Виды электромагнитного излучения таблица – Электромагнитное излучение: виды, источники, влияние и защита

Содержание

Обобщающий урок «Шкала электромагнитных излучений»

Цель урока: обеспечить в ходе урока повторение основных законов, свойств электромагнитных волн;

Образовательная: Систематизировать материал по теме, осуществить коррекцию знаний, некоторое  ее углубление;

Развивающая: Развитие устной речи учащихся,  творческих навыков учащихся, логики, памяти; познавательных способностей;

Воспитательная: Формировать интерес учащихся к изучению физики. воспитывать аккуратность  и навыки рационального использования своего  времени;

Тип урока: урок повторения и коррекции знаний;

Оборудование :  компьютер, проектор, презентация «Шкала электромагнитных излучений», диск « Физика. Библиотека наглядных пособий».

Ход урока:

1. Объяснение нового материала.

1. Мы знаем, что длина электромагнитных волн бывает самой различной: от значений порядка 1013 м (низкочастотные колебания) до 10 -10 м (

g- лучи). Свет составляет ничтожную часть широкого спектра электромагнитных волн. Тем не менее,  именно при изучении этой малой части спектра были открыты другие излучения с необычными свойствами.
   2.  Принято выделять низкочастотное излучение, радиоизлучение, инфракрасные лучи, видимый свет, ультрафиолетовые лучи, рентгеновские лучи и g-излучение. Со всеми этими излучениями, кроме g-излучения, вы уже знакомы. Самое коротковолновое g-излучение испускают атомные ядра.
3. Принципиального различия между отдельными излучениями нет. Все они представляют собой электромагнитные волны, порождаемые заряженными частицами. Обнаруживаются электромагнитные волны, в конечном счете, по их действию на заряженные частицы. В вакууме излучение любой длины волны распространяется со скоростью 300 000 км/с. Границы между отдельными областями шкалы излучений весьма условны.
  4.  Излучения различной длины волны отличаются друг от друга по способу их получения (излучение антенны, тепловое излучение, излучение при торможении быстрых электронов и др.) и методам регистрации.
   5.  Все перечисленные виды электромагнитного излучения порождаются также космическими объектами и успешно исследуются с помощью ракет, искусственных спутников Земли и космических кораблей. В первую очередь это относится к рентгеновскому и g-излучениям, сильно поглощаемом атмосферой.
   6.   По мере уменьшения длины волны количественные различия в длинах волн приводят к существенным качественным различиям.
7. Излучения различной длины волны очень сильно отличаются друг от друга по поглощению их веществом. Коротковолновые излучения (рентгеновское и особенно g-лучи) поглощаются слабо. Непрозрачные для волн оптического диапазона вещества прозрачны для этих излучений. Коэффициент отражения электромагнитных волн также зависит от длины волны. Но главное различие между длинноволновым и коротковолновым излучениями в том, что
коротковолновое излучение обнаруживает свойства частиц.

Обобщим знания о волнах и  запишем все виде таблиц. 

1. Низкочастотные колебания

  Низкочастотные колебания
Длина волны(м) 1013  —  105
Частота(Гц) 3· 10 -3  — 3  ·10 3
Энергия(ЭВ) 1 – 1,24 ·10 -10
Источник Реостатный альтернатор, динамомашина,
Вибратор Герца,
Генераторы в электрических сетях (50 Гц)
Машинные генераторы повышенной ( промышленной) частоты ( 200 Гц)
Телефонные сети ( 5000Гц)
Звуковые генераторы ( микрофоны, громкоговорители)
Приемник  Электрические приборы и двигатели
История открытия Лодж ( 1893 г.), Тесла ( 1983 )
 Применение Кино, радиовещание( микрофоны, громкоговорители)

2. Радиоволны

 

   Радиоволны
Длина волны(м)
  10 5  —  10 -3
Частота(Гц) 3 ·103 — 3 ·10 11
Энергия(ЭВ) 1,24 ·10-10  — 1,24 · 10 -2
Источник  Колебательный контур
Макроскопические вибраторы
Приемник Искры в зазоре приемного вибратора
Свечение газоразрядной трубки, когерера
История открытия  Феддерсен ( 1862 г.), Герц ( 1887 г.), Попов , Лебедев, Риги
 Применение Сверхдлинные— Радионавигация, радиотелеграфная связь,     передача метеосводок       
Длинные – Радиотелеграфная и радиотелефонная связь,    радиовещание, радионавигация
Средние— Радиотелеграфия и радиотелефонная связь радиовещание, радионавигация
Короткие— радиолюбительская связь
УКВ— космическая радио связь
ДМВ— телевидение, радиолокация, радиорелейная связь, сотовая телефонная связь
СМВ- радиолокация, радиорелейная связь, астронавигация, спутниковое телевидение
ММВ— радиолокация

  Инфракрасное излучение
Длина волны(м) 2 ·10 -3   — 7,6· 10 -7
Частота(Гц)
3 ·1011  — 3 ·10 14
Энергия(ЭВ) 1,24· 10 -2 – 1,65
Источник Любое нагретое тело: свеча, печь, батарея водяного отопления, электрическая лампа накаливания
Человек излучает электромагнитные  волны длиной 9 10 -6 м
Приемник Термоэлементы, болометры, фотоэлементы, фоторезисторы, фотопленки
История открытия  Рубенс и Никольс ( 1896 г.), 
Применение В криминалистике, фотографирование земных объектов в тумане и темноте, бинокль и прицелы для стрельбы в темноте,  прогревание тканей живого организма ( в медицине), сушка древесины и окрашенных кузовов автомобилей, сигнализация при охране помещений, инфракрасный телескоп,

4. Видимое излучение

   Видимое излучение
Длина волны(м) 6,7· 10-7  — 3,8 ·10 -7
Частота(Гц) 4·  1014  — 8· 1014
Энергия(ЭВ) 1,65 – 3,3 ЭВ
Источник  Солнце, лампа накаливания, огонь
Приемник Глаз, фотопластинка, фотоэлементы, термоэлементы
История открытия Меллони
 Применение Зрение
Биологическая жизнь

5. Ультрафиолетовое излучение

  Ультрафиолетовое излучение
Длина волны(м)   3,8 10 -7  —  3 ·10 -9
Частота(Гц) 8 ·1014  —  10 17
Энергия(ЭВ) 3,3 – 247,5 ЭВ
Источник   Входят в состав солнечного света
Газоразрядные лампы с трубкой из кварца
Излучаются всеми  твердыми телами , у которых температура больше 1000 ° С, светящиеся ( кроме ртути)
Приемник  Фотоэлементы,
Фотоумножители,
Люминесцентные вещества
История открытия Иоганн Риттер, Лаймен
 Применение Промышленная электроника и автоматика,
Люминисценнтные лампы,
Текстильное производство
Стерилизация воздуха

6. Рентгеновское излучение

  Рентгеновское излучение
Длина волны(м)    10 -9  —  3 ·10 -12
Частота(Гц)
3 ·1017  — 3 ·10 20
Энергия(ЭВ) 247,5 – 1,24 ·105 ЭВ
Источник Электронная рентгеновская трубка ( напряжение на аноде – до 100 кВ. давление в баллоне – 10-3 – 10-5 н/м2, катод – накаливаемая нить . Материал анодов W,Mo, Cu, Bi, Co, Tl и др.
Η = 1-3%,  излучение – кванты большой энергии)
Солнечная корона
Приемник Фотопленка,
Свечение некоторых кристаллов
История открытия В. Рентген , Милликен
 Применение Диагностика и лечение заболеваний ( в медицине), Дефектоскопия ( контроль внутренних структур, сварных швов)

7. Гамма — излучение

  Гамма — излучение
Длина волны(м)   3,8 ·10 -11  — меньше
Частота(Гц) 8· 1014  —   больше
Энергия(ЭВ) 9,03 ·103 – 1, 24 ·1016 ЭВ
Источник Радиоактивные атомные ядра, ядерные реакции, процессы превращения вещества в излучение
Приемник счетчики
История открытия  
 Применение Дефектоскопия;
Контроль технологических процессов;
Терапия и диагностика в медицине

Вывод
Вся шкала электромагнитных волн является свидетельством того, что все излучения обладают одновременно квантовыми и волновыми свойствами. Квантовые и волновые свойства в этом случае не исключают, а дополняют друг друга. Волновые свойства ярче проявляются при малых частотах и менее ярко — при больших. И наоборот, квантовые свойства ярче проявляются при больших частотах и менее ярко — при малых. Чем мень

urok.1sept.ru

Электромагнитное излучение: виды, влияние, характеристики, применение

Электромагнитное излучение 3 Электромагнитное излучение существует ровно столько, сколько живет наша Вселенная. Оно сыграло ключевую роль в процессе эволюции жизни на Земле. По факту, это возмущение состояние электромагнитное поля, распространяемого в пространстве.

 Характеристики электромагнитного излучения

Любую электромагнитную волну описывают с помощью трех характеристик.

1. Частота.

2. Поляризация.

3. Длина.

Поляризация – одна из основных волновых атрибутов. Описывает поперечную анизотропию электромагнитных волн. Излучение считается поляризованным тогда, когда все волновые колебания происходят в одной плоскости.

Это явление активно используют на практике. Например, в кино при показе 3D фильмов.

С помощью поляризации очки IMAX разделяют изображение, которое предназначено для разных глаз. Электромагнитное излучение 4

Частота – число гребней волны, которые проходят мимо наблюдателя (в данном случае – детектора) за одну секунду. Измеряется в герцах.

Длина волны – конкретное расстояние между ближайшими точками электромагнитного излучения, колебания которых происходят в одной фазе.

Электромагнитное излучение может распространяться практически в любой среде: от плотного вещества до вакуума.

Скорость распространения в вакууме равна 300 тыс. км за секунду.

Интересное видео о природе и свойствах ЭМ волн смотрите в видео ниже:

Виды электромагнитных волн

Все электромагнитное излучение делят по частоте. Электромагнитное излучение 2

1. Радиоволны. Бывают короткими, ультракороткими, сверхдлинными, длинными, средними.

Длина радиоволн колеблется от 10 км до 1 мм, а частота от 30 кГц до 300 ГГц.

 Их источниками может быть как деятельность человека, так и различные естественные атмосферные явления.

2. Инфракрасное излучение. Длина волны лежит в пределах 1мм — 780нм, а частота может доходить до 429 ТГц. Инфракрасное излучение еще называют тепловым. Основа всей жизни на нашей планете.

3. Видимый свет. Длина 400 — 760/780нм. Соответственно частота колеблется в пределах 790-385 ТГц. Сюда относят весь спектр излучения, которое можно увидеть человеческим глазом.

4. Ультрафиолет. Длина волны меньше, чем в инфракрасного излучения.

Может доходить до 10 нм. Частота таких волн очень большая – порядка 3х10^16 Гц.

5. Рентгеновские лучи. частота волны 6х10^19 Гц, а длина порядка 10нм — 5пм.

6. Гамма волны. Сюда относят любое излучение, частота которого больше, чем в рентгеновских лучах, а длина – меньше. Источником таких электромагнитных волн являются космические, ядерные процессы.

Сфера применения

Где-то начиная с конца XIX столетия, весь человеческий прогресс был связан с практическим применением электромагнитных волн.

Первое о чем стоит упомянуть – радиосвязь. Она дала возможность людям общаться, даже если они находились далеко друг от друга.

Спутниковое вещание, телекоммуникации – являются дальнейшим развитием примитивной радиосвязи.

Именно эти технологии сформировали информационный облик современного общества.

Источниками электромагнитного излучения следует рассматривать как крупные промышленные объекты, так и различные линии электропередач.

Электромагнитные волны активно используются в военном деле (радары, сложные электрические устройства). Также без их применения не обошлась и медицина. Для лечения многих болезней могут использовать инфракрасное излучение.

Рентгеновские снимки помогают определить повреждения внутренних тканей человека.

С помощью лазеров проводят ряд операций, требующих ювелирной точности. Электромагнитное излучение 1

Важность электромагнитного излучения в практической жизни человека сложно переоценить.

Советское видео о электромагнитном поле:

Возможное негативное влияние на человека

Несмотря на свою полезность, сильные источники электромагнитного излучения могут вызывать такие симптомы:

• усталость;

• головную боль;

• тошноту.

Чрезмерное воздействие некоторых видов волн вызывают повреждения внутренних органов, центральной нервной системы, мозга. Возможны изменения в психике человека.

Интересное виде о влиянии ЭМ волн на человека:

Чтобы избежать таких последствий практически во всех странах мира действуют стандарты, регулирующие электромагнитную безопасность. Для каждого типа излучений существуют свои регулирующие документы (гигиенические нормы, нормы радиационной безопасности). Влияние электромагнитных волн на человека до конца не изучено, поэтому ВОЗ рекомендует минимизировать их воздействие.

pue8.ru

шкала и виды, влияние на человека, защита от от ЭМИ

Что такое электромагнитное излучение?

Электромагнитное излучение – это колебания электрического и магнитного полей. Скорость распространения в вакууме равна скорости света (около 300 000 км/с). В других средах скорость распространения излучения меньше.

Электромагнитное излучение классифицируется по частотным диапазонам. Границы между диапазонами весьма условны, в них нет резких переходов.

  • Видимый свет. Это самый узкий диапазон во всем спектре. Человек может воспринимать только его. Видимый свет сочетает в себе цвета радуги: красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый. За красным цветом находится инфракрасное излучение, за фиолетовым – ультрафиолетовое, но они уже не различимы человеческим глазом.

Что такое электромагнитное излучение и как оно влияет на человека

Что такое электромагнитное излучение и как оно влияет на человека

Волны видимого света очень короткие и высокочастотные. Длина таких волн – одна миллиардная часть метра или один миллиард нанометров. Видимый свет от Солнца – своеобразный коктейль, в котором смешаны три основных цвета: красный, желтый и синий.

  • Ультрафиолетовое излучение – часть спектра между видимым светом и рентгеном. Ультрафиолетовое излучение используется для создания световых эффектов на сцене театра, дискотеках; банкноты некоторых стран содержат защитные элементы, видимые только при ультрафиолете.
  • Инфракрасное излучение является частью спектра между видимым светом и короткими радиоволнами. Инфракрасное излучение – это скорее тепло, чем свет: каждое нагретое твердое или жидкое тело испускает непрерывный инфракрасный спектр. Чем выше температура нагревания, тем короче длина волны и выше интенсивность излучения.
  • Рентгеновское излучение (рентген). Волны рентгеновского излучения обладают свойством проходить сквозь вещество и не поглощаться слишком сильно. Видимый свет такой способностью не обладает. Благодаря рентгену некоторые кристаллы могут светиться.
  • Гамма-излучение – это наиболее короткие электромагнитные волны, которые проходят сквозь вещество без поглощения: они могут преодолеть однометровую стену из бетона и свинцовую преграду толщиной в несколько сантиметров.

ВАЖНО! Необходимо избегать рентгеновского и гаммы-излучений, так как они представляют для человека потенциальную опасность.

Шкала электромагнитных излучений

Процессы, происходящие в космосе, и объекты, которые там находятся, порождают электромагнитные излучения. Шкала волн является методом регистрации электромагнитных излучений.

Детальная иллюстрация спектрального диапазона представлена на рисунке. Границы на такой шкале условны.

Что такое электромагнитное излучение и как оно влияет на человека

Что такое электромагнитное излучение и как оно влияет на человека

Основные источники электромагнитного излучения

  • Линии электропередач. На расстоянии 10 метров они создают угрозу для здоровья человека, поэтому их размещают на большой высоте либо закапывают глубоко в землю.
  • Электротранспорт. Сюда входят электрокары, электрички, метро, трамваи и троллейбусы, а также лифты. Самым вредным воздействием обладает метро. Лучше передвигаться пешком или на собственном транспорте.
  • Спутниковая система. К счастью, сильное излучение, сталкиваясь с поверхностью Земли, рассеивается, и до людей долетает только малая часть опасности.
  • Функциональные передатчики: радары и локаторы. Они излучают электромагнитное поле на расстоянии 1 км, поэтому все аэропорты и метеорологические станции размещаются как можно дальше от городов.

Излучение от бытовых электроприборов

Широко распространенными источниками электромагнитного излучения являются бытовые приборы, которые находятся у нас дома.

Что такое электромагнитное излучение и как оно влияет на человека

Что такое электромагнитное излучение и как оно влияет на человека
  • Мобильные телефоны. Излучение от наших смартфонов не превышает установленные нормы, но когда мы звоним кому-то, после набора номера идет соединение базовой станции с телефоном. В этот момент сильно превышается норма, так что подносите телефон к уху не сразу, а через несколько секунд после набора номера.
  • Компьютер. Излучение также не превышает норму, но при длительной работе СанПин рекомендует каждый час делать перерыв на 5-15 минут.
  • Микроволновая печь. Корпус микроволновки создает защиту от излучений, но не на 100%. Находиться рядом с микроволновкой – опасно: излучение проникает под кожу человека на 2 см, запуская патологические процессы. Во время работы СВЧ-печи соблюдайте расстояние в 1-1,5 метра от нее.
  • Телевизор. Современные плазменные телевизоры не представляют большой опасности, а вот старых с кинескопами стоит опасаться и держаться на расстоянии минимум 1,5 м.
  • Фен. Когда фен работает, он создает электромагнитное поле огромной силы. В это время мы сушим голову достаточно долго и держим фен близко к голове. Чтобы снизить опасность, пользуйтесь феном максимум 1 раз в неделю. Суша волосы вечером, вы можете вызвать бессонницу.
  • Электробритва. Вместо нее приобретите обычный станок, а если привыкли – электробритву на аккумуляторе. Это в значительной мере снизит электромагнитную нагрузку на организм.
  • Зарядные устройства создают поле во все стороны на расстоянии 1 м. Во время зарядки вашего гаджета не находитесь близко к нему, а после зарядки отсоедините устройство из розетки, чтобы излучения не было.
  • Электропроводка и розетки. Кабеля, отходящие от электрощитов, представляют особую опасность. Расстояние от кабеля до спального места должно быть минимум 5 метров.
  • Энергосберегающие лампы также излучают электромагнитные волны. Это касается люминесцентных и светодиодных ламп. Установите галогеновую лампу или лампу накаливания: они ничего не излучают и не представляют опасности.

Установленные нормы ЭМИ для человека

Каждый орган в нашем теле вибрирует. Благодаря вибрации вокруг нас создается электромагнитное поле, содействующее гармоничной работе всего организма. Когда на наше биополе воздействуют другие магнитные поля, это вызывает в нем изменения. Иногда организм справляется с влиянием, иногда – нет. Это становится причиной ухудшения самочувствия.

Даже большое скопление людей создает электрический заряд в атмосфере. Полностью изолироваться от электромагнитного излучения невозможно. Есть допустимый уровень ЭМИ, который лучше не превышать.

Вот безопасные для здоровья нормы:

  • 30-300 кГц, возникающие при напряженности поля 25 Вольт на метр (В/м),
  • 0,3-3 МГц, при напряженности 15 В/м,
  • 3-30 МГц – напряженность 10 В/м,
  • 30-300 МГц – напряженность 3 В/м,
  • 300 МГц-300 ГГц – напряженность 10 мкВт/см2.

При таких частотах работают гаджеты, радио- и телеаппаратура.

Воздействие электромагнитных лучей на человека

Что такое электромагнитное излучение и как оно влияет на человека

Что такое электромагнитное излучение и как оно влияет на человека

Нервная система чрезвычайна чувствительна к влиянию электромагнитных лучей: нервные клетки уменьшают свою проводимость. В результате ухудшается память, притупляется чувство координации.

При воздействии ЭМИ на человека не только подавляется иммунитет – он начинает атаковать организм.

ВАЖНО! Для беременных женщин электромагнитное излучение представляет особую опасность: снижается скорость развития плода, появляются дефекты в формировании органов, велика вероятность преждевременных родов.

Защита от электромагнитных излучений

  • Если вы проводите много времени за компьютером, запомните одно правило: расстояние между лицом и монитором должно быть около метра.
  • Уровень электромагнитного излучения бытовой техники, которую вы покупаете, не должен доходить до отметки «минимум». Обратитесь к продавцу-консультанту. Он поможет выбрать наиболее безопасную технику.
  • Ваша кровать не должна находиться рядом с местом, где проложена электропроводка. Расположите спальное место в противоположном конце комнаты.
  • Установите защитный экран на компьютер. Он выполнен в виде мелкой металлической сетки и действует по принципу Фарадея: вбирает в себя все излучение, защищая пользователя.
  • Сократите пребывание в электрифицированном общественном транспорте. Отдавайте предпочтение пешей ходьбе, велосипеду.

Что такое электромагнитное излучение и как оно влияет на человека

Что такое электромагнитное излучение и как оно влияет на человека

Как проверить уровень электромагнитного излучения в домашних условиях

Точно обрисовать, как обстоят дела с электромагнитным излучением в вашем доме, могут только специалисты. Когда в службу СЭС поступает объявление о превышении допустимой нормы ЭМИ, на место выезжают работники со специальными приборами, позволяющими получить точные данные. Показатели обрабатываются. Если они завышены, предпринимаются определенные меры. Первым делом выясняют причину неполадки. Это может быть ошибка в строительстве, проектировании, неправильная эксплуатация.

Для самостоятельного определения степени излучения понадобятся отвертка с индикатором и радиоприемник.

  1. Выдвиньте антенну из приемника;
  2. Прикрутите к ней проволочную петлю диаметром 40 см;
  3. Настройте радио на пустую частоту;
  4. Обойдите помещение. Прислушивайтесь к звукам приемника;
  5. Место, где слышатся отчетливые звуки, и является источником излучения;
  6. Поднесите индикаторную отвертку со светодиодом. Индикатор станет красным, а интенсивность цвета скажет о силе излучения.

Увидеть значение в цифрах позволит ручной прибор. Он работает на разных частотах и улавливает напряжение электромагнитного поля. Прибор настраивается на нужный режим частот, выбирая единицы измерения: вольт/метр или микроватт/см2, отслеживает выбранную частоту и выводит результат на компьютер.

Также хорошим прибором является АТТ-2592. Устройство портативное, имеет дисплей с подсветкой. Измерение выполняет изотропным методом, автоматически выключается через 15 минут.

odinelectric.ru

Шкала электромагнитных излучений: свойства и особенности

Шкала электромагнитных волнШкала электромагнитных волн

Шкала электромагнитных волн

Шкала электромагнитных волн или излучений представляет собой ряд диапазонов электромагнитных волн, которые распределяются в соответствии с частотой. Распространяющиеся в пространстве периодически изменяющиеся вихревые электрическое и магнитное поля представляют собой электромагнитные колебания.

Общее понятие

Свойства электромагнитных колебаний открыты в начале XIX века английским ученым Д. К. Максвеллом. Физик считал, что электромагнитные волны перпендикулярны направлению распространения волны, ее скорости. Но электромагнитное поле существует отдельно от указанных выше двух. Магнитное и электрическое поля, взаимодействуя друг с другом, действуют на заряженные частицы поверхности волнового фронта, создают поле, существующее независимо, обладающее собственными свойствами.

Электромагнитные волны могут распространяться в разных средах, в том числе и в вакууме. Само поле — материя, которая распространяется в среде. Скорость распространения электромагнитной волны в вакууме равна скорости света, т. е. 3*10 в 8 степени м/с. Значение не затухает, проходя через пространство, постоянно.

Шкала электромагнитных излучений показывает, как один качественный вид излучений переходит в другой по мере того, как изменяются взаимосвязанные количественные показатели частоты, длины волны. Один из видов диапазонов излучений — видимый свет.

Дополнительные цвета спектра

Спектр видимого света содержит как основные, так и дополнительные цвета. Каким образом можно получить дополнительные цвета? Их получение основано на опыте И. Ньютона, который в 1671 году, используя призму, разложил белый луч солнечного света на спектр: последовательно расположенные красный, оранжевый, желтый, зеленый, синий и фиолетовый цвета.

Дополнительные цвета спектра получаются разными способами:

Дополнительные цвета спектраДополнительные цвета спектра

Дополнительные цвета спектра

  1. Если разделить спектр на две части (красно-оранжево-желтую и зелено-сине-фиолетовую), две смеси из трех первых и трех вторых дадут два цвета. Особенность последних такова, что если собрать их вместе линзой, снова получается белый.
  2. Если физически закрыть в спектре один цвет, затем собрать линзой оставшиеся цвета, полученный цвет будет дополнительным по отношению к закрытому. Например, если закрыть зеленый, соберется красный, закрывая желтый — фиолетовый. Красный цвет будет дополнительным к зеленому, а фиолетовый — к желтому.

Замкнув последовательность цветов спектра в круг, получим схему, называемую спектральным кругом.

Первичные дополнительные цвета:

  • красный и зеленый;
  • желтый и фиолетовый;
  • синий и оранжевый.

Таблица 1. Дополнительные цвета.

Выделенная частьКраснаяОранжеваяЖелтаяЖелто-зеленаяЗеленаяГолубовато-зеленая
Цвет смеси оставшихся лучейГолубовато-зеленыйГолубойСинийФиолетовыйПурпурныйКрасный

При смешении дополнительных цветов, что доказано опытным путем, чистый цвет получить уже невозможно — любая примесь дополнительного цвета к основному снижает насыщенность.

Спектр солнечного излучения

Солнце — источник жизни на планете, источник излучения, солнечного света, несущего энергию.

Спектр солнечного излученияСпектр солнечного излучения

Спектр солнечного излучения

В электромагнитный спектр солнечного света включаются три разных вида волн:

  • ультрафиолетовое излучение;
  • видимый свет;
  • инфракрасное излучение.

Первый последовательный вид обладает наиболее низкими частотами и относительно длинной волной, последний — высокими частотами и короткой волной.

Видимая часть спектра

Д. К. Максвелл сделал вывод, что видимый свет — один из видов электромагнитных излучений, спектр видимого солнечного света состоит из семи цветов. Человек может увидеть, как в призме, преломляясь, свет распадается на семь цветов, может любоваться преломленным в каплях дождя светом, глядя на радугу.

Цвета распределены на шкале в соответствии с частотой и на шкале занимают маленький отрезок, умещаются в сравнительно небольшом диапазоне, но это все, что можно увидеть глазами. Инфракрасное и ультрафиолетовое излучения, с меньшими и большими значениями, уже недоступны человеческому зрению.

РадугаРадуга

Радуга

В радуге один цвет постепенно переходит в другой согласно определенной последовательности, отображающей распределение цветов при разделении луча видимого света белого цвета. Свойства цвета (красного, синего, желтого) определяются свойствами длины соответствующих волн.

Видимая часть солнечного спектра — часть спектра, которая при воздействии на орган зрения вызывает зрительные ощущения. Наиболее сильные отзывы в человеческом глазу вызывает желто-зеленый луч, остальные менее чувствительны. Лучи, видимые глазу, обладают длиной волны в пределах 400–760 нм. Глазу доступны некоторые более длинноволновые и более коротковолновые лучи при их достаточной интенсивности.

Свет важен для человека. Раздражая орган зрения, свет активизирует обмен веществ, улучшает самочувствие, вдохновляет, способствует повышению работоспособности. Можно заметить, что недостаточное освещение приводит к снижению активности, на предприятиях приводит к ошибкам, производственным травмам.

Шкала электромагнитных излучений

Отличаясь друг от друга количественно, электромагнитные волны определенным образом могут быть получены с использованием приборов. Существуют естественные и искусственные источники явления. Помимо приборов и источников волн на Земле, электромагнитные волны излучаются и космическими объектами.

Низкочастотные волны, радиоволны, инфракрасное световое излучение, оптическое излучение, рентгеновские спектры, невидимые излучения гамма — различные участки условной шкалы, показывающей области λ — области длин волн.

Таблица спектра электромагнитных излучений

НазваниеЧастотаДлина волнИсточники,Космические источники
Низкочастотные излученияболее 10000м0-30 кГцГенератор переменного тока, домашняя и офисная электротехника, ЛЭП и др.Магнитное поле Земли
Радиоволны1мм-10000м30кГц-300ГГцПеременный ток в колебательном контуре, полупроводниковые приборыСолнце, планеты и малые тела Солнечной системы, облака межзвездного газа, реликтовое излучение на ранней стадии расширения Вселенной, квазары
Инфракрасное световое излучение1мм-780нм300ГГц-429ТГцТепловые источники, лазер, ртутно-кварцевая лампаСолнце, межзвездная и околозвездная пыль, реликтовое излучение на ранней стадии расширения Вселенной, планеты, малые тела Солнечной системы
Видимое излучение световое780-380нм429-750ТГцЛампа накаливания, пламя, молния, лазерСолнце, другие звезды (с температурой 10-100 тысяч градусов)
Ультрафиолетовое излучение380-10нм7,5*1000000000000000-3*100000000000000000ГцУглеродная дугаСолнце, горячие Звезды, высокотемпературная плазма
Рентгеновское излучение10-5*10в-3 степени нм3*100000000000000000-6*100000000000000000000ГцРентгеновская трубкаСолнце, нейтронные звезды и, возможно, черные дыры, шаровые звездные скопления, к внегалактическим источникам – квазары, отдаленные галактики и их скопления.
Гамма-излучениеменее 5*10 в 3 степени нмболее 6*100000000000000000000 ГцАтомные ядра, Кобальт-60Солнце, фоновое Космическое излучение, некоторые пульсары (нейтронные звезды), сверхновые звезды, Млечный Путь, области галактического центра, многих галактик и квазаров

 

Чувствительность человеческого глаза
Одно из главных свойств электромагнитных волн является степень их поглощения веществом. Различие можно обнаружить между длинноволновыми и коротковолновыми излучениями. Первые поглощаются с гораздо большей интенсивностью, чем коротковолновые, однако обладают дополнительным свойством: при поглощении обнаруживают свойства частиц.

Спектральная чувствительность глаза Спектральная чувствительность глаза

Спектральная чувствительность глаза

Преобразуя энергию, идущую от источника видимого светового диапазона, в зрительной системе человек получает сигналы из окружающей среды. Свет попадает на сетчатку глаза, возбуждает фоторецепторы, от которых сигнал передается в нейронные связи коры головного мозга, находящиеся в затылочной доле коры больших полушарий. В головном мозге в результате подобных преобразований формируется зрительный образ.

Развиваясь эволюционно, человеческий глаз сформировался наилучшим образом для восприятия солнечного света. В результате зрительный орган современного человека улавливает электромагнитное излучение в диапазоне длин волн 400–750 нм (видимое излучение). От более низковолновых излучений (ультрафиолета) глаз защищен областью хрусталика с низкой прозрачностью.

Определение спектральных границ чувствительности глаза

Зная законы преломления света, можно опытным путем определить спектральную чувствительность глаза. Основной инструмент — дифракционная решетка с определенным периодом.

Луч света, проходя через решетку, попадает на сетчатку. Глаз играет роль линзы, собирающей лучи в пучок, результат зависит от угла луча. Опыт доказывает, что чувствительность человеческого глаза совпадает с диапазоном видимого света по шкале.

Электромагнитная природа света

На заре изучения природы света до открытия электромагнитных световых волн существовали различные мнения. Так, история открытия гласит, что из рассуждений И. Ньютона развилась теория о свете как о потоке частиц, квантов, об электрических колебаниях, а из рассуждений Х. Гюйгенса — волновая теория света.
Согласно квантовой теории, от источников энергии атомов последняя передается веществу, то же происходит и с энергией квантов. Волны светового спектра излучений обладают квантовыми свойствами.

Электромагнитная природа света была доказана и описана при помощи формул Д. К. Максвеллом.

Теоретическое исследование природы электромагнитных излучений принесло несомненную пользу человечеству. Явление стало применяться в медицине, быту, радиовещании и многих других областях.

Автор статьи: Беспалова Ирина Леонидовна

Беспалова Ирина ЛеонидовнаБеспалова Ирина Леонидовна

Врач-пульмонолог, Терапевт, Кардиолог, Врач функциональной диагностики. Врач высшей категории. Опыт работы: 9 лет. Закончила Хабаровский государственный мединститут, клиническая ординатура по специальности «терапия». Занимаюсь диагностикой, лечением и профилактикой заболеваний внутренних органов, также провожу профосмотры. Лечу заболевания органов дыхания, желудочно-кишечного тракта, сердечно-сосудистой системы.

Беспалова Ирина Леонидовна опубликовала статей: 419

obotravlenii.ru

Электромагнитное излучение. Виды и применение. Влияние

Электромагнитное излучение представлено одноименными волнами, которые приводятся в возбуждение под воздействием различных объектов излучения в виде молекулярных, атомных и заряженных частиц.

Существует несколько его разновидностей:
  • Видимый свет. Это излучение, способное восприниматься человеческим зрением. Волновая длина достаточно короткая и варьируется в пределах 380-780 нанометров.
  • Инфракрасное. Представляет собой что-то среднее между световым излучением и волнами радио.
  • Радиоволны. Отличаются наибольшей длиной и вмещают в себя все разновидности излучения, волны которых характеризуются длиной от полумиллиметра.
  • Ультрафиолетовое. Излучение, приносящее вред живому организму.
  • Рентгеновское. Производится электронными частицами и нашло широкое применение в медицине.
  • Гамма-излучение. Имеет самую короткую длину волн, представляя высокий уровень опасности для человеческого организма.
Устройство
Характеристику любой электромагнитной волны составляют три основных параметра:
  1. Частота. Выражает количество гребней волны, проходящих в течение одной секунды. Мера измерения -герцы.
  2. Поляризация. Описывает колебания электромагнитных волн в поперечном направлении. Поляризованным излучение становится при волновых колебаниях, происходящих в одной плоскости. На практике данное явление можно встретить в кинотеатрах на сеансах 3Д. Посредством поляризации в 3Д-очках происходит разделение картинки.
  3. Длина. Представляет собой расстояние, соединяющее точки электромагнитного излучения, которые колеблются в пределах одной фазы.

Распространение электромагнитного излучения возможно в любой среде, начиная плотным веществом и заканчивая вакуумом. При этом скорость распространения волны в вакуумном пространстве достигает 300 тысяч км в секунду. К примеру звуковые волны, в вакууме не распространяются.

Принцип действия

Электромагнитное излучение имеет энергию, основной характеристикой которой является ее напряженность. Существует постоянное и переменное поле электромагнитных волн.

Первое — характеризуется напряженностью, которая обуславливается силой, оказывающей каталитическое действие на токовый проводник. В качестве единицы напряжения выступает ампер. Переменная разновидность совмещает в себе магнитную и электрическую разновидности магнитных полей, которые расширяются в пространстве в виде волн.

Область распространения включает в себя три зоны:
  • Ближнюю – индукционную.
  • Промежуточную – интерференционную.
  • Дальнюю — волновую.
Свойства

Известно, что для электромагнитных волн характерны определенные свойства, о которых впервые заговорил Максвелл. Эти свойства обуславливаются различиями и зависимостью от параметра длины. Именно в соответствии с этими параметрами волны электромагнитных полей подразделяются на диапазоны, которые, в свою очередь, имеют достаточно условную шкалу, поскольку расположенные рядом частоты накладывают свои свойства друг на друга.

К таковым — относятся:
  • Высокая проникающая способность.
  • Быстрая скорость растворения в веществе.
  • Негативное и благотворное влияние на человека.
Применение и влияние

Свое широкое применение электромагнитное излучение получило только в конце 19-го века, когда активно развивалась радиосвязь, посредством которой стало возможно общение на далеком расстоянии.

В качестве главных электромагнитных источников выступают крупные объекты промышленного масштаба, а также различные электрические линии передач. Помимо этого, рассматриваемый вид излучения получил активное применение в военной сфере. Там они представлены радарами и другими электрическими приборами, имеющих сложное устройство.

В медицинской области для лечения разнообразных болезней применяется инфракрасное излучение. Кроме этого:
  • Посредством рентгеновского обследования становится возможным выявление внутренних повреждений в человеческом организме.
  • Лазер позволяет проводить операции, которые требуют ювелирной точности и т.п.
Однако, несмотря на перечисленную выше пользу, электромагнитное излучение может спровоцировать возникновение ряда негативных признаков:
  • Повышенную усталость.
  • Боли в голове.
  • Тошнотные позывы и т.п.

Повышенное воздействие определенных видов электромагнитных волн способно привести к повреждениям органов, расположенных внутри, и мозговой центральной нервной системы, что впоследствии чревато психическими расстройствами.

Во избежание столь отрицательных влияний существуют определенные стандарты, которые регулируют безопасность электромагнитного воздействия. Так, для каждого из видов электромагнитного излучения разработаны конкретные документы регулирующего характера в виде гигиенических норм и радиационных стандартов.

Электромагнитное излучение влияет на человеческий организм и остается до конца неизученным, по причине чего рекомендуется свести к минимуму его воздействие.

Достоинства и недостатки

Главным преимуществом ЭМИ является его активное применение в медицинской сфере. Посредством рентгеновского и инфракрасного излучений становится возможным обследование внутренних органов с последующим выявлением возможных заболеваний.

К недостатку же электромагнитного излучения следует отнести негативное воздействие на организм человека в случаях, когда это влияние превышает нормы. По возможности его необходимо избегать. Более того, известен накопительный эффект биологического влияния излучения: чем он длительней, тем более негативнее последствия.

Многолетнее воздействие способно привести к:
  • Серьезным сбоям в гормональной системе.
  • Злокачественным заболеваниям.
  • Болезням крови и т.п.
Особенности
Простым обывателям может быть непонятна схожесть между разными, на первый взгляд, объектами электромагнитного излучения, к примеру:
  • Трубка рентгена.
  • Печка, от которой исходит тепло.
  • Фотопленка.
  • Радиоприемник.
  • Антенна телевизора.
Первые объекты — электромагнитные источники, вторые — представлены приемниками. Также отличается и влияние определенных видов излучения на живой организм, к примеру:

  • Рентген и излучение гамма-частицами провоцируют повреждение тканевых структур и внутренних органов.
  • Видимый свет при определенных условиях может негативно повлиять на зрение.
  • Инфракрасные лучи могут оказывать чрезмерный нагрев на организм.
  • При этом радиоволны практически никак не ощущаются.

Однако перечисленные выше отличия выступают различными аспектами одного явления. Электромагнитное излучение обладает волнами, которые имеют схожую распространительную скорость в пространстве. При этом количество колебаний в течение временной единицы может измеряться в широких диапазонных значениях. Окружающее нас пространство насыщено электромагнитным излучением, которое связано не только с радиоволнами, но и с окружающими телами.

Похожие темы:

electrosam.ru

Конспект урок с презентацией «Виды излучений. Шкала электромагнитных волн»

Конспект урока на тему:

Виды излучений. Шкала электромагнитных волн

Урок разработан

учителем ГУ ЛНР «ЛОУСОШ № 18»

Карасёвой И.Д.

Цели урока: рассмотреть шкалу электромагнитных волн, дать характеристику волнам разных диапазонов частот; показать роль различных видов излучений в жизни человека, влияние различных видов излучений на человека; систематизировать материал по теме и углубить знания учащихся об электромагнитных волнах; развивать устную речь учащихся,  творческие навыки учащихся, логику, память; познавательные способности; формировать интерес учащихся к изучению физики; воспитывать аккуратность, трудолюбие.

Тип урока: урок формирования новых знаний.

Форма проведения: лекция с презентацией

Оборудование: компьютер, мультимедийный проектор, презентация «Виды излучений.

Шкала электромагнитных волн»

Ход урока

  1. Организационный момент.

  1. Мотивация учебной и познавательной деятельности.

Вселенная – это океан электромагнитных излучений. Люди живут в нем, по большей части, не замечая пронизывающих окружающее пространство волн. Греясь у камина или зажигая свечу, человек заставляет работать источник этих волн, не задумываясь об их свойствах. Но знание — сила: открыв природу электромагнитного излучения, человечество в течение XX столетия освоило и поставило себе на службу самые различные его виды.

  1. Постановка темы и целей урока.

Сегодня мы с вами совершим путешествие по шкале электромагнитных волн, рассмотрим виды электромагнитного излучения разных диапазонов частот. Запишите тему урока: «Виды излучений. Шкала электромагнитных волн» (Слайд 1)

Каждое излучение мы будем изучать по следующему обобщенному плану (Слайд 2) .Обобщенный план для изучения излучения:

1. Название диапазона

2. Длина волны

3. Частота

4. Кем был открыт

5. Источник

6. Приёмник (индикатор)

7. Применение

8. Действие на человека

В ходе изучения темы вы должны заполнить следующую таблицу:

Таблица «Шкала электромагнитных излучений»

Название излучения

Длина волны

Частота

Кем было

открыто

Источник

Приёмник

Применение

Действие на человека

  1. Изложение нового материала.

(Слайд 3)

Длина электромагнитных волн бывает самой различной: от значений порядка 1013 м (низкочастотные колебания) до 10-10 м (-лучи). Свет составляет ничтожную часть широкого спектра электромагнитных волн. Тем не менее,  именно при изучении этой малой части спектра были открыты другие излучения с необычными свойствами.
Принято выделять низкочастотное излучение, радиоизлучение, инфракрасные лучи, видимый свет, ультрафиолетовые лучи, рентгеновские лучи и -излучение. Самое коротковолновое -излучение испускает атомные ядра.

Принципиального различия между отдельными излучениями нет. Все они представляют собой электромагнитные волны, порождаемые заряженными частицами. Обнаруживаются электромагнитные волны, в конечном счете, по их действию на заряженные частицы. В вакууме излучение любой длины волны распространяется со скоростью 300 000 км/с. Границы между отдельными областями шкалы излучений весьма условны.

(Слайд 4)

Излучения различной длины волны отличаются друг от друга по способу их получения (излучение антенны, тепловое излучение, излучение при торможении быстрых электронов и др.) и методам регистрации.

Все перечисленные виды электромагнитного излучения порождаются также космическими объектами и успешно исследуются с помощью ракет, искусственных спутников Земли и космических кораблей. В первую очередь, это относится к рентгеновскому и -излучению, сильно поглощаемым атмосферой.

Количественные различия в длинах волн приводят к существенным качественным различиям.

Излучения различной длины волны очень сильно отличаются друг от друга по поглощению их веществом. Коротковолновые излучения (рентгеновское и особенно -лучи) поглощаются слабо. Непрозрачные для волн оптического диапазона вещества прозрачны для этих излучений. Коэффициент отражения электромагнитных волн также зависит от длины волны. Но главное различие между длинноволновым и коротковолновым излучениями в том, что коротковолновое излучение обнаруживает свойства частиц.

Рассмотрим каждое излучение.

(Слайд 5)

Низкочастотное излучение возникает в диапазоне частот от 3 · 10-3 до 3 • 105 Гц. Этому излучению соответствует длина волны от 1013 — 105м. Излучением таких, сравнительно малых частот, можно пренебречь. Источником низкочастотного излучения являются генераторы переменного тока. Применяются при плавке и закалке металлов.

(Слайд 6)

Радиоволны занимают диапазон частот 3·105 — 3·1011Гц. Им соответствует длина волны 10 5 — 10 -3 м. Источником радиоволн, так же как и низкочастотного излучения является переменный ток. Также источником являются генератор радиочастот, звезды, в том числе Солнце, галактики и метагалактики. Индикаторами являются вибратор Герца, колебательный контур.

Большая частота радиоволн, по сравнению с низкочастотным излучением приводит к заметному излучению радиоволн в пространство. Это позволяет использовать их для передачи информации на различные расстояния. Передаются речь, музыка (радиовещание), телеграфные сигналы (радиосвязь), изображения различных объектов (радиолокация).

Радиоволны используются для изучения структуры вещества и свойств той среды, в которой они распространяются. Исследование радиоизлучения космических объектов – предмет радиоастрономии. В радиометеорологии изучают процессы по характеристикам принимаемых волн.

(Слайд 7)

Инфракрасное излучение занимает диапазон частот 3 · 1011 — 3,85 · 1014 Гц. Им соответствует длина волны 2·10 -3 — 7,6 ·10 -7 м.

Инфракрасное излучение было открыто в 1800 году астрономом Уильямом Гершелем. Изучая повышение температуры термометра, нагреваемого видимым светом, Гершель обнаружил наибольшее нагревание термометра вне области видимого света (за красной областью). Невидимое излучение, учитывая его место в спектре, было названо инфракрасным. Источником инфракрасного излучения является излучение молекул и атомов при тепловых и электрических воздействиях. Мощный источник инфракрасного излучения – Солнце, около 50% его излучения лежит в инфракрасной области. На инфракрасное излучение приходится значительная доля (от 70 до 80 %) энергии излучения ламп накаливания с вольфрамовой нитью. Инфракрасное излучение испускает электрическая дуга и различные газоразрядные лампы. Излучения некоторых лазеров лежит в инфракрасной области спектра. Индикаторами инфракрасного излучения являются фото и терморезисторы, специальные фотоэмульсии. Инфракрасное излучение используют для сушки древесины, пищевых продуктов и различных лакокрасочных покрытий (инфракрасный нагрев), для сигнализации при плохой видимости, дает возможность применять оптические приборы, позволяющие видеть в темноте, а также при дистанционном управлении. Инфракрасные лучи используются для наведения на цель снарядов и ракет, для обнаружения замаскированного противника. Эти лучи позволяют определить различие температур отдельных участков поверхности планет, особенности строения молекул вещества (спектральный анализ). Инфракрасная фотография применяется в биологии при изучении болезней растений, в медицине при диагностике кожных и сосудистых заболеваний, в криминалистике при обнаружении подделок. При воздействии на человека вызывает повышение температуры человеческого тела.

(Слайд 8)

Видимое излучение — единственный диапазон электромагнитных волн, воспринимаемым человеческим глазом. Световые волны занимают достаточно узкий диапазон: 380 — 670 нм ( = 3,85 •1014 — 8 • 1014 Гц). Источником видимого излучения являются валентные электроны в атомах и молекулах, изменяющие свое положение в пространстве, а также свободные заряды, движущиеся ускоренно. Эта часть спектра дает человеку максимальную информацию об окружающем мире. По своим физическим свойствам она аналогична другим диапазонам спектра, являясь лишь малой частью спектра электромагнитных волн. Излучение, имеющее разную длину волны (частоты) в диапазоне видимого излучения, оказывает различное физиологическое воздействие на сетчатку человеческого глаза, вызывая психологическое ощущение света. Цвет — не свойство электромагнитной световой волны самой по себе, а проявление электрохимического действия физиологической системы человека: глаз, нервов, мозга. Приблизительно можно назвать семь основных цветов, различаемых человеческим глазом в видимом диапазоне (в порядке возрастания частоты излучения): красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый. Запоминание последовательности основных цветов спектра облегчает фраза, каждое слово которой начинается с первой буквы названия основного цвета: «Каждый Охотник Желает Знать, Где Сидит Фазан». Видимое излучение может влиять па протекание химических реакций в растениях (фотосинтез) и в организмах животных и человека. Видимое излучение испускают отдельные насекомые (светлячки) и некоторые глубоководные рыбы за счет химических реакций в организме. Поглощение растениями углекислого газа в результате процесса фотосинтеза и выделения кислорода способствует поддержанию биологической жизни на Земле. Также видимое излучение применяется при освещении различных объектов.

Свет — источник жизни на Земле и одновременно источник наших представлений об окружающем мире.

(Слайд 9)

Ультрафиолетовое излучение, не видимое глазом электромагнитное излучение, занимающее спектральную область между видимым и рентгеновским излучением в пределах длин волн 3,8 ∙10 -7 — 3∙10 -9 м. (=8*1014 — 3*1016 Гц). Ультрафиолетовое излучение было открыто в 1801 году немецким ученым Иоганном Риттером. Изучая почернение хлористого серебра под действием видимого света, Риттер обнаружил, что серебро чернеет еще более эффективно в области, находящейся за фиолетовым краем спектра, где видимое излучение отсутствует. Невидимое излучение, вызвавшее это почернение, было названо ультрафиолетовым.

Источник ультрафиолетового излучения — валентные электроны атомов и молекул, также ускоренно движущиеся свободные заряды.

Излучение накаленных до температур — 3000 К твердых тел содержит заметную долю ультрафиолетового излучения непрерывного спектра, интенсивность которого растет с увеличением температуры. Более мощный источник ультрафиолетового излучения — любая высокотемпературная плазма. Для различных применений ультрафиолетового излучения используются ртутные, ксеноновые и др. газоразрядные лампы. Естественные источники ультрафиолетового излучения — Солнце, звезды, туманности и другие космические объекты. Однако лишь длинноволновая часть их излучения ( 290 нм) достигает земной поверхности. Для регистрации ультрафиолетового излучения при

 = 230 нм используются обычные фотоматериалы, в более коротковолновой области к нему чувствительны специальные маложелатиновые фотослои. Применяются фотоэлектрические приемники, использующие способность ультрафиолетового излучения вызывать ионизацию и фотоэффект: фотодиоды, ионизационные камеры, счетчики фотонов, фотоумножители.

В малых дозах ультрафиолетовое излучение оказывает благотворное, оздоровительное влияние на человека, активизируя синтез витамина D в организме, а также вызывая загар. Большая доза ультрафиолетового излучения может вызвать ожог кожи и раковые новообразования (в 80 % излечимые). Кроме того, чрезмерное ультрафиолетовое излучение ослабляет иммунную систему организма, способствуя развитию некоторых заболеваний. Ультрафиолетовое излучение оказывает также бактерицидное действие: под действием этого излучения гибнут болезнетворные бактерии.

Ультрафиолетовое излучение применяется в люминесцентных лампах, в криминалистике (по снимкам обнаруживают подделки документов), в искусствоведении (с помощью ультрафиолетовых лучей можно обнаружить на картинах не видимые глазом следы реставрации). Практически не пропускает ультрафиолетовое излучение оконное стекло, т.к. его поглощает оксид железа, входящий в состав стекла. По этой причине даже в жаркий солнечный день нельзя загореть в комнате при закрытом окне.

Человеческий глаз не видит ультрафиолетовое излучение, т.к. роговая оболочка глаза и глазная линза поглощают ультрафиолет. Ультрафиолетовое излучение видят некоторые животные. Например, голубь ориентируется по Солнцу даже в пасмурную погоду.

(Слайд 10)

Рентгеновское излучение это электромагнитное ионизирующее излучение, занимающее спектральную область между гамма — и ультрафиолетовым излучением в пределах длин волн от 10-12 — 10-8 м (частот 3*1016 — 3-1020 Гц). Рентгеновское излучение было открыто в 1895 году немецким физиком В. К. Рентгеном. Наиболее распространенным источником рентгеновского излучения является рентгеновская трубка, в которой ускоренные электрическим нолем электроны бомбардируют металлический анод. Рентгеновское излучение может быть получено при бомбардировке мишени ионами высокой энергии. В качестве источников рентгеновского излучения могут служить также некоторые радиоактивные изотопы, синхротроны — накопители электронов. Естественными источниками рентгеновского излучения является Солнце и другие космические объекты

Изображения предметов в рентгеновском излучении получают на специальной рентгеновской фотопленке. Рентгеновское излучение можно регистрировать с помощью ионизационной камеры, сцинтилляционного счетчика, вторично-электронных или каналовых электронных умножителей, микроканальных пластин. Благодаря высокой проникающей способности рентгеновское излучение применяется в рентгеноструктурном анализе (исследовании структуры кристаллической решетки), при изучении структуры молекул, обнаружении дефектов в образцах, в медицине (рентгеновские снимки, флюорография, лечение раковых заболеваний), в дефектоскопии (обнаружение дефектов в отливках, рельсах), в искусствоведении (обнаружение старинной живописи, скрытой под слоем поздней росписи), в астрономии (при изучении рентгеновских источников), криминалистике. Большая доза рентгеновского излучения приводит к ожогам и изменению структуры крови человека. Создание приемников рентгеновского излучения и размещение их на космических станциях позволило обнаружить рентгеновское излучение сотен звезд, а также оболочек сверхновых звезд и целых галактик.

(Слайд 11)

Гамма излучение коротковолновое электромагнитное излучение, занимающее весь диапазон частот  = 8∙1014— 10 17 Гц, что соответствует длинам волн  = 3,8·10 -7— 3∙10-9 м. Гамма-излучение было открыто французским ученым Полем Вилларом в 1900 году.

Изучая излучение радия в сильном магнитном поле, Виллар обнаружил коротковолновое электромагнитное излучение, не отклоняющееся, как и свет, магнитным полем. Оно было названо гамма-излучением. Гамма-излучение связано с ядерными процессами, явлениями радиоактивного распада, происходящими с некоторыми веществами, как на Земле, так и в космосе. Гамма-излучение можно регистрировать с помощью ионизационных и пузырьковых камер, а также с помощью специальных фотоэмульсий. Используются при исследовании ядерных процессов, в дефектоскопии. Гамма-излучение отрицательно воздействует на человека.

(Слайд 12)

Итак, низкочастотное излучение, радиоволны, инфракрасное излучение, видимое излучение, ультрафиолетовое излучение, рентгеновское излучение, -излучение представляют собой различные виды электромагнитного излучения.

Если мысленно разложить эти виды по возрастанию частоты или убыванию длины волны, то получится широкий непрерывный спектр – шкала электромагнитных излучений (учитель показывает шкалу). К опасным видам излучения относятся: гамма-излучение, рентгеновские лучи и ультрафиолетовое излучение, остальные – безопасны.

Деление электромагнитных излучений по диапазонам условное. Четкой границы между областями нет. Названия областей сложились исторически, они лишь служат удобным средством классификации источников излучений.

(Слайд 13)

Все диапазоны шкалы электромагнитных излучений имеют общие свойства:

    • физическая природа всех излучений одинакова

    • все излучения распространяются в вакууме с одинаковой скоростью, равной 3*108 м/с

    • все излучения обнаруживают общие волновые свойства (отражение, преломление, интерференцию, дифракцию, поляризацию)

    5. Подведение итогов урока

    В заключение урока учащиеся заканчивают работу над таблицей.

    (Слайд 14)

    Вывод:

    1. Вся шкала электромагнитных волн является свидетельством того, что все излучения обладают одновременно квантовыми и волновыми свойствами.

    2. Квантовые и волновые свойства в этом случае не исключают, а дополняют друг друга.

    3. Волновые свойства ярче проявляются при малых частотах и менее ярко — при больших. И наоборот, квантовые свойства ярче проявляются при больших частотах и менее ярко — при малых.

    4. Чем меньше длина волны, тем ярче проявляются квантовые свойства, а чем больше длина волны, тем ярче проявляются волновые свойства.

    Все это служит подтверждением закона диалектики (переход количественных изменений в качественные).

    1. Домашнее задание: конспект (выучить), заполнить в таблице

    последний столбец (действие ЭМИ на человека) и

    подготовить сообщение о применении ЭМИ

    compedu.ru

    Электромагнитное излучение

    Определение 1

    Электромагнитное излучение – это электромагнитные волны, которые возбуждаются разными излучающими объектами (атомами, заряженными частицами, молекулами, антеннами).

    С момента зарождения жизни на планете существует стабильный электромагнитный фон. На протяжении длительного времени он был неизменен. Однако интенсивность этого фона с развитием человечества растет с неимоверной скоростью. Огромное количество электрических приборов, линии электропередач, мобильная связь – все эти «новшества эволюции» стали основным источником электромагнитного загрязнения.

    Особенности электромагнитного излучения

    На первый взгляд может показаться, что нет ничего общего между столь разыми явлениями электромагнитного излучения. И в самом деле, что общего между рентгеновской трубкой, радиоактивным веществом, теплой печкой, лампой фонарика и генератором переменного тока, который подключен к линии электропередачи, как, впрочем, и между глазом, фотопленкой, термопарой, радиоприемником и телевизионной антенной? Второй список состоит из приемников, а первый – из источников электромагнитного излучения.

    Воздействие различных видов излучения на человеческий организм также различно: рентгеновское и гамма- излучение вызывает повреждение тканей и органов, видимый свет влияет на зрение, инфракрасное излучение нагревает организм человека, а радиоволны вовсе не ощущаются. Но, несмотря на явные отличия, все вышеперечисленные примеры излучений – разные стороны одного и того же явления.

    Все типы электромагнитных волн имеют одинаковую скорость распространения в свободном пространстве. Однако число колебаний в единицу времени изменяется в широких пределах: для электромагнитных волн низкочастотного диапазона – от нескольких колебаний в секунду и до 1020 колебаний в секунду в случае гамма- и рентгеновского излучения.

    Поскольку длина электромагнитной волны представлена в виде выражения $l = \frac {c}{f}$, то она также изменяется в широком диапазоне – от $10^{-12}$ метров для рентгеновского излучения и до нескольких тысяч километров для низкочастотных колебаний. Поэтому воздействие электромагнитных волн с веществом очень отличается в различных частях спектра. Электромагнитные волны значительно отличаются от звука тем, что их можно передать к источнику от приемника через вакуум.

    Пример 1

    Например, рентгеновские лучи, которые возникают в вакуумной трубке, влияют на фотопленку, что расположены вдали от нее. В то время, как звук колокольчика, что находится под колпаком, невозможно услышать, если откачать воздух из-под колпака.

    Глаз человека воспринимает солнечные лучи видимого света, а антенна, что расположена на Земле, — радиосигналы космического аппарата, который удален на миллионы километров.

    Замечание 1

    Таким образом, для распространения электромагнитных волн никакой материальной среды не требуется.

    Виды электромагнитного излучения

    В зависимости от длины волны, электромагнитное излучение можно разделить на множество видов:

    1. Видимый свет. Сюда относится то электромагнитное излучение, которое человек может воспринимать зрительно. Длина световых волн в данном случае варьируется от 380 до 780 нанометров. Из этого следует, что электромагнитные волны видимого света очень короткие.
    2. Инфракрасное излучение. Данный вид излучения находится в электромагнитном спектре между радиоволнами и световым излучением. Длина инфракрасных волн значительно больше световых волн и располагается в диапазоне от 780 нанометров до 1-го миллиметра.
    3. Радиоволны. Сюда же можно отнести микроволны, что излучает микроволновая печь. Это самые длинные электромагнитные волны. К ним относится все виды излучения, длина волн которых начинается от 0,5 миллиметра.
    4. Ультрафиолетовое излучение. Данный вид электромагнитного излучения является пагубным для большинства живых существ. Длина таких волн находится в диапазоне от 10 до 400 нанометров. Располагаются волны инфракрасного излучения в промежутке между видимым и рентгеновским излучением.
    5. Рентгеновское излучение. Этот вид электромагнитного излучения выделяется среди других наличием электронов. Оно имеет широкий диапазон волн – от $10^{-7}$ м до $10^{-12}$ м. Этот вид излучения широко используется в медицинском оборудовании.
    6. Гамма-излучение. Это самый коротковолновой вид электромагнитного излучения. Длина волны менее $10^{-10}$ метра. Гамма-лучи имеют самую высокую энергию излучения. Этот вид – самый опасный вид электромагнитного излучения для человеческого организма.

    Источники электромагнитного излучения

    Несмотря на то, что электромагнитное излучение имеет физические различия, во всех его источниках это излучение возбуждается при помощи движущихся с ускорением электрических зарядов.

    Различают два вида источников электромагнитного излучения:

    1. Микроскопические источники электромагнитного излучения. Заряженные частицы в «микроисточниках» переходят из одного энергетического уровня в другой при помощи скачков. Такие скачки происходят внутри молекул и атомов. Излучатели такого типа испускают ультрафиолетовое, рентгеновское, гамма-, инфракрасное и видимое излучение. В некоторых случаях возникает длинноволновое излучение. В качестве примера тут можно привести линию в спектре водорода, которая соответствует длине волны 21 сантиметр. Такое вид излучения играет важную роль в радиоастрономии.
    2. Макроскопические источники электромагнитного излучения. В данном случае свободные электроны проводников совершают периодические синхронные колебания. Электрическая система тут может иметь разные размеры и конфигурации. Системы данного типа генерируют электромагнитное излучение в диапазоне от миллиметровых размеров волн и до самых длинных. Часто применяется в линиях электропередач.

    Гамма-лучи при распаде ядер атомов радиоактивных веществ испускаются самопроизвольно. При этом осуществляются сложные процессы, что приводят к изменениям в структуре ядра. Генерируемая частота $f$ определяется при помощи разности энергий $E_1$ и $E_2$ двух состояний ядра:

    $f = \frac {(E_1 – E_2)}{h}$, где $h$ — это постоянная Планка.

    В соответствии с теорией Планка, энергия кванта электромагнитного излучения определяется при помощи формул:

    $E= hv$

    $\lambda = \frac {c}{v} $

    $v = \frac {c}{\lambda } $

    $E = h \frac {c}{\lambda } $, где $h = 6,62 • 10^{-34}$ Дж.

    Поскольку фото является элементарной частицей, что находится в движении, ему свойственна некоторая масса движения, а значит и некоторый импульс. Масса покоя фотона равна нулю.

    Энергия равна:

    $E = mc^2$

    $hv = m^2 c$

    $m = \frac {hv}{c^2}$

    Рентгеновское излучение формируется при бомбардировке в вакууме на поверхности металлического анода при помощи электронов, которые обладают огромными скоростями. Замедляясь в материале анода, данные электроны испускают «тормозное излучение», которое имеет непрерывный спектр. А перестройка внутренней структуры атомов, что происходит в результате электронной бомбардировки, сопровождается испусканием характеристического излучения. Частоты данного излучения определяются материалом анода.

    Световое видимое и ультрафиолетовое излучение дают такие же электронные переходы в атоме. Что касается инфракрасного излучения, то оно является результатом трансформаций, которые практически не затрагивают электронную структуру и что связаны с изменением амплитуды колебаний и вращательного момента импульса молекулы.

    «Колебательный контур» имеется в генераторах электрических колебаний. Тут электроны совершают вынужденные колебания с частотой, которая зависит от его размеров и конструкции. Самые высокие частоты, которые соответствуют сантиметровым и миллиметровым волнам, генерируются магнетронами и клистронами. Это электровакуумные приборы с металлическими резонаторами, в которых колебания возбуждаются токами электронов.

    Колебательный контур в генераторах с низкими частотами состоит из катушки индуктивности $L$ и конденсатора с емкостью $C$, который возбуждается транзисторной или ламповой схемой. Собственная частота такого контура, что близка при малом затухании к резонансной, представлена в виде выражения:

    $f = \frac {1} {2} \pi \sqrt {LC}$

    Переменные поля низких частот, которые применяются для передачи электроэнергии, создаются электромашинными генераторами тока, где роторы вращаются между магнитными полюсами.

    Примеры источников излучения

    Вокруг нас постоянно находится множество источников электромагнитного излучения, которые отдают в пространство опасные для человека электромагнитные волны. Перечислить их все практически нереально, поэтому рассмотрим наиболее глобальные и популярные примеры источников электромагнитного излучения:

    • Высоковольтные линии электропередач. Данные источники имеют мощный уровень электромагнитного излучения и высокое напряжение. Если жилой дом расположен менее чем на 1000 метров к таким линиям, то у жителей таких домов возрастают риски возникновения онкологических заболеваний.
    • Электрический транспорт. Сюда относятся поезда метрополитена и электрички, троллейбусы и трамваи, а также обычные лифты в домах и торговых центрах.
    • Радио- и телевизионные вышки. Электромагнитное излучение от таких вышек крайне опасно для человеческого здоровья. Особенно опасны те, что установлены не в соответствии с санитарными нормами.
    • Бытовые приборы. К ним можно отнести микроволновые печи, телевизор, компьютер, энергосберегающие лампы, фены, зарядные устройства и прочие.
    • Мобильные телефоны. Электромагнитное излучение от телефона негативно сказывается на общем самочувствии и плохо воздействует на человеческий мозг.
    • Медицинское оборудование. Рентген, компьютерный томограф, МРТ имеют сильное излучение.

    Все мы по-прежнему будем пользоваться этими приборами. Важно при этом минимизировать негативное воздействие, которое оказывают источники электромагнитного излучения.

    spravochnick.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *