковую мембрану на дне доски и сохраните ее; часто это единственное, что предотвращает короткое замыкание платы.

3. Просверлите отверстия и установите компоненты

Отметьте и просверлите отверстия для крепежных столбов, светодиодов и выключателя. Сделайте каждое отверстие достаточно большим, чтобы позволить компонент, который нужно пройти (мне нужно было 1/2 дюйма для переключателя, 13/64 дюйма для светодиодов и 5/16 дюйма для крепления столбы.) Будьте осторожны при сверлении металла; возможно, вам придется начать с меньшего сверла немного и пройти через несколько, пока вы не получите отверстие нужного размера.

Удалите заусенцы с отверстий с помощью насадки, металлического напильника или наждачной бумаги.Убедитесь, что нет мелких стальные опилки, лежащие на дне ящика; это может привести к короткому замыканию.

Наконец, замените печатную плату; Убедитесь, что пластиковая мембрана на месте. я вообще-то закончилось поворотом платы на 180 градусов, потому что в противном случае радиаторы блокировали некоторые из обязательные посты. Перепаяйте все провода переменного тока; вам может понадобиться удлинить их, если вы переместите доску. Убедитесь, что короткое замыкание исключено, так как напряжение 120 вольт может быть очень опасным.

4. Схема

Отличительной чертой моего блока питания является комплексный набор световых индикаторов – «Режим ожидания», «Вкл.» и «Неисправность». Вам не нужно понимать все в этом разделе – на самом деле, если у вас есть некоторые знания в области схемотехники, вы, вероятно, не получите многого, но это объясняет принципов, лежащих в основе того, как я разработал свою поставку.

Провода АТХ

Блок питания ATX содержит зеленый провод (известный как PS_ON ), который используется для включения питания.Подтягивающий резистор гарантирует, что этот провод несет ТТЛ-совместимое значение «логического высокого» (или логической 1). который контролирует небольшая цепь внутри источника питания. Подключение этого провода к земле (черный провод) приводит к падению напряжения до логического минимума (0), и схема контроля запускает питание.

Еще один интересный провод серый POWER_GOOD или PG провод. Это высоко когда схема контроля источника питания определяет, что источник питания выдает правильное напряжение; он низкий, когда питание отключено и когда есть потенциальная неисправность, такая как падение напряжения или короткое замыкание.

Остальные провода подают питание следующим образом:

  • Черный: Заземленный
  • Оранжевый: +3,3 В
  • Красный: +5 В
  • Желтый: +12 В
  • Синий: -12 В
  • Белый: -5В. (Обратите внимание, что многие современные блоки питания не имеют этого. У меня есть.)
  • Фиолетовый: +5 В SB . Этот провод всегда обеспечивает небольшой ток, даже если источник питания отключен.

Некоторые расходные материалы также имеют коричневый провод , известный как «чувство 3,3 В», который просто контролирует напряжение питания. шина 3,3В. Его необходимо подключить к любому из оранжевых проводов +3,3 В, чтобы питание работать должным образом.

Индикатор «Вкл.»

Светодиодный индикатор «Вкл.» можно просто подключить к POWER_GOOD (со встроенным резистором). Он загорается, когда источник питания включен и дает правильное напряжение.

Индикатор «Режим ожидания»

Провод PS_ON находится в состоянии логической 1 при отключении питания и в состоянии логического 0 при отключении питания. включен, что делает его идеальным для управления индикатором «Ожидание». Однако из-за чрезвычайно низкой количество тока в этом проводе, подключение светодиода может привести к снижению напряжения до неоднозначного уровня (где-то между «низким» и «высоким»). В моем случае, когда я подключил светодиод к этому проводу, блок питания «случайно» включался бы, если бы я что-то подключал и отключал, и не выключался бы даже с переключателем в положении «Выкл.».

Решением этой проблемы является логическое устройство, известное как «неинвертирующий буфер». Буфер обеспечивает вход с высоким импедансом, а его выход представляет собой «усиленную» версию входа с той же логикой уровень. (Хорошо, вот это, наверное, никому не пришло в голову… так что, по сути, буфер обеспечивает больше «сока» для других устройств в цепи, чтобы они не влияли на более слабый сигнал.)

Буферы могут быть построены с использованием транзисторов или путем объединения двух инверторов (НЕ вентилей) вместе.Это может кажется глупым на бумаге, но на практике существует физический предел мощности одного устройства. может выводить до падения напряжения.

Индикатор «Неисправность»

Когда блок питания работает нормально, POWER_GOOD имеет высокий уровень, а PS_ON низкий. Когда источник питания выключен, POWER_GOOD низкий, а PS_ON высокий. А когда что-то не так, но выключатель питания стоит в положении «Вкл», POWER_GOOD устанавливается на низком уровне, чтобы сообщить компьютеру, что нужно остановить ЦП — это условие это должно привести к включению индикатора «Неисправность».Эти результаты могут быть в виде таблицы для тех из вас, у кого, вероятно, уже болит голова (0 означает «логический низкий уровень» или «индикатор выключен»; 1 означает «логический высокий уровень» или «индикатор включен»):

ПС_ОН ПГ Выход
0 0 1
0 1 0
1 0 0
1 1 0


Те из вас, кто знаком с бинарной логикой, вероятно, узнают в ней функцию НЕ-ИЛИ.(a NOR b верно всякий раз, когда оба a и b ложны; в противном случае это неверно.) К счастью для нас, вентили ИЛИ-ИЛИ чрезвычайно общий. Вот наша схема на данный момент:

 

Чип соображения

Вентиляторы NOR обычно поставляются в упаковках по 4 штуки на микрочипе. Однако было бы расточительно использовать только один ворота на чипе. Следуя этой логике, мы можем использовать еще 2 вентиля:

  • Элемент ИЛИ-НЕ может действовать как инвертор, если два его входных контакта подключены к одному и тому же источнику
  • Два последовательно соединенных инвертора эффективно создают буфер
  • Таким образом, два логических элемента ИЛИ-НЕ, соединенные последовательно, могут эффективно действовать как буфер.

 

Вот и последняя схема. Обратите внимание, что вместо этого я подключил вторые входы вентилей ИЛИ-НЕ к земле. объединения их с выходами предыдущего, потому что это будет потреблять меньше тока от Вход.

 

тл;др

Просто следуйте схеме в следующем разделе

5. Электропроводка

Теперь самое интересное: на самом деле проводка зверя. Я разбил его на несколько шагов, которые в идеале следует выполнять по порядку, поскольку доступ к некоторым компонентам сложнее, чем к другим.

Связующие стойки

Отделите 4 или 5 черных проводов и по одному красного, оранжевого, желтого, синего и белого (если он у вас есть). Зачистите каждый провод, сформируйте петлю с помощью острогубцев и залудите его припоем. Подключить каждый к соответствующий обязательный пост, убедившись, что нет коротких замыканий.

Нагрузочный резистор

Подсоедините красный (+5 В) и черный (земля) провода к резистору 5 Ом 10 Вт типа «песочная отмель» и закрепите термоусадкой. или проклейте соединения.Установите его на радиатор или сбоку корпуса блока питания. Это будет обеспечить 1-амперную нагрузку, которой должно быть достаточно для правильной работы блока питания.

Микрочип

 

Стандартные микросхемы DIP (Dual Inline Package, т.е. 2 ряда контактов) имеют контакты, пронумерованные против часовой стрелки, с контактом № 1, который находится непосредственно слева от выемки, если контакты чипа направлены вниз. Если чип перевернут (контакты обращены к вам), как на приведенной выше диаграмме, контакты будут быть пронумерованы в «обратном» порядке. При неправильном подключении чипа можно его поджарить, поэтому убедитесь, что вы точно знаете, какой номер контакта какой.

Используйте запасные провода от разъема материнской платы, чтобы выполнить соединения здесь. В идеале можно использовать печатная плата, но я просто использовал метод точка-точка путем пайки и термоусадки проводов к держателю чипа. Не пытайтесь припаивать провода напрямую к микросхеме ; ты будешь скорее всего повредить. Вместо этого используйте держатель чипа и убедитесь, что его ориентация правильная.

Припаяйте фиолетовый провод +5 В SB непосредственно к контакту № 14, если вы не собираетесь его использовать. где-нибудь еще. Используйте косички, если данный провод проходит более чем в одном месте. («косичка» это соединение, при котором все провода в группе, кроме одного, скручены вместе, последний провод подключается с другой стороны, и жгут припаивается.)

Выключатель питания

Подключите зеленый провод, идущий от сборки микросхемы, к одному из выводов выключателя питания; к нему же подключите провод PS_ON .Затем подключите другой терминал переключатель на черный провод заземления.

Индикаторы

светодиоды — это диоды; то есть они позволяют току течь только в одну сторону. Поэтому важно не подключите их наоборот, иначе они не загорятся. Определите катод (более короткая ножка, соединяется с землей) и анод(ы) (более длинная ветвь(и), подключается к положительному напряжению). При подключении светодиодов обязательно используйте резистор последовательно с силовым или сигнальным проводом, иначе можно сжечь светодиод.(100 Ом хорошо для логических сигнальных проводов; вам потребуется 330 Ом или более, если вы подключаетесь напрямую к проводу питания.)

Вместо использования отдельных красных и зеленых светодиодов я решил использовать двухцветный светодиод, как показано на схеме. Вы также можете использовать отдельные красный и зеленый светодиоды; см. вставку. Подключите красный анод (светодиод «Режим ожидания») к оранжевому проводу, идущему от микросхемы. Подключите зеленый анод («горит» светодиод) на серый провод POWER_GOOD . Подсоедините анод желтого светодиода «Неисправность» к желтый провод идет от чипа.Не забудьте резистор! Катод – это кратчайший провод на ВЕЛ; это должно быть подключено непосредственно к земле без резистора. Убедитесь, что нет открытых проводов; поднесите термоусадку (или ленту) как можно ближе к основанию Светодиод, как вы можете.

Вставьте каждый светодиод в отверстие, которое вы просверлили для него. В моем случае натяжение проводов удержало его. место; возможно, вам придется добавить немного горячего клея, чтобы надежно закрепить его.

Другие

Если у вас коричневый провод, подключите его к любому оранжевому.Если вы нигде не можете найти коричневый провод (у меня не было), не беспокойтесь: они есть не у всех блоков питания.

Убедившись, что все надежно подключено и что вы использовали все провода, При необходимости закрепите оставшиеся провода как можно ближе к основанию. Затем замените крышку вашего источник питания и подключите его.

6. Эксплуатация и поиск и устранение неисправностей

Теперь, когда блок питания собран, его следует протестировать.

Индикаторы

При подключении блока питания должен загореться светодиод «Standby». Переведите выключатель питания в положение «Вкл.» позиция. На короткое время должен загореться индикатор «Неисправность», а затем должен загореться индикатор «Вкл.».

Индикатор «Неисправность» должен кратковременно загореться во время запуска; это происходит, когда блок питания выполняет внутреннюю диагностику или стабилизирует выходное напряжение. Это на самом деле признак здоровой единицы; это не повод для беспокойства.(Сравните это со светом «Проверить двигатель» кратковременно загорается, когда вы заводите машину.)

Рельсы напряжения

Проверьте каждую шину напряжения с помощью мультиметра. Если вы получите показания 0 вольт для любой клеммы, вы можете иметь неплотное соединение. Убедитесь, что выходы помечены соответствующим образом; вы можете пойти куда угодно от использования Sharpie для лазерной гравировки металлических этикеток.

Блок не включается

Если индикатор «Неисправность» продолжает гореть, а индикатор «Вкл» никогда не загорается, внутри блока может быть короткое замыкание или что-то еще плохое.Если вы не получаете никакого вывода от шин напряжения или индикаторов, убедитесь, что проводка переменного тока правильно подключена.

Ремонт

Прежде чем открывать блок питания для подключения, переведите его в режим ожидания, отключите от сети и немедленно включите его. Никогда не работайте с блоком питания, когда он подключен к сети, даже если он «выключен»; это точно способ убить себя электрическим током.

Замена печатной платы

Таким образом, вы случайно весь ваш блок питания.Вы видели искры, и теперь ваша комната пахнет горелым электроника. Не все потеряно: просто купите идентичную или аналогичную модель блока питания и «одолжите» его печатная плата. Вы можете повторно использовать старый металлический корпус с соединительными штифтами и светодиодами, которые вы кропотливо прилагается, и вам даже не нужно перепаивать большую часть проводов на микросхеме.

7. Ограничения

За 25 долларов это довольно удивительный маленький лабораторный блок питания. Однако есть причина, по которой «настоящие» стоят сотни долларов.

Во-первых, блок питания, который я построил, выдает только 5 напряжений. Они могут быть объединены в несколько «промежуточные» напряжения, но это не бьет настоящий источник переменного напряжения. Обратите внимание, что отрицательный рельсы имеют непропорционально малую пропускную способность по току по сравнению с положительными.

Несмотря на то, что это довольно хорошо регулируемый источник питания, он все же может не подходить для чрезвычайно привередливая и нежная электроника. Кроме того, использование более дешевого базового блока, скорее всего, приведет к снижению производительность и более шумные выходы.

Также обратите внимание, что такой блок питания не соответствует строгим стандартам профессиональных устройств. Не используйте этот блок питания, если его выход из строя может привести к значительному материальному ущербу, или любые травмы или смерть людей ; это включает любое медицинское приложение.

Идеи обновления

Вот несколько идей, которые я обдумывал, и вы можете включить их в свои собственные проект электроснабжения. Некоторые из них довольно просты и практичны, в то время как другие могут не стоить времени и усилие для реализации, так что используйте здесь свое усмотрение.

Предохранители

Предохранители обычно требуются для тонкой работы с электроникой — для защиты вашей цепи. АТХ Блоки питания имеют полностью функциональную защиту от короткого замыкания (которая отключит питание и загорится индикатор «Неисправность»), но протолкнуть 15 ампер через макетную плату — верный способ расплавить что-то или, что еще хуже, разжигание огня.

Вам нужно будет подключить предохранитель для каждой незаземляющей шины. (НЕ подключайте предохранитель к земле.) Запомнить, они предназначены для защиты ваших цепей, а не для защиты источника питания; таким образом, вы можете смешивать и сочетать рейтинги по мере необходимости. В идеале вы хотели бы установить круглые держатели предохранителей внутри блока питания, но вы должны иметь возможность обойтись встроенным предохранителем для каждого используемого связующего столба.

Дистанционное включение

Используйте центральный выключатель DPDT для выключателя питания. Подсоедините общую клемму с одной стороны к PS_ON , соедините верх с землей, а низ соедините с другим зажимом, предпочтительно ярко-зеленый с надписью «Remote Sense».Используйте вторую половину переключателя, чтобы подключите светодиодный индикатор, который загорается, когда переключатель находится в положении «Дистанционный» (внизу), подключив фиолетовый провод +5В SB к центру второго полюса и подключение светодиода с встроенный резистор 330 Ом на дно и землю.

Чтобы включить питание, поверните переключатель вверх. Чтобы выключить его, поставьте переключатель посередине. А чтобы включить удаленное переключение, переведите переключатель вниз. Чтобы включить питание, ваш схеме или проекту просто нужно перевести провод «Remote Sense» на низкий уровень TTL (т.е. подключив его на землю.)

Резервное питание 5 В

Это идеальное дополнение к опции «Дистанционное включение». Просто добавьте (желательно темно-фиолетовый) клемма привязки с маркировкой +5V SB к вашему источнику питания. Вы также можете добавить переключатель и сопровождающий светодиод для выборочного включения и отключения этого режима ожидания, поскольку он всегда будет включен, даже если питание отключено. (В качестве альтернативы вы можете использовать дистанционный переключатель DPDT и подключите клемму +5V sB ко второму полюсу так, чтобы он включался только когда переключатель находится в положении «Дистанционное».)

Дополнительный нагрузочный резистор

Импульсный блок питания требует минимальной нагрузки, поэтому мы подключили песочницу 5 Ом резистор к шине +5В. Однако этот резистор просто тратит энергию впустую; тебе это не нужно если у вас есть достаточно большая нагрузка, подключенная извне. Таким образом, вы можете сделать резистор «необязательным». добавив переключатель для подключения и отключения его.

Подключите переключатель (здесь подойдет SPST) к разъему +5 В и подключите резистор 5 Ом к разъему. выключатель.Также подключите светодиод с резистором 330 Ом к тому же выключателю, параллельно нагрузке. резистор, чтобы указать, когда внутренняя нагрузка активна.

Любой полуприличный компьютерный блок питания просто откажется включаться (или выключится через несколько секунд). включения) если нагрузки недостаточно. Таким образом, индикатор «Неисправность» загорится, если вы забываете правильно нагрузить блок питания, без вреда для самого блока.

Переменное напряжение

Подключите линейный регулятор и потенциометр к 12-вольтовой шине.Добавьте еще пару обязательных постов с пометкой «Переменная». Вы должны быть в состоянии получить напряжение примерно от +2В до +10В. Это неэффективный метод, и ваша новая шина переменного напряжения не будет поддерживать очень высокие токи, но это однозначно лучше, чем ничего. Обратите внимание, что я не тестировал этот метод; Я только читал об этом в Интернете.

Индикатор переменного напряжения

Используйте 7-сегментные дисплеи и микросхему ICL7107, как описано в статье. ICL7107 / ICL7106 Цифровой вольтметр от Electronics-DIY.com, чтобы добавить визуальный индикатор фактического напряжения, выдаваемого устройством. шина переменного напряжения, описанная выше. В зависимости от вашего уровня навыков, вы можете смонтировать где-нибудь снаружи устройства, или вы можете вырезать красивое прямоугольное отверстие и установить отображать там. Опять же, я не могу поручиться за это.

Масса шасси

Этот соединительный столб просто подключается к проводу заземления сети или «настоящей земле». Я не уверен, зачем вам это нужно для большинства проектов по электронике, но я видел это на многих профессиональные блоки питания, и их достаточно просто подключить: просто прикрепите (предпочтительно темно-зеленый) соединительный штифт к винту в корпусе блока питания.Дело уже должно должным образом заземлены, а третий штырь входа питания должен быть соединен с винтом в нижней части.

Клемма 120 В переменного тока

Шучу… это очень опасно! Не пытаться.

Индикатор линии переменного тока

Хорошо, это не настоящий индикатор линии переменного тока, поскольку он не подключается к клемме переменного тока… но он загорится всякий раз, когда ваш источник питания подключен и получение власти. Обратите внимание, что такой светодиод не нужен, если у вас уже есть комплексная резерв/вкл/неисправность трио (один и только один из них всегда будет включен).

Проводка предельно проста. Подключите светодиод к шине +5 В SB на одной линии с Резистор 330 Ом и заземлите его. Светодиод загорается всякий раз, когда источник питания получает питание, независимо от того, включено оно или выключено.

Рекомендуемая цветовая маркировка

Наконец, я представляю рекомендуемую цветовую маркировку для клемм и светодиодов. Обратите внимание, что это не всегда возможно – 35 ¢ SparkFun переплетные стойки доступны только в красном и черном цветах, например – но если у вас есть доступ к любому вообразимому цвету, я бы порекомендовал следующее.

  • Черный для заземления
  • Оранжевый для +3,3 В
  • Красный для +5 В
  • Желтый для +12 В
  • Синий для -12 В
  • Белый для -5В
  • Серый для переменного напряжения
  • Темно-зеленый для заземления шасси
  • Ярко-зеленый для Remote Sense

И для светодиодов, которые должно быть достаточно легко найти.Не используйте один и тот же цвет для двух разных индикаторы. Поскольку сомнительно, что вы будете использовать каждый светодиод, есть дубликаты. в списке.

  • Красный для режима ожидания
  • Зеленый для включения. Обратите внимание, что вы можете использовать один красный/зеленый светодиод для индикации включения и режима ожидания, как это сделал я.
  • Желтый для индикации неисправности
  • Синий для дистанционной индикации
  • Желтый для дополнительного нагрузочного резистора
  • Янтарный для переменного тока.

Конечно, вы должны в конечном итоге выбрать те цвета, которые вам больше всего нравятся, поскольку это ваш собственный запас. Цвета, указанные выше, основаны на стандарте ATX, особенно в отношении напряжения. рельсы.

Заключение

Этот учебник должен был дать вам достаточно информации для создания собственного уникального источника питания, который вы можно не только использовать для вашего логического дизайна, но и может похвастаться перед друзьями. Не стесняйтесь публиковать любые предложения, советы или фотографии ваших собственных поставок в комментариях ниже!

ps_on — бутлин

Как было сказано в предыдущем сообщении в блоге, мы официально запустили нашу лабораторию 25 апреля 2016 года, и с тех пор она участвует в работе KernelCI.В серии сообщений в блоге мы хотели бы подробно рассказать о том, как работает наша лаборатория, начиная с этого первого сообщения в блоге, в котором подробно описывается аппаратная инфраструктура нашей лаборатории.

Введение

В лаборатории, построенной для непрерывной интеграции, все должно быть полностью автоматизировано, от последовательных соединений до источников питания и сетевых подключений.

Чтобы собрать как можно больше информации для определения технических характеристик лаборатории, наши инженеры заполнили электронную таблицу всеми платами, которые они хотели иметь в лаборатории, и их особенностями с точки зрения разъемов, используемых для связи через последовательный порт и источника питания.Мы достигли около 50 плат для установки в нашу лабораторию. Среди этих плат можно выделить два разных типа:

    платы
  • с питанием от блока питания ATX,
  • Платы
  • , которые питаются от разных адаптеров питания, обеспечивающих либо 5 В, либо 12 В.

Еще одним критерием проектирования было то, что мы хотели, чтобы наши инженеры могли легко вынести плату из лаборатории или добавить новую. Чем проще процесс, тем лучше лаборатория.

Самодельный шкаф

Чтобы соответствовать ограничениям размера офиса Bootlin, нам пришлось разместить лабораторию в пространстве шириной 100 см, глубиной 75 см и высотой 200 см.Чтобы достичь этого, мы решили построить лабораторию в виде большого самодельного шкафа с несколькими ящиками для легкого доступа, замены или замены досок, размещенных в лаборатории. Поскольку некоторые из наших плат оснащены разъемами PCIe, нам нужно было обеспечить достаточную высоту для каждого ящика, и после нескольких измерений мы решили, что высота наших ящиков 25 см будет достаточной. При общей высоте 200 см это дает максимум 8 ящиков.

Кроме того, оказывается, что большинство наших плат с питанием от блоков питания ATX имеют достаточно большие размеры, а платы с питанием от обычных адаптеров питания обычно гораздо меньше.Чтобы упростить общий дизайн, мы решили, что все большие доски будут сгруппированы вместе на данном наборе ящиков, а все маленькие доски будут сгруппированы вместе на другом наборе ящиков: т.е. мы не будем смешивать больших и маленькие платы в одном ящике. С ограничением размера 100 см x 75 см это означало, что ящик для маленьких досок мог вместить до 8 досок, а ящик для больших досок мог вместить до 4 досок.Из электронной таблицы, содержащей все платы, которые должны были быть в лаборатории, мы в конечном итоге решили, что будет 3 больших ящиков для 12 больших досок и 5 маленьких ящиков для 40 маленьких или средних. доски размером .

Кроме того, поскольку лаборатория будет содержать сервер и множество плат и блоков питания, потенциально выделяющих много тепла, мы должны держать лабораторию как можно более открытой, при этом убедившись, что она достаточно прочная, чтобы удерживать ящики.В итоге мы построили собственный шкаф из дерева, купленного в местном хозяйственном магазине.

Мы также хотим, чтобы сервер был частью лаборатории. У нас уже есть небольшой кусок дерева для укрепления лаборатории между четвертым и шестым ящиками, который мы могли бы использовать для починки сервера. Мы решили попробовать мини-ПК (подобный NUC), потому что, в конце концов, он только связывается с серийным номером каждой платы и передает им файлы. Таким образом, все, что связано с сервером, зафиксировано и подключено за лабораторией.

Сделать лабораторию автономной

Что обычно требуется для непрерывной интеграции ядра Linux, так это контроль над:

  1. мощность для каждой платы
  2. подключение к последовательному порту
  3. способ отправки файлов для тестирования, обычно образ ядра и связанные файлы

В лаборатории Bootlin эти различные задачи выполняются выделенным сервером, который сам размещен в лаборатории.

Управление последовательным портом

Последовательные соединения в основном обрабатываются через USB на стороне сервера, но на целевой стороне есть много разных разъемов (в нашей лаборатории у нас есть 6 разных разъемов: DE9, microUSB, miniUSB, 2.54-дюймовые штыревые контакты, 2,54-дюймовые гнездовые контакты и USB-B). Поэтому наш сервер должен иметь физическое соединение с каждой из 50 плат, присутствующих в лаборатории. Тогда потребность в USB-концентраторах очевидна.

Поскольку нам нужно как можно меньше кабелей, соединяющих сервер и ящики, мы решили установить по одному концентратору USB на каждый ящик, будь то большой ящик или маленький ящик . В маленьком ящике может находиться до 8 плат, что означает, что концентратору требуется не менее 8 портов USB. В большом выдвижном ящике может потребоваться до 4 последовательных соединений, поэтому работу могут выполнять меньшие и более распространенные концентраторы USB.Поскольку последовательное соединение может потреблять некоторый ток через USB-порт, мы хотели, чтобы все наши USB-концентраторы питались от отдельного источника питания.

Затем все USB-концентраторы подключаются к основному USB-концентратору, который, в свою очередь, подключается к нашему серверу.

Управление блоком питания

Наш сервер должен контролировать питание каждой платы, чтобы иметь возможность автоматически включать и выключать плату. Он включит плату, когда потребуется протестировать на ней новое ядро, и выключит ее в конце теста или когда ядро ​​зависнет или вообще не сможет загрузиться.

Что касается блоков питания, мы первоначально исследовали использование нескольких разъемов, управляемых Ethernet (также называемых переключаемым PDU), таких как это устройство. К сожалению, эти устройства довольно дороги, а также часто не имеют наиболее подходящего разъема для подключения дешевых адаптеров питания 5 В / 12 В, используемых на большинстве плат.

Итак, вместо этого, по предложению Кевина Хилмана (одного из основателей и сопровождающих KernelCI), мы решили использовать обычные блоки питания ATX. Их преимущество заключается в том, что они недороги и обеспечивают достаточную мощность для нескольких плат и всех их периферийных устройств, потенциально включая жесткие диски или другие энергоемкие периферийные устройства.Блоки питания ATX также имеют контакт, называемый PS_ON# , который при подключении к земле подает питание на блок питания ATX. Это позволяет легко включать и выключать блок питания ATX.

В сочетании с блоками питания ATX у нас есть выбранная релейная плата с управлением через Ethernet, Devantech ETH008, которая содержит 8 реле, которыми можно дистанционно управлять по сети.

Это дает нам следующую архитектуру:

  • Для ящиков с большими платами, питающимися напрямую от ATX, у нас есть один блок питания ATX на плату.Вывод PS_ON от блока питания ATX обрезан и переподключен к реле, управляемому через Ethernet. Благодаря реле мы контролируем, привязана ли PS_ON к земле или нет. Если он привязан к земле, то плата загружается, когда он отвязан от земли, плата отключается.
  • Для ящиков с небольшими платами у нас есть один блок питания ATX на ящик. Затем шины 12 В и 5 В от блока питания ATX направляются через плату с 8 реле, а затем подключаются к соответствующим платам с помощью кабелей постоянного тока или кабелей mini-USB/micro-USB, в зависимости от платы. PS_ON всегда привязан к земле, поэтому эти блоки питания ATX постоянно включены.

Кроме того, мы добавили немного защиты от перенапряжения, добавив диоды для подавления переходного напряжения для каждого выхода напряжения в каждом ящике. Эти диоды будут поглощать все напряжение, когда оно превысит максимально допустимое значение, и взорвутся, и для защиты они соединены параллельно в цепи.

Сетевое подключение

В рамках процесса непрерывной интеграции большинству наших плат придется получать ядро ​​Linux для тестирования (и, возможно, другие связанные файлы) по сети через TFTP.Поэтому нам нужно, чтобы все платы были подключены к серверу, на котором запущено программное обеспечение непрерывной интеграции.

Так как один 52-портовый коммутатор довольно дорог и не очень удобен с точки зрения проводки в нашей ситуации, вместо этого мы решили добавить 8-портовые гигабитные коммутаторы в каждый ящик, все они подключены через центральный 16-портовый гигабитный коммутатор. переключатель, расположенный в задней части самодельного шкафа. Этот центральный коммутатор соединяет не только коммутаторы для каждого ящика, но и сервер, на котором запущено программное обеспечение для непрерывной интеграции, и более широкий Интернет.

Встраиваемая архитектура: большие доски

Выдвижной ящик, предназначенный для больших плат с питанием от блока питания ATX, содержит следующие компоненты:

  • До четырех плат
  • Четыре блока питания ATX с PS_ON# , подключенными к 8-портовому релейному контроллеру. В реле используются только 4 из 8 портов.
  • Одна 8-портовая релейная плата, управляемая через Ethernet.
  • Один 4-портовый USB-концентратор, подключаемый к последовательным портам четырех плат.
  • Один 8-портовый коммутатор Ethernet с 4 портами, используемыми для подключения к платам, одним портом, используемым для подключения к релейной плате, и одним портом, используемым для восходящего канала.
  • Один удлинитель для питания различных компонентов.
Ящик большой пример схемы Ящик большой в лаборатории

В архитектуре ящика: маленькие доски

Ящик, предназначенный для небольших досок, содержит следующие компоненты:

  • До восьми плат
  • Один блок питания ATX с шинами 5 В и 12 В, проходящим через 8-портовый релейный контроллер.Все порты реле используются при наличии 8 плат.
  • Одна 8-портовая релейная плата, управляемая через Ethernet.
  • Один 10-портовый USB-концентратор, подключаемый к последовательным портам восьми плат.
  • Два 8-портовых Ethernet-коммутатора, соединяющих 8 плат, релейную плату и восходящий канал.
  • Один удлинитель для питания различных компонентов.
Выдвижной ящик пример схемы Выдвижной ящик в лаборатории

Сервер

В задней части самодельного шкафа мини-ПК работает с программным обеспечением непрерывной интеграции, о котором мы поговорим в следующем посте в блоге.Этот мини-ПК подключен к:

  • Основной 16-портовый гигабитный коммутатор, подключенный ко всем гигабитным коммутаторам в разных ящиках
  • Основной USB-концентратор, подключенный ко всем USB-концентраторам в разных ящиках

Как и ожидалось, это позволяет серверу управлять питанием различных плат, получать доступ к их последовательному порту и обеспечивать подключение к сети.

Подробный список компонентов

Если вас интересуют конкретные компоненты, которые мы использовали для нашей лаборатории, вот полный список с соответствующими ссылками:

  • стандартный цилиндр постоянного тока, для питания большинства плат,
  • кабели microUSB для питания других плат,
  • двухсторонняя полоса для царапин,
  • односторонняя петля или крючок, приклеенная с одной стороны, для крепления фурнитуры к ящикам,
  • Блок питания ATX
  • Соединитель проводов, для разделения проводов без пайки,
  • 10-портовый USB-концентратор, для последовательного подключения к малым ящикам ,
  • 8-портовое реле, управляемое через Ethernet, для управления питанием каждой платы,
  • 8-портовый коммутатор Ethernet,
  • 4-портовый USB-концентратор, для последовательного подключения к большим ящикам ,
  • 4-контактный разъем Molex-SATA, используемый в качестве удлинителя для разделения выходов блока питания ATX вместо обрезки проводов блока питания ATX для небольших ящиков ,
  • 20-контактный удлинитель Molex, используемый в качестве удлинителя для разделения выходов блока питания ATX вместо обрезки проводов блока питания ATX для больших ящиков ,
  • Кабель 18 AWG для разделения выходов блоков питания ATX,
  • 16-портовый коммутатор, используемый в качестве главного коммутатора,
  • Мини-ПК, используемый как сервер с 4 ГБ оперативной памяти и 120 ГБ SSD,
  • Блок питания 12 В для реле с управлением через Ethernet
  • А также: кабели Ethernet, деревянные панели, направляющие для ящиков, диоды для подавления переходных напряжений, последовательные кабели и разветвители.

Заключение

Надеемся, что эти подробности об аппаратной архитектуре нашей фермы плат помогут другим создать аналогичную инфраструктуру автоматизированного тестирования. Мы, конечно же, приветствуем отзывы об этой аппаратной архитектуре!

Следите за нашей следующей записью в блоге об архитектуре программного обеспечения нашей фермы плат.

Научитесь последовательно подключать блоки питания для получения более высокого выходного напряжения.

Два или более источника питания могут быть подключены для подачи более высокого напряжения или силы тока.Самый простой способ создать более высокое напряжение — это последовательно соединить источники питания, настроить каждый источник на выходное одинаковое напряжение, и каждый источник должен иметь одинаковый предел тока. Сумма выходных напряжений источников питания будет приложена к тестируемому устройству. Некоторые блоки питания оснащены аналоговыми управляющими сигналами, которые обеспечивают автоматическое последовательное или автоматическое отслеживание, что является более элегантным способом управления несколькими блоками питания. Источники питания серии Auto можно контролировать с помощью одного основного источника питания; второе преимущество заключается в том, что можно использовать все функции основного источника питания.например дистанционное управление, режим CV или CC и даже аналоговое программирование. Автоматическое отслеживание позволяет нескольким источникам отслеживать ведущее устройство, а ведомые устройства могут иметь одинаковые выходные характеристики или могут быть настроены так, чтобы быть пропорциональными ведущему устройству.

1) Последовательное соединение источников питания для получения более высокого напряжения

Последовательное подключение двух или более источников питания может быть выполнено до степени изоляции выхода любого одного источника для получения более высокого напряжения, чем напряжение, доступное от одного источника .Некоторые источники питания, такие как серия E363x, имеют диод обратной полярности, подключенный к выходным клеммам, поэтому при последовательной работе с другими источниками не произойдет повреждения в случае короткого замыкания нагрузки или включения одного источника отдельно от его серии. партнеры.

Некоторые меры предосторожности:

  1. Никогда не превышайте номинальное выходное напряжение изоляции любого из источников питания.
  2. Никогда не подвергайте источник отрицательному напряжению.

Рис. 1. Три последовательно соединенных источника питания для получения дополнительного напряжения.

Настройка напряжения и тока. При последовательном соединении выходное напряжение представляет собой сумму напряжений отдельных источников питания. Каждый из отдельных источников питания должен быть отрегулирован для получения общего выходного напряжения

2) Автоматический последовательный режим

Автоматический последовательный режим обеспечивает равное или пропорциональное распределение напряжения и позволяет управлять выходным напряжением с одного главного устройства. Напряжение ведомых устройств определяется настройкой регулятора VOLTAGE на передней панели главного устройства и резистора делителя напряжения.Главный блок должен быть самым положительным источником питания в серии. Регуляторы выходного ТОКА всех серийных блоков работают, а предельный ток равен самой низкой настройке. Если какие-либо регуляторы выходного ТОКА установлены на слишком низкое значение, произойдет автоматическое переключение на работу с постоянным током, и выходное напряжение упадет.

Рис. 2. Настройки переключателей на задней панели и клеммные соединения для автоматического последовательного режима

Смешанные номера моделей могут использоваться в автоматическом последовательном режиме при условии, что каждое ведомое устройство указано как способное к автоматическому последовательному режиму работы.Если главный источник настроен на работу с постоянным током, то комбинация ведущий-ведомый будет действовать как комбинированный источник постоянного тока.

Определяющие резисторы. Внешние резисторы управляют частью (или кратной) уставки напряжения ведущего блока, которая подается от ведомого блока. Обратите внимание, что процентная доля общего выходного напряжения, вносимая каждым источником питания, не зависит от величины общего напряжения. Для двух блоков в автоматическом последовательном соединении отношение R1 к R2 составляет

(R1+R2)/R1 = (Vo/Vm)
R2/R1 = (Vs/Vm)

Где Vo = напряжение автоматического последовательного соединения = Vs + Vm
Vm = выходное напряжение ведущего устройства
Vs = выходное напряжение ведомого устройства

Например, используя E3617A в качестве ведомого устройства и установив R2 = 50 кОм (1/4 Вт), тогда из приведенных выше уравнений
R1 = R2(Vm/Vs) = 50(Vm/Vs) кОм

Для поддержания температурного коэффициента и стабильности работы источника питания выбирайте стабильные резисторы с низким уровнем шума.Конденсатор емкостью 0,1 мкФ, включенный параллельно R2 и R4 при работе от трех источников питания, поможет обеспечить стабильную работу.

Настройка напряжения и тока. Используйте элементы управления ведущего устройства, чтобы установить желаемое выходное напряжение и ток. Регулятор VOLTAGE ведомого устройства отключен. Вращение регулятора напряжения ведущего блока приведет к непрерывному изменению выходного сигнала последовательной комбинации, при этом вклад выходного напряжения ведущего в вклад напряжения ведомого всегда останется пропорциональным внешним резисторам.Установите регулятор CURRENT ведомого устройства выше текущей настройки ведущего устройства, чтобы избежать переключения ведомого устройства в режим CC. В режиме CC комбинированный выходной ток такой же, как уставка тока ведущего устройства, а в режиме CV комбинированное выходное напряжение представляет собой сумму выходных напряжений ведущего и ведомого устройств.

Защита от перенапряжения. Установите напряжение отключения OVP в каждом блоке таким образом, чтобы оно отключалось при напряжении, превышающем его выходное напряжение во время автоматической последовательной работы.Когда ведущий блок отключается, он программирует все подчиненные блоки на нулевой выход. Когда ведомое устройство выключается, оно выключается только само (и все ведомые устройства ниже него в стеке). Ведущее устройство
(и все подчиненные устройства, находящиеся выше подчиненного устройства отключения) продолжают подавать выходное напряжение.

Дистанционное зондирование. Для удаленного распознавания с автоматическим последовательным управлением установите переключатель SENSE ведущего устройства и установите переключатель SENSE подчиненного устройства в положение дистанционного управления.

Дистанционное аналоговое программирование напряжения. Для удаленной аналоговой программы с автопоследовательной работой подключите программные (внешние) напряжения к клемме «CV» или «CC» ведущего блока и установите переключатель «CV» или «CC» ведущего блока в дистанционное положение.

3) Автоматическое отслеживание

Автоматическое отслеживание источников питания аналогично автоматическому последовательному подключению, за исключением того, что ведущий и ведомый источники питания имеют одинаковую выходную полярность по отношению к общей шине или земле. Эта операция полезна, когда требуется одновременное включение, выключение или пропорциональное управление всеми источниками питания. На рис. 3 показаны три источника питания, подключенные в режиме автоматического отслеживания, с отрицательными выходными клеммами, соединенными вместе как общая точка или точка заземления.Для двух блоков в режиме автоматического слежения часть R2/(R1+R2) выхода ведущего источника предоставляется как один из входов усилителя сравнения ведомого источника, таким образом управляя выходом ведомого. Главный источник питания в режиме автоматического отслеживания должен быть положительным источником с наибольшим выходным напряжением. Включение и выключение источников питания контролируется главным источником питания. Чтобы поддерживать температурный коэффициент и характеристики стабильности источника питания, внешний резистор должен быть стабильным, с низким уровнем шума и низкой температурой.

Определяющие резисторы. Внешние резисторы контролируют часть напряжения ведущего устройства, которое поступает от ведомого устройства. Для двух устройств с автоматическим отслеживанием соотношение R1 и R2 равно

R2/(R1+R2) = (Vs/Vm)
Где Vm = выходное напряжение главного устройства
Vs = выходное напряжение подчиненного устройства

Конденсатор 0,1 мкФ, подключенный параллельно с R2 и R4 поможет обеспечить стабильную работу.

Настройка напряжения и тока. Используйте регулятор VOLTAGE ведущего устройства для установки выходного напряжения обоих устройств.Когда ведущий работает в режиме CV, выходное напряжение ведущего (Vm) такое же, как его уставка напряжения, а выходное напряжение ведомого для работы двух блоков равно Vm(R2/(R1+R2)). Регулятор VOLTAGE ведомого устройства отключен. Установите регуляторы CURRENT ведущего и ведомых устройств выше требуемого значения тока, чтобы обеспечить работу CV ведущих и ведомых устройств.

Защита от перенапряжения. Установите напряжение отключения OVP в каждом устройстве таким образом, чтобы оно отключалось при напряжении, превышающем его выходное напряжение во время операции автоматического отслеживания.Когда ведущий блок отключается, он программирует все подчиненные блоки на нулевой выход. Когда ведомое устройство выключается, оно выключается только само.

Дистанционное зондирование. Чтобы независимо включить дистанционное зондирование с операцией автоматического отслеживания, настройте каждое устройство для дистанционного зондирования в соответствии с инструкциями по дистанционному зондированию, приведенными в предыдущем абзаце.

Не совсем 101 вариант использования блока питания ATX

Блок питания ПК был стандартом мусорной коробки в течение последних нескольких десятилетий и, вероятно, останется таковым в обозримом будущем.Продукт, который часто создается по очень высоким стандартам и который прослужит долгие годы верной службы, но срок службы которого составляет всего несколько лет, поскольку ПК, частью которого он является, устаревает. За десятилетия он превратился из оригинального ПК и AT в ATX, предоставляя постоянно расширяющийся диапазон шин напряжения при возрастающих уровнях мощности. За прошедшие годы было несколько различных версий стандарта блоков питания ATX, но все они имеют один и тот же базовый форм-фактор.

Таким образом, куча расходных материалов ATX, вероятно, появится в жизни многих читателей.Большинство из них, вероятно, будут старыми и устаревшими версиями, мало используемыми с сегодняшними материнскими платами, так что вот они. Не настолько мал, чтобы его игнорировать, но все же Слишком хорош, чтобы его выбрасывать . Мы рассмотрим их, попытаемся выяснить, какие полезные части они содержат, и рассмотрим несколько проектов, использующих их. Может быть, это вдохновит вас, если вы один из тех читателей, у которых куча читателей, ищущих цель.

Что внутри коробки?

Типичная схема блока питания ATX с использованием TL494.Форум Dianyuan.com [общественное достояние], через Wikimedia Commons. Блоки питания ATX соответствуют четко определенному стандарту, поэтому неудивительно, что многие из них имеют очень похожие схемы внутри, даже если они произведены разными производителями. Существует множество интегральных схем, которые вы обнаружите во время шоу, чьи спецификации часто дают вам полную схему блока питания ATX, но, поскольку их схемы часто будут очень похожими, мы покажем вам одну из наиболее распространенных.

TL494 — это импульсный контроллер источника питания, предназначенный для работы в различных конфигурациях и выпускаемый несколькими полупроводниковыми компаниями.

Основная работа импульсного блока питания довольно проста, и блоки питания ATX имеют очень мало отклонений от нормы. Есть сетевой выпрямитель и фильтр, пара высоковольтных силовых транзисторов, которые переключают результирующий постоянный ток с частотой несколько десятков кГц в трансформатор с ферритовым сердечником, выход которого выпрямляется до низкого постоянного напряжения. TL494 производит выборку выходного напряжения и формирует сигнал переключения ШИМ, который подается на базы или затворы силовых транзисторов через трансформатор возбуждения.Также будет резервный источник питания 5 В с использованием другого небольшого трансформатора и схема «питание в порядке», чтобы сообщить материнской плате, что блок питания готов, и активировать питание на внешнем входе.

Типичный интерьер блока питания ATX

 

Легенда:

А: мостовой выпрямитель

B: конденсаторы входного фильтра, между B и C – Радиатор для высоковольтных транзисторов

C: трансформатор между C и D – Радиатор для низковольтных выпрямителей

D: катушка выходного фильтра

E: конденсаторы выходного фильтра

 

Алан Лифтинг [PD], через Викисклад.

Эти расходные материалы немного необычны в эпоху компонентов для поверхностного монтажа, поскольку большинство из них, которые вы найдете в мусорном ящике, по-прежнему имеют конструкцию со сквозными отверстиями. Это делает их подходящей мишенью для электронного поглотителя, поскольку детали легче извлекать целыми. Стоит уделить немного времени тому, чтобы взглянуть на компоненты, которые вы найдете, и предложить им какое-то применение.

Детали, Детали, Детали

Наиболее заметными при разборке одной из этих коробок являются металлический корпус, разъем IEC, выключатель питания и вентилятор.Вам не нужно объяснять, как их можно использовать повторно, если вы не возражаете против небольшого сверления стали, а корпус вашего проекта, очевидно, относится к блоку питания ПК, тогда это очень прочные корпуса. То же самое касается жгута проводов разъемов питания материнской платы и диска, удобного источника соединительного провода среднего размера.

Если вы посмотрите на компоненты на печатной плате, многие из них являются стандартными дискретными элементами. Да, мы все в какой-то момент избавлялись от резистора 10K, но, если не считать нескольких высоковольтных конденсаторов, в целом они не вызывают особого восторга.Так что же на этой доске стоит поднять?

Просто подборка магнитных блоков и сердечников блока питания ATX.

На плате блока питания ATX в избытке присутствуют магниты. Тороидальные дроссели и ферритовые катушки используются в фильтрах, а также в различных трансформаторах с ферритовым сердечником. Трансформаторы наматываются для определенной цели, поэтому, если у вас не хватит терпения перемотать их, от них может быть мало пользы, но дроссели имеют большее применение. Это не экзотические ВЧ-ферриты, а более утилитарные сердечники из железной пыли, хотя они все еще могут найти широкое применение везде, где требуется дроссель.Я даже использовал их в качестве сердечников для коаксиальных балунов, когда их цель состоит в том, чтобы просто остановить утечку радиочастот в фидер, их плохие радиочастотные характеристики являются преимуществом. Также стоит отметить с точки зрения радиочастот, что эти дроссели также являются удобным источником большого количества эмалированной медной проволоки большого сечения для других ваших катушек индуктивности.

Полупроводники в блоке питания ATX включают в себя некоторые специализированные компоненты, но для них все еще существуют альтернативные области применения. На стороне высокого напряжения находится набор высоковольтных диодов и переключающих транзисторов, каждый из которых является богатым источником деталей, если вы собираете высоковольтные инверторы.На стороне низкого напряжения, помимо TL494 или другого чипа контроллера, вы найдете несколько сильноточных выпрямителей и, если повезет, более одного трехполюсного стабилизатора серии 78XX, а также во многих случаях регулируемый источник опорного напряжения TL431. Вы также можете найти различные радиаторы полезными в других проектах.

Используй, не ломай!

Как видите, блок питания ATX может содержать несколько полезных компонентов. Но поскольку их почти неограниченный запас, не стоит ломать один, если вам не нужны детали, так что вы можете сделать с целым?

Довольно красиво построенный проект настольного блока питания, который мы рассмотрели еще в 2010 году.

Ответ довольно прост: как насчет того, чтобы использовать его в качестве настольного источника питания? Эти источники питания не являются самыми тихими или лучше всего регулируемыми в мире, но у них есть то преимущество, что они обеспечивают несколько полезных шин напряжения при значительных уровнях тока. Чтобы использовать его таким образом, требуется небольшая модификация, одна из линий является линией включения, которая удерживается на высоком уровне. Потяните контакт 16 на низкий уровень (обычно зеленый провод), и подача начнется. На Hackaday.io есть множество проектов, показывающих, как это сделали другие, и быстрый поиск в OSH Park даст ряд прорывных печатных плат, подобных этой.

Если фиксированного напряжения недостаточно, существует множество настольных блоков питания ATX, таких как показанный на рисунке, оснащенный регулируемыми стабилизаторами LM317 на линиях 12 В для обеспечения регулируемого выхода. Однако это не единственный способ добиться этого, TL494 можно легко превратить в регулируемый регулятор с помощью простой модификации. Стандартные предупреждения и заявления об отказе от ответственности применяются в отношении опасностей, связанных с работой с сетью и высоковольтным оборудованием, если вы следуете этому пути.

Конечно, использование блока питания в качестве источника питания очень полезно, но вряд ли это новаторский подход, даже если иногда требуется немного взломать аппаратное обеспечение.Как насчет других применений для одного? Одной из областей, для которой может подойти источник питания, способный производить большие токи, например, является сварка. Важно отметить, что под сваркой мы подразумеваем не ту сварку, из которой можно делать корабли или даже автомобили, но это не единственное место, где вы найдете сварщика (этот точечный сварщик использует только корпус ATX поставка – хороший проект, но в данном контексте он не имеет значения). В прошлом году, например, мы рассмотрели источник питания ATX, используемый с графитовым электродом для сварки термопар, что обеспечило значительную экономию по сравнению с коммерческими альтернативами.И на этом потенциал блока питания ATX для металлообработки не заканчивается, вы найдете людей, использующих их для пайки сопротивлением в сообществе производителей моделей.

Итак, у вас все еще есть эта груда металлических кирпичей под столом от всех старых ПК, которые попадались вам на пути, но, если повезет, после прочтения у вас появится немного вдохновения, которое может позволить вам что-то с ними сделать. . Что бы вы ни сделали, не забудьте поделиться этим с нами на Hackaday.io и не забудьте отправить нам ссылку!

Блок питания

EEZ h34005 | Crowd Supply

Введение

Электронные инструменты для испытаний и измерений (T&M) занимают незаменимое место на рабочих местах любителей, студентов и энтузиастов-любителей.Эти инструменты также необходимы для образовательных и научно-исследовательских учреждений, которые полагаются на них в своих классах и лабораториях. Проект EEZ Open — это попытка преодолеть разрыв между контрольно-измерительными инструментами для любителей и студентов и инструментами, на которые полагаются коммерческие и профессиональные среды. Он делает это, прочесывая лучшее с обеих сторон.

Как правило, инструменты, используемые мастерскими, студентами и любителями, просты и недороги. Руководствуясь необходимостью учиться и экспериментировать, они обычно строятся на бесплатном программном обеспечении с открытым исходным кодом (FOSS) и аппаратном обеспечении (FOSH).По мере того, как они передаются и распространяются, они создают вокруг себя сообщество пользователей, которые готовы помочь с отзывами о том, как улучшить проект и как избежать распространенных ошибок. Эти инструменты часто имеют более низкое качество, ограниченную функциональность и не имеют надлежащей документации. Это также относится и к программному обеспечению, где поддержка некоторых стандартов программирования контрольно-измерительных приборов и взаимосвязей может практически отсутствовать.

В отличие от этого, коммерческие предложения по контролю и измерению предоставляют надежные и многофункциональные решения «под ключ», и они оснащены программным обеспечением, которое позволяет пользователям централизованно контролировать и обмениваться данными между различными устройствами для контроля и измерения.Однако у коммерческих решений есть и два существенных недостатка: высокая стоимость и закрытая конструкция, часто защищенная одним или несколькими патентами. Высокая стоимость коммерческих контрольно-измерительных инструментов делает их недоступными для групп, занимающихся своими руками и обучения. Это, наряду с ограниченной функциональностью самодельных инструментов, препятствует экспериментам и творчеству. Точно так же в образовательной среде стоимость инструментов коммерческого уровня ограничивает возможности студентов получать практический опыт.

Бесплатный и открытый исходный код

Проект EEZ Open направлен на решение этих проблем с помощью уникального подхода к созданию контрольно-измерительных инструментов.Одной из лучших частей проекта является его программное обеспечение, как с точки зрения уже реализованных функций, так и из-за наличия инструментов разработки, которые позволяют пользователям быстро моделировать новые или изменять существующие функции для своих собственных уникальных потребностей. Эта кампания направлена ​​на запуск первого устройства, созданного специально для этого программного обеспечения: EEZ h34005, двухканального программируемого источника питания, набор функций которого превосходит многие коммерческие предложения.

Полная документация и программное обеспечение с открытым исходным кодом доступны в наших репозиториях GitHub, один для оборудования и один для программного обеспечения.Блок питания EEZ h34005 в настоящее время находится в пятой версии, выпущены три общедоступных версии. Прошивка M3 (этап 3) была завершена в декабре 2016 года с поддержкой полного набора команд SCPI и цветным сенсорным дисплеем TFT. Набор команд задокументирован в справочнике SCPI на более чем 100 страниц. направляющая .

Пакет программного обеспечения EEZ Open в настоящее время состоит из двух инструментов:

  • Симулятор микропрограммы — это «виртуальный инструмент» для изучения и тестирования всех функций без физического устройства под рукой.Это помогло нам ускорить разработку, избегая таких вещей, как, например, частая и трудоемкая загрузка в MCU. Вы можете скачать последнюю стабильную версию. Просто загрузите и установите, чтобы увидеть, что было реализовано с помощью команд SCPI, командной строки и консоли/лицевой панели с графическим интерфейсом.
  • EEZ Studio — мощный инструмент разработки WYSIWYG для создания и редактирования меню и страниц на локальном дисплее (в данном случае цветной сенсорный TFT-экран на h34005). Мы нашли его невероятно полезным и экономящим время при разработке меню и страниц, отображающих информацию и состояние источника питания.EEZ Studio еще не совсем общедоступна, но она не требуется для прошивки EEZ h34005 во время выполнения. Мы планируем опубликовать первую полную версию вскоре после окончания кампании для тех, кто хочет поиграть с меню и отобразить информацию.

Оба приложения работают на нескольких ОС (Linux, Windows, OS X и т. д.), при этом среда разработки Arduino IDE поддерживается в качестве первой целевой платформы. Мы выбрали его, потому что он также является кроссплатформенным и открытым исходным кодом, а также хорошо известен в сообществах DIY и производителей.Изменение существующего кода, добавление кода для достижения новых функций или просто загрузка в наши новые выпуски прошивки не должны быть проблемой.

Еще один настольный блок питания?

EEZ h34005 — это не просто еще один программируемый настольный источник питания. Хотя его программные, аппаратные и механические аспекты разработаны, чтобы конкурировать с любым коммерческим предложением, поскольку он полностью бесплатный и с открытым исходным кодом, он обеспечивает уровень независимости и возможности взлома, который просто не существует с проприетарными традиционными инструментами.

EEZ h34005 не может быть легко отнесен ни к типичному решению для самостоятельной сборки, ни к стандартному коммерческому решению по двум простым причинам: он содержит функции, которых нет в проектах для самостоятельной сборки, при этом его дизайн (программное обеспечение, аппаратное и механическое) бесплатен и с открытым исходным кодом, который не существует и по умолчанию все еще запрещен в рамках профессионального/коммерческого решения. Больше не нужно платить за разблокировку дополнительных функций прошивки, ждать ремонта или искать сервис-мануалы, если кто-то ошибся и выпустит «волшебный дым».

В нашем дизайне на первый план вынесены эти ключевые концепции:

  • Модульная конструкция — разные люди предъявляют разные требования к питанию для разных проектов. Таким образом, EEZ h34005 состоит из четырех модулей + плата MCU (Arduino Due или совместимая 32-битная плата ARM), поэтому изменение одной части системы не означает, что нужно выбросить все остальное и создать новую «материнскую плату».
  • Программируемость — экспериментаторы и даже обычные пользователи имеют разные потребности в схемах электропитания: они хотят играть с аналоговыми схемами или цифровыми схемами, которые могут включать энергоемкие двигатели, источники света и т. д., или им может потребоваться зарядка аккумуляторов с использованием другого химического состава, требующего различных схем зарядки. Или, возможно, необходима запрограммированная последовательность напряжения и тока для проверки работы других цепей. Все это можно сделать с помощью команд SCPI, что позволяет опытным пользователям добавлять новые функции, не дожидаясь коммерческого обновления прошивки, которое может никогда не появиться.
  • Надежность — Цепи питания и/или зарядки аккумуляторов должны быть безопасными, даже если они не используются в течение длительного времени.Чтобы обеспечить безопасность и надежность, мы потратили много времени на разработку наших схем и реализацию множества функций защиты и самотестирования, которые мы затем протестировали в реальных жизненных ситуациях.
  • Подходит для самостоятельного изготовления — Миниатюризация электронных деталей усложняет работу с ними сборщику-сделай сам. Мы выбрали компоненты в размерах и упаковках, которые легко паять вручную без специального оборудования или навыков.
  • Возможность подключения — Благодаря возможности подключения через USB и Ethernet вы можете находиться на расстоянии нескольких шагов или нескольких тысяч миль от вашего EEZ h34005 и при этом поддерживать с ним связь.Коммуникация также помогает, когда несколько устройств развернуты в одном месте, например, в классе или лаборатории.

Полный демонтаж ИЭЗ h34005

Характеристики и характеристики оборудования

EEZ h34005 имеет набор функций, аналогичный любому другому коммерческому настольному источнику питания. Но у него также есть особенности, которые делают его уникальным. Мы разбили все это ниже:

Уникальные особенности

Характеристика Описание
Локальный пользовательский интерфейс 3.2-дюймовый цветной сенсорный TFT-экран и ручка энкодера
Соединение каналов Последовательный (до 80 В), Параллельный (до 10 А) с использованием встроенных силовых реле (внешняя проводка не требуется)
Удаленный смысл Не нужен внешняя проводка Благодаря встроенным сигнальным реле
Digital Control Arduino Cured (или совместимая) 32-битная доска MCU MCU
Ограничитель пускового тока переменного тока
Дистанционное/внешнее программирование напряжения Защита от перенапряжения, 2.5 В для полномасштабной работы
Контроль температуры батареи Оптоизолированный вход V/F (для батареи NTC)

требуется, но также может обеспечить низкую пульсацию и низкий уровень шума для чувствительных цепей с низким энергопотреблением.

Его пользовательский интерфейс также отличается. Мы считаем, что сочетание сенсорного дисплея и одной ручки энкодера обеспечивает пользовательский интерфейс, который успешно заменяет традиционные «функциональные» клавиши, клавиатуры, потенциометры, энкодеры, переключатели и т. д.С помощью EEZ Studio графический интерфейс пользователя, отображаемый на сенсорном экране, можно легко изменить в соответствии с потребностями и вкусами различных пользователей. Мы с нетерпением ждем обратной связи от пользователей по мере их взаимодействия с нашим графическим интерфейсом и внесения улучшений и изменений.

Кроме того, есть дополнительные функции, которые будут разблокированы и включено бесплатно по мере того, как кампания достигает своего разнообразия цели. До сих пор мы достигнута первая цель растяжения (ручка энкодера).

Стандартные характеристики

6
Характеристика Описание
№каналов 2 (изолированные)
диапазон напряжения 9 0 — 40 В (1/10 м.В. Шаг)
Диапазон тока 9 0 — 500 мА (0,1 / 1 мА шаг , расширенная цель 3), 0–5 А (с шагом 1 / 10 мА)
Макс. мощность на канал 155 Вт (с выбранными модулями AC/DC, в противном случае до 200 Вт)
Топология Регулятор)
Удаленный смысл обратную полярность, MCU Watchdog (Heart-Beat), Power Good
Другое канал 9 Включить вывод, Down-Programmer
Охлаждение Вентилятор 60 мм (скорость регулируется датчиками температуры канала), пассивный радиатор на пострегуляторном питании MOSFET
Возможности подключения поставляются с защитой от электростатического разряда благодаря растяжке 2)
Другие периферийные устройства Зуммер, часы реального времени с резервным питанием суперкапа, EE Гнездо PROM, SDcard
Дистанционное/внешнее измерение напряжения Да, с использованием встроенных сигнальных реле (для внутреннего измерения не требуется внешняя проводка)
Цифровой ввод/вывод 1

8 вход (охрана, 3.логика уровня 3 и 5 В), выходы: 1 оптоизолированный, 1 силовое реле (удлинение цели 2)
Управление питанием Выключатель питания переменного тока (задняя панель), плавный пуск переменного тока/режим ожидания (управляется программным обеспечением), выключатель питания постоянного тока MCU (передняя панель)
Питание переменного тока 85–264 В / 47–63 Гц (выбирается вручную), дополнительная защита входа (TVS, MOV, SAR)
Размеры Металлический корпус: 293 мм (Ш) x 90 мм (В) x 272 мм (Г)

Компоненты

Модуль EEZ h34005 состоит из 90 частей0 и 3:

  • Дополнительный модуль PS
  • Плата питания (одна на канал, всего две)
  • Плата Arduino
  • Металлический корпус
  • Гайки, болты и электромеханические детали
  • Жгут проводов
  • Arduino из-за
  • 3.2-дюймовый цветной сенсорный TFT-дисплей (на плате Arduino Shield)
  • Модуль питания переменного/постоянного тока, 48 В постоянного тока, 155 Вт (по одному на канал, всего два)

Модули EEZ h34005: 1. Платы питания, 2. Модуль AUX PS, 3. Экран Arduino

Все модули могут быть легко установлены в металлический корпус с предварительно просверленными отверстиями, как показано ниже. Корпус состоит из четырех частей, выполнен из алюминия толщиной 1,5 мм, оснащен привинчиваемыми резиновыми ножками и ручками на передней панели.

Для упрощения сборки количество кабелей сведено к минимуму. Охлаждение обеспечивается 60-мм вентилятором и двумя пассивными радиаторами, которые также используются для надежного крепления силовых плат и дальнейшего повышения механической прочности корпуса.

Корпус металлический 3D модель

Вид сзади собранного EEZ h34005 со снятой верхней крышкой

Прошивка

Прошивка EEZ h34005 представляет собой эскиз Arduino, который позволяет пользователям выполнять все операции как локально, так и удаленно.В то время как локальное управление через 3,2-дюймовый цветной сенсорный TFT-дисплей позволяет быстро работать на месте, дистанционное управление обеспечивает не только удобный доступ через последовательное/USB-соединение или соединение Ethernet, но также позволяет автоматизировать многие операции на одном или нескольких устройствах в классная комната, лаборатория или так называемая автоматизированная испытательная установка.

Список функций

9 80019
Функция Описание
Платформа разработки Arduino IDE 1.6 или более
Местный дисплей GUI Development

9
Да, SCPI

9

9
10, с функцией автоматического отзыва
Интерфейс программирования выходных значений Сенсорный экран: клавиатура , шаг , ползунок ; Ручка энкодера (растягивающая цель 1)
Выходной режим стандартный, низкопользователь (контролируемый процессором)
Калибровка Напряжение и ток (мастер несколько шагов, защищенный паролем)
Выходные муфты Да (сериал, параллель)
Выходные отслеживания Да (напряжение, ток, сила, все защиты и пределы)
Дата / время Да
Event Logger Да (информация, предупреждения, и условия об ошибках)
статистика CPU и канал общего / текущее рабочее время
Диагностика Самостоятельное тестирование, вентилятор, вентилятор, Измерения АЦП, калибровка, срабатывание защиты

Местное управление

Главный экран pr содержит сводный обзор всех запрограммированных и измеренных выходных значений, состояние различных механизмов защиты, а также легкий доступ к системным настройкам, профилям пользователей, просмотрам событий и управлению входной мощностью (режим ожидания).В настоящее время реализованы три разных вида, как показано ниже, и они могут быть дополнительно расширены для конкретных потребностей пользователя.

Просмотры главной страницы: 1. Числовой, 2. Горизонтальная полоса, 3. Вертикальная полоса, 4. Просмотр YT

Наиболее часто устанавливаемые опции – это программирование выходных значений (напряжение и ток) и изменение выходной мощности. Таким образом, мы предлагаем три способа настройки выходов: один, который эмулирует цифровую клавиатуру , ​​энкодер ( шаг режим) и потенциометр ( ползунок режим ).Потенциометр работает как 2D-ползунок с переменной «чувствительностью», позволяя изменять выбранное значение с большим или меньшим шагом.

Выходные значения программирования: 1. Режим клавиатуры, 2. Пошаговый режим, 3. Режим 2D-ползунка

Дистанционное управление

Благодаря поддержке SCPI одним или несколькими EEZ h34005 можно управлять удаленно через последовательное (через USB) или Ethernet-соединение.

Пульты дистанционного управления: 1.Последовательная консоль (USB), 2. Telnet (Ethernet), 3. Контроллер SCPI стороннего производителя (Ethernet)

Защитные механизмы

EEZ h34005 поставляется с несколькими системами защиты, которые были тщательно протестированы с использованием различных типов нагрузок и с учетом крайних случаев, таких как включение питания, отключение, обнаружение отказа охлаждающего вентилятора во время работы и т. д.

Механизмы защиты

реализованы как на аппаратном, так и на программном уровне, чтобы обеспечить максимально возможную защиту подключенных нагрузок и самого источника питания.На данный момент предусмотрены следующие защиты:

  • Ограничение тока и защита от перегрузки по току (OCP)
  • Ограничение напряжения и защита от перенапряжения (OVP)
  • Ограничение мощности и защита от превышения мощности (OPP)
  • Защита от перегрева (OTP) для каждого канала, системы и нагрузки/батареи
  • Дистанционное определение обратной полярности
  • Макс. ограничение выходного тока при обнаружении отказа охлаждающего вентилятора
  • Автоматическое включение OVP при выборе дистанционного программирования напряжения
  • Автоматическое отключение при питании в норме или сторожевой таймер сбой сигнала
  • Автоматическая балансировка выходного напряжения или тока при последовательном или параллельном соединении каналов
  • Автоматическое отключение понижающего программатора при обнаружении чрезмерного снижения мощности
  • Отключение при срабатывании любой из защит
  • Отключение всех выходов при срабатывании любой защиты
  • Принудительное отключение всех выходов при включении питания

Чтобы увидеть EEZ h34005 в действии, посетите нашу страницу видео.

Сборка

EEZ h34005 доступен в нескольких комплектах, от простых до полных комплектов. Сборка и использование блока питания требует понимания электронных схем и базовых навыков компьютерного программирования. Будем рады помочь каждому в процессе сборки. Поддержку также можно найти на популярных электронных форумах, где проект уже привлек много внимания (eevblog и форумы diyaudio). Обращение за помощью — лучший способ избежать ошибок и разочарований!

Уровни залога

В этой кампании есть четыре уровня залога:

Уровень залома Голые PCBS Корпус и сборки Основные модули Комплектный комплект
Да N / A n
Металлический корпус Да
Орехи, болты и электромеханические запчасти Да
Ream ramness Да
Набор из 4 PCB модулей Да Да
3.2 «TFT цвета сенсорного экрана
2 x AC / DC Модули Да
Arduino – Да

Производственный план

Мы уже успешно произвели ограниченное количество прототипов печатных плат и металлических корпусов. Мы выбрали производителя корпуса и в настоящее время изучаем производителей печатных плат и печатных плат.Мы будем закупать жгуты проводов и упаковку на месте.

Все модули перед отгрузкой проходят внутреннее тестирование. Однако конечные пользователи должны будут выполнить калибровку локально, следуя указаниям простого мастера калибровки, или удаленно, используя команды SCPI.

Риски и проблемы

Мы работали над EEZ h34005 последние два года и уверены, что устранили большую часть технических рисков. Мы сделали это, завершив четыре прототипа и получив множество отзывов и помощи от сообществ на популярных форумах по электронике.Точно так же прошивка является зрелой и полной для своих базовых функций, реализующих интерфейсы SCPI и сенсорного экрана. Сейчас мы работаем над добавлением более изящных функций.

Всегда есть вероятность непредвиденных задержек при сборке модулей печатных плат из-за нехватки деталей или проблем с доставкой. Тем не менее, мы заложили запас в наше расписание, чтобы учесть такие непредвиденные задержки. Мы, конечно же, сообщим нашим сторонникам, если возникнут какие-либо проблемы, которые могут повлиять на дату выпуска.

Доставка и логистика

Компоненты EEZ h34005 будут доставляться со склада Crowd Supply в США.Мы не можем предварительно оплатить НДС, поэтому, если ваша страна взимает НДС при импорте, вам, вероятно, придется заплатить его и, возможно, заняться таможенной очисткой. Таким образом, указанная стоимость доставки не включает применимые налоги. К сожалению, это относится ко всем, включая тех, кто поддерживает ЕС, поскольку мы не можем поддерживать параллельную логистику и бухгалтерию ЕС.

Плата XH-M229 ATX, протестированная

(Опубликовано 01.05.2019)
Не выбрасывайте свой старый настольный ПК на свалку! Вероятно, в нем есть отлично функционирующий блок питания ATX, который вы можете использовать в своей хобби-лаборатории с помощью этой небольшой распечатки.

Справочная информация о ATX


Что такое ATX?
ATX — это аббревиатура от Advanced Technology Extended . Это международный стандарт, которого должны придерживаться производители корпусов ПК, материнских плат и блоков питания. Для компаний или любителей, которые собирают конфигурации ПК, не имеет значения, какая материнская плата и какой блок питания встроены в какой корпус. Все, что соответствует стандартам ATX, подходит друг другу!

Блок питания ATX
Важная часть стандарта ATX описывает требования, которым должен соответствовать блок питания.Блок питания ATX подает стабилизированное напряжение постоянного тока:
       -12,0 В ± 10 % (синие жилы)
       -5,0 В ± 10 % (белые жилы)
         +3,3 В ± 4 % (оранжевые жилки)
         +5,0 % (оранжевые жилы) красные жилы)
       +12,0 В ± 5 % (желтые провода)
Проценты указывают максимальное отклонение, допускаемое стандартом.

Очень полезные напряжения питания
Пусть это будут только те напряжения, которые вам всегда нужны при экспериментах со схемами и для которых вы теперь используете как минимум два дорогих регулируемых лабораторных источника питания.Мощность не нормируется, так как блоки питания ATX выпускаются с разной выходной мощностью от 200 Вт до более 1 кВт. Потому что, конечно, существует огромный спрос на блоки питания ATX, конкуренция велика, а цены низкие. В качестве примера на картинке ниже вы можете увидеть модель PF198-20SSV0434 таиландской компании NMB. Этот блок питания ATX стоимостью всего 10,98 евро обеспечивает общую мощность не менее 198 Вт и может обеспечивать следующие токи:
       0.5 А на выходе -12 В
       0,5 А на выходе -5 В
       16,0 А на выходе +3,3 В
       22,0 А на выходе +5 В
       4,4 А на выходе +12 В
8 011003 Один из самых дешевых блоков питания ATX на рынке. (© m-ware.de) Главный силовой разъем Molex
В комплекте с таким блоком питания ATX идет множество кабелей, но в этой статье речь пойдет о самом толстом кабеле с так называемым ‘Main Power Molex Connector’ , 20- или 24-контактным разъемом, на котором вы найдете все выходных напряжений, а также содержит ряд управляющих сигналов.Как показано на рисунке ниже, 24-контактный разъем, называемый ATX2, является лишь расширением 20-контактного разъема ATX1. Контакты с 1 по 10 и с 13 по 22 идентичны контактам ATX1. Таким образом, вы также можете использовать блок питания с 20-контактным разъемом в коммутационной плате XH-M229 ATX, описанной в этой статье.

Две версии разъема Main Power Molex. (© smpspowersupply.com)
Специальные штифты
Как видите, пять питающих напряжений предлагаются на разных контактах.+3,3 В, например, на контактах 1/2/11 и 1/2/12/13 соответственно. Однако на разъеме также доступны три других сигнала:
  • PS_ON#
    Это активный управляющий сигнал низкого уровня, который позволяет включать и выключать питание. Когда вы поворачиваете этот сигнал «L», блок питания ATX подает свое выходное напряжение. Если вы оставите этот контакт открытым, источник питания перейдет в режим ожидания, где все напряжения питания равны 0 В.
  • 5VSB
    Этот выход также имеет напряжение +5.0 В постоянного тока в режиме ожидания источника питания. Это напряжение используется для питания цепей вашего ПК, которые никогда не должны оставаться без напряжения. Этот выход можно использовать для питания светодиода (разумеется, через последовательный резистор), который загорается при подключении блока питания к сетевому напряжению.
  • PWR_OK
    Источник питания делает этот вывод «H», если выходные напряжения +5,0 В постоянного тока и +3,3 В постоянного тока находятся в пределах указанных допусков. Этот выход можно использовать для индикации с помощью светодиодного индикатора того, что источник питания обеспечивает выходное напряжение.
Кабель от блока питания ATX с разъемом Main Power Molex. (© Banggood)
Используйте предохранители!
Поскольку блок питания ATX вряд ли будет иметь короткозамкнутые выходы при обычном использовании на вашем ПК, нет никаких спецификаций по ограничениям тока или предохранителям. Если вы используете блок питания ATX для экспериментов, абсолютно необходимо защитить все выходы напряжения быстрыми стеклянными предохранителями.Используйте предохранители на 1 А, этого более чем достаточно для обычных экспериментов.

Иногда необходимы минимальные нагрузки
Некоторые блоки питания ATX обеспечивают указанные выходные напряжения только тогда, когда источники питания +5,0 В пост. тока и +3,3 В пост. тока нагружены минимальным током. Если вы используете блок питания с коммутационной платой XH-M229 ATX, описанной в этой статье, и ничего не происходит, значит, вы имеете дело с таким блоком питания. Тогда достаточно подключить проволочные резисторы 10 Ом и 5 Вт между +3.Выходы 3 В постоянного тока и +5,0 В постоянного тока и заземление для активации устройства.

Коммутационная плата XH-M229 ATX


Печатная плата XH-M229
Вся схема смонтирована на печатной плате размером 128 мм на 48 мм. Это продается по цене от 5,00 до 20,00 евро, но у большинства поставщиков она составляет около 10,00 евро. Как показано на рисунке ниже, на краю печатной платы имеется 24-контактное гнездо, в которое можно подключить разъем Main Power Molex вашего блока питания ATX, как 20-, так и 24-контактную версию.На самом деле на печатной плате всего четыре предохранителя, миниатюрный ползунковый переключатель и светодиод с последовательным резистором. Как видите, на плате имеется восемь больших 4-мм штекерных разъемов. Подаются только четыре из пяти доступных напряжений. Напряжение -5 В пост. тока недоступно. Это не большая беда, потому что когда вы используете напряжение питания -5 В постоянного тока?
Плата XH-M229 ATX. (© Banggood)


Две стороны печатной платы
Как и почти все китайские печатные платы, эта тоже двухсторонняя.На рисунке ниже ясно видно, что ползунковый переключатель ничего не делает, кроме как соединяет контакт 16 с землей в положении ON. Этот переключатель подает управляющий сигнал PS_ON# на блок питания ATX. Питание светодиода осуществляется через резистор от выходного напряжения +3,3 В постоянного тока перед предохранителем.
Две стороны печатной платы. (© 2019 Джос Верстратен)

Наше мнение о XH-M229


Как обычно, и печатная плата, и используемые компоненты отличного качества.Мы знаем, что китайские товары экономят до последней копейки, чтобы предложить их миру как можно дешевле. Тем не менее, нам очень жаль, что дизайну этой очень полезной и удобной печатной платы не уделяется немного больше внимания. На самом деле цена не имела бы большого значения, если бы использовался не один светодиод индикации, а четыре, каждый из которых показывает наличие одного из четырех выходных напряжений. Если сейчас предохранитель выйдет из строя, вы не сразу увидите его на печатной плате. С этими четырьмя светодиодами это было бы так. (реклама спонсора Banggood) Плата переноса ATX для настольных ПК
XH-M229

Полностью регулируемый блок питания ATX

— BOGIN, JR.

Теперь позвольте мне начать эту статью с заявления о том, что это *не* так называемая «переделка» с LM317 (или любым другим линейным регулятором в целом), которую вы могли видеть на тысячах других веб-страниц, и не -так называемый «лабораторный» источник питания, который был получен путем короткого замыкания контакта PS-ON. Это настоящее преобразование ATX в регулируемое питание, которое может вам пригодиться.

Причиной, по которой я решил написать эту статью, стала растущая популярность моего хака с поставками ATX, который я разместил на 4hv.org и одновременно на Youtube в августе 2011 года. Многие люди начали спрашивать у меня схему, однако мне пришлось ответить, что универсального нет. Для каждого типа поставки подход одинаков, однако задействованные части могут немного отличаться.
Полученный продукт будет плавно регулируемым источником питания ATX примерно от 4,7 В (некоторые даже могут снизиться до 3 вольт) до установленного вами напряжения, с неповрежденной защитой от короткого замыкания и с максимальным выходным током, точно таким же, как написано на ваш оригинальный рейтинг линии +12 В! Итак, вот как это сделать.

Никаких LM317 и огромных радиаторов…

Чтобы изменить выходное напряжение такого источника питания, вам необходимо изменить цепь обратной связи (ШИМ) микросхемы драйвера. В этом руководстве речь пойдет о источниках питания с полумостовой конструкцией (два высоковольтных NPN на первичной обмотке), управляемых микросхемой TL494 или ее китайским аналогом, например, DBL494, KA7500 и подобными. Итак, если ваш конкретный блок питания оснащен таким чипом (большинство блоков питания ATX в диапазоне 200–400 Вт), читайте дальше.Тем не менее, есть также несколько других конструкций, таких как топология обратного хода с одним полевым МОП-транзистором, с оптопарной обратной связью, управляемой микросхемой UC384x, которые не рассматриваются в этом руководстве.

Шаг 1: После того, как вы разобрали конкретный блок питания, еще раз проверьте, получает ли микросхема TL494 напряжение питания от «вспомогательного» источника питания. По сути, вы должны увидеть как минимум 3 ферритовых трансформатора на печатной плате и линейный стабилизатор с радиатором (78xx), питающий чип. Если вы этого не сделаете, не рекомендуется продолжать.Насколько я знаю, расходные материалы AT построены таким образом, так что будьте осторожны с ними.

Шаг 2: Найдите первый контакт +IN1 TL494 и осторожно отсоедините его от печатной платы. Используйте демонтажный насос или кусачки, выбор за вами. Затем сделайте такую ​​схему — указанные значения хороши для начала; возможно, вам придется немного настроить их для вашей установки. Соедините все это, как показано на рисунке.

 

Шаг 3: После того, как вы закончите шаг 2, важно: установите потенциометр настройки P1 так, чтобы он закорачивал первый контакт TL494 с прежней линией +12 В.Используйте прежний +12V в качестве выхода, земля остается землей. Подключите питание и включите его с помощью вольтметра между клеммами +12V и GND. Если он не включается, перейдите к шагу 4. В противном случае запустите медленно увеличивая выходное напряжение с помощью потенциометра, пока оно не достигнет 15-16 вольт. Используйте подстроечный резистор P2, чтобы ограничить максимальное напряжение до 15-16 вольт; пока потенциометр настройки не позволит вам выйти за пределы этого значения. После этого попробуйте фиктивную нагрузку. Блок питания должен иметь неповрежденную защиту от короткого замыкания (попробуйте) и должен давать такую ​​же номинальную силу тока, как и на прежней линии +12 В.Если питание отключается даже при небольшой нагрузке, перейдите к шагу 4, в противном случае — добавьте переходник или 20-вольтовый стабилитрон мощностью несколько ватт в обратной полярности к выходным клеммам — браво, ваш регулируемый источник питания готов!

Шаг 4: Если вам будет предложено продолжить, быстро отключите блок питания. Дважды проверьте схему, которую вы сделали на шаге 2, и правильно ли вы все подключили. Если все в порядке, проследите бывшие линии +12 В, +5 В и +3,3 В на наличие быстрых или сенсорных диодов или маломощных стабилитронов, которые могут привести к перенапряжению схемы.Выпаивайте всегда первый диод, который встретится на каждой линии, затем повторите шаг 3. Если это не помогло и вы уверены, что не пропустили ни одного, вот последнее средство: отключите 4-й контакт TL494 и заземлите его через резистор 4к6. В качестве альтернативы отключите контакты 13, 14 и 15. Таким образом, источник питания принудительно включит питание независимо от схемы защиты или состояния контакта PS_ON. Таким образом вы также потеряете оригинальную защиту от короткого замыкания. Вот тут-то и начинается самое интересное: теперь, если вы совершите ошибку или произойдет короткое замыкание, будьте готовы к фейерверку.На этом этапе я также советую вам накрыть источник питания шляпой или чем-то еще перед включением питания. 🙂

Примечание: если вам удастся разорвать цепь обратной связи, выходное напряжение может резко возрасти до 30 вольт, что приведет к разрушению всех электролитических конденсаторов и других деталей.

Вот и все, ребята. Поздравляем, если ваш запас работает таким образом.

Добавить комментарий

Ваш адрес email не будет опубликован.