Варистор это: принцип работы, основные характеристики, обозначение на схеме

Содержание

принцип действия, основные характеристики и параметры

Радиоэлектронный элемент, применяемый в цепях защиты электронных приборов от перенапряжений в сети, называется варистор. Что это такое и для чего он необходим, становится ясно, когда речь заходит о защите электрических и электронных схем, обеспечивая защиту от перенапряжения с помощью стабилизации напряжения.

Основные параметры

Варистор – это резистор-полупроводник, его основополагающим принципом действия является снижение сопротивления материала полупроводника при повышении напряжения, благодаря этому его признают одним из самых работоспособных и недорогих средств защиты от напряжений импульсов разного вида.

Основные характеристики и параметры варисторов, которые могут помочь при выборе:

  • Un – классификационное напряжение с силой тока в 1 мА;
  • P – мощность, отвечает за силу рассеивания элемента;
  • W – наибольшая энергетическая сила импульса;
  • Ipp – наибольшее количество тока с импульса;
  • Co –размеры в закрытом виде.

Применение в быту

Характеристики элемента позволяют применять его в устройствах, связанных с каналами связи, различными входами для оборудования, использовать варисторы для генераторов.

Они устанавливаются в сетевых фильтрах специальных удлинителей, а также в других качественных входных моделях для защиты. Элемент рекомендуется монтировать в китайскую технику во избежание быстрых поломок. Для обеспечения безопасности всего помещения варистор необходимо установить на дин-рейку.

Как работает варистор

Заключается принцип действия варистора в том, что такое включение происходит параллельно защищаемому устройству. При обычном использовании элемент подвергается напряжению оборудования. При действии сила тока детали очень мала, и в это время она является изолятором. Когда возникает импульс напряжения, нелинейный механизм с вольтамперными характеристиками включается и сразу понижает сопротивление, нагрузка на оборудование шунтируется. В данном случае через электронный элемент за короткий срок может проходить ток, достигающий размеров в несколько тысяч ампер. После погашения импульса с напряжением вновь восстанавливается сопротивление. То есть устройству обеспечивается защита при рассеивании поглощенной энергии в виде тепла.

Применение варисторов в условиях нормального функционирования электричества в помещении деталь не влияет на уровень работы прибора. Но, если появится угроза критической величины напряжения, она будет непременно устранена, что позволит сохранить оборудование даже при слабом изолировании. Иначе говоря, варистор выступает в качестве стабилизатора напряжения и аналога предохранителя двигателя.

Маркировка варисторов

Обычно маркировка варисторов представлена в виде следующих обозначений на схеме:

  • диаметр;
  • классификационное напряжение.

Пример расшифровки: 15D 364K, где 15D – это диаметр, а 364K классификационное напряжение варистора. При покупке или замене варистора производится расчет необходимых данных. По маркировкам производится поиск линеек их аналогов.

Возможны и другие знаки, зависящие от конкретного прибора или фирмы и расположенные либо на корпусе, либо на плате.

Положительные стороны варисторов

К положительной стороне использование варисторов на работе или в быту является:

  • возможность работы с устройством при больших нагрузках, связанных с высоким напряжением;
  • надежная защита варистором прибора от перенапряжения;
  • невысокая цена;
  • обширная сфера применения;
  • обеспечение надежной эксплуатации;
  • понятная и простая технология применения.

Отрицательные стороны

К основным отрицательным сторонам относятся:

  • повышение шума на низких частотах;
  • другие недостатки, проявляющиеся в зависимости от индивидуальных характеристик элемента.

Рекомендации к установке

Для начала работы с элементом необходимо проверить способность варистора к работе. Необходимо осмотреть его внешний вид на наличие сколов, трещин и опалений. Эти дефекты уже могут говорить о браке.

Если эти недостатки отсутствуют, то элемент необходимо проверить при помощи мул

Варистор Википедия

Обозначение на схеме Вольт-амперные характеристики варисторов: синие — на основе ZnO, красные — на основе SiC. Разные варисторы

Вари́стор (лат. vari(able) - переменный (resi)stor — резистор) — полупроводниковый резистор, электрическое сопротивление (проводимость) которого нелинейно зависит от приложенного напряжения, то есть обладающий нелинейной симметричной вольт-амперной характеристикой и имеющий два вывода. Обладает свойством резко уменьшать своё сопротивление с миллиардов до десятков Ом при увеличении приложенного к нему напряжения выше пороговой величины

[1]. При дальнейшем увеличении напряжения сопротивление уменьшается ещё сильнее. Благодаря отсутствию сопровождающих токов при скачкообразном изменении приложенного напряжения, варисторы являются основным элементом для производства устройств защиты от импульсных перенапряжений (УЗИП).

Изготовление

Изготавливают варисторы спеканием при температуре около 1700 °C полупроводника, преимущественно порошкообразного карбида кремния (SiC) или оксида цинка (ZnO), и связующего вещества (например, глина, жидкое стекло, лаки, смолы). Далее две поверхности полученного элемента металлизируют (обычно электроды имеют форму дисков) и припаивают к ним металлические проволочные выводы.

Конструктивно варисторы выполняются обычно в виде дисков, таблеток, стержней; существуют бусинковые и плёночные варисторы. Широкое распространение получили стержневые подстроечные варисторы с подвижным контактом.

Свойства

Нелинейность характеристик варисторов обусловлена локальным нагревом соприкасающихся граней многочисленных кристаллов карбида кремния (или иного полупроводника). При локальном повышении температуры на границах кристаллов сопротивление последних существенно снижается, что приводит к уменьшению общего сопротивления варисторов.

Один из основных параметров варистора — коэффициент нелинейности λ — определяется отношением его статического сопротивления R к динамическому сопротивлению Rd:

λ=RRd=UI:dUdI≈const{\displaystyle \lambda ={\frac {R}{R_{d}}}={\frac {U}{I}}:{\frac {dU}{dI}}\approx const},

где U - напряжение, I - ток варистора

Коэффициент нелинейности лежит в пределах 2-10 у варисторов на основе SiC и 20-100 у варисторов на основе ZnO.

Температурный коэффициент сопротивления (ТКС) варистора — отрицательная величина.

Применение

Низковольтные варисторы изготавливают на рабочее напряжение от 3 до 200 В и ток от 0,0001 до 1 А; высоковольтные варисторы — на рабочее напряжение до 20 кВ.

Варисторы применяются для стабилизации и регулирования низкочастотных токов и напряжений, в аналоговых вычислителях — для возведения в степень, извлечения корней и других математических действий, в цепях защиты от перенапряжений (например, высоковольтные линии электропередачи, линии связи, электрические приборы) и др.

Высоковольтные варисторы применяются для изготовления ограничителей перенапряжения.

Как электронные компоненты, варисторы дёшевы и надёжны, способны выдерживать значительные электрические перегрузки, могут работать на высокой частоте (до 500 кГц). Среди недостатков — значительный низкочастотный шум и старение — изменение параметров со временем и при колебаниях температуры.

Материалы варисторов

Тирит, вилит, лэтин, силит — полупроводниковые материалы на основе карбида кремния с разными связками. Оксид цинка — новый материал для варисторов.

Параметры

При описании характеристик варисторов в основном используются следующие параметры[1]:

  • Классификационное напряжение Un — напряжение при определённом токе (обычно 1 мА), условный параметр для маркировки изделий;
  • Максимально допустимое напряжение Um для постоянного тока и для переменного тока (среднеквадратичное или действующее значение), диапазон — от нескольких В до нескольких десятков кВ; может быть превышено только при перенапряжениях;
  • Номинальная средняя рассеиваемая мощность P — мощность в ваттах (Вт), которую варистор может рассеивать в течение всего срока службы при сохранении параметров в заданных пределах;
  • Максимальный импульсный ток Ipp (Peak Surge Current) в амперах (А), для которого нормируется время нарастания и длительность импульса;
  • Максимальная допустимая поглощаемая энергия W (Absorption energy) в джоулях (Дж), при воздействии одиночного импульса;
  • Ёмкость Co, измеренная в закрытом состоянии при заданной частоте; зависит от приложенного напряжения — когда варистор пропускает через себя большой ток, она падает до нуля.

Рабочее напряжение варистора выбирается исходя из допустимой энергии рассеяния и максимальной амплитуды напряжения. Рекомендуется, чтобы на переменном напряжении оно не превышало 0,6 Un, а на постоянном — 0,85 Un. Например, в сети с действующим напряжением 220 В (50 Гц) обычно устанавливают варисторы с классификационным напряжением не ниже 380…430 В.

См. также

Примечания

Литература

  • В. Г. Герасимов, О. М. Князьков, А. Е. Краснопольский, В. В. Сухоруков. Основы промышленной электроники: Учебник для вузов / Под ред. В. Г. Герасимова. — 2-е изд., перераб. и доп. — М.: Высшая школа, 1978.
  • Электроника: Энциклопедический словарь / В. Г. Колесников (главный редактор). — 1-е изд. — М.: Сов. энциклопедия, 1991. — С. 54. — ISBN 5-85270-062-2.
  • И. П. Шелестов. Полезные схемы. Книга 5. — М.: СОЛОН-Р, 2002. — 240 с. — (Радиолюбителям). — 7000 экз. — ISBN 5-93455-167-1.

Ремонт компьютерного блока питания. Что такое варистор

Всем привет. На днях в ремонт принесли сгоревший компьютерный блок питания Zalman ZM500-GS. Со слов хозяина, компьютер перестал включаться после перепада напряжения.

к оглавлению ↑

Проверка неисправности блока питания

Для подтверждения неисправности, подключил блок питания к сети, а разъем ATX (самый широкий на 24 контакта) подключил к тестеру блоков питания. Диагноз подтвердился, блок питания не подавал признаков жизни.

Проверка работоспособности тестером для компьютерных блоков питания

к оглавлению ↑

Разборка блока питания и поиск неисправности

Ремонт начал с разборки, и проверки предохранителя. При проверке, мультиметр показал бесконечность, что свидетельствует о обрыве предохранителя.

Блок питания после разборки. Расположение предохранителя на плате.

Проверка предохранителя

Зачастую, сгоревший предохранитель является лишь следствием, а причину поломки предстоит еще найти. Для этих целей, я использовал лампу накаливания номиналом 100Вт, подкинув ее вместо предохранителя. В нормальном состоянии, она должна загореться (в момент зарядки сетевых конденсаторов), а потом притухнуть. В дежурном режиме, когда потребление блока питания небольшое, лампа может немного загораться, после чего погаснуть. Такое поведение будет циклично повторятся.

Если лампа ярко загорается, то это может говорить о том, что короткое замыкание в первичной цепи, или же на выходах блока питания есть излишняя нагрузка.

Подкинув лампу, та ярко загорелась.

Лампа накаливания ярко горит при подключении.

Что бы проверить, выдает ли блок питания какие то напряжения, я снова подключил тестер к его выходу. В итоге, тот показал присутствие выходных напряжений .

Выходные напряжения с блока питания

Это был хороший знак, осталось лишь определить причину повышенного потребления тока. Сначала, я было подумал на диодный мост, но в самом начале схемы,немного присмотревшись, я увидел подгоревший варистор. Его неисправность было тяжело заметить, так как он был закрыт термоизоляционной трубкой, сняв которую все стало на свои места. Варистор был прогоревший, и явно вышедший из строя.

Варистор после выпаивания с платы

После снятия термоизоляционной трубки все стало на свои места

Падение напряжения на варисторе. В идеале тестер не должен ничего показать.

к оглавлению ↑

Информация о варисторах

Для новичков, немного расскажу о варисторах. Варистор — это такой тип резисторов, которые меняют свое сопротивление, в зависимости от напряжения, которое к них подается.

Покажу на примере.

Схема работы варистора при нормальном напряжении

Предположим, что в схеме установлен варистор, к примеру который начинает срабатывать от 270 вольт. Пока напряжение ниже данного значения, сопротивление варистора слишком велико, и напряжение свободно питает плату, минуя варистор.

Схема, как отрабатывает варистор при завышенном напряжении

При подаче около 300 вольт, сопротивление варистора резко уменьшается, после чего он начинает принимать всю нагрузку на себя. При этом, завышенное напряжение не попадает на схему, в чем и проявляется эффект защиты платы.

Когда варистор срабатывает, то вся нагрузка передается на предохранитель, после чего тот сгорает, и спасает плату от дальнейших перегрузок.

Так и случилось в моем примере. Варистор сгорел, чем спас плату блока пттания. Номинал варистора в моей плате был TVR10431. Это варистор, классификационное напряжение которого является 430 вольт. По даташиту, данный варистор начинает срабатывать при напряжении 270 вольт переменного тока.

к оглавлению ↑

Результат ремонта

Заменив предохранитель, и установив варистор с донора, блок питания был собран, и протестирован.

Результат

После полной проверки был отдан хозяину.



Весь инструмент и расходники, которые я использую в ремонтах находится здесь.
Если у Вас возникли вопросы по ремонту телевизионной техники, вы можете задать их на нашем новом форуме .

Загрузка...

Варистор — Мегаэнциклопедия Кирилла и Мефодия — статья

Вари́стор (от англ. vari(able) — переменный и (resi)stor — резистор), полупроводниковый резистор, электрическое сопротивление которого изменяется при изменении приложенного напряжения. Варистор представляет собой электротехническое изделие, изготовленное из многофазных полупроводниковых материалов. Основной материал для изготовления варисторов — полупроводниковый карбид кремния SiC. Кристаллы SiC размалывают до размера 40-300 мкм, и этот порошок используют в качестве основы варистора. Электропроводность порошка имеет нелинейный характер, однако она нестабильна, зависит от степени сжатия, крупности помола, меняется при тряске и т. п., поэтому порошок скрепляют связующим веществом. Порошкообразный карбид кремния и связующее вещество запрессовывают в форму и спекают. Если в качестве связующего вещества используют глину, то полученный материал называют тирит. Для изготовления тирита смесь 74% мелкоизмельченного карбида кремния и глины прессуется и обжигается при температуре 1270°С. Если используют жидкое стекло (75% SiO2 + 24% Na2O + вода, то есть силикатный клей), то полученный материал, состоящий из 84% SiC и 16% связующего, называют вилит. Смесь для изготовления вилита прессуется и обжигается при температуре 380°С. При использовании в качестве связующего ультрафарфоровой связки получают лэтин, а прессованный углерод с кристаллическим кремнием называется силит.

Поверхность прессованного образца металлизируют и припаивают к ней выводы. Изменение электропроводности варистора с нарастанием напряжения на его выводах связано со сложными явлениями на контактах или на поверхности кристаллов. Например, уменьшение сопротивления с ростом напряжения в варисторах, изготовленных на основе карбида кремния, связано с падением сопротивления контактов между зернами SiC. Это происходит вследствие нелинейного роста тока через p-n- переходы, образующиеся на этих контактах, в результате автоэлектронной эмиссии на острых участках зерен и т. д.

Варисторы на основе карбида кремния имеют невысокий коэффициент нелинейности, порядка 5-7, поэтому в настоящее время для изготовления варисторов применяется оксид цинка с добавками оксидов висмута, кобальта, марганца, сурьмы и хрома. Технология его приготовления сложна, она включает раздельный размол компонентов, смешение со связкой, прессование, спекание с выжиганием связки, размол, вторичное спекание, вжигание электродов. В результате получается высококачественная керамика с высокой нелинейностью, величина которой составляет 50-70. Нелинейность варисторов на основе оксидных полупроводников связана не со свойствами кристаллитов, а со свойствами межкристаллитных прослоек и потенциальных барьеров на поверхности кристаллитов. Однако варисторы на основе оксида цинка менее стабильны при работе и хранении, чем варисторы из карбида кремния.

Нелинейные резисторы — варисторы — широко применяются в производстве вентильных разрядников, предназначенных для защиты электрооборудования от грозовых и коммутационных перенапряжений. Вентильные разрядники подразделяют на низковольтные и высоковольтные. Варисторы используется также в умножителях частоты, модуляторах, устройствах поглощения перенапряжений и др.

Варисторы маркировка и параметры - Мастер Фломастер

Среди радиолюбителей большой популярностью пользуются варисторы. Они применяются практически во всех электронных устройствах и позволяют усовершенствовать некоторые приборы. Для использования в схемах следует понять принцип работы варистора, а также знать его основные характеристики. Кроме того он, как и любая деталь, обладает своими достоинствами и недостатками, которые нужно учитывать при построении и расчете электрических схем.

Общие сведения

Варистор (varistor) является полупроводниковым резистором, уменьшающим величину своего сопротивления при увеличении напряжения. Условное графическое обозначение (УГО) представлено на рисунке 1, на котором изображена зависимость сопротивления радиокомпонента от величины напряжения. На схемах обозначается znr. Если их больше одного, то обозначается в следующем виде: znr1, znr2 и т. д.

Рисунок 1 — УГО варистора.

Многие начинающие радиолюбители путают переменный резистор и варистор. Принцип действия, основные характеристики и параметры этого элемента отличаются от переменного резистора. Кроме того, распространенной ошибкой составления электрических принципиальных схем является неверное его УГО. Варистор выглядит как конденсатор и распознается только по маркировке.

Виды и принцип работы

Полупроводниковые резисторы классифицируются по напряжению, поскольку от этого зависит их сфера применения. Их всего 2 вида:

  1. Высоковольтные с рабочим напряжением до 20 кВ.
  2. Низковольтные, напряжение которых находится в диапазоне от 3 до 200 В.

Все они применяются для защиты цепей от перегрузок: первые — для защиты электросетей, электрических машин и установок; вторые служат для защиты радиокомпонентов в низковольтных цепях. Принцип работы варисторов одинаков и не зависит от его вида.

В исходном состоянии он обладает высоким сопротивлением, но при превышении номинального значения напряжения оно падает. В результате этого, по закону Ома для участка цепи, значение силы тока возрастает при уменьшении величины сопротивления. Варистор при этом работает в режиме стабилитрона. При проектировании устройства и для корректной его работы следует учитывать емкость варистора, значение которой прямо пропорционально площади и обратно пропорционально его толщине.

Для того чтобы правильно подобрать элемент для защиты от перегрузок в цепях питания устройства, следует знать величину сопротивления источника на входе, а также мощность импульсов, образующихся при коммутации. Максимальное значение силы тока, пропускаемое варистором, определяет величину длительности и периода повторений выбросов амплитудных значений напряжения.

Маркировка и основные параметры

Маркировка варисторов отличается, поскольку каждый производитель этих радиокомпонентов имеет право устанавливать ее самостоятельно. Это, прежде всего, связано с его техническими характеристиками. Например, различия по напряжениям и необходимым уровням тока для его работы.

Среди отечественных наиболее распространенным является К275, а среди импортных — 7n471k, 14d471k, kl472m и ac472m. Наибольшей популярностью пользуется варистор, маркировка которого — CNR (бывают еще hel, vdr, jvr). Кроме того, к ней прикрепляется цифробуквенный индекс 14d471k, и расшифровывается этот вид обозначения следующим образом:

  1. CNR — металлооксидный тип.
  2. 14 — диаметр прибора, равный 14 мм.
  3. D — радиокомпонент в форме диска.
  4. 471 — максимальное значение напряжения, на которое он рассчитан.
  5. К — допустимое отклонения классификационного напряжения, равное 10%.

Существуют технические характеристики, необходимые для применения в схеме. Это связано с тем, что для защиты различных элементов цепи следует использовать различный тип полупроводникового сопротивления.

Их основные характеристики:

  1. Напряжение классификации — значение разности потенциалов, взятое с учетом того, что сила тока, равная 1 мА, протекает через варистор.
  2. Максимальная величина переменного напряжения — является среднеквадратичным значением, при котором он открывается и, следовательно, величина его сопротивления понижается.
  3. Значение постоянного максимального напряжения, при котором варистор открывается в цепи постоянного тока. Как правило, оно больше предыдущего параметра для тока переменной амплитуды.
  4. Допустимое напряжение (напряжение ограничения) является величиной, при превышении которой происходит выход элемента из строя. Указывается для определенной величины силы тока.
  5. Поглощаемая максимальная энергия измеряется в Дж (джоулях). Эта характеристика показывает величину энергии импульса, которую может рассеять варистор и при этом не выйти из строя.
  6. Время реагирования (единица измерения — наносекунды, нс) — величина, требуемая для перехода из одного состояния в другое, т. е. изменение величины сопротивления с высокой величины на низкую.
  7. Погрешность напряжения классификации — отклонение от номинального его значения в обе стороны, которое указывается в % (для импортных моделей: К = 10%, L = 15%, M = 20% и Р = 25%).

После описания принципа работы, особенностей маркировки и основных характеристик следует рассмотреть сферы применения варисторов.

Применение приборов

Варисторы применяются для защиты электронных устройств от скачкообразного напряжения, амплитуда которого превышает номинальное значение питания. Благодаря применению в блоках питания полупроводникового резистора, появляется возможность избежать множества поломок, которые могут вывести электронику из строя. Широкое применение варистор получил и в схеме балласта, который применяется в элементах освещения.

В некоторых стабилизаторах величин напряжения и тока также используются специализированные полупроводниковые резисторы, а варисторы-разрядники с напряжением более 20 кВ применяются для стабилизации питания в линиях электропередач. Его можно подключить также и в схему проводки (схема 1), защитив ее от перегрузок и недопустимых амплитудных значений тока и напряжения. При перегрузке проводки происходит ее нагрев, который может привести к пожару.

Схема 1 — Подключение варистора для сети 220В.

Низковольтные варисторы работают в диапазоне напряжения от 3 В до 200 В с силой тока от 0,1 до 1 А. Они применяются в различной аппаратуре и ставятся преимущественно на входе или выходе источника питания. Время их срабатывания составляет менее 25 нс, однако этой величины для некоторых приборов недостаточно и в этом случае применяются дополнительные схемы защиты.

Однако технология их изготовления не стоит на месте, поскольку фирма «S+М Eрсоs» создала радиоэлемент с временем срабатывания менее 0,5 нс. Этот полупроводниковый резистор изготовлен по smd-технологии. Конструкции дискового исполнения обладают более высоким временем срабатывания. Многослойные варисторы (CN) являются надежной защитой от статического электричества, которое может вывести из строя различную электронику. Примером использования является производство мобильных телефонов, которые подвержены воздействию статических разрядов. Этот тип варисторов также получили широкое применение в области компьютерной технике, а также в высокочувствительной аппаратуре.

Достоинства и недостатки

Для использования варистора следует ознакомиться с его положительными и отрицательными сторонами, поскольку от этого зависит защита электроники. К положительным качествам следует отнести следующие:

  1. Высокое время срабатывания.
  2. Отслеживание перепадов при помощи безинерционного метода.
  3. Широкий диапазон напряжений: от 12 В до 1,8 кВ.
  4. Длительный срок службы.
  5. Низкая стоимость.

У варистора, кроме его достоинств, существуют серьезные недостатки, на которые следует обратить внимание при разработке какого-либо устройства. К ним относятся:

  1. Большая емкость.
  2. Не рассеивают мощность при максимальном значении напряжения.

Емкость полупроводникового прибора находится в пределах от 70 до 3200 пФ и, следовательно, существенно влияет на работу схемы. Эта величина зависит от конструкции и типа прибора, а также от напряжения. Однако в некоторых случаях этот недостаток является достоинством при использовании его в фильтрах. Значение большей емкости ограничивает величину напряжения.

При максимальных значениях напряжения для рассеивания мощности следует применять варисторы-разрядники, поскольку обыкновенный полупроводниковый прибор перегреется и выйдет из строя. Каждому радиолюбителю следует знать алгоритм проверки варистора, поскольку при обращении в сервисные центры существует вероятность заплатить за ремонт больше, чем он стоит в действительности.

Проверка на исправность

Для поиска неисправностей необходима схема устройства. Для примера следует обратиться к схеме 2, в которой применяется варистор. В ней будет рассмотрен только вариант выхода из строя полупроводникового резистора. Основным этапом поиска неисправностей является подготовка рабочего места и инструмента, которая позволяет сосредоточиться на выполнении ремонта и произвести его качественно. Для ремонтных работ потребуется следующий инструмент:

  1. Отвертка.
  2. Щетка, которая нужна для очистки платы от пыли. Следует производить очистку постоянно, поскольку она является проводником электричества. В результате этого может произойти выход из строя определенного элемента схемы или короткое замыкание.
  3. Паяльник, олово и канифоль.
  4. Мультиметр для диагностики радиокомпонентов.
  5. Увеличительное стекло для просмотра маркировки.

После подготовки рабочего места и инструмента следует аккуратно разобрать сетевой фильтр, а затем при необходимости произвести очистку от пыли и мусора.

Схема 2 — Схема электрическая принципиальная сетевого фильтра на 220 вол

Варистор: определение, работа, работа и тестирование

Варистор - это устройство с нелинейной вольт-амперной характеристикой. Когда напряжение, приложенное к варистору, ниже его порогового значения, ток, протекающий через него, чрезвычайно мал, что эквивалентно резистору с бесконечным сопротивлением, наоборот. Самый распространенный варистор - это металлооксидный варистор (MOV).

Что такое варистор?

Каталог

Ⅰ Что такое варистор?

Варистор - это устройство с нелинейной вольт-амперной характеристикой.Он в основном используется для фиксации напряжения, когда цепь подвергается перенапряжению, и поглощения избыточного тока для защиты чувствительных устройств. Его также называют «резистор, зависимый от напряжения », сокращенно « VDR ». Материал корпуса резистора варистора - полупроводник, поэтому он представляет собой разновидность полупроводниковых резисторов. Варистор из оксида цинка (ZnO), который сейчас широко используется, имеет основной материал, состоящий из двухвалентного цинка (Zn) и шестивалентного кислорода (O).Таким образом, с точки зрения материалов варистор из оксида цинка - это своего рода «оксидный полупроводник II-VI».

Варистор

Варистор - это устройство защиты с ограничением напряжения. Используя нелинейные характеристики варистора, когда между двумя полюсами варистора возникает перенапряжение, варистор может ограничивать напряжение до относительно фиксированного значения напряжения, тем самым обеспечивая защиту последующей цепи. Основными параметрами варистора являются напряжение варистора, токовая нагрузка, емкость перехода, время отклика и т. Д.

Ⅱ Как работают варисторы?

Время отклика варистора составляет нс, что быстрее, чем у газоразрядной трубки, и немного медленнее, чем у трубки TVS. Как правило, скорость срабатывания защиты от перенапряжения для электронных схем может соответствовать требованиям. Емкость перехода варистора обычно составляет от сотен до тысяч ПФ. Во многих случаях его не следует напрямую применять для защиты высокочастотных сигнальных линий. При применении для защиты цепей переменного тока большая емкость перехода увеличивает утечку.При проектировании схемы защиты необходимо полностью учитывать ток. Варистор имеет большую пропускную способность, но меньше газоразрядной трубки.

Когда напряжение, приложенное к варистору, ниже его порогового значения, ток, протекающий через него, чрезвычайно мал, что эквивалентно резистору с бесконечным сопротивлением. То есть, когда приложенное к нему напряжение ниже его порогового значения, это эквивалентно переключателю в выключенном состоянии.

Когда напряжение, приложенное к варистору, превышает его пороговое значение, ток, протекающий через него, резко увеличивается, что эквивалентно бесконечно малому сопротивлению.Другими словами, когда приложенное к нему напряжение превышает его пороговое значение, это эквивалентно переключателю в замкнутом состоянии.

Ⅲ Основные параметры варистора

Основными параметрами варистора являются: номинальное напряжение, коэффициент напряжения, максимальное управляющее напряжение, коэффициент остаточного напряжения, ток утечки, ток утечки, температурный коэффициент напряжения, текущий температурный коэффициент, коэффициент нелинейности напряжения, сопротивление изоляции, статическая емкость и т. Д.

1.Номинальное напряжение относится к значению напряжения на варисторе при прохождении постоянного тока 1 мА.

2. Отношение напряжений относится к соотношению значения напряжения, генерируемого, когда ток варистора составляет 1 мА, и значения напряжения, генерируемого, когда ток варистора составляет 0,1 мА.

3. Максимальное ограничивающее напряжение относится к максимальному значению напряжения, которое могут выдержать два конца варистора.

4. Коэффициент остаточного напряжения : Когда ток, протекающий через варистор, имеет определенное значение, генерируемое на нем напряжение называется этим значением тока как остаточным напряжением.Коэффициент остаточного напряжения - это отношение остаточного напряжения к номинальному напряжению.

5. Пропускная способность также называется пропускной способностью, которая относится к максимальному импульсному (пиковому) току, разрешенному для прохождения через варистор при определенных условиях (с указанным интервалом времени и количеством раз, стандартным пусковой ток).

6. Thw ток утечки и ток ожидания относятся к току, протекающему через варистор при указанной температуре и максимальном постоянном напряжении.

7. Температурный коэффициент напряжения относится к скорости изменения номинального напряжения варистора в заданном диапазоне температур (температура 20 ~ 70 ° C), то есть, когда ток через варистор остается постоянным, относительный изменение обоих концов варистора при изменении температуры на 1 ℃.

8. Температурный коэффициент тока относится к относительному изменению тока, протекающего через варистор, когда температура на варисторе остается постоянной, а температура изменяется на 1 ° C.

9. Коэффициент нелинейности напряжения относится к отношению значения статического сопротивления к значению динамического сопротивления варистора при заданном приложенном напряжении.

10. Сопротивление изоляции относится к величине сопротивления между выводом (выводом) варистора и изолирующей поверхностью корпуса резистора.

11. Статическая емкость относится к внутренней емкости самого варистора.

Ⅳ Функции варисторов

Основная функция варистора - защита переходного напряжения в цепи.По принципу работы, описанному выше, варистор эквивалентен переключателю. Только когда напряжение выше порогового значения, а переключатель замкнут, ток, протекающий через него, резко возрастает, и влияние на другие цепи не сильно меняется, тем самым уменьшая влияние перенапряжения на последующие чувствительные цепи. Эта функция защиты варистора может использоваться многократно, а также может быть преобразована в одноразовое защитное устройство, подобное токовому предохранителю.

Функция защиты варистора получила широкое распространение.Например, в цепи питания домашнего цветного телевизора используется варистор для выполнения функции защиты от перенапряжения. Когда напряжение превышает пороговое значение, варистор отражает его характеристики фиксации. Чрезмерное напряжение понижается, так что последующая цепь работает в безопасном диапазоне напряжений.

Варистор в основном используется для защиты от переходных перенапряжений в цепи, но из-за его вольт-амперных характеристик, аналогичных полупроводниковому стабилитрону, он также имеет множество функций элементов схемы.Например, варистор представляет собой своего рода высоковольтный стабилизирующий элемент постоянного тока с малым током-напряжением со стабильным напряжением в тысячи вольт или более, чего не может достичь кремниевый стабилитрон. Варистор можно использовать в качестве элемента обнаружения флуктуации напряжения, битового элемента сдвига уровня постоянного тока, флуоресцентного пускового элемента, элемента выравнивания напряжения и так далее.

Ⅴ Металлооксидный варистор

Наиболее распространенным варистором является варистор из оксида металла (MOV), который содержит керамический блок, состоящий из частиц оксида цинка и небольшого количества других оксидов металлов или полимеров, зажатый между двумя металлическими листами.На стыке частиц и соседних оксидов образуется диодный эффект. Из-за большого количества беспорядочных частиц это эквивалентно большому количеству диодов с обратным подключением. При низком напряжении наблюдается лишь небольшой обратный ток утечки. Когда встречается высокое напряжение, происходит обратный коллапс диода из-за горячих электронов и туннельного эффекта, и протекает большой ток. Следовательно, кривая вольт-амперной характеристики варистора очень нелинейна: высокое сопротивление при низком напряжении и низкое сопротивление при высоком напряжении.

Металлооксидные варисторы в настоящее время являются наиболее распространенными устройствами ограничения напряжения и могут использоваться для различных напряжений и токов. Использование оксидов металлов в его структуре означает, что MOV очень эффективны в поглощении кратковременных скачков напряжения и имеют более высокие возможности управления энергией.

Как и обычные варисторы, металлооксидные варисторы начинают проводить при определенном напряжении и перестают проводить, когда напряжение ниже порогового. Основное различие между стандартным варистором из карбида кремния (SiC) и варистором типа MOV заключается в том, что ток утечки материала из оксида цинка через MOV очень мал при нормальных рабочих условиях, а его рабочая скорость намного выше в переходном режиме зажима.

MOV

обычно имеют радиальные выводы и твердое внешнее синее или черное эпоксидное покрытие, которое очень похоже на дисковые керамические конденсаторы и может быть физически установлено на печатных платах и ​​печатных платах аналогичным образом. Типичный металлооксидный варистор имеет следующую структуру:

Металлооксидная варисторная конструкция

Чтобы выбрать правильный MOV для конкретного приложения, необходимо понимать полное сопротивление источника и возможную импульсную мощность переходного процесса.Для входных линейных или фазовых переходных процессов выбор правильного MOV немного сложнее, поскольку характеристики источника питания обычно неизвестны. Вообще говоря, электрическая защита от переходных процессов и всплесков мощности схемы выбора MOV обычно является просто обоснованным предположением.

Тем не менее, металлооксидные варисторы можно использовать для различных напряжений варисторов, от примерно 10 вольт до более 1000 вольт переменного или постоянного тока, поэтому он может помочь вам сделать выбор, зная напряжение питания.Например, выберите MOV или кремниевый варистор. Для напряжения его максимальное непрерывное среднеквадратичное значение напряжения должно быть немного выше, чем максимальное ожидаемое напряжение источника питания. Например, источник питания на 120 В соответствует среднеквадратичному значению 130 вольт, а 230 В - к источнику питания 260 В.

Максимальное значение импульсного тока, которое будет использовать варистор, зависит от ширины переходного импульса и количества повторений импульсов. Можно сделать предположение о ширине переходного импульса, которая обычно составляет от 20 до 50 микросекунд (мкс).Если номинальный пиковый импульсный ток недостаточен, варистор может перегреться и выйти из строя. Следовательно, если варистор работает без каких-либо сбоев или деградации, он должен иметь возможность быстро рассеивать поглощенную энергию переходного импульса и безопасно возвращаться в свое предимпульсное состояние.

Ⅵ Характеристики неисправного варистора

Резистор - это самый многочисленный компонент в электрооборудовании, но он не является компонентом с наибольшей степенью повреждения. Обрыв цепи - наиболее распространенный тип повреждения сопротивления.Редко сопротивление становится большим, и очень редко сопротивление становится маленьким. Распространенными типами являются резисторы с углеродной пленкой, резисторы с металлической пленкой, резисторы с проволочной обмоткой и резисторы с предохранителями. Наиболее широко используются первые два типа резисторов. Их характеристики повреждения: низкое сопротивление (ниже 100 Ом) и высокое сопротивление (выше 100 кОм). Во-вторых, при повреждении резистора с низким сопротивлением он часто сгорает и почернеет, что легко найти, а при повреждении резистора с высоким сопротивлением остается мало следов.Резисторы с проволочной обмоткой обычно используются для ограничения высокого тока, а сопротивление невелико. Когда цилиндрический резистор с проволочной обмоткой сгорает, часть его становится черной или поверхность взрывается, треснет. Цементное сопротивление - это разновидность проволочного сопротивления, которое может сломаться при выгорании, иначе не останется видимых следов. Когда предохранитель перегорит, некоторые поверхности оторвутся, а на некоторых не останется следов, но они никогда не сгорят и не станут черными.

Ⅶ Как проверить варисторы?

1.Подготовка перед измерением варистора

Подключите два измерительных провода (независимо от положительного и отрицательного) к двум концам резистора, чтобы измерить фактическое значение сопротивления. Для повышения точности измерения диапазон выбран согласно номинальному значению измеряемого сопротивления. Из-за нелинейной зависимости шкалы Ом средняя часть шкалы в порядке. Следовательно, значение указателя должно упасть, насколько это возможно, до середины шкалы, то есть в диапазоне от 20% до 80% радиана полной шкалы.В зависимости от уровня погрешности сопротивления допускается погрешность ± 5%, ± 10% или ± 20% между показанием и номинальным сопротивлением соответственно. Если диапазон ошибок превышен, резистор изменил стандартное значение.

2. Как измерить качество варистора?

Для проверки варистора обычно требуется источник питания с широким диапазоном регулируемого напряжения, и он имеет хороший эффект ограничения тока. При измерении параллельно варистору подключают вольтметр с хорошей точностью.Подключите регулируемый шнур питания к обоим концам варистора.

Вольтметр показывает напряжение питания. Вам следует медленно регулировать напряжение и вы увидите, как оно внезапно падает после достижения определенного напряжения. Напряжение в последний момент перед понижением является значением защиты варистора.

При постоянном напряжении, приложенном к варистору, значение его сопротивления может изменяться от МОм (Мегаом) до мОм (Миллиом). Когда напряжение низкое, варистор работает в области тока утечки, показывая большое сопротивление, а ток утечки мал; когда напряжение повышается до нелинейной области, ток изменяется в относительно большом диапазоне, и напряжение не изменяется сильно, показывая хорошую характеристику ограничения напряжения; когда напряжение снова повышается, варистор входит в область насыщения и имеет очень маленькое линейное сопротивление.Из-за большого тока варистор со временем перегреется и сгорит или даже лопнет.

При измерении варистора установите мультиметр на диапазон 10 кОм. Подключите измерительные провода к обоим концам резистора. Мультиметр должен отображать значение сопротивления, указанное на варисторе. Если значение превышает это значение, варистор поврежден.

Мультиметр

3. Выбор варистора

При выборе варистора необходимо учитывать особые условия цепи и, как правило, следует соблюдать следующие принципы:

(1) Выбор напряжения варистора V1mA

В соответствии с выбранным напряжением источника питания, напряжение источника питания, непрерывно подаваемое на варистор, не должно превышать значение «максимального непрерывного рабочего напряжения», указанное в спецификации.То есть максимальное рабочее напряжение постоянного тока варистора должно быть больше, чем рабочее напряжение постоянного тока VIN линии питания (сигнальной линии), то есть VDC ≥ VIN; При выборе источника питания 220 В переменного тока необходимо полностью учитывать диапазон колебаний рабочего напряжения электросети. Общий диапазон колебаний внутренней электросети составляет 25%. Следует выбрать варистор с напряжением варистора от 470 В до 620 В. Выбор варистора с более высоким напряжением варистора может снизить частоту отказов и продлить срок службы, но остаточное напряжение немного увеличивается.

(2) Выбор трафика

Номинальный ток разряда варистора должен быть больше, чем импульсный ток, который требуется выдержать, или максимальный импульсный ток, который может возникнуть во время работы оборудования. Номинальный ток разряда должен быть рассчитан путем нажатия значения более 10 ударов на кривой номинальных значений времени работы от перенапряжения, что составляет около 30% от максимального потока удара (т. Е. 0,3IP).

(3) Выбор напряжения фиксации

Фиксирующее напряжение варистора должно быть меньше максимального напряжения (т. Е. Безопасного напряжения), которое может выдержать защищаемый компонент или оборудование.

(4) Выбор конденсатора ЦП

Для высокочастотных сигналов передачи емкость Cp должна быть меньше, и наоборот

(5) Согласование внутреннего сопротивления (Согласование сопротивления)

Соотношение между внутренним сопротивлением R (R≥2Ω) защищаемого компонента (линии) и переходным внутренним сопротивлением Rv варистора: R≥5Rv; для защищаемого компонента с малым внутренним сопротивлением, не влияющим на скорость передачи сигнала, следует попробовать использовать большой варистор конденсатора.

Статьи по теме:

Резисторы SMD : коды, размеры, испытания, допуски и выбор

В чем разница между подтягивающими и понижающими резисторами?

Варистор - Блок электроники

Варистор

Варистор

, также известный как резистор, зависимый от напряжения (VDR), представляет собой пассивное двухконтактное полупроводниковое устройство, которое используется для защиты электрических и электронных цепей от перегрузок по току.

Слово «Варистор» - это комбинация слов VARI -able resi-STOR. Следовательно, сопротивление варистора является переменным и зависит от приложенного напряжения.

Их сопротивление уменьшается с увеличением напряжения. В случае чрезмерного увеличения напряжения их сопротивление резко падает. Такое поведение делает их пригодными для защиты цепей во время скачков напряжения, таких как удары молнии и электростатические разряды.

Рис.1: Варистор

Рис.1 показан реальный варистор, который можно спутать с конденсатором. Однако между ними нет ничего общего, кроме размера и дизайна.

Варистор используется для подавления напряжения, в то время как конденсатор не может выполнять такие функции.

В настоящее время резистивный корпус варистора изготавливается из полупроводникового материала, что делает его типом полупроводникового резистора с неомическими симметричными характеристиками напряжения и тока, подходящими как для переменного, так и для постоянного напряжения.

Символ варистора

Два стандартных обозначения варистора показаны ниже.

Переходные процессы сигнала переменного тока

Когда в цепи подается высокий скачок напряжения, результат обычно катастрофичен, поэтому варистор играет важную роль в защите чувствительных электронных схем от импульсных выбросов и переходных процессов перенапряжения.

Переходные перенапряжения возникают из различных электрических цепей и источников, независимо от того, работают они от источника переменного или постоянного тока, поскольку они часто генерируются внутри самой цепи или передаются в цепь от внешних источников.

Переходные процессы в цепи могут быстро нарастать, увеличивая напряжение до нескольких тысяч вольт, и именно эти скачки напряжения должны быть предотвращены от появления на чувствительных электронных схемах и компонентах.

Одним из наиболее распространенных источников переходных процессов напряжения является эффект L (di / dt), вызванный переключением индуктивных катушек и токов намагничивания трансформатора, коммутационными приложениями двигателя постоянного тока и скачками напряжения от включения цепей люминесцентного освещения или другими скачками напряжения питания. .

Рис.2: Форма кривой переменного тока варистора

На рисунке 2 выше показана форма переходного процесса переменного тока.

Варисторы

подключаются в цепях с питанием от сети по схеме «фаза-нейтраль», «фаза-фаза» для работы на переменном токе или положительно-отрицательной для работы на постоянном токе, и имеют номинальное напряжение, соответствующее их применению.

Варистор

А также может использоваться для стабилизации постоянного напряжения и особенно для защиты электронных схем от импульсов перенапряжения.

Статическое сопротивление варистора

В нормальных условиях эксплуатации сопротивление варистора очень велико. Таким образом, он работает аналогично стабилитрону, позволяя проходить более низким пороговым напряжениям.

Однако, когда напряжение на варисторе (любой полярности) превышает номинальное значение варистора, его эффективное сопротивление резко падает и продолжает уменьшаться с увеличением напряжения.

Соотношение между статическим сопротивлением варистора и напряжением на нем показано на рисунке ниже.

Рис.3: Статическое сопротивление VS напряжение

Характеристики V-I варистора

Мы уже знаем из закона Ома, что вольт-амперная характеристика (ВАХ) резистора представляет собой прямую линию при условии, что R остается постоянным. Это означает, что ток прямо пропорционален разности потенциалов на концах резистора.

Однако в случае варистора ВАХ не является прямой линией, поскольку небольшое изменение напряжения вызывает значительное изменение тока (из-за необычного поведения сопротивления варистора).

Типичная нормализованная кривая зависимости напряжения от тока для стандартного варистора показана ниже.

Рис.4: ВАХ варистора

Из приведенной выше кривой V-I видно, что варистор имеет симметричные двунаправленные характеристики. Это означает, что он может работать в обоих направлениях синусоидальной формы волны, ведя себя так же, как два стабилитрона, подключенных друг к другу.

Когда варистор не проводит ток, ВАХ показывает линейную зависимость, так как ток, протекающий через варистор, остается постоянным и низким при токе утечки всего в несколько микроампер.

Это связано с высоким сопротивлением варистора, который действует как разомкнутая цепь и остается постоянным, пока напряжение на варисторе (любой полярности) не достигнет определенного «номинального напряжения».

Это номинальное напряжение (также известное как напряжение фиксации) - это напряжение на варисторе, измеренное при заданном постоянном токе 1 мА.

То есть уровень постоянного напряжения, приложенного к его клеммам, который позволяет току в 1 мА протекать через резистивный корпус варистора, который сам зависит от материалов, используемых в его конструкции.На этом уровне напряжения варистор начинает переходить из изолирующего состояния в проводящее.

Когда переходное напряжение на варисторе равно или превышает номинальное значение, сопротивление устройства внезапно становится очень маленьким, превращая варистор в проводник из-за лавинного эффекта его полупроводникового материала.

Небольшой ток утечки, протекающий через варистор, быстро возрастает, но напряжение на нем ограничено до уровня, чуть превышающего напряжение варистора.

Другими словами, варистор саморегулирует переходное напряжение на нем, позволяя протекать через него большему току, и из-за крутой нелинейной кривой ВАХ он может пропускать широко изменяющиеся токи в узком диапазоне напряжения, ограничивая любые скачки напряжения .

Емкость варистора

Когда приложенное к варистору напряжение меньше номинального или ограничивающего напряжения, варистор действует как конденсатор, а не как резистор.

Это связано с тем, что основная проводящая область варистора между двумя его выводами ведет себя как диэлектрик.Два вывода и диэлектрик образуют конденсатор. И это действительно до тех пор, пока напряжение не достигнет предельного напряжения.

Каждый полупроводниковый варистор имеет значение емкости, которое напрямую зависит от его площади и обратно пропорционально его толщине.

При использовании в цепях постоянного тока емкость варистора остается более или менее постоянной при условии, что подаваемое напряжение не превышает уровень напряжения ограничения и резко падает ближе к максимальному номинальному постоянному напряжению постоянного тока.

Однако в цепях переменного тока эта емкость может влиять на сопротивление корпуса устройства в непроводящей области утечки его ВАХ. Поскольку они обычно подключаются параллельно к электрическому устройству, чтобы защитить его от перенапряжений, сопротивление утечки варисторов быстро падает с увеличением частоты.

Связь между частотой и результирующим параллельным сопротивлением приблизительно линейна.

Реактивное сопротивление переменного тока Xc можно рассчитать по формуле:

Xc = 1 / (2πƒC)

где f = частота цепи

C = емкость

Следовательно, с увеличением частоты увеличивается и ток утечки.

Типы варисторов

Тип варистора зависит от типа материала его корпуса. Два наиболее распространенных типа варисторов -

.
  1. Варистор из карбида кремния
  2. Металлооксидные варисторы (MOV)
Варистор из карбида кремния

Корпус варисторов этого типа изготовлен из карбида кремния (SiC). Когда-то он широко использовался еще до того, как на рынке появился новый MOV.Сейчас они интенсивно используются в приложениях с высокой мощностью и высоким напряжением. Однако они потребляют значительный ток в режиме ожидания, и это главный недостаток варистора этого типа. В связи с этим требуется последовательный разрыв для ограничения энергопотребления в режиме ожидания.

Металлооксидные варисторы (MOV)

Из-за серьезных недостатков SiC варисторов был разработан другой тип варисторов, названный металлооксидными варисторами.

Варистор из оксида металла или MOV - это резистор, зависящий от напряжения, в котором материал сопротивления представляет собой оксид металла, в основном оксид цинка (ZnO), спрессованный в материал, подобный керамике.

Смесь на 90% состоит из зерен оксида цинка, а остальные 10% состоят из оксидов других металлов, таких как кобальт, висмут и марганец.

Эта смесь зажата между двумя электродами (металлическими пластинами). Наполнитель действует как связующий агент для зерен оксида цинка, так что компонент остается неповрежденным между двумя металлическими пластинами. Соединительные провода металлооксидного варистора являются радиальными выводами.

Рис.5: Металлооксидный варистор

Металлооксидные варисторы в настоящее время являются наиболее распространенным типом устройств ограничения напряжения и доступны для использования в широком диапазоне напряжений и токов.

Использование оксида металла в их конструкции означает, что MOV чрезвычайно эффективны в поглощении кратковременных переходных процессов напряжения и имеют более высокие возможности управления энергией.

Как и обычный варистор, металлооксидный варистор начинает проводить проводимость при определенном напряжении и прекращает проводимость, когда напряжение падает ниже порогового значения.

Основное различие между стандартным варистором из карбида кремния (SiC) и варистором типа MOV заключается в том, что ток утечки через материал оксида цинка MOV представляет собой очень небольшой ток в нормальных рабочих условиях, а его скорость работы при ограничении переходных процессов намного выше.

MOV

обычно имеют радиальные выводы и твердое внешнее синее или черное эпоксидное покрытие, которое очень похоже на дисковые керамические конденсаторы и может быть физически установлено на печатных платах и ​​печатных платах аналогичным образом.

Характеристики варистора

Технические характеристики типичного варистора:

Максимальное рабочее напряжение: Это пиковое установившееся постоянное напряжение или синусоидальное среднеквадратичное напряжение, которое может применяться непрерывно при заданной температуре.

Напряжение варистора: Это напряжение между выводами варистора с заданным измеряемым постоянным током.

Напряжение зажима: Это напряжение между выводами варистора с заданным импульсным током, приложенным для получения пикового напряжения.

Импульсный ток: Максимальный ток, протекающий через варистор.

Максимальная энергия: Максимальная энергия, рассеиваемая при подаче импульса переходного процесса.

Импульсный сдвиг: Изменение напряжения после подачи импульсного тока.

Емкость : Измеряется, когда напряжение меньше напряжения варистора.

Ток утечки: Ток, протекающий через варистор, когда он находится в непроводящем состоянии.

Время отклика: Время между приложением номинального напряжения и переходом из непроводящего состояния в проводящее состояние.

Применение варистора

1. Для защиты электрических цепей от перенапряжений. На следующей схеме показано подключение металлооксидного варистора для обеспечения защиты однофазной линии от линии.

2.Следующая схема аналогична предыдущей, за исключением того, что она обеспечивает защиту «линия-земля».

3. В электронных схемах устройства очень чувствительны к изменениям напряжения. Следовательно, используется варистор. Следующая схема показывает типичный варистор, защищающий транзистор.

4. Для защиты от перенапряжения двигателей переменного или постоянного тока.

Ограничения

Когда варистор используется в ограничителе импульсных перенапряжений, он может не обеспечивать защиту устройства по питанию.Это связано с тем, что наличие варистора в такой ситуации вызовет проблемы как в оборудовании, так и в самом устройстве.

Варистор не может обеспечить защиту от следующего:

  1. Скачки тока при запуске устройства
  2. Ток от короткого замыкания.
  3. От провалов или падений напряжения.
Варистор

- Wiki

Варистор на основе оксида металла производства Siemens & Halske AG. Схематический символ современного варистора.

Варистор - это электронный компонент, электрическое сопротивление которого зависит от приложенного напряжения. [1] Также известный как резистор , зависимый от напряжения (VDR), он имеет нелинейную неомическую вольт-амперную характеристику, аналогичную характеристике диода. Однако, в отличие от диода, он имеет одинаковые характеристики для обоих направлений проходящего тока. Традиционно варисторы действительно создавались путем соединения двух выпрямителей, таких как выпрямитель из оксида меди или оксида германия, в антипараллельной конфигурации. При низком напряжении варистор имеет высокое электрическое сопротивление, которое уменьшается при повышении напряжения.Современные варисторы в основном основаны на спеченных металлооксидных керамических материалах, которые демонстрируют направленное поведение только в микроскопическом масштабе. Этот тип широко известен как металлооксидный варистор ( MOV ).

Варисторы используются в качестве элементов управления или компенсации в схемах либо для обеспечения оптимальных рабочих условий, либо для защиты от чрезмерных переходных напряжений. При использовании в качестве защитных устройств они шунтируют ток, создаваемый чрезмерным напряжением, от чувствительных компонентов при срабатывании триггера.

Название варистор представляет собой набор переменного резистора . Этот термин используется только для неомических переменных резисторов. Переменные резисторы, такие как потенциометр и реостат, имеют омические характеристики.

Разработка варистора в виде выпрямителя нового типа на основе слоя закиси меди на меди началась в работах Л.О. Грондал и П. Гейгера в 1927 году. [2]

Варистор из оксида меди показывал переменное сопротивление в зависимости от полярности и величины приложенного напряжения. [3] Он был построен из небольшого медного диска, одна сторона которого была образована слоем закиси меди. Такое расположение обеспечивает низкое сопротивление току, протекающему от полупроводникового оксида к стороне меди, но высокое сопротивление току в противоположном направлении, при этом мгновенное сопротивление непрерывно изменяется с приложенным напряжением.

В 1930-х годах небольшие варисторные сборки с максимальным размером менее одного дюйма и явно неопределенным сроком службы нашли применение в замене громоздких электронных ламповых схем в качестве модуляторов и демодуляторов в системах несущего тока для телефонной передачи. [3]

Другие применения варисторов в телефонной установке включали защиту цепей от скачков напряжения и шума, а также подавление щелчков на элементах приемника ( наушник ) для защиты ушей пользователей от хлопков при переключении схемы. Эти варисторы были сконструированы путем наслоения четного числа выпрямительных дисков в стек и соединения оконечных концов и центра в антипараллельной конфигурации, как показано на фотографии варистора Western Electric Type 3B от июня 1952 года (ниже).

  • Варистор Western Electric 3B производства 1952 года для использования в качестве глушителя щелчков в телефонных аппаратах.

  • Схема традиционной конструкции варисторов, используемых в качестве глушителей щелчков в телефонии [4]

  • Традиционное схематическое обозначение варистора, [5] , используемое сегодня для диак. Он отражает поведение диода в обоих направлениях тока.

  • Варистор Western Electric Тип 44A, изготовленный в 1958 году, установлен на элементе телефонной трубки U1 для подавления щелчков.

Телефонный аппарат Western Electric типа 500 1949 года представил схему динамического выравнивания контура с использованием варисторов, которые шунтировали относительно высокие уровни тока контура на короткие контуры центрального офиса для автоматической регулировки уровней сигналов передачи и приема. На длинных петлях варисторы сохраняли относительно высокое сопротивление и не меняли существенно сигналы. [6]

Другой тип варистора был изготовлен из карбида кремния Р.О. Грисдейл в начале 1930-х гг. Его использовали для защиты телефонных линий от молнии. [7]

В начале 1970-х годов японские исследователи признали полупроводниковые электронные свойства оксида цинка (ZnO) полезными в качестве варистора нового типа в процессе спекания керамики, который проявлял вольт-амперную функцию, аналогичную функции пара встречных стабилитронов. [8] [9] Этот тип устройства стал предпочтительным методом защиты цепей от скачков напряжения и других разрушительных электрических помех и стал известен как металлооксидный варистор (MOV).Случайная ориентация зерен ZnO в объеме этого материала обеспечивала одинаковые вольт-амперные характеристики для обоих направлений протекания тока.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *