Характеристики автоматических выключателей: Автоматические выключатели: характеристики, установка, подбор, применение

Время — токовые характеристики автоматов

Время-токовая характеристика автоматического выключателя — это показатель, определяющий время срабатывания защитного устройства в зависимости от величины протекающего через него тока по отношению к номинальному току устройства.

Правильный выбор автомата по время-токовой характеристике позволяет избежать ложных срабатываний при подключении в сеть нагрузки, имеющей высокие пусковые токи. Например это происходит при подключении в сеть электродвигателя, который имеет большой пусковой ток, превышающий номинальный в 3-8 раз. Этого тока будет достаточно чтобы отключился автомат, имеющий характеристику срабатывания не предназначенную для такого типа нагрузок.

Также при правильном подборе автоматических выключателей по их время-токовым характеристикам соблюдается селективность (избирательность), то есть при повреждении какого-либо участка цепи сработает только тот автоматический выключатель, который обеспечивает защиту именно этого участка, а остальные автоматы не отключатся.

Я думаю все обращали внимание на буквенное обозначение рядом с номинальным током на корпусе модульного автоматического выключателя. Так вот эти буквы и указывают время-токовую характеристику, то есть чувствительность автомата.

Чаще всего встречаются автоматы с характеристиками B, C и D. Это стандартные типы характеристик, указанные в ГОСТ Р 50345-99. Кроме этих типов существуют еще типы A, K и Z, но встречаются они гораздо реже, а в жилых зданиях так и вовсе не используются. Различные типы рекомендовано использовать следующим образом:

  • А — Для размыкания цепей с большой протяженностью электропроводки и защиты полупроводниковых устройств
  • B — Для осветительных и розеточных групп общего назначения
  • C — Для осветительных цепей и электроустановок с умеренными пусковыми токами (двигателей и трансформаторов)
  • D
     — Для цепей с активно-индуктивной нагрузкой, а также защиты электродвигателей с большими пусковыми токами
  • K — Для индуктивных нагрузок
  • Z — Для электронных устройств

Время срабатывания электромагнитного расцепителя для каждой из характеристик выражается в значении величины протекающего тока по отношению к номинальному. Так для B это значение составляет от 3·In до 5·In (In — номинальный ток), то есть его расцепитель сработает при токе, превышающем номинальный в 3-5 раз. Для С пределы составляют уже от 5·In до 10·In, а для D — от 10·In до 20·In.

Рассмотрим графики, отображающие время-токовые характеристики для типов B, C и D.

График время-токовой характеристики B


График время- токовой характеристики C


График время- токовой характеристики D

На оси Х отображается значение, показывающее отношение протекающего тока по отношению к номинальному (I/In). На оси Y — время срабатывания в секундах. График для каждой из кривой характеристик разделен на две линии, показывающие время срабатывания электромагнитной защиты (нижняя линия), отвечающей за отключение при коротких замыканиях и тепловой защиты (верхняя линия), отвечающей за отключение от перегрузок.

Верхняя кривая показывает холодное состояние автомата, нижняя кривая характеризует горячее состояние автомата. Пунктирной линией показана верхняя граница время-токовой характеристики для автоматических выключателей с номинальным током In меньше или равно 32 A.

Так например если смотреть график для время-токовой характеристики С автоматический выключатель 16 А при токе 80 А (5·In) должен отключиться в горячем состоянии за 0,02 сек. В холодном состоянии при таком же токе автомат отключится за 11 сек. (если номинал автомата меньше или равен 32 A), если больше 32 А — то отключение произойдет через 25 сек. Если предел отключения будет равен 10·In, то в горячем состоянии отключение произойдет через 0,01 сек, а в холодном — за 0,03 сек.

Таким образом, график время-токовой характеристики позволяет определить правильно автоматический выключатель для конкретных условий эксплуатации. Теперь осталось только разобраться какие типы автоматов предпочтительно использовать в быту.

Понятно, что для городской квартиры, где нагрузка в основном активная либо слабоиндуктивная, выбирать необходимо либо категорию B либо С.

По тепловой защите временной интервал срабатывания B и С будет одинаковым, отличаться будет только время срабатывания электромагнитного расцепителя. Раньше повсеместно использовались автоматы с характеристикой С, да и по сей день в магазинах в основном продают именно этот тип, а про другие типы как-то забывают.

Однако в настоящее время рекомендуется для линий освещения и розеточных групп применять тип B, имеющий большую чувствительность, а в качестве вводного автомата использовать С.

Таким образом будет соблюдаться селективность и при аварийной ситуации отключаться будет именно групповой автомат, а не вводной, тем самым не будет обесточиваться полностью вся квартира.

Время-токовые характеристики автоматических выключателей.

Как известно автоматические выключатели могут иметь следующие виды расцепителей обеспечивающих защиту электрической цепи от сверхтоков: электромагнитный — защищающий сеть от коротких замыканий, тепловой — обеспечивающий защиту от токов перегрузки и комбинированный представляющий собой совокупность электромагнитного и теплового расцепителя (подробнее читайте статью «автоматические выключатели«).

Примечание: Современные автоматические выключатели предназначенные для защиты электрических сетей до 1000 Вольт имеют, как правило, комбинированные расцепители.

Расцепители автоматических выключателей — это исполнительные механизмы которые обеспечивают отключение (расцепление) электрической цепи при возникновении в ней тока выше допустимого, причем чем больше это превышение тем быстрее должно произойти расцепление.

Зависимость времени расцепления автоматического выключателя от величины проходящего через него тока и называется время-токовой характеристикой или сокращенно — ВТХ.
 

 

Условия и значения ВТХ

ВТХ автоматов определяются следующими значениями:

 

1) Ток мгновенного расцепления — минимальное значение тока, вызывающее автоматическое срабатывание выключателя без преднамеренной выдержки времени. (ГОСТ Р 50345-2010, п. 3.5.17)

Примечание: срабатывание без преднамеренной выдержки времени обеспечивается электромагнитным расцепителем автомата.

Ток мгновенного расцепления определяется так называемой «характеристикой расцепления»  или как ее еще называют — характеристика срабатывания.

Согласно ГОСТ Р 50345-2010 существуют следующие типы характеристик срабатывания автоматических выключателей:

 

Примечание: существуют так же и другие, нестандартные типы характеристик, о них мы говорили в статье «автоматические выключатели«.

Как видно из таблицы выше ток мгновенного расцепления указывается в виде диапазона значений, например характеристика «B» предполагает, что автомат обеспечит мгновенное расцепление при протекании через него тока в 3 — 5 раз превышающего его номинальный ток, т.е. если автоматический выключатель с данной характеристикой имеет номинальный ток 16 Ампер, то он обеспечит мгновенное расцепление при токе от 48 до 80 Ампер.

Определить характеристику срабатывания автоматического выключателя, как правило, можно по маркировке нанесенной на его корпусе.

 

2) Условный ток нерасцепления — установленное значение тока, который автоматический выключатель способен проводить, не срабатывая, в течение заданного (условного) времени*. (ГОСТ Р 50345-2010, п. 3.5.15) Согласно пункту 8.6.2.2 ГОСТ Р 50345-2010 условный ток нерасцепления равен 1,13 номинального тока автомата.

3) Условный ток расцепления — установленное значение тока, которое вызывает срабатывание автоматического выключателя в течение заданного (условного) времени*. (ГОСТ Р 50345-2010, п. 3.5.16) Согласно пункту 8.6.2.3 ГОСТ Р 50345-2010 условный ток расцепления равен 1,45 номинального тока автомата.

Условное время равно 1 ч для выключателей с номинальным током до 63 А включительно и 2 ч с номинальным током свыше 63 А. (ГОСТ Р 50345-2010, п.8.6.2.1)

 

Время-токовая характеристика автоматического выключателя определяется условиями и значениями приведенными в таблице 7 ГОСТ Р 50345-2010:

In — номинальный ток автоматического выключателя

 

 

Графики ВТХ

Для удобства производителями в паспортах на автоматические выключатели время-токовые характеристики указываются в виде графика где по оси X откладывается кратность тока электрической цепи к номинальному току автомата (I/In), а по оси Y время срабатывания расцепителя.

Для подробного рассмотрения в качестве примера возьмем график ВТХ для автоматического выключателя с характеристикой «B»

 

ПРИМЕЧАНИЕ: Все приведенные ниже графики предоставлены в качестве примера. У различных производителей графики ВТХ могут отличаться (смотрите в паспорте автомата), однако они в любом случае должны соответствовать требованиям ГОСТ Р 50345-2010 и в частности значениям указанным в таблице 7 приведенной выше.

 

 

Как видно график ВТХ представлен двумя кривыми: первая кривая (красная) — это характеристика автомата в так называемом «горячем» состоянии, т.е. автомата находящегося в работе, вторая (синяя) — характеристика автомата в «холодном» состоянии, т.е. автомата через который только начал протекать электрический ток.

 

При этом синяя кривая имеет дополнительно штриховую линию, эта линия показывает характеристику автомата (его теплового расцепителя) с номинальным током до 32 Ампер, это различие в характеристиках автоматов с номиналами до и выше 32 Ампер обусловлено тем, что в автоматах с большим номинальным током биметаллическая пластина теплового расцепителя имеет большее сечение и соответственно ей необходимо больше времени что бы разогреться.

 

Кроме того каждая кривая имеет два участка: первый — показывающий плавное изменение времени срабатывания в зависимости от тока электрической цепи является характеристикой теплового расцепителя, второй  — показывающий резкое снижение времени срабатывания (при токе от 3 In в горячем состоянии и от 5 In в холодном состоянии ), является характеристикой электромагнитного расцепителя автоматического выключателя.

 

 

Как видно, на графике ВТХ отмечены основные значения характеристик автомата согласно ГОСТ Р 50345-2010 при 1.13In (Условный ток нерасцепления) автомат не сработает в течении 1-2 часов, а при токе в 1,45 In (Условный ток расцепления) автомат отключит цепь за время менее 50 секунд (из горячего состояния).

 

Как уже было сказано выше ток мгновенного расцепления определяется характеристикой срабатывания автомата, у автоматических выключателей с характеристикой «B» он составляет от 3In до 5In, при этом согласно вышеуказанному ГОСТу (таблице 7) при 3In автомат не должен сработать за время менее 0,1 секунды из холодного состояния, но должен отключиться за время менее 0,1 секунды из холодного состояния при токе в цепи 5In и как мы можем увидеть из графика выше данное условие выполняется.

 

Так же по время-токовой характеристике можно определить время срабатывания автомата при любых других значениях тока, например: в цепи установлен автомат с характеристикой «B» и номинальным током 16 Ампер, при работе в данной цепи произошла перегрузка и ток вырос до 32 ампер, определяем время срабатывания автомата следующим образом:

Делим ток протекающий в цепи на номинальный ток автомата    32А/16А=2

Определив что ток в цепи в два раза больше номинала автомата, т.е. составляет 2In откладываем данное значение по оси X графика и поднимая от нее условную линию вверх смотрим где она пересекается с кривыми графика:

 

Как мы видим из графика при токе 32 Ампера автомат с номинальным током 16 Ампер разомкнет цепь за время менее 10 секунд — из горячего состояния и за время менее 5 минут — из холодного состояния.

 

Приведем примеры ВТХ автоматических выключателей всех стандартных характеристик срабатывания (B, C, D):

 

 

 

 

ПРИМЕЧАНИЕ: Время-токовые характеристики согласно ГОСТ Р 50345-2010 указываются для автоматов работающих при температуре +30+5 оC смонтированных в соответствии с определенными условиями.

 

Условия испытания. Поправочные коэффициенты

Согласно ГОСТ Р 50345-2010 При испытаниях выключатели устанавливают отдельно, вертикально, на открытом воздухе в месте, защищенном от чрезмерного внешнего нагрева или охлаждения.

испытания автоматических выключателей проводят при любой температуре воздуха, а результаты корректируют по температуре +30 °С на основании поправочных коэффициентов, предоставленных изготовителем.

При этом в любом случае отклонение испытательного тока от указанного в таблице 7 не должно превышать 1,2% на 1 °С изменения температуры калибровки.

 

Изготовитель должен подготовить данные по изменению характеристики расцепления для температур калибровки, отличных от контрольного значения.

Таким образом, что бы точно узнать время отключения автоматических выключателей, эксплуатируемых при условиях отличающихся от условий испытания необходимо воспользоваться поправочными коэффициентами которые должен предоставить изготовитель данных выключателей.

 

Приведем пример таких поправочных коэффициентов (обычно их всего 2):

  • Температурный коэффициент (Кt)

Температурный коэффициент учитывает отличие температуры окружающей среды при которой автоматический выключатель испытывался от фактической температуры окружающей среды при которой он эксплуатируется:

 

Как видно из графика, чем ниже температура окружающей среды тем выше данный коэффициент. Объясняется это просто — чем ниже температура окружающей среды, тем больший ток должен протекать через автоматический выключатель что бы нагреть расцепитель до температуры необходимой для его срабатывания.

  • Коэффициент, учитывающий количество установленных рядом автоматов (Кn)

Как было сказано выше, автоматические выключатели при их испытании устанавливаются отдельно, однако на практике они устанавливаются в электрических щитах в один ряд с другими автоматами, что соответственно ухудшает их охлаждение за счет ухудшения циркуляции воздуха и тепла от установленных рядом выключателей:

 

Соответственно, как и можно увидеть из графика, чем больше рядом установлено автоматов, тем меньше данный коэффициент.

Зная поправочные коэффициенты можно скорректировать номинальный ток автомата в зависимости от условий его эксплуатации.

Например: имеется автоматический выключатель с номинальным током 16 Ампер установленный в щитке с 5 другими автоматами при температуре окружающего воздуха +10оC.

  1. По графикам выше найдем поправочные коэффициенты:
  • Кt=1,05
  • Кn=0,8
  1. Зная поправочные коэффициенты скорректируем номинальный ток автомата:

In/= In* Кt* Кn=16*1.05*0.8=13.44 Ампер

Соответственно при эксплуатации автоматического выключателя в вышеуказанных условиях для определения времени его срабатывания необходимо принимать ток не 16 Ампер, а 13,44 Ампера.

 

 

 

Основные параметры и характеристики автоматических выключателей

К характеристикам автоматических выключателей в основном относятся: номинальное напряжение Ue; номинальный ток In; диапазон уставки тока срабатывания защиты от перегрузки (Ir или Irth) и защиты от короткого замыкания (Im); номинальный ток отключения при коротком замыкании (промышленный автоматический выключатель Icu; бытовой автоматический выключатель Icn)) Подождите.

Номинальное рабочее напряжение (Ue): это напряжение, при котором автоматический выключатель работает в нормальных (непрерывных) условиях.

Номинальный ток (In): это максимальное значение тока, которое автоматический выключатель, оснащенный специальным реле максимального тока, может выдерживать в течение неопределенного времени при температуре окружающей среды, указанной изготовителем, и не превышает предельного значения температуры, указанного токонесущим компонентом.

Значение уставки тока срабатывания реле короткого замыкания (Im): Реле срабатывания реле короткого замыкания (мгновенного действия или с короткой задержкой) используется для быстрого отключения автоматического выключателя при возникновении высокого значения тока короткого замыкания и предела срабатывания Im.

Номинальная отключающая способность при коротком замыкании (Icu или Icn): Номинальный ток отключения при коротком замыкании автоматического выключателя — это максимальное (ожидаемое) значение тока, которое автоматический выключатель может отключать без повреждения. Значение тока, указанное в стандарте, представляет собой среднеквадратичное значение переменной составляющей тока короткого замыкания. При расчете стандартного значения переходная составляющая постоянного тока (всегда возникающая при наихудшем случае короткого замыкания) принимается равной нулю. Номиналы промышленных автоматических выключателей (Icu) и бытовых автоматических выключателей (Icn) обычно указываются в форме кА, среднеквадратичное значение.

Отключающая способность при коротком замыкании (Ics): номинальная отключающая способность автоматического выключателя делится на два типа: номинальная предельная отключающая способность при коротком замыкании и номинальная рабочая отключающая способность при коротком замыкании. В национальном стандарте «Низковольтное распределительное устройство и аппаратура управления, низковольтный автоматический выключатель» (GB14048.2—94) приведены следующие пояснения к номинальной предельной отключающей способности при коротком замыкании и номинальной рабочей отключающей способности при коротком замыкании автоматических выключателей:

Номинальная предельная отключающая способность автоматического выключателя при коротком замыкании: в соответствии с условиями, указанными в предписанных экспериментальных процедурах, за исключением отключающей способности автоматического выключателя, чтобы он продолжал нести свою номинальную токовую нагрузку;

Номинальная рабочая отключающая способность автоматического выключателя при коротком замыкании: в соответствии с условиями, указанными в предписанных экспериментальных процедурах, включая отключающую способность автоматического выключателя, чтобы он продолжал нести свою номинальную токовую нагрузку;

Процедура испытания номинальной предельной отключающей способности при коротком замыкании – O-t-CO.

Конкретный тест: отрегулируйте ток линии до ожидаемого значения тока короткого замыкания (например, 380 В, 50 кА), но тестовая кнопка не замкнута, тестируемый автоматический выключатель находится во включенном положении, нажмите тестовую кнопку , автоматический выключатель пропускает ток короткого замыкания 50 кА. Автоматический выключатель немедленно размыкается (размыкание обозначается как O), автоматический выключатель должен быть исправен и может быть снова включен. t — прерывистое время, обычно 3 мин. В это время линия все еще находится в состоянии горячего резерва, и автоматический выключатель снова включается (замыкается, обозначается как C), а затем размыкается (O). (Испытание при включении предназначено для проверки того, что автоматический выключатель находится на пике электрической и термической стабильности под током). Эта процедура называется CO. Если автоматический выключатель может быть полностью отключен, его предельная отключающая способность при коротком замыкании считается квалифицированной.

Процедура испытания номинальной отключающей способности автоматического выключателя при коротком замыкании (Icn) следующая: O—t—CO—t—CO. В нем на один СО больше, чем в процедуре теста Icn. После испытания автоматический выключатель может полностью отключиться и погасить дугу, и считается, что его номинальная отключающая способность при коротком замыкании соответствует требованиям.

Таким образом, можно видеть, что номинальная предельная отключающая способность короткого замыкания Icn относится к тому, что низковольтный автоматический выключатель может нормально работать после отключения максимального трехфазного тока короткого замыкания на выходном конце автоматического выключателя и размыкания этого снова ток короткого замыкания. Что касается того, может ли это быть нормальным в будущем, включение и выключение автоматического выключателя не гарантируется; а номинальная рабочая отключающая способность при коротком замыкании Ics означает, что автоматический выключатель может нормально отключаться много раз, когда на его выходном конце возникает максимальный трехфазный ток короткого замыкания.

Стандарт IEC947-2 «Низковольтное распределительное устройство и оборудование управления, низковольтный автоматический выключатель» предусматривает: Автоматический выключатель типа A (имеется в виду только выключатель с длительной задержкой перегрузки, автоматический выключатель с кратковременным замыканием) Ics может составлять 25%, 50%, 75% и 100%. Ics автоматических выключателей класса B (выключатели с трехступенчатой ​​защитой от перегрузки с длительной задержкой, короткого замыкания с выдержкой времени и переходным режимом короткого замыкания) может составлять 50 %, 75 % и 100 % Ics. Следовательно, можно видеть, что номинальная рабочая отключающая способность при коротком замыкании представляет собой значение тока отключения, меньшее, чем номинальный предельный ток отключения при коротком замыкании.

Независимо от типа автоматического выключателя, он имеет два важных технических индикатора Icu и Ics. Однако в качестве автоматического выключателя, используемого на ответвлениях, он может соответствовать только номинальной предельной отключающей способности короткого замыкания. Более распространено предубеждение, что лучше брать большое, а не брать нужное, думают, что большая страховка. Однако, если он слишком велик, это приведет к ненужным потерям (автоматический выключатель того же типа, тип H с высоким разрывом, в 1,3–1,8 раза дороже, чем обычный тип S). Следовательно, автоматический выключатель на ответвлении не должен слепо следовать своему показателю отключающей способности при коротком замыкании. Для автоматического выключателя, используемого на главной линии, не только должны соответствовать требованиям номинальной предельной отключающей способности короткого замыкания, но также должны соответствовать требованиям номинальной рабочей отключающей способности короткого замыкания. Если для измерения его отключающей способности используется только номинальная предельная отключающая способность Icu, независимо от того, квалифицирована она или нет, это создаст небезопасные скрытые опасности для пользователей.

Свободное отключение автоматического выключателя: в любой момент в процессе включения автоматического выключателя, если действие защиты включает цепь отключения, автоматический выключатель может быть надежно полностью отключен, что называется свободным отключением. Автоматический выключатель со свободным расцеплением может обеспечить быстрое размыкание автоматического выключателя, когда автоматический выключатель замкнут и закорочен, что позволяет избежать расширения масштабов аварии.

Характеристики кривых срабатывания автоматического выключателя и согласование — Статьи


Рис. 1: Упрощенная кривая время-ток. Фото: TestGuy

Времятоковые кривые используются для отображения количества времени, необходимого для срабатывания автоматического выключателя при заданном уровне перегрузки по току.

Кривые время-ток обычно отображаются в логарифмическом масштабе. Цифры по горизонтальной оси кривой представляют собой номинальный постоянный ток (In) для автоматического выключателя, цифры по вертикальной оси представляют время в секундах.

Чтобы определить, сколько времени потребуется для отключения выключателя: найдите значение тока, кратное (In), в нижней части графика. Затем проведите вертикальную линию до точки, где она пересекает кривую, а затем проведите горизонтальную линию до левой стороны графика, чтобы найти время в пути.

Общее время отключения автоматического выключателя представляет собой сумму времени срабатывания выключателя, времени разблокировки, времени механического срабатывания и времени образования дуги.

Кривые разрабатываются с использованием предварительно заданных спецификаций, таких как работа при температуре окружающей среды 40°C, поэтому имейте в виду, что фактические условия эксплуатации автоматического выключателя могут вызвать отклонения в его характеристиках.

Большинство кривых имеют информационное поле, в котором указывается, к какому автоматическому выключателю относится кривая. Это информационное поле может также содержать важные примечания от производителя, такие как допустимое отклонение от времени срабатывания.


Пример кривой времени тока автоматического выключателя в реальном мире с выделением. Фото: TestGuy


Защита от перегрузки

Верхняя часть времятоковой кривой показывает тепловую реакцию автоматического выключателя, изогнутая линия указывает на номинальную производительность автоматического выключателя.

В тепловых магнитных выключателях тепловая перегрузка возникает, когда биметаллический проводник внутри выключателя отклоняется после нагревания током нагрузки, разблокируя приводной механизм и размыкая контакты.

Чем больше перегрузка, тем быстрее биметаллическая пластина будет нагреваться и отклоняться для устранения перегрузки. Это то, что известно как «обратная кривая времени».

Долговременная функция

В электронных автоматических выключателях долговременная функция (L) имитирует эффект теплового биметаллического элемента. Номинальная точка срабатывания, в которой электронный расцепитель обнаруживает перегрузку, составляет примерно около 10 % от выбранного номинального тока. После срабатывания автоматический выключатель сработает по истечении времени, заданного регулировкой долговременной задержки.


Защита от короткого замыкания

В нижней части времятоковой кривой отображается реакция автоматического выключателя на короткое замыкание. В тепловых магнитных выключателях место срабатывания при перегрузке по току значительной величины приводит в действие магнитный якорь внутри выключателя, который размыкает механизм.

Мгновенная функция

В электронных автоматических выключателях функция мгновенного действия (I) имитирует магнитную характеристику термомагнитного автоматического выключателя. Это достигается с помощью микропроцессора, который берет выборки из формы сигнала переменного тока много раз в секунду для расчета истинного среднеквадратичного значения тока нагрузки. Мгновенное отключение происходит без преднамеренной задержки по времени.


Рис. 3: Комбинированная кривая LSIG. Фото: TestGuy.

Кратковременная функция

Некоторые электронные автоматические выключатели могут быть оборудованы Кратковременной функцией (S), которая дает автоматическому выключателю задержку перед отключением при значительном перегрузке по току. Это позволяет осуществлять избирательную координацию между защитными устройствами, чтобы гарантировать, что только устройство, ближайшее к повреждению, размыкается, не затрагивая другие цепи (см. координацию автоматических выключателей ниже) .

Характеристика I 2 t функции короткого замыкания определяет тип задержки. I 2 t IN приведет к обратнозависимой выдержке времени, которая напоминает время/токовые характеристики предохранителей. Это похоже на функцию длительного времени, но с гораздо более быстрой задержкой. I 2 t OUT обеспечивает постоянную задержку, обычно 0,5 секунды или менее, как указано на кривой время-ток.

Функция блокировки зон

Автоматические выключатели, оборудованные блокировкой зон с короткой задержкой при отсутствии ограничивающего сигнала от нижестоящего устройства, будут иметь минимальный временной диапазон независимо от настройки, который иногда называют максимальной неограниченной задержкой.

Когда функция мгновенного отключения отключена, используется блокировка с кратковременной задержкой для мгновенного срабатывания автоматических выключателей в случае значительного короткого замыкания. Это называется номиналом кратковременной стойкости и представлено на кривой отключения в виде абсолютного значения тока.

Связанный: Избирательная блокировка зон (ZSI) Основные принципы


Защита от замыканий на землю

Как и долговременная функция, элемент защиты от замыканий на землю (G) состоит из уставки срабатывания и задержки. Когда происходит замыкание фазы на землю, сумма фазных токов больше не равна, потому что ток замыкания на землю возвращается через шину заземления. В 4-проводной системе четвертый ТТ устанавливается на нулевой шине для обнаружения этого дисбаланса.

При возникновении дисбаланса тока автоматический выключатель сработает, если величина превышает уставку срабатывания при замыкании на землю. Если прерыватель остается включенным в течение времени, заданного задержкой замыкания на землю, автоматический выключатель сработает. Защита от замыкания на землю иногда поставляется с функцией I 2 t, которая работает по тому же принципу, что и кратковременная задержка.


Пример 4-проводной системы защиты от остаточного замыкания на землю. Фото: TestGuy.

Защита от замыкания на землю требует наименьшей энергии для срабатывания автоматического выключателя, часто со значениями срабатывания, установленными значительно ниже уставки срабатывания длительного времени. При проверке функции автоматического выключателя на перегрузку или короткое замыкание необходимо отключить защиту от замыкания на землю или «убрать в сторону» для работы других функций.

Использование комплекта для тестирования производителя или изменение проводки входа нейтрального трансформатора тока является предпочтительным методом проверки первичной подачей низковольтного автоматического выключателя с защитой от замыкания на землю, в противном случае два полюса могут быть соединены последовательно, чтобы обеспечить сбалансированные вторичные токи для отключения Ед. изм.

Связанный: Системы защиты от замыканий на землю: основы тестирования производительности


Координация автоматических выключателей

Времятоковые характеристики необходимы для правильной координации автоматических выключателей. В случае неисправности должен сработать только ближайший к месту неисправности автоматический выключатель, не затрагивая другие цепи.

В приведенном ниже примере три автоматических выключателя были скоординированы таким образом, что время срабатывания каждого выключателя было больше, чем время срабатывания нижестоящего выключателя (автоматов), независимо от величины неисправности.


Упрощенный пример координации отключения выключателя. Фото: TestGuy.

Автоматический выключатель CB-3 настроен на отключение при перегрузке 2000A или выше в течение 0,080 секунды . Автоматический выключатель CB-2 сработает, если перегрузка сохраняется в течение 0,200 секунд, и автоматический выключатель CB-1 , если неисправность сохраняется в течение 20 секунд .

При возникновении неисправности нижестоящий выключателя CB-3, он сработает первым и устранит неисправность.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *