Устройство твердотельного реле переменного тока: Что такое твёрдотельное реле?

Содержание

Что такое твёрдотельное реле?

Устройство и параметры твёрдотельных реле

Радиоэлектроника развивается стремительными темпами и то, что совсем недавно использовалось повсеместно, в настоящее время кажется пережитком далёкой старины. Электромеханическое реле ещё активно используется, но на смену ему идёт принципиально новый электронный прибор – твёрдотельное реле.

В англоязычной технической литературе твердотельное реле (ТТР), имеет сокращённое обозначение SSR (Solid State Relays).

Твёрдотельное реле служит для управления силовыми цепями с помощью низковольтной цепи управления. В качестве коммутатора силовой цепи используются мощные ключи на полупроводниковых структурах, выполненных по типу: транзистора, тиристора или симистора.

По сути, твёрдотельное реле является аналогом всем знакомого электромеханического, но выполненного по полупроводниковой технологии.

Такие реле, в зависимости от типа, могут работать как в цепях переменного, так и постоянного тока.

Принцип работы твёрдотельного реле.

Работает твердотельное реле следующим образом: управляющий сигнал подаётся на светодиод. Оптическое излучение вызывает на фотоприёмнике (фотодиоде) появление ЭДС. Это напряжение подаётся на управляющую схему, которая вырабатывает сигнал для управления выходным ключом.

Таким образом, вся работа твёрдотельного реле осуществляется в нескольких ступенях разделённых между собой:

  • Входная цепь (излучающий диод).

  • Оптическая развязка.

  • Фотодиод с триггером управления (схема управления).

  • Цепь коммутации (симистор).

  • Цепь защиты выходного ключа (варистор и т.п.).

В зависимости от назначения и параметров твёрдотельного реле оно может иметь различное устройство. Как уже говорилось, в качестве силового ключевого элемента, который коммутирует ток нагрузки, может быть использован симистор, МДП-транзистор, тиристор, диод, биполярный транзистор или IGBT-транзистор. Благодаря этому в продаже можно найти твёрдотельное реле под любую задачу.

Основных параметров у твёрдотельного реле немного:

  • Коммутируемое напряжение Uмакс;

  • Коммутируемый ток Iмакс;

  • Управляющий сигнал;

  • Скорость переключения.

Качественные отличия твёрдотельных реле от электромеханических.

Почему твёрдотельные полупроводниковые реле всё активней занимают место «классических» электромеханических? Как известно, у электромеханических реле недостатков много: большое время срабатывания, подгорание контактов (как следствие, низкая надёжность), дребезг контактов, искрение (вызывает помехи в работе аппаратуры).

По сравнению с электромагнитными реле, твёрдотельные обладают рядом несомненных преимуществ:

  • Допускается не менее миллиарда переключений, что в тысячу раз превышает этот показатель у обычных электромеханических.

  • Совместимость с уровнями логических микросхем. То есть SSR можно управлять прямо с выхода микросхем.

  • Отсутствие контактов а, следовательно, и дребезга.

  • Бесшумная работа, вибростойкость, высокое быстродействие.

  • Очень малое энергопотребление.

Следует отметить, что твёрдотельные реле очень чувствительны к превышению, как напряжения, так и тока. Поэтому, выбирая твердотельное реле необходимо всегда учитывать запас минимум в 20 %. Есть ещё два очень важных момента, на которые необходимо обращать внимание. Эти устройства очень боятся перегрева, а при работе полупроводниковая структура сильно нагревается, поэтому наличие радиатора необходимо. Очень часто коммутируемую цепь шунтируют варистором для защиты от импульсных выбросов.

Маломощные твёрдотельные реле.

Существует целая серия твердотельных реле рассчитанных на работу с небольшими токами и напряжениями. Их принято называть телекоммуникационными реле или MER

(MicroElectronic Relay). Как правило, они рассчитаны на коммутацию нагрузки небольшой мощности.

Маломощные полупроводниковые реле имеют очень небольшие размеры и прекрасно зарекомендовали себя, работая в многофункциональных телефонных аппаратах, контрольно-измерительной аппаратуре, модемах, приёмно-контрольных приборах систем охранной и пожарной сигнализации.

Поскольку они работают в слаботочных системах, их внутренняя схемотехника заметно упрощена с целью снижения себестоимости. Особенно удобно их использование в системах оповещения о пожаре или несанкционированном проникновении. В этих системах требуется очень высокий уровень надёжности, который далеко не всегда могут обеспечить электромагнитные реле. Рассмотрим устройство слаботочного реле CPC1035.

Как видно из рисунка, такое реле представляет собой комбинированное устройство. В его составе есть высокоэффективный излучающий AsGaAl-инфракрасный диод. Он является управляющей цепью (

Control). Нагрузку (Load) коммутирует сдвоенный MOSFET транзистор. Благодаря сдвоенному MOSFET транзистору реле допускает коммутацию переменного тока. Как только на инфракрасный диод подаётся напряжение, он начинает излучать. Излучение принимается фотодиодной матрицей, в которой создаётся фото-ЭДС. Далее, полученное от фотоматрицы напряжение (фото-ЭДС), подаётся на управляющую схему. Та в свою очередь управляет ключом из полевых транзисторов. Цепь нагрузки начинает пропускать ток. Как видим, в основе любого твёрдотельного реле лежит полупроводниковая технология.

Основные параметры CPC1035:

  • Коммутируемое переменное напряжение (Blocking Voltage) — 0…350 В;

  • Максимальный ток нагрузки (Load Current) — 100 мА;

  • Максимальное сопротивление ключа во включенном состоянии (Max On-resistance) — 35 Ом;

  • Величина управляющего тока — 2…50 мА (Ток управления — постоянный).

Такие маломощные и миниатюрные реле активно используются в охранных датчиках. Вот, например, реле COSMO типа CPC1008 на плате датчика движения «Фотон-Ш». Оно подключается в охранный шлейф приёмно-контрольного прибора (например, ППКОП «Гранит») или к линии, которая подключена к пульту центрального наблюдения (ПЦН).

Твёрдотельные реле серии CPC10xx также есть в составе охранного датчика «Астра-621». Это многофункциональный датчик. Он контролирует движение в охраняемой зоне за счёт пироэлектрического датчика и осуществляет контроль разбития окон за счёт чувствительного микрофона. На печатной плате прибора расположено два полупроводниковых реле типа CPC1016N. Одно срабатывает при детектировании движения в охранной зоне, а другое срабатывает при разбитии окон.

Если приглядеться, то можно увидеть, что на печатной плате твёрдотельное реле обозначается как DA4 и DA5. Как известно, сокращением

DA обычно указывают на схемах аналоговые микросхемы. Поэтому стоит понимать, что твёрдотельное реле это не отдельный электронный компонент, а по своей сути специализированная микросхема, наподобие ИК-приёмника.

 

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

 

Твердотельное реле своими руками

В последнее время набрали популярность твёрдотельные реле. Для очень многих устройств силовой электроники твёрдотельные реле стали просто необходимы. Их преимущество в несоизмеримо большем количестве срабатываний, по сравнению с электромагнитными реле и большой скоростью переключений. С возможностью подключения нагрузки в момент перехода напряжения через ноль, тем самым избегая тяжёлых пусковых токов. В некоторых случаях их герметичность тоже играет свою положительную роль, но одновременно лишая владельца такого реле преимущества в возможности ремонта с заменой некоторых деталей. Твёрдотельное реле, в случае выхода из строя, не ремонтируется и подлежит замене целиком, это его отрицательное качество. Цены на такие реле несколько кусаются, и получается расточительно.
Попробуем вместе сделать твёрдотельное реле своими руками с сохранением всех положительных качеств, но, не заливая схему смолой или герметиком, чтобы иметь возможность ремонта, в случае выхода из строя.

Схема


Посмотрим схему этого очень полезного и нужного устройства.

Основу схемы составляют силовой симистор Т1 — BT138-800 на 16 Ампер и управляющий им оптрон МОС3063. На схеме выделены чёрным цветом проводники, которые нужно проложить медным проводом повышенного сечения, в зависимости от планируемой нагрузки.
Управление светодиодом оптрона мне удобнее запитать от 220 Вольт, а можно от 12 или 5 Вольт, кому как нужно.

Для управления от 5 Вольт, нужно гасящий резистор 630 Ом поменять на 360 Ом, остальное всё одинаково.
Номиналы деталей рассчитаны на МОС3063, если примените другой оптрон, то номиналы нужно пересчитать.
Варистор R7 защищает схему от бросков напряжения.
Цепочку индикаторного светодиода можно совсем убрать, но с ней получается нагляднее, что аппарат работает.
Резисторы R4, R5 и конденсаторы C3, C4 служат для предотвращения выхода из строя симистора, их номиналы рассчитаны на ток не выше 10 Ампер. Если потребуется реле на большую нагрузку, то номиналы нужно пересчитывать.
Радиатор охлаждения для симистора впрямую зависит от нагрузки на него. При мощности триста Ватт, радиатор не нужен вовсе, и соответственно – чем больше нагрузка, тем больше площадь радиатора. Чем меньше будет симистор перегреваться, тем дольше проработает и поэтому даже кулер охлаждения не будет лишним.
Если вы планируете управлять повышенной мощностью, то наилучшим выходом будет поставить симистор большей мощности, например, ВТА41, который рассчитан на 40 Ампер, или подобный ему. Номиналы деталей подойдут без пересчёта.

Детали и корпус




Нам потребуется:
  • F1 — предохранитель на 100 мА.
  • S1 — любой маломощный переключатель.
  • C1 – конденсатор 0.063 мкФ 630 Вольт.
  • C2 – 10 — 100 мкФ 25 Вольт.
  • C3 – 2.7 нФ 50 Вольт.
  • C4 – 0.047 мкФ 630 Вольт.
  • R1 – 470 кОм 0.25 Ватт.
  • R2 – 100 Ом 0.25 Ватт.
  • R3 – 330 Ом 0.5 Ватт.
  • R4 – 470 Ом 2 Ватта.
  • R5 – 47 Ом 5 Ватт.
  • R6 – 470 кОм 0.25 Ватт.
  • R7 – варистор TVR12471, или подобный.
  • R8 – нагрузка.
  • D1 – любой диодный мост на напряжение не менее 600 Вольт, или собрать из четырёх отдельных диодов, например — 1N4007.
  • D2 – стабилитрон на 6.2 Вольта.
  • D3 – диод 1N4007.
  • T1 – симистор ВТ138-800.
  • LED1 – любой сигнальный светодиод.

Изготовление твердотельного реле


Сначала намечаем размещение радиатора, макетной платы и прочих деталей в корпусе и закрепляем их на места.



Симистор нужно изолировать от радиатора охлаждения специальной теплопроводной пластиной с применением теплопроводной пасты. Паста должна слегка вылезти из-под симистора при закручивании крепёжного винта.

Далее размещаем следующие детали в соответствии со схемой и припаиваем их.






Припаиваем провода для подключения питания и нагрузки.


Помещаем устройство в корпус, предварительно испытав его при минимальной нагрузке.




Испытание прошло успешно.

Смотрите видео


Смотрите видео испытания устройства совместно с цифровым регулятором температуры.

Схема твердотельного реле — РАДИОСХЕМЫ

Современная электротехника и радиоэлектроника всё больше отказывается от механических узлов, имеющих значительные размеры и подверженных быстрому износу. Одной из областей, где это проявляется сильнее всего, являются электромагнитные реле. Все прекрасно понимают, что даже самое дорогое реле, с платиновыми контактами, рано или поздно выйдет из строя. Да и щелчки при переключении могут напрягать. Поэтому промышленность наладила активный выпуск специальных твердотельных реле.

 

Такие твердотельные реле могут использоваться практически везде, однако в настоящее время они пока ещё остаются очень дорогими. Поэтому имеет смысл собрать его самому. Тем более их схемы просты и понятны. Твердотельное реле работает как стандартное механическое реле — вы можете использовать низкое напряжение для переключения более высокого напряжения.

Схема твердотельного реле

Пока на входе не присутствует напряжение постоянного тока (в левой части схемы), фототранзистор TIL111 открыт. Чтобы повысить защищённость от ложных срабатываний, база TIL111 подается эмиттер через 1М резистор. На базе транзистора BC547B будет высокий потенциал и, таким образом, он остается открытым. Коллектор замыкает управляющий электрод тиристора TIC106M на минус, и он остается в закрытом положении. Через выпрямительный диодный мост ток не проходит и нагрузка отключена.

При определенном входном напряжении, скажем, 5 вольт, диод внутри TIL111 загорается и активирует фототранзистор. Происходит закрытие транзистора BC547B и отпирание тиристора. Это создает достаточно большое падение напряжения на резисторе 330 Ом для переключения симистора TIC226 во включенное положение. Падение напряжение на симисторе в тот момент всего несколько вольт, так что практически всё напряжение переменного тока течёт через нагрузку. 

Симистор защищен от импульсов через 100 нФ конденсатор и 47 ом резистор. Чтобы создать возможность устойчивого переключения твердотельного реле с различными управляющими напряжениями, был добавлен полевой транзистор BF256A. Он действует как источник тока. Диод 1N4148 установлен, чтобы защитить цепь в случае неправильной полярности. Эта схема может быть использована в различных устройствах, с мощностью до 1,5 КВт, конечно если вы установите тиристор на большой радиатор.

Solid State Relay (SSR) — Типы SSR реле

Что такое твердотельное реле? Конструкция, работа, применение и типы реле SSR

В этой статье мы кратко обсудим SSR (твердотельное реле) , его конструкцию, работу, схемы и различные типы реле SSR в зависимости от его коммутационных свойств и входных данных. / выходные формы. Мы также обсудим преимущества и недостатки твердотельного реле (SSR) по сравнению с реле электромагнитных реле (EMR) .

Что такое твердотельное реле (SSR)?

Твердотельное реле ( SSR ) — это электронное переключающее устройство, изготовленное из полупроводников , которое переключает (включает и выключает) цепь высокого напряжения, используя низкое напряжение на клеммах управления.

В отличие от EMR (электромагнитное реле), которое имеет катушку и механический переключатель (физические контакты), реле SSR использует оптопару для изоляции цепи управления от управляемой цепи.

Разница между SSR и EMR

Работа SSR (твердотельного реле) и EMR (электромагнитного реле) или контактного реле одинакова, в то время как основное различие между SSR и EMR заключается в отсутствии механических частей и контактов в реле SSR.Обычно SSR имеет 1 контакт, а EMR — несколько контактов.

Другим отличием твердотельного реле от электромагнитного реле является отсутствие скачков напряжения и шума во время работы SSR. Существует вероятность утечки тока от нескольких мкА до мА в реле SSR, в то время как значение тока утечки равно нулю (0) в EMR. С другой стороны, SSR отключает нагрузки переменного тока в точке нулевого тока нагрузки, что приводит к устранению шума, дребезга контактов и электрической дуги в случае индуктивной нагрузки по сравнению с реле EMR.

Конструкция твердотельного реле (SSR)

Клеммы реле SSR

Реле SSR имеет два набора клемм, т.е. входные клеммы и выходные клеммы. Эти клеммы приведены ниже:

Клеммы ввода или управления

Эти две клеммы являются клеммой управления вводом. Он подключен к цепи малой мощности, которая управляет его переключением.

Клеммы и соединения реле SSR

Управляющий вход реле SSR предназначен для цепи постоянного или переменного тока отдельно.

Выходные нормально открытые (NO) клеммы

Выходные клеммы реле SSR включаются и выключаются в зависимости от управляющего входа.

Обычно электрическое соединение между этими клеммами остается открытым. Когда реле активируется, эти клеммы соединяются вместе, обеспечивая замкнутый путь.

Выходные клеммы специально разработаны для цепи AC или DC . В отличие от реле EMR, реле SSR не может переключать сигнал постоянного и переменного тока с помощью одних и тех же клемм.

Выходной нормально закрытый (NC) Клемма

Эта клемма реле остается закрытой до тех пор, пока реле не сработает. Когда реле срабатывает, ток не течет. Он открывается при активации реле.

ПРИМЕЧАНИЕ: Обычно используемые реле SSR не имеют нормально закрытых клемм. Но реле SSR форм B и C (обсуждается ниже) использует клемму NC.

Работа и работа реле SSR

Когда на входные управляющие клеммы реле SSR подается низкое напряжение, выходные клеммы нагрузки замыкаются.

Вход реле SSR активирует оптопару, которая переключает цепь нагрузки. Оптопара не имеет физического соединения и изолирует цепь низкого напряжения от цепи высокого напряжения.

Оптопара имеет на входе светодиод , который излучает инфракрасный свет при подаче напряжения. Эти ИК-волны принимаются фотодатчиком (фототранзистор, фотодиод и т. Д.) На его выходе. Фотодатчик преобразует световой сигнал в электрический сигнал и включает цепь.

Чтобы активировать оптрон, его входное напряжение должно быть больше, чем его прямое напряжение . По этой причине реле SSR не срабатывают при напряжении ниже указанного.

Выходная схема реле SSR различается для цепей переменного и постоянного тока. Обычно он состоит из тиристоров TRIAC или для цепи переменного тока и силовых полевых МОП-транзисторов для цепи постоянного тока.

Схематическая модель реле SSR

Общая схема работы реле постоянного тока в переменный SSR Работа с модельной схемой приведена ниже:

Вход постоянного тока с достаточным напряжением подается на входные клеммы управления.Имеется диод для защиты от обратной полярности применен DC .

Когда напряжение подается на светодиод оптопары, он излучает инфракрасный свет.

С другой стороны, Opto-TRIAC (приемник) улавливает свет и включается. Как только оптопара включается, через него начинает течь ток на выходе AC .

В свою очередь, выход этой оптопары активирует симистор . Таким образом разрешается протекание тока AC цепи нагрузки

Типы реле SSR

Существует различных типов реле SSR (твердотельных) .Они классифицируются либо по форме ввода / вывода, либо по свойству переключения.

Классификация на основе ввода /

Праймер для твердотельных реле — поддержка Phidgets

Введение

«Хоккейная шайба» SSR, названная так из-за ее толстой формы и черного цвета. Они специально разработаны для переключения нагрузок переменного или постоянного тока, но никогда того и другого одновременно.

Твердотельные реле (SSR) включают или выключают питание, подаваемое на другие устройства, аналогично физическому переключателю.Однако вместо того, чтобы переключаться при взаимодействии человека, как физический переключатель, SSR переключаются электронным способом. С помощью SSR вы можете управлять сильноточными устройствами, такими как осветительные приборы или приборы с слаботочными сигналами, такими как стандартный сигнал постоянного тока с цифрового выхода. Многие SSR включаются при напряжении 3 В или выше. Это делает их идеальными для использования с выходами на Phidget InterfaceKits или любых других устройствах с цифровым выходом, таких как OUT1100 — Digital Output Phidget. Использование портов VINT Hub в режиме цифрового вывода может не работать, поскольку они могут не обеспечивать достаточной мощности для активации SSR.Если ваш цифровой выход недостаточно мощный, вы можете подключить внешний полевой МОП-транзистор, чтобы переключить более подходящий источник питания для управления SSR. SSR

выполняют ту же работу, что и механические реле, но имеют следующие преимущества:

  • SSR во время работы создают меньше электромагнитных помех, чем механические реле. Это в основном связано с отсутствием явления, называемого контактной дугой, которое присутствует только в механических реле, когда физические контакты реле имеют тенденцию к искрению внутри при переключении.Уменьшение помех также можно объяснить тем фактом, что в SSR не используются электромагниты для переключения.
  • Переключающие контакты механического реле со временем изнашиваются от дуги. SSR будет иметь более длительный срок службы, потому что его внутреннее устройство полностью цифровое. При правильном использовании они прослужат миллионы циклов.
  • SSR
  • включаются и выключаются быстрее механических реле (≈1 мс по сравнению с ≈10 мс).
  • ТТР
  • менее восприимчивы к физическим вибрациям, чем механические реле.
  • Поскольку переключатель внутри SSR не является механическим переключателем, он не страдает от дребезга контактов и работает бесшумно.

Однако, по сравнению с механическими реле, твердотельные реле:

  • Дороже.
  • Будет рассеивать больше энергии в виде тепла (1-2% энергии, предназначенной для питания нагрузки).

Как работают SSR

Концептуальная схема внутренней части SSR.

Управляющие входы подключены внутри к светодиоду, который светит через воздушный зазор на световые датчики.Датчик освещенности подключен к транзисторам, которые открываются или закрываются, питая нагрузку реле. Когда транзистор закрыт , ток может свободно течь через реле, что приводит к подключению нагрузки и источника питания. Когда транзистор открыт , почти весь ток блокируется, в результате чего нагрузка отключается от источника питания. Соединение светодиода с датчиками освещенности называется оптопарой и является распространенным методом соединения двух частей схемы без прямого электрического соединения.

Основное использование

Управление SSR не сложнее, чем включение и выключение светодиода. Включите, выключите, это так просто.

Способность SSR переключать нагрузку очень похожа на механическое реле или простой переключатель. Включая и выключая цифровой выход, управляющий реле, вы контролируете, подключена ли нагрузка к источнику питания.

Задача состоит в том, чтобы выбрать подходящий тип SSR для вашего приложения. Не существует единого SSR, идеально подходящего для всех приложений.Чтобы выбрать SSR для вашего конкретного приложения, следуйте инструкциям в разделе «Выбор SSR».

Безопасность

Две принципиальные схемы, показывающие неправильные и правильные способы переключения электросети с помощью реле.

Поскольку реле переключают большие токи и напряжения, применяются стандартные меры безопасности при работе с электричеством. Никогда не касайтесь клемм, когда реле находится под напряжением. Если ваш SSR поставляется с пластиковой крышкой, используйте ее. Даже когда SSR выключен, будет течь очень небольшой ток.

При включении реле в цепь всегда рекомендуется размещать его между источником питания и нагрузкой, особенно при использовании более высоких напряжений. Если вместо этого установить реле между нагрузкой и землей, схема будет работать так же, но когда реле разомкнуто, нагрузка по-прежнему будет напрямую подключена к источнику питания. Это может вызвать проблемы с безопасностью, поскольку кто-то может прикоснуться к клеммам на нагрузке, считая это безопасным, потому что устройство кажется выключенным. Если электричество найдет путь к земле через их тело, они будут поражены электрическим током.Если реле расположить между источником питания и землей, поражение электрическим током будет опасно только в том случае, если прикоснуться к клемме реле, находящейся под напряжением. Опять же, клеммы реле всегда должны быть должным образом закрыты, чтобы избежать риска поражения электрическим током.

Когда SSR выходит из строя, он чаще всего выходит из строя навсегда. Это связано с тем, что, когда внутренний транзистор выходит из строя из-за чрезмерного тока или тепла, он обычно замыкается, позволяя току беспрепятственно проходить через него. Это означает, что, пока источник питания остается включенным, нагрузка будет запитана, что может создать угрозу возгорания или безопасности.

Выбор SSR

Определите ваше напряжение

Сначала определите, нужно ли переключать напряжение постоянного или переменного тока. Электрическая сеть и, следовательно, ваша настенная розетка работают от переменного тока, тогда как батареи и большинство небольших источников питания работают от постоянного тока.

Затем определите максимальное количество вольт, которое вы будете переключать. Если вы переключаете постоянный ток, особенно с батареями, предположите, что ваше напряжение как минимум на 25% больше, чем рассчитано на вашу батарею. На переменном токе происходят еще большие колебания, но твердотельные реле переменного тока предназначены для того, чтобы справляться с этими скачками.Типичное напряжение переменного тока от настенной розетки в Северной Америке составляет 110 В переменного тока, тогда как в Европе оно обычно составляет 220 В переменного тока. Если вы подключаете переменное напряжение к розетке, проверьте, какой стандарт используется в вашей стране, и используйте это число в качестве напряжения.

Определите ваш текущий

Ток, потребляемый вашей нагрузкой при включении, влияет на размер SSR, который вам нужен, и на то, насколько горячим он будет во время использования. Если вы знаете, сколько тока в среднем потребляет ваша нагрузка, это то, что мы называем Средний ток нагрузки .Если вы не знаете средний ток, но знаете мощность (номинальную мощность) вашей нагрузки, вы можете рассчитать средний ток нагрузки следующим образом:

Средний ток нагрузки = Ватт Рабочее напряжение {\ displaystyle {\ text {Средний ток нагрузки}} = {\ frac {\ text {Ватт}} {\ text {Рабочее напряжение}}}}

Затем вам нужно знать ток, потребляемый вашей нагрузкой при ее первом включении. Многие нагрузки требуют большого скачка тока при первом включении нагрузки. Это создает значительную нагрузку на электронику внутри SSR.Если вы когда-нибудь замечали, что свет в доме на секунду приглушается при запуске печи, это вызвано запуском двигателя вентилятора. Точно так же, как требуется большое усилие, чтобы вывести тяжелый предмет из состояния покоя, изначально требуется большой ток для включения вентилятора или лампы накаливания. Очень сложно измерить сам импульсный ток , поэтому мы используем множитель в зависимости от типа вашего устройства. Импульсный ток также обозначается как пусковой ток .

Приложение Множитель
Лампы накаливания 6x
Двигатели 6x
Светодиоды 1x
Комплексная электроника i.е., контроллеры моторов, фиджи 6x
Люминесцентные светильники (только переменного тока) 10x
Трансформаторы 20x
Обогреватели 1x

Умножьте свой средний ток нагрузки на множитель для вашего типа устройства, чтобы рассчитать импульсный ток.

Мне нужно переключить AC

Большинство приложений переменного тока будут переключать питание от сети с напряжением 110 до 240 вольт.Если это вы, перейдите в раздел «Напряжение сети (110–240 В переменного тока)».

Мы также покрываем низковольтные системы переменного тока — 28 В переменного тока (Вольт переменного тока) или менее. Для получения дополнительной информации посетите раздел SSR переменного / постоянного тока.

Мне нужно переключить DC

Если вам нужно переключить только небольшой ток — 9 А или меньше, рассмотрите наши компактные, экономичные SSR переменного / постоянного тока.

Если вам нужно переключить более 9 ампер, вам понадобится серьезный SSR постоянного тока.

Если вам нужно переключить до 4 небольших нагрузок 8 А или меньше, вы можете использовать цифровые выходы с открытым коллектором (с внешним питанием) на REL1100 — 4x Isolated SSR Phidget, которые могут быть подключены так, чтобы вести себя аналогично реле.Если вам нужно еще больше реле, обратите внимание на REL1101 — 16x Isolated SSR Phidget.

Мне нужно постепенное затемнение

Вместо простого включения / выключения нагрузки, если вы хотите постепенно уменьшать ее яркость, вы можете использовать SSR с пропорциональным управлением. Они способны постепенно снижать среднюю мощность нагрузки пропорционально силе входного сигнала. Для получения дополнительной информации вы можете посетить раздел «Пропорциональный контроль SSR».

Напряжение сети (от 110 до 240 В переменного тока)

Мы продаем ТТР переменного тока на 120 или 240 В переменного тока.Если вы не уверены, какое напряжение вам может понадобиться переключить, реле на 240 В переменного тока можно без проблем использовать для переключения 120 В переменного тока. Обратите внимание, что мы очень консервативны в оценке SSR — наши реле на 120 В переменного тока рассчитаны производителем на 240 В переменного тока, а 240 В переменного тока — на 480 В переменного тока. Мы настоятельно не рекомендуем использовать их при номинальном напряжении производителя. Чтобы понять, почему, прочтите раздел «Защита SSR переменного тока».

Тип нагрузки — индуктивная или резистивная

Этот график показывает разницу между нулевым переходом и случайным включением.Синяя линия представляет собой колебательное напряжение нагрузки переменного тока, а заштрихованные области представляют участки, когда реле включено и пропускает ток. Как вы можете видеть, SSR случайного включения сразу же открывается при активации, в то время как SSR включения с нулевым переходом ждет, пока напряжение не пересечет ноль, прежде чем размыкаться.
Полноразмерное изображение

Если ваша нагрузка индуктивная, вам нужно выбрать реле случайного включения . Если ваша нагрузка резистивная, выберите реле Zero Crossing .

Ваша нагрузка, вероятно, будет индуктивной, если она построена вокруг большой катушки с проволокой — типичными примерами являются двигатели и трансформаторы. Нагрузка, считающаяся резистивной, также может иметь петли из проволоки — например, фены, тостеры, лампы накаливания используют элементы из скрученной проволоки для генерации тепла. Индуктивная нагрузка будет состоять из тысяч проводов — это вопрос масштаба. Не существует такой вещи, как полностью резистивная нагрузка, но нагрузка должна быть очень индуктивной, чтобы вызвать сбой в работе SSR при переходе через ноль.SSR

предназначены для немедленного включения ( Random Turn On ) или ожидания следующего «чередования» напряжения ( Zero Crossing ). При включении реле с нулевым переходом создают меньше электромагнитного «шума». Их лучше всего использовать с резистивными нагрузками — ТТР с нулевым переходом не могут отключать некоторые индуктивные нагрузки. Очень сложно определить, какие индуктивные нагрузки будут создавать проблемы — это выходит далеко за рамки этого документа. Если ваша нагрузка индуктивная, мы рекомендуем купить SSR со случайным включением .

Приложение Тип нагрузки
Лампы накаливания резистивный
Люминесцентные светильники Индуктивный или резистивный *
Двигатели Индуктивный
Трансформаторы Индуктивный
Обогреватели резистивный
Компьютер / Электроника резистивный
Источники питания переменного / постоянного тока (кирпичный) Индуктивный
Источники питания переменного / постоянного тока (облегченные переключатели) резистивный

* Для люминесцентных светильников старые блоки (магнитный балласт) могут быть индуктивными, а новые блоки часто резистивными (электронный балласт).

Выбор SSR переменного тока

Теперь, когда вы определили рабочее напряжение, средний и импульсный ток, а также тип нагрузки (индуктивную или резистивную), вы можете создать короткий список реле,

  • Максимальное напряжение нагрузки больше или равно вашему рабочему напряжению,
  • Максимальный импульсный ток больше или равен вашему импульсному току, и
  • Тип нагрузки соответствует тому, что вы выбрали для случайного включения / перехода через ноль.

Теперь сравните Максимальный ток нагрузки без радиатора значение для SSR в вашем списке со своим Средним током нагрузки. Если ваш средний ток нагрузки больше, вам может понадобиться радиатор. Для выбора радиатора обратитесь к разделу «Выбор радиатора». В качестве альтернативы, посмотрите на другие SSR в вашем списке — там может быть SSR, который может справиться с вашим средним током нагрузки без радиатора.

На этом этапе вы знаете, какой SSR вам нужен.

Вместо простого включения / выключения нагрузки, если вы хотите постепенно уменьшить ее, вы можете использовать SSR с пропорциональным управлением.Они способны постепенно снижать среднюю мощность нагрузки пропорционально силе входного сигнала. Для получения дополнительной информации вы можете посетить раздел «Пропорциональный контроль SSR».

Если вы хотите узнать больше о SSR в целом, ознакомьтесь с нашим разделом «Знаете ли вы?» раздел.

Защита переменного тока SSR

MOV, который поставляется в комплекте с реле AC «Hockey Puck».

Ваш AC SSR от Phidgets поставляется с круглым диском на двух ножках (на фото). Это металлооксидный варистор (MOV), который должен быть установлен на клеммах нагрузки (большего размера) вашего SSR.MOV — это классический сетевой фильтр — недорогой компонент, который поглощает выбросы высокого напряжения. Всплески высокого напряжения вызываются индуктивными нагрузками, когда они выключены, а также очень часто возникают в электрической сети, когда работают близлежащие устройства. Даже если ваша нагрузка резистивная, используйте MOV для защиты SSR.

Сопоставить MOV с SSR непросто — вот почему мы включаем MOV с вашим SSR. Если MOV выбран для слишком низкого скачка напряжения, он быстро изнашивается.Если он выбран из-за слишком высокого скачка напряжения, он не защитит ТТР должным образом. Чтобы сбалансировать защиту SSR от срока службы MOV, мы обнаружили, что необходимо использовать SSR, рассчитанные на 240 В переменного тока в приложениях на 120 В переменного тока, и SSR, созданные на 480 В переменного тока в приложениях на 240 В переменного тока. Если вам необходимо использовать наши SSR переменного тока при более высоком напряжении, чем мы рекомендуем, не используйте прилагаемый MOV.

По мере того, как MOV изнашиваются от использования, они становятся более чувствительными к обычным скачкам напряжения, что приводит к их более быстрому износу.Когда они полностью выйдут из строя, произойдет короткое замыкание, потенциально создающее опасность пожара. MOV, входящий в комплект вашего SSR, имеет встроенный предохранитель, который отключит MOV, когда он станет опасным. На всякий случай не устанавливайте SSR рядом с легковоспламеняющимися материалами.

Для справки, номер детали MOV, поставляемого с нашими SSR переменного тока, — TMOV20RP200E .

Пропорциональный регулятор SSR

Реле пропорционального управления

(часто называемые просто «реле управления») — это твердотельные реле, которые можно использовать для управления мощностью нагрузки.Вместо того, чтобы снижать напряжение или каким-либо образом ограничивать ток — что было бы очень дорогим решением, пропорциональный SSR снижает мощность, быстро включая / выключая нагрузку, подавая полную мощность короткими импульсами.

Пропорциональные SSR управляются переменным напряжением — по мере увеличения управляющего напряжения нагрузка становится доступной для большей мощности. Наш продукт PhidgetAnalog может использоваться для управления пропорциональными SSR, поскольку аналоговый выход может выдавать различные величины напряжения, в отличие от цифрового выхода, который имеет только два состояния — высокое и низкое.Мы не продаем пропорциональные SSR, но их можно купить в Digikey, где они называются SSR с линейным управлением переменного тока.

Быстрое и грязное решение для диммирования с помощью Phidgets — это использование сервомотора RC с контроллером PhidgetAdvancedServo для поворота ручки на диммере. Из программного обеспечения серводвигатель RC поворачивается в желаемое положение, поворачивая ручку при ее повороте. Хотя это может показаться окольным путем достижения пропорционального управления, диммеры, как правило, намного дешевле, потому что они менее специализированы и производятся в большем количестве.

Примеры схем с ТТР переменного тока

Схема SSR переменного тока, переключающего общую нагрузку. Металлооксидный варистор добавлен к нагрузке для защиты SSR.
Полноразмерное изображение

При подключении цепи переменного тока, особенно при длительной установке, может оказаться полезным купить книгу по электропроводке в жилых помещениях в местном хозяйственном магазине. Существует множество соглашений о подключении (и часто юридических кодексов), которые помогут вам спланировать свой проект, а юридические кодексы часто являются отличным источником мудрости.

SSR постоянного тока (от 0 до 50 В постоянного тока)

Мы продаем SSR постоянного тока для этого переключателя с максимальной нагрузкой 50 вольт. Если вы не уверены, какие напряжения вы могли бы переключать в будущем, можно использовать твердотельные реле постоянного тока с более высоким напряжением для переключения более низких напряжений. Обычной инженерной практикой является покупка SSR, рассчитанного на напряжение на 50–100% выше, чем напряжение, которое вы планируете переключать. Например, если вы переключаете 24 В, разумно использовать SSR на 50 В.

Выбор DC SSR

Теперь, когда вы определили рабочее напряжение, среднее значение и импульсный ток, вы можете создать короткий список реле,

  • Максимальное напряжение нагрузки больше или равно вашему рабочему напряжению,
  • Максимальный импульсный ток больше или равен вашему импульсному току, а
  • Максимальный средний ток больше или равен вашему среднему току.

Теперь сравним Макс. Ток нагрузки без радиатора. Значение для SSR в вашем списке соответствует среднему току нагрузки. Если ваш средний ток нагрузки больше, вам может понадобиться радиатор. Для выбора радиатора обратитесь к разделу «Выбор радиатора». В качестве альтернативы, посмотрите на другие SSR в вашем списке — там может быть SSR, который может выдерживать ваш средний ток нагрузки без радиатора. SSR, рассчитанные на большую нагрузку, чем нагрузка, которую вы используете, будут более эффективными (что означает меньшие потери энергии в виде тепла), чем SSR, работающий при максимальной нагрузке.

На этом этапе вы знаете, какой SSR вам нужен.

Если вы хотите узнать больше о SSR в целом, ознакомьтесь с нашим разделом «Знаете ли вы?» раздел.

Защита постоянного тока от SSR

Диод, входящий в комплект наших ССР постоянного тока «хоккейная шайба». Катод отмечен линией. Синий символ показывает схему, эквивалентную диоду.
Полноразмерное изображение DC SSR переключает электродвигатель. Набор 1018 Phidget InterfaceKit управляет SSR с помощью своих цифровых выходов. На двигателе показан диод, а между источником питания и остальной частью цепи включен предохранитель.
Полноразмерное изображение

Ваш DC SSR от Phidgets поставляется с диодом. Этот диод должен быть установлен поперек вашей нагрузки, а катод должен быть установлен в направлении положительной клеммы источника питания (как показано на схеме).

Если диод установлен в обратном направлении, при включении SSR произойдет короткое замыкание нагрузки, что, вероятно, приведет к выходу из строя диода, SSR или источника питания. Предохранитель, защищающий источник питания, — это всегда хорошая идея. Вы можете поместить предохранитель между положительной клеммой источника питания и положительной клеммой на стороне нагрузки SSR.

Диод защищает SSR от сильных остаточных токов после выключения SSR. Пока ваша нагрузка приводится в движение, индуктивность создает магнитные поля вокруг проводки. Каждая нагрузка в какой-то степени индуктивна, и когда SSR выключается, магнитные поля будут проталкивать ток против теперь открытого SSR, легко повреждая его. Диод позволяет этим токам рециркулировать в нагрузке до тех пор, пока они не потеряют свою энергию.

Для справки, номер детали диода, поставляемого с нашими SSR постоянного тока, — 10A02-T .

Примеры схем с ТТР постоянного тока

Схема SSR постоянного тока, коммутирующего общую нагрузку, которая защищена диодом, включенным параллельно. Схема защищена плавким предохранителем, включенным последовательно после источника питания.
Полноразмерное изображение

Гальваническая развязка, встроенная в SSR постоянного тока, позволяет размещать их в цепи, как выключатель. Поскольку он изолирован, вам не нужно беспокоиться о заземлении или смещении напряжения.

При использовании SSR постоянного тока всегда проверяйте, что положительная клемма нагрузки (помечена +) обращена к положительной клемме источника питания.Если клеммы нагрузки перевернуты, ваша нагрузка немедленно включится. Внутри SSR есть диод, который позволяет току свободно течь через него, когда SSR подключен неправильно. Эта функция включена, потому что в противном случае такая ошибка при подключении приведет к разрушению транзистора в DC SSR.

DC SSR может быть установлен с любой стороны от нагрузки, и он будет работать правильно, но есть преимущество в установке SSR между источником питания и нагрузкой. Если нагрузка подключена к источнику питания, на ней всегда будет потенциально опасное напряжение, даже когда она не работает.

SSR переменного / постоянного тока (от 0 до 40 В постоянного тока / от 0 до 28 В переменного тока)

Небольшой, универсальный SSR переменного / постоянного тока, установленный на плате Phidgets для легкого доступа к контактам.

Наши SSR переменного / постоянного тока построены на небольшой печатной плате, что делает их физически меньше, чем большие SSR с «хоккейной шайбой», и дешевле. Они ограничены более низкими токами и не могут быть установлены на радиаторе.

Мы продаем SSR переменного / постоянного тока, которые могут переключать до 40 В постоянного тока или 28 В переменного тока. Это указано на страницах продукта SSR в разделе «Максимальное напряжение нагрузки».Нет нижнего предела для напряжений, которые могут переключать SSR переменного / постоянного тока. Если у вас напряжение близкое — будьте осторожны. Например, 36-вольтовая система, построенная из 3-х свинцово-кислотных аккумуляторов, может достигать 45 вольт при зарядке.

Выбирая свой AC / DC SSR

Теперь, когда вы определили рабочее напряжение, среднее значение и импульсный ток, вы можете создать короткий список реле,

  • Максимальное напряжение нагрузки больше или равно вашему рабочему напряжению,
  • Максимальный импульсный ток больше или равен вашему импульсному току, а
  • Максимальный средний ток больше или равен вашему среднему току.

Если вас интересует минимальная стоимость, вы, скорее всего, выберете самый дешевый вариант, который соответствует этим критериям. Если вы заинтересованы в высокоэффективной работе и меньшем тепловыделении, подумайте о покупке SSR с более высоким номинальным током.

Ваш SSR переменного / постоянного тока от Phidgets имеет встроенную защиту от статического электричества и опасных остаточных токов после выключения SSR. Если переключаемая нагрузка питается от источника постоянного тока, установка диода поперек нагрузки обеспечит еще большую защиту.Обратитесь к разделу Защита SSR постоянного тока для получения дополнительной информации.

Чтобы узнать больше о SSR в целом, посетите «Знаете ли вы?» раздел.

Примеры цепей с SSR переменного / постоянного тока

Универсальный SSR переменного / постоянного тока, переключающий нагрузку постоянного тока. Клеммы нагрузки двунаправленные, поэтому не имеет значения, каким образом вы их подключаете. Дополнительный диод может быть добавлен для защиты SSR при переключении нагрузок постоянного тока.
Полноразмерное изображение

Электрическая изоляция, встроенная в SSR переменного / постоянного тока, позволяет размещать их в цепи, как выключатель.Цепи без гальванической развязки требуют гораздо большей осторожности — правильного заземления, тщательного учета смещений напряжения.

Использование радиаторов с SSR для хоккейных шайб

«Хоккейная шайба» ССР с пластиковой крышкой (слева), термопрокладка (справа). Все SSR для хоккейных шайб, продаваемые на Phidgets, поставляются с обоими этими аксессуарами, а также с диодом или варистором для защиты SSR. «Хоккейная шайба» SSR закреплена на небольшом радиаторе двумя винтами. Термопрокладка зажата между SSR и радиатором. Твердотельные реле

смогут обеспечить надежность и долгий срок службы только в том случае, если они будут храниться в прохладном месте.Крутой, конечно, относительный, но хорошее практическое правило — держать металлическую основу SSR при температуре ниже 85 ° C (185 ° F). Термопару можно использовать для точного измерения температуры металлического основания.

Избыточное тепло обычно возникает из-за слишком большого тока и слишком малого радиатора. Также можно выделить много тепла при частом включении и выключении реле. Если ваше реле работает в течение коротких периодов времени, вам может не понадобиться такой большой радиатор — при условии, что реле никогда случайно не останется включенным на длительное время.Если пространство не вызывает беспокойства, лучше проявить осторожность.

Перед покупкой радиатора подумайте, действительно ли он вам нужен. Если ваше приложение работает при комнатной температуре, а ваш средний ток меньше Макс. Ток нагрузки без радиатора. Согласно спецификации вашего SSR, радиатор вам не понадобится. В качестве альтернативы, если в вашем проекте есть большое металлическое шасси, к которому может быть прикреплен SSR, его можно использовать в качестве радиатора.

Каждый SSR, подходящий для использования с радиаторами, будет включать спецификацию того, какой ток он может переключать с каждым радиатором, который мы продаем.В этой спецификации предполагается, что над радиатором достаточный воздушный поток, и что текущий воздух имеет комнатную температуру. У наших SSR есть лист металла внизу, где концентрируется тепло — здесь также измеряется тепло, чтобы определить, слишком ли горячий SSR. В комплект Phidgets входит термопрокладка с нашими SSR Hockey Puck (см. Изображение). Вы помещаете эту площадку под SSR, когда устанавливаете ее на радиатор, или на большие металлические поверхности, которые могут рассеивать тепло. Прокладка выполняет ту же функцию, что и термопаста — помогает проводить тепло между основанием SSR и радиатором.Если вы предпочитаете использовать термопасту, вы можете использовать ее вместо прокладки. В наши радиаторы входят винты для крепления твердотельных реле. При затягивании SSR на радиаторе используйте отвертку хорошего размера, чтобы обеспечить хорошую проводимость.

Вы можете увидеть нашу подборку радиаторов в категории реле нашего магазина.

Подключение проводов к хоккейной шайбе SSR

ТТР переменного тока с нормально подключенными проводами и MOV, установленным на стороне нагрузки. Монтажные наконечники TRM6, подключенные к ТТР постоянного тока.

При подключении нагрузки к SSR провод закручивается по часовой стрелке вокруг клеммы, поэтому, когда винт затягивается, он затягивает провод сильнее.Мы рекомендуем использовать провода сечением до 10 AWG — если больше, на винтах не останется достаточной резьбы для затягивания, и они разорвутся. Провода большего размера можно прикрепить с помощью кабельного наконечника. Проушина зажимается под винт SSR, а провод присоединяется к проушине.

Ширина клеммной колодки (мм / порт) Рекомендуемый калибр проводов (AWG)
3,81 с 16 по 26
5,0 с 12 до 24
9.5 от 10 до 26

Ослабленные соединения проводов могут выделять много тепла — используйте достаточно большую отвертку при зажатии проводов нагрузки, чтобы убедиться, что винты затянуты достаточно сильно.

Знаете ли вы?

  • Напряжение сети ТТР переменного тока не может переключать постоянный ток. Они никогда не выключат нагрузку. SSR переменного тока отключаются дважды за цикл переменного тока, когда ток меняет направление и на мгновение становится нулевым. Например, в Северной Америке переменный ток составляет 60 Гц, поэтому SSR переменного тока имеет 120 возможностей выключения в секунду (SSR будет только оставаться выключенным , если управляющий сигнал низкий).Если SSR работает от постоянного тока, ток будет протекать непрерывно, и нагрузка не отключится, даже если управляющий вход выключен.
  • AC SSR отключается автоматически каждый раз, когда ток нагрузки достигает нуля. Он снова включится почти сразу, пока сигнал, управляющий SSR, будет высоким. SSR переменного тока фактически будет иметь низкое ненулевое значение тока, которое он считает «нулевым». В технических данных эта спецификация обычно называется «Минимальный ток нагрузки».Если ваша нагрузка требует меньше этого минимального тока, ваш SSR никогда не включится или не будет надежно включаться. Самое простое решение этой проблемы — подключить другую нагрузку параллельно первой, увеличив ток, необходимый для нагрузки.
  • SSR Производители начали добавлять простую схему внутри SSR переменного тока через клеммы нагрузки, называемую демпфером. Демпфер поглощает очень быстрые электрические изменения, которые обычно могут вызвать случайное включение AC SSR .Когда включен SSR переменного тока, разница напряжений между клеммами небольшая, поэтому демпфер оказывает очень небольшое влияние. Когда AC SSR выключен, демпфер активно защищает SSR — но за свою цену, поскольку пропускает через SSR небольшой ток, который тратится впустую.
  • В AC SSR используются биполярные транзисторы — старая технология, которая была заменена КМОП-транзисторами в современных цифровых схемах. Биполярные транзисторы по-прежнему лучше справляются с высокими напряжениями.Биполярные транзисторы и построенные из них более сложные транзисторы будут терять постоянное напряжение, когда через них протекает ток. Набор транзисторов в вашем SSR потеряет около 1,7 вольт — поэтому в системе 120 В переменного тока вы потеряете около 1,5% в SSR. Эта энергия преобразуется в тепло внутри SSR, и нагрев этих транзисторов является причиной того, что SSR часто нуждаются в радиаторах.
  • SSR и полупроводники в целом обычно выходят из строя из-за короткого замыкания. Короткое замыкание — это цепь, внутренние детали которой повреждены, и ток может свободно течь по ней.Это означает, что ваша нагрузка, вероятно, будет постоянно включаться (пока вы не отключите источник питания) — убедитесь, что это не создает угрозы безопасности. Например, нагреватели для сауны имеют простое механическое отключение с термическим срабатыванием, чтобы защитить их в случае выхода из строя управляющей электроники.
  • SSR постоянного тока (по крайней мере, те, которые мы продаем) используют полевые транзисторы (MOSFET) на основе металлооксидных полупроводников. МОП-транзисторы не теряют постоянное напряжение — вместо этого, когда они включаются, они действуют как очень легкое ограничение для протекания тока — резистор.При малых токах небольшое ограничение расходует очень мало энергии, обеспечивая высокий КПД и часто не требуя радиатора. Этот КПД теряется при увеличении тока — удвоение тока увеличивает выработку тепла в четыре раза.
  • Обычно полевой МОП-транзистор может блокировать ток только в одном направлении — как только напряжение меняется на противоположное, ток течет через диод, идущий параллельно полевому МОП-транзистору. Если бы для переключения переменного тока использовался полевой МОП-транзистор, нагрузка была бы включена половину времени.Распространенное решение — использовать два полевых МОП-транзистора вплотную друг к другу — именно это мы и делаем с нашими SSR AC / DC .

Общие сведения о твердотельных реле

Без движущихся частей

Температурные аспекты
Одним из основных соображений при использовании SSR является правильное управление теплом, которое выделяется при коммутации токов выше примерно 5 ампер (A). В этом случае опорная плита SSR должна быть установлена ​​на хороший проводник тепла, например, алюминий, и использоваться с хорошей теплопередающей средой, такой как термопаста или теплопроводящая прокладка.При использовании этого метода тепловое сопротивление корпуса SSR и теплоотвода снижается до незначительного значения 0,1 ° C / Вт.

Расчет нагрузки
Основной причиной проблем с твердотельными реле является неправильный отвод тепла. Проблемы также могут возникать из-за условий эксплуатации, которые накладывают определенные нагрузки на SSR. При проектировании твердотельного реле в качестве коммутационного решения следует тщательно учитывать импульсные характеристики нагрузки.

Резистивные нагрузки
Нагрузки с постоянными значениями сопротивления — простейшее применение SSR.Надлежащее рассмотрение теплового режима, наряду с вниманием к номинальным токам в установившемся режиме, обеспечит бесперебойную работу.

Нагрузки постоянного тока
Этот тип нагрузки следует рассматривать как индуктивную, и диод должен быть помещен поперек нагрузки для поглощения любых скачков напряжения во время выключения.

Лампы нагрузки
Нагрузки от ламп накаливания, хотя в основном резистивные, могут представлять некоторые проблемы. Поскольку сопротивление холодной нити составляет от 5 до 10 процентов от величины нагрева, может возникнуть большой бросок тока.Важно убедиться, что этот пусковой ток находится в пределах характеристик всплеска SSR. Также необходимо убедиться, что номинал лампы SSR не превышен. Это рейтинг UL®, основанный на пусковом токе типичной лампы. Из-за необычно низкого сопротивления нити накала во время включения характеристика включения при нулевом напряжении особенно желательна для ламп накаливания.

Емкостные нагрузки
Эти типы нагрузок могут оказаться проблематичными из-за их первоначального появления в виде коротких замыканий.Во время зарядки могут возникать высокие импульсные токи, которые ограничиваются только сопротивлением цепи. Следует проявлять осторожность при работе с емкостными нагрузками с низким сопротивлением, чтобы убедиться, что возможности di / dt не превышаются. Включение при нулевом напряжении — особенно ценное средство ограничения di / dt при емкостных нагрузках.

Двигатели и соленоиды
Нагрузки на двигатель и соленоид могут создавать проблемы для надежной работы SSR. Соленоиды имеют высокие начальные импульсные токи, потому что их стационарный импеданс очень низкий.Двигатели также часто имеют сильные пусковые токи во время запуска и могут создавать необычно высокие напряжения во время выключения. Когда ротор двигателя вращается, он создает обратную ЭДС, которая уменьшает ток. Эта обратная ЭДС может добавляться к приложенному сетевому напряжению и создавать условия перенапряжения во время выключения. Точно так же следует тщательно учитывать пусковые токи, связанные с механическими нагрузками, имеющими высокий пусковой момент или инерцию, такими как вентиляторы и маховики, чтобы убедиться, что они находятся в пределах импульсных возможностей твердотельного реле.Для проверки длительности пускового тока следует использовать токовый шунт и осциллограф.

Трансформаторы
При управлении трансформаторами следует учитывать характеристики вторичной нагрузки, поскольку они отражают эффективную нагрузку на ТТР. Переходные процессы напряжения от вторичных цепей нагрузки также часто встречаются в трансформаторах и могут быть наложены на SSR. Трансформаторы представляют проблему в том, что, в зависимости от состояния магнитного потока трансформатора во время выключения, трансформатор может насыщаться в течение первого полупериода последующего приложения напряжения.Это насыщение может вызвать очень большой ток (в 10–100 раз больше номинального) на твердотельный реле, который намного превышает его номинальное значение перенапряжения за полупериод. SSR со случайным включением могут иметь больше шансов на выживание, чем устройство с перекрестным нулевым включением, поскольку они обычно требуют, чтобы трансформатор поддерживал только часть первого полупериода напряжения. С другой стороны, устройство случайного включения часто замыкается в точке пересечения нуля, и тогда SSR должен выдерживать ток насыщения наихудшего случая. Устройство с нулевым перекрестным включением имеет то преимущество, что оно включается в известном режиме и немедленно демонстрирует наихудшее состояние.Рекомендуется использовать токовый шунт и осциллограф, чтобы проверить, не превышена ли допустимая импульсная нагрузка за полупериод.

Типичный подход к применению твердотельного реле к нагрузке трансформатора состоит в том, чтобы выбрать твердотельный реле с номинальным значением импульсного тока полупериода, превышающим максимальное приложенное линейное напряжение, деленное на сопротивление первичной обмотки трансформатора. Сопротивление первичной обмотки обычно легко измерить, и на него можно положиться как на минимальный импеданс, ограничивающий первую половину цикла пускового тока. Присутствие некоторого остаточного магнитного потока плюс реактивное сопротивление при насыщении первичной обмотки затем дополнительно ограничит, в худшем случае, полупериодный импульсный выброс в пределах допустимого уровня выбросов твердотельного реле.

Коммутационные аппараты
Семейство полупроводниковых тиристоров состоит из нескольких очень полезных устройств. Наиболее широко используемыми из этого семейства являются металлооксидные полупроводниковые полевые транзисторы (MOSFET), кремниевые выпрямители (SCR), симисторы и альтернаторные симисторы. Во многих приложениях эти устройства выполняют ключевые функции, и совершенно необходимо понимать их преимущества и недостатки, чтобы правильно определить надежную систему. При правильном применении тиристоры могут быть важным преимуществом в плане соответствия требованиям к окружающей среде, скорости и надежности, которые не могут быть выполнены их электромеханическими аналогами.

МОП-транзистор
MOSFET — это полупроводниковое устройство, которое состоит из двух металлооксидных полупроводниковых полевых транзисторов (MOSFET), одного N-типа и одного P-типа, интегрированных на одном кремниевом кристалле. MOSFET идеально подходит для переключения нагрузок постоянного тока.

SCR
Выпрямитель с кремниевым управлением (SCR) — это четырехслойное твердотельное устройство, контролирующее ток. SCR действует как переключатель, проводящий, когда его затвор получает импульс тока, и он продолжает проводить до тех пор, пока он находится в прямом смещении.SCR идеально подходит для переключения всех типов нагрузок переменного тока.

Симисторы
Симистор — это электронный компонент, примерно эквивалентный двум выпрямителям с кремниевым управлением, соединенным в обратную параллель (параллельно, но с обратной полярностью), и их затворы соединены вместе. В результате получается двунаправленный электронный переключатель, который может проводить ток в любом направлении. Симистор идеально подходит для переключения резистивных нагрузок переменного тока.

Альтернативный симистор
Генератор переменного тока, используемый для переключения нагрузок переменного тока, был специально разработан для приложений, переключающих высокоиндуктивные нагрузки.Специальная микросхема обеспечивает производительность, аналогичную двум тиристорам, подключенным обратно параллельно (встречно-встречно), обеспечивая лучшее поведение при выключении, чем стандартный симистор. Симистор переменного тока — это экономичное решение, которое идеально подходит для переключения индуктивных нагрузок переменного тока.

Тепловые характеристики и теплоотвод
Управление температурным режимом является фундаментальным фактором при разработке и использовании твердотельных реле из-за рассеивания на контактах (обычно 1 Вт на ампер). Следовательно, жизненно важно обеспечить достаточный теплоотвод, в противном случае срок службы и надежность переключения SSR будут поставлены под угрозу.Чтобы правильно выбрать размер радиатора, нужно учитывать, что нужно для получения значений теплового сопротивления, чтобы понять, что это означает. Начнем с определения некоторых переменных:

P = рассеиваемая мощность (Вт)
EDROP = Падение напряжения — максимальное во включенном состоянии (В), можно найти в таблице технических характеристик
. ILOAD = ток нагрузки (A)
TA = Максимальная температура окружающей среды, в которой будет расположено реле (° C)
TJ = максимальная температура полупроводникового перехода — обычно 100 ° CTR = допустимое повышение температуры (° C)
REJC = Термическое сопротивление, переход к корпусу — найдено в таблице технических характеристик (° C / Вт)
RECS = тепловое сопротивление от корпуса к радиатору — обычно 0.1 ° C / Вт. Этим учитываются потери в термопасте или теплопередающей подушке
. RESA = Тепловое сопротивление, теплоотвод к окружающей среде — это требуемая характеристика теплоотвода в зависимости от его объема и конструкции (° C / Вт)

Основные формулы следующие:
P = EDROP x ILOAD
TR = TJ — TA
TR = P (REJC + RECS + RESA)
Решение для RESA
RESA = (TR / P) — (REJC + RECS)

Пример: Какова требуемая характеристика теплового сопротивления радиатора для твердотельного реле с падением напряжения 1.6 В и тепловое сопротивление (переход-корпус) 1,02 ° C / Вт, при нагрузке 20 А и температуре окружающей среды 25 ° C?

Назначение переменных:
EDROP = 1,6 В (из таблицы технических характеристик каталога)
ILOAD = 20A
TA = 25 ° C
TJ = 100 ° С
REJC = 1,02 ° C / Вт (из таблицы технических характеристик каталога)
RECS = 0,1 ° C / Вт (общепринятое термическое сопротивление из-за смазки или теплопередающей прокладки)

Решение:
Р = 1.6 x 20 = 32 Вт
TR = 100-25 = 75 ° C
RESA = (75/32) — (1,02 + 0,1)
R ESA = 1,22 ° C / Вт

Обычно рекомендуется округлять до ближайшей десятой, чтобы обеспечить дополнительный запас. Это приведет к термическому сопротивлению 1,2 ° C / Вт.

Использование таблицы дополнительно поможет в выборе радиатора. Существует множество диаграмм, доступных из разных источников, в зависимости от использования вентилятора и материалов. Для получения более подробной информации лучше всего обратиться к производителю радиатора.

32-канальный контроллер твердотельного реле с интерфейсом I2C

Описание

Этот 32-канальный контроллер твердотельного реле I2C предлагает кроссплатформенное решение с непревзойденной совместимостью и возможностями расширения. Совместимый со всеми технологиями IoT, поддерживающими связь I2C, это самый универсальный контроллер реле, который мы когда-либо производили. Все релейные контроллеры NCD I2C имеют выход I2C, что позволяет объединить в цепочку больше релейных контроллеров, широкий спектр датчиков, мониторов тока, драйверов ШИМ и многого другого.Возможности расширения этой релейной платы не имеют себе равных ни у одного другого производителя в мире. Этот контроллер основан на двух контроллерах MCP23017, общей микросхеме интерфейса I2C для приложений GPIO. В этой конструкции порт GPIO используется для управления твердотельными реле. Шина I2C поддерживает до 8 подобных устройств (на базе MCP23008 или MCP23017). Этот контроллер считается двумя устройствами на шине I2C. Две встроенные перемычки адреса устанавливают начальный адрес I2C обеих интерфейсных микросхем MCP23017.Встроенные светодиоды состояния отображают состояние включения / выключения каждого реле. Этот контроллер может питаться от нашего дополнительного источника питания или от 12 В постоянного тока и прямого винтового зажима неизолированных проводов питания. Каждое твердотельное реле доступно для пользователя через две большие винтовые клеммы, способные принимать провода 12 AWG. Этот контроллер включает в себя множество вариантов твердотельных реле, настраиваемых при добавлении в корзину.

Что такое интерфейс nodeLynk I2C?

NCD является создателем модульного оборудования plug and play с использованием nodeLynk, который является стандартом аппаратного соединителя интерфейса I2C.Устройства nodeLynk I2C позволяют объединять несколько устройств на шине I2C и обмениваться данными с каждым устройством индивидуально на высокой скорости (с учетом ограничений I2C). Интерфейс nodeLynk I2C использует стандартный 4-контактный вход I2C и выходной разъем I2C. Устройства nodeLynk I2C передают данные I2C 5 В и обеспечивают питание 5 В постоянного тока через этот разъем. Устройства nodeLynk I2C используют стандартную связь I2C для всей передачи данных, которая сегодня поддерживается почти каждым микроконтроллером в производстве.Интерфейс nodeLynk I2C строго соответствует стандарту 5 В, который идеально подходит для транспортировки по более длинным кабелям. Устройства nodeLynk I2C всегда включают в себя 4-жильный кабель I2C длиной 6 дюймов (152 мм). Мини-модули nodeLynk I2C всегда включают в себя 4-жильный кабель I2C диаметром 3 дюйма (76 мм). Кабели и соединители доступны отдельно для дизайнеров, которые хотели бы включить свой собственный интерфейс nodeLynk I2C в свои проекты.

Подключение по принципу Plug and Play

Устройства

nodeLynk I2C будут подключаться к любому доступному выходу nodeLynk I2C.Это включает практически все, что мы делаем в категории IoT NCD, включая все устройства IoT NCD. Мы также производим широкий спектр адаптеров I2C, которые упрощают подключение устройств nodeLynk I2C непосредственно к большинству вычислительных платформ. Адаптеры интерфейса nodeLynk I2C доступны для Arduino, Banana Pi, BeagleBone, Bluz, ESP8266, Onion Omega, Particle Photon and Electron, PyCom, Raspberry Pi, 2, 3 и Zero и Windows. Мы всегда работаем над добавлением поддержки новой платформы для устройств nodeLynk I2C.Устройства интерфейса nodeLynk I2C совместимы практически со всем в индустрии микроконтроллеров.

Неограниченное расширение I2C

На основе нашего стандарта интерфейса I2C plug-and-play все устройства nodeLynk I2C оснащены выходным портом I2C, что упрощает расширение до широкого спектра датчиков, мониторов тока, контроллеров реле, контроллеров PWM и многого другого! Мы постоянно разрабатываем новые расширения для нашей модульной инфраструктуры I2C, работающей по принципу plug-and-play. Мы стремимся создать линейку взаимосвязанных устройств, чтобы упростить все формы автоматизации.Повторно используйте или обновите свое оборудование за секунды, выбрав модули, которые лучше всего соответствуют вашим потребностям, и соединив их вместе с помощью прилагаемых кабелей расширения I2C!

Питание устройств интерфейса nodeLynk I2C

Некоторым устройствам nodeLynk I2C требуется внешний источник питания, другие могут получать питание через 4-контактный разъем шины I2C при 5 В постоянного тока, а для других устройств можно переключаться между внешним питанием и питанием по шине I2C с помощью перемычки. Все мини-модули I2C питаются через разъем шины I2C 5 В, что значительно упрощает подключение.

Совместимость

Твердотельные реле

бесшумны, обладают долгим сроком службы и должны использоваться в критических приложениях, где надежность имеет наибольшее значение. Твердотельные реле необходимо тщательно выбирать для вашего конкретного применения. Этот контроллер содержит только твердотельные реле SPST, обеспечивая по 2 подключения к каждому реле: общее и нормально разомкнутое. Когда реле включается, общее соединение подключается к нормально разомкнутому. Внешние нагрузки могут быть отключены все время и включаться при включении реле.Реле управляются с помощью программируемых расширителей портов GPIO серии MCP230xx от Microchip Technology. Первый MCP23017 на этой плате имеет адресную шину A0, подключенную к земле. Второй MCP23017 на этой плате имеет адресную линию A0, подключенную к + 5VDC. Это предотвращает конфликты адресов на плате. Остальные адресные перемычки A1 и A2 выбираются перемычками. Реле управляется MCP23017 с использованием GPIO0: 7 на порте A и GPIO0: 7 на порте B. Управлять встроенными реле очень просто: установите GPIO0: 7 как цифровые выходы.Затем установите состояние включения / выключения GPIO0: 7, чтобы активировать соответствующие реле. Светодиоды показывают состояние встроенных реле. Все эти операции выполняются за вас при использовании драйверов, поставляемых в нашем репозитории GitHub (ControlEverythingCom). Конденсаторы индукционного подавления настоятельно рекомендуются для индуктивных переключений (все, что генерирует магнитное поле). Конденсаторы для подавления индукции продлят срок службы реле и помогут предотвратить сбои при переключении высокого напряжения.

Этот контроллер подает напряжение 12 В постоянного тока на затвор твердотельного реле через резистор 512 Ом. Этот контроллер безопасен для реле с максимальным напряжением затвора 10 В постоянного тока. Этот контроллер обычно используется с реле, которые допускают диапазон напряжения затвора от 3 до 12 В постоянного тока. На твердотельные реле распространяются МИНИМАЛЬНЫЕ требования к нагрузке. Твердотельные реле НЕ могут переключать чрезвычайно низкие сигналы, если они не соответствуют требованиям к минимальной нагрузке.

Твердотельные реле

доступны для коммутации переменного или постоянного тока, которые НЕ взаимозаменяемы.Реле переменного тока нельзя использовать для переключения нагрузок постоянного тока, аналогично реле постоянного тока нельзя использовать для переключения нагрузок переменного тока. РЕЛЕ ПОСТОЯННОГО ТОКА ЧУВСТВИТЕЛЬНЫ К ПОЛЯРНОСТИ И МОГУТ БЫТЬ ПОВРЕЖДЕНЫ ПРИ НЕПРАВИЛЬНОМ ПОДКЛЮЧЕНИИ. Поскольку наши твердотельные контроллеры могут использоваться с реле других производителей, мы НЕ маркируем + и — соединения для твердотельных реле постоянного тока на печатной плате. Изучите реле и техническое описание, следите за следами, нанесенными на нижнюю часть печатной платы, чтобы обеспечить правильную полярность. Для некоторых твердотельных реле может потребоваться активное принудительное воздушное охлаждение.Отсутствие охлаждения может привести к необратимому повреждению реле.

ПЕРЕД подключением ознакомьтесь с таблицей данных конкретного реле, которое вы используете.

МЫ НЕ ГАРАНТИРУЕМ ТВЕРДЫЕ РЕЛЕ НИ ПРИ КАКИХ ОБСТОЯТЕЛЬСТВАХ.

Совместимость интерфейса I2C

Интерфейсные устройства

NCD I2C предназначены для подключения ко многим популярным вычислительным платформам Интернета вещей. Это позволяет «мозгу» от других производителей напрямую подключаться к нашим устройствам для упрощения работы в режиме plug-and-play.Интерфейсные устройства I2C используют I²C в качестве базовой технологии связи. Приведенные ниже примечания помогут вам подключить 3-ю часть.

Твердотельные реле и контакторы. Руководство по продукту

.

Управление двигателем постоянного тока Реверс

Январь 2013 г. Управление двигателем постоянного тока Реверсирование и «Ротор», который является вращающейся частью.В основном доступны три типа двигателей постоянного тока: — щеточный двигатель — бесщеточный двигатель — шаговые двигатели постоянного тока Электрические

Подробнее

Миллиомметр Agilent 4338B

Миллиомметр Agilent 4338B от 10 мкОм до 100 кОм Технический обзор Введение Идеально подходящий для точных измерений чрезвычайно низких сопротивлений с использованием испытательного сигнала переменного тока, Agilent Technologies 4338B подходит для настольных приборов

Подробнее

Решения для массового подключения серии S

Технические характеристики распределенной системы управления DeltaV Март 2015 г. Решения для массового подключения серии S Быстрая, простая и безошибочная разводка в шкафу Модульная конструкция, повышает надежность Снижает общую нагрузку

Подробнее

Применения SS 26 V- R 05 1170

Сетевые фильтры переменного тока Катушки SS, тип SS2V Обзор Катушки KEMET SS, сетевые фильтры переменного тока типа SS2V предлагаются в широком диапазоне размеров и спецификаций.Приложения Бытовая электроника Синфазный дроссель

Подробнее

Цифровой настенный модуль T7560A, B, C

T7560A, B, C Цифровой настенный модуль HONEYWELL EXCEL 5000 ОТКРЫТАЯ СИСТЕМА ПЕРЕД УСТАНОВКОЙ Вся проводка должна соответствовать местным электротехническим нормам и правилам или как указано на монтажных схемах. Цифровой

Подробнее

Твердотельный таймер h4G

ASH & ALAIN INDIA PVT LTD S-100, F.I.E.E., Промышленная зона Охла, Фаза-II, Нью-Дели-11000 (Индия) Тел .: 011-43797575 Факс: 011-43797574 Электронная почта: [email protected] Недорогой твердотельный таймер, подключаемый модуль

Подробнее

РЕЛЕ Системы солнечной энергии

РЕЛЕ Системы солнечной энергии КОМПОНЕНТЫ FUJITSU СОДЕРЖАНИЕ Реле Fujitsu для солнечных батарей Версии с постоянным напряжением — Версии с переменным напряжением — Версии с фиксацией РЕЛЕЙНАЯ ПРОДУКЦИЯ — СИСТЕМЫ СОЛНЕЧНОЙ ЭНЕРГИИ

Подробнее

1 ПОЛЮС — РЕЛЕ СИЛОВОГО РЕЖИМА 5А

СИЛОВОЕ РЕЛЕ — УНИКАЛЬНОЕ РЕЛЕ СИЛОВОГО РЕЛЕ FTR-MY Соответствует требованиям RoHS ХАРАКТЕРИСТИКИ Ширина мм, высота мм, (на% меньше, чем у серии NY) площадь мм, сверхтонкий, маломощный, компактный и легкий.гр. Номинальная мощность:

мВт Подробнее

Применения SS 11 VL- R 03 550

Сетевые фильтры переменного тока Катушки SS, высокочастотный тип SSVL Обзор Катушки SS KEMET, сетевые фильтры переменного тока типа SSVL предлагаются в широком диапазоне размеров и спецификаций. Приложения Бытовая электроника Common

Подробнее

40.3. Реле управления и таймеры

.3 Содержание Интеллектуальные реле EASY500 / 700/800 …….. Модули расширения EASY / MFD ………… Интеллектуальные реле MFD …………. …… Коммуникационные модули EASY / MFD ……. Источники питания EASY / MFD, аксессуары

Подробнее

Технические данные Реле давления PS1B

Технические данные Реле давления PS1B Основные характеристики Диапазоны давления от 0 до 6 до 0 до 600 бар (избыточное) Электрическое соединение G 1/4 A DIN 3852-E или -A Соединение давления Выходной сигнал M12-4 Контакт 4-20 ма, программируемый

Подробнее

Коммутатор Moxa EtherDevice

Коммутатор Moxa EtherDevice Switch EDS-205 Руководство по установке оборудования Третье издание, июнь 2008 г. 2008 г. Moxa Inc., все права защищены. Воспроизведение без разрешения запрещено. P / N: 1802002050000 Обзор

Подробнее

Реле FP2. Лучшее реле

Лучшее реле 2-полюсное реле связи / сигнализации сквозное отверстие (THT) поляризованное. Типы реле: без фиксации с фиксацией 2 катушек с фиксацией 1 катушки с фиксацией 2 катушек Характеристики Телекоммуникационное / сигнальное реле (сухое

Подробнее

Источник питания Agilent 87421A / 87422A

Технический обзор источника питания Agilent 87421A / 87422A Разработан специально для системных усилителей СВЧ Agilent Technologies Кабель смещения допускает удаленное размещение Компактный размер для легкой интеграции системы

Подробнее

Rosemount 333 HART Tri-Loop

Лист технических данных Сентябрь 2014 г. 00813-0100-4754, ред. GA Rosemount 333 HART Tri-Loop Преобразователь сигнала HART в аналоговый Преобразование цифрового сигнала HART в три дополнительных аналоговых сигнала Простота настройки

Подробнее

РУКОВОДСТВО ПО ПРОДАЖАМ RC СЕТЕЙ

РУКОВОДСТВО ПО ПРОДАЖАМ ВВЕДЕНИЕ В последние разработки в области электронного оборудования выявлены следующие тенденции: Рост спроса на станки с числовым программным управлением, робототехнику и технически совершенные устройства

Подробнее

РАЗЪЕМЫ MPM DIN 43650

РАЗЪЕМЫ MPM DIN 43650: Прочные соединители высочайшего качества для гидравлических и пневматических электромеханических устройств Широкий ассортимент соединителей и устройств DIN 43650 Комбинированные комплекты кабелей Brad и MPM: Provide

Подробнее

Трехфазные твердотельные реле

pero 1 Трехфазные твердотельные реле и их применение в цепях трехфазных двигателей Пол Бахман, научный сотрудник, Dr.Оскар Монтеро, менеджер по исследованиям и разработкам, и Дуг Шерман, менеджер по FSAE, Crydom, Inc. РЕЗЮМЕ

Подробнее

Миниатюрные промышленные реле RY2

6 RY2 Реле общего назначения Для вставных розеток, монтаж на рейку 35 мм в соотв. согласно PN-EN 60715 или на панели Плоские вставные соединители — faston x 0,5 мм Признания, сертификаты, директивы: RoHS,

Подробнее

Rosemount 333 HART Tri-Loop

Лист технических данных Rosemount 333 Rosemount 333 HART Tri-Loop HART-АНАЛОГОВЫЙ ПРЕОБРАЗОВАТЕЛЬ СИГНАЛА Преобразование цифрового сигнала HART в три дополнительных аналоговых сигнала Простота настройки и установки Дополнительное изделие

Подробнее

DLP-PU / E Инструкция по эксплуатации

Руководство по эксплуатации ПЕРЕД ИСПОЛЬЗОВАНИЕМ БЛОКА ПИТАНИЯ Перед использованием блока обратите внимание на все предупреждения и предостережения.Неправильное использование может привести к поражению электрическим током, повреждению устройства или возгоранию.

Подробнее

Твердотельное реле-CAG6-3 10A / 15A завод и производители

● תח עומס גבוה — עד 480VAC

● 4 ~ 32VDC ו 90 תמ רה ~ 250VAC

● שלושה שלב, מיתוג צולבות על אפס.

● וון קלט מלא LED

● ירור משולב עם ילת DIN רכוב

● תואם RoHS

● תנה UL

פלט (עומס)
וג טען 3PST-NO (3 N / O) התנגדותי
זרם עומס 10А, 15А
תח מיתוג עומס

AC В RMS

40 — 480 В
תח שיא מרבי

AC В PK

900 В
זרם עומס מינימאלי 0.1А
זרימה פנימית נוכחי (מקסימום).

10 мс

10A: 120A / 15A: 160A
I2t 10A: 72A2s / 15A: 128A2s
וג מתג צלב אפס (התייעץ מפעל עבור אקראי)
על ילת מתח

В переменного тока

1,6 В
זרם זליגה מחוץ

мА

≤ 10 мА
קלט (יטה)
תח בקרה (מדורג)

В

רת DC: 4 — רת 32VDC / AC: 90–250 В переменного тока
וכחי בקרה

мА

<25 мА
יק מתח (דקות)

V דקות

רת DC: רת 3.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *