Вольтаж светодиодов: как узнать на сколько вольт рассчитан, какое у него падение и рабочее питание в зависимости от цвета

Правильное подключение светодиодов

Применение светодиодов в автомобиле является сегодня привлекательным, популярным, и достаточно выгодным тюнингом. Они ярко светят и потребляют, при этом, очень мало энергии. Но чтобы светодиоды нормально работали в бортовой сети автомобиля, быстро не перегорали и не мерцали, их необходимо корректно подключать.

Характеристики светодиодов

Для начала следует твердо усвоить, как работает светодиод и какими ключевыми характеристиками обладает. Это упростит понимание нижеизложенного материала и исключит часто допускаемые автолюбителями ошибки.

Стандартный светодиод имеет всего два важных параметра:

1.       Падение напряжения (В).

2.       Ток питания (мА).

Первая характеристика указывает на то, какое напряжение будет падать на работающем светодиоде. Этот параметр никак не означает, что для его питания необходимо точно столько же вольт. Стандартный светодиод с падением напряжения 3,2 В вполне можно подключить и к 12 В и даже к 220 В, но не ниже, чем к 3,2 В. Светодиод напряжением не питается, а его параметр 3,2 В означает, что после него напряжение в сети понизится на 3,2 В.

Светится светодиод как раз благодаря тому, что через него протекает ток. И его сила обязательно должна быть в пределах указанного для конкретного изделия значения. Например, все тот же стандартный маломощный светодиод потребляет 20 мА. Это значит, что если ток, который через него проходит, будет значительно большим, то он выйдет из строя.

Следовательно, для нормальной работы светодиода необходимо обеспечить стабильный ток в известных пределах. А вот чтобы его свечение не было мерцающим, необходимо стабилизировать имеющееся в сети напряжение.

Стабилизаторы напряжения

Стабилизаторы напряжения предназначены для поддержки одного и того же напряжения в сети. Они бывают линейные и импульсные.

Линейные стабилизаторы способны только понижать имеющееся напряжение и удерживать его на каком-то одном значении. Если на них подавать меньшее напряжение, чем то, на которое они рассчитаны, то и на выходе будем получать пропорционально меньше.


Импульсные стабилизаторы способны как понижать имеющееся в сети напряжение, так и повышать его до требуемого на выходе значения. Например, в бортовой сети автомобиля напряжение «скачет» от 12 В до 14,5 В. Соответственно, если нам нужно на выходе получать стабильные 13 В, то необходим именно импульсный стабилизатор.


Стабилизаторы и ограничители тока

Стабилизатор стабилизирует проходящий в цепи ток до одного нужного значения, ограничитель, соответственно, ограничивает его. Простейший ограничитель тока, который можно использовать для подключения светодиодов в автомобиле – это резистор. Его номинал рассчитывается индивидуально, исходя из характеристик и количества светодиодов и имеющегося в сети напряжения.


Стабилизатор работает автоматически. Он рассчитан на какое-то определенное значение стабилизации силы тока, которое он поддерживает независимо от скачков напряжения в сети. В отношении светодиодов такие приборы еще называются драйверами.


Порядок подключения светодиодов к бортовой сети автомобиля

Самый простой способ подключить светодиод к сети автомобиля – применение токоограничивающего резистора. Его номинал рассчитывается по приведенному ниже алгоритму с наглядным примером.

Допустим, необходимо подключить светодиод с падением напряжения 3,2 В и током питания 20 мА. Максимальное напряжение в сети автомобиля 14,5 В. Нам нужно получить ток 20 мА из разницы напряжений сети автомобиля и падения на светодиоде, что в примере соответствует 14,5-3,2=11,3 В. Согласно закону Ома необходимое сопротивление равно R=11,3/0,02=565 Ом. Где 0,02 – это ток 20 мА выраженный в амперах.

Для подключения двух или трех светодиодов последовательно падение напряжения на них суммируется и расчет выполняется аналогично. Более трех светодиодов последовательно в одну цепочку подключить не получится, так как не хватит напряжения бортовой сети.

Для подключения нескольких светодиодов или их групп параллельно необходимо рассчитывать и устанавливать токоограничивающие резисторы на каждую ветку.

Более простой способ – применение стабилизаторов тока или так называемых драйверов. Они подбираются в соответствии с напряжением бортовой сети и требуемой силы тока на выходе. При этом, не стоит использовать драйверы для мощных светодиодов, подключая к ним в параллель несколько веток маломощных светодиодов. Это вскоре приведет к выходу из строя одной из веток, и ток с нее добавится к другим веткам. Последствие – выход из строя остальных светодиодов.

В завершение стоит отметить, что даже при использовании драйвера для светодиодов последние будут постоянно изменять яркость свечения в зависимости от оборотов двигателя и от того, работает он или нет. Чтобы добиться одновременно и долговечной работы светодиодов, и равномерности их свечения, перед драйвером в цепь добавляется стабилизатор напряжения, желательно импульсный.

Светодиод | Электронные печеньки

Светодиод или светоизлучающий диод (англ. LED Light-emitting diode) — полупроводниковый прибор с электронно-дырочным переходом, создающий оптическое излучение при пропускании через него электрического тока в прямом направлении. Иными словами, светится, когда через него течет ток. Похоже на простую лампу накаливания, но устроен светодиод сложнее. В статье рассказывается об особенностях светодиода, о том как правильно подключать светодиод и о способе расчёта резистора для светодиода.

Особенности светодиода

Что-бы понимать, как правильно подключать светодиоды нужно разбираться в некоторых особенностях:

  • светодиод питается током. Напряжение, подаваемое на светодиод не имеет значения. Это может быть и 3В, и 1000В. Главное — выдержать необходимый ток. При нехватке тока, светодиод светится тусклее, чем может. При превышении тока светодиод светит ярче, но сильно греется. Светодиод, через который пропускают ток больше, чем он ожидает, перегреется и проработает совсем недолго.
    В данном случае всегда лучше «недолить».
  • падение напряжения. Важная характеристика светодиода — падение напряжения. Это значение показывает, на сколько вольт уменьшится напряжение при прохождении через светодиод при последовательном соединении. Например, если падение напряжения на светодиоде 3,4 вольта, то при напряжении питания 12 вольт, после первого светодиода остается 12-3,4= 8,6 вольт. На втором потеряется еще 3,4 вольта. Останется 8,6-3,4=5,2В. А после третьего останется 5,2-3,4=1,8 вольта. Это меньше, чем падение напряжения светодиода. Значит, больше светодиодов запитать мы не сможем.
  • температурный режим. Светодиод нагревается во время свечения. Чем мощнее светодиод, тем сильнее он нагревается. В случае с маломощными светодиодами в пластиковом корпусе, их нагревом можно пренебречь. Если вы имеете дело со сверхмощными яркими светодиодами, нужно думать об охлаждении.
  • полярность. При подключении светодиода нужно соблюдать полярность. Если перепутать плюс и минус, то ничего особенно страшного не случится, но светодиод не будет светить, и ток через него не пройдёт. У светодиода 2 вывода: анод и катод. Анод — положительный вывод. Он подключается к положительному полюсу источника питания. Катод  — отрицательный. Его подключают к минусу (земле). Держа светодиод в руке выводы можно отличить по длине: анод делают длиннее катода. Внутри колбы светодиода выводы можно тоже отличить по размеру. Катод более массивен и по форме напоминает чашу.

Изображение светодиода на схеме

Светодиод. Видна разница в длине катода и анода.

Светодиод. На крупном плане различим катод, напоминающий по форме чашу.

Необходимый ток и падение напряжения можно узнать из спецификации светодиода. Если у вас уже есть светодиод, но вы не знаете его характеристик, можно считать, что нужен ток 25мА, а падение напряжения считать равным 3В. Казалось бы, эти параметры идеально подходят для того, что-бы светодиод подключить напрямую к выводу Arduino. Но всё не так просто. Как отмечалось выше, светодиод токовый прибор. Если обычная лампочка сама себе выберет ток, то светодиод выбирает себе напряжение. То есть, если светодиод требует для себя 3В, а мы подадим на него 5В, то ток вырастет настолько, что светодиод сгорит. Это происходит потому, что он пытается удержать своё напряжение в 3V, а источник пытается выдать свои 5В. Начинается смертельная схватка. Если источник питания слабый, и светодиод сумеет просадить на нём напряжение до нужного — он уцелеет, а нет — источник питания выиграет битву, и светодиод сгорит. Для того, чтобы избежать проблем, нужно стабилизировать ток для светодиода. Простейший стабилизатор тока — резистор. Включаем последовательно со светодиодом резистор, резистор ослабляет источник питания, стабилизируя ток. При подключении больших и мощных светодиодов используют уже специальные стабилизаторы тока, вместо резисторов. Резистор нужно уметь расчитывать.

Ничего сложного в расчёте резистора нет. Из формул нам понадобится разве что закон Ома: сила тока в участке цепи прямо пропорциональна напряжению и обратно пропорциональна электрическому сопротивлению данного участка цепи.

Для расчёта сопротивления резистора для светодиода (R) нужно знать: напряжение питания (Uпит), падение напряжения на светодиоде (

Uсв) и необходимый светодиоду ток(I).

Формула очень простая: R = (Uпит — Uсв) / I

Для простоты расчёта принимается ряд «стандартных» параметров:

Uпит=5 В, Uсв=3 В, I=25 мА=0,025 А

Тогда:

R = 5 — 3 / 0.025 = 80 Ом

Ближайшее стандартное сопротивление резистора — 100 Ом.

Однако, поскольку часто приходится иметь дело со светодиодами, точные параметры которых неизвестны, лично моя рекомендация: исключить падение напряжения из формулы. Так мы получим универсальную формулу для расчёта резистора для любого светодиода, при этом ограничим ток с запасом и не сильно потеряем в яркости. Однако, если вы собираете осветительный прибор и вам важно добиться максимальной светимости светодиода, используйте полную формулу, описанную выше. Итак, по моей упрощённой формуле расчёт будет таким:

R = 5 / 0.

025 = 200 Ом

Ближайшее стандартное сопротивление резистора — 220 Ом. С помощью него и будем подключать. Резистор следует включать в цепь между положительным полюсом источника и анодом светодиода.

Подключение одиночного светодиода

Теперь вы знаете, как правильно подключить один светодиод. Но что делать. когда вам нужно подключить несколько светодиодов к одному источнику питания?

При подключении одного светодиода ничего сложного нет. Мы только что обсудили это чуть выше. Но как правильно поступить, если одного светодиода недостаточно? Например, мы хотим подключить 15 светодиодов от источника питания 12В. Параметры светодиода для расчётов возьмём стандартные. Для дальнейших рассуждений придётся опять потормошить старика Ома и вспомнить, что при последовательном соединении напряжение складывается (в данном случае речь о падении напряжения на каждом светодиоде), а сила тока остаётся неизменной. При параллельном — наоборот. Теперь рассмотрим различные варианты подключения светодиодов.

Наиболее простой способ. Все светодиоды подключаем гирляндой друг за другом. Катод первого к аноду второго и т.д. Необходимый светодиодам при параллельном соединении ток не зависит от количества светодиодов и составляет 25мА.  Ещё потребуется учесть падение напряжения на каждом светодиоде. Пытливый читатель, дружащий с математикой, сейчас должен был запнуться. Падение напряжения рассчитывается как сумма падения напряжения для всех светодиодов. Да ещё и нужно оставить запас. Запас стоит оставлять из-за того, что светодиоды не идеальны. Падение напряжения сильно колеблется даже у светодиодов одного производителя и в одной партии. Падение зависит от температуры, да ещё и растёт по мере старения светодиода. У нас падение составит 15*3 = 45В. А источник всего на 12 вольт. Этот вариант отпадает. Последовательно мы можем позволить себе подключить только 12/4 = 4 светодиода. С запасом всего 3 светодиода в параллели. Теперь можно подключить перед цепочкой из трёх светодиодов токоограничительный резистор на 480 Ом (R = 12/0. 025 = 480) и радоваться. Все три светодиода теперь получают ток в 25мА. Но неидеальность светодиодов означает, что нам может попасться экземпляр, который рассчитан на ток всего лишь в 20мА. Или чуть меньше. Или чуть больше. Неважно. Важно то, что наши рассчитанные 25mA окажутся избыточными. Такой светодиод начнёт греться и перегорит раньше других. Он перестанет пропускать через себя ток. Тогда все остальные светодиоды тоже погаснут. Последовательное подключение — недостаточно надёжная схема. Один перегоревший светодиод нарушает работу всей цепочки.

Достоинства: простая и дешёвая схема, низкое потребление тока.
Недостатки: необходимость в источнике питания с большим вольтажом, крайне низкая надёжность схемы.

Последовательное подключение трёх светодиодов

Итак, последовательно нам удалось соединить только 3 светодиода. Но что если требуется подключить все 15?

Параллельное подключение светодиодов

Здесь у нас всё наоборот. Силу тока нужно умножить на количество светодиодов, а падение напряжения посчитать только 1 раз.
Сила тока: I = 0,025 * 15 =0,375 А
Нам потребуется источник питания, способный выдать максимальный ток в 0,375 А. Округлим до 0,35 (помните, что лучше «недолить»?). По напряжению тоже укладываемся: 12 — 2 = 10. Остаётся с большим запасом.

Пытливый читатель, запнувшийся парой абзацев ранее, может воскликнуть: «Погодите! Так зачем нам 12 вольт, если мы можем обойтись и пятью?». «Можем!» — ответим ему мы. Но не торопитесь с выводами, это ещё не конец.

Мы определились, что светодиоды будут подключены параллельно. Необходимо ограничить ток в цепи. Допустим, специального драйвера у нас нет. Возьмём резистор. Рассчитаем необходимое сопротивление по давно известной формуле: 12 В / 0,35 А ~ 35 Ом. Подключим его между источником питания и анодами светодиодов:

Неправильное параллельное подключение трёх светодиодов

Вот, казалось бы, и всё. Но есть проблема:

Как отмечалось выше, светодиоды не обязательно имеют те характеристики, которые заявлены производителем. Всегда есть разброс. И вот мы задали ток в 0,35 ампер и смотрим на светящуюся линейку светодиодов. Но всем им нужен разный ток. Одному , как мы и рассчитывали 25мА, другому — 20мА, третьему 21мА, а вот нашёлся совсем кривой светодиод, ему нужно всего 15мА. А мы пропускаем через него 25 — почти в 2 раза больше. Светодиод греется и быстро перегорает. В линейке стало на 1 светодиод меньше. Теперь для питания оставшихся светодиодов нам требуется 35мА. Пока всё не выглядит особенно плохо. Мы ограничили ток с запасом. Мы молодцы. Но не выдержал ещё один светодиод. Осталось 13. Теперь весь наш ток делится не на 15, а на 13 светодиодов. На каждый из них приходится по 26мА. Теперь абсолютно все светодиоды работают на повышенном токе. Очень скоро перегреется следующий. Самые стойкие получат уже по 29мА — 116% от номинала. Всего 2 перегоревших светодиода запустили цепную реакцию. Скоро вся линейка перегорит, а вы так и не поймёте почему (ну или поймёте, мы же только что всё разобрали). Собственно, избавиться от такого печального сценария просто. Нужно к каждому светодиоду поставить по собственному токоограничительному резистору. Для тока в 25мА и напряжения 12В нужен резистор на 480 Ом. Это не спасёт от проблемы «кривых» светодиодов, но их перегорание никак не повлияет на остальные.

Достоинства: высочайшая надёжность.
Недостатки: высокое потребление тока, высокая стоимость схемы.

Правильное параллельное подключение трёх светодиодов

Параллельное подключение светодиодов — идеальный вариант. Всегда стремитесь к тому, чтобы подключать светодиоды параллельно и ограничивать ток каждого светодиода по отдельности своим резистором.  Если вы используете светодиодные драйверы (стабилизаторы тока), то каждому светодиоду нужно подключать свой драйвер. Именно поэтому параллельные схемы с большим количеством светодиодов становятся слишком дорогими. В реальности приходится идти на компромисс и объединять светодиоды в цепочки.

Комбинированный способ подключения светодиодов

Итак. Подключим наши 15 светодиодов комбинированным способом. Вспомним расчёт для последовательного подключения. Там мы выяснили, что от 12 вольт можем безболезненно запитать 3 светодиода. На каждый из 3-х светодиодов потребуется резистор в 480 Ом. Это и будет наша цепочка — 3 светодиода и резистор. Теперь мы параллельно подключим 5 таких цепочек. При параллельном соединении напряжение питания остаётся неизменным, а сила тока для каждой цепочки умножается на количество цепочек. Получается, нужен источник на 12В и 5*0,025=0,125А. Как видим, такой способ подключения сильно экономит ток.

Достоинства: низкое потребление тока при большой плотности светодиодов, каждая цепочка не зависит от соседних, благодаря наличию собственного токоограничительного резистора.
Недостатки: внутри цепочки мы получаем те же проблемы, что и при обычном параллельном соединении. При наличии «кривых» светодиодов в цепочке, она выйдет из строя раньше других.

Комбинированное подключение светодиодов. 3 цепочки по 3 светодиода.

При подключении светодиодов к источнику питания предпочтительно использовать параллельное соединение, снабжая каждый светодиод отдельным стабилизатором. При подключении большого количества светодиодов, для удешевления конструкции возможно комбинирование последовательного и параллельного способов соединения светодиодов для достижения оптимального результата.

Что произойдет, если подать слишком большое напряжение на светодиод

Как правило, избыточное напряжение опасно. Скачки напряжения могут оказать разрушительное воздействие на электронное оборудование, в том числе и на светодиодные лампочки. Светодиодам часто требуется определенное количество вольт, в зависимости от типа и цвета светодиода. Большинство экспертов рекомендуют 2-3 вольта для светодиодов. Тем не менее, вы можете посмотреть его, чтобы быть уверенным.

В этой статье объясняется, что произойдет, если подать слишком большое напряжение на светодиод, и как предотвратить такую ​​ситуацию.

Светодиодные лампы постоянного тока (DC) или переменного тока (AC)?

Светодиоды представляют собой устройства постоянного тока, пропускающие ток только одной полярности. Светодиоды обычно управляются источниками постоянного напряжения с использованием резисторов, регуляторов напряжения и регуляторов тока для ограничения тока и напряжения, подаваемых на светодиод.

Какое максимальное напряжение для светодиодных фонарей?

VL= напряжение светодиода (4В или 2В для белых и синих светодиодов). Ток светодиода должен быть меньше оптимально допустимого для светодиода. Максимальный ток для стандартных светодиодов диаметром 5 мм обычно составляет 20 мА. Поэтому 15 мА и 10 мА являются идеальными значениями для большинства цепей.

Для светодиодных фонарей требуется определенное напряжение, например 24 или 12 В. Когда они работают при более высоких напряжениях, они сильно нагреваются. Сильный нагрев повреждает светодиодные фонари или пайку вокруг них. Из-за теплового повреждения светодиоды начинают тускнеть, мерцать или могут полностью погаснуть.

Что произойдет, если подать на светодиод слишком большое напряжение?

Проще говоря, слишком большое напряжение убивает светодиод. Как упоминалось ранее, светодиод управляется током, а не устройством, управляемым напряжением. Поэтому, если напряжение отклоняется более чем на 10%, светодиодная лампа перегорает. Впоследствии электронные части внутри светодиодной лампы повреждаются из-за скачка напряжения. Избыточное напряжение преждевременно изнашивает драйверы светодиодов и распределительные панели. Это также увеличивает перерывы в обслуживании светодиодного освещения.

Светодиоды также имеют большую мощность. Чем больше вы увеличиваете напряжение, они будут создавать избыточное тепло, что неблагоприятно. Избыточное тепло заставляет светодиод производить меньше света и сокращает срок его службы. Пониженный свет тесно связан с неработающей светодиодной системой.

Какое напряжение необходимо для питания светодиода?

Если у вас есть несколько светодиодов последовательно, вам необходимо учитывать все прямые напряжения вместе взятые. Однако, если у вас параллельная цепь, вам необходимо учитывать прямое напряжение суммы светодиодов, которые у вас есть на жало.

Как избежать чрезмерного напряжения на светодиоде

Любой светодиод, подвергающийся воздействию электрического перенапряжения (EOS), следует рассматривать как устройство с риском полной неисправности. Высокая энергия создает самопроизвольный отказ в разомкнутой цепи. Всякий раз, когда выбирается новый источник питания постоянного тока, необходимо оценить пульсации тока и допуски на выходе. Также рекомендуется проверить переходные пики во время фазы выключения и включения, а также ток горячего подключения. Это могут быть бесшумные убийцы светодиодов, которые нарушают целостность компонента без каких-либо заметных признаков.

Крайне важно использовать источники питания с ограниченным переходным пиком во время фазы включения и выключения, чтобы предотвратить сбой из-за электрического перенапряжения. Источники питания не должны превышать максимальный номинальный ток светодиода.

Самое главное, типичный ток, смешанный с пульсациями и положительным допуском, не должен превышать максимальный номинальный ток светодиода. Соблюдение этих условий гарантирует, что напряжение источника питания не приведет к перенапряжению.

Еще один способ предотвратить повреждение светодиода напряжением — использовать блок питания с защитой от короткого замыкания. Затем оборудуйте плату светодиодов, используя диод параллельно цепочке светодиодов в обратной полярности. Поляризованный разъем — идеальный выбор, если вы подключаете блок питания к плате светодиодов с помощью разъема.

Как определить напряжение моих светодиодных ламп

Чтобы определить напряжение и ток вашей светодиодной лампы;

  • Посмотрите в таблице данных
  • Узнайте напряжение светодиода с помощью мультиметра с функцией диода
  • Подключите батарею к светодиоду и устройство, называемое потенциометром. Начните с высокого сопротивления потенциометра, затем постепенно уменьшайте его, пока не заметите достаточную яркость.

Итог

Промышленные светодиодные фонари предназначены для предотвращения несчастных случаев, которые могут быть вызваны чрезмерным напряжением. Убедитесь, что вы проверяете номинальную мощность своих светодиодных ламп до и после покупки, чтобы убедиться, что вы можете соответствовать указанным требованиям.

LED Lights Unlimited

LED Lights Unlimited является ведущим поставщиком высококачественных светодиодных гирлянд. Ознакомьтесь с нашим широким ассортиментом светодиодных ламп, чтобы найти то, что вам нужно.

Отказ от ответственности: Наши продукты соответствуют требованиям ROHS. Это означает, что мы знаем, что они могут содержать свинец, но не превышают допустимые количества.

Правильный диапазон напряжения для светодиодного приложения

Новое в апреле 2019 г. не так прямолинейно. Во-первых, нужно понимать, что прямое напряжение светодиода неодинаково от кристалла к кристаллу. Во-вторых, напряжение светодиода меняется при повышении или понижении температуры перехода. Поскольку правильная работа драйвера имеет решающее значение для функциональности и надежности лампы, стоит более подробно изучить эти факторы, влияющие на напряжение светодиода. В этой статье объясняются типичные проблемы, связанные с прямым напряжением светодиодов, и способы правильного определения необходимого запаса напряжения драйвера светодиодов. Также предлагается найти новую функцию в некоторых новых драйверах светодиодов, которая может работать с временным повышенным выходным напряжением, чтобы обойти проблему высокого напряжения светодиода при чрезвычайно низкой температуре.

Проектирование светодиодной лампы представляет собой многоплановую инженерную работу, включающую в себя вопросы оптического, теплового и электрического проектирования. Для достижения целевых оптических требований в первую очередь определяются тип и количество светодиодов, а также их управляющий ток. В зависимости от определенных соображений безопасности и/или модульного подхода к проектированию определенное количество светодиодов помещается в одну цепочку, а другое — параллельно. Когда эти факторы определены, первая оценка рабочего напряжения светодиодов может быть сделана путем умножения количества светодиодов в одной цепочке на типичное прямое напряжение (В вперед ) этого светодиода.

В вперед_всего = В вперед x Число/строка

Приведенный выше расчет дает приблизительное представление о диапазоне рабочего напряжения, и вместе с определенным током возбуждения можно узнать требуемую мощность. Однако это число не является абсолютным значением и не подходит для обеспечения надлежащего электрического проектирования. Чтобы проект учитывал напряжение драйвера, напряжение светодиода должно учитываться 1) характеристикой V-I, 2) производственным изменением и 3) температурным коэффициентом. В следующем абзаце эти 3 аспекта объясняются отдельно, а в конце В статье приведен пример оценки напряжения и шаги выбора светодиодного драйвера.

Характеристики V/I светодиода

Для идеального светодиода прямое напряжение не изменяется при увеличении тока (рис. 1). В действительности, прямое напряжение ДЕЙСТВИТЕЛЬНО изменяется в зависимости от тока, и важно проверять напряжение светодиода на основе фактического расчетного тока, а не ссылаться на стандартные условия испытаний, указанные в спецификации.
В приведенном ниже примере спецификация показывает, что типичное напряжение светодиода составляет 3,2 В. Если светодиод используется не на 350 мА, а на 1 А, то вместо 3,2 В на светодиод фактическое типичное напряжение светодиода составляет 3,8 В на светодиод. Эта разница в 0,6 В может привести к совершенно другому результату, если последовательно подключить большое количество светодиодов. Кроме того, ситуация может стать еще хуже, если драйвер светодиода имеет высокий пульсирующий ток, что приведет к пиковому току выше 1 А и, следовательно, пиковому напряжению превысит 3,8 В.

Characteristics Unit Minimum Typical Maximum
Forward voltage (@350mA, 85°C) V
3. 2 3.48
Рис. 1. Рис. 2.

Производственный допуск светодиодов

Прямое напряжение светодиодов на каждом кристалле имеет вариации из-за технологического дрейфа. Зрелая добыча должна обеспечивать более жесткий допуск, приводящий к нормальному распределению (например, рис. 3). Типичный допуск по напряжению из-за производственных отклонений составляет менее 10%, что может быть косвенно получено из отношения максимального к типичному для типичного прямого напряжения в таблице данных светодиода (см. Таблицу 1, столбцы 4 и 5). С другой стороны, производственные данные, такие как фактическое распределение прямого напряжения, возможно, придется проверять непосредственно у производителя светодиодов.
Несмотря на то, что абсолютный максимум/минимум составляет +/- 10 %, по статистике, чем больше светодиодов подключено последовательно, тем больше вероятность того, что комбинированное прямое напряжение установится около типичного значения напряжения. Рекомендуется создать некоторый запас по напряжению, безопасным считается запас в 10% от типичного напряжения. Также можно рассмотреть более высокий запас, который приведет драйвер в лучшее рабочее состояние и продлит срок службы драйверов. Рис. 3. Распределение прямого напряжения светодиода от производства

Светодиод Vf. Против. Temp

Прямое напряжение светодиода имеет отрицательный температурный коэффициент, это означает, что чем выше температура, тем ниже прямое напряжение. Поскольку светодиод является самонагревающимся элементом, при правильной тепловой конструкции лампы постоянная рабочая температура и рабочее напряжение светодиода обычно достаточно стабильны. Худший случай наступает, когда лампа запускается при низкой температуре. Чтобы оценить потребность в дополнительном напряжении при низкой температуре, спецификация светодиодов предоставляет типичную кривую V-T в соответствии со стандартными условиями испытаний (например, 350 мА). Многие производители также предоставляют программное средство для проверки напряжения в соответствии с переменными параметрами, такими как температура перехода (Tj), управляющий ток и т. д.

Требования к напряжению могут сильно различаться из-за низкой температуры и требования к напряжению из-за производственных допусков или разницы в токе. В первом случае потребность в напряжении носит временный характер, и, таким образом, запас по напряжению не требуется постоянно резервировать. На рынке есть несколько передовых драйверов светодиодов, оснащенных функцией адаптации к напряжению для удовлетворения кратковременных требований к напряжению.

Например, HLG-480H-C компании Mean Well имеет функцию «адаптации к окружающей среде», которая может автоматически снижать выходной ток для замены на более высокое выходное напряжение, сохраняя при этом общую выходную мощность в пределах спецификации. По мере того, как лампа включается и постепенно нагревается, напряжение падает до нормального уровня, а затем ток также возвращается к исходному расчетному значению. Функция адаптации к окружающей среде обеспечивает запас напряжения на 20 % выше, чем у обычного драйвера светодиодов. HLG-480H-C1400, работающий от 171~343 В, может временно повысить напряжение до 412 В, чтобы обеспечить успешный запуск ламп при экстремально низких температурах (например, -40°C).

Серия HVGC с постоянной мощностью, аналогичным образом, допускает более высокое выходное напряжение при уменьшении силы тока. Существуют также различные возможности для других моделей. Если есть какие-либо вопросы о проблеме запуска светодиодов, пожалуйста, свяжитесь с MEAN WELL для получения лучших предложений.

Рис. 4 Температура в зависимости от прямого напряжения

Пример и сводка

В конструкции лампы используется 100 светодиодов, как на рис. 2, ток возбуждения составляет 1,05 А. Всего есть 2 строки, что означает, что каждая строка имеет 50 светодиодов. Минимальная рабочая температура согласно спецификации лампы составляет 0°C. Для определения требования к напряжению:

Решение 1 : Введите эти параметры в программу для ПК и получите рабочую точку светодиода с запасом. Более подробно уточните у производителя.

Решение 2. Ознакомьтесь со спецификацией светодиода и выполните следующие действия:

  • Шаг 1: Проверьте кривую V-I светодиода, найдите напряжение на кривой в соответствии с заданным током.

    Согласно рис. 2 типичное прямое напряжение светодиода при 1,05 А составляет 3,8 В

  • Шаг 2: Умножьте это напряжение на количество светодиодов в одной цепочке.

    3,8 (В) x 50 (шт.) = 190 В

  • Шаг 3: Учет производственного допуска с использованием отношения максимального напряжения к типовому.

    3,48 (В) / 3,2 (В) = 108,75 %
    190 (В) x 108,75 % = 206,6 (В)

    Краткая сводка:
    Общее прямое напряжение светодиода, типичное значение — 190 В
    Общее прямое напряжение светодиода — 207 В в худшем случае*
    (* Здесь не учитываются пульсации тока от драйвера.)

  • Шаг 4: Рассмотрение температурного коэффициента для оценки наихудшего пускового напряжения.

    Из рис. 4, тип. напряжение при 0°С 3,6В, при 85°С 3,2В.
    Предположим, что светодиодная лампа обычно работает при Tj 85°C
    3,6 (В, Tj=0) / 3,2 (В, Tj=85) = 1,125 меньше 1,2 V
    Суммарное прямое напряжение светодиода в наихудшем случае составляет 207 В x 1,2 = 248,4 В 207В (435Вт).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *