В чем измеряют силу тока: В чем измеряется сила тока как называется прибор для измерения силы

Содержание

В чем измеряется сила тока как называется прибор для измерения силы



Как измерить силу электрического тока в цепи?

В процессе эксплуатации различного оборудования возникает необходимость проверки основных электрических параметров его работы. Это нужно как для проверки определенных характеристик, так и для ремонтных работ. Одним из наиболее сложных и опасных измерений является определение величины токовой нагрузки. Поэтому для всех начинающих электриков будет актуально узнать, как измерить силу электрического тока в цепи правильно и безопасно.

Используемые приборы

Измерить силу тока можно различными способами, однако далеко не все из них применимы в повседневной жизни. К примеру, различные измерительные трансформаторы, подключаемые в цепь, крайне неудобно переносить по дому и даже хранить на полке в гараже. Поэтому актуальными средствами измерительной техники являются амперметры, мультиметры и клещи. Далее рассмотрим детально особенности работы и применения каждого из них.

Амперметр

Это один из наиболее простых измерительных приборов, который реагирует на изменение токовой нагрузки. С электротехнической точки зрения амперметр представляет собой нулевой или бесконечно малое сопротивление. Поэтому в случае приложения напряжения только к прибору, в нем возникнет ток короткого замыкания, из-за чего амперметр включается в цепь последовательно замеряемой нагрузке. Для наглядности стоит пояснить, что измерить силу тока в розетке нельзя, так как без нагрузки (в случае разомкнутой цепи) ток в ней не протекает, на контактах розетки присутствует только напряжение, поэтому подключение амперметра напрямую приведет к замыканию.

Под электрическим током подразумевается направленное движение заряженных частиц, которое проходит через поперечное сечение проводника за определенную единицу времени. Поэтому запомните, что токовая нагрузка возникает лишь от включения бытового электроприбора к источнику питания. Включение амперметра отдельно к точке электроснабжения или отдельно к рабочему двухполюснику никоим образом не даст информации о силе тока. Если рассмотреть пример на схеме, то чтобы замерить амперы вы должны включить прибор в линию последовательно к объекту измерения:

Рис. 1. Пример подключения амперметра

Как видите, основная сложность заключается в том, что процесс измерения происходит непосредственно в момент протекания электрической энергии, соответственно, велика вероятность поражения электрическим током в случае нарушения технологии.

Чтобы избежать плачевных последствий, необходимо соблюдать такие правила:

  • Подключение производится только при отсутствии напряжения;
  • Измерительные провода должны быть заизолированы, а места подключения удалены от человека, при необходимости исключена возможность прикосновения к ним;
  • Выведение амперметра из цепи измерения тока также выполняется при снятом напряжении.

Так как амперметр является узконаправленным прибором для измерения силы тока, его редко кто хранит у себя дома. Поэтому если вы хотите приобрести приспособление, куда выгоднее обзавестись мультиметром, который обладает значительно более широким функционалом.

Мультиметр

Этот прибор также называют тестером, Ц-эшкой, поэтому в обиходе можно встретить разные поколения мультиметра. Принцип использования мультиметра в качестве средства для измерения тока в цепи полностью аналогично амперметру, как по схеме включения, так и по предъявляемым мерам предосторожности. Однако следует отметить, что мультиметр мультиметру рознь, поэтому перед включением тестера обязательно посмотрите, подходит ли он, чтобы измерить ток в вашем случае.

Из конструктивных особенностей сразу отметим:

  • Диапазон измерения – выставляется переключателем на определенную величину силы тока. Выбирается таким, чтобы предполагаемая нагрузка его не превышала, но была соизмеримой.
  • Род тока – переменный или постоянный, заметьте, что некоторые модели мультиметров предоставляют возможность измерить только один вариант.
  • Разделение на слаботочные и силовые измерения – такие приборы имеют отдельную шкалу на мА, мкА и отдельную для А. Также в них могут располагаться отдельные разъемы, чтобы подключить щупы.
  • Наличие защиты от перегрузки при подключении измерительных устройств, обозначается отметкой unfused. Которая свидетельствует о наличии предохранителя, способного предотвратить выход со строя мультиметра от протекания чрезмерной силы тока.

По способу отображения информации все мультиметры подразделяются на циферблатные и дисплейные. Первые из них – довольно устаревшая модель, ориентироваться по ним смогут только искушенные электрики, знакомые с основами метрологии. Новичок же может запутаться в показаниях на шкале, цене деления или какими единицами измеряется нагрузка. Поэтому применение цифрового прибора куда проще и удобнее, на дисплее отображается конкретное число.

Токоизмерительные клещи

Это наиболее удобный прибор, так как чтобы измерить силу тока токоизмерительными клещами, нет нужды разрывать цепь. Конструктивно клещи представляют собой разъемный магнитопровод, в который и помещается проводник, на котором вы хотите померить силу тока. Токоизмерительные клещи имеют схожесть с тем же мультиметром, а в более продвинутых моделях вы встретите такой же переключатель с функцией определения мощности, напряжения, сопротивления, силы тока и разъемы для подключения щупов.

Как измерить силу тока в цепи

Для измерения электрического тока в цепи куда удобнее использовать современные устройства – мультиметры или клещи, особенно для одноразовых операций. А вот стационарный амперметр подойдет для тех ситуаций, когда вы планируете постоянно контролировать силу тока, к примеру, для контроля заряда батарейки или аккумулятора в автомобиле.

Постоянного тока

Разрыв электрической цепи организовывается до начала измерений при отключенном напряжении. Даже в низковольтных цепях вы можете вызвать замыкание батарейки, которое моментально приведет к потере электрического заряда. Далее рассмотрим пример измерения в цепи постоянного тока с помощью мультиметра, для этого:

Рис. 2. Использование мультиметра для измерения постоянного тока

  • подключите щупы к соответствующим вводам в тестер – черный в COM, красный в разъем с пометкой mA, A или 10A, в зависимости от устройства;
  • при помощи «крокодилов» соедините щупы тестера с цепью измерения последовательно;
  • установите переключателем нужный род тока и предел измерений;
  • можете подключить нагрузку и произвести измерения, на дисплее мультиметра отобразится искомое значение.

Но заметьте, подключать мультиметр следует на короткий промежуток времени, так как он может перегреться и выйти со строя.

Переменного тока

Цепь переменного напряжения может измеряться как мультиметром, так и токоизмерительными клещами. Но, в связи с опасностью переменного бытового напряжения для жизни человека, эту процедуру целесообразнее выполнять клещами без измерительных щупов и без разрыва цепи.

Рис. 3. Использование клещей для измерения переменного тока

Для этого вам нужно:

  • переключить ручку в положение переменных токов на нужную позицию нагрузки, если она изначально неизвестна, то сразу выбирают максимальный диапазон;
  • нажать боковую скобу, которая разомкнет клещи;
  • поместить внутрь клещей токоведущую жилу и отпустить кнопку.
  • данные измерений отобразятся на дисплее, при необходимости их можно зафиксировать соответствующей кнопкой.

Производить измерения можно как на изолированных, так и на оголенных жилах. Но заметьте, в область обхвата должен попадать только один проводник, сразу в двух измерить не получится.

Реальные примеры измерения тока

Далее рассмотрим несколько вариантов того, как подключить измерительный прибор в бытовых нуждах. При замерах батареек вам необходимо один щуп приложить к контакту батарейки, а второй к контакту нагрузки, второй контакт нагрузки подключается к свободной клемме батарейки.

Рис. 4. Измерение силы тока в цепи батарейки

Если вы хотите проверить токовую нагрузку в обмотках трехфазного электродвигателя, измерительный прибор подключается поочередно в каждую фазу или если у вас есть три амперметра, можете использовать их одновременно. Для этого щупы подключаются одним концом к выводам обмоток в борно, а вторым, к питающему проводу соответствующей фазы.

Рис. 5. Измерение силы тока в цепи электродвигателя

Способы на видео


Источник

Какова единица измерения силы тока

26 октября 2019

Время на чтение:

Сила тока — скалярная величина, выведенная Андре-Мари Ампером и занесенная в международную измерительную систему. Более подробно о том, как называется единица тока, как правильно измерить электроэнергию и от чего она зависит далее.

Единица измерения силы тока

Это физическая и скалярная величина, которая равна заряду, прошедшему через определенное время на поверхность. Измеряется в амперах, что равно одному кулону, поделенному на секунду, в дополнение к теме, в каких единицах измеряют силу электрического тока. Ампер — единица измерения, названная в честь своего создателя — французского физика, математика и естествоиспытателя. Стоит указать, что именно он впервые представил миру понятие электротока и отметил его значение для общества.

Единица измерения

Формула

Это явление, изучаемое в электростатике, магнитостатике, электродинамики и электроцепи. Равно количеству заряда, поделенному на время, напряжению, поделенному на проводниковое сопротивление. Вычисляется по закону Ома для полной электроцепи. Для этого необходимо источник напряжения поделить на выражение сопротивления внешних сетевых элементов и внутреннего сопротивления источника напряжения. При этом значение электродвижущей силы источника напряжения может быть меньше или больше, чем сопротивление, если токовая энергия зависит от величины нагрузки или нет.

Обратите внимание! Стоит указать, что электроток может быть найдет через перемножение заряда, его концентрации, среднего напряжения и косинуса угла площади, если поверхность имеет плоскую форму. Также электроток может быть найдет через перемножение всех указанных ранее элементов и интеграла по поверхности.

Приборы для измерения силы тока

Прибором для измерения токовой силы называется амперметр, в дополнение к теме, чем измеряют ток. Бывает стрелочным, цифровым и электронным. Активно применяется в электролаборатории, автомобилестроении, точной науке и строительстве. По принципу действия бывает электромагнитным, магнитоэлектрическим, термоэлектронным, ферродинамическим, электродинамическим и цифровым. Измеряет как переменный, так и постоянный электроток.

Работает благодаря взаимодействию магнитного поля с подвижной катушкой или сердечником, который находится в корпусе. Пользоваться всеми типами очень просто. Все что нужно от пользователя, это внимательно изучить инструкцию и руководство к эксплуатации. Как правило, для начала измерения необходимо с помощью щупов прикоснуться к проводнику и нажать соответствующую кнопку. После на экране будет выведено значение в амперах. Стоит указать, что измеряет токовую силу также вольтметр, мультиметр и измерительная отвертка.

От чего зависит ток

Поскольку токовая сила является скалярной величиной, имеющей положительный и отрицательный заряд, то зависит она от мощности заряда, концентрации сосредоточенных в заряде частиц, скорости их движения и площади проводника. Стоит также указать, что зависит она от значения сопротивления с напряжением, величиной магнитного поля, числом катушечных витков, мощностью работы ротора, диаметром проводника и параметром генераторной установки.

Зависимости электротока от сопротивления и напряжения

Источники

Источником тока называется генератор, любой источник электрической энергии. Бывают механическими, тепловыми, световыми и химическими. К первым относятся газовые и паровые генераторы, турбогенераторы и механические преобразователи. Ко вторым относятся радиоизотопные термоэлектрические генераторы, а к третьим — солнечные батареи. К последним относятся гальванические солевые, щелочные или литиевые элементы, свинцово-кислотные, литий-ионные и никель-кадмиевые аккумуляторы.

Обратите внимание! Стоит указать, что источник электротока бывает идеальным и реальный. Первый — это двухполюсник, зажимы которого поддерживают электродвижущую постоянную силу. Второй же — двухполюсник, не имеющий постоянную силу из-за того, что зависит от внутреннего сопротивления. К реальному относится вторичная трансформаторная обмотка, катушка индуктивности, биполярный транзистор или генератор тока.

В целом, сила электротока — скалярная величина, измеряемая в амперах и равная одному кулону на секунду. Вычисляется при помощи выведенных формул, в частности по закону Ома, а также специальными измерительными приборами. Зависит от сопротивления, скорости магнитного потока и напряжения. Источниками выступают механические с тепловыми, световыми и химическими элементами, перечисленными выше.

Источник

Прибор для измерения силы тока. Как измерить силу тока мультиметром

28 Ноя 2016г | Раздел: Радио для дома

Здравствуйте, уважаемые читатели сайта sesaga.ru. Ток или силу тока определяют количеством электронов, проходящих через точку или элемент схемы в течение одной секунды. Так, например, через нить накала горящей лампы накаливания карманного фонаря ежесекундно проходит около 2 000 000 000 000 000 000 (два триллиона) электронов. Однако на практике измеряется не количество электронов, а их движение, выраженное в амперах (А).

Ампер – это единица электрического тока, которую так назвали в честь французского физика и математика А. Ампера изучавшего взаимодействие проводников с током. Экспериментально установлено, что при токе в 1А через точку или элемент схемы проходит около 6 250 000 000 000 000 000 электронов.

Помимо ампера применяют и более мелкие единицы силы тока: миллиампер (мA), равный 0,001 А, и микроампер (мкA), равный 0,000001 А или 0,001 мА. Следовательно: 1 А = 1000 мА = 1 000 000 мкА.

1. Прибор для измерения силы тока.

Как и напряжение, ток бывает постоянный и переменный. Приборы, служащие для измерения тока, называют амперметрами, миллиамперметрами и микроамперметрами. Так же, как и вольтметры, амперметры бывают стрелочными и цифровыми.

На электрических схемах приборы обозначаются кружком и буквой внутри: А (амперметр), мА (миллиамперметр) и мкА (микроамперметр). Рядом с условным обозначением амперметра указывается его буквенное обозначение «» и порядковый номер в схеме. Например. Если амперметров в схеме будет два, то около первого пишут «PА1», а около второго «PА2».

Для измерения тока амперметр включается непосредственно в цепь последовательно с нагрузкой, то есть в разрыв цепи питания нагрузки. Таким образом, на время измерения амперметр становится как бы еще одним элементом электрической цепи, через который протекает ток, но при этом в схему амперметр никаких изменений не вносит. На рисунке ниже изображена схема включения миллиамперметра в цепь питания лампы накаливания.

Также надо помнить, что амперметры выпускаются на разные диапазоны (шкалы), и если при измерении использовать прибор с меньшим диапазоном по отношению к измеряемой величине, то прибор можно повредить. Например. Диапазон измерения миллиамперметра составляет 0…300 мА, значит, силу тока измеряют только в этих пределах, так как при измерении тока свыше 300 мА прибор выйдет из строя.

2. Измерение силы тока мультиметром.

Измерение силы тока мультиметром практически ни чем не отличается от измерения обыкновенным амперметром или миллиамперметром. Разница состоит лишь в том, что у обычного прибора всего один диапазон измерения, рассчитанный на определенную максимальную величину тока, тогда как у мультиметра диапазонов несколько, и перед измерением приходится определять каким из диапазон пользоваться в данный момент.

Обычные мультиметры, не профессиональные, рассчитаны на измерение постоянного тока и имеют четыре поддиапазона, что на бытовом уровне вполне достаточно. У каждого поддиапазона есть свой максимальный предел измерения, который обозначен цифровым значением: 2m, 20m, 200m, 10А. Например. На пределе «20m» можно измерять постоянный ток в диапазоне 0…20 мА.

Для примера измерим ток, потребляемый обычным светодиодом. Для этого соберем схему, состоящую из источника напряжения (пальчиковой батарейки) GB1 и светодиода VD1, а в разрыв цепи включим мультиметр РА1. Но перед включением мультиметра в схему подготовим его к проведению измерений.

Измерительные щупы вставляем в гнезда мультиметра, как показано на рисунке:

красный щуп называют плюсовым, и вставляется он в гнездо, напротив которого изображены значки измеряемых параметров: «VΩmA»;
черный щуп является минусовым или общим и вставляется он в гнездо, напротив которого написано «СОМ». Относительно этого щупа производятся все измерения.

В секторе измерения постоянного тока выбираем предел «2m», диапазон измерения которого составляет 0…2 мА. Подключаем щупы мультиметра согласно схеме и затем подаем питание. Светодиод загорелся, и его потребление тока составило 1,74 мА. Вот, в принципе, и весь процесс измерения.

Однако этот вариант измерения подходит тогда, когда величина потребления тока известна. На практике же часто возникает ситуация, когда необходимо измерить ток на каком-либо участке цепи, величина которого неизвестна или известна приблизительно. В таком случае измерение начинают с самого высокого предела.

Предположим, что потребление тока светодиодом неизвестно. Тогда переключатель переводим на предел «200m», который соответствует диапазону 0…200 мА, и после этого щупы мультиметра включаем в цепь.

Затем подаем напряжение и смотрим на показания мультиметра. В данном случае показания тока составили «01,8», что означает 1,8 мА. Однако нолик впереди указывает на то, что можно снизиться на предел «20m».

Отключаем питание. Переводим переключатель на предел «20m». Включаем питание и опять производим измерение. Показания составили 1,89 мА.

Часто бывает ситуация, когда при измерении тока или напряжения на индикаторе появляется единица. Единица говорит о том, что выбран низкий предел измерения и он меньше величины измеряемого параметра. В этом случае необходимо перейти на предел выше.

Также может возникнуть момент, когда измеряемый ток выше 200 мА и необходимо перейти на предел измерения «10А». Однако здесь есть нюанс, который надо запомнить. Помимо того, что переключатель переводится на предел «10А», еще также необходимо переставить плюсовой (красный) щуп в крайнее левое гнездо, напротив которого стоит цифро-буквенное значение «10А», указывающее, что это гнездо предназначено для измерения больших токов.

И еще совет. Возьмите за правило: когда закончите все измерения на пределе «10А» сразу же переставляйте плюсовой (красный) щуп на свое штатное место. Этим Вы сбережете себе нервы, щупы и мультиметр.

Ну вот, в принципе и все, что хотел сказать об измерении тока мультиметром. Главное понимать, что при измерении напряжения вольтметр подключается параллельно нагрузке или источнику напряжения, тогда как при измерении силы тока амперметр включается непосредственно в цепь и через него протекает ток, которым питаются элементы схемы.

Ну и в качестве закрепления прочитанного предлагаю посмотреть видеоролик, в котором на примере схем рассказывается об измерениях напряжения и силы тока мультиметром.

Источник

Как выбрать мультиметр (2018)

Любительский

Электричество давно уже стало неотъемлемой частью нашей повседневной жизни, и мультиметр – прибор для измерения параметров электрической цепи – может пригодиться каждому. Не станешь же вызывать электрика для решения таких бытовых вопросов как: цел ли кабель, «жива» ли батарейка, почему не горит лампочка, под напряжением ли провод и т.д.

Автолюбителям мультиметр поможет контролировать работу автоэлектрики и электроники.

А уж если вы сами следите за электрикой в своем доме, мультиметр вам просто необходим.

Области применения мультиметров

Мультиметры – общее название для целого класса электроизмерительных приборов. Они способны проверять целостность электрических цепей, изоляции и заземления; измерять параметры цепи без контакта с проводниками и определять характеристики радиоэлектронных компонентов.

— электриками при обслуживании электрических линий и потребителей;

— электронщиками при сборке, настройке и ремонте радиоэлектронной аппаратуры;

— сервисными инженерами при установке, обслуживании и ремонте электротехники;

— монтажниками при прокладке и расключении линий связи и электропередач;

— автоэлектриками при диагностике и ремонте автомобильной электрики;

Какой именно мультиметр нужен вам – можно понять, определившись измеряемыми параметрами и необходимой точностью прибора.

Характеристики мультиметров

В основном в магазинах предлагаются три типа приборов: мультиметры, тестеры и токовые клещи.

Мультиметр предназначен для измерения параметров электрической цепи. Самые простые модели измеряют только базовые параметры — ток, напряжение и сопротивление.

Модели посложнее способны определить такие характеристики, как емкость конденсатора, частота переменного тока, коэффициент усиления транзистора и т.д. Чем больше параметров определяет мультиметр, чем больше наборов диапазонов их измерений и чем выше точность – тем дороже прибор.

В продаже встречаются мультиметры двух видов – аналоговые (со стрелочным индикатором) и цифровые (с дисплеем).

Цифровые мультиметры предоставляют намного больший функционал, обеспечивают удобство считывания параметров и высокую точность измерения.

На стрелочном индикаторе просто невозможно измерить какое-либо значение с точностью нескольких знаков после запятой. Считать показание на стрелочном индикаторе тоже сложнее. Несколько шкал, неравновесные деления, в некоторых случаях полученное значение еще нужно умножить на коэффициент – неподготовленного человека все это может запутать.

Зато стрелочный индикатор намного удобнее при наблюдении за меняющимися параметрами. Цифровой мультиметр меняет показания на экране от 1 до 4 раз в секунду. И, если частота обновления экрана мультиметра будет близка к частоте измеряемого сигнала, провести измерение не получится. Колебания стрелки аналогового прибора будут намного нагляднее.

Тестер также проводит измерение некоторых параметров цепи, но, в отличие от мультиметра, не выводит полученные значения на экран, а использует их для определения состояния тестируемого объекта и выдачи соответствующего сигнала или сообщения.

Мультиметр можно использовать и для тестирования кабелей и приборов, но тогда вывод о состоянии объекта придется делать самостоятельно

Мультиметр универсальнее, но, во многих случаях, тестером пользоваться проще и быстрее. Впрочем, мультиметры часто содержат в себе и тестеры некоторых параметров, чаще всего – целостности цепи.

Простейшие тестеры способны только определять обрыв цепи, тестеры посложнее могут определить короткое замыкание, наличие тока в цепи, переполюсовку линии постоянного тока.

Самые сложные и дорогие тестеры способны проверить на соответствие требованиям безопасности и нормативных документов множества параметров– сопротивления изоляции, сопротивления заземления, тока утечки срабатывания защиты и т.д.

Токовые клещи – это специализированный мультиметр, способный измерить силу тока в отдельном проводе без разрыва цепи и нарушения изоляции. Для этого используется способность электрического тока индуцировать (возбуждать) ток в проводниках, находящихся поблизости. Такие проводники и скрыты в клещах, которые – для измерения тока – следует наложить на провод. Токовые клещи незаменимы для определения нагрузки на линии электропередач, определения потребляемой мощности и т.д.

Даже недорогие клещи способны с приемлемой точностью измерять силу тока до 1000 А и напряжение до 1000 В. Дорогие клещи могут измерять силу тока до 2500 А и используют метод TrueRMS, повышающий точность измерения параметров переменных токов.

Виды измерений параметров электрической цепи. Для бытового использования достаточно, если прибор сможет измерять:

— один-два диапазона измерения переменного напряжения (0-200 В, 0-400 В) – для потребительских сетей;

— два-три диапазона измерения постоянного напряжения (0-200 мВ, 0-2 В, 0-20 В, 0-100 В) – для батареек и аккумуляторов;

— несколько диапазонов (0-20 мА, 0-2 А, 0-10 А, 0-100 А) силы тока в цепях постоянного и переменного тока – для определения нагрузки на кабель и потребляемой мощности электроприборов;

— несколько диапазонов измерения сопротивления – для определения целостности цепей и проверки кабелей и бытовой техники на короткое замыкание.

Очень полезно наличие функции проверки целостности цепи («прозвонки») со звуковым сигналом — с помощью этой функции легко и быстро проверяется как наличие контакта, так и отсутствие короткого замыкания.

Для проверки радиодеталей потребуется наличие дополнительных возможностей:

— измерение сопротивления резисторов и проводников;

— измерение индуктивности катушек и дросселей;

— измерение коэффициента усиления транзисторов;

— измерение емкости конденсаторов;

проверка диодов.

Также некоторые мультиметры предлагают возможность измерения частоты переменного тока, потребляемой мощности электроприборов и температуры – последнее обычно реализуется с помощью измерения напряжения (термоЭДС) на концах термопары, входящей в комплект поставки.

Обратите внимание на максимальное рабочее напряжение. Это – то напряжение, которое может выдержать электроника прибора. Его превышение с высокой вероятностью приведет к поломке.

Важной характеристикой, во многом определяющей цену прибора, является погрешность измерений. Погрешность измерения каждого параметра различна и складывается из базовой погрешности АЦП и погрешности преобразования параметра в каждом конкретном диапазоне. Базовая погрешность дает только приблизительное представление о точности прибора. Всегда следует обращать внимание на погрешности измерения по каждому из параметров в конкретных диапазонах – они могут превышать базовую в разы.

Количество единиц счета мультиметра показывает, на сколько промежутков делится измерямый диапазон и определяет величину дискретизации. Так, для диапазона 0-100 мА у мультиметра с 6000 единицами счета величина дискретизации будет 100/6000 ≈ 0,017 мА. И значение 0,034 на экране этого мультиметра вовсе не означает, что сигнал измерен с точностью до 0,001 мА: значение 0,035 он просто не способен отобразить. Разумееся, при большой погрешности нет смысла в большом количестве единиц счета. Поэтому производители подбирают этот параметр в соответствии с погрешностью измерения.

При оценке точности прибора следует обращать внимание и на количество единиц счета, и на погрешность, и на диапазон измеряемого параметра. Рассмотрим для примера два прибора:

1. Погрешность измерения тока: 2% ± 1 единица счета. Минимальный диапазон измерения тока: 0-600 мА. Количество единиц счета: 6000.

2. Погрешность измерения тока: 2% ± 1 единица счета. Минимальный диапазон измерения тока: 0-50 мА. Количество единиц счета: 6000.

На первый взгляд приборы похожи. Для оценки точности вычислим абсолютную погрешность в диапазоне 0-5 мА каждого прибора:

1. 2% от 600 — это 12 мА. 1 единица счета — это 600/6000 = 0,1 мА. Итого абсолютная погрешность — 12.1 мА.

2. 2% от 5 — это 100 мкА. 1 единица счета — это 5/6000 = 0,8 мкА. Итого абсолютная погрешность — 100,8 мкА.

Таким образом, в этом диапазоне второй прибор в 100 раз точнее первого. Именно по этой причине два прибора с одинаковой базовой погрешностью могут отличаться по цене на порядок.

Частота обновления экрана показывает, сколько раз в секунду на экране будет обновляться измеренное значение. Высокая частота (более 1) полезна для выявления «дребезжащего» сигнала, с кратковременными всплесками или, наоборот, падениями. Только следует иметь в виду, что если в измеряемом диапазоне погрешность намного больше одной единицы счета, «дребезг» может быть вызван погрешностью самого прибора.

Для тех, кому важна точность измерений, следует обратить внимание на приборы класса True RMS – корректно измерять параметры переменного тока несинусоидальной формы могут только такие мультиметры.

Подсветка экрана будет весьма кстати при слабом освещении. Электрошкафы и шкафы автоматики часто располагаются в темных углах и плохо освещенных помещениях, лампы подсветки в них есть не всегда, да и те, что есть, при диагностике и ремонте часто бывают обесточены. Подсветкой экрана мультиметра в этом случае просто необходима.

Функция hold предназначена для фиксации показания на экране. Эта функция может быть удобна, когда по каким-то причинам в процессе измерения экран не попадает в поле зрения. Тогда при измерении нажимается кнопка hold, а показания можно будет просмотреть позже.

Очень полезна функция автоматического определения диапазона измеряемой величины. Ошибка в ручном задании диапазона (например, выбор диапазона 0-200 мВ при напряжении в 100 В) может привести к поломке прибора. Наличие функции автоматического определения диапазона предотвратит опасную ситуацию и подберет диапазон, в котором измерение будет производиться с наибольшей точностью.

Некоторые приборы можно подключать к персональному компьютеру и, с помощью соответствующего ПО, сохранять результаты на компьютере для последующей обработки и анализа.

Варианты выбора

Для домашнего применения будет вполне достаточно недорогого мультиметра с возможностью «прозвонки» цепи и измерения напряжения, тока и сопротивления.

Для ремонта и настройки радиоэлектроники потребуется мультиметр с низкой погрешностью и возможностью измерять параметры электронных компонентов.

Если измеряемые вами параметры могут случайным образом меняться в большом диапазоне, или если вы просто не хотите каждый раз подбирать диапазон, выбирайте среди моделей с автоматическим определением диапазона.

Если у вас нет желания вникать в цифры, а прибор нужен только для проверки цепей на замыкание/обрыв/наличие напряжения, выбирайте среди простых тестеров.

Если вам необходимо часто измерять силу тока в кабелях, находящихся под напряжением, наличие токовых клещей намного упростит эту задачу.

Источник

Как измерять силу тока в электрической цепи амперметром самостоятельно

С какой целью может потребоваться замер силы тока? Какова для нас полезность от того, что станет известным количество заряженных частиц, протекающих через единицу сечения в единицу времени? Польза есть, и ценной этой информации велика!

При использовании только лишь амперметра можно быстро узнать правильность монтажа и избегнуть издержек на смену или починку испорченного электрооборудования. Показания амперметра подскажут: имеется ли в схеме короткое замыкание или другие утечки и неполадки. Знание тока потребления не станет лишним, при выборе того или иного предохранителя.

Характеристики тока

Постоянный ток характеризуют два основные параметра — сила тока и напряжение. Сила тока — это, просто число частиц, которые двигаются в проводнике в определенном направлении. Чем больше этих частиц, тем больше работа электрического тока.

Силу тока измеряют в амперах (необходимо знать, что микроампер — одна миллионная ампера, миллиампер — одна тысячная часть ампера).

Силу тока измеряют — амперметром. Амперметр необходимо включать в последовательно с токоприемником.

Кроме постоянного тока существует переменный ток. Переменный ток со временем меняет свои направление и амплитуду. Генераторы электроэнергии вырабатывают переменный ток. Переменный ток изменяется во времени по синусоидальному закону. Для его характеристики имеются дополнительные параметры —амплитуда и частота.

Приборы для измерения силы тока

Мультиметр это — специальный измерительное устройство , выполняющее ряд функций. В малом комплекте это: омметр, вольтметр, амперметр . Для простых задач более всего годятся миниатюрные модели мультиметров с цифровой шкалой.В современных экземплярах легкодоступны следующие функции:

  • Измерение постоянного/переменного напряжения от 400 мВ до 1000 В;
  • Измерение постоянного/переменного тока от 42 пА до 10 А;
  • Прозвонка —замер электрического сопротивления с оповещением о низком сопротивлении цепи;
  • Измерение сопротивления ? испытание диодов — испытание целостности полупроводниковых диодов и установление их «прямого напряжения»;
  • Замер электрической емкости, замер электрической индуктивности, температур;
  • Замер частоты сигнала гармонического.

Замер силы постоянного тока состоит в определении его значения и полярности. Для проведения прямых замеров постоянного электротока нередко употребляются магнитоэлектрические амперметры. По сопоставлению с другими амперметрами амперметры магнитоэлектрические – гарантируют наибольшую точность измерений и обладают максимальной чувствительностью .

Спектр значений измеряемых токов для амперметров магнитоэлектрической схемы располагается в пределах от 10-7 А до 50А (при измерении токов больше 0,05А используются внутренние шунты). Для замера значительных постоянных токов(от 50А до многих килоампер) применяются килоамперметры с наружными шунтами и магнитоэлектрические амперметры . Для замеров малых токов (в пределах от 10-12А) часто применяются магнитоэлектрические гальванометры.

Замер постоянного тока с увеличенной точностью делается косвенным способом. Для этого типовой резистор подключается в цепь измеряемого тока и на нем с помощью высокоточного цифрового вольтметра или компенсатора измеряется падение напряжения . Точно так же (применяя преобразование ток-напряжение) действуют цифровые и электронные аналоговые амперметры

Методика замеров

Что бы замерить силу постоянного тока, нужно один вывод амперметра, тестера или мультиметра подключить к плюсовой клемме аккумулятора или выводу питания трансформатора, а второй вывод- к проводу, подключенному к токоприемнику. После включения режима измерения постоянного тока с запасом по верхнему максимальному пределу- совершать замеры.

Необходимо работать аккуратно, т.к. при размыкании действующей цепи появляется дуга, значение которой увеличивается совместно с силой тока.

Для того что бы замерить ток для токоприемников, подключаемых прямо в розетку или к электрокабелю от домашней электросети, измерительное устройство переключается в режим замеров переменного тока с запасом по верхнему пределу. Далее прибор включаются в разрыв фазного провода.

Профессиональные электрики используют для замера силы тока токоизмерительные клещи.Они нечасто поставляются в одном корпусе с мультиметром.

Измерять ими элементарно — подключаем и переводим в режим замера переменного тока, далее разводим находящиеся сверху усы и пропускаем вовнутрь фазный провод, после этого следим что бы они плотно легли к друг другу и выполняем замеры.

Правила безопасности

Работу с электроизмерительными инструментами можно проводить только лицам имеющим группу по электробезопасности не ниже третьей, или под контролем этих лиц.

Необходимо иметь медицинскую аптечку и уметь ею пользоваться.

Небезопасное и вредоносное действие электротока, электромагнитных полей и электрической дуги приводит к тяжелым последствиям.

Ступень опасности и вредоносного действия на человека поражающих факторов электротока, лежит в зависимости от:

  • Величины напряжения и рода тока ;
  • Частоты колебаний электротока;
  • Пути прохождения электротока чрез тело пострадавшего человека;
  • Длительности воздействия электротока на организм пострадавшего человека;

При возникновении несчастных случаев с людьми, обесточивание участке электроцепи для избавления пострадавшего от поражающего действия электрического тока необходимо совершать немедленно , не дожидаясь предварительного разрешения.

Как на практике измеряют силу тока

Для измерения величины тока в цепях постоянного и переменного тока используют электроизмерительный прибор амперметр. Амперметр включается в цепь последовательно с источником тока.

Поскольку ток — это упорядоченное движение заряженных частиц вдоль проводника (через поперечное сечение проводника), то для измерения его величины необходимо пропустить измеряемый ток еще и через амперметр. Поэтому амперметр включается именно в разрыв исследуемой цепи, когда нужно измерить ток, а ни в коем случае не параллельно ей.

В выходной цепи современного амперметра обычно находится шунт — калиброванный резистор повышенной точности и довольно малого сопротивления (считанные доли ома), на котором электронная схема прибора измеряет падение напряжения, и по нему косвенным путем вычисляет ток (или как говорят — силу тока).

Амперметр, как отдельный измерительный прибор или как одна из функций мультиметра, имеет несколько диапазонов измерения тока. Выбор диапазона осуществляется при помощи переключателя, расположенного на лицевой панели прибора.

Обычно на мультиметре можно выбрать одно из следующих значений (максимальное значение для диапазона): 200мкА, 2мА, 20мА, 200мА, 10А и т.д. Кроме того у некоторых мультиметров есть возможность измерения постоянного, переменного, либо и постоянного и переменного тока.

Вид тока также выбирается на шкале переключателя. Для измерения тока и напряжения у мультиметров имеются два отдельных гнезда для подключения щупов: одно гнездо — для измерения напряжения, второе гнездо — для измерения тока. Третье — общий провод, который остается на своем месте независимо от того, что измеряется, ток или напряжение.

Подключите щупы к соответствующим гнездам мультиметра или амперметра. Включите прибор и переведите его в режим измерения тока, выбрав вид тока и диапазон с помощью переключателя. Если диапазон неизвестен, то стоит начать с самого большого значения из доступных на шкале переключателя, потом можно будет уменьшить. Обесточьте цепь, в которой необходимо будет измерить ток.

Присоедините щупы (соблюдая осторожность!) так, чтобы прибор оказался включен в разрыв цепи. Подайте ток в цепь. Спустя пару секунд прибор отобразит на своем дисплее действующее значение измеренного тока.

Если диапазон 10А или более, то значение измеренного тока будет отображено в амперах. Если диапазон например 200мА, 20мА или 2мА (порядок величин таков, но в принципе значения на шкале могут отличаться от этих), то на дисплее будут показания в миллиамперах. Если выбран диапазон 200мкА (или такого же порядка) — на дисплее будут показаны микроамперы.

Амперметр никогда нельзя подключать параллельно источнику тока, ибо в этом случае ток короткого замыкания пройдет через измерительный шунт внутри прибора и если ток окажется больше предельно допустимого для прибора, то прибор мгновенно сгорит.

Если источником тока является, например, розетка или другой источник с низким внутренним сопротивлением, это может закончиться трагедией с жертвами, а в самом лучшем случае — быстрым выходом прибора из строя.

Если вам необходимо измерить ток короткого замыкания пальчиковой батарейки — такое может пройти для амперметра безвредно, но правилом включения амперметра лучше не пренебрегать никогда.

Амперметр включается всегда последовательно в цепь и только в тот момент, когда эта цепь обесточена! Потребители в исправной цепи сами ограничат ток рабочей величиной.

Особенной разновидностью амперметра являются электроизмерительные токовые клещи. Они имеют очень большой диапазон измеряемых токов, и их невозможно включить неправильно. Токовые клещи просто накидываются в обхват участка цепи, ток в которой нужно измерить, и сразу показывают ток. Более распространены токовые клещи для измерения переменного тока, но существуют и модели для измерения постоянного тока (на базе датчика холла).

28 Ноя 2016г | Раздел: Радио для дома

Здравствуйте, уважаемые читатели сайта sesaga.ru. Ток или силу тока определяют количеством электронов, проходящих через точку или элемент схемы в течение одной секунды. Так, например, через нить накала горящей лампы накаливания карманного фонаря ежесекундно проходит около 2 000 000 000 000 000 000 (два триллиона) электронов. Однако на практике измеряется не количество электронов, а их движение, выраженное в амперах (А).

Ампер – это единица электрического тока, которую так назвали в честь французского физика и математика А. Ампера изучавшего взаимодействие проводников с током. Экспериментально установлено, что при токе в 1А через точку или элемент схемы проходит около 6 250 000 000 000 000 000 электронов.

Помимо ампера применяют и более мелкие единицы силы тока: миллиампер (мA), равный 0,001 А, и микроампер (мкA), равный 0,000001 А или 0,001 мА. Следовательно: 1 А = 1000 мА = 1 000 000 мкА.

1. Прибор для измерения силы тока.

Как и напряжение, ток бывает постоянный и переменный. Приборы, служащие для измерения тока, называют амперметрами, миллиамперметрами и микроамперметрами. Так же, как и вольтметры, амперметры бывают стрелочными и цифровыми.

На электрических схемах приборы обозначаются кружком и буквой внутри: А (амперметр), мА (миллиамперметр) и мкА (микроамперметр). Рядом с условным обозначением амперметра указывается его буквенное обозначение «» и порядковый номер в схеме. Например. Если амперметров в схеме будет два, то около первого пишут «PА1», а около второго «PА2».

Для измерения тока амперметр включается непосредственно в цепь последовательно с нагрузкой, то есть в разрыв цепи питания нагрузки. Таким образом, на время измерения амперметр становится как бы еще одним элементом электрической цепи, через который протекает ток, но при этом в схему амперметр никаких изменений не вносит. На рисунке ниже изображена схема включения миллиамперметра в цепь питания лампы накаливания.

Также надо помнить, что амперметры выпускаются на разные диапазоны (шкалы), и если при измерении использовать прибор с меньшим диапазоном по отношению к измеряемой величине, то прибор можно повредить. Например. Диапазон измерения миллиамперметра составляет 0…300 мА, значит, силу тока измеряют только в этих пределах, так как при измерении тока свыше 300 мА прибор выйдет из строя.

2. Измерение силы тока мультиметром.

Измерение силы тока мультиметром практически ни чем не отличается от измерения обыкновенным амперметром или миллиамперметром. Разница состоит лишь в том, что у обычного прибора всего один диапазон измерения, рассчитанный на определенную максимальную величину тока, тогда как у мультиметра диапазонов несколько, и перед измерением приходится определять каким из диапазон пользоваться в данный момент.

Обычные мультиметры, не профессиональные, рассчитаны на измерение постоянного тока и имеют четыре поддиапазона, что на бытовом уровне вполне достаточно. У каждого поддиапазона есть свой максимальный предел измерения, который обозначен цифровым значением:

2m, 20m, 200m, 10А. Например. На пределе «20m» можно измерять постоянный ток в диапазоне 0…20 мА.

Для примера измерим ток, потребляемый обычным светодиодом. Для этого соберем схему, состоящую из источника напряжения (пальчиковой батарейки) GB1 и светодиода VD1, а в разрыв цепи включим мультиметр РА1. Но перед включением мультиметра в схему подготовим его к проведению измерений.

Измерительные щупы вставляем в гнезда мультиметра, как показано на рисунке:

красный щуп называют плюсовым, и вставляется он в гнездо, напротив которого изображены значки измеряемых параметров: «VΩmA»;
черный щуп является минусовым или общим и вставляется он в гнездо, напротив которого написано «

СОМ». Относительно этого щупа производятся все измерения.

В секторе измерения постоянного тока выбираем предел «2m», диапазон измерения которого составляет 0…2 мА. Подключаем щупы мультиметра согласно схеме и затем подаем питание. Светодиод загорелся, и его потребление тока составило 1,74 мА. Вот, в принципе, и весь процесс измерения.

Однако этот вариант измерения подходит тогда, когда величина потребления тока известна. На практике же часто возникает ситуация, когда необходимо измерить ток на каком-либо участке цепи, величина которого неизвестна или известна приблизительно. В таком случае измерение начинают с самого высокого предела.

Предположим, что потребление тока светодиодом неизвестно. Тогда переключатель переводим на предел «200m», который соответствует диапазону 0…200 мА, и после этого щупы мультиметра включаем в цепь.

Затем подаем напряжение и смотрим на показания мультиметра. В данном случае показания тока составили «

01,8», что означает 1,8 мА. Однако нолик впереди указывает на то, что можно снизиться на предел «20m».

Отключаем питание. Переводим переключатель на предел «20m». Включаем питание и опять производим измерение. Показания составили 1,89 мА.

Часто бывает ситуация, когда при измерении тока или напряжения на индикаторе появляется единица. Единица говорит о том, что выбран низкий предел измерения и он меньше величины измеряемого параметра. В этом случае необходимо перейти на предел выше.

Также может возникнуть момент, когда измеряемый ток выше 200 мА и необходимо перейти на предел измерения «10А». Однако здесь есть нюанс, который надо запомнить. Помимо того, что переключатель переводится на предел «10А», еще также необходимо переставить плюсовой (красный) щуп в крайнее левое гнездо, напротив которого стоит цифро-буквенное значение «10А», указывающее, что это гнездо предназначено для измерения больших токов.

И еще совет. Возьмите за правило: когда закончите все измерения на пределе «10А» сразу же переставляйте плюсовой (красный) щуп на свое штатное место. Этим Вы сбережете себе нервы, щупы и мультиметр.

Ну вот, в принципе и все, что хотел сказать об измерении тока мультиметром. Главное понимать, что при измерении напряжения вольтметр подключается параллельно нагрузке или источнику напряжения, тогда как при измерении силы тока амперметр включается непосредственно в цепь и через него протекает ток, которым питаются элементы схемы.

Ну и в качестве закрепления прочитанного предлагаю посмотреть видеоролик, в котором на примере схем рассказывается об измерениях напряжения и силы тока мультиметром.

Любая электротехническая система не обходится без расчета силы тока в цепях, проводниках и приборах. Например, при монтаже электрической проводки в однофазной сети или в трехфазной сети для расчета толщины проводников и автоматических защитных выключателей необходимо знать силу тока, который будет протекать в данных линиях. Правильное измерение – залог безопасной и надежной эксплуатации любого электрического устройства.

Измерения силы тока проводят не только для расчета цепей, но и для диагностики электрического оборудования (например, измерения на трехфазном двигателе) и бытовых электроприборов (в нагревателе, лампочках, блоках питания, зарядных устройствах USB и пр.). Автомобильные электрики, для выявления неисправности в электрических системах автомобиля (например, в прикуривателе) проводят измерения силы тока на аккумуляторе или на генераторе автомобиля. В этой статье мы подробно расскажем, как правильно измерять ток в различных ситуациях.

Как измерить ток

Для того, чтобы уметь правильно измерить силу тока, не обязательно быть профессиональным электриком, но необходимо иметь некоторые познания в электротехнике.

Что же такое сила тока? Сила тока – физическая величина, которая равна отношению количества заряда, который проходит через определенную поверхность за некоторое время, к величине этого промежутка времени. Данная величина измеряется в Амперах и обозначается буквой «А». Хоть определение силы тока и звучит достаточно мудрено, но в этой физической величине нет ничего сложного.

Но как измерить амперы? Чтобы провести измерения силы тока необходимо иметь определенный инструмент или оборудование для этого. Обычно измерения в цепи постоянного напряжения проводят мультиметром или тестером, а в сетях переменного напряжения токоизмерительными клещами или амперметром.

Постоянный ток

Как уже было сказано выше, измерения силы тока в цепях постоянного напряжения удобнее всего проводить мультиметром. Для того, чтобы осуществить измерение необходимо взять мультиметр и настроить его для работы с силой тока.

Для этого переключатель режимов перемещается в положение DCA (измерение постоянного тока), а красный и черный штекеры щупов мультиметра подключаются к гнездам с обозначением «10А» и «COM», а другие концы подключаются в разрыв цепи (то есть красный подключается к положительной полярности, а черный к отрицательной).

На современных китайских мультиметрах есть два гнезда для измерения силы тока. Одно из них подписано mA. Оно защищено предохранителем и предназначено для измерения малых токов, зачастую не более 200 мА. А второе гнездо подписывается либо просто «А», либо «10А». Оно не защищено предохранителем и предназначено для измерения тока большой величины. При этом время измерения обычно ограничивается периодом в 10-20 секунд.

Измерения производят с максимального значения, постепенно уменьшая для получения на экране необходимой размерности значения. Важно понимать примерную мощность электрической сети, в которой проводятся измерения, и выбирать прибор в соответствии с этим. Если прибор не рассчитан на такую величину, то он может выйти из строя или произойдет короткое замыкание.

В быту измерения силы тока постоянного напряжения проводят, например, у светодиода на светодиодной ленте или на плате телевизора (или другой техники) при его ремонте, а также в других случаях.

Многие думают, что для измерений силы тока нужно покупать дорогой мультиметр. Но тут надо понимать, для каких целей и задач будет использоваться прибор. Если работу выполняет профессиональный электрик, то приобретается более точный и дорогой инструмент, а домашние измерения можно производить и китайским мультиметром.

Переменный ток

Измерение силы тока в цепи переменного тока сложнее, чем для постоянного. Для этого применяют такие приборы, как амперметр или токоизмерительные клещи. Использование токоизмерительных клещей – самый удобный и безопасный способ, но он подходит только при открытой прокладке проводки или кабеля. Такой способ позволяет измерить ток без разрыва цепи, что существенно безопаснее и быстрее.

Измерение производится путем помещения проводника под напряжением в разъёмный магнитопровод со вторичной обмоткой (конструкция почти аналогична трансформатору тока). Благодаря явлению электромагнитной индукции можно измерить вторичный ток в обмотке, а после этого прибор рассчитывает первичный в измеряемой цепи. При измерении токоизмерительными клещами проводник заводится в раствор клещей и на дисплее прибора отображается сила тока в цепи переменного напряжения.

Чтобы применять амперметр для измерений силы тока нужно обладать определенными навыками и знать, как следует включить в цепь амперметр чтобы измерить силу тока.

Амперметр, как и мультиметр включается в разрыв цепи. При этом важно понимать, что переменный ток наиболее опасен, поэтому требует серьезного отношения к электробезопасности. При включении амперметра в цепь, подачи напряжения и подключения нагрузки на дисплее или табло амперметра будет указана сила тока в цепи.

Примеры измерения тока

Для понимания принципов измерения силы тока в различных электроприборах и цепях ниже приведены варианты устройств и способы измерения силы тока.

Электродвигатель

Измерения силы тока в обмотках электродвигателя производят для проверки наличия коротких замыканий, неисправностей и для настройки правильного алгоритма управления электродвигателем. Так как ток в трехфазном асинхронном двигателе в каждой фазе одинаковый, то достаточно подключить один амперметр к одной фазе для проверки его потребления.

Для диагностики каждой из обмоток замеряют ток в каждой фазе, и если в каждой из фаз он отличается, то в какой-то из обмоток возможно межвитковое замыкание, а если в одной из фаз вообще нет тока — то либо обрыв на линии либо обрыв в обмотке. Если в одной из фаз ток есть но он меньше чем в двух других – возможен плохой контакт в брно или в коммутационных приборах.

У однофазного электромотора все проще: ток измеряется на единственной фазе. Но нужно иметь в виду, что максимальная сила тока амперметра ограничена и обычно составляет не более 5А, поэтому при для больших токов используют токовые клещи или другие схемы с трансформаторами тока и амперметром.

Сварочный аппарат

Для того, чтобы понимать какие электроды использовать и в каком режиме производить сварочные работы можно измерить силу тока на проводе выхода у сварочного аппарата под нагрузкой. Измерение производят аналогично другим приборам, включая в цепь на сварочном инверторе амперметр с трансформатором (бывают и старые модели амперметров с возможностью измерения до 200 А) или используя токоизмерительные клещи.

Батарейки и аккумуляторы

В быту часто бывает необходимо измерить ток электроприбора на батарейках (в качестве батареек могут быть кроны, пальчиковые батарейки и прочие аккумуляторы). Важно понимать, что просто подключить мультиметр или амперметр к источнику нельзя, потому что силу тока измеряют только под нагрузкой.

В качестве нагрузки можно остановится на лампе накаливания или на резисторе или включится в цепь самого прибора. Для замера нужно выбрать на мультиметре необходимый режим (для измерения постоянного тока), правильно подключить клеммы к прибору и на участке цепи. При этом на экране мы получим искомое значение для той нагрузки, которая подключена к аккумулятору.

Заключение

Как можно убедится, существует всего два способа измерения силы тока:

  1. С помощью амперметра или мультиметра — в этом способе важно чтобы прибор выдерживал и его предел измерения был рассчитан на измеряемую силу тока. Недостаток у этого способа состоит в том, что необходимо разрывать цепь. Тогда при измерениях на плате придется перерезать дорожку, а при измерении потребления приборов – разделывать их кабель и выделять одну из жил, или отключать от прибора один провод и включать в его цепь измерительный прибор.
  2. С помощью токоизмерительных клещей. Зачастую этот способ используются для измерения переменного тока, но современной промышленностью выпускают токоизмерительные клещи для постоянного тока, принцип действия которых основан на эффекте Холла (только такие клещи дороговаты — стоят от 50$). Удобен способ тем, что не нужно разрывать цепь – нужно лишь ОДНУ жилу вложить в клещи и на экране высветится сила тока в цепи (или стрелка подскочит, если прибор стрелочный).

Существуют и комбинированные способы, когда измерительный прибор не рассчитан на измеряемую величину – можно использовать трансформатор тока. Например, электросчетчики прямого включения не всегда могут измерять большие токи для учета электроэнергии. Тогда их подключают не напрямую, а через трансформатор тока.

Теперь вы знаете, как измерить силу тока в цепи постоянного и переменного тока. Надеемся, наша инструкция и примеры помогли вам разобраться в вопросе. Если что-либо осталось непонятным, задавайте вопросы в комментариях под статьей!

Каким прибором можно измерить силу тока — MOREREMONTA

Для измерения величины тока в цепях постоянного и переменного тока используют электроизмерительный прибор амперметр. Амперметр включается в цепь последовательно с источником тока.

Поскольку ток — это упорядоченное движение заряженных частиц вдоль проводника (через поперечное сечение проводника), то для измерения его величины необходимо пропустить измеряемый ток еще и через амперметр. Поэтому амперметр включается именно в разрыв исследуемой цепи, когда нужно измерить ток, а ни в коем случае не параллельно ей.

В выходной цепи современного амперметра обычно находится шунт — калиброванный резистор повышенной точности и довольно малого сопротивления (считанные доли ома), на котором электронная схема прибора измеряет падение напряжения, и по нему косвенным путем вычисляет ток (или как говорят — силу тока).

Амперметр, как отдельный измерительный прибор или как одна из функций мультиметра, имеет несколько диапазонов измерения тока. Выбор диапазона осуществляется при помощи переключателя, расположенного на лицевой панели прибора.

Обычно на мультиметре можно выбрать одно из следующих значений (максимальное значение для диапазона): 200мкА, 2мА, 20мА, 200мА, 10А и т.д. Кроме того у некоторых мультиметров есть возможность измерения постоянного, переменного, либо и постоянного и переменного тока.

Вид тока также выбирается на шкале переключателя. Для измерения тока и напряжения у мультиметров имеются два отдельных гнезда для подключения щупов: одно гнездо — для измерения напряжения, второе гнездо — для измерения тока. Третье — общий провод, который остается на своем месте независимо от того, что измеряется, ток или напряжение.

Подключите щупы к соответствующим гнездам мультиметра или амперметра. Включите прибор и переведите его в режим измерения тока, выбрав вид тока и диапазон с помощью переключателя. Если диапазон неизвестен, то стоит начать с самого большого значения из доступных на шкале переключателя, потом можно будет уменьшить. Обесточьте цепь, в которой необходимо будет измерить ток.

Присоедините щупы (соблюдая осторожность!) так, чтобы прибор оказался включен в разрыв цепи. Подайте ток в цепь. Спустя пару секунд прибор отобразит на своем дисплее действующее значение измеренного тока.

Если диапазон 10А или более, то значение измеренного тока будет отображено в амперах. Если диапазон например 200мА, 20мА или 2мА (порядок величин таков, но в принципе значения на шкале могут отличаться от этих), то на дисплее будут показания в миллиамперах. Если выбран диапазон 200мкА (или такого же порядка) — на дисплее будут показаны микроамперы.

Амперметр никогда нельзя подключать параллельно источнику тока, ибо в этом случае ток короткого замыкания пройдет через измерительный шунт внутри прибора и если ток окажется больше предельно допустимого для прибора, то прибор мгновенно сгорит.

Если источником тока является, например, розетка или другой источник с низким внутренним сопротивлением, это может закончиться трагедией с жертвами, а в самом лучшем случае — быстрым выходом прибора из строя.

Если вам необходимо измерить ток короткого замыкания пальчиковой батарейки — такое может пройти для амперметра безвредно, но правилом включения амперметра лучше не пренебрегать никогда.

Амперметр включается всегда последовательно в цепь и только в тот момент, когда эта цепь обесточена! Потребители в исправной цепи сами ограничат ток рабочей величиной.

Особенной разновидностью амперметра являются электроизмерительные токовые клещи. Они имеют очень большой диапазон измеряемых токов, и их невозможно включить неправильно. Токовые клещи просто накидываются в обхват участка цепи, ток в которой нужно измерить, и сразу показывают ток. Более распространены токовые клещи для измерения переменного тока, но существуют и модели для измерения постоянного тока (на базе датчика холла).

Нагрузка в электрической цепи характеризуется силой тока, измерение тока в амперах. Силу тока иногда приходится измерять для проверки допустимой величины нагрузки на кабель. Для прокладки электрической линии применяются кабели разного сечения. Если кабель работает с нагрузкой выше допустимой величины, то он нагревается, а изоляция постепенно разрушается. В результате это приводит к короткому замыканию и замене кабеля.

Измерение тока рекомендуется делать в следующих случаях:
  • После прокладки нового кабеля необходимо измерить проходящий через него ток при всех работающих электрических устройствах.
  • Если к старой электропроводке подключена дополнительная нагрузка, то также следует проверить величину тока, которая не должна превышать допустимые пределы.
  • При нагрузке, равной верхнему допустимому пределу, проверяется соответствие тока, протекающего через электрические автоматы. Его величина не должна превышать номинальное значение рабочего тока автоматов. В противном случае автоматический выключатель обесточит сеть из-за перегрузки.
  • Измерение тока также необходимо для определения режимов эксплуатации электрических устройств. Измерение токовой нагрузки электродвигателей выполняется не только для проверки их работоспособности, но и для выявления превышения нагрузки выше допустимой, которая может возникнуть из-за большого механического усилия при работе устройства.
  • Если измерить ток в цепи работающего обогревателя, то он покажет исправность нагревательных элементов.
  • Работоспособность теплого пола в квартире также проверяется измерением тока.
Мощность тока

Кроме силы тока, существует понятие мощности тока. Этот параметр определяет работу тока, выполненную в единицу времени. Мощность тока равна отношению выполненной работы к промежутку времени, за которое эта работа была выполнена. Обозначают буквой «Р» и измеряют в ваттах.

Мощность рассчитывается путем перемножения напряжения сети на силу тока, потребляемого подключенными электрическими устройствами: Р = U х I. Обычно на электроприборах указывают потребляемую мощность, с помощью которой можно определить ток. Если ваш телевизор имеет мощность 140 Вт, то для определения тока делим эту величину на 220 В, в результате получаем 0,64 ампера. Это значение максимального тока, на практике ток может быть меньше при снижении яркости экрана или других изменениях настроек.

Измерение тока приборами

Для определения потребления электрической энергии с учетом эксплуатации потребителей в разных режимах, необходимы электрические измерительные приборы, способные выполнить измерение параметров тока.

  • Амперметр. Для измерения величины тока в цепи используют специальные приборы, называемые амперметрами. Они включаются в измеряемую цепь по последовательной схеме. Внутреннее сопротивление амперметра очень мало, поэтому он не влияет на параметры работы цепи.Шкала амперметра может быть размечена в амперах или других долях ампера: микроамперах, миллиамперах и т.д. Существует несколько видов амперметров: электронные, механические и т.д.

  • Мультиметр является электронным измерительным прибором, способным измерить различные параметры электрической цепи (сопротивление, напряжение, обрыв проводника, пригодность батарейки и т.д.), в том числе и силу тока. Существуют два вида мультиметров: цифровой и аналоговый. В мультиметре имеются различные настройки измерений.

Порядок измерения силы тока мультиметром:
  • Выяснить, какой интервал измерения вашего мультиметра. Каждый прибор рассчитан на измерение тока в некотором интервале, который должен соответствовать измеряемой электрической цепи. Наибольший допустимый ток измерения должен быть указан в инструкции.
  • Выбрать соответствующий режим измерений. Многие мультиметры способны работать в разных режимах, и измерять разные величины. Для замеров силы тока нужно переключиться на соответствующий режим, учитывая вид тока (постоянный или переменный).
  • Установить на приборе необходимый интервал измерений. Лучше установить верхний предел силы тока несколько выше предполагаемой величины. Снизить этот предел можно в любое время. Зато будет гарантия, что вы не выведете прибор из строя.
  • Вставить измерительные штекеры проводов в гнезда. В комплекте прибора имеются два провода со щупами и разъемами. Гнезда должны быть отмечены на приборе или изображены в паспорте.

  • Для начала измерения необходимо подключить мультиметр в цепь. При этом следует соблюдать правила безопасности и не касаться токоведущих частей незащищенными частями тела. Нельзя проводить измерения во влажной среде, так как влага проводит электрический ток. На руки следует надеть резиновые перчатки. Чтобы разорвать цепь для проведения измерений, следует разрезать проводник и зачистить изоляцию на обоих концах. Затем подсоединить щупы мультиметра к зачищенным концам провода и убедиться в хорошем контакте.
  • Включить питание цепи и зафиксировать показания прибора. В случае необходимости откорректировать верхний предел измерений.
  • Отключить питание цепи и отсоединить мультиметр.
  • Измерительные клещи. Если необходимо произвести измерение тока без разрыва электрической цепи, то измерительные клещи будут отличным вариантом для выполнения этой задачи. Этот прибор выпускают нескольких видов, и разной конструкции. Некоторые модели могут измерять и другие параметры цепи. Пользоваться измерительными токовыми клещами очень удобно.

Способы измерения тока

Для измерения силы тока в электрической цепи, необходимо один вывод амперметра или другого прибора, способного измерять силу тока, подключить к положительной клемме источника тока или блока питания, а другой вывод к проводу потребителя. После этого можно измерять силу тока.

При измерениях необходимо соблюдать аккуратность, так как при размыкании действующей электрической цепи может возникнуть электрическая дуга.

Для измерения силы тока электрических устройств, подключаемых непосредственно к розетке или кабелю бытовой сети, измерительный прибор настраивается на режим переменного тока с завышенной верхней границей. Затем измерительный прибор подключают в разрыв провода фазы.

Все работы по подключению и отключению допускается производить только в обесточенной цепи. После всех подключений можно подавать питание и измерять силу тока. При этом нельзя касаться оголенных токоведущих частей, во избежание поражения электрическим током. Такие методы измерения неудобны и создают определенную опасность.

Значительно удобнее проводить измерения токоизмерительными клещами, которые могут выполнять все функции мультиметра, в зависимости от исполнения прибора. Работать такими клещами очень просто. Необходимо настроить режим измерения постоянного или переменного тока, развести усы и охватить ими фазный провод. Затем нужно проконтролировать плотность прилегания усов между собой и измерить ток. Для правильных показаний необходимо охватывать усами только фазный провод. Если охватить сразу два провода, то измерения не получится.

Токоизмерительные клещи служат только для замеров параметров переменного тока. Если их использовать для измерения постоянного тока, то усы сожмутся с большой силой, и раздвинуть их можно будет только, отключив питание.

Для проведения расчетов и подбора необходимых элементов электрической цепи часто требуется измерить силу тока в ней. Сделать это можно с помощью расчетов, но наиболее простой способ — это использование специальных приборов.

Чем можно измерить силу тока

Чтобы определить мощность потребления и силу тока, требуется электрический измерительный прибор, который может измерять эти параметры с учетом особенностей переменного и постоянного тока. Типов таких устройств существует всего два:

  • Амперметр — специальное устройство для измерения исключительно силы тока в цепи. Амперметр включается в тестируемую цепь последовательно с потребителями электрического тока. На шкале прибора, помимо основных значений, в амперах используются также миллиамперы. На ампераж нужно обращать особое внимание. Существуют электронные и механические варианты устройства.

  • Мультиметр — это электронное измерительное устройство, которое помогает мерить различные параметры цепи (сопротивление, напряжение, разомкнутая цепь, пригодность для аккумулятора, включая и силу тока).

Что такое мультиметр?

Мультиметр — это универсальное комбинированное измерительное устройство, которое объединяет функции нескольких измерительных устройств, то есть измеряет практически все показатели цепи. Самый маленький набор функций мультиметра — это измеритель напряжения, силы заряда и сопротивления. Однако современные производители не останавливаются на достигнутом, а вместо этого добавляют ряд функций, таких как емкостное измерение конденсаторов, частоты тока, проверку диодов (измерение падения напряжения на pn-переходе), звуковых датчиков, измерений температуры и измерения определенных параметров транзистора, встроенный генератор низких частот и многое другое.

Мультиметр может быть:

  • Аналоговый. В этом типе приборов присутствует индикатор, который имеет несколько шкал (по одной на каждый вид измерения). Аналоговые тестеры имеют ряд недостатков, в первую очередь — это большие ошибки и погрешности в измерении. В конструкцию многих моделей включен специальный подстраиваемый резистор, который при правильной настройке несколько улучшает работу прибора, повышая точность выдаваемых результатов. Но все же сейчас большее распространение получили цифровые модели.
  • Цифровой. Единственная внешняя разница между цифровым устройством и аналоговым устройством — это экран, который численно представляет измеренные параметры. Старые модели оснащены дисплеем из светодиодов, более новые варианты оснащены жидкокристаллическим экраном. Недостатком этих устройств является то, что они имеют высокую стоимость: их цена в несколько раз превышает стоимость аналогового тестера.

Требования для измерения силы тока

Чтобы померить силу заряда в розетке, нужно обязательно следить за выполнением некоторых требований:

  • Важным условием для измерения силы тока является включение резисторов или обычных ламп в цепь ограничения сопротивления. Этот элемент защитит прибор от нагрева и возгорания из-за слишком большой нагрузки.
  • Если текущая сила в цепи не отображается на индикаторе, выбранное предельное значение является неправильным и должно быть уменьшено на одну позицию. (Так надо продолжать до тех пор, пока на экране не появится истинное значение). Требуется быстрое измерение — время контакта с кабелем составляет менее одной или двух секунд. Это особенно актуально для аккумуляторов с низким энергопотреблением.

Важно! Предел выбирается с учетом наибольших возможных отклонений полученных измерений от ожидаемого результата.

Приборы для измерения силы тока должны также соответствовать утвержденным стандартам ГОСТа:

  • показывающие устройства должны иметь точность в пределах от 1 до 2,5,
  • приборы на подстанциях допускаются 4 класса точности,

Класс по точности приборов, установленных на трансформаторах указаны в таблице:

Класс прибора Класс измерительных трансформаторов Класс шунта и добавочного сопротивления
4,0 3,0
2,5 1,0 (3,0) 0,5
1,5 0,5 (1,0) 0,5
1,0 0,5 0,5
0,5 0,2 0,2

Как проверить силу тока

Измерение силы постоянного и переменного тока не имеет кардинальных отличий, но все же данные операции имеют свои тонкости.

Постоянный ток

Измерение постоянного тока выполняется в несколько несложных этапов:

  1. На мультиметре требуется изменить положение красного щупа. Если неизвестно даже приблизительное значение силы в цепи, то из соображений безопасности и сохранности прибора придется выбрать наибольшее значение.
  2. Регулятор нужно поставить в положение из сектора «А», выбрав самый подходящий предел значений.
  3. Последовательно подключить мультиметр к цепи, где должно быть измерено текущее значение.
  4. Далее необходимо включить питание и наблюдать за появлением числовых значений на цифровом табло.

Как проверить переменный ток мультиметром

В случае, когда должна измеряться сила переменного электричества, требуется поставить регулятор в соответствующее положение, также предварительно выбрав предел. Далее процесс измерения ничем не отличается от нахождения силы постоянного заряда.

Меры безопасности

Процесс измерения тока с помощью мультиметра несложен. При его прохождении требуется соблюдение определенных норм безопасности:

  • Перед непосредственным проведением измерительных работ необходимо обесточить цепь.
  • Также периодически нужно проводить проверку изоляции кабеля — иногда он может повредить сам себя при длительном использовании и привести к значительному увеличению вероятности поражения электрическим током.
  • Использовать при проведении любых ремонтных, монтажных и измерительных работах только резиновые перчатки, которые обладают изоляционными свойствами.
  • В помещениях с высоким уровнем влажности воздуха запрещается проведение измерительных работ. Дело в том, что влага обладает высокой электропроводностью, и риск удара током возрастает. При ударе током незамедлительно нужно сообщить об этом в скорую помощь или экстренную службу.
  • Проводить работы с электричеством лучше вдвоем.
  • После завершения всех работ можно обратно включить питание.

Замер силы тока проводится амперметром или мультиметром. При использовании последнего важно правильно выбрать режим работы и предел, которого может достигнуть ток в цепи. Оба эти прибора боятся высокого напряжения.

Каким прибором измеряют силу тока


Каким прибором измеряют силу электрического тока в цепи?

 70(А1). Каким прибором измеряют силу электрического тока в цепи?  1) вольтметром;  2) термометром;  3) амперметром;  4) секундомером;

 5) динамометром.

 Решение.  Узнавание отдельных объектов изучения программного учебного материала, предъявленных в готовом виде (физических явлений, физических величин, единиц физических величин, формул, других физических объектов, в том числе измерительных инструментов, физических приборов) оценивается в 1 балл. Ознакомьтесь с оценками результатов учебной деятельности учащихся по учебному предмету «Физика»  Задачи такого типа относятся к простым. Если полистать учебник физики, то там где вводится физическая величина, там же вводится и прибор для измерения физической величины.

 Сила электрического тока измеряется в амперах, а для измерения силы тока в электрической цепи использую прибор − амперметр.

 Амперметр − прибор для измерения силы тока в цепи. Шкала амперметра может быть проградуирована в микроамперах (мкА), миллиамперах (мА), амперах (А), килоамперах (кА).  Включается амперметр в электрическую цепь последовательно с тем участком электрической цепи, силу тока в котором требуется измерить.  Для увеличения предела измерений амперметр шунтируется (подключается дополнительное сопротивление) параллельно.  Принцип действия амперметра − магнитоэлектрического прибора основан на создании крутящего момента. Вращающий момент возникает в результате взаимодействия поля постоянного магнита и магнитным полем тока, проходящего через обмотку рамки. Стрелка амперметра соединена с рамкой. Угол поворота стрелки пропорционален силе тока.  На фото изображен школьный амперметр, обратите внимание на условные обозначение А − что указывает, что данный прибор предназначен для измерения силы тока в электрической цепи в амперах.  Смотри похожую задачу.

Прибор для измерения силы тока. Как измерить силу тока мультиметром

Здравствуйте, уважаемые читатели сайта sesaga.ru. Ток или силу тока определяют количеством электронов, проходящих через точку или элемент схемы в течение одной секунды. Так, например, через нить накала горящей лампы накаливания карманного фонаря ежесекундно проходит около 2 000 000 000 000 000 000 (два триллиона) электронов. Однако на практике измеряется не количество электронов, а их движение, выраженное в амперах (А).

Ампер – это единица электрического тока, которую так назвали в честь французского физика и математика А. Ампера изучавшего взаимодействие проводников с током. Экспериментально установлено, что при токе в 1А через точку или элемент схемы проходит около 6 250 000 000 000 000 000 электронов.

Помимо ампера применяют и более мелкие единицы силы тока: миллиампер (мA), равный 0,001 А, и микроампер (мкA), равный 0,000001 А или 0,001 мА. Следовательно: 1 А = 1000 мА = 1 000 000 мкА.

1. Прибор для измерения силы тока.

Как и напряжение, ток бывает постоянный и переменный. Приборы, служащие для измерения тока, называют амперметрами, миллиамперметрами и микроамперметрами. Так же, как и вольтметры, амперметры бывают стрелочными и цифровыми.

На электрических схемах приборы обозначаются кружком и буквой внутри: А (амперметр), мА (миллиамперметр) и мкА (микроамперметр). Рядом с условным обозначением амперметра указывается его буквенное обозначение «PА» и порядковый номер в схеме. Например. Если амперметров в схеме будет два, то около первого пишут «PА1», а около второго «PА2».

Для измерения тока амперметр включается непосредственно в цепь последовательно с нагрузкой, то есть в разрыв цепи питания нагрузки. Таким образом, на время измерения амперметр становится как бы еще одним элементом электрической цепи, через который протекает ток, но при этом в схему амперметр никаких изменений не вносит. На рисунке ниже изображена схема включения миллиамперметра в цепь питания лампы накаливания.

Также надо помнить, что амперметры выпускаются на разные диапазоны (шкалы), и если при измерении использовать прибор с меньшим диапазоном по отношению к измеряемой величине, то прибор можно повредить. Например. Диапазон измерения миллиамперметра составляет 0…300 мА, значит, силу тока измеряют только в этих пределах, так как при измерении тока свыше 300 мА прибор выйдет из строя.

2. Измерение силы тока мультиметром.

Измерение силы тока мультиметром практически ни чем не отличается от измерения обыкновенным амперметром или миллиамперметром. Разница состоит лишь в том, что у обычного прибора всего один диапазон измерения, рассчитанный на определенную максимальную величину тока, тогда как у мультиметра диапазонов несколько, и перед измерением приходится определять каким из диапазон пользоваться в данный момент.

Обычные мультиметры, не профессиональные, рассчитаны на измерение постоянного тока и имеют четыре поддиапазона, что на бытовом уровне вполне достаточно. У каждого поддиапазона есть свой максимальный предел измерения, который обозначен цифровым значением: 2m, 20m, 200m, 10А. Например. На пределе «20m» можно измерять постоянный ток в диапазоне 0…20 мА.

Для примера измерим ток, потребляемый обычным светодиодом. Для этого соберем схему, состоящую из источника напряжения (пальчиковой батарейки) GB1 и светодиода VD1, а в разрыв цепи включим мультиметр РА1. Но перед включением мультиметра в схему подготовим его к проведению измерений.

Измерительные щупы вставляем в гнезда мультиметра, как показано на рисунке:

красный щуп называют плюсовым, и вставляется он в гнездо, напротив которого изображены значки измеряемых параметров: «VΩmA»; черный щуп является минусовым или общим и вставляется он в гнездо, напротив которого написано «СОМ». Относительно этого щупа производятся все измерения.

В секторе измерения постоянного тока выбираем предел «2m», диапазон измерения которого составляет 0…2 мА. Подключаем щупы мультиметра согласно схеме и затем подаем питание. Светодиод загорелся, и его потребление тока составило 1,74 мА. Вот, в принципе, и весь процесс измерения.

Однако этот вариант измерения подходит тогда, когда величина потребления тока известна. На практике же часто возникает ситуация, когда необходимо измерить ток на каком-либо участке цепи, величина которого неизвестна или известна приблизительно. В таком случае измерение начинают с самого высокого предела.

Предположим, что потребление тока светодиодом неизвестно. Тогда переключатель переводим на предел «200m», который соответствует диапазону 0…200 мА, и после этого щупы мультиметра включаем в цепь.

Затем подаем напряжение и смотрим на показания мультиметра. В данном случае показания тока составили «01,8», что означает 1,8 мА. Однако нолик впереди указывает на то, что можно снизиться на предел «20m».

Отключаем питание. Переводим переключатель на предел «20m». Включаем питание и опять производим измерение. Показания составили 1,89 мА.

Часто бывает ситуация, когда при измерении тока или напряжения на индикаторе появляется единица. Единица говорит о том, что выбран низкий предел измерения и он меньше величины измеряемого параметра. В этом случае необходимо перейти на предел выше.

Также может возникнуть момент, когда измеряемый ток выше 200 мА и необходимо перейти на предел измерения «10А». Однако здесь есть нюанс, который надо запомнить. Помимо того, что переключатель переводится на предел «10А», еще также необходимо переставить плюсовой (красный) щуп в крайнее левое гнездо, напротив которого стоит цифро-буквенное значение «10А», указывающее, что это гнездо предназначено для измерения больших токов.

И еще совет. Возьмите за правило: когда закончите все измерения на пределе «10А» сразу же переставляйте плюсовой (красный) щуп на свое штатное место. Этим Вы сбережете себе нервы, щупы и мультиметр.

Ну вот, в принципе и все, что хотел сказать об измерении тока мультиметром. Главное понимать, что при измерении напряжения вольтметр подключается параллельно нагрузке или источнику напряжения, тогда как при измерении силы тока амперметр включается непосредственно в цепь и через него протекает ток, которым питаются элементы схемы.

Ну и в качестве закрепления прочитанного предлагаю посмотреть видеоролик, в котором на примере схем рассказывается об измерениях напряжения и силы тока мультиметром.

Удачи!

Измерение силы тока: обзор измерительных приборов и краткое руководство к их применению

В ходе эксплуатации электросети или какого-либо прибора приходится выполнять измерение силы тока.

Из данной статьи вы узнаете, что понимается под этим термином и какие инструменты используются для этой цели.

Заодно поговорим о мерах безопасности при проведении подобных работ.

Единица измерения силы тока

Силой тока в физике принято называть величину заряда, пересекающего поперечное сечение проводника за единицу времени. Единица измерения — ампер (А). Силу в 1 А имеет такой ток, при котором за 1-у секунду через сечение проводника проходит заряд в 1 кулон (Кл).

Силу тока можно сравнить с напором воды. Как известно, в старину небольшие речки перегораживали плотинами, чтобы создать напор, способный вращать колесо мельницы.

Чем более сильным был напор, тем более производительную мельницу можно было привести с его помощью в движение.

Точно так же и сила тока характеризует работу, которую может выполнить электричество. Простой пример: лампочка при увеличении силы тока в цепи будет гореть ярче.

Зачем нужно знать, какой силы ток протекает в проводнике? От силы тока зависит то, как он будет действовать на человека при случайном контакте с токоведущими частями. Производимый электричеством эффект отобразим в таблице:

Сила тока, А (переменный с частотой 50 Гц) Эффект
Менее 0,5 мА является незаметным для человека
От 0,5 до 2 мА Появляется нечувствительность к различным раздражителям
От 2 до 10 мА Болевые ощущения, спазм мышц
От 10 мА до 20 мА Усиленные спазмы, некоторые ткани повреждаются. При силе тока от 16 мА человек теряет способность разжать или отдернуть руку, чтобы разомкнуть контакт с токоведущей частью
От 20 мА до 100 мА Дыхательный паралич
От 100 мА до 3 А Фибрилляция сердца, нужны безотлагательные меры по реанимированию пострадавшего
Свыше 3 А Сильные ожоги, остановка сердца (при кратковременном воздействии возможность реанимирования сохраняется)

А вот еще несколько причин:

  1. Сила тока характеризует нагрузку на проводник. Максимальная пропускная способность последнего зависит от материала и площади поперечного сечения. Если сила тока окажется слишком большой, провод или кабель будет сильно греться. Это может привести к расплавлению изоляции с последующим коротким замыканием. Вот почему проводку всегда защищают от перегрузок автоматическими выключателями или предохранителями. С особым вниманием к протекающей в проводах силе тока следует отнестись владельцам квартир и домов со старой проводкой: ввиду применения все большего количества электроприборов она часто оказывается в перегруженном состоянии.
  2. По соотношению значений силы тока в различных цепях электроприбора можно сделать вывод о его исправности. Например, в фазах электродвигателя должны протекать токи равной силы. Если наблюдаются расхождения, значит двигатель неисправен либо работает с перегрузкой. Таким же способом определяется состояние нагревательного прибора или электрического «теплого пола»: замеряется сила тока во всех составляющих устройства.

Работа электричества, точнее говоря его мощность (количество работы за единицу времени), зависит не только от силы тока, но и от напряжения. Собственно говоря, произведение этих величин и определяет мощность:

W = U * I,

Где

  • W – мощность, Вт;
  • U – напряжение, В;
  • I – сила тока, А.

Таким образом, зная напряжение в сети и мощность прибора, можно рассчитать, какая сила тока будет через него протекать при условии исправного состояния: I = W/U. К примеру, если известно, что мощность обогревателя составляет 1,1 кВт и работает он от обычной сети напряжением 220 В, то сила тока в нем составит: I = 1100 / 220 = 5 А.

Формула измерения силы тока

При этом нужно учитывать, что согласно законам Кирхгофа сила тока в проводе до разветвления представляет собой сумму токов в ветвях. Поскольку в квартире или доме все приборы подключаются по параллельной схеме, то если, допустим, одновременно работают два прибора с током в 5 А, то в подводящем проводе и в общем нулевом будет протекать ток силой в 10 А.

Обратная операция, то есть расчёт мощности потребителя путем перемножения измеренной силы тока на напряжение, не всегда дает правильный результат. Если в устройстве-потребителе имеются обмотки, как например в электродвигателях, которым присуще индуктивное сопротивление, часть мощности будет расходоваться на преодоление этого сопротивления (реактивная мощность).

Чтобы определить активную мощность (полезная работа электричества), нужно знать фактический коэффициент мощности для данного прибора, представляющий собой соотношение активной и реактивной мощностей.

Приборы для измерения силы тока и напряжения

Вот какие измерительные инструменты помогут электрику в данном вопросе:

Амперметр

Существует несколько разновидностей данного прибора, которые различаются принципом действия:

  1. Электромагнитный: внутри имеется катушка, протекаю по которой ток создает электромагнитное поле. Это поле втягивает в катушку железный сердечник, связанный со стрелкой. Чем большей будет сила тока, тем сильнее будет втягиваться сердечник и тем более будет отклоняться стрелка.
  2. Тепловой: в приборе установлена натянутая металлическая нить, связанная со стрелкой. Протекающий ток вызывает нагрев нити, степень которого зависит от силы тока. А чем сильнее нагреется нить, тем сильнее она удлинится и провиснет, соответственно, тем сильнее отклонится стрелка.
  3. Магнитоэлектрический: в приборе имеется постоянный магнит, в поле которого находится связанная со стрелкой алюминиевая рамка с намотанной на нее проволокой. При протекании через проволоку электрического тока рамка в магнитном поле стремится повернуться на некоторый угол, который зависит от силы протекающего тока. А от угла поворота зависит положение стрелки, отмечающей на шкале значение силы тока.
  4. Электродинамический: внутри прибора имеются две последовательно соединенные катушки, одна из которых является подвижной. При протекании по катушкам тока в результате взаимодействия возникающих при этом электромагнитных полей подвижная катушка стремится повернуться относительно неподвижной и при этом тянет за собой стрелку. Угол поворота будет зависеть от силы протекающего тока.
  5. Индукционный: ток пропускается через обмотки неподвижных катушек, соединенных магнитной системой. В результате образуется вращающееся или бегущее электромагнитное поле, воздействующее с некоторой силой (зависит от силы тока) на подвижный металлический цилиндр или диск. Тот связан со стрелкой.
  6. Электронный: такие приборы еще называют цифровыми. Внутри имеется электрическая схема, информация выводится на жидкокристаллический дисплей.
Мультиметр для измерения силы тока

Так принято называть универсальный электронный измеритель параметров тока. Он может переключаться как в режим амперметра, так и в режим вольтметра, омметра и мегомметра (измеряются сопротивления большой величины, обычно изоляции).

Измерение силы тока мультиметром

Результаты измерений отображаются на жидко-кристаллическом дисплее. Для работы прибору необходимо питание от батареек.

Тестер

По функциональности это тот же мультиметр, но аналоговый. Результаты измерений обозначаются на шкале при помощи стрелки, батарейки требуются только при наличии омметра.

Измерительные клещи

Измерительные клещи более практичны. Ими нужно просто зажать участок тестируемого провода, после чего прибор покажет силу протекающего в нем тока.

При этом нужно учитывать, что в клещах должен оказаться только проверяемый проводник. Если зажать несколько проводников, прибор покажет геометрическую сумму токов в них.

Измерительные клещи

Таким образом, при помещении в токоизмерительные клещи 1-фазного провода целиком прибор покажет «нуль», так как в фазном и нулевом проводниках протекают разнонаправленные токи одинаковой величины.

Методы измерения

Первые три прибора для проведения измерений должны быть включены в цепь нагрузки последовательно с ней, то есть в разрыв провода. Для 1-фазной сети это может быть как фазный, так и нулевой провод. Для 3-фазной — только фазный, так как в нулевом протекает геометрическая сумма токов во всех фазах (при одинаковой нагрузке равна нулю).

Отметим два важных обстоятельства:
  1. В отличие от вольтметра (измеритель напряжения), амперметр нельзя использовать без нагрузки, иначе получится короткое замыкание.
  2. Щупами прибора можно касаться проводов или контактов только при отсутствии напряжения, то есть тестируемая линия должна быть обесточена. В противном случае между близко расположенными щупом и проводом может возникнуть дуга с выделением тепла, достаточного для расплавления металла.

Все измерительные приборы имеют переключатель диапазона, которым регулируется чувствительность.

Заметим, что ток, потребляемый некоторыми приборами, такими как телевизионная и компьютерная техника, энергосберегающие и светодиодные лампы, не является синусоидальным.

Поэтому некоторые измерительные приборы, принцип действия которых ориентирован на переменное напряжение, могут определять значение силы такого тока с ошибкой.

Видео на тему

Поделиться:

Нет комментариев

Каким прибором измерять силу тока?

В процессе работы электрику часто приходится производить замеры это: напряжение, сопротивление, сопротивление изоляции. Есть еще одна величина — это сила тока. О том, как ее измерять, и пойдет речь в этой небольшой статье.

Амперметр — прибор при помощи которого можно измерить силу тока.

Во-первых, сила тока измеряется прибором, который называется – амперметр. Для измерения в цепях постоянного и переменного тока используются разные измерительные приборы. На шкале амперметра для переменного тока ставится обозначение – «  ?  А», для постоянного «–А».

Для измерения напряжения вольтметры подключаются параллельно, а амперметры — последовательно. То есть цепь необходимо разорвать в удобном месте и туда подключить амперметр. Какое напряжение в цепи — 127В, 220В или 380В — не имеет значения, аналогично и в цепях постоянного тока. Это что касается измерения тока отдельным прибором (амперметром).

Измерить величину тока можно и тестером (стрелочный). Этими приборами можно измерять и постоянный, и переменный ток, установив соответствующий переключатель на Вид тока (  ? А или –А).

В цепях переменного тока  измерения можно производить токоизмерительными клещами, этот метод удобен тем, что измерения производятся бесконтактным способом. Необходимо просто обхватить проводник магнитопроводом прибора. В цепях постоянного тока такие измерения не производятся.

Все эти измерения необходимы специалистам электрикам в повседневной работе. К примеру, зная потребляемый ток, можно рассчитать мощность агрегата по формуле

Р = UI

P — мощность (Вт), U – напряжение (В), I – сила тока (А). Приведем пример: трехфазный электродвигатель потребляет  11А на каждой фазе — 11А х 220В = 2420 Вт — из вычислений можно определить мощность. Это стандарт 7.5 кВт.

Клещи для измерения силы тока

Токоизмерительные клещи помогут вам точно определить силу тока. Они осуществляют непрямое измерение магнитного поля, окружающего проводник. Таким образом, вам не нужно отключать ток, чтобы проводить измерения непосредственно на электрическом кабеле, поскольку это измерение бесконтактное.

Преимущества токовых клещей testo 770

  • Инновационный механизм захвата позволяет легко схватить кабель
  • Дополнительные функции: измерение пускового тока, мощности и малых токов в диапазоне мкА
  • Возможность работы с приложением testo Smart Probes по Bluetooth

Основные преимущества

Инновационный механизм захвата

Идеально подходит для плотно уложенных кабелей

Автоматическое определение AC/DC

Для более безопасной работы

Работа с мобильным приложением

Для вывода результатов в виде графика и цифрового документирования

Сравнение моделей токоизмерительных клещей testo 770

    • Токоизмерительные клещи testo 770-1
  • Базовая модель для быстрого измерения самых важных параметров.
  • • Полностью убираемый зубец
  • • Автоматическое определение постоянного/переменного тока и измерение истинного СКЗ
  • • Батарейки и измерительные щупы в комплекте
    • Токоизмерительные клещи testo 770-2
  • Точный универсальный прибор для измерения электрических параметров и температуры.
  • • Измерение силы тока в диапазоне мкА
  • • Измерение силы пускового тока на электродвигателях
  • • Автоматическое определение постоянного/переменного тока и измерение истинного СКЗ
  • • Адаптер для термопар типа K для измерения температуры в комплекте
    • Токоизмерительные клещи testo 770-3
  • Наша самая мощная модель – с мобильным приложением и Bluetooth.
  • • Очень широкий диапазон измерения силы тока и температуры
  • • Измерение силы пускового тока на электродвигателях
  • • Автоматическое определение постоянного/переменного тока и измерение истинного СКЗ
  • • Отображение процесса измерения и цифровое документирование в приложении testo Smart Probes

Сферы применения:


Точные токоизмерительные клещи для разных сфер применения

Складывающийся зубец позволяет легко захватывать плотно уложенные кабели. Благодаря этому вы сможете измерить силу тока, даже если вы не можете временно отключить систему. Токоизмерительные клещи позволяют одновременно регистрировать множество измеряемых параметров, обеспечивая решение разных измерительных задач и чёткий сбор данных.

При работе с токоизмерительными клещами необходимо учитывать две особенности:

  • можно одновременно захватить и измерить только один проводник,
  • если клещи захватывают весь кабель, включая проводник и обратный проводник, измеряется только ток утечки.
     

Точное измерение тока утечки

Зонд для измерения тока утечки – важный прибор для точных измерений в области электроники. В отличие от классических токоизмерительных клещей, эти диагностические приборы обладают повышенной чувствительностью, позволяющей измерять силу тока в очень малых диапазонах.

Высококачественные и высокоточные зонды для измерения тока утечки обладают дополнительными функциями, такими как измерение пускового тока и малых токов в диапазоне мкА. Это позволяет вам использовать токоизмерительные клещи для решения следующих задач:

  • проверка на обрыв цепи и измерение сопротивления,
  • измерение напряжения,
  • измерение истинного СКЗ.

Высокоточные токоизмерительные клещи Testo для большей безопасности

Современные измерительные приборы Testo отличаются инновационным механизмом захвата, который облегчает работу с электрощитками. Этот механизм позволяет точно захватывать отдельные провода, обеспечивая точное бесконтактное измерение силы тока и прочих необходимых параметров. Даже когда кабели очень плотно уложены и их диаметр очень мал, вы можете быть уверены в работе токовых клещей и зонда тока утечки. Токоизмерительные клещи оснащены большим двухстрочным дисплеем и функцией автоматического определения постоянного и переменного тока. Мы предлагаем три модели токоизмерительных клещей:

  • testo 770-1 с полностью убираемым зубцом для максимального удобства,
  • testo 770-2 с дополнительным температурным адаптером и функцией измерения в диапазоне мкА,
  • testo 770-3 с оптимизированной функцией измерения истинного СКЗ и с Bluetooth.

Для регистрации статического магнитного поля

Для измерения постоянного тока токовые клещи измеряют сопротивление, которое  зависит от магнитного поля. Это позволяет регистрировать статическое магнитное поле, что необходимо, так как переменного поля с постоянным током не существует.

Магниторезистивные сопротивления, которые для этого необходимы, устанавливаются в немагнитный зазор. Их очень слабый сигнал нужно усиливать электронными средствами, так что измерительные приборы оснащены соответствующим аккумулятором и работают от сети или батареи. Токоизмерительные клещи могут измерять и переменный ток. Помимо измерения силы постоянного и переменного тока в амперах, клещи имеют возможность измерять напряжение переменного и постоянного тока в вольтах. Кроме того, у них есть дополнительные измерительные функции:

  • измерение сопротивления (в омах),
  • измерение ёмкости (в фарадах),
  • измерение частоты (в герцах).

Надёжный помощник во многих ситуациях

Токоизмерительные клещи, предназначенные для измерения силы постоянного тока, подходят для обслуживания и проверки электрических систем и небольших устройств. Однако этот прибор также позволяет измерять электрическую ёмкость или сопротивление, а также проводить проверку на обрыв цепи. Если объект измерения находится в труднодоступном месте, функция hold облегчает считывание показаний.

Полностью убираемый зубец значительно облегчает работу с токоизмерительными клещами Testo в сложных условиях. Вы сможете безопасно и эффективно работать даже с плотно уложенными кабелями в узких распределительных щитках. Дополнительная функция измерения тока утечки помогает вам тестировать электрические параметры и обеспечивать сохранность всей системы. Большой дисплей позволяет вам видеть все результаты измерений, что позволяет вам вовремя предпринять шаги, необходимые для обеспечения изоляции и обслуживания системы.
 

способы на практике узнать значение с помощью приборов и расчетных формул

Передвижение положительно заряженных частиц, движущихся в едином направлении, в физике называют силой тока. По своей сути это физическая величина, демонстрирующая заряд, происходящий в определенное время через специальный проводник. Найти силу тока можно несколькими способами. Первый — это расчет величины по выведенным готовым формулам при наличии первоначальных данных. Второй — это использование специальных измерительных приборов.

Зачем нужна сила тока

Работа любой электротехники напрямую связана с физической величиной заряженных частиц. Знание того, как найти силу тока, позволяет понимать нюансы работы такого оборудования, отдельной цепи либо схемы. Расчет подобного значения у настоящего профессионала не вызовет особых трудностей, а вот у начинающих электриков это может вызвать некоторые проблемы. Для этого стоит знать определенные расчетные формулы или иметь под рукой специальный измерительный прибор.

По своей сути различают несколько разновидностей тока — это постоянный (содержащийся в аккумуляторных батарейках) и переменный (находящийся в розетке). Именно второй вид отвечает за освещение в помещении, работу электроприборов. Особенность переменного тока заключается в быстрой передаче и трансформации, ярким примером тому может служить работа люминесцентных лампочек (движение токовых частиц при включении).

Расчет величины по формулам

Так как самым распространенным видом тока, использующимся в быту, является переменный, то для его расчета используется известная каждому школьнику формула расчета «Закон Ома». Выглядит она следующим образом — I = U / R (найти ток можно, разделив напряжение на сопротивление), где:

  • I — это переменное токовое значение;
  • U — это напряжение;
  • R — это сопротивление.

Из этой формулы тока можно вывести и другие, не менее полезные вычисления, позволяющие определить другие значения, имея только фактические показатели двух других величин (R = U / I и U = I * R). При расчете рекомендуется использовать основные единицы измерения — амперы, вольты и омы. Данная расчетная формула чаще всего используется для вычисления силы в цепях с активной нагрузкой, например, нагревательных приборах, электрочайниках, светодиодах и т. д.

В других же случаях используется иная вычислительная формула, содержащая в себе мощность и напряжение. Выглядит она следующим образом — I = P / U. Также сила тока рассчитывается по формуле I = q / t, где q — это заряд, идущий по проводнику, измеряющийся в кулонах, а t — это время прохождения электрического заряда, вычисляющееся в секундах.

Вычисление значений приборными системами

Помимо формул при отсутствии четких показателей необходимых значений используются специальные приборные системы. Преимущество такого метода заключается в быстроте и точности получаемых данных, минус — в необходимости покупать требуемые устройства. К основным способам, как определить силу тока, стоит отнести:

  • Магнитоэлектрический метод вычисления, отличающийся высокой чувствительностью, точностью показаний, минимальным потреблением электроэнергии. Используется он зачастую для определения значения силы постоянного тока.
  • Электромагнитный, основным вычислительным элементом которого становится магнитомодульный датчик, на который из магнитного поля поступает сигнал. Таким способом можно узнать силу постоянного и переменного тока.
  • Косвенный, где по старинке используется вольтметр, определяющий показания напряжения на определенном сопротивлении.

Стоит отметить, что подобные методы редко применяются самими электрикам, так как они отнимают много времени. Гораздо проще использовать специальные приборы, а не приборные системы.

Измерение амперметром

Самым простым способом узнать силу тока является измерение показаний амперметром. Особенности его использования заключаются в подключении прибора к разрывам электрической цепи. Для этого выбирается подходящее место, после чего остается дождаться, когда на экране амперметра высветится значение силы тока (заряда), прошедшего через кабельное сечение через определенное время.

Помимо классического прибора используются похожие на них аналоги, предназначенные для того, чтобы быстро найти силу тока малого электричества — это миллиамперметры, микроамперметры, гальванометры. Процедура подключения установки мало чем отличается от обычных измерительных приборов, их нужно зафиксировать на том участке цепи, где требуется узнать значение заряда. Подключение осуществляется несколькими методами — последовательным и параллельным. Условно весь процесс можно разделить на несколько этапов:

  1. подготовка прибора, из которого выходит провод с двумя кабелями питания;
  2. выставление необходимого измерительного диапазона на вычислительной установке;
  3. прикладывание одного щупа к проводу питания прибора;
  4. подключение второго щупа к любому контакту электропитания;
  5. подсоединение оставшегося провода ко второму щупу;
  6. включение измерительного прибора;
  7. получение величины токовой силы, показанной на измерителе.

При измерении токовой силы нельзя забывать о том, что особую роль в этом деле играет его вид (переменный либо постоянный). Особое внимание следует уделить постоянному типу тока, например, если внутри устройства установлен блок питания, снижающий сетевое напряжение до меньших значений.

В таком случае необходимо измерять токовую силу в той части цепи, где установлен выпрямляющий мост диодов.

Немаловажную роль в измерении играет напряжение, в таком случае измерительные щипы прибора прикладываются не к разрыву цепи, а к параллельным контактам электропитания. Тут также стоит уделить внимание типу напряжения, которое бывает переменным и постоянным.

электрический ток

Направленное движение носителей электрического заряда, то есть электронов, движущихся в определенном направлении, называется электрическим током. Сами электроны представляют собой чрезвычайно маленькие элементарные частицы, которые имеют одинаковый отрицательный заряд.
Электрический ток течет только в замкнутой цепи тока. Замкнутая цепь состоит, по крайней мере, из источника электроэнергии и электрического устройства или компонента, которые соединены электрическими проводниками (такими как электрические провода).Эти проводники могут быть металлами, а также жидкостями или газами. Примечание: важно проверить, где может протекать электрический ток! Иногда предмет или тело попадают случайно, если они касаются (касаются) электрических проводников.
Чем выше напряжение на источнике питания, тем больше сила тока (необходимое условие: все компоненты остаются прежними, а температура остается неизменной). Кроме того: чем сильнее сопротивление электрического проводника, тем меньше сила тока, если напряжение остается прежним.
Если вы знаете напряжение и электрическое сопротивление электрической цепи, вы можете рассчитать силу тока по следующей формуле:

Сила тока — это физическая величина, обозначающая количество электронов, которые проходят через определенную площадь поперечного сечения электрического проводника в течение одной секунды. (Вы можете представить это как затвор, который считает электроны, проходящие через определенное место в проводнике). Сила тока обозначается условным обозначением I .Обозначение формулы I происходит от слова интенсивности . Цель состоит в том, чтобы описать силу электрического тока. Интенсивность помогает понять, что сила тока высока, если особенно большое количество электронов проходит через площадь поперечного сечения в течение определенного периода времени.

Сила тока указывается в амперах. Своим названием он обязан французскому физику Андре-Мари Амперу, который с 1775 по 1836 год жил во Франции. Сила тока в один ампер будет достигнута, если 6,24 квинтиллиона (6.240.000.000.000.000.000) электронов проходят через поперечное сечение проводника за одну секунду.

Сила электрического тока — это мера количества заряда ( Q ), который пересек площадь сечения за определенный период времени ( t ). Он описывается следующей формулой:

(Напоминаем: Q — это символ заряда, а t — время.)
Эти модели проводника помогут вам понять, что означает высокая или низкая сила тока.Чем выше сила тока, тем больше электронов проходит через кондуктор в течение определенного периода времени:

Высокая сила тока; много электронов за период времени:

Низкая сила тока; несколько электронов за период времени:

Примечание: в реальном проводнике электроны не так прямолинейны; они скорее двигаются зигзагообразно.

Вот несколько примеров сильных сторон вашей повседневной жизни:

С С С
лампочка около 0,4 Ампер
фонарь по 0,6 А
тостер около 5,2 Ампер
печь для выпечки по 12 ампер
электровоз apbout 150 ампер
молния по 1.000.000 ампер

определение силы тока | Словарь английских определений

текущий


прил

1 из ближайшего настоящего; в процессе
текущие события

2 самые последние; актуальный
текущий номер журнала

3 общеизвестные, применяемые или принятые; распространенный
текущий слух

4 в обращении и действителен в настоящее время
текущие монеты
n

5 (особенноводы или воздуха) постоянный, как правило, естественный поток

6 Масса воздуха, водоема и т. Д., Имеющая устойчивый поток в определенном направлении

7 расход такой массы

8 (также называется) электрический ток (физика)

a поток электрического заряда через проводник

b скорость потока этого заряда.Обычно измеряется в амперах., (Символ) I

9 общая тенденция или дрейф
течения мнений
(C13: от древнефранцузского corant, буквально: бег, от corre to run, от латинского currere)
в настоящее время аванс
актуальность n

переменный ток
n непрерывный электрический ток, который периодически меняет направление, обычно синусоидально (аббревиатура.) AC Сравнить → постоянный ток

Течение Кромвеля
n экваториальное тихоокеанское течение, текущее на восток с Гавайских островов на Галапагосские острова
(C20: названо в честь Т. Кромвеля (1922-58), океанографа США)

расчетный счет
n

1 счет в банке или строительном кооперативе, на который можно в любое время выписать чеки (U.Имя С.) текущий счет (канадское название) расчетный счет

2 (Экономика), часть платежного баланса, состоящая из торгового баланса и невидимого баланса
Сравнить → счет операций с капиталом → 1

оборотные активы
pl n денежные средства и операционные активы, конвертируемые в денежные средства в течение года (также называемые) оборотные средства Сравнить → основные средства

Учет текущих затрат
n метод учета, при котором активы оцениваются по их текущей восстановительной стоимости, а не по первоначальной стоимости.Часто используется во время высокой инфляции.
Сравнить → учет по первоначальной стоимости

плотность тока
n отношение электрического тока, протекающего в определенной точке проводника, к площади поперечного сечения проводника, взятой перпендикулярно току, протекающему в этой точке. Он измеряется в амперах на квадратный метр., (Символ) Дж

КПД по току
n (Физика) отношение фактической массы вещества, высвобождаемого из электролита при прохождении тока, к теоретической массе, высвобождаемой в соответствии с законом Фарадея

текущие расходы
pl n некапитальные и обычно повторяющиеся расходы, необходимые для ведения бизнеса

краткосрочные обязательства
pl n коммерческие обязательства со сроком погашения в течение года

темновой ток
n остаточный ток, создаваемый фотоэлектрическим устройством, когда он не освещен

постоянный ток
n непрерывный электрический ток, который течет только в одном направлении, без существенного изменения величины (аббревиатура.) DC Сравнить → переменный ток

вихревой ток
n электрический ток, индуцируемый в массивном проводнике, таком как сердечник электромагнита, трансформатора и т. Д., Переменным магнитным полем (также называется) Ток Фуко

электрический ток
n другое название для → текущий → 8

Foucault current
n другое название для → вихретоковый

Течение Гумбольдта
n холодное океанское течение в южной части Тихого океана, текущее на север вдоль побережья Чили и Перу (также называемое) Перу Текущий

Японское течение
n теплое океаническое течение, текущее на северо-восток от восточного побережья Японии в сторону северной части Тихого океана (также называемое) Куросио

Лабрадорское течение
n холодное океанское течение, текущее на юг от побережья Лабрадора и встречающееся с теплым Гольфстримом, вызывающее густые туманы у Ньюфаундленда

Peru Current
n другое название для → Течение Гумбольдта

устройство защитного отключения
adv
n устройство отключения цепи, установленное в электрическом оборудовании для защиты оператора от поражения электрическим током (аббревиатура.) УЗО

термоэлектронный ток
n электрический ток, возникающий между двумя электродами в результате электронов, испускаемых термоэлектронной эмиссией

течение мутности
n закрученная масса воды и взвеси, поднятая цунами, штормом, наводнением реки и т. Д.

Как рассчитать силу тока

Ток, напряжение, мощность и сопротивление связаны определенными отношениями.Любое из этих четырех значений может быть вычислено, если известны как минимум два других. С тремя оставшимися значениями информация становится избыточной.

Инструкция по эксплуатации

1

Перед выполнением любых расчетов обязательно перенесите все данные, имеющиеся в состоянии проблемы, в систему SI. Напряжение должно быть выражено в вольтах, ток в амперах, сопротивление в омах, мощность в ваттах. Чаще всего используются префиксы для этих величин: микро (одна миллионная, сокращенно — mk), милли (одна тысячная, сокращенно m), kilo (тысяча, сокращенно k), mega (миллион, сокращенно — M) и «гигабайт» (миллиард , сокращенно — Г).2 = P / R, следовательно, I = sqrt (P / R), где I — сила тока, P — мощность, R — сопротивление.

4

Если напряжение и мощность известны, рассчитайте следующим образом: P = UI, следовательно, I = P / U, где I — сила тока, P — мощность, U — напряжение.

5

После завершения расчетов перевести результат из системы СИ в те единицы, в которых он должен быть выражен в соответствии с условиями задачи (чаще всего это миллиамперы или микроамперы).

6

Если расчеты проводятся в отчете к лабораторным работам, при необходимости проверьте результат на реальной лабораторной установке, так как напряжение и ток не сложно изменить, соответственно, с помощью вольтметра и амперметра. Если используется высокое напряжение, измеряйте осторожно. Измерьте сопротивление омметром при выключенном питании устройства. Что касается тепловой мощности, выделяемой на нагрузку, то измерить ее не так-то просто, так как требуется калориметр.

7

Если вы учитесь в средней школе или в вузе, учитель может потребовать от вас вычислить погрешность измерения и расчета общепринятым способом при подготовке решения проблемы.

Изучите анатомию и физиологию, чтобы изменить свое тело: Current, Austin: 9780744026955: Amazon.com: Books

Пришло время похудеть, нарастить мышцы и ускорить обмен веществ? Откройте для себя точную науку, необходимую для совершенствования каждого упражнения и построения вашего самого сильного тела — дома или в тренажерном зале

Это простое руководство также дает вы ценные сведения о том, как питание и упражнения могут улучшить ваше здоровье.

На страницах этой книги по силовым тренировкам вы найдете:

• Физиология и преимущества силовых тренировок
• Планы тренировок для новичков, энтузиастов и персональных тренеров
• Трудная диетическая наука, которая развенчивает распространенные мифы и важную информацию для правильного питания вашего тела
• Изображения 33 упражнений: как их выполнять, типичные ошибки и преимущества каждого

Работа для достижения ваших силовых целей

В этой книге автор Остин Керрент знакомит читателей с наукой о силе тренировки, похудание, питание и общее состояние здоровья.В книге рассказывается, почему многие люди опасаются силовых тренировок, почему им не следует их делать и как они могут включить их в свою повседневную жизнь. Эта тетрадь, наполненная графическими изображениями компьютерной графики и научно обоснованной информацией, поможет вам изменить свое тело и улучшить самочувствие.

Не только это, но это название также включает полные планы тренировок и более 100 индивидуальных упражнений. Вы узнаете, как задействуются ваши мышцы на каждом этапе, как правильно и без травм выполнять движения, и вы увидите различные варианты для дома и тренажерного зала.Эта книга также содержит информацию о питании и содержит советы по питанию для веганов и вегетарианцев.

Узнайте больше в серии

DK’s Science серии погружается в науку о различных типах упражнений, таких как силовые тренировки, бег и йога. В каждой книге обсуждаются преимущества конкретного типа тренировки и то, как вы можете изменить свое отношение к здоровью и фитнесу.

Как работает книга
Первый раздел — физиология человека — знакомит вас с чудом, которым являются скелетные мышцы, и с механизмами, которые лежат в основе требований силовых тренировок к телу.Это поможет вам понять, как мышцы работают и растут, и как работа с сопротивлением стимулирует мышцы к развитию силы и размера, а также положительно влияет на кости и соединительную ткань. В нем также объясняется, как организм поддерживает мышечную работу, и показано, как рассчитывать ежедневные потребности в макроэлементах. Наконец, вам дается обзор преимуществ для мозга и решающей роли, которую он играет в мировоззрении и психическом здоровье.

Второй раздел — силовых упражнений — посвящен исчерпывающему набору силовых тренировочных упражнений, которые нужно выполнять, а также множеству вариаций, предлагаемых в дополнение к имеющемуся тренировочному оборудованию, личным предпочтениям и уровню сложности — дома или в тренажерном зале. .В каждом упражнении показаны мышцы, задействованные на протяжении всего движения, с подробными инструкциями о том, как достичь правильной формы и техники; также рассматриваются типичные ошибки.

Третий раздел — предотвращение травм — исследует распространенные травмы, связанные с тренировками с отягощениями, с объяснениями, как их избежать и как вернуться к тренировкам, если вы действительно получили травму. Последовательный и структурированный распорядок дня, включая правильную разминку, подготавливает тело к работе, а различные упражнения на подвижность и растяжки помогут вам настроиться на то, как ваше тело реагирует на тренировку.

Последний раздел — как тренироваться — описывает все, что вам нужно знать о переменных эффективных силовых тренировок, таких как объем тренировки и управление утомляемостью. Если вы хотите нарастить мышцы, силу или выносливость, вы найдете удобную программу, которая вам подойдет, а также альтернативы для тех, кто хочет тренироваться чаще. Тогда программы станут основой вашего обучения и могут быть скорректированы в ближайшие месяцы и годы.

Напряженность электрического поля — обзор

1.

Напряженность электрического поля на поверхности проводника

Напряженность электрического поля на поверхности проводника является основным условием выбора проводника. Высокая напряженность электрического поля на поверхности проводников вызовет общую корону проводников, не только резко увеличивая потери на корону, но и приведет ко многим другим проблемам. Таким образом, конструкция линий сверхвысокого напряжения должна ограничивать напряженность электрического поля на поверхности проводников. Напряженность электрического поля на поверхности проводников регулируется отношением максимальной напряженности электрического поля на поверхности проводников к критической напряженности электрического поля проводника.Критическая напряженность электрического поля рассчитывается по формуле «клевки», которая определяется на основе данных испытаний. Максимальная напряженность электрического поля на поверхности проводников зависит от максимального рабочего напряжения, диаметра субпроводника, конфигурации пучка фазных проводов и межфазного расстояния. Для расчета доступно множество методов. Ниже приводится описание расчета напряженности электрического поля с использованием метода последовательного зеркального отображения с высокой точностью.

Напряженность электрического поля на поверхности проводников не должна превышать 80–85% напряженности электрического поля, вызывающего общую корону, чтобы предотвратить возникновение общей короны на проводниках.Потери на коронный разряд в проводниках не должны превышать 20% потерь сопротивления линии передачи. Из результатов расчетов следует, что, за исключением отдельных шестипучковых и семисвязных проводников, отношение максимальной напряженности электрического поля на поверхности проводников к критической напряженности электрического поля превышает 0,85, отношение остальных проводников составляет менее 0,8. –0,85 и соответствует требованиям. Следовательно, напряженность электрического поля на поверхности проводника в основном не имеет управляющего воздействия.

2.

Коэффициент помех

В настоящее время доступны три основных метода оценки уровня радиопомех: (1) Метод полутеоретического анализа. В настоящее время этот метод используется нечасто; (2) метод сравнения, то есть для оценки уровня радиопомех новых линий на основе уровня существующих линий путем сравнения параметров линий; (3) Метод функции возбуждения, то есть оценка уровня радиопомех новых линий с использованием функции возбуждения, полученной от проводников, помещенных в испытательную камеру под сильным дождем.Часто используются второй и третий методы.

Метод функции возбуждения применяется к жгуту проводов и используется в этом разделе. В расчетах дана функция возбуждения в условиях сильного дождя, Γ , сильный дождь , и в ней указано, что функция возбуждения (удвоение 80%) может быть получена вычитанием 10–15 дБ из Γ сильный дождь .

Уровень радиопомех в одиночной цепи с фазными проводниками в треугольной конфигурации ниже, чем у фазных проводов в горизонтальном расположении, а уровень радиопомех в одиночной цепи с центральным фазным проводом, подвешенным на V- струна ниже, чем с трехфазными проводниками, подвешенными на V-образных струнах.С точки зрения конфигурации жгута, только проводники 6 × 900 (ChuKar) в конфигурации из шести жгутов могут соответствовать стандарту 58 дБ; в других конфигурациях жгутов все проводники, кроме 7 × LGJ-500/35, могут соответствовать стандарту 58 дБ. Следовательно, в одноконтурной линии уровень радиопомех в основном не влияет на выбор проводников в конфигурациях пучков, отличных от конфигураций из шести пучков.

3.

Результаты расчета звукового шума

Слышимый шум проводников в разных конфигурациях пучков, установленных на разных типах опор, рассчитывается с использованием формулы прогнозирования звукового шума, рекомендованной Энергетическим управлением Бонневилля (BPA).Для различных типов опор, используемых в одноконтурных линиях, слышимый шум линии с фазными проводниками в треугольной конфигурации ниже, чем в горизонтальной конфигурации, а слышимый шум линии с центральной фазой на V-образной струне ниже. чем с тремя фазами на V-образных струнах. В различных конфигурациях пучков слышимый шум линии с центральной фазой на V-образной струне (треугольная конфигурация) самый низкий, а слышимый шум линии с тремя фазами на V-образной струне (горизонтальная конфигурация) самый высокий.С точки зрения контроля звукового шума рекомендуется не использовать конфигурацию с тремя фазами на V-образных струнах (горизонтальная конфигурация). Исходя из критериев контроля 55 дБ (A), минимальная площадь поперечного сечения проводов в соответствии с требованиями к звуковому шуму показана в таблице 7.14 при количестве жгутов от шести до десяти.

Таблица 7.14. Минимальная площадь поперечного сечения проводников, необходимых для слышимого шума ( L 50 в случае влажного проводника) мм 2

Как определить свои сильные стороны на рабочем месте

Независимо от вашей должности или отрасли занятости , у вас есть несколько сильных сторон, которые могут способствовать вашему успеху на работе.Изучив наиболее востребованные сильные стороны рабочего места, вы сможете определить, какие из них подходят для вашей области, и начать искать способы их улучшения.

В этой статье мы приводим 10 примеров сильных сторон рабочего места, а также то, как определить и выделить свои собственные сильные стороны.

По теме: Как подчеркнуть свои личные сильные стороны во время собеседования

Каковы сильные стороны рабочего места?

Сильные стороны рабочего места состоят из нескольких навыков межличностного общения, которые профессионалы могут применить к любой рабочей среде, отрасли или работе.Профессионалы используют эти сильные стороны для развития здоровых отношений на рабочем месте со своими коллегами и дополняют более технические аспекты своей должности.

Связано: 7 способов улучшить ваши лидерские качества

10 примеров сильных сторон на рабочем месте

Вот 10 примеров сильных сторон на работе, которые вы можете применить к своим профессиональным обязанностям:

Dependable

Надежность характеризует надежного и преданного человека.На рабочем месте надежный сотрудник приходит вовремя, и его коллеги всегда могут рассчитывать на их помощь или руководство. Их руководитель знает, что они могут положиться на них, чтобы превзойти их ожидания или взять на себя дополнительную рабочую нагрузку.

Гибкость

Гибкость описывает тех, кто может быстро адаптироваться к изменениям. На рабочем месте гибкий сотрудник может быстро изучить новые процедуры и, что наиболее важно, оптимистично воспринять эти новые изменения. Они также могут служить примером для подражания для своих коллег, чтобы оставаться позитивными во время изменений в компании.

Самомотивация

Самомотивация описывает человека, который дисциплинируется без присутствия руководителя. На рабочем месте самомотивированный сотрудник ценен для работодателей, поскольку им не нужен постоянный надзор или напоминания для выполнения своих обязанностей.

Командно-ориентированный

Командно-ориентированный человек любит работать с группами людей. Сотрудник, ориентированный на работу в команде, важен для работодателей, потому что они могут действовать как лидеры для группы.Сотрудник, ориентированный на работу в команде, также полезен для рабочего места, поскольку он сосредоточен на общем успехе своего отдела или проекта в дополнение к своей индивидуальной роли и обязанностям.

Ориентированный на успех

Ориентированный на успех человек сосредоточен на общей цели. Они выполняют свои обязанности, имея в виду желаемую цель. Это важная сила для сотрудника, потому что она дает цель его повседневным обязанностям.

Оптимистичный

Тот, кто постоянно демонстрирует положительный взгляд на события, настроен оптимистично.Оптимистичный сотрудник может помочь своим коллегам сохранять позитивный настрой, особенно в стрессовых ситуациях или в разгар серьезных изменений в компании. Это позволяет им и их команде оставаться мотивированными и продуктивными.

Коммуникативный

Коммуникативный человек умеет общаться с другими с помощью различных средств. На рабочем месте они могут использовать письменные или устные коммуникативные навыки для передачи информации другим и ограничения недопонимания. Например, коммуникативные сотрудники могут обладать отличными навыками написания электронных писем, что позволяет им доставлять получателям краткие и экономящие время заявления.

Эмоциональная осведомленность

Эмоциональная осведомленность — это способность распознавать чувства других людей через их слова и язык тела. Чуткий сотрудник осознает окружающих, их чувства и потенциально их эмоциональные триггеры. Они могут использовать сочувствие, чтобы уменьшить конфликты с коллегами и создать благоприятную атмосферу в своем отделе. Это может еще больше стимулировать трудовую этику и командную работу.

Надежный

Тот, кто честен и может быть привлечен к ответственности, заслуживает доверия.Работодатели ценят сотрудников, которым можно доверять, поскольку они несут ответственность за свои ошибки. Кроме того, надежные сотрудники могут без проблем обращаться с конфиденциальной и конфиденциальной информацией компании.

Решение проблем

Решение проблем характеризует человека, хорошо умеющего оценивать ситуацию и находить решения. Сотрудник, обладающий навыками решения проблем, может помочь работодателям проанализировать конкретные проблемы подразделения и создать новые процедуры, которые сэкономят компании драгоценное время и деньги.

Связано: 10 основных сильных сторон, которые необходимо развивать для карьерного роста

Как определить сильные стороны вашего рабочего места

Прочтите следующие шаги, чтобы узнать, как вы можете определить свои сильные стороны как сотрудника:

1 Пересмотрите свои должностные обязанности

Первый способ определить свои сильные стороны на рабочем месте — это подумать о своих должностных обязанностях. Обдумайте свои должностные обязанности на ежедневной, еженедельной или ежемесячной основе и выберите не менее трех сильных сторон, связанных с производительностью вашей работы.

Пример: Вы работаете помощником по маркетингу. В ваши обязанности входит посещение ежедневных встреч с командой маркетинга, ежемесячное представление слайд-шоу руководителям, отслеживание успешности кампании и координация с коллегами групповых проектов. Исходя из этого, вы определяете три своих главных сильных стороны на рабочем месте как общение, командную работу и решение проблем.

2. Учитывайте свои слабые стороны

Второй метод, который вы можете использовать для определения сильных сторон своего рабочего места, — это выявление ваших слабых сторон.Выделив области, требующие улучшения, вы сможете сузить круг тех качеств, которыми вы уже обладаете. Подумайте о конкретных должностных обязанностях, на выполнение которых у вас уходит больше времени, или о сферах, в которых вы с большей вероятностью совершите ошибки.

Пример: Вы знаете, что иногда вам сложно сосредоточиться на работе, особенно когда вам нужно извлечь данные из кампаний для размещения в электронных таблицах. Также известно, что иногда вы вводите информацию неправильно. Это поможет вам понять, что вам, возможно, не хватает самомотивации и внимания к деталям.Однако, выявив свои слабые стороны, вы также можете определить свои сильные стороны в виде командной работы и вербального общения. Это потому, что вам нравится работать с коллегами и проводить презентации перед коллегами.

3. Определите свой тип личности

Вы также можете определить свои сильные стороны на рабочем месте, изучив свой тип личности. Подумайте о том, чтобы заполнить онлайн-опрос, такой как тест Майерс-Бриггс, чтобы узнать больше о том, как ваш тип личности влияет на ваши сильные стороны.

Пример: Вы решили пройти тест Майерса-Бриггса, чтобы лучше понять свои сильные и слабые стороны. Вы обнаруживаете, что являетесь ESTP (экстравертом, ощущением, мышлением и восприятием). Исходя из этого, вы можете определить свои сильные стороны на рабочем месте как вербальное общение, эмоциональную осведомленность, решение проблем и оптимизм.

Связано: Использование вашего типа Майерс-Бриггс для продвижения по карьерной лестнице

4. Составьте список сильных сторон

Составьте список ваших сильных сторон, чтобы напомнить вам о ваших профессиональных качествах.Вы можете разделить свой список сильных сторон на три отдельные категории, такие как навыки, основанные на знаниях (технические навыки), личностные качества и передаваемые навыки (навыки межличностного общения). Подумайте о том, как ваша личность и квалификация применимы к рабочему месту, и вы сможете составить исчерпывающий список, из которого вы сможете определить свои наиболее ценные сильные стороны на рабочем месте.

Пример: Вы решили составить список. Вы используете три категории, чтобы разделить области ваших навыков:

Навыки, основанные на знаниях

  • Microsoft PowerPoint
  • Компьютерные программные системы
  • Входящий / исходящий маркетинг
  • Статистика
  • Личностные черты

    • Экстраверт
    • Аналитический
    • Положительный
    • Сочувственный

    Передаваемые навыки

      9049 9049

        9049 9049
      • Эмоциональная осведомленность

      Связано: Основные ценности: обзор и примеры

      Советы по выделению сильных сторон на рабочем месте

      Вот несколько советов, которые помогут выделить свои сильные стороны на вашем r esume и на рабочем месте.

      Резюме

      Вы можете использовать раздел навыков в своем резюме, чтобы соотнести свои навыки с вашей квалификацией. Подчеркните свои сильные стороны, перечислив конкретные должностные обязанности, которые вы выполняли на прошлой работе. Например, если вы хотите подчеркнуть свои сильные стороны в организации, вы можете включить такие должностные обязанности, как «минимизация путаницы на рабочем месте за счет создания цифровой файловой системы».

      Сопроводительное письмо

      Продемонстрируйте свои сильные стороны, используя определенные фразы или навыки для описания вы, например, трудолюбивый, целеустремленный или полный энтузиазма.Например, если вы хотите подчеркнуть свои сильные стороны в позитиве, включите такие фразы, как «Я трудолюбивый человек, использующий оптимизм для развития дальновидного отношения на рабочем месте.

      Личное собеседование

      Личное собеседование собеседование позволяет вам подчеркнуть сильные стороны вашего рабочего места в очной обстановке. Например, продемонстрируйте свою способность общаться, четко говоря, устанавливая зрительный контакт и отвечая на язык тела интервьюера.

      На работе

      Демонстрация вашего сильные стороны на работе могут увеличить ваши шансы на повышение или продвижение по службе.Используйте свою эмоциональную осведомленность, чтобы способствовать позитивным отношениям с коллегами, свою гибкость, чтобы адаптироваться к новым процедурам или неожиданным изменениям, и свою самомотивацию для повышения своей производительности.

      Пассивное растяжение мышц снижает оценку постоянной силы внутреннего тока в камбаловидной мышце | Журнал экспериментальной биологии

      Главный вывод настоящего исследования заключался в том, что пассивное растяжение подошвенных сгибателей снижает Δ F в SOL, но не в GM, что позволяет предположить, что индуцированное растяжением ингибирование PIC происходит только в двигательных единицах SOL.Эти данные согласуются с гипотезой о том, что снижение силы ПОС, вызванное растяжением, может способствовать снижению силы после растяжения.

      Дисфасилитация мотонейронов была предложена как механизм, участвующий в снижении нервного импульса после пассивного растяжения мышц (Trajano et al., 2017). Предварительные доказательства этой гипотезы были собраны в эксперименте, в котором пассивное растяжение уменьшало силу продолжающихся сокращений мышц (т.е. самоподдерживающаяся активация моторных единиц), которые были вызваны посредством афферентного входа Ia во время вибрации сухожилий и усилены одновременной электрической стимуляцией мышц, но которые сохранялись после того, как вибрация сухожилий и электрическая стимуляция прекратились (Trajano et al., 2014). Эти данные указывают на снижение прироста мотонейронов, возможно, за счет уменьшения амплитуды PIC (Trajano et al., 2014). В настоящем исследовании использовался более надежный и проверенный метод (метод парных двигательных единиц) для проверки этой гипотезы.Мы наблюдали снижение Δ F на ~ 26% в SOL, но не в GM (см. Рис. 2), предполагая, что изменение, вызванное пассивным растяжением, было очень значительным, но характерным для SOL. В предыдущем исследовании с использованием вибрации сухожилий предполагалось, что ингибирование афферентов Ia может быть фактором, влияющим на потерю фасилитации мотонейронов, поскольку эти афференты были основным источником синаптического входа в этом исследовании (Trajano et al., 2014). Однако амплитуда PIC оценивалась во время произвольных сокращений в настоящем исследовании, где кортикоспинальные проекции должны быть основным источником синаптического сигнала.Следовательно, амплитуда ПОС, по-видимому, уменьшается независимо от того, оценивается ли она как реакция на вибрацию сухожилий (преимущественно вход Ia) или с использованием техники парных двигательных единиц (произвольное сокращение).

      Возможно, что восстановление SOL Δ F имеет нелокальное, повсеместное происхождение. Значительные доказательства этого получены в экспериментах, демонстрирующих, что пассивное растяжение ипсилатеральной конечности может снизить моторную мощность нерастянутой контралатеральной конечности (Caldwell et al., 2019; да Силва и др., 2015; Cè et al., 2020). Что касается нелокализованного механизма, интересно отметить, что пассивное растяжение мышц влияет на вегетативную регуляцию, изменяя симпатико-парасимпатический баланс. Более конкретно, усиление парасимпатического и / или снижение симпатического влечения может быть вызвано пассивным растяжением, что приводит к снижению норадренергической активности после растяжения (Kruse and Scheuermann, 2017; Mueck-Weymann et al., 2004; Farinatti et al. др., 2011; Инами и др., 2014). Важно отметить, что PIC сильно облегчаются в присутствии как серотонина, так и норадреналина, и было показано, что амплитуда PIC (и, следовательно, Δ F ) прямо пропорциональна уровню моноаминергической активности ствола мозга (Johnson et al., 2017). . Например, Удина и др. (2010) обнаружили, что прием амфетамина, приводящий к повышенному пресинаптическому высвобождению норадреналина у людей, вызывает 62% -ное увеличение Δ F без изменения начальной или средней скорости выделения моторных единиц (т.е.е. изменения Δ F произошли в основном из-за изменений в темпах сокращения набора). Эти результаты (Udina et al., 2010) согласуются с результатами настоящего исследования, в котором изменения Δ F также наблюдались без изменений пиковой скорости разряда, т.е. без разницы между контролем 2 и пост-растяжением (рис. . 3). Примечательно, что наблюдалось небольшое увеличение (0,5 импульса с -1 ) пиковой скорости разряда в SOL (но не GM) от Контроля 1 до Пост-растяжения. Однако не было значительного увеличения между контролем 1 и контролем 2 (коэффициент вариации = 3.8%) и без увеличения от Контроля 2 до Пост-растяжения. Более того, величина этого изменения вряд ли будет иметь физиологическое значение. Фактически, мы ожидали увеличения Δ F наряду с увеличением пиковой скорости разряда, поэтому наблюдение за уменьшением Δ F от контрольного к последующему растяжению, несмотря на увеличение пиковой скорости разряда, усиливает эффект растяжения на SOL PIC. Явный эффект проглатывания амфетамина на Δ F предполагает, что аналогично тому, что наблюдалось в препаратах для животных (Rank et al., 2007; Lee and Heckman, 1999), активация α1-адренорецепторов у людей сильно влияет на амплитуду PIC. Следовательно, снижение норадренергического входа от голубого пятна после пассивного растяжения может теоретически играть роль в снижении амплитуды PIC. Однако для явной проверки этой гипотезы необходимы более целенаправленные механистические эксперименты.

      Специфическое снижение, которое наблюдалось в SOL, но не в GM, Δ F не может быть объяснено только норадренергической гипотезой и требует дальнейшего объяснения.Несколько минут растяжения подошвенных сгибателей обычно снижают максимальную способность возбуждения мышц, измеренную по амплитуде ЭМГ (Trajano et al., 2017). В ряде исследований сообщается, что это снижение происходит именно в SOL, но не в медиальной или латеральной икроножной мышце, что указывает на потенциальный специфический для мышц эффект растяжения (Pulverenti et al., 2020, 2019; Trajano et al., 2013b). Причины этого специфического для мышц эффекта до сих пор неизвестны, но некоторые возможности заслуживают рассмотрения. Во-первых, можно предположить, что мотонейроны SOL могут содержать большее количество PIC-усиливающих моноаминергических рецепторов или большую плотность потенциалзависимых кальциевых каналов L-типа, продуцирующих PIC (Ca V 1.2 и Ca V 1.3) и / или потенциалзависимые натриевые каналы (Na V 1.1 и Na V 1.6) (Wilson et al., 2015; Binder et al., 2020). Однако в настоящее время об этих возможных различиях известно немного. Более того, результаты настоящего исследования не подтверждают это утверждение, поскольку значения Δ F были одинаковыми для разных мышц (SOL и GM), а моторные единицы с более низким порогом, вероятно, были взяты из обеих мышц из-за низкого интенсивность используемых сокращений (20% MVC).Во-вторых, PICs, как правило, более выражены в двигательных единицах медленного типа (Heckman et al., 2008), которые в изобилии присутствуют в SOL человека (∼80–70%), но менее распространены в GM (∼55–60%) (Gollnick et al., 1974; Houmard et al., 1998; Harridge et al., 1996), и было высказано предположение, что они играют важную роль в тоническом возбуждении постуральных мышц (например, камбаловидной мышцы) за счет уменьшения количества нисходящего движения, необходимого для поддерживать устойчивые сокращения (Heckman et al., 2008). Доказательства, подтверждающие эту гипотезу, получены из нескольких исследований, в которых сообщается о типичной схеме самоподдерживающегося возбуждения, наблюдаемой конкретно в мышцах SOL, что согласуется с возникновением плато-потенциалов, которые являются отличительной чертой PICs (Eken, Kiehn, 1989; Eken, 1998; Collins и другие., 2001, 2002). Интересно, что истощение спинномозговых моноаминов, по-видимому, снижает тоническую активацию SOL у крыс (Kiehn et al., 1996), предполагая, что на мотонейроны SOL может особенно влиять снижение моноаминергической активности. Кроме того, SOL демонстрирует большую амплитуду ЭМГ по сравнению с GM во время рефлекторных самоподдерживающихся сокращений, вызванных вибрацией сухожилий у людей (Trajano et al., 2014). Кроме того, величина этого самоподдерживающегося возбуждения SOL, но не GM увеличивается с уменьшением длины мышцы-антагониста, что позволяет предположить, что PIC мотонейрона SOL могут быть более легко модулированы по сравнению с таковыми у GM (Trajano et al., 2014). В-третьих, афферентный вход мышечного веретена Ia, который способствует медленно сокращающимся двигательным единицам и является важным источником инициации PIC, больше у SOL, чем у GM (Tucker and Türker, 2004; Eccles et al., 1957), и на него может быть оказано отрицательное влияние. растяжением (Trajano et al., 2017). Однако проблема с этой гипотезой заключается в том, что отсутствие изменений возбудимости афферентного пути Ia обычно проявляется после пассивного растяжения (Opplert et al., 2020; Budini et al., 2018; Pulverenti et al., 2020). В частности, в одном недавнем исследовании сообщалось о снижении амплитуды ЭМГ SOL без заметных изменений в афферентном пути Ia (без снижения амплитуды H-рефлекса) после пассивного растяжения, предполагая, что уменьшение этого пути вряд ли будет способствовать снижению возбуждения SOL. (Pulverenti et al., 2020). В-четвертых, альтернативное объяснение могло заключаться в том, что SOL и GM могли получить разную величину растяжения, что могло бы затем повлиять на афферентный сигнал, действующий на пулы мотонейронов, и, таким образом, на способность к инициации PIC. Однако для проверки этой гипотезы требуются дальнейшие исследования. Наконец, необходимы дальнейшие исследования, чтобы определить, как сила PIC может дифференцированно модулироваться между мышцами в одной синергетической группе.

      В заключение, пассивное растяжение мышц заметно снижает силу PIC в двигательных единицах SOL, но не в GM, что позволяет предположить не только то, что потеря силы PIC может способствовать потере производства мышечной силы после пассивного (статического) растяжения мышц, но также и то, что мышечные специфическое снижение мышечной активности (ЭМГ), наблюдавшееся ранее (Pulverenti et al., 2019) можно объяснить спецификой ингибирования PIC. Таким образом, настоящие данные подтверждают предположение, что продолжительные периоды (например, несколько минут) растяжения мышц могут резко повлиять на работу постоянных внутренних токов в мотонейронах спинного мозга, и что это снижает активацию мотонейронов (и, следовательно, мышц) in vivo у людей. Для более точной проверки этой гипотезы необходима разработка методов, позволяющих тестировать связи между изменениями силы ПОС после растяжения и изменениями характеристик возбуждения двигательных единиц во время максимального сокращения.

      .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *