Какие преимущества и недостатки имеют ветрогенераторы. Как ветряные электростанции влияют на окружающую среду и живую природу. Можно ли сделать ветроэнергетику более безопасной для экосистем. Каковы перспективы развития ветроэнергетики в мире.
Преимущества и недостатки ветрогенераторов
Ветрогенераторы считаются одним из самых экологически чистых способов получения электроэнергии. Среди их основных преимуществ:
- Не требуют органического топлива
- Не производят вредных выбросов в атмосферу
- Используют возобновляемый источник энергии — силу ветра
- Могут устанавливаться в самых разных местах
- Позволяют снизить зависимость от ископаемых видов топлива
Однако у ветрогенераторов есть и ряд существенных недостатков:
- Угроза для птиц и летучих мышей
- Шумовое загрязнение и инфразвук
- Вибрация, негативно влияющая на почву и грунтовые воды
- Необходимость вырубки лесов под ветропарки
- Изменение ландшафта и визуальное загрязнение
Таким образом, несмотря на экологичность самого процесса получения энергии, ветрогенераторы могут оказывать негативное воздействие на окружающую среду. Рассмотрим подробнее основные проблемы, связанные с ветроэнергетикой.

Влияние ветрогенераторов на птиц и летучих мышей
Одной из главных проблем ветроэнергетики является гибель птиц и летучих мышей от столкновения с лопастями турбин. По некоторым оценкам, в США ежегодно от ветрогенераторов погибает от 140 000 до 500 000 птиц. Особенно уязвимы хищные птицы и перелетные виды.
Почему птицы сталкиваются с лопастями ветряков?
- У хищных птиц есть «мертвая зона» в поле зрения прямо по курсу полета
- Птицы не воспринимают вращающиеся лопасти как препятствие
- Ветропарки часто располагаются на путях миграции птиц
- Птиц привлекают огни на ветрогенераторах в ночное время
Летучие мыши гибнут даже без прямого столкновения — из-за баротравмы, вызванной резким перепадом давления возле лопастей. Это приводит к разрыву капилляров в легких и внутреннему кровоизлиянию.
Проблема шумового загрязнения от ветрогенераторов
Работа ветряных турбин сопровождается постоянным шумом и вибрацией. Это создает дискомфорт для людей, проживающих вблизи ветропарков. Каковы основные источники шума от ветрогенераторов?

- Аэродинамический шум от вращения лопастей
- Механический шум от работы генератора и редуктора
- Низкочастотные колебания и инфразвук
Особую опасность представляет инфразвук — колебания с частотой ниже 20 Гц, не воспринимаемые человеческим ухом. Длительное воздействие инфразвука может вызывать:
- Головные боли
- Нарушения сна
- Тревожность
- Проблемы с концентрацией внимания
- Тошноту и головокружение
Кроме того, инфразвук отпугивает мелких млекопитающих, что нарушает природный баланс экосистем.
Воздействие ветропарков на ландшафт и экосистемы
Строительство крупных ветряных электростанций требует отчуждения значительных территорий. Это может приводить к следующим негативным последствиям:
- Вырубка лесов под площадки ветропарков
- Фрагментация природных ландшафтов
- Нарушение путей миграции животных
- Эрозия почвы при строительстве дорог и фундаментов
- Изменение гидрологического режима территории
Особенно острой проблема становится при размещении ветропарков в ранее нетронутых природных зонах. Например, в Германии планы по вырубке части леса под ветряные турбины вызвали протесты экологов, сравнивающих это с уничтожением уникального Хамбахского леса ради угольного карьера.

Перспективы развития ветроэнергетики в мире
Несмотря на существующие проблемы, роль ветроэнергетики в мировом энергобалансе продолжает расти. По прогнозам экспертов, к 2050 году доля возобновляемых источников в производстве электроэнергии может достичь 85%, в основном за счет энергии ветра и солнца.
Каковы основные тенденции развития ветроэнергетики?
- Увеличение единичной мощности ветрогенераторов
- Строительство офшорных ветропарков в море
- Развитие технологий накопления энергии
- Создание «умных» систем управления ветропарками
- Разработка более экологичных конструкций турбин
По оценкам Всемирной ветроэнергетической ассоциации, уже сейчас ветрогенераторы способны обеспечивать около 6% мирового спроса на электроэнергию. В ближайшие 20 лет ожидается рост использования энергии ветра еще на 30%.
Пути снижения негативного влияния ветрогенераторов на природу
Для минимизации вреда от ветряных электростанций для окружающей среды предлагаются следующие меры:
- Тщательный выбор площадок с учетом путей миграции птиц
- Временное отключение турбин в периоды массового пролета птиц
- Использование отпугивающих устройств для птиц и летучих мышей
- Окраска лопастей в контрастные цвета для лучшей заметности
- Применение малошумных редукторов и генераторов
- Создание защитных лесополос вокруг ветропарков
Перспективным направлением является разработка новых конструкций ветрогенераторов, более безопасных для птиц. Например, российская компания Optiflame Solutions создала прототип турбинного ветрогенератора в защитном кожухе, который исключает возможность столкновения с лопастями.

Новые технологии для повышения эффективности и экологичности ветроэнергетики
Ведутся разработки инновационных решений, позволяющих сделать ветрогенераторы более эффективными и безопасными для окружающей среды:
- Безлопастные ветрогенераторы вихревого типа
- Высотные ветрогенераторы на летающих платформах
- «Умные» системы управления для оптимизации работы ветропарков
- Интеграция ветрогенераторов в городскую среду
- Гибридные ветро-солнечные установки
Особый интерес представляют компактные ветрогенераторы для использования в городских условиях. Например, турбинный ветрогенератор в защитном кожухе, разработанный компанией Optiflame Solutions, может устанавливаться на крышах зданий без угрозы для птиц и создания шумового загрязнения.
Заключение: поиск баланса между экологичностью и воздействием на природу
Ветроэнергетика остается одним из самых перспективных направлений возобновляемой энергетики, способным внести значительный вклад в борьбу с изменением климата. Однако для устойчивого развития отрасли необходимо решить ряд экологических проблем:

- Снизить риски для птиц и летучих мышей
- Уменьшить шумовое воздействие на людей и животных
- Минимизировать ущерб для ландшафтов и экосистем
- Найти баланс между выработкой «зеленой» энергии и сохранением природы
Только комплексный подход, сочетающий технологические инновации, грамотное планирование и строгий экологический контроль, позволит раскрыть потенциал ветроэнергетики без ущерба для окружающей среды. Необходимо продолжать исследования и разработку более экологичных конструкций ветрогенераторов, а также совершенствовать методы оценки их воздействия на природные экосистемы.
Ветрогенераторы: вопросы и ответы — Энергетика и промышленность России — № 09 (101) май 2008 года — WWW.EPRUSSIA.RU
Газета «Энергетика и промышленность России» | № 09 (101) май 2008 года
Ветрогенераторы – это генераторы электрической энергии, работающие под действием энергии ветра. Сегодня ветрогенераторы – высокотехнологичные изделия мощностью от 5 кВт до 4500 кВт единичной мощности. Ветрогенераторы современных конструкций позволяют экономически эффективно использовать энергию даже самых слабых ветров – от 4 метров в секунду. С помощью ветрогенераторов можно не только поставлять электроэнергию в централизованные сети, но и решать задачи электроснабжения локальных объектов. Как работает ветрогенератор?Набегающие потоки ветра на высоте башни ветрогенератора – от 40 до 100 метров – вращают лопасти ветрогенератора. Энергия вращения передается по валу ротора на мультипликатор, который, в свою очередь, вращает асинхронный или синхронный электрический генератор. Широко распространены конструкции ветрогенераторов, не имеющих мультипликатора, что существенно увеличивает их производительность.
При изменении направления ветра сенсоры на башне ветрогенератора подают команду, и механизм ориентации поворачивает башню ветрогенератора по ветру.
Стабилизация вращения ветроколеса ветрогенератора достигается различными методами, один из которых – поворот лопастей или их фрагментов вокруг своей оси под углом к направлению ветра.
Ветрогенераторы могут работать как по одиночке (единичный комплекс), так и группами (ветропарк). Часто один или несколько ветрогенераторов работают параллельно с дизель-генераторами в качестве средства экономии расходов на дизельное топливо.
Что дает ветрогенератор?
Ветрогенератор мощностью 800 кВт при среднегодовой скорости ветра 6 м/с произведет за год 1500000 кВт-часов электроэнергии, при среднегодовой скорости ветра 5 м/с – 1100000 кВт-часов электроэнергии.
Ветрогенератор мощностью 2000 кВт при среднегодовой скорости ветра 6 м/с произведет за год 3700000 кВт-часов электроэнергии, при среднегодовой скорости ветра 5 м/с –2300000 кВт-часов электроэнергии.
Где применяются ветрогенераторы?
В самых разных местах: это открытые территории с хорошим ветропотенциалом, поля, острова, мелководье, горы. В России применение ветрогенераторов очень перспективно там, где подключение к существующим сетям дороже ветроэнергетического проекта или доставка дизельного топлива обходится дорого. А таких мест, изолированных или удаленных от централизованного энергоснабжения, у нас немало.
Какой силы ветер нужен для работы ветрогенератора?
Использование ветрогенератора экономически эффективно в местности со среднегодовой скоростью ветра от 4 м/с.
Для чего нужны ветрогенераторы?
Аргументов в пользу применения ветроэнергетических установок множество. Вот основные из них:
это независимый от внешних факторов источник электроэнергии;
после достижения срока окупаемости ветрогенератор требует затрат только на его обслуживание;
применение ветрогенераторов позволяет до 80 процентов сократить затраты на дизельное топливо в тех местах, где дизель-генераторы являются основным источником электроэнергии. Следовательно, экономятся расходы на хранение и транспортировку дизельного топлива, а энергоснабжение таких объектов перестает зависеть от случайных факторов;
капитальные затраты на ветроэнергетический комплекс по сравнению с традиционными источниками электроэнергии достаточно низки. Ориентировочно это 1300 евро на 1 кВт установленной мощности «под ключ»;
ветроэнергетические установки не загрязняют окружающую среду. Этот аргумент становится все более актуальным при согласовании новых промышленных проектов в России.
Как влияют высота мачты и диаметр ротора на выработку энергии?
Увеличение высоты мачты до 18‑26 метров позволяет повысить среднегодовую скорость ветра на высоте оси на 15‑30 процентов и тем самым увеличить выработку энергии в 1,3‑1,5 раза.
Это особенно эффективно при среднегодовых скоростях ветра меньше 4 м/с.
Высокая мачта также позволяет устранить влияние деревьев и построек. Мощность зависит от диаметра в квадрате. Диаметр ротора выбирается исходя из среднегодовой скорости ветра. При ветре до 6‑7 м/с выработка ротора диаметром 5 метров выше, чем у ротора 4,2 метра. При больших среднегодовых скоростях ветра выработка выравнивается.
Правильное расположение ветрогенератора
В регионах с высокой скоростью ветра, в прибрежных зонах и на объектах, где в зимний период солнечная электростанция «не справляется», для автономного энергоснабжения используют ветрогенераторные станции – «ветрогенераторы», (сокращённо ВГ). Но на большей территории нашей страны средняя скорость ветра составляет всего 4-5м/сек., тогда как ветрогенератору для выработки «номинальной мощности» требуется 10-12м/сек.. Именно поэтому нет никаких сомнений в важности правильной и продуманной установки устройства, достичения точки, где винт его окажется в зоне с максимальной скоростью ветра.
Мощность ветрогенератора и зависимость от скорости ветра и высоты мачты
Почему же так важно «не потерять» ни одного метра в секунду? Определим зависимость мощности ветрогенератора от скорости ветра.
1. Кинетическая энергия воздуха, движущегося ламинарно (без завихрений) W=1/2mV2, где m — масса воздуха, V – его скорость.
2. Массу воздуха, проходящего за время t и площадь S можно выразить следующим образом: m=VtSρ, где: S – площадь, описываемая винтом ВГ, ρ – плотность воздуха.
3. Чтобы определить мощность (P), делим энергию на время, подставляем выражение для массы, получаем: P=1/2V3Sρ.
4. Если теперь умножить выражение на КПД устройства в целом, включающее в себя коэффициент преобразования лопастей винта, коэффициент полезного действия редуктора и генератора (ƞ), получим реальную мощность «ветряка»: P=1/2V3Sρ ƞ. На практике обычно значение ƞ лежит в пределах 0,4-0,5.
Как видно из расчета, мощность ВГ пропорциональна третей степени скорости ветра, то есть увеличение скорости в 2 раза даст увеличение мощности в 8 раз!
Таким образом, скорость ветра и отсутствие турбулентностей (завихрений) должны иметь решающее значение при выборе места установки ветрогенератора. Из этих соображений идеально подходят:
- берег крупного водоема;
- вершина горы или возвышенности;
- центр протяженного поля.
Увы, в реальной жизни мало кто имеет на своем участке моря, поля и горы. Поэтому принцип только один – чем выше установка, тем лучше. В идеале, Ветрогенератор должен быть выше не менее, чем на 6 (шесть) метров окружающих его предметов (дома, деревьев, строений, возвышенностей), чтобы оказаться в зоне ламинарного движения воздуха.
Приведем простой пример, который можно легко проверить в on-line калькуляторе для расчета на нашем сайте. Рассмотрим модель пятилопастного ветрогенератора HY-1000, стоящий в «бесконечном» поле вблизи Санкт-Петербурга:
- При высоте мачты 5 метров максимальная выработка достигается в сентябре и составляет 1,38кВтч/сутки;
- Если увеличить высоту мачты до 10 метров, получим 2,43 кВтч/сутки;
- Увеличим высоту до 20 метров и получим уже – 3,12 кВтч/сутки.
Вывод напрашивается сам собой — часто вместо увеличения мощности ветрогенератора достаточно увеличить высоту мачты.
Решающая роль места установки «ветряка» в эффективности энергосистемы
Очень велик соблазн приделать мачту ветрогенератора к дому для увеличения высоты всей конструкции. Несмотря на очевидные плюсы, данный подход имеет ряд минусов:
Во-первых, установка издает звуки, и звуки эти отлично могут быть переданы по мачте на конструкцию дома, что со временем будет раздражать его жителей. Во-вторых, если здание находится в черте города, могут потребоваться дополнительные согласования в надзорных органах.
Стоит также обратить внимание на конструкцию самой мачты. Если горизонтальные линейные размеры мачты сравнимы или превышают размеры ВГ, то, собственно, сама мачта может являться источником турбулентности.
Очень показательный пример, когда мачта по сути мешает работать системе, плюс частично затеняет солнечные батареи, представлен на фотографии.
Особое внимание нужно уделить выбору сечения кабеля. Так как ВГ находится на мачте, а контроллер заряда где-то в доме, длина линии может быть значительной, равно как и падение напряжения. Это может привести к снижению эффективности заряда аккумуляторных батарей. Из этих соображений, площадь сечения кабеля должна быть достаточно большой, чтобы данный эффект был незначителен. Для расчёта площади сечения кабеля следует обратиться к правилам, описанным в статье Расчёт сечения провода.
В отличие от монтажа солнечных батарей, установка «ветряка» часто влечет за собой капитальные строительные работы, такие как бетонирование основания, монтаж свай для растяжек, сварочные работы. Тем не менее, правильно выполненный монтаж обеспечит надежную и эффективную работу системы, и максимальную выработку энергии на протяжении всего срока эксплуатации.
Читать другие статьи..
Ветрогенераторы могут быть ближе к людям и безопасны для птиц
текст: Константин Куцылло
Ветряные электростанции считаются едва ли не самым экологически безопасным способом производства энергии. Они не требуют органического топлива и не производят вредных выбросов. Однако вред от них все-таки есть. Ветряки убивают птиц и летучих мышей. Другая проблема — вибрация и инфразвук. Инфразвук вреден для человека. Кроме того, он разгоняет землеройных грызунов — полевых мышей, кротов, ежей, — а это приводит к размножению вредителей.
Если вибрация еще может быть минимизирована за счет балансировки, то инфразвук неизбежен при работе наиболее распространенного трехлопастного ветрогенератора — он возникает при срыве вихрей с лопастей, и пока нет способа от него избавиться.
При разрушении ветроустановки разлет обломков доходит до сотен метров. Поэтому в Европе, например, действует ограничение в 300 метров от мачты генератора до ближайшего жилья, а интервал между установками должен быть не менее 10 диаметров ветроколеса — чтобы избежать эффекта домино.
Однако все эти ограничения в полной мере относятся только к ветроустановкам мельничного типа, доля которых в мире сегодня около 95%. Основные проблемы ветроэнергетики могут быть разрешены, если применять турбину самолетного типа, разработанную в российской компании Optiflame Solutions, получившей благодаря своим исследованиям грант инновационного фонда «Сколково».
Действующий прототип защищенного жесткой оболочкой турбинного ветрогенератора прошел испытания в аэродинамической трубе
— Рынок классических трехлопастных ветрогенераторов — давно отработанная технология, как у двигателей внутреннего сгорания, — говорит Владимир Канин, директор по развитию компании. — Рынок поделен, и изобретать что-то новое как бы неудобно. Мировые производители давно устоялись, никто им на пятки не наступает, они так и продолжают производство уже 65-метровых монстров. Но производимые сейчас ветряки имеют серьезные ограничения — по минимальному расстоянию до жилых зон, по низкочастотным колебаниям, электромагнитным излучениям и по тем проблемам, которые они создают для птиц и летучих мышей. Если поставить ветряк на пути миграции птиц, то это, конечно же, будет мясорубка. Птица не воспринимает лопастной ветряк как опасность. Она воспринимает лопасти как отдельные палки, между которыми можно пролететь.
— Но первый вопрос, который возникает — почему нет ветрогенератора там, где он нужен? На крышах домов, в частных поселках — там, где есть потребитель. И наш вопрос был ровно в этом — как приблизить ветряк к потребителю. При этом решить надо ровно три задачи: низкие частоты, защита от разрушения, защита от механической опасности для птиц и, само собой, для людей.
Для ветроэлектростанции требуется не только ветрогенератор, но и инфраструктура. Это аккумуляторы и электрооборудование для преобразования тока в промышленный стандарт 220 вольт — 50 герц. Это передающие провода, отчуждаемые под ветряки земли, нередко необходимость включить систему в существующую электросеть. Ветроустановки нуждаются в охране (чтобы, как заметил Канин, пионеры их на металлолом не утащили). Все это удорожает ветрогенераторную станцию, и ее стоимость будет тем выше, чем дальше она от жилья.
— Бизнес-задача была поставлена так, — продолжает Канин, — две альтернативные научные команды должны были подтвердить или опровергнуть жизнеспособность идеи. То есть представить черновые расчеты ветродвигателя — пускай даже в ущерб КПД, с производительностью на 10% ниже, чем у аналогов, но который бы решил главные проблемы ветрогенераторов.
Помимо технических параметров, у установки должны быть определенные потребительские свойства. Одно из главных — размер. Понятно, что на крыше девятиэтажки нельзя ставить ветряк с лопастями в 40 метров. Другое важное свойство — установочная мощность. Потом идут такие параметры, как минимальная скорость ветра, при которой ветряк начинает работать, и максимальная, при которой он еще работает, а также показатель шумности, который должен соответствовать санитарным нормам.
— Конечно же, ветрогенератор, который крутится под ветром в 2 метра в секунду, будет вырабатывать предельно малую энергию, — говорит Канин. — Но если речь идет о зарядке аккумулятора, то какая нам разница — несколько ватт лучше, чем ноль. А гигантские промышленные ветряки ветер даже в 4-5 метров не может столкнуть, их приходится раскручивать специальным мотором.
За два года с начала работы над бизнес-идеей в 2008 году командой разработчиков Optiflame Solutions под руководством научного руководителя проекта, кандидата физико-математических наук Сергея Дудникова и научного руководителя по аэродинамике, профессора Санкт-Петербургского политехнического университета Рудольфа Измайлова, был создан и испытан в аэродинамической трубе действующий прототип ветрогенератора в жесткой оболочке, диаметром полметра. Ветрогенератор представляет собой турбину самолетного типа. Успешные испытания прототипа позволили создать модель ветрогенератора диаметром 2 метра с установочной мощностью в 1 киловатт, при максимальной в 2 киловатта. Ведется проектирование ветротурбины диаметром в 6,4 метра, номинальной мощностью 5 киловатт и максимальной — 10. В планах создание генератора диаметром 20 метров с мощностью от 50 до 100 киловатт.
Конструкция состоит из ротора с 32 лопатками, заключенными в обечайку — жесткий корпус, который и стал исполнителем главного требования по безопасности в случае разрушения лопастей. В передней части ротор закрыт направляющим аппаратом, который состоит из лобового обтекателя и таких же лопаток, как в роторе, но неподвижно закрепленных. Направляющий аппарат формирует воздушную струю в турбине и в то же время служит защитной решеткой — «радиатором» — для вращающихся лопастей.
— Благодаря особой конструкции направляющего аппарата, — говорит Канин, — нам удалось не только не потерять коэффициент полезного действия ветрогенератора по сравнению с классическим трехлопастным аналогом, но и существенно повысить его. А так как у нас 32 лопатки в роторе, то, соответственно, стоит 32 защитных лопатки в «радиаторе» — нельзя сказать, что туда совсем не просунешь руку, но от случайного попадания защищает, и кошка точно не пролезет. И та защита, которая будет работать от птиц и кошек — она справедлива и от детей, электромонтеров или домохозяек, которые надумают побаловаться на крыше с вентилятором.
— Насколько отличается наш КПД от классического, точно можно будет сказать в конце лета, когда мы испытаем двухметровую модель. Пока, по результатам испытания полуметровой модели, мы считаем, что КПД будет выше на 20-30%, — подтвердил слова коллеги Сергей Дудников. — Но главным мы считаем все же не КПД, а безопасность нашего ветряка. Если он «пойдет вразнос», то колесо ротора просто заклинит в обечайке, и ничего никуда не вылетит. С фасада он также безопасен из-за неподвижного направляющего аппарата.
Благодаря повышению скорости вращения турбинного ветрогенератора удалось решить проблему низкочастотных колебаний. По словам Владимира Канина, особый упор делался на то, чтобы вывести весь производимый ротором шум в слышимую область звукового спектра. Показатель шумности удалось ограничить на уровне в 35 децибел при скорости ветра 10 метров в секунду, что укладывается в нормы. Для жилых помещений ночью это 30 децибел, днем — 40. Предел уровня шума для офисных помещений, по европейским стандартам — 55 децибел.
— При повышении скорости вращения, при сильном ветре, растет тон звука, но не его мощность, — заверил Канин.
Вес установок будет небольшой, поскольку лопасти выполнены из пластика, а не металла. Для двухметровой турбины — 90-95 килограммов, пятикиловаттная турбина диаметром в 6,4 метра должна весить не более 200 килограммов.
За лето компания планирует построить опытную партию киловаттных генераторов, 5-10 штук, и отправить их на рабочие испытания. После испытаний и возможных доработок будет решаться вопрос о запуске в серийное производство.
— Если, скажем, производитель в Германии или любой другой стране скажет нам, что он готов делать и продавать 1000 штук в год, то мы поставим сборочную линию там, — сказал Канин.
Более мощная модель турбины, на 5 киловатт, планируется к производству опытной партией в следующем году. Это именно тот ветрогенератор, который может стать базовым для отдельного частного дома или фермерского хозяйства.
— Если говорить о России, то для частного дома мы бы рекомендовали нашу модель 5000 — это пять киловатт установочной мощности при 10 метрах в секунду, — говорит Канин. — У нас в России энергопотребление если не на порядок, то на полпорядка выше, чем энергопотребление в Азии, и на порядок больше, чем в Африке. По нашим расчетам, этих 5 киловатт будет достаточно для семьи среднего уровня энергопотребления — освещение, холодильник, компьютер, отопление. Если дом стоит в ветреном районе, на вершине холма, например, то мачта даже не нужна — турбину можно поставить на крышу. Если же ветер во дворе маленький, то мачта понадобится — 20 или 30 метров.
Стандартной оценкой стоимости ветрогенератора является цена за киловатт установочной мощности. Для малых ветряков в Европе считается хорошей цена в 2500-3000 евро, если 2300 — совсем замечательно. Поскольку конкуренция на рынке ветрогенераторов непрерывно растет, то и цена стремится вниз — хотя и не быстро, спрос достаточно большой. В прошлом году в США было установлено порядка 40 тысяч малых установок (до ста киловатт), в Китае — 40 тысяч, в Германии — 15-20 тысяч.
— Мы способны поставить цену ниже нижней планки, — считает Владимир Канин. — За пятикиловаттный ветряк мы прогнозируем цену в районе 10 тысяч долларов.
— В мире впустую простаивают десятки миллионов высоких крыш. Обычные ветряки туда ставить нельзя. А наш — можно! И мы это скоро начнем доказывать на практике, — резюмировал Сергей Дудников.
Ветропарки: защита климата в ущерб живой природе? | Анализ событий в политической жизни и обществе Германии | DW
Угольная электрогенерация, фрекинг для добычи природного газа, бурение нефтяных скважин… Такие темы сегодня все чаще выводят на улицы защитников окружающей среды. Но и возобновляемые источники энергии также могут быть весьма спорными — даже с точки зрения экоактивистов.
Рассказывая о том, что рядом с ее домом планируют вырубить лес под новый ветропарк, Габриэле Нихаус-Юбель (Gabriele Niehaus-Uebel), по ее собственным словам, ощущает бессилие, беспомощность и ярость. Она — лидер гражданской инициативы по борьбе со строительством 20-турбинной ветряной электростанции в федеральной земле Гессен.
Акция в защиту Хамбахского леса
Хотя планы по строительству этого объекта предусматривают вырубку менее двух процентов леса, Габриэль говорит, что это все равно разрушит «ранее нетронутую экосистему». Она сравнивает лесной массив в Гессене с уникальным Хамбахским лесом недалеко от Кельна, уже много лет находящимся под угрозой вырубки: концерн RWE планирует расширить свой угольный карьер. «Экологи и активисты там сражаются за каждое дерево, и об этом постоянно пишут в СМИ. Здесь у нас хотят вырубить 200 квадратных километров — и нигде ни слова об этом не говорят», — возмущается Нихаус-Юбель.
Использование энергии ветра будет расти
Спор по поводу целесообразности строительства ветряных электростанций в Германии идет уже много лет. «У ветроэнергетики всегда было много противников, — говорит генеральный секретарь Всемирной ветроэнергетической ассоциации (WWEA) Штефан Гзенгер (Stefan Gsänger). — И это нормально в условиях любых изменений, происходящих демократическим путем».
Как говорится на сайте объединения, возглавляемого Нихаус-Юбель, эта группа — лишь одна из примерно 1000 гражданских инициатив, выступающих против строительства ветропарков. Между тем ветроэнергетика позволяет частично удовлетворить растущий мировой спрос на электроэнергию. По оценкам экспертов, в ближайшие двадцать лет использование этого источника энергии возрастет на 30 процентов, снижая при этом темпы изменения климата.
У ветропарков есть немало противников
Специалисты WWEA утверждают, что ветряные турбины, введенные в эксплуатацию до конца 2018 года, способны удовлетворять около шести процентов мирового спроса на электроэнергию. При этом, как сообщает Международное агентство по возобновляемым источникам энергии, доля производства энергии на возобновляемых источниках вырастет с 25% в 2017 году до 85% к 2050 году — в основном за счет использования энергии солнца и ветра. И учитывая глобальные масштабы этих изменений, недооценивать влияние ветряных электростанций на окружающую среду было бы крайне недальновидно.
Опасность для птиц и летучих мышей
Особую опасность ветровые турбины представляют для птиц и летучих мышей. У хищных птиц, к примеру, при необычайной остроте зрения, есть и «мертвая зона»: наклоняя при поиске добычи голову вниз, они не видят того, что находится прямо по курсу, и если птица летит в сторону ветрогенератора, столкновение с его лопастями почти неизбежно. А летучие мыши становятся жертвами ветряка, даже с ним не сталкиваясь: приблизившись к нему менее чем на 100 метров, животные попадают в зону низкого давления и погибают от внутреннего кровоизлияния, вызванного резким расширением легких.
На юге Испании — в провинции Эстремадура — из-за ошибок на этапе планирования ветропарки были построены на пути миграций огромного количества перелетных птиц через Гибралтар. Этот факт, говорится в докладе испанского отделения орнитологического сообщества SEO BirdLife, может негативно отразиться на популяциях птиц всего северного полушария и угрожать отдельным редким видам, таким, как испанский королевский орел.
В ряде других исследований, впрочем, утверждается, что от столкновения с ветряными турбинами птицы гибнут гораздо реже, чем от других причин, связанных с деятельностью человека. В США, к примеру, чаще всего птицы становятся жертвами домашних кошек, сотни миллионов птиц ежегодно врезаются в окна высотных зданий и лобовые стекла движущихся автомобилей, десятки миллионов гибнут на линиях электропередач.
Однако испанские орнитологи из SEO BirdLife настаивают на том, что подобные исследования несовершенны, поскольку их выводы основаны на небольших размерах выборки. «Нельзя упускать из виду и тот факт, что даже невысокая смертность может иметь решающее значение для видов, находящихся под угрозой исчезновения, или с очень низким уровнем размножения», — говорится в отчете группы.
Как минимизировать опасность от ветряков для живой природы?
За пределами Европы — в Южной Африке — местное отделение орнитологического сообщества BirdLife недавно отпраздновало победу: благодаря его усилиям, в горном массиве Грут Винтерхоек примерно в 120 км от Кейптауна было отменено строительство ветропарка, появление которого могло бы стать угрозой для редких видов птиц. Южноафриканское отделение координирует работу Целевой группы по вопросам энергетики, созданной в соответствии с Конвенцией ООН по сохранению мигрирующих видов диких животных (CMS). Одной из ее задач является определение территорий, где можно строить объекты возобновляемой энергетики без вреда популяциям птиц.
Многие эксперты сходятся во мнении, что правильное расположение ветропарков и технологические усовершенствования в большинстве случаев позволят минимизировать опасность ветрогенераторов для биологического разнообразия. Довольно эффективным, на их взгляд, может стать выборочное отключение турбин в местах массового скопления перелетных птиц.
Выборочное отключение турбин уменьшает вероятность столкновения птиц с лопастями
Исследование 2012 года, опубликованное в ведущем международном журнале в области биологии и охраны природы Biological Conservation, зафиксировало 50-процентное снижение смертности стервятников на 13 ветряных электростанциях в Кадисе, на юге Испании, после того, как турбины стали выключать в момент приближения к ним птиц. Производство электроэнергии при этом снижалось всего на 0,7 процента в год.
Эксперты Американского института изучения природы ветра (AWWI) проанализировали случаи гибели птиц от столкновения с ветряными турбинами и пришли к выводу, что уменьшение скорости вращения лопастей при низкой скорости ветра может сократить число смертельных случаев на 50-87 процентов.
Кому должны принадлежать ветрогенераторы?
И хотя экологам не всегда удается предотвратить строительство ветропарков и свести к нулю их опасность для птиц и летучих мышей, эксперты убеждены в том, что отношение к ним будет более позитивным, если к дискуссиям, связанным с использованием альтернативных источников энергии, привлекать жителей тех регионов, где устанавливаются ветрогенераторы.
Позитивное отношение к ветровой электрогенерации можно сформировать, если «максимально вовлекать к обсуждению этой темы всех, на чью жизнь влияет строительство ветряных электростанций, и изначально гарантировать им максимально возможные права собственности и преимущества», — уверен генеральный секретарь Всемирной ветроэнергетической ассоциации (WWEA) Штефан Гзенгер.
В развивающихся странах, таких, как, к примеру, Мали, возобновляемые источники энергии играют особенно важную роль в преодолении бедности, и передача их в собственность местным общинам может изменить ситуацию к лучшему, убежден Гзенгер. «У людей была бы не только энергия, но и контроль над ней», — объясняет он.
В одном взгляды сторонника строительства ветряных электростанций Штефана Гзенгера и их активного противника Габриэле Нихаус-Юбель сходятся: если ветрогенераторы передать в собственность людям и позволить им принимать участие в решении всех важных вопросов, связанных с эксплуатацией, это поможет уменьшить негативное воздействие ветряных электростанций на окружающую среду. Ведь люди, которым принадлежит земля, любят и ценят ее больше, чем кто-либо другой.
______________
Подписывайтесь на наши каналы о России, Германии и Европе в | Twitter | Facebook | YouTube | Telegram
Смотрите также:
Альтернативные ландшафты Германии
Дисен-ам-Аммерзе (Бавария) • На прошлой июльской неделе мы опубликовали этот снимок из Баварии в нашей рубрике «Кадр за кадром» — причем, руководствуясь чисто эстетическими соображениями: не смогли пройти мимо столь живописного ландшафта. Публикация этого пейзажа с солнечными батареями вызвала оживленное обсуждение в соцсетях — о пользе и вреде возобновляемых источников энергии.
Альтернативные ландшафты Германии
Лемвердер (Нижней Саксония) • Поэтому сегодня продолжим тему солнечных панелей и ветряков на немецких просторах. На возобновляемые источники в Германии уже приходится более 40 процентов всего объема вырабатываемой электроэнергии.
Альтернативные ландшафты Германии
Ульм (Баден-Вюртемберг) • При этом официальная немецкая статистика в этих данных учитывает энергию ветра, солнца, воды, а также получаемую разными путями из биомассы и органической части домашних отходов.
Альтернативные ландшафты Германии
Якобсдорф (Бранденбург) • В 2018 году на наземные (оншорные) и морские (офшорные) ветроэнергетические установки и парки в Германии пришлась почти половина всего объема произведенной возобновляемой энергии — 41 % и 8 % соответственно.
Альтернативные ландшафты Германии
Пайц (Бранденбург) • Доля солнечных электростанций в этом возобновляемом энергетическом «коктейле» достигла 20 %.
Альтернативные ландшафты Германии
Юнде (Нижняя Саксония) • Ровно столько же, то есть 20 % пришлось на использование биомассы в качестве альтернативного источника электрической энергии. Еще три процента дает использование органической части домашних отходов.
Альтернативные ландшафты Германии
Хаймбах (Северный Рейн — Вестфалия) • Оставшиеся семь процентов возобновляемой энергии приходятся на ГЭС. Возможности для строительства гидроэлектростанций в Германии ограничены, но используются эти ресурсы уже очень давно. Эту электростанцию в регионе Айфель построили в 1905 году. Оснащенная современными турбинами, она исправно работает до сих пор.
Альтернативные ландшафты Германии
Халлиг Хооге (Шлезвиг-Гольштейн) • Для полноты картины приведем расклад по всем источникам в Германии за 2018 год: АЭС — 13,3 %, бурый уголь — 24,1 %, каменный уголь — 14,0 %, природный газ — 7,4 %, ГЭС — 3,2 %, ветер — 20,2%, солнце — 8,5 %, биомасса — 8,3 %.
Альтернативные ландшафты Германии
Гарцвайлер (Северный Рейн — Вестфалия) • В 2038 году в Германии намерены полностью отказаться от сжигания бурого угля для получения электроэнергии. Последний атомный реактор, согласно решению федерального правительства, должны вывести из эксплуатации в 2022 году. В прошлом году на АЭС и бурый уголь пришлось более 37 %, которые необходимо будет чем-то замещать.
Альтернативные ландшафты Германии
Сиверсдорф (Бранденбург) • По данным на конец 2018 года в Германии насчитывалось более 29 тысяч наземных ветроэнергетических турбин. В прибрежных морских водах Германии расположено еще около 1350 ветряков, однако более четырех десятков из них еще не были подключены в энергетическую сеть.
Альтернативные ландшафты Германии
Северное море (Шлезвиг-Гольштейн) • Серьезную проблему представляет необходимость строительства новых энергетических трасс для транспортировки энергии из северных регионов, где ветер дует чаще и сильнее (здесь много таких турбин), к потребителям в западные и южные части Германии.
Альтернативные ландшафты Германии
Лебус (Бранденбург) • Эти планы вызывают протесты жителей в тех густонаселенных регионах, по которым линии электропередач должны проходить. В некоторых местах люди требуют убирать высоковольтные ЛЭП под землю.
Альтернативные ландшафты Германии
Рюген (Мекленбург — Передняя Померания) • Планы установки новых ветроэнергетических турбин в разных регионах все чаще наталкиваются в Германии на сопротивление со стороны населения. Соответствующие судебные иски часто имеют успех, что уже заметно сказывается на годовых показателях роста отрасли — тем более, что подходящие места становится находить все труднее.
Альтернативные ландшафты Германии
Вормс (Рейнланд-Пфальц) • Согласно данным службы Deutsche WindGuard, в 2018 году в Германии было введено в эксплуатацию всего 743 новых ветряка. При этом предыдущий 2017 год оказался рекордным в истории развития этого вида возобновляемой энергии в ФРГ: почти 1849 новых установок.
Альтернативные ландшафты Германии
Дассов (Мекленбург — Передняя Померания) • Всего в Германии сейчас насчитывается около тысячи гражданских инициатив, выступающих против строительства новых ветряков. Их сторонники считают, что эти установки разрушают жизненное пространство птиц и летучих мышей, уродуют ландшафты, а инфразвук и прочий постоянный шум этих установок вредит здоровью людей, живущих по соседству.
Альтернативные ландшафты Германии
Восточная Фризия (Нижняя Саксония) • Эти инициативы требуют, в частности, в качестве альтернативы рассматривать газовые и паровые электростанции, повышать эффективность угольных станций, а также пересмотреть решение парламента и правительства Германии об отказе от атомной энергии.
Альтернативные ландшафты Германии
Зауэрланд (Северный Рейн — Вестфалия) • Представители отрасли обычно указывают на недоказанность негативного влияния инфразвука на здоровье. Что касается гибели птиц из-за ветровых установок, специалисты называют разные цифры, максимум — до 200 тысяч в год в целом по Германии. Для сравнения: в результате столкновений со стеклами окон и фасадов погибает около 18 миллионов птиц в год.
Альтернативные ландшафты Германии
Сиверсдорф (Бранденбург) • Летучих мышей гибнет более 100 тысяч в год (по некоторым оценкам, втрое больше) — не только от столкновений с лопастями, но и из-за травм, получаемых в результате завихрений воздуха, когда они пролетают рядом. Много гибнет во время сезонной миграции. Эксперты требуют учитывать эти факторы — в частности, отключать ветряки в часы особой активности летучих мышей.
Альтернативные ландшафты Германии
Бедбург-Хау (Северный Рейн — Вестфалия) • Правила выбора мест для ветряков регулируются земельными законами. Например, в Северном Рейне — Вестфалии минимальное расстояние до жилых построек составляет 1500 метров, в Тюрингии — 750 метров. В Баварии это расстояние вычисляется по формуле «Высота установки х 10», то есть, например, два километра между жилыми зданиями и двухсотметровым ветряком.
Альтернативные ландшафты Германии
Ренцов (Мекленбург — Передняя Померания) • Дискуссии о развитии возобновляемых источников энергии часто ведутся в Германии эмоционально и будут продолжаться в обозримом будущем. Чтобы повысить готовность населения видеть в окрестностях такие установки, предлагается, в частности, отчислять дополнительную часть доходов конкретным регионам на различные нужные и полезные для местных жителей проекты.
Автор: Максим Нелюбин
В Германии тестируют плавучий ветрогенератор для глубоких морей | Анализ событий в политической жизни и обществе Германии | DW
Сначала озеро, потом Балтийское море, затем тихоокеанское побережье Китая. Таков план испытаний новой технологии для получения возобновляемой энергии с помощью ветра. На севере Германии близ Бремерхафена энергетическая компания EnBW и инженерная фирма Aerodyn Engineering начали тестировать плавучий ветрогенератор. Точнее, его модель в масштабе 1:10. Проект получил название Nezzy2.
EnBW — специалист по морским ветропаркам
EnBW уже имеет немалый опыт в области морской ветроэнергетики. С 2011 года компания эксплуатирует на Балтике первый в Германии коммерческий морской ветропарк, состоящий из 21 ветрогенератора, в 2015 году недалеко от него вошел в строй значительно более крупный парк с 80 ветряками, с января 2020 года еще 87 мощных турбин в двух парках на Северном море обеспечивают «зеленой» электроэнергией статистически 710 тысяч домашних хозяйств.
Канцлер ФРГ Ангела Меркель облетает в 2011 году первый в Германии морской ветропарк Baltic 1
Компания намерена и дальше ускоренно развивать морскую ветроэнергетику, в том числе со своей французской дочерней компанией Valeco, поскольку в Германии на суше установка ветряков все чаще наталкивается на сопротивление местного населения. На море — другая проблема, техническая: ставить на дно ветрогенераторы экономически целесообразно при глубине не более 50 метров. Так что относительно мелкие Балтийское и Северное моря для этих целей подходят, но вот уже на атлантическом побережье Франции с имеющимися технологиями особо не развернешься.
Значит, нужны не стационарные, а плавучие ветряки. Их разработкой уже около десяти лет занимается созданная в 1997 году в городке Рендсбурге на севере Германии фирма Aerodyn Engineering, специализирующаяся на разработке технических решений для ветряков. Тестирование своего предыдущего проекта Nezzy она провела в 2018 году у глубоких тихоокеанских берегов Японии.
Nezzy2 бросит якорь в Китае
И вот теперь — проект Nezzy2, состоящий уже из двух соединенных друг с другом ветряков высотой в 18 метров. Они закреплены на плавающем бетонном фундаменте, который находится чуть ниже поверхности воды, так что со стороны видны только три удерживающих его на нужной глубине «поплавка». Фундамент закреплен на дне шестью якорями.
Стоящую на якорях конструкцию Nezzy2 держат на воде три «поплавка»
Два ветрогенератора делают плавучую конструкцию более стабильной, это доказали испытания модели в масштабе 1:36, успешно проведенные в специальной установке с искусственными волнами в Корке в Ирландии. Начавшийся теперь первый этап испытаний 18-метровой модели проходит в Германии на озере глубиной в 10 метров, что в масштабе 1:1 соответствовало бы 100 метрам. Поскольку здесь нет ни волн, ни течения, то тестируется главных образом работа самих ветрогенераторов.
Затем в течение двух с половиной месяцев модель Nezzy2 собираются испытывать в Балтийском море, после чего конструкцию полностью демонтируют, чтобы в конце 2021 года совместно с китайским партнером начать у берегов КНР испытания конечного варианта плавучего ветрогенератора высотой в 180 метров и общей мощностью в 15 МВт.
Плавучие ветропарки — это уже не фантастика
«Потенциал у новой технологии огромный. Ее можно будет применять в странах и на морских территориях с большими глубинами, что расширит возможности возобновляемой энергетики», — убеждена Ханна Кёниг (Hannah König), возглавляющая в EnBW отдел ветряной и морской техники.
«Мы убеждены, что Nezzy2 позволит мировой ветряной энергетике в будущем производить на море из ветра еще более выгодную электроэнергию», — указывает исполнительный директор Aerodyn Engineering Зёнке Зигфридсен (Sönke Siegfriedsen). Ведь плавучие ветряки будут монтировать на берегу, а потом уже готовую конструкцию просто буксировать на нужную позицию, что существенно дешевле установки посреди моря стационарного ветрогенератора.
Китай активно развивает ВИЭ. Этот морской ветропарк вблизи Шанхая был сооружен более десяти лет назад
Над плавучими ветрогенераторами работают сейчас далеко не только EnBW и Aerodyn Engineering. Наиболее известным проектом является Hywind Scotland — первый в мире плавучий ветропарк из пяти ветряков по 6 МВт, сооруженный в 2017 году в Северном море норвежским энергетическим концерном Equinor у берегов Шотландии. Схожие проекты с разными технологиями имеются в Португалии, Испании, Франции, Японии.
Так что плавающие в относительно глубоких водах Атлантического и Тихого океанов ветряки — это уже не фантастика, а начавшийся завтрашний день. EnBW стремится ускорить его приход, но при этом не забывает про «традиционные» ветропарки. Еще один мощностью в 900 МВт, в котором будет до 100 закрепленных на дне Северного моря башен, компания планирует соорудить к 2025 году.
Смотрите также:
Технологии хранения энергии из возобновляемых источников
Электростанция из аккумуляторов
Как хранить в промышленных масштабах излишки электроэнергии, выработанной ветрогенераторами и солнечными панелями? Соединить как можно больше аккумуляторов! В Германии эту технологию с 2014 года отрабатывают в институте общества Фраунгофера в Магдебурге (фото). По соседству, в Шверине, тогда же заработала крупнейшая в Европе коммерческая аккумуляторная электростанция фирмы WEMAG мощностью 10 МВт.
Технологии хранения энергии из возобновляемых источников
Большие батареи на маленьком острове
Крупнейшие аккумуляторные электростанции действуют в США и странах Азии. А на карибском острове Синт-Эстатиус (Нидерландские Антилы) с помощью этой технологии резко снизили завоз топлива для дизельных электрогенераторов. Днем местных жителей, их около 4 тысяч, электричеством с 2016 года снабжает солнечная электростанция, а вечером и ночью — ее аккумуляторы, установленные фирмой из ФРГ.
Технологии хранения энергии из возобновляемых источников
Главное — хорошие насосы
Гидроаккумулирующие электростанции (ГАЭС) — старейшая и хорошо отработанная технология хранения электроэнергии. Когда она в избытке, электронасосы перекачивают воду из нижнего водоема в верхний. Когда она нужна, вода сбрасывается вниз и приводит в действие гидрогенератор. Однако далеко не везде можно найти подходящий водоем и нужный перепад высот. В Хердеке в Рурской области условия подходящие.
Технологии хранения энергии из возобновляемых источников
Место хранения — норвежские фьорды
Оптимальные природные условия для ГАЭС — в норвежских фьордах. Поэтому по такому кабелю с 2020 года подводная высоковольтная линия электропередачи NordLink длиной в 623 километра и мощностью в 1400 МВт будет перебрасывать излишки электроэнергии из ветропарков Северной Германии, где совершенно плоский рельеф, на скалистое побережье Норвегии. И там они будут храниться до востребования.
Технологии хранения энергии из возобновляемых источников
Электроэнергия превращается в газ
Избытки электроэнергии можно хранить в виде газа. Методом электролиза из обычной воды выделяется водород, который с помощью СО2 превращается в метан. Его закачивают в газохранилища или на месте используют для заправки автомобилей. Идея технологии Power-to-Gas родилась в 2008 году в ФРГ, сейчас здесь около 30 опытно-промышленных установок. На снимке — пилотный проект в Рапперсвиле (Швейцария).
Технологии хранения энергии из возобновляемых источников
Водород в сжиженном виде
Идея Power-to-Gas дала толчок разработкам в разных направлениях. Зачем, к примеру, превращать в метан полученный благодаря электролизу водород? Он и сам по себе отличное топливо! Но как транспортировать этот быстро воспламеняющийся газ? Ученые университета Эрлангена-Нюрнберга и фирма Hydrogenious Technologies разработали технологию его безопасной перевозки в цистернах с органической жидкостью.
Технологии хранения энергии из возобновляемых источников
В чем тут соль?
Соль тут в тех круглых резервуарах, которые установлены посреди солнечной электростанции на краю Сахары близ города Уарзазат в Марокко. Хранящаяся в них расплавленная соль выступает в роли аккумуляторной системы. Днем ее нагревают, а ночью используют накопленное тепло для производства водяного пара, подаваемого в турбину для производства электричества.
Технологии хранения энергии из возобновляемых источников
Каверна в роли подземной батарейки
На северо-западе Германии много каверн — пещер в соляных пластах. Одну из них энергетическая компания EWE и ученые университета Йены превратили в полигон для испытания технологии хранения электроэнергии в соляном растворе, обогащенном особыми полимерами, которые значительно повышают эффективность химических процессов. По сути дела, речь идет о попытке создать гигантскую подземную батарейку.
Технологии хранения энергии из возобновляемых источников
Крупнейший «кипятильник» Европы
Человечество давно уже использует тепло для производства электроэнергии. Возобновляемая энергетика поставила задачу, наоборот, превращать электричество, в том числе и избыточное, в тепло (Power-to-Heat). Строительство в Берлине крупнейшего «кипятильника» Европы мощностью 120 МВт для отопления 30 тысяч домашних хозяйств компания Vattenfall намерена завершить к концу 2019 года.
Технологии хранения энергии из возобновляемых источников
Накопители энергии на четырех колесах
Когда по дорогам мира будут бегать миллионы электромобилей с мощными аккумуляторными батареями, они превратятся в еще один крупный накопитель энергии из возобновляемых источников. Этому поспособствуют умные сети энергоснабжения (Smart grid): они будут стимулировать подзарядку по низким ценам в моменты избытка электричества. (На фото — заправка для электромобилей в Китае).
Автор: Андрей Гурков
как сталь помогает альтернативной энергетике
Мир переходит на чистую энергетику. Энергия ветра сейчас считается одной из самых дешевых по способу производства электроэнергии. По данным Глобального совета по ветроэнергетике (Global Wind Energy Council (GWEC), в прошлом году мощности ветряных электростанций впервые превысили объемы ископаемого топлива на многих развитых и развивающихся рынках.
Последние пять лет ветряная энергетика растет примерно на 50 гигаватт в год. Сегодня все ветроэлектростанции планеты генерируют 591 гигаватт. GWEC ожидает, что еще через пять лет в мире станет больше на 300 гигаватт новых мощностей.
Топ стран-лидеров в ветроэнергетике, 2018 год, GWEC, гигаватты
Номер два в Европе и Украине
Ветроэнергетика – вторая по объему мощностей отрасль энергетики в Европе. Ветропарки Европейского союза вырабатывают около 180 гигаватт энергии. Это почти половина от всей европейской энергетики. По прогнозам ассоциации Wind Europe, в этом году ветроэнергетика может перерасти газовую промышленность. В 2018 году в Европе введены в эксплуатацию установки с ветрогенераторамы мощностью почти 12 гигаватт. Из всех энергетических объектов, построенных в прошлом году, на долю возобновляемых источников энергии приходится 95%. А вот газ, нефть и уголь теряют свои позиции: новые установки по добыче газа и угля в ЕС достигли рекордно низкого уровня.
Каждый год в зеленую энергетику в Европе вкладывают миллиарды евро. 2018 год стал рекордным по финансированию проектов ветроэнергетики: инвестиции составили почти 27 млрд евро. Самые крупные инвесторы – Великобритания и Швеция. Украина с 1,2 млрд евро входит в десятку по объему инвестиций в зеленую энергетику.
Топ стран-лидеров по инвестициям в ветроэнергетику в 2018 году, Wind Europe, млрд евро
В первой половине этого года в Европе построили ветрогенераторы мощностью почти 5 гигаватт. Украина вошла в пятерку самых продвинутых стран.
Топ стран-лидеров по количеству установок ветроэлектростанций, 1-е полугодие 2019 г., Wind Europe, мегаватты
Среди альтернативных источников энергии в Украине ветер пока уступает солнцу. В 2018 году было построено 68 ветропарков общей мощностью 533 мегаватта. Это 22 ветрогенератора, мощность каждого из которых – около 3 мегаватт. На конец июня этого года общие мощности украинских ветроэлектростанций достигли почти 777 мегаватт.
Мегаконструкции из металла
Ветроэлектростанция состоит из нескольких ветрогенераторов, объединенных в одну сеть. Самые большие ветропарки расположены в Китае, Индии и Великобритании. К примеру, в китайской провинции Ганьсу работает целый комплекс ветроэлектростанций мощностью почти 8 гигаватт, который может потягаться с крупнейшими атомными и гидроэлектростанциями.
Ветрогенератор – установка, которая превращает энергию ветра в электрическую. По данным Wind Europe, в среднем мощность одного ветрогенератора колеблется от 2 до 3,6 мегаватт.
Самая мощная турбина ветрогенератора в мире установлена у берегов Шотландии. Диаметр лопастей ветряка составляет 164 метра – больше, чем размах крыльев любого самолета, высота – 191 метр. Мощность установки – 8,8 мегаватт. Ветряной энергии от одного оборота лопастей ветрогенератора хватит для того, чтобы освещать одну квартиру целый день.
Конструкция ветряка весит сотни тонн, его мачта выполняется из толстолистового проката, а фундамент – из арматуры крупных диаметров – 20-32 мм. На один фундамент может уйти от 60 до 130 тонн арматуры. Стальной сплав делает установку прочной и устойчивой к нагрузкам.
Производителям башен и гондол ветроэлектрических установок Метинвест поставляет прокат шириной до 3300 мм и толщиной до 200 мм, произведенный по ведущим мировым стандартам на украинских и европейских заводах компании. Практически весь материал ветрогенератора – это лист конструкционных марок стали с преобладанием класса прочности S355. Больше половины проката проходит ультразвуковой контроль качества, чтобы гарантировать требуемую сплошность материала для дальнейшей сборки. В 2018 году Метинвест поставил 68 тыс. тонн горячекатаного листа для производства башен ветрогенераторов. Большую часть продукции выпустил Trametal, итальянский завод группы.
Метинвест участвует в ветроэнергетических проектах по всему миру. Италия, Испания, Португалия, Германия, Израиль, Турция, Иордания, Египет, США, Украина – это далеко не полный перечень стран, в которых построены или строятся ветропарки из украинской стали.
Ветропарк в Барвице, Польша
Среди клиентов Метинвеста – мировой лидер в отрасли ветроэнергетики, компания Siemens Gamesa. Для строительства ветроэлектростанции в Польше комбинат «Азовсталь» поставил около 3 тысяч тонн толстого листа. Из него субподрядчик проекта, польская компания GSG Towers изготовит ветряные башни.
В этом году специалисты Siemens провели аудит на «Азовстали» и сертифицировали производство комбината. Это значит, что Метинвест стал украинским партнером Siemens и сможет поставлять продукцию и для других проектов компании.
Ветряная электростанция расположится в Барвице, что на северо-западе Польши. Проект включает строительство 14 ветряных турбин мощностью 3 мегаватта каждая. Общая мощность станции – 42 мегаватта. Строительство началось в марте этого года, а ввод ветропарка в эксплуатацию ожидается в феврале 2020 года. Ветроэлектростанция будет генерировать около 112 млн КВтч в год. Этого достаточно, чтобы обеспечить электричеством около 27 тысяч домохозяйств.
Ветропарк на острове Петалас, Греция
В западной Греции продолжается строительство ветроэлектростанции из 24 установок мощностью по 2 мегаватта каждая. Ветропарком будет управлять компания Protergia – энергетическое подразделение Mytilineos, крупнейшего производителя электроэнергии в Греции.
Ветряные турбины в этом проекте изготавливает и монтирует один из крупнейших в мире производителей – датская компания Vestas, которой Метинвест поставил 0,5 тыс. тонн арматуры.
Ветропарки в Украине
На внутреннем рынке ветрогенераторы украинского производства выпускает Краматорский завод тяжелого станкостроения, который совместно с компанией «Фурлендер Виндтехнолоджи» предоставляет полный цикл по производству ветрогенераторов.
Для изготовления ветроэнергетических установок в Украине за последний год Метинвест поставил более 2,5 тыс. тонн горячекатаного толстолистового проката производства «Азовстали».
Ветроэлектростанция вблизи поселка Ясногорка, что возле Славянска, будет состоять из 15 установок. Один ветряк мощностью 4,5 мегаватт сможет обеспечивать электроэнергией около 3,5 тысяч семей. Строительство ветряного парка началось осенью 2018 года. На первом этапе планируется установить три ветрогенератора.
Ветропарк «Очаковский» включает две ветроэлектростанции – Очаковскую и Тузловскую общей мощностью 37,5 мегаватт. Ветропарк расположен на трех полях протяженностью 16 км. Мощности станции хотят увеличить – всего планируется построить 150 ветроэнергетических установок мощностью 375 мегаватт.
В Сибири создали ветрогенератор для нагрева воды без электричества
В лабораториях проблем энергосбережения и термогазодинамики Института теплофизики Сибирского отделения РАН разработали ветрогенератор, который нагревает жидкость, используя тепловую энергию. Как говорят ученые, обычно, чтобы получить теплую воду с использованием ветряка, сначала нужно выработать электричество.
— Устройство, которое спроектировали сибирские ученые, может превращать механическую энергию вращающегося ветряка в тепловую, минуя дополнительные этапы преобразования энергии, — сообщил изданию СО РАН «Наука в Сибири» главный научный сотрудник ИТ Виктор Терехов.
По данным ученых, эффективность ветрогенератора, производящего электричество, не превышает 40 процентов. У новой установки КПД составляет практически 100 процентов.
По словам старшего научного сотрудника ИТ СО РАН Александра Назарова, такие устройства пригодятся в частном доме или на даче.
— Особенно эффективны они будут в местах, куда трудно подвести электричество — вдоль автотрасс, на отдаленных фермах и стойбищах, — говорит ученый.
Экспериментальная установка представляет собой два цилиндра, в каждом из которых есть набор каналов. Система помещается в емкость со специальной вязкой жидкостью. Цилиндры вращаются в противоположные стороны под действием ветряка (в лабораторных условиях его заменяет электрический привод), создавая цилиндрические каналы с взаимно движущимися стенками. Поток жидкости в них становится неоднородным, возникают вихри, которые повышают эффективность получения тепловой энергии. Разогретая во вращающихся цилиндрах жидкость поступает в теплообменник, где передает тепловую энергию воде. В результате получается подогретая вода, которую можно использовать для хозяйственных нужд и отопления помещений. При скорости ветра четыре метра в секунду установка способна нагреть воду до 60 градусов Цельсия примерно за час.
— У нас есть предварительная договоренность насчет создания ветрогенератора с факультетом летательных аппаратов Новосибирского государственного технического университета. Будем надеяться, что разработкой заинтересуются инвесторы, — говорит Александр Назаров.
Справка «РГ»
По данным организации Wind Europe, в прошлом году в Европе с помощью ветрогенераторов было произведено 14 процентов всего электричества. Больше всего — в Дании (41 процент), Ирландии (28 процентов) и Португалии (24 процента). В России на 1 января 2019 года суммарная мощность электростанций, работающих на энергии ветра, составила 0,08 процента от всех электростанций.
Оценка и характеристика ветровых ресурсов
На карте, показанной выше, обозначены районы по всей стране, которые имеют средний коэффициент ветроэнергетики 35% или больше при высоте ступицы турбины 140 метров (459 футов), что соответствует запланированному усовершенствованию турбин. На дополнительной карте указаны области с такой же потенциальной мощностью при высоте ступицы турбины 110 метров (361 фут), что отражает последние достижения в технологии турбин. В отчете Министерства энергетики «Включение ветроэнергетики в национальном масштабе» подтверждается, что ключом к раскрытию потенциала ветровой энергии во всех 50 штатах является доступ к более сильным и устойчивым ветрам, которые встречаются на большей высоте над землей.Узнайте больше о НИОКР, чтобы получить доступ к этому ресурсу на нашей веб-странице по производству ветроэнергетики.
Избранные проекты
Проект улучшения прогнозов ветра
В партнерстве с NOAA Управление ветроэнергетических технологий Министерства энергетики США возглавило проект улучшения прогнозов ветра (WFIP) с использованием целевых наблюдений за ветром и передовых моделей прогнозов и алгоритмов для управления вкладом энергии ветра в электрические сети. На первом этапе проекта, WFIP 1, изучалось влияние улучшенных начальных условий на передовые модели прогнозов, что привело к увеличению точности на 8%.Вторая фаза проекта, WFIP 2, была сосредоточена на атмосферных процессах, влияющих на прогнозы ветра в регионах со сложным рельефом, и полевые работы начались в 2015 году.
Оценка морских ресурсов и условия проектирования
Морская энергетическая отрасль требует точной метеорологической и океанографической информации для оценки энергетического потенциала, экономической целесообразности и инженерных требований объектов морской энергетики. Управление ветроэнергетических технологий работает над удовлетворением этих потребностей посредством распространения данных, совершенствования оборудования и наблюдений, а также разработки инструментов нового поколения.Открытое собрание Министерства энергетики по оценке ресурсов и условиям проектирования стало первым шагом в устранении этих информационных пробелов и помогло определить дальнейший путь для будущих приоритетов.
В качестве последующего шага в рамках программы AWS Truepower была профинансирована разработка национального метеорологического ресурса ветроэнергетики и условий проектирования на базе Интернета, доступного для поиска, Центра данных метеорологического океана для морских возобновляемых источников энергии (USMODCORE). Инвентаризация данных включает ресурсы федеральных агентств, правительств штатов, региональных альянсов, исследовательских институтов, коммерческих проектов и международных организаций.
Кроме того, буи для определения характеристик ветровых ресурсов WindSentinel Министерства энергетики будут предоставлять долгосрочные данные о профиле ветра в море, которые поддержат исследования, необходимые для ускорения использования морской энергии ветра в Соединенных Штатах. Тихоокеанская северо-западная национальная лаборатория Министерства энергетики США развернула плавучие лидарные буи у берегов Вирджиния-Бич, штат Вирджиния, и Атлантик-Сити, штат Нью-Джерси, для сбора данных о погоде и волнах, которые будут играть важную роль как в проектировании ветряных электростанций, так и в обеспечении финансирования проекта.Получите доступ к данным в архиве данных и портале «Атмосфера для электронов» (A2e).
Инициатива от атмосферы к электронам
Низкая производительность ветряных электростанций, которая в настоящее время в некоторых случаях достигает 20%, представляет большие возможности для Управления ветроэнергетических технологий по повышению производительности ветряных электростанций и снижению стоимости ветроэнергетики. Инициатива Министерства энергетики США по исследованию атмосферы в электроны (A2e) направлена на повышение производительности и надежности ветряных электростанций за счет беспрецедентного понимания того, как атмосфера Земли взаимодействует с ветряными электростанциями, и разработки инновационных технологий для максимального извлечения энергии из ветра.
Инициатива A2e предусматривает комплексный портфель исследований для координации и оптимизации достижений в четырех основных областях исследований:
- Производительность предприятия и оценка финансовых рисков
- Наука об атмосфере
- Аэродинамика ветровой установки
- Технология ветряных электростанций нового поколения.
Цель A2e — обеспечить размещение, строительство и эксплуатацию будущих заводов таким образом, чтобы производить наиболее рентабельные электроны — в виде полезной электроэнергии — от ветра, проходящего через установку.Узнайте больше об инициативе A2e.
Федеральное партнерство
Управление ветроэнергетических технологий Министерства энергетики работает с другими правительственными учреждениями, университетами и представителями отрасли для оценки и характеристики ветровых ресурсов США. Затем результаты оценки становятся общедоступными, что позволяет ветроэнергетической отрасли определять области, наиболее подходящие для развития будущих наземных и морских ветроэлектростанций.
Характеристика погодозависимых и океанических возобновляемых источников энергии
С 2011 года Управление энергоэффективности и возобновляемых источников энергии Министерства энергетики действует в соответствии с Меморандумом о взаимопонимании (MOU) с Национальным управлением океанических и атмосферных исследований (NOAA) Министерства торговли по вопросам погоды -Зависимая и океаническая характеристика возобновляемых источников энергии для повышения точности, точности и полноты информации о ресурсах для технологий энергии ветра и воды.Сочетая технический опыт Министерства энергетики с передовыми возможностями NOAA в области предсказания, картирования и прогнозирования океанических и атмосферных условий, два агентства работают над безопасным и эффективным использованием погодозависимых и океанических технологий возобновляемой энергии.
Скоординированное развертывание морской ветровой, морской и гидрокинетической энергии на внешнем континентальном шельфе США
В 2010 году Управление энергоэффективности и возобновляемых источников энергии Министерства энергетики подписало меморандум о взаимопонимании с Бюро управления океанской энергией Министерства внутренних дел о скоординированном развертывании Морская ветровая и морская и гидрокинетическая энергия на Ю.С. Внешний континентальный шельф. Меморандум о взаимопонимании учредил рабочие группы из сотрудников агентства для совместной работы над конкретными тематическими областями, необходимыми для развертывания морских энергетических систем. Рабочая группа по оценке ресурсов и проектным условиям координирует исследовательскую деятельность, чтобы лучше понять основные атмосферные и океанические условия, относящиеся к прибрежным возобновляемым источникам энергии.
Участвующие федеральные партнеры: Министерство энергетики США, Министерство торговли США, Министерство внутренних дел США, U.S. Министерство обороны, Национальное управление по аэронавтике и исследованию космического пространства, Национальный научный фонд и Администрация президента
Малые ветряные электрические системы | Министерство энергетики
Если у вас достаточно ветровых ресурсов в вашем районе и ситуация правильная, небольшие ветровые электрические системы являются одной из самых экономически эффективных домашних систем возобновляемой энергии — с нулевыми выбросами и загрязнением.
Небольшие ветряные электрические системы могут:
- Снизить ваши счета за электроэнергию на 50–90%
- Помогите вам избежать высоких затрат, связанных с продлением линий электропередачи до удаленного места
- Помогите источникам бесперебойного питания выдержать длительные отключения электроэнергии .
Небольшие ветряные электрические системы также могут использоваться для множества других применений, включая перекачку воды на фермах и ранчо.
На наших страницах, посвященных планированию небольшой ветроэнергетической системы, а также об установке и техническом обслуживании небольшой ветровой электрической системы, есть дополнительная информация.
Как работает малая ветровая электрическая система
Ветер создается из-за неравномерного нагрева поверхности Земли солнцем. Ветровые турбины преобразуют кинетическую энергию ветра в чистое электричество.Когда ветер вращает лопасти ветряной турбины, ротор улавливает кинетическую энергию ветра и преобразует ее во вращательное движение, чтобы привести в действие генератор. Большинство турбин имеют автоматические системы управления превышением скорости, чтобы ротор не выходил из-под контроля при очень сильном ветре. В нашей анимации по ветровой энергии вы найдете больше информации о том, как работают ветровые системы, и о преимуществах, которые они предоставляют.
Небольшая ветровая система может быть подключена к электросети через вашего поставщика электроэнергии или может быть автономной (вне сети).Это делает небольшие ветровые электрические системы хорошим выбором для сельских районов, которые еще не подключены к электросети.
Компоненты малой ветроэнергетической системы
Ветряная электрическая система состоит из ветряной турбины, установленной на опоре для обеспечения лучшего доступа к более сильным ветрам. В дополнение к турбине и башне, небольшие ветряные электрические системы также требуют компонентов балансировки системы.
Турбины
Большинство малых ветряных турбин, производимых сегодня, представляют собой машины с горизонтальной осью, направленными против ветра и имеющими две или три лопасти.Эти лезвия обычно изготавливаются из композитного материала, например из стекловолокна.
Рама турбины — это конструкция, на которой крепятся ротор, генератор и хвостовая часть. Количество энергии, которое будет производить турбина, в первую очередь определяется диаметром ее ротора. Диаметр ротора определяет его «рабочую площадь» или количество ветра, перехватываемого турбиной. Хвост удерживает турбину направленной против ветра.
Башни
Поскольку скорость ветра увеличивается с высотой, небольшая ветряная турбина устанавливается на башне.Как правило, чем выше башня, тем больше энергии может производить ветровая система.
Относительно небольшие вложения в увеличенную высоту градирни могут дать очень высокую доходность при производстве электроэнергии. Например, поднять 10-киловаттный генератор с 60-футовой башни до 100-футовой башни требует 10% увеличения общей стоимости системы, но он может производить на 25% больше энергии.
Большинство производителей турбин предоставляют комплекты ветроэнергетических систем, которые включают башни. Выделяют два основных типа башен: самонесущие (отдельно стоящие) и с оттяжками.Существуют также наклонно-опускающиеся башни с оттяжками. В большинстве домашних ветроэнергетических установок используются башни с оттяжками, которые являются наименее дорогими и более простыми в установке, чем самонесущие башни. Однако, поскольку радиус оттяжек должен составлять от половины до трех четвертей высоты башни, башни с оттяжками требуют достаточно места для их размещения.
Хотя наклонно опускающиеся башни более дороги, они предлагают потребителю простой способ обслуживания небольших легких турбин, обычно 10 киловатт или меньше.Опускающиеся башни также можно опускать на землю во время опасных погодных условий, таких как ураганы. Алюминиевые башни склонны к растрескиванию, и их следует избегать.
Баланс компонентов системы
Баланс компонентов системы, которые вам понадобятся для небольшой ветроэнергетической системы — помимо ветряной турбины и башни — будет зависеть от вашего приложения. Например, детали, необходимые для водяной насосной системы, будут сильно отличаться от того, что вам нужно для бытового применения.
Требуемый баланс компонентов системы также будет зависеть от того, является ли ваша система подключенной к сети, автономной или гибридной.
Большинство производителей могут предоставить вам системный пакет, который включает в себя все компоненты, необходимые для вашего конкретного приложения. Для приложения, подключенного к жилой сети, компоненты баланса системы могут включать следующее:
- Контроллер
- Аккумуляторные батареи
- Инвертор (блок кондиционирования питания)
- Проводка
- Электрический выключатель
- Система заземления
- Фундамент под башню.
Amazon.com: Ветряная мельница Automaxx 1500W 24V 60A Ветрогенератор. Самостоятельная установка автоматической и ручной тормозной системы, контроллер MPPT с функцией Bluetooth. : Патио, лужайка и сад
Создание за пределами нашего собственного видения
Благодаря революционным технологическим достижениям, достигнутым нашей командой за годы исследований, мы с гордостью представляем вам универсальную ветряную турбину, которая является небольшой, легкой и достаточно компактной, чтобы ее можно было использовать как в жилых, так и в небольших коммерческих помещениях.Ветряная турбина выдерживает суровые погодные условия, такие как солнечные суровые ультрафиолетовые лучи, проливные дожди и ураганы категории до 3. 3 лезвия из стекловолокна и хвостовая часть обрезаны с точностью до миллиметра, чтобы сделать его легким и работать со 100% эффективностью. Его вращение на 360 градусов позволяет максимально преобразовать кинетическую энергию ветра в полезную электроэнергию с любого направления, в котором дует ветер.
Получайте электричество из воздуха
Ветряные турбины легкие и долговечные, что позволяет собирать и вырабатывать электричество буквально «ветерком».Выработка собственного электричества из ветра с помощью небольших ветряных турбин является полностью чистой, без выбросов и возобновляемой энергией для индивидуальных домов, ферм и малых предприятий. Все наши клиенты производят экологически чистую электроэнергию, сокращают свои счета за электроэнергию и помогают защищать окружающую среду более стильным способом.
Экологичность — это весь «пакет», а не только продукт.
Уменьшите выбросы глобального потепления.Ветряк производит 100% бесплатную воду и загрязнение воздуха. Мы стремимся использовать самые чистые материалы не только для ветряной турбины, но и для ее упаковки, мы обязуемся соблюдать строгие правила компактного дизайна, мы удаляем все ненужные компоненты, чтобы сохранить окружающую среду.
Самая большая ветряная турбина в мире может обеспечивать электроэнергией 20 000 домов каждый год
В связи с растущим спросом на более чистую энергию наблюдается рывок и в развитии ветряных турбин. Всего несколько месяцев назад мы рассказывали вам о ветряной турбине, которая могла приводить в действие дом в течение двух дней с помощью всего лишь одного вращения.Теперь китайская компания по производству экологически чистой энергии представила самую большую в мире ветряную турбину, которая может обеспечивать электроэнергией 20 000 домохозяйств ежегодно.
По оценкам Управления энергетической информации (EIA), стоимость производства энергии на береговых объектах составляет 31 доллар за МВтч (MegaWatthour). Это вполне сопоставимо с солнечными, а также с геотермальными источниками производства энергии. Однако, когда вы строите объект на море, высокие затраты на строительство увеличивают стоимость единицы МВтч до колоссальных 115 долларов.Поскольку страны стремятся снизить затраты на строительство, создание более крупных ветряных турбин, предлагающих более высокую производственную мощность, может оказаться правильным решением.
Гуандун, Китайская компания Mingyang Smart Energy Group представила ветряную турбину мощностью 16 мегаватт (МВт). Имея за плечами 10 гигаватт ветровой энергии, компания вложила свой опыт в создание более крупной версии своих ветряных турбин, которые уже доступны в конфигурациях 5,5 МВт, 6,45 МВт, 7,25 МВт, 8,3 МВт — 11 МВт. .
Турбина мощностью 16 МВт называется MySE 16.0-242 и имеет диаметр 793 фута (242 м). Каждая из его лопастей имеет длину 387 футов (118 м), а турбина имеет площадь около 500 000 квадратных футов (46 000 квадратных метров). По сравнению с его предшественником, mySE 11.0, мощностью 11 МВт, диаметр ротора MySE16 увеличился всего на 19 процентов. Однако, по заявлению компании, выработка электроэнергии увеличилась на 45 процентов.
Ожидается, что каждая турбина будет вырабатывать 80000 МВт электроэнергии в год, чего достаточно для питания 20 000 домашних хозяйств.Кроме того, каждая турбина позволит избежать выброса 1,6 миллиона тонн углекислого газа в течение 25-летнего срока службы, заявили в компании. Исследования и разработки компании показали, что большая турбина по-прежнему имеет небольшую массу. Это позволяет снизить затраты на строительство по сравнению с другими ветряными турбинами в этом сегменте.
Компания также утверждает, что перенесла силовую электронику и трансформатор в гондолу турбины, чтобы облегчить техническое обслуживание. Кроме того, был переработан дизайн гондолы, которая теперь герметична и охлаждается изнутри, а также защищает оборудование от брызг соленой воды, которые его разъедают.Ожидается, что прототип турбины будет развернут в 2022 году и будет либо установлен на морском дне, либо размещен на плавучей базе.
Как и WindCatcher, mySE 16.0 также обеспечивает более высокое производство энергии при меньших габаритах.
Нет, замерзшие ветряные турбины не виноваты в отключении электроэнергии в Техасе
Подпишитесь на The Brief, наш ежедневный информационный бюллетень, который держит читателей в курсе самых важных новостей Техаса.
Замерзшие ветряные турбины в Техасе заставили некоторых консервативных политиков штата заявить во вторник, что штат слишком полагается на возобновляемые источники энергии.Но на самом деле ожидалось, что энергия ветра будет составлять лишь малую часть того, что штат запланировал на зиму.
Совет по надежности электроснабжения Техаса прогнозировал, что 80% зимней мощности сети, или 67 гигаватт, можно будет вырабатывать за счет природного газа, угля и некоторой части ядерной энергии.
Февральская зимняя буря 2021 года
Когда вернется моя вода? Как мне тем временем достать воду?
Мы не знаем.Государственные и городские власти призывают к терпению и просят техасцев, у которых есть проточная вода, вскипятить ее. Примите все необходимые меры, чтобы подготовиться к нескольким дням без воды. Официальные лица в Остине, например, заявили 19 февраля, что восстановление водоснабжения, вероятно, будет многодневным процессом для всего города. Здесь у нас есть некоторые ресурсы, но лучший вариант, чтобы найти бесплатную воду, — это проверить местные СМИ.
Получу ли я большой счет за электроэнергию?
Не надо сразу.Власти Техаса подписали приказ, временно запрещающий поставщикам электроэнергии отправлять счета жителям. Приказ является временной мерой, чтобы дать чиновникам время для решения проблемы резкого роста счетов некоторых жителей. Чиновники также подписали приказ, запрещающий поставщикам коммунальных услуг отключать обслуживание жителей, не оплативших счет. Подробнее читайте здесь.
Как я могу получать обновления?
Подпишитесь на наши новости, отправив текстовое сообщение «привет» на номер 512-967-6919 или посетив эту страницу.
Я был без электричества больше суток. Почему люди называют это откатывающимися отключениями?
Когда 15 февраля в 1:25 утра по московскому времени оператор электросетей штата начал отключать электричество, это планировалось как временная мера на случай экстремальных зимних явлений. Вместо этого некоторые техасцы остаются без электричества намного дольше, сталкиваясь с днями без электричества вместо первоначально запланированных 45 минут. Электросеть была спроектирована так, чтобы пользоваться большим спросом летом, когда техасцы включают дома кондиционеры.Но некоторые источники энергии, питающие сеть летом, отключены зимой. Поэтому, когда техасцы остались дома во время шторма в воскресенье и потребовали рекордное количество электроэнергии, энергосистема штата не выдержала.
Подождите, у нас есть своя электросеть? Почему?
Да, в Техасе есть своя собственная электросеть, управляемая агентством ERCOT, Совет по надежности электроснабжения Техаса.История длинная, но короткая версия такова: в Техасе есть своя собственная сеть, чтобы избежать соблюдения федеральных правил. В 1935 году президент Франклин Д. Рузвельт подписал Закон о федеральной энергетике, согласно которому Федеральная энергетическая комиссия возлагала на Федеральную комиссию по энергетике ответственность за межгосударственные продажи электроэнергии. Но коммунальные предприятия Техаса не пересекают границы штата. ERCOT была образована в 1970 году после крупного отключения электроэнергии на северо-востоке в ноябре 1965 года, и ей было поручено управлять надежностью сети в соответствии с национальными стандартами.Обратите внимание, что не весь Техас находится в одной электросети. Эль-Пасо находится на другой сетке, как и верхний Панхэндл и кусок Восточного Техаса.
Я читал в Интернете, что ветряные турбины — причина того, что мы потеряли электроэнергию. Это правда?
Нет. Потеря энергии ветра составляет лишь часть сокращения генерирующих мощностей, которое привело к отключениям миллионов техасцев.Представитель Совета по надежности электроснабжения Техаса заявил 16 февраля, что 16 гигаватт возобновляемой энергии, в основном ветровой, отключены. Почти вдвое больше, 30 гигаватт, было потеряно из-за источников тепла, включая газ, уголь и ядерную энергию. «Техас — это газовый штат», — сказал Майкл Уэббер, профессор энергетических ресурсов Техасского университета в Остине. «Газ сейчас терпит крах самым зрелищным образом».
Как мне согреться? Как я могу помочь другим?
Национальная метеорологическая служба призывает людей закрывать шторы и шторы, по возможности собираться в одной комнате и закрывать двери для других, а также засовывать полотенца в щели под дверями.Носите свободные слои теплой легкой одежды. Закуски и потребление жидкости помогут согреть тело. В некоторых городах есть центры обогрева и транспорт по мере необходимости — местные ресурсы можно найти здесь. Если у вас есть ресурсы или вы можете сделать финансовые пожертвования, найдите здесь некоммерческие организации, которые помогают людям.
- Посмотреть больше материалов
Представитель Совета по надежности электроснабжения Техаса заявил во вторник днем, что 16 гигаватт возобновляемой энергии, в основном ветровой, отключены.Почти вдвое больше, 30 гигаватт, было потеряно из-за источников тепла, включая газ, уголь и ядерную энергию.
К среде эти цифры изменились, поскольку все больше операторов изо всех сил пытались работать в холодную погоду: всего 45 гигаватт были отключены, из которых 28 гигаватт от тепловых источников и 18 гигаватт от возобновляемых источников, заявили представители ERCOT.
«Техас — газовый штат», — сказал Майкл Уэббер, профессор энергетических ресурсов Техасского университета в Остине.
В то время как Уэббер сказал, что в энергетическом кризисе виноваты все источники энергии Техаса, газовая промышленность производит значительно меньше энергии, чем обычно.
«Газ сейчас терпит крах, — сказал Уэббер.
Дэн Вудфин, старший директор ERCOT, во вторник поддержал это мнение.
«Похоже, что большая часть поколения, которое сегодня отключилось от сети, в основном связано с проблемами в системе природного газа», — сказал он во вторник во время телефонного разговора с журналистами.
Тем не менее, некоторые обвиняют ветроэнергетику.
«Это то, что происходит, когда вы заставляете сеть частично полагаться на ветер в качестве источника энергии», — написал в Твиттере во вторник во второй половине дня представитель США Дэн Креншоу из штата Хьюстон. «Когда погодные условия становятся плохими, как это было на этой неделе, периодические возобновляемые источники энергии, такие как ветер, перестают быть там, когда вам это нужно».
Далее он обратил внимание на остановку ядерного реактора в Бэй-Сити из-за холода и, наконец, дошел до того, что эксперты по энергетике считают самым большим виновником, написав: «Низкое снабжение природного газа: ERCOT планировал на 67 ГВт из природного газа / угля. , но в сети можно было получить только 43 ГВт.У нас не закончился природный газ, но у нас закончилась возможность получать природный газ. На трубопроводах в Техасе не используется холодная изоляция, поэтому все замерзало ».
Комиссар по сельскому хозяйству Сид Миллер, известный своими публикациями правых в Facebook, которые в прошлом распространяли дезинформацию и усиливали теории заговора, также опубликовал в Facebook неприукрашенный обзор ветроэнергетики: «Мы никогда не должны строить еще одну ветряную турбину в Техасе. «
В другом посте Миллер был еще более откровенен, но также вводил в заблуждение.«К травме добавилось оскорбление: эти уродливые ветряные турбины — одна из основных причин отключения электричества», — написал он. «Разве это не иронично? … Вот вам и неприглядные и непродуктивные, лишающие энергии памятники Обаме. По крайней мере, они показывают нам, где живут идиоты ».
В то время как скептики ветроэнергетики утверждали, что неделя заморозки означает, что на ветровую энергию нельзя положиться, ветровые турбины, как и газовые электростанции, могут быть «подготовлены к зиме» или модифицированы для работы при очень низких температурах.Эксперты говорят, что многие электрогенераторы Техаса не инвестировали необходимые средства для предотвращения сбоев в работе оборудования, поскольку в штате редко случаются сильные зимние штормы.
По оценкам, из общей зимней мощности сети около 80%, или 67 гигаватт, может быть произведено за счет природного газа, угля и некоторой ядерной энергии. Ожидалось, что только 7% от прогнозируемой зимней мощности ERCOT, или 6 гигаватт, будет приходиться на различные источники ветровой энергии по всему штату.
Производство природного газа в штате резко сократилось из-за морозных условий, что затруднило получение электростанциями топлива, необходимого для их работы. По словам экспертов, на электростанциях, работающих на природном газе, обычно не так много топлива. Вместо этого заводы полагаются на постоянный поток природного газа из трубопроводов, которые проходят через штат от таких областей, как Пермский бассейн, добывающий нефть и природный газ, в Западном Техасе до крупных центров спроса, таких как Хьюстон и Даллас.
ГубернаторГрег Эбботт уточнил, что источники ископаемого топлива вносят свой вклад в проблемы с энергосистемой, описывая ситуацию в понедельник днем.
«Возможности некоторых компаний, производящих электроэнергию, были заморожены. Это включает в себя генераторы природного газа и угля », — написал он в твиттере.
Хизер Зичал, генеральный директор отраслевой группы American Clean Power Association, заявила, что противники возобновляемой энергии пытались отвлечь внимание от сбоев в других частях системы и замедлить «переход к экологически чистой энергии будущего».”
«Позорно видеть, как давние противники чистой власти — которые нападают на нее, идет ли дождь, идет снег или светит солнце — участвуют в политически оппортунистической шараде, вводя американцев в заблуждение, продвигая программу, не имеющую ничего общего с восстановлением власти. сообществам Техаса », — сказала она.
Мэтью Уоткинс предоставил репортаж.
Раскрытие информации: Facebook и Техасский университет в Остине оказывали финансовую поддержку The Texas Tribune, некоммерческой, непартийной новостной организации, которая частично финансируется за счет пожертвований членов, фондов и корпоративных спонсоров.Финансовые спонсоры не играют никакой роли в журналистике Tribune. Здесь вы найдете их полный список.
Хорошая вибрация: безлопастные турбины могут принести энергию ветра в ваш дом | Возобновляемая энергия
Гигантские ветряные электростанции, расположенные вдоль холмов и береговых линий, — не единственный способ использовать силу ветра, говорят пионеры зеленой энергетики, которые планируют заново изобрести энергию ветра, отказавшись от необходимости в башнях турбин, лопастях и даже ветре.
«Мы не против традиционных ветряных электростанций», — говорит Давид Яньес, изобретатель Vortex Bladeless.Его стартап из шести человек, расположенный недалеко от Мадрида, впервые разработал конструкцию турбины, которая может использовать энергию ветра без широких белых лопастей, которые считаются синонимом энергии ветра.
Дизайн недавно получил одобрение государственной энергетической компании Норвегии Equinor, которая включила Vortex в список 10 самых интересных стартапов в энергетическом секторе. Equinor также предложит поддержку в развитии стартапов в рамках своей программы технического акселератора.
Безлопастные турбины стоят на высоте 3 метра и представляют собой цилиндр с закругленной вершиной, закрепленный вертикально с помощью упругого стержня.Неподготовленному глазу кажется, что он качается взад и вперед, как игрушку на приборной панели автомобиля. На самом деле он разработан, чтобы колебаться в пределах диапазона ветра и генерировать электричество от вибрации.
Это уже вызвало недоумение на форуме Reddit, где турбину сравнивали с гигантской вибрирующей секс-игрушкой или «скайбратором». Безошибочно фаллический дизайн собрал на сайте более 94 000 оценок и 3500 комментариев. Самый популярный комментарий предполагает, что подобное устройство может быть найдено в ящике комода вашей матери.Он получил 20 000 положительных оценок пользователей Reddit.
«Наша технология обладает различными характеристиками, которые могут помочь заполнить пробелы, в которых традиционные ветряные электростанции могут не подходить», — говорит Яньес.
Эти пробелы могут включать городские и жилые районы, где влияние ветряной электростанции было бы слишком большим, а пространство для ее строительства было бы слишком маленьким. Он отражает ту же тенденцию к установке небольших локальных генераторов энергии, что помогло домам и компаниям по всей стране сэкономить на счетах за электроэнергию.
«Это могло быть ответом ветровой энергии на домашние солнечные панели», — говорит Яньес.
«Они хорошо дополняют друг друга, потому что солнечные панели производят электричество в течение дня, а скорость ветра, как правило, выше ночью», — говорит он. «Но главное преимущество технологии заключается в снижении ее воздействия на окружающую среду, визуального воздействия, а также затрат на эксплуатацию и техническое обслуживание турбины».
Турбина не представляет опасности для миграций птиц или дикой природы, особенно при использовании в городских условиях.Для людей, живущих или работающих поблизости, турбина будет создавать шум с частотой, практически не обнаруживаемой людьми.
«Сегодня турбина небольшая и вырабатывает небольшое количество электроэнергии. Но мы ищем промышленного партнера, который расширил бы наши планы до 140-метровой турбины с мощностью 1 мегаватт », — говорит Яньес.
Vortex — не единственный стартап, который надеется заново изобрести энергию ветра. Alpha 311, начавшаяся в садовом сарае в Уитстабле, Кент, начала производство небольшой вертикальной ветряной турбины, которая, по ее утверждению, может вырабатывать электричество без ветра.
Двухметровая турбина, сделанная из переработанного пластика, предназначена для установки на существующие уличные фонари и вырабатывает электричество, поскольку проезжающие машины вытесняют воздух. Независимое исследование, проведенное по заказу компании, показало, что каждая турбина, установленная вдоль автомагистрали, может вырабатывать столько же электроэнергии, сколько 20 квадратных метров солнечных панелей, что более чем достаточно, чтобы держать уличный фонарь включенным, а также обеспечивать питание местной энергосистемы.
Уменьшенная версия турбины высотой менее 1 метра будет установлена на O2 Arena в Лондоне, где она поможет вырабатывать чистую электроэнергию для 9 миллионов человек, которые посещают развлекательные заведения в течение обычного года.
«Хотя наши турбины можно разместить где угодно, оптимальное расположение — рядом с шоссе, где они могут быть встроены в существующую инфраструктуру. Нет необходимости что-либо копать, так как они могут быть прикреплены к уже имеющимся осветительным колоннам и использовать существующие кабели для непосредственного ввода в сеть », — говорит Майк Шоу, представитель компании. «Площадь небольшая, а автомагистрали — не самое красивое место».
Пожалуй, наиболее амбициозным отклонением от стандартной ветряной турбины стал немецкий стартап SkySails, который надеется использовать бортовую конструкцию для использования энергии ветра прямо с неба.
SkySails производит большие полностью автоматизированные воздушные змеи, предназначенные для полета на высоте 400 метров, чтобы уловить силу высокогорного ветра. Во время подъема кайт тянет за трос, привязанный к лебедке и генератору на земле. Воздушный змей вырабатывает электричество, когда он поднимается в небо, и, будучи полностью разобранным, использует только часть генерируемого электричества, чтобы вернуться к земле.
Стефан Рэйдж, исполнительный директор SkySails, говорит, что бортовые ветроэнергетические системы означают «минимальное воздействие на людей и окружающую среду … Системы работают очень тихо, практически не оказывают видимого воздействия на ландшафт и почти не отбрасывают тень», он добавляет.
Сегодня проект может генерировать максимальную мощность от 100 до 200 киловатт, но новое партнерство с немецкой энергетической фирмой RWE может увеличить потенциальную мощность с киловатт до мегаватт. Представитель RWE сказал, что пара в настоящее время ищет идеальное место для запуска воздушных змеев в сельской местности Германии.
Как работает ветряная турбина?
Что такое ветряная турбина?
Ветряная турбина — это самая современная версия ветряной мельницы. Проще говоря, он использует силу ветра для производства электричества.Наиболее заметны большие ветряные турбины, но вы также можете купить небольшую ветряную турбину для индивидуального использования, например, для обеспечения энергией каравана или лодки.
Что такое ветряная электростанция?
Ветряная электростанция — это группа ветряных турбин. Довольно впечатляет мысль о том, что электричество, которое так сильно влияет на нашу жизнь — от зарядки наших телефонов до того, чтобы мы могли приготовить чашку кофе и, все чаще, заправлять наши автомобили — могло начаться с простого порыва ветра. .
Как работает ветряная турбина?
Сначала давайте начнем с видимых частей ветряной электростанции, которые мы все привыкли видеть — этих высоких белых или бледно-серых турбин.Каждая из этих турбин состоит из набора лопаток, коробки рядом с ними, называемой гондолой, и вала. Ветер — а это может быть просто легкий ветерок — заставляет лопасти вращаться, создавая кинетическую энергию. Вращающиеся таким образом лопасти также заставляют вращаться вал в гондоле, а генератор в гондоле преобразует эту кинетическую энергию в электрическую.
Что происходит с электричеством, вырабатываемым ветряной турбиной?
Для подключения к национальной сети электрическая энергия затем пропускается через трансформатор на объекте, который увеличивает напряжение до уровня, используемого в национальной электроэнергетической системе.Именно на этом этапе электричество обычно направляется в передающую сеть Национальной энергосистемы, готовую к передаче, чтобы в конечном итоге ее можно было использовать в домах и на предприятиях. В качестве альтернативы, ветряная электростанция или отдельная ветряная турбина могут вырабатывать электроэнергию, которая используется частным образом отдельными лицами или небольшими группами домов или предприятий.
Почему ветряки обычно белые или бледно-серые?
Ветряные турбины обычно бывают белыми или очень бледно-серыми — идея состоит в том, чтобы сделать их визуально ненавязчивыми, насколько это возможно.Обсуждается, следует ли их перекрашивать в другие цвета, особенно в зеленый, в некоторых условиях, чтобы помочь им лучше вписаться в окружающую среду.
Насколько сильным должен быть ветер для работы ветряной турбины?
Ветровые турбины могут работать при любых скоростях ветра — от очень слабого до очень сильного. Они генерируют около 80% времени, но не всегда на полную мощность. При очень сильном ветре они отключаются, чтобы предотвратить повреждение.
Где расположены ветряные электростанции?
Ветряные электростанции, как правило, располагаются в самых ветреных местах, чтобы максимально использовать энергию, которую они могут производить — вот почему вы с большей вероятностью увидите их на склонах холмов или на побережье.Ветряные электростанции, расположенные в море, называются оффшорными ветряными электростанциями, а расположенные на суше — наземными ветряными фермами.
Где была первая ветряная турбина и первая ветряная электростанция?
Самая первая ветряная турбина, вырабатывающая электричество, была создана профессором Джеймсом Блайтом в своем загородном доме в Шотландии в 1887 году. Она была 10-метровой высоты и имела парусину.
Первая в мире ветряная электростанция открылась в Нью-Гэмпшире в США в 1980 году.
Вредны ли ветряные электростанции для птиц?Дело в том, что изменение климата представляет собой самую серьезную долгосрочную угрозу для птиц и других диких животных.А возобновляемые источники энергии, ключевым компонентом которых являются ветряные турбины, играют важную роль в сокращении парниковых газов .
Королевское общество защиты птиц Великобритании ( RSPB ) признает эту более широкую картину, заявляя: «Переход на возобновляемые источники энергии сейчас, а не через 10 или 20 лет, необходим, если мы хотим стабилизировать выбросы парниковых газов в атмосфера на безопасном уровне ».
Разработчики ветряных электростанций работают в тесном сотрудничестве с RSPB и местными экологическими группами в рамках процесса консультаций по выбору ветряных электростанций, чтобы продолжить рост наземной и морской ветроэнергетики, сбалансировав любой потенциальный вред птицам из-за потери среды обитания, нарушения и столкновений. .
В отчете США сделан вывод о том, что влияние энергии ветра на популяции птиц относительно невелико по сравнению с падением жертвой кошек и столкновениями с высотными зданиями.