Виды трансформаторов и их применение – Электротрансформатор — Википедия

Виды трансформаторов и их применение – Электротрансформатор — Википедия

Трансформаторы, их виды и назначение

Что такое трансформатор
Принцип работы трансформатора
Виды трансформаторов
Режимы работы трансформатора
Уравнения идеального трансформатора
Магнитопровод трансформатора
Обмотка трансформатора
Применение трансформаторов
Схема трансформатора

Что такое трансформатор

Трансформатор представляет собой устройство, которое преобразовывает напряжение переменного тока (повышает или понижает). Состоит трансформатор из нескольких обмоток (двух или более), которые намотаны на общий ферромагнитный сердечник. Если трансформатор состоит только из одной обмотки, то он называется автотрансформатором. Современные трансформаторы тока бывают. Виды трансформаторов и их применение в электротехнике

Какие существуют основные виды трансформаторов. Как устроены и работают силовые, измерительные и специальные трансформаторы. Где применяются различные типы трансформаторов в электротехнике и энергетике.

Содержание

Основные виды трансформаторов

Трансформаторы являются одним из ключевых элементов современных электроэнергетических систем. Они позволяют преобразовывать напряжение и ток переменного тока, обеспечивая эффективную передачу электроэнергии и ее использование в различных устройствах. Рассмотрим основные виды трансформаторов и их назначение:

  • Силовые трансформаторы — применяются для передачи и распределения электроэнергии
  • Измерительные трансформаторы — используются для измерения тока и напряжения
  • Специальные трансформаторы — выполняют специфические функции в различных устройствах

Силовые трансформаторы и их применение

Силовые трансформаторы предназначены для преобразования напряжения в электрических сетях и являются ключевым элементом систем передачи и распределения электроэнергии. Как они устроены и где применяются?


Конструкция силовых трансформаторов

Основными элементами силового трансформатора являются:

  • Магнитопровод из электротехнической стали
  • Первичная и вторичная обмотки из медного или алюминиевого провода
  • Система охлаждения (масляная или воздушная)
  • Бак и вводы для подключения

Число фаз силовых трансформаторов может быть одна или три. Трехфазные трансформаторы более компактны и экономичны.

Области применения силовых трансформаторов

Основные сферы использования силовых трансформаторов:

  • Повышающие трансформаторы на электростанциях
  • Понижающие трансформаторы на подстанциях
  • Распределительные трансформаторы в сетях среднего и низкого напряжения
  • Преобразовательные трансформаторы для питания выпрямителей

Измерительные трансформаторы

Измерительные трансформаторы применяются для подключения измерительных приборов и устройств релейной защиты к цепям высокого напряжения и больших токов. Рассмотрим их основные виды.

Трансформаторы тока

Трансформаторы тока предназначены для измерения больших переменных токов. Их особенности:


  • Первичная обмотка включается последовательно в измеряемую цепь
  • Вторичная обмотка подключается к измерительным приборам
  • Номинальный вторичный ток стандартизирован — 1А или 5А
  • Работают в режиме, близком к короткому замыканию

Трансформаторы напряжения

Трансформаторы напряжения применяются для измерения высоких напряжений. Их характеристики:

  • Первичная обмотка включается параллельно измеряемой цепи
  • Вторичная обмотка подключается к вольтметрам и другим приборам
  • Номинальное вторичное напряжение обычно 100В
  • Работают в режиме, близком к холостому ходу

Специальные виды трансформаторов

Помимо силовых и измерительных, существует множество специализированных трансформаторов для различных применений:

Сварочные трансформаторы

Сварочные трансформаторы применяются для питания сварочной дуги. Их особенности:

  • Крутопадающая внешняя характеристика
  • Большой ток короткого замыкания
  • Возможность регулировки сварочного тока

Импульсные трансформаторы

Импульсные трансформаторы используются для передачи коротких импульсов. Их свойства:


  • Малая индуктивность рассеяния
  • Минимальные паразитные емкости
  • Работа на высоких частотах

Автотрансформаторы и их применение

Автотрансформаторы имеют одну обмотку, часть которой является общей для первичной и вторичной цепи. Их преимущества:

  • Меньшие габариты и масса по сравнению с обычными трансформаторами
  • Более высокий КПД
  • Меньшая стоимость

Автотрансформаторы применяются:

  • Для плавного регулирования напряжения (лабораторные автотрансформаторы)
  • В преобразовательных подстанциях для связи сетей разных напряжений
  • В пусковых устройствах электродвигателей

Трансформаторы для электронных устройств

В электронной аппаратуре широко применяются малогабаритные трансформаторы различного назначения:

Трансформаторы питания

Трансформаторы питания служат для понижения сетевого напряжения и гальванической развязки. Их особенности:

  • Несколько вторичных обмоток для питания разных цепей
  • Экран между первичной и вторичными обмотками
  • Пропитка для улучшения изоляции

Согласующие трансформаторы

Согласующие трансформаторы применяются для согласования сопротивлений в радиотехнических устройствах. Их свойства:


  • Работа в широкой полосе частот
  • Минимальные потери и искажения сигнала
  • Экранирование обмоток

Применение трансформаторов в современной энергетике

Трансформаторы играют ключевую роль в современных энергосистемах. Основные области их применения:

  • Передача электроэнергии на большие расстояния с минимальными потерями
  • Распределение электроэнергии потребителям
  • Преобразование напряжения для различных потребителей
  • Гальваническая развязка цепей
  • Согласование нагрузок в электронных устройствах

Развитие технологий позволяет создавать все более эффективные и надежные трансформаторы, что способствует повышению энергоэффективности и надежности электроснабжения.


Трансформаторы, их виды и назначение

Что такое трансформатор
Принцип работы трансформатора
Виды трансформаторов
Режимы работы трансформатора
Уравнения идеального трансформатора
Магнитопровод трансформатора
Обмотка трансформатора
Применение трансформаторов
Схема трансформатора

Что такое трансформатор

Трансформатор представляет собой устройство, которое преобразовывает напряжение переменного тока (повышает или понижает). Состоит трансформатор из нескольких обмоток (двух или более), которые намотаны на общий ферромагнитный сердечник. Если трансформатор состоит только из одной обмотки, то он называется автотрансформатором. Современные трансформаторы тока бывают: стержневыми, броневыми или тороидальными. Все три типа трансформаторов имеют похожие характеристики, и надежность, но отличаются друг от друга способом изготовления.

В трансформаторах стержневого типа обмотка намотана на сердечник, а в трансформаторах стержневого типа обмотка включается в сердечник. В трансформаторе стержневого типа обмотки хорошо видны, а из сердечника видна только нижняя и верхняя часть. Сердечник броневого трансформатора скрывает в себе практически всю обмотку. Обмотки трансформатора стержневого типа расположены горизонтально, в то время как это расположение в броневом трансформаторе может быть как вертикальным, так и горизонтальным.

Независимо от типа трансформатора, в его состав входят такие три функциональные части: магнитная система трансформатора (магнитопровод), обмотки, а также система охлаждения.

В начало

Принцип работы трансформатора

В трансформаторе принято выделять первичную и вторичную обмотку. К первичной обмотке напряжение подводится, а от вторичной отводится. Действие трансформатора основано на законе Фарадея (законе электромагнитной индукции): изменяющийся во времени магнитной поток через площадку, ограниченную контуром, создает электродвижущую силу. Справедливо также обратное утверждение: изменяющийся электрический ток индуцирует изменяющееся магнитное поле.

В трансформаторе есть две обмотки: первичная и вторичная. Первичная обмотка получает запитку от внешнего источника, а с вторичной обмотки напряжение снимается. Переменный ток первичной обмотки создает в магнитопроводе переменное магнитное поле, которое, в свою очередь, создает ток во вторичной обмотке.

В начало

Режимы работы трансформатора

Существуют такие три режима работы трансформатора: холостой ход, режим короткого замыкания, рабочий режим. Трансформатор «на холостом ходу», когда выводы от вторичных обмоток никуда не подключены. Если сердечник трансформатора изготовлен из магнитомягкого материала, тогда ток холостого хода показывает, какие в трансформаторе происходят потери на перемагничивание сердечника и вихревые токи.

В режиме короткого замыкания выводы вторичной обмотки соединены между собой накоротко, а на первичную обмотку подают небольшое напряжение, с таким расчетом, чтобы ток короткого замыкания был равен номинальному току трансформатора. Величину потерь (мощность) можно посчитать, если напряжение во вторичной обмотке умножить на ток короткого замыкания. Такой режим трансформатора находит свое техническое применение в измерительных трансформаторах.

Если подключить нагрузку к вторичной обмотке, то в ней возникает ток, индуцирующий магнитный поток, направленный противоположно магнитному потоку в первичной обмотке. Теперь в первичной обмотке ЭДС источника питания и ЭДС индукции питания не равны, поэтому ток в первичной обмотке увеличивается до тех пор, пока магнитный поток не достигнет прежнего значения.

Для трансформатора в режиме активной нагрузки справедливо равенство:
U_2/U_1 =N_2/N_1 , где U2, U1 – мгновенные напряжения на концах вторичной и первичной обмоток, а N1, N2 – количество витков в первичной и вторичной обмотке. Если U2 > U1, трансформатор называется повышающим, в противном случае перед нами понижающий трансформатор. Любой трансформатор принято характеризовать числом k, где k – коэффициент трансформации.

В начало

Виды трансформаторов

В зависимости от своего применения и характеристик трансформаторы бывают нескольких видов. К примеру, в электрических сетях населенных пунктов, промышленных предприятий применяют трансформаторы силовые, основной задачей которых является понижение напряжения в сети до общепринятого – 220 В.

Если трансформатор предназначен для регулировки тока, он называется трансформатор тока, а если устройство регулирует напряжение – то это трансформатор напряжения. В обычных сетях применяются однофазные трансформаторы, в сетях на три провода (фаза, ноль, заземление) нужен трехфазный трансформатор.

Бытовой трансформатор, 220В предназначается для защиты бытовой техники от перепадов напряжения.

Сварочный трансформатор предназначен для разделения сварочной и силовой сети, для понижения напряжения в сети до нужной для сварки величины.

Масляный трансформатор предназначается для использования в сетях с напряжением выше 6 000 Вольт. Конструкция трансформатора включает в себя: магнитопровод, обмотки, бак, а также крышки с вводами. Магнитопровод состоит из 2 листов электротехнической стали, которые изолированы друг от друга, обмотки, как правило, делают из алюминиевого или медного провода. Регулировка напряжения производится с помощью ответвления, которое соединяется с переключателем.

Существует два вида переключения ответвлений: переключение под нагрузкой — РПН (регулирование под нагрузкой), а также без нагрузки, после того, как трансформатор отключен от внешней сети (ПБВ, или переключение без возбуждения). Большее распространение получил второй способ регулировки напряжения.

Говоря о видах трансформаторов, нельзя не рассказать об электронном трансформаторе. Электронный трансформатор представляет собой специализированный источник питания, который служит для преобразования напряжения 220В в 12 (24)В, при большой мощности. Электронный трансформатор намного меньше обычного, при тех же самых параметрах нагрузки.

В начало

Уравнения идеального трансформатора

Для того чтобы рассчитать основные характеристики трансформаторов, принято пользоваться простыми уравнениями, которые знает каждый современный школьник. Для этого используют понятие идеального трансформатора. Идеальным трансформатором называется такой трансформатор, в котором нет потерь энергии на нагрев обмоток и вихревые токи. В идеальном трансформаторе энергия первичной цепи превращается полностью в энергию магнитного поля, а затем – в энергию вторичной обмотки. Именно поэтому мы можем написать:
P1= I1*U1 = P2 = I2*U2,
где P1, P2 – мощности электрического тока в первичной и вторичной обмотке соответственно.

В начало

Магнитопровод трансформатора

Магнитопровод представляет собой пластины из электротехнической стали, которые концентрируют в себе магнитное поле трансформатора. Полностью собранная система с деталями, скрепляющими трансформатор в единое целое – это остов трансформатора. Та часть магнитопровода, на которой крепятся обмотки, называется стержнем трансформатора. Часть магнитопровода, которая не несет на себе обмотку и замыкает магнитную цепь, называется ярмом.

В трансформаторе стержни могут располагаться по-разному, поэтому выделяют такие четыре типа магнитопроводов (магнитных систем): плоская магнитная система, пространственная магнитная система, симметричная магнитная система, несимметричная магнитная система.

В начало

Обмотка трансформатора

Теперь поговорим об обмотке трансформатора. Основная часть обмотки – виток, который однократно обхватывает магнитопровод и в котором индуцируется магнитное поле. Под обмоткой понимают сумму витков, ЭДС всей обмотки равна сумме ЭДС в каждом витке.

В силовых трансформаторах обмотка обычно состоит из проводников, имеющих квадратное сечение. Такой проводник по-другому еще называется жилой. Проводник квадратного сечения используется для того, чтобы более эффективно использовать пространство внутри сердечника. В качестве изоляции каждой жилы может использоваться либо бумага, либо эмалевый лак. Две жилы могут быть соединены между собой, и иметь одну изоляцию – такая конструкция называется кабелем.

Обмотки бывают следующих типов: основные, регулирующие и вспомогательные. Основной называется обмотка, к которой подводится или от которой отводится ток (первичная и вторичная обмотка). Обмотка с выводами для регулирования коэффициента трансформации напряжения называется регулирующей.

В начало

Применение трансформаторов

Из курса школьной физики известно, что потери мощности в проводах прямо пропорциональны квадрату силы тока. Поэтому для передачи тока на большие расстояния напряжение повышают, а перед подачей потребителю наоборот, понижают. В первом случае нужны повышающие трансформаторы, а во втором – понижающие. Это основное применение трансформаторов.

Трансформаторы применяются также в схемах питания бытовых приборов. Например, в телевизорах применяют трансформаторы, имеющие несколько обмоток (для питания схем, транзисторов, кинескопа, и т.д.).

В начало

Схема трансформатора

  1. Изоляция трансформатора на основе безматричной вакуумной пропитки и работает в среде с высокой влажностью воздуха и в химически агрессивной атмосфере.
  2. Минимальное выделение энергии горения (например, 43 кг для трансформатора 1600 кВА соответствуют 1,1% веса). Другие изоляционные материалы являются практически негорючими, самозатухающими и не содержат каких-либо токсичных добавок.
  3. Устойчивость трансформатора к загрязнениям благодаря конвекционным самоочищающимся дискам обмотки.
  4. Большая длина утечки по поверхности дисков обмотки, которые создают эффект изоляционных барьеров.
  5. Устойчивость трансформатора к температурной ударной нагрузке даже при крайне низких температурах (-50°С).
  6. Керамические блоки прокладки (без возможности возгорания) между дисками обмотки.
  7. Изоляция проводников стекло-шелк.
  8. Безопасность эксплуатации трансформатора благодаря специальной структуре обмотки Воздействие напряжения на изоляцию никогда не превышает напряжение изоляции (не более 10 В). Частичные разряды в изоляции физически невозможны.
  9. Охлаждение трансформатора обеспечивается вертикальными и горизонтальным каналам охлаждения, а минимальная толщина изоляции обеспечивают возможность работы трансформатора при больших кратковременных перегрузках в защитном корпусе IP 45 без принудительного охлаждения.
  10. Изоляционный цилиндр сделан и практически негорючего и самозатухающего материала, армированного стекловолокном.
  11. Обмотка низкого напряжения из стандартного провода или фольги; в качестве материала обмотки используется медь.
  12. Динамическая устойчивость трансформатора к коротким замыканиям обеспечивается керамическими изоляторами.


В начало

etcenter.ru

Виды и применение трансформаторов

МОУ Средняя общеобразовательная школа №16

Реферат на тему

«Трансформатор»

Выполнила

Ученица 11А класса

Зуева Катя

Проверила

Ващенко Т.К

Берёзовский 2010г.

Трансформа́тор (от лат. transformo — преобразовывать) — статическое электромагнитное устройство, имеющее две или более индуктивно связанных обмоток и предназначенное для преобразования посредством электромагнитной индукции одной или нескольких систем переменного тока в одну или несколько других систем переменного тока (ГОСТ Р52002-2003).

Трансформатор может состоять из одной (автотрансформатор) или нескольких изолированных проволочных, либо ленточных обмоток (катушек), охватываемых общим магнитным потоком, намотанных, как правило, на магнитопровод (сердечник) из ферромагнитного магнито-мягкого материала.

История

Для создания трансформаторов необходимо было изучение свойств материалов: неметаллических, металлических и магнитных, создания их теории.

Столетов Александр Григорьевич (профессор МУ)сделал первые шаги в этом направлении — обнаружил петлю гистерезиса и доменную структуру ферромагнетика (80-е).Братья Гопкинсоны разработали теорию электромагнитных цепей.В 1831 году английским физиком Майклом Фарадеем было открыто явление электромагнитной индукции, лежащее в основе действия электрического трансформатора, при проведении им основополагающих исследований в области электричества.Схематичное изображение будущего трансформатора впервые появилось в 1831 году в работах Фарадея и Генри. Однако ни тот, ни другой не отмечали в своём приборе такого свойства трансформатора, как изменение напряжений и токов, то есть трансформирование переменного тока.

В 1848 году французский механик Г. Румкорф изобрёл индукционную катушку. Она явилась прообразом трансформатора.30 ноября 1876 года, дата получения патента Яблочковым Павлом Николаевичем, считается датой рождения первого трансформатора. Это был трансформатор с разомкнутым сердечником, представлявшим собой стержень, на который наматывались обмотки.Первые трансформаторы с замкнутыми сердечниками были созданы в Англии в 1884 году братьями Джоном и Эдуардом Гопкинсон.

Большую роль для повышения надежности трансформаторов сыграло введение масляного охлаждения (конец 1880-х годов, Д.Свинберн). Свинберн помещал трансформаторы в керамические сосуды, наполненные маслом, что значительно повышало надежность изоляции обмоток.С изобретением трансформатора возник технический интерес к переменному току. Русский электротехник Михаил Осипович Доливо-Добровольский в 1889 г. предложил трёхфазную систему переменного тока, построил первый трёхфазный асинхронный двигатель и первый трёхфазный трансформатор. На электротехнической выставке во Франкфурте-на-Майне в 1891 г. Доливо-Добровольский демонстрировал опытную высоковольтную электропередачу трёхфазного тока протяжённостью 175 км. Трёхфазный генератор имел мощность 230 КВт при напряжении 95 В.

1928 год можно считать началом производства силовых трансформаторов в СССР, когда начал работать Московский трансформаторный завод (впоследствии — Московский электрозавод).В начале 1900-х годов английский исследователь-металлург Роберт Хедфилд провёл серию экспериментов для установления влияния добавок на свойства железа. Лишь через несколько лет ему удалось поставить заказчикам первую тонну трансформаторной стали с добавками кремния.

Следующий крупный скачок в технологии производства сердечников был сделан в начале 30-х годов XX в, когда американский металлург Норман П. Гросс установил, что при комбинированном воздействии прокатки и нагревания у кремнистой стали появляются незаурядные магнитные свойства в направлении прокатки: магнитное насыщение увеличивалось на 50 %, потери на гистерезис сокращались в 4 раза, а магнитная проницаемость возрастала в 5 раз.

Силовой трансформатор — трансформатор, предназначенный для преобразования электрической энергии в электрических сетях и в установках, предназначенных для приёма и использования электрической энергии.

Автотрансформа́тор — вариант трансформатора, в котором первичная и вторичная обмотки соединены напрямую, и имеют за счёт этого не только электромагнитную связь, но и электрическую. Обмотка автотрансформатора имеет несколько выводов (как минимум 3), подключаясь к которым, можно получать разные напряжения. Преимуществом автотрансформатора является более высокий КПД, поскольку лишь часть мощности подвергается преобразованию — это особенно существенно, когда входное и выходное напряжения отличаются незначительно. Недостатком является отсутствие электрической изоляции (гальванической развязки) между первичной и вторичной цепью. Применение автотрансформаторов экономически оправдано вместо обычных трансформаторов для соединения эффективно заземленных сетей с напряжением 110 кВ и выше при коэффициентах трансформации не более 3-4.Существенным является меньший расход стали для сердечника, меди для обмоток, меньший вес и габариты, и в итоге — меньшая стоимость.

Трансформа́тор то́ка — трансформатор, питающийся от источника тока. Типичное применение — для снижения первичного тока до величины, используемой в цепях измерения, защиты, управления и сигнализации. Номинальное значение тока вторичной обмотки 1А , 5А. Первичная обмотка трансформатора тока включается в цепь с измеряемым переменным током, а во вторичную включаются измерительные приборы. Ток, протекающий по вторичной обмотке трансформатора тока, равен току первичной обмотки, деленному на коэффициент трансформации.

Трансформатор напряжения — трансформатор, питающийся от источника напряжения. Типичное применение — преобразование высокого напряжения в низкое в цепях, в измерительных цепях и цепях РЗиА. Применение трансформатора напряжения позволяет изолировать логические цепи защиты и цепи измерения от цепи высокого напряжения.

Импульсный трансформатор — это трансформатор, предназначенный для преобразования импульсных сигналов с длительностью импульса до десятков микросекунд с минимальным искажением формы импульса. Основное применение заключается в передаче прямоугольного электрического импульса (максимально крутой фронт и срез, относительно постоянная амплитуда). Он служит для трансформации кратковременных видеоимпульсов напряжения, обычно периодически повторяющихся с высокой скважностью. В большинстве случаев основное требование, предъявляемое к ИТ заключается в неискажённой передаче формы трансформируемых импульсов напряжения; при воздействии на вход ИТ напряжения той или иной формы на выходе желательно получить импульс напряжения той же самой формы, но, быть может, иной амплитуды или другой полярности.

Разделительный трансформатор — трансформатор, первичная обмотка которого электрически не связана со вторичными обмотками. Силовые разделительные трансформаторы предназначены для повышения безопасности электросетей, при случайных одновременных прикасаний к земле и токоведущим частям или нетоковедущим частям, которые могут оказаться под напряжением в случае повреждения изоляции. Сигнальные разделительные трансформаторы обеспечивают гальваническую развязку электрических цепей.

Пик-трансформатор — трансформатор, преобразующий напряжение синусоидальной формы в импульсное напряжение с изменяющейся через каждые полпериода полярностью.

Сдвоенный дроссель (встречный индуктивный фильтр) — конструктивно является трансформатором с двумя одинаковыми обмотками. Благодаря взаимной индукции катушек он при тех же размерах более эффективен, чем обычный дроссель. Сдвоенные дроссели получили широкое распространение в качестве входных фильтров блоков питания; в дифференциальных сигнальных фильтрах цифровых линий, а также в звуковой технике.

Основные части конструкции трансформатора

Стержневой тип трёхфазных трансформаторов

Броневой тип трёхфазных трансформаторов

В практичной конструкции трансформатора производитель выбирает между двумя различными базовыми концепциями:

· Стержневой

· Броневой

Любая из этих концепций не влияет на эксплуатационные характеристики или эксплуатационную надёжность трансформатора, но имеются существенные различия в процессе их изготовления. Каждый производитель выбирает концепцию, которую он считает наиболее удобной с точки зрения изготовления, и стремится к применению этой концепции на всём объёме производства.

В то время как обмотки стержневого типа заключают в себе сердечник, сердечник броневого типа заключает в себе обмотки. Если смотреть на активный компонент (т.e. сердечник с обмотками) стержневого типа, обмотки хорошо видны, но они скрывают за собой стержни магнитной системы сердечника. Видно только верхнее и нижнее ярмо сердечника. В конструкции броневого типа сердечник скрывает в себе основную часть обмоток.

Ещё одно отличие состоит в том, что ось обмоток стержневого типа, как правило, имеет вертикальное положение, в то время как в броневой конструкции она может быть горизонтальной или вертикальной.

Основными частями конструкции трансформатора являются:

— магнитная система (магнитопровод)

— обмотки

— система охлаждения

Магнитная система (магнитопровод) трансформатора — комплект элементов (чаще всего пластин) электротехнической стали или другого ферромагнитного материала, собранных в определённой геометрической форме, предназначенный для локализации в нём основного магнитного поля трансформатора. Магнитная система в полностью собранном виде совместно со всеми узлами и деталями, служащими для скрепления отдельных частей в единую конструкцию, называется остовом трансформатора. Часть магнитной системы, на которой располагаются основные обмотки трансформатора, называется — стержень.Часть магнитной системы трансформатора, не несущая основных обмоток и служащая для замыкания магнитной цепи, называется — ярмо.

mirznanii.com

устройство и принципы работы, назначение и область применения прибора

Название «трансформатор» произошло от латинского слова «transforмare», что значит «превращать, преобразовывать». Именно в этом и заключается его суть — преобразование путем магнитной индукции переменного тока одного напряжения в переменный ток другого напряжения, но аналогичной частоты. Главное назначение трансформатора — использование в электросетях и источниках питания разнообразных приборов.

Устройство и принцип действия

Трансформатор — это прибор для преобразования переменного тока и напряжения, не имеющий подвижных частей.

Устройство трансформаторов состоит из одной или нескольких обособленных проволочных, иногда ленточных катушек (обмоток), которые охвачены единым магнитным потоком. Катушки, как правило, наматывают на сердечник (магнитопровод). Обычно он изготавливается из ферромагнитного материала.

На рисунке схематично представлен принцип работы трансформатора.

На рисунке видно, что первичная обмотка подсоединена к источнику переменного тока, а другая (вторичная) — к нагрузке. В витках первичной обмотки при этом проистекает переменный ток, его величина I1. А обе катушки охватывает магнитный поток Ф, производящий в них электродвижущую силу.

Если вторичная обмотка находится без нагрузки, то такой режим работы преобразователя называется «холостой ход». Когда вторичная катушка под нагрузкой, в ней под действием электродвижущей силы возникает ток I2.

Выходное напряжение при этом зависит напрямую от того, сколько витков на катушках, а сила тока — от диаметра (сечения) провода. Другими словами, если обе катушки имеют равное количество витков, то напряжение на выходе будет равно напряжению на входе. А если на вторичную катушку намотать в 2 раза больше витков, то и напряжение на выходе станет в 2 раза выше входного.

Итоговый ток зависит также и от диаметра провода обмотки. Например, при большой нагрузке и маленьком диаметре провода может произойти перегрев обмотки, нарушение целостности изоляции и даже полный выход из строя трансформатора.

Во избежание таких ситуаций составлены таблицы для расчета преобразователя и выбора диаметра провода под заданное выходное напряжение.

Классификация по видам

Трансформаторы принято классифицировать по нескольким признакам: по назначению, по способу установки, по типу изоляции, по используемому напряжению и т. д. Рассмотрим самые распространенные виды приборов.

Силовые преобразователи

Такой вид приборов применяется для подачи и приема электрической энергии на ЛЭП и с ЛЭП с напряжением до 1150 квт. Отсюда и название — силовой. Эти приборы функционируют на низких частотах — порядка 50−60 Гц. Их конструктивными особенностями является то, что они могут содержать несколько обмоток, которые располагаются на броневом сердечнике, изготовленном из электротехнической стали. Причем катушки низкого напряжения могут быть запитаны параллельно.

Такой прибор носит название трансформатор с расщепленными обмотками. Обычно силовые трансформаторы помещают в емкость с трансформаторным маслом, а самые мощные агрегаты охлаждают активной системой. Для установки на подстанциях и электростанциях используют трехфазные приборы мощностью до 4 тыс. кВА. Они получили наибольшее распространение, так как потери в них уменьшены на 15% по сравнению с однофазными.

Автотрансформаторы (ЛАТР)

Это особая разновидность низкочастотного прибора. В нем вторичная обмотка одновременно является частью первичной и наоборот. То есть катушки связываются не только магнитно, но и электрически. Разное напряжение получается и с одной обмотки, если сделано несколько выводов. За счет использования меньшего количества проводов достигается удешевление прибора. Однако при этом отсутствует гальваническая развязка обмоток, а это уже существенный недочет.

Автотрансформаторы нашли применение в высоковольтных сетях и в установках автоматического управления, для запуска двигателей переменного тока. Целесообразно их использование при невысоких коэффициентах трансформации. ЛАТР применяют для регулировки напряжения в лабораторных условиях.

Трансформаторы тока

В таких приборах первичная обмотка подсоединяется непосредственно к источнику тока, а вторичная — к приборам с небольшим внутренним сопротивлением. Это могут быть защитные или измерительные устройства. Самым распространенным видом трансформатора тока считается измерительный.

Он состоит из сердечника, выполненного из шихтованной кремнистой холоднокатаной электротехнической стали, с намотанной на него одной или несколькими обособленными вторичными обмотками. В то время как первичная может представлять собой просто шину или же провод с измеряемым током, пропущенным при этом сквозь окошко магнитопровода. По такому принципу функционируют, к примеру, токоизмерительные клещи. Главной характеристикой трансформаторного тока является коэффициент трансформации.

Такие преобразователи безопасны и поэтому нашли применение при измерении тока и в схемах релейной защиты.

Импульсные преобразователи

В современном мире импульсные системы практически полностью заменили тяжелые низкочастотные трансформаторы. Обычно импульсный прибор выполняется на ферритовом сердечнике разнообразных форм и размеров:

  • кольцо;
  • стержень;
  • чашечка;
  • в виде буквы Ш;
  • П-образный.

Превосходство таких приборов сомнениям не подлежит — они способны функционировать на частотах до 500 и более кГц.

Так как это прибор высокочастотный, то его размеры существенно снижаются с ростом частоты. На обмотку расходуется меньшее количество провода, а для получения высокочастотного тока в первой цепи достаточно лишь подключения полевого или биполярного транзистора.

Существуют еще много разновидностей трансформаторов: разделительные, согласующие, пик-трансформаторы, сдвоенный дроссель и т. д. Все они широко применяются в современной промышленности.

Область применения приборов

Сегодня, пожалуй, трудно себе представить область науки и техники, где не применяются трансформаторы. Их широко используются для следующих целей:

  1. Для передачи и раздачи электроэнергии.
  2. Для создания допустимой схемы включения вентилей. Применяется в преобразовательных устройствах с одновременным согласованием входного и выходного напряжения.
  3. В производстве: в сварке, для снабжения электротермических установок и т. д. Мощность таких приборов достигает порой десятков тысяч кВА и напряжения до 10 кВ, а рабочий диапазон — 50 Гц.
  4. Преобразователи малой мощности и невысокого напряжения применяют для радио- и телеаппаратуры, устройств связи, бытовых приборов, для согласования напряжений и т. д.
  5. При включении электроизмерительных приборов и реле в электроцепи высокого напряжения с целью расширения диапазонов измерений и обеспечения электробезопасности.

Исходя из многообразия устройств и видов назначения трансформаторов, можно утверждать, что сегодня они — незаменимые, использующиеся практически повсеместно устройства, благодаря которым обеспечивается стабильность и достижение необходимых потребителю значений напряжения как гражданских сетей, так и сетей предприятий промышленности.

220v.guru

назначение, устройство и принцип действия

Силовые трансформаторы представляют собой устройства, работа которых основана на принципе электромагнитной индукции. Агрегат способен преобразовать напряжение переменного тока, сохранив при этом значение его частоты. Особенности прибора позволяют сохранить мощность, а также поменять систему сети (однофазная, трехфазная). Чтобы понять, что такое силовые трансформаторы, необходимо рассмотреть их устройство и принцип действия.

Область применения

Устройство трансформатора силового позволяет транспортировать электричество на большие расстояния. От объекта, который его вырабатывает, до конечного потребителя расстояние может насчитывать тысячи километров. Рассказать кратко о силовых трансформаторах позволяет схема перемещения электричества. Чтобы избежать его искажений и потерь применяется принцип трансформации. Генераторы вырабатывают электричество и передают его на подстанцию. Здесь повышается напряжение, и ток с требуемыми характеристиками передается в линии электропередач.

На другой стороне ЛЭП подводится к удаленной подстанции. Через этот объект осуществляется распределение тока между всеми потребителями. Для этого напряжение понижается. Чтобы преобразовывать электричество большой мощности на обеих подстанциях функционируют представленные устройства. Это трансформаторы и автотрансформаторы. Технические характеристики этих устройств практически идентичны. Отличается их принцип функционирования.

Первый повышающий силовой трансформатор находится непосредственно возле ЛЭП электростанции. Последующие первичные агрегаты в сети также работают для повышения напряжения. Это позволяет избежать потери в линии. На пути к потребителю устанавливается определенное количество понижающей аппаратуры. В обеспечении полноценного функционирования всей системы заключается назначение всех силовых трансформаторов.

Функционирование системы

Принцип работы силового трансформатора основан на электродвижущей силе, которая движется по обмоткам. Данные устройства функционируют исключительно на переменном токе. Если его подключить к обмотке, будет создаваться магнитный поток. Он замыкается в магнитоприводе. В этот момент возникает электродвижущая сила во второй обмотке. Все катушки связаны в системе магнитной связью. Показатель ЭДС будет пропорционален количеству витков в обмотке.

Принцип действия понижающего или повышающего силового трансформатора включает в себя несколько режимов. Для каждого из них предусмотрены свои особенности.

В рабочем режиме к первичной обмотке подводится напряжение, а к вторичной – нагрузка. В таком положении установка способна длительное время обеспечивать подключенные к нему потребители электричеством. Рабочий режим может осуществляться при холостом ходе и опыте короткого замыкания.

Холостой ход наступает при размыкании вторичной обмотки. В этот период исключается протекание по ней тока. Этот режим позволяет определить КПД прибора, потери при намагничивании сердечника и коэффициент трансформации.

Опыт короткого замыкания происходит при коротком шунтировании выводов вторичной катушки. При этом сила тока на входе должна быть занижена на входе. На этом уровне создается вторичный ток без превышения. Представленную методику применяют для определения уровня потерь в меди.

Аварийный режим определяется при нарушениях в работе системы. Рабочие параметры отклоняются от допустимых значений. Наиболее опасным состоянием считается короткое замыкание внутри обмоток. При этом возможно возникновение пожара, причинение большого ущерба системе энергоснабжения. Чтобы предупредить возникновение аварии, применяются различные автоматические системы защиты, сигнализации и отключения оборудования.

Разновидности

Производство конструкций силовых трансформаторов предполагает применение различных технологий. В процессе создания представленной аппаратуры применяются разные диэлектрические компоненты. Определенные части оборудования способствуют охлаждению и обеспечивают электрическую защиту.

Для маломощных разновидностей применяется диэлектрический компаунд или специальная бумага, электротехническое лаковое покрытие. Средние и мощные агрегаты имеют в своем составе такие основные части, как масло, элегаз. Производство подобного оборудования предполагает выполнять особую изоляцию обмоток.

Помимо вышеприведенной классификации выделяют еще несколько основных категорий объектов:

  • Количество фаз. Бывает трёхфазный и однофазный тип приборов.
  • Тип исполнения. Применяются масляные, сухие и приборы с жидким диэлектрическим веществом.
  • Климатическое исполнение. Наружные и внутренние установки.
  • Число обмоток. Встречаются конструкции с двумя и более катушками.
  • Предназначение. Для понижения или повышения напряжения.
  • Возможность регулировки напряжения. Применяются аппараты с регулировкой и без нее.

Производство подобной аппаратуры позволяет создавать установки мощностью от 4 кВА до 200 тыс. кВА (и выше). При этом достигается уровень напряжения на обмотках более 330 кВ.

Всего существует девять групп оборудования. В первую из них входят приборы с напряжением не выше 35 кВ и мощностью 4-100 кВА. К восьмой отнесены аппараты с мощностью выше 200 тыс. кВА и напряжением 35-330 кВ. Существуют и более мощное оборудование. Оно относится к девятой категории.

Особенности и основные параметры

Устройство и монтаж силовых трансформаторов предполагает размещение станции на стационарной, специально подготовленной площадке. Фундамент сооружения должен быть прочным. На грунте при этом могут монтироваться катки и рельсы.

Внутри металлического корпуса располагаются электрические установки. Он выполнен в виде герметичного бака. Внутренние системы закрывает крышка. Чаще всего применяются масляные разновидности. Они имеют особые технические характеристики. Внутри короба такого агрегата находится масло специального типа. Оно обладает особыми диэлектрическими качествами. Масло отводит излишнее тепло от деталей системы в процессе повышенной токовой нагрузки. Однако есть и другие варианты охладительных систем.

Основными характеристиками, влияющими на функционирование установки, являются:

  • Количество катушек и тип их соединения.
  • Мощность.
  • Значение напряжения обмоток.

Сегодня в системах обеспечения электричеством различных объектов чаще встречаются агрегаты с двумя трехфазными обмотки. Только для бытовой сети применяются однофазные установки. Трехфазный силовой трансформатор распространен больше в сетях электрокоммуникаций.

Система регулировки бывает двух типов. В первом случае необходимо отключать питание перед проведением настройки, а во втором – нет. Регулировка выполняется со стороны обмотки высоковольтного типа. По ней движется меньший ток. Такой тип регулировки позволяет выполнять точную настройку.

Конструкция, предполагающая отключение нагрузки, проще. Однако ее предел изменения небольшой. Регулировка требует полного отключения прибора от сети.

Схема

Схема силового трансформатора включает в себя несколько основных элементов. К ним относятся:

  • Сердечник (магнитопривод).
  • Остов с балками (нижняя и верхняя).
  • Низковольтная и высоковольтная обмотки.
  • Отводы.
  • Регулировочные ответвления.
  • Нижняя часть вводов.

На основе с балками закрепляются все составные детали. Магнитопривод необходим для снижения потерь при прохождении магнитного потока через контуры. Он изготавливается из электротехнической стали.

В сердечнике магнитопривода листы металла собирают по определенной схеме. Стержни с обмотками должны приближаться по форме к кругу. Подобная конфигурация позволяет облегчить намотку проводников. Стыки между отдельными пластинами сердечника перекрываются цельными листами.

Обмотка выполняется из проводов круглой или прямоугольной формы сечения. Между слоями и самими обмотками оставляются зазоры для циркуляции охладительного компонента.

Особенности выбора

Силовые трансформаторы требуют при выборе учитывать требования потребителей электроэнергии. При монтаже оборудования энергоснабжения, необходимо рассчитать правильно мощность оборудования. Если применяется несколько агрегатов, при аварийном отключении один из них должен полностью компенсировать работу другого прибора.

Также важно уделять внимание качеству системы защиты. Она должна срабатывать при перегрузках, внутренних повреждений элементов конструкции. К их числу относятся приборы по контролю уровня давления масла, температуры сердечника, обмотки, образование газов.

Обслуживание и ремонт

Работа аппаратов связана с высокими значениями мощностей. Поэтому их обслуживанию уделяется повышенное внимание. Ежедневно обслуживающий персонал совершает осмотры, контролирует показания измерительных приборов.

В процессе техобслуживания оцениваются следующие показатели:

  1. Степень истощения прибора, поглощающего влагу.
  2. Количество масла.
  3. Износ механизмов регенерации масла.
  4. Наличие подтекания, механических повреждений трубопроводов радиаторов, корпуса.

Если на объекте не предусмотрено круглосуточное дежурство персонала, периодическая ревизия производится раз в месяц. На трансформаторных пунктах осмотр выполняют раз в 6 месяцев.

При необходимости меняют или доливают масло. Его цвет контролируется при визуальном осмотре. Если оно стало темным, его меняют. Раз в год и при проведении капитального ремонта выполняют лабораторное исследование состава масла.

Для разрушения пленки окислов на медных и латунных элементах раз в 6 месяцев отключают установку от питания. Переключатель переводят через все положения несколько раз. Такую процедуру проводят перед сезонными колебаниями нагрузки.

Силовая аппаратура является важным элементом сети энергоснабжения. Они функционируют круглосуточно, поэтому важно уделять внимание особенностям их выбора и обслуживанию. Это одно из сложнейших, но крайне важных устройств.

protransformatory.ru

Силовые трансформаторы. Виды и устройство. Работа и применение

Трансформатором называется электрическое устройство, которое передает электроэнергию от одного контура на другой с помощью магнитной индукции. Трансформаторы стали наиболее применяемыми электрическими устройствами, применяющимися в быту и промышленности. Эти устройства используются для повышения или понижения напряжения, а также в схемах блоков питания для преобразования входящего переменного тока в постоянный ток на выходе.

Способность трансформаторов передавать электроэнергию применяется для передачи мощности между разными схемами несогласованных электрических цепей. Рассмотрим различные виды и типы силовых трансформаторов, их установку и технические свойства.

Устройство трансформатора

Конструкции трансформаторов имеют различное строение. В зависимости от этого ведется расчет номинального напряжения, либо между фазой и землей, либо между двумя фазами.

1 — Первичная обмотка 2 — Вторичная обмотка 3 — Сердечник магнитопровода 4 — Ярмо магнитопровода

Конструкция обычного стандартного трансформатора состоит из двух обмоток с общим ярмом, для создания электромагнитной связи между обмотками. Сердечник изготавливают из электротехнической стали. Катушка, на которую входит электрический ток, является первичной обмоткой. Катушка на выходе называется вторичной.

Существует такой вид трансформаторов, как тороидальный. У такого трансформатора катушки индуктивности являются пассивными компонентами, состоящими из магнитного сердечника в виде кольца. Сердечник имеет повышенную магнитную проницаемость, изготовлен из феррита. Вокруг кольца намотана катушка. Тороидальные фильтры и катушки применяются для трансформаторов высокой частоты. Они используются для испытаний мощности.

Переменный ток поступает на первичную обмотку трансформатора, образуется электромагнитное поле, которое развивается в магнитном потоке сердечника. По принципу электромагнитной индукции во вторичной обмотке образуется переменная ЭДС, которая образует напряжение на клеммах выхода трансформатора.

Силовые трансформаторы, имеющие две обмотки, не рассчитаны на постоянный ток. Однако, в момент подключения их к постоянному току, они образуют короткий импульс напряжения на выходе.

Конструкция силового трансформатора подобна обычному бытовому трансформатору.

Виды

Существует множество факторов, по которым можно классифицировать силовые трансформаторы. При общем рассмотрении этих устройств, можно сказать, что они преобразуют электрическую энергию одного размера напряжения в электроэнергию с большим или меньшим размером напряжения.

В зависимости от различных факторов силовые трансформаторы делятся на виды:
  • По выполняемой задаче. Понижающие трансформаторы. Применяются для получения низкого напряжения из высоковольтных линий питания. Повышающие, используются для увеличения значения напряжения.
  • По числу фаз. Трансформаторы 3-фазные, 1-фазные. Широко применяются в трехфазной сети питания. Оптимальным вариантом будет в трехфазной сети установить три однофазных трансформатора на каждую отдельную фазу.
  • По количеству обмоток. Двухобмоточные и трехобмоточные.
  • По месту монтажа. Наружные и внутренние.

Существует много других разных факторов, по которым можно разделять силовые трансформаторы. Например, по способу охлаждения или соединения обмоток, и т.д. При установке оборудования важную роль играют условия климата, что также разделяет трансформаторы на классы.

Трансформаторное оборудование бывает универсальным, и специального назначения мощностью до 4000 кВт напряжением 35000 вольт. Конкретную модель выбирают по возлагаемой на трансформатор задаче.

Принцип действия

Трансформатором называется электромагнитное статическое устройство, у которых имеется 2 или больше обмоток, связанных индуктивно. Они предназначены для изменения одного переменного тока в другой. Вторичный ток может различаться любыми свойствами: значением напряжения, количеством фаз, формой графика тока, частотой. Широкое использование в электроустановках, а также в распределительных системах получили силовые трансформаторы.

С помощью таких устройств преобразуют размер напряжения и тока. При этом количество фаз, форма графика тока, частота не изменяются. Элементарный силовой трансформатор имеет магнитопровод из ферромагнитного материала, две обмотки на стержнях. Первая обмотка подключена к линии питания переменного тока. Ее называют первичной. Ко второй обмотке подсоединена нагрузка потребителя. Ее назвали вторичной. Магнитопровод вместе с катушками обмоток располагается в баке, наполненном трансформаторным маслом.

Принцип работы заключается в электромагнитной индукции. При включении питания на первичную обмотку в виде переменного тока в магнитопроводе образуется переменный магнитный поток. Он замыкается на магнитопроводе и образует сцепление с двумя обмотками, в результате чего в обмотках индуцируется ЭДС. Если к вторичной обмотке подключить какую-либо нагрузку, то под действием ЭДС в цепи этой обмотки образуется ток и напряжение.

В повышающих силовых трансформаторах напряжение на вторичной обмотке всегда выше, чем напряжение в первичной обмотке. В понижающих трансформаторах напряжения первичной и вторичной обмоток распределяются в обратном порядке, то есть, на первичной напряжение выше, а на вторичной ниже. ЭДС обеих обмоток отличаются по количеству обмоток.

Поэтому, используя обмотки с необходимым соотношением количества витков, можно получить конструкцию трансформатора для получения любого напряжения. Силовые трансформаторы имеют свойство обратимости. Это значит, что трансформатор можно применить как повышающий прибор, или понижающий. Но, чаще всего, трансформатор предназначен для определенной задачи, то есть, либо он должен повышать напряжение, либо снижать.

Сфера использования

Энергетика в современное время не обходится без устройств, преобразующих электроэнергию в сетях и магистралях, а также принимающих и распределяющих ее. Когда появились силовые трансформаторы, то произошло снижение расхода использования цветных металлов, а также уменьшились потери энергии.

Для эффективной работы оборудования нужно рассчитать потери в силовом трансформаторе. Для этого необходимо обратиться к специалистам. Мощные трансформаторы нашли применение на линиях высокого напряжения и станциях распределения энергии. Без них не обходится ни одна отрасль промышленности, где необходимо преобразование энергии.

Вот некоторые области применения силовых трансформаторов:
  • В сварочном оборудовании.
  • Для электротермических устройств.
  • В схемах электроизмерительных устройств и приборов.
Свойства и расчет трансформатора
Чаще всего основные свойства устройства указаны в инструкции в его комплекте. Для силовых трансформаторов такими основными свойствами являются:
  • Номинальное значение напряжения и мощности.
  • Наибольший ток обмоток.
  • Габаритные размеры.
  • Вес устройства.

Мощность трансформатора по номиналу определяется изготовителем, и выражается в кВА (киловольт-амперы). Номинальное значение напряжения указывается первичное, для соответствующей обмотки, и вторичное, на клеммах выхода. Размеры этих значений могут не совпадать на 5% в ту или иную сторону. Чтобы ее вычислить, нужно сделать простой расчет.

Номинальный ток и мощность устройства должны удовлетворять стандартам. На сегодняшний день производятся модели сухих трансформаторов, которые имеют такие данные мощности от 160 до 630 кВА. Обычно мощность трансформатора обозначена в его паспорте. По ее значению определяют номинальный размер тока. Для расчета применяют формулу:

I = S х √3U, где S и U – это мощность по номиналу, и напряжение.

Для каждой обмотки в формулу входят свои значения величин. Чтобы рассчитать мощность силового трансформатора при работе с потребляющей энергию нагрузкой, необходимо проводить довольно сложные расчеты, которые могут сделать специалисты. Такие расчеты необходимы во избежание негативных моментов, которые могут возникнуть при функционировании трансформатора.

Номинальное напряжение – это линейная величина напряжения холостого хода на обмотках. Они вычисляются, исходя из мощности трансформатора.

Установка и эксплуатация

Многие варианты исполнения силовых трансформаторов имеют большую массу. Поэтому на место монтажа их доставляют на специальных транспортных платформах. Их привозят в собранном готовом к подключению виде.

Силовые трансформаторы устанавливаются на специальном фундаменте, либо в определенном для этого помещении. При массе трансформатора до 2 тонн установка производится на фундамент. Корпус трансформатора в обязательном порядке заземляют.

Перед монтажом трансформатор подвергают лабораторным испытаниям, в ходе которых измеряется коэффициент трансформации, проверяется качество всех соединений, проверяется изоляция повышенным напряжением, производится контроль качества масла.

Перед установкой трансформатор необходимо тщательно осмотреть. Нужно обратить особое внимание на наличие утечек масла, проконтролировать состояние изоляторов, соединений контактов.

После ввода в эксплуатацию нужно периодически производить измерение температуры нагрева специальными стеклянными термометрами. Температура должна быть не более 95 градусов.

Во избежание аварий при эксплуатации силового трансформатора нужно периодически производить замеры нагрузки. Это дает информацию о перекосах фаз, искажающих напряжение питания. Осмотр силового трансформатора производится два раза в год. Периоды осмотра могут изменяться в зависимости от состояния устройства.

Похожие темы:

electrosam.ru

Трансформаторы напряжения: виды, назначения, принцип действия, применение

Трансформаторы напряжения имеют довольно развитую классификацию и отличаются друг от друга по назначению, а также принципу действия. Это устройства, меняющие характеристики тока, имеют важное значение для обеспечения энергией как отдельных точек, так и крупных территорий. Большинство из них объединено в одну систему энергоснабжения. Какими же бывают трансформаторы?

Содержание:

Общая классификация трансформаторов

Трансформаторные устройства по назначению делятся на:

  • Силовые. Обеспечивают бесперебойное питание. Принцип их работы построен на преобразовании тока переменного типа из одного напряжения в другое. Выделяют два диаметрально противоположных вида силовых трансформаторов — это как повышающие, так и понижающие. В России используются трехфазные двухобмоточные модели понижающего типа для преобразования высоких значений — 10 кВ до бытового значения в 0,4 кВ.
  • Измерительные. Так называемый, промежуточный вариант, благодаря которому возможно подключение различных измерительных устройств в условиях высокого напряжения. Так различные вольт-, ватт- и амперметры изолируются от сети электропередач, то есть могут применяться без каких-либо оговорок.
  • Автотрансформаторы, рассчитанные на уровень от 0,3 до 6 кВт. В структуре — одна обмотка, дополненная клеммами и терминалы, расположенные в промежутках, где размещаются катушки.
  • Трансформирующие устройства тока, которые имеют два вида обмотки — первичную и вторичную. Конструкция состоит из магнитного сердечника, а также нескольких резисторов и датчиков, помогающих регулировать уровень напряжения более точно. Используются для уравнивания сигналов первичной и вторичной цепей и создания линейной пропорции.
  • Антирезонансные. Очень похожи на устройства силового типа, правда, гораздо компактнее и менее требовательны к погоде. Применяются для использования в условиях повышенных нагрузок или передачи на многокилометровые расстояния.
  • Заземляемые. Имеют специализированную область использования, их еще называют догрузочными. Необычным в этой конструкции является способ соединения обмоток, это почти всегда звездочка или зигзаг. Их предназначение соединять многофазные системы с фазой и нейтралью нагрузок.
  • Пик-трансформаторы — еще один вид, который используется для того, чтобы сопоставлять источники импульсов и нагрузок. Цель — смена импульсной полярности для отделения разного типа токов. Встречаются преимущественно в различных по мощности компьютерных системах, а также узлах радиосвязи. Их базовая конструкция довольно проста. Есть сердечник, вокруг — обмотка с четко выверенным количеством витков. Такой трансформатор предохраняет чувствительные к перепадам напряжения устройства от замыкания. Нередко заменяется стабилизатором.
  • И, наконец, разделительный трансформатор. Это устройство обеспечивает передачу электроэнергии непосредственно от источника переменного тока до используемого в быту оборудования. Они не только помогают регулировать напряжение, но и предохраняют от удара током и эффективно подавляют возможные помехи на устройствах чувствительных к электроимпульсам. Такой прибор легко блокирует передачу постоянного тока, но прекрасно пропускает переменный.

В чем специфика трансформаторов напряжения? ↑

Сфера использования комментируемых нами устройств очень обширна. Применяются для измерения собственно напряжения, и контроля мощностных параметров. Питают они цепи автоматики, различные типы сигнализаций. Эффективны в качестве защиты ЛЭП.

В некоторых ситуациях возможно их применение в качестве силовых приборов  малой мощности понижающего типа или, напротив, как трансформаторов, повышающих предельные значения с целью провести испытания.

Принцип классификации трансформаторов напряжения ↑

Все трансформаторы напряжения делятся на несколько групп по различным параметрам:

  • Число фаз. Устройства производятся  одно- и трехфазные.
  • Количество имеющихся обмоток — две или три.
  • Класс точности — диапазон допустимых значений возможной погрешности.
  • Преимущественный способ охлаждения — масляные со специальным масляным составом и сухие, имеющие воздушное охлаждение.
  • По типу размещения могут быть внутренними или внешними.

Существуют и другие трансформаторы напряжения, назначение и принцип действия которых имеет свою специфику.

Немного подробнее о специфике некоторых видов ↑

Виды трансформаторного напряжения напрямую влияют на тип используемого устройства. Если речь идет о напряжении до 6 кВ, то используются трансформаторы сухого типа, в других случаях необходимо задействовать масляные модели.

Внутренние трансформирующие устройства могут работать в диапазоне от -40 до + 45 градусов при влажности воздуха не более 80 процентов. Однофазные внутренние трансформаторы имеют изоляцию литого типа и отличаются от масляных аналогов меньшей массой, более скромными размерами и неприхотливостью в эксплуатации.

Особенности и различия масляных и сухих трансформаторов ↑

Напомним, — масляные трансформаторы изолируются и охлаждаются с помощью масляного состава.

Структура масляного трансформатора — это магнитопровод в сочетании с обмотками, баком и крышкой.  Основной элемент — магнитопровод — собирается из отдельных стальных листов, хорошо заизолированных во избежание потерь.

Материал для обмоток — неизолированный провод, как правило, из меди или алюминия различного сечения. Чтобы регулировать напряжение, имеющаяся обмотка дополнена ответвлениями, соединенными с тумблером или переключателем.

В каждом трансформаторе такого типа есть два основных вида переключении: они могут регулироваться под нагрузкой, пока устройство подключено, а также без нагрузки, когда оно отключено. Самым популярным способом считается второй — он намного проще и безопаснее.

Масляные трансформаторы могут выпускаться и герметичными. В этом случае само масло никак не соприкасается с воздухом, а значит медленнее окисляется и набирается влагой. Приборы этого вида заполнены специальной масляной жидкостью полностью, а потому не имеют расширительной емкости. Что же касается компенсации при расширении от нагревания и сжатии при снижении температуры, то эту функцию выполняют гофры стенок самого бака. Еще один их плюс — в более совершенной изоляции, так как заполнение маслом происходит под вакуумом.

Второй тип — это сухие трансформаторы, в которых роль охлаждения выполняет воздух. Они также представляют собой соединение магнитопровода и двух или трех обмоток, которые помещены в защитный отсек. Так как воздух гораздо менее совершенная среда для охлаждения, чем вязкое масло, в таких устройствах изоляционные промежутки, а также каналы, предназначенные для вентиляции делаются больше.

Изоляцией в сухом варианте служит стекломатериал высокого класса термостойкости и кремнийорганические лаки, предотвращающие взаимодействие обмотки с влагой. Кстати, это делает их гораздо пожаробезопаснее, нежели масляный вариант. Эти установки можно без опасений применять в любых, в том числе и жилых помещениях.

В чем действительно проигрывают сухие трансформаторы, так это в размерах. Они более громоздкие, к тому же обладают меньшей способностью выдерживать перегрузки.

Инженерный центр «ПрофЭнергия» имеет все необходимые инструменты для качественного проведения обслуживания трансформаторных подстанций, слаженный коллектив профессионалов и лицензии, которые дают право осуществлять все необходимые испытания и замеры. Оставив выбор на электролаборатории «ПрофЭнергия» вы выбираете надежную и качествунную работу своего оборудования!

Если хотите заказать обслуживание трансформаторных подстанций или задать вопрос, звоните по телефону: +7 (495) 181-50-34.

Многообразие и специализации ↑

Разумеется, приборы каждого вида и типа используются строго по назначению или в рамках существующих допусков. Любое использование трансформаторов в не предназначенных для их эксплуатации условиях, чревато не только поломкой самого устройства, но и весьма печальными последствиями для всей цепи. Для того, чтобы избежать возможных последствий неправильного и нецелевого использования трансформаторов, следует внимательно ознакомиться с паспортом или инструкцией изделия, а также с существующими ГОСТами.

energiatrend.ru

Назначение и принцип действия трансформатора, применение трансформаторов

Трансформатор  –  это статическое электромагнитное устройство основное назначение, которого, преобразование переменного тока одного напряжения той же частоты подающегося на его входную обмотку,  в другое переменное напряжение поступающиеся с его выходной обмотки.

Если на вход трансформатора поступает напряжение ниже, чем образующиеся на его выходе то такой трансформатор называют повышающим. Если на вход поступает напряжение выше чем образующие на его выходе, то это понижающий трансформатор.

Есть некая аналогия с передаточным числом шестереночной передачей.

Назначение и принцип действия трансформатора

Назначение и принцип действия трансформатора — это  передача электрической энергии на значительные расстояния от электростанций к различным потребителям: промышленным предприятиям, населению и т.п, с помощью электродвижущей силы и магнитной индукции.

Трансформаторы позволяют значительно экономить на стоимости проводов, а также снижают потери электроэнергии в линиях электропередач. Так как от силы тока зависит сечение проводов то, увеличивая напряжение и снижая силу тока (не снижая при этом передаваемую мощность) можно эффективно предавать напряжение на значительные расстояния.

Повышая напряжение (U), и снижая силу тока (I), передаваемая мощность (Р) остается неизменна.

Формула мощности  P = U * I или P = U2 / I

передача электроэнергии трансформаторами

Это позволяет экономить  на линиях электропередач:

  1. Используя провода с меньшим поперечным сечение, снижается расход  цветных металлов;
  2. Уменьшаются потери мощности при передаче электроэнергии на большие расстояния.

На электростанциях вырабатывается электрическая энергия посредством синхронных генераторов и составляет от 11 кВ до 20кВ, в некоторых случаях может применяться напряжение 30-35 кВ.  Эти величины не подходят как в быту, так и на промышленном производстве из-за слишком высокого напряжения. Но эти напряжения также недостаточны для экономичной передачи электроэнергии на расстояния. Поэтому на выходе из электростанций ставятся повышающие трансформаторы, которые повышают напряжение до 750 кВ, U=750kV напряжение которое непосредственно передается по линиям электропередач.

Приемники электрической энергии: различные бытовые приборы, электродвигатели, станки на производстве из-за соображения безопасности и конструктивными сложностями изготовления (требования к усиленной изоляции), также не могут работать с такими высокими напряжениями.  Они рассчитываются на более низкое напряжения, как правило, это 220V в быту и 380V на производстве.

Для понижения напряжения  используются различные понижающие трансформаторы. Любой трансформатор можно использовать как для повышения, так и для понижения напряжения.

Повышающие трансформаторы используют для передачи электроэнергии на большие расстояния, понижающие для распределения электроэнергии в точке разветвления потребителей.

Электрическая энергия по пути движения от электростанции до потребителя может трансформироваться 3 или 4 раза. Преобразование электроэнергии происходит с помощью магнитопровода трансформатора и переменного магнитного поля.

Трансформатор работает только с переменным напряжением, на постоянном токе не работает, так как не будет создаваться переменного магнитного поля, которое и составляет принцип работы любого трансформатора.

Изобретение трансформатора

Трансформатор изобрел выдающийся русский ученый П.И. Яблочковым в 1876г. Он использовал индукционную катушку с двумя обмотками для питания своей знаменитой лампы, «свечи Яблочкова». Это был первый генератор переменного тока. Этот трансформатор имел незамкнутый сердечник. Замкнутые сердечники, которые используются сейчас, появились только в 1884 г.

В 1889 году русский ученый М. О. Доливо-Добровольским изобрел трехфазную систему переменного тока и построил первый трехфазный асинхронный двигатель и первый трехфазный трансформатор.

С 1891г, он демонстрирует на электротехнической выставке в Франкфурте-на-Майне передачу высоковольтного трехфазного тока на расстояние более 100 км. Его трехфазный генератор имел мощность 230 кВА и напряжение U =95V. С помощью трехфазного трансформатора напряжение повышалось до 15 кВ и понижалось в точке приема до 65V (фазное напряжение), питая трехфазный асинхронный двигатель мощностью 75 кВт насосной установки. С помощью последовательного включения двух обмоток высокого напряжения удалось повысить 28 кВ и увеличить КПД электропередачи до 77%, что в то время было достаточно высоким.

Как устроен трансформатор

Принцип работы трансформатора

Простейший трансформатор – это две обмотки катушек, намотанные на магнитопроводе (замкнутом сердечнике трансформатора) с изоляцией по которым пропускают переменный ток.
Для наглядности обмотки расположены на разных стержнях стального сердечника. На самом деле часть обмоток может находится на одном стержне, а часть на другом. Такое расположение обмоток улучшает магнитную связь и снижает потери на магнитный поток рассеяния. Обмотка, на которую подают напряжение, называют первичной обмоткой, а обмотка трансформатора, с которой снимают напряжение, называют вторичной.

Изображение трансформатора на схеме

Обычно в быту для питания различных устройств, применяют понижающие трансформаторы, где напряжение первичной обмотки всегда больше напряжения на вторичной обмотке.
Трансформаторы предназначены не только для передачи электроэнергии, но и служат в различных электронных устройствах: компьютерах, телевизорах и осветительной аппаратуре. В современном мире трансформаторы являются наиболее употребительными и универсальными устройствами.

Видео: Трансформатор. Принцип работы и советы конструкторам

Видео доступным языком объясняет работу трансформатора и даёт некоторые конструктивные советы

Простое объяснение принципа работы трансформатора

Чтобы понять, что такое трансформатор, попробуем собрать его, попутно разбираясь в каждом шаге.

 

Для начала соберем электромагнит. Самый простейший электромагнит это кусок ферромагнетика, например гвоздь (сотка), вокруг которого намотана проволока. (катушка).

катушка индуктивности

Намотайте катушку, скажем витков 20-30 на гвоздь, подключите к батарейке или любому блоку питания постоянного напряжения (например 9 вольт).

При подаче тока на катушку, гвоздь усиливает свое магнитное свойство и становится постоянным электромагнитом — полной копией простого магнита.

Количеством витков, их толщиной (сечением провода), напряжением и током, материалом сердечника, способом намотки (например в два провода) Вашей катушки — Вы можете регулировать степень магнитной силы Вашего электромагнита.

А подключением намотки Вы можете регулировать положение полюсов Вашего электромагнита. (это важно)

При подключении катушки к батарейке у гвоздя, т. е. у Вашего электромагнита образовывается, как и у простого магнита два полюса, условно северный (он же плюс) и южный (он же минус).

Поднесите к Вашему электромагниту простой магнит любым из полюсов. Вы увидите электромагнитное взаимодействие. Магнит будет отталкиваться Вашим электромагнитом.

Теперь поменяйте провода от Вашей батарейки местами, т. е. плюс на минус. При этом Вы заметите, что электромагнит поменял направление силы — теперь он наоборот притягивает.

Чем чаще Вы переключаете плюс на минус, тем чаще Ваш магнит будет менять направление силы. Иными словами электромагнит будет притягивать отталкивать с частотой питающей его сети.

Северный и южный полюса магнита будут меняться между собой, потому что ВЫ создали переменное напряжение с частотой Вашего переключения плюс на минус.

Теперь на гвозде намотайте вторую точно такую же катушку и Вы получите простейший трансформатор.

Трансформатор это прибор, который трансформирует напряжение и ток одной величины в напряжение и ток другой величины.

Первая катушка называется первичной обмоткой, а вторая катушка вторичной обмоткой.

Итак соберите такую конструкцию.

  • Гвоздь, на нем две одинаковые катушки.
  • Подключите первичную обмотку к блоку питания с возможностью менять направление тока.
  • Ко второй катушке подключите мультиметр.

Теперь включите блок питания и начинайте переключать полярность с некоторой частотой. На второй катушке у Вас начнет появляться напряжение, которое передается посредством того, что называют электромагнитной индукции. В итоге на Вашем гвозде у Вас работают два электромагнита, на первый вы подаете ток и напряжение, а на втором электромагните этот ток и напряжение индуктируются.

Виды трансформаторов

Силовой трансформатор

Так выглядит силовой трансформатор

Этот виды трансформаторов относится к трансформаторам работающих в сетях промышленных и бытовых установках частотой питающей сети 50-60 Гц. Силовые трансформаторы предназначены для преобразование электрической энергии для передачи ее по ЛЭП например, с 38 кВ до 6кВ, 380V на 220V (380/220В). Электро цепи где используется высокое напряжение принято называть в электротехнике силовыми цепями, а трансформаторы соответственно силовые трансформаторы.

Конструкция силового трансформатора состоит из двух или трёх обмоток, возможно больше. Располагаются обмотки на броневом сердечнике, изготавливаемом из листов электротехнической стали. Некоторые силовые трансформаторы (с расщепленными обмотками) могут иметь несколько обмоток с низшего напряжения (НН) которые запитаны параллельно. Это позволяет получать напряжение больше чем от одного генератора и передавать больше электроэнергии, тем самым повышая КПД электроустановки.

Мощные силовые трансформаторы очень часто делают масляными, то есть его обмотки помещают в бак со специальным трансформаторным маслом. Трансформаторное масло служит для активного охлаждения и одновременной изоляции его обмоток.
Трансформаторы мощностью 400 кВА обладают большим весом и монтируются на специальных платформах или помещениях. Они поступают с завода в собранном состоянии, готовыми к подключению нагрузки на подстанциях или электростанциях. Основное исполнение силовых трансформаторов – это трехфазные трансформаторы. это связно с тем, что потери КПД однофазных трансформаторов на 15% больше.

Сетевые трансформаторы

сетевой трансформатор

Сетевые трансформаторы это самый распространенный вид трансформаторов, который можно встретить практически в любом бытовом электроприборе. Все сетевые трансформаторы, как правило, делают однофазными. Эти трансформаторы служат для преобразования высокого напряжение сети 220V до приемлемого напряжения, используемого в том или ином электроприборе. Понижающее напряжение может быть: 220/12V или 220/9V, 220/36V и т.д.

Многие изготавливают сетевые трансформатор не с одной, а с несколькими вторичными обмотками, что делает трансформатор более универсальным, часто используемый на разное напряжение одновременно.

Например, часть схемы запитана напряжение 12 Вольт, а другая 3 Вольта от одного трансформатора с несколькими обмотками.

конструкция магнитопроводов трансформатора

Изготавливают сетевые трансформаторы чаще всего из электротехнической стали на Ш – образных или стержневых сердечниках. Встречаются тороидальные сердечники. Ш-образный сердечник набирается из пластин, на которые надевают каркас на который наматываются обмотки трансформатора.

Тороидальный трансформатор имеет преимущества из-за своего более компактного вида и обладают более лучшими характеристиками. Обмотки тороидального трансформатора полностью охватывают магнитопровод, нет пустого пространства незанятого обмоткой в отличие от стержневых или броневых трансформаторов.

Сварочные трансформаторы также можно отнести к сетевым, мощность которых не превышает 6 кВт. Все сетевые трансформаторы работают на низкой частоте равной 50-60 Гц.

Автотрансформатор


Автотрансформатор – это трансформатор где обмотки низшего напряжения являются частью обмотки высшего. Обмотки автотрансформатора имеют прямую электрическую связь, а не только посредством магнитопровода. Делая отводы от одной обмотки можно получить различное напряжение. Отличить обмотки низшего и высшего напряжение можно по различному сечению использованного для намотки провода.

Преимущество автотрансформатора – это меньшие размеры, меньше использованного провода, меньше сердечник, меньше затрачено стали на его изготовление в итоге меньшая цена автотрансформатора.

Главный недостаток трансформатора — это гальваническая связь обмоток низшего и высокого напряжения. Возможность попадания сети высшего напряжения в сеть низшего. Невозможность применение автотрансформаторов в сетях с заземлением.
Автотрансформаторы применяют в сетях трехфазного тока с соединением обмоток в чаще всего в звезду, реже в треугольник.

Автотрансформаторы часто применяют в устройствах управления напряжением, в высоковольтных установках, в промышленности для пуска мощных асинхронных электродвигателей переменного тока. Мощность автотрансформаторов может быть до 100 МВт.

Преимущество автотрансформаторов увеличивается с увеличением коэффициента трансформации близкими (К=1-2).

Лабораторный автотрансформатор (ЛАТР)

Латр

Разновидностью автотрансформатора можно назвать лабораторный трансформатор (ЛАТР). Его основное назначение — это плавная регулировка напряжения, подающаяся к нагрузке, к любому потребителю электроэнергии. Конструкция автотрансформатора представляет собой тороидальный трансформатор у которого есть только одна обмотка, по которой бежит ползунок (угольный роликовый контакт) подключающий каждый виток не изолируемой обмотки (дорожки) автотрансформатора к схеме. Таким образом, создается регулирующий эффект.

При замыкании соседних витков роликовым ползунком в ЛАТР, не происходит межвитковых замыканий, так как токи питающей сети и нагрузки автотрансформатора в общей обмотке близки друг к другу и направлены встречно. Самые распространенные ЛАТРы регулируют напряжение от 0 до 250V. Трехфазные регулируют от 0/450 вольт. Автотрансформаторы ЛАТРы часто используют в научно исследовательских лабораториях для пусконаладочных работ различного назначения.

Трансформаторы тока

Трансформатор тока служит в основном в измерительной технике. Первичную обмотку такого трансформатора подключают к источнику тока, вторичная обмотка используется для различных измерительных приборов при небольшом внутреннем сопротивлении (R вн).
Первичная обмотка – это, как правило, всего виток провода включенного последовательно с измеряемой цепью переменного тока. Ток первичной обмотки прямо пропорционален току вторичной, в чем и достигается измерение величины силы тока (А).

Главная особенность трансформаторов тока состоит в том, что вторичная обмотка должна быть всегда нагружена, иначе происходит пробой изоляции высоким напряжением, также при отключенной нагрузке магнитопровод трансформатора тока просто сгорает от некомпенсированных наведенных токов.

Конструктивно трансформатор тока это одна или несколько изолированных обмоток намотанных на шихтованную холоднокатаную электротехническую сталь называемую сердечником. Первичная обмотка может быть просто провод, который пропущенный через окно магнитопровода трансформатора тока который измеряет силу тока проходящий через этот провод или шину. Коэффициент трансформации здесь 100/5, безопасны, так как отсутствует гальваническая связь между обмотками.

Применение трансформаторов тока: измерения силы тока в схемах релейной защиты, в измерительной аппаратуре. Выпускают с 1-2 группами вторичных обмоток. Одна группа может, подсоединяется к защитным устройствам, другая к измерительным приборам и счетчикам.

Трансформаторы напряжения

Трансформатор напряжения НОМ-3

Трансформаторы напряжения – это трансформаторы, преобразующие высокие напряжения пропорционально и точно в соответствии с фазами в величины, пригодные для измерения. Трансформаторы среднего напряжения имеют единственный магнитопровод и могут быть выполнены с одной или несколькими вторичными обмотками. Заземляемые трансформаторы напряжения по желанию помимо измерительной или защитной обмотки могут быть выполнены с дополнительной обмоткой для регистрации замыкания на землю.

Импульсный трансформатор тока

импульсный трансформатор тока

Применяются для измерения направления или силы тока в импульсных схемах. Импульсный трансформатор состоит из кольцевого ферритового сердечника с одной обмоткой. Измеряемый провод проходит сквозь кольцо, обмотку подключают к сопротивлению нагрузки (Rн).
Если обмотка содержит 1000 витков провода, то ток, проходящий через измеряемый провод будет равен 1000\1, то есть на сопротивлении нагрузки будет ток, который в 1000 раз меньше тока проходящего через измеряемый провод.

Производители трансформаторов тока изготовляют импульсные трансформаторы тока с различным коэффициентом трансформации. Инженеру проектировщику нужно лишь рассчитать сопротивление нагрузки и соответствующую схему измерения.
Если нужно измерить направление тока, то вместо сопротивления нагрузки подключают два стабилитрона с встречным включением.

Импульсный трансформатор

Распространен во всех современных электронных схемах. Импульсный трансформатор предназначен для сварочных устройств, блоков питания, импульсных преобразователей. Заменили в настоящее время низкочастотные трансформаторы с сердечниками из шихтованной стали, которые имели больше габариты и вес.
Состоит из ферритового магнитопровода различной формы: кольцо, чашечка, стержень, Ш — образный, П – образный. Ферритовый сердечник импульсных трансформаторов дает им несравненное преимущество перед старыми трансформаторами из стали в том, что они могут работать на частотах до и свыше 500 000 гц.

Импульсный трансформатор – это ВЧ (высокочастотный) трансформатор габариты и вес, которого с ростом частоты становиться только меньше!
Обмотка требует меньшего количества витков, а для регистрации высокочастотного тока достаточно полевого или биполярных транзисторов включенных по специальной схеме:

  • Прямоходовая;
  • Двухтактная;
  • Полумостовая;
  • Мостовая схема

Применяют импульсные трансформаторы и дроссели на феррите в энергосберегающих лампах, зарядных для мобильных устройств, в мощных инверторах тока, сварочных аппаратах.

Трансформатор Тесла

Трансформатор Николы Теслы — это аппарат, с помощью которого получают токи высокой частоты. Реализовывается при помощи первичной и вторичной обмотки, но первичная обмотка получает питание на частоте резонанса вторичной обмотки, при этом напряжение на выходе возрастает в десятки раз.

По мнению специалистов, Тесла изобретал трансформатор для решения глобального вопроса передачи электрической энергии из одного пункта в другой без применения проводов. Для того чтобы получилась задуманная изобретателем передача энергии при помощи эфира, необходимо на двух удаленных точках иметь по одному мощному трансформатору, которые работали бы на одной частоте в резонансе. сли проект реализовать, тогда не понадобятся гидроэлектростанции, мощные ЛЭП, наличие кабельных линий, что, конечно, противоречит монопольному владению электрической энергией разными компаниями.

С проектом Николы Теслы каждый гражданин общества мог бесплатно воспользоваться электричеством в нужный момент в любом месте, где бы он ни находился.

С точки зрения бизнеса эта система нерентабельна, так как она не окупится, ведь электричество становится бесплатным, именно по этой причине патент №645576 до сих пор ожидает своих инвесторов.

Видео: Принцип работы трансформатора

Основы — как работает трансформатор, первичная и вторичная обмотка, каким образом понижается или повышается напряжение у трансформатора за счет магнитного поля, для чего нужен магнитопровод и что такое взаимоиндуктивность — обо всем этом смотрите в видео!

transformator220.ru