Характеристики тока: Электрический ток

Содержание

Дифференциальный ток — это… (определение, особенности, виды)

Дифференциальный ток ( IΔ ) [residual current] (для устройства дифференциального тока) — это среднеквадратическое значение векторной суммы токов, протекающих через главную цепь устройства дифференциального тока [пункт 20.6, 1].

Примечание — Поскольку через главную цепь любого устройства дифференциального тока проходит не менее двух проводников, в главной цепи УДТ протекает не менее двух электрических токов.

Дифференциальный ток ( IΔ ) [residual current] (для электрической цепи) — это алгебраическая сумма значений электрических токов во всех проводниках, находящихся под напряжением, в одно и то же время в данной точке электрической цепи в электрической установке [пункт 20.7, 1].

Примечание [пункт 20.7 , 1] — Определение термина «дифференциальный ток» в МЭС 826-11-19 сформулировано для электрической цепи. Через главную цепь устройства дифференциального тока, защищающего электрическую цепь, проходят все ее проводники, находящиеся под напряжением.

Поэтому дифференциальный ток электрической цепи равен дифференциальному току, определяемому устройством дифференциального тока.

Вышеприведенное примечание из пункта 20.7 ГОСТ 30331.1-2013 [1] очень грамотно, на мой взгляд, прокомментировал Харечко Ю.В. в своей книге [2]:

« Это примечание устанавливает эквивалентность между дифференциальными токами для УДТ и защищаемой им электрической цепи. Продекларированное равенство дифференциальных токов возможно только в тех электрических цепях переменного тока, в состав которых входят фазные и нейтральный проводники. Однако, учитывая запрет на применение PEN-проводников в электроустановках жилых и общественных зданий, торговых предприятий и медицинских учреждений, указанная эквивалентность будет распространяться на большинство вновь монтируемых и реконструируемых электроустановок зданий. Поскольку подавляющая часть электрических цепей в существующих электроустановках зданий выполнена проводниками, имеющими сечение меньше минимально допустимого сечения PEN-проводника – 10 мм

2 для медного и 16 мм2 для алюминиевого, эти электрические цепи состоят только из фазных и нейтральных проводников. »

[2]

Дифференциальный ток не является электрическим током. Поэтому он не может представлять никакой опасности для человека.

Особенности для электрических цепей.

Далее Харечко Ю.В. рассказывает на примерах, чему равен дифференциальных ток:

  1. « В трехфазной четырехпроводной электрической цепи, состоящей из трехфазных проводников и нейтрального проводника, алгебраическая сумма электрических токов в указанных четырех проводниках, находящихся под напряжением, будет равна току защитного проводника (току утечки).
  2. В трехфазной четырехпроводной электрической цепи, состоящей из трех фазных проводников и PEN-проводника, алгебраическая сумма электрических токов в трех проводниках, находящихся под напряжением, то есть фазных проводниках, будет равна току, протекающему в PEN-проводнике.
  3. Электрический ток в PEN-проводнике, как правило, равен сумме токов в нейтральном и защитном проводниках. Причем ток в нейтральном проводнике на несколько порядков больше тока защитного проводника.
  4. В условиях единичного повреждения, когда произошло замыкание на землю, представляющее собой замыкание фазного проводника на защитный проводник в первой электрической системе или на PEN-проводник во второй, алгебраическая сумма электрических токов равна току замыкания на землю.
  5. При нормальных условиях в однофазной двухпроводной электрической цепи, состоящей из фазного и нейтрального проводников, алгебраическая сумма электрических токов в двух проводниках, находящихся под напряжением, также будет равна току защитного проводника. Если однофазную двухпроводную электрическую цепь выполнить фазным проводником и PEN проводником, то для нее нельзя будет определить дифференциальный ток, поскольку имеется только один проводник, находящийся под напряжением.
    »

Особенности для устройства дифференциального тока.

Обратимся к книге [2], в которой её автор Харечко Ю. В. определил основной фактор воздействующий на УДТ следующим образом:

« Основным фактором, воздействующим на устройство дифференциального тока и инициирующим его оперирование, является дифференциальный ток, который определен в нормативной документации как действующее значение векторной суммы токов, протекающих в главной цепи УДТ. Для определения дифференциального тока УДТ оснащено дифференциальным трансформатором, принцип действия которого проиллюстрирован на рис. 1.

»

[2]
Рис. 1. Функционирование дифференциального трансформатора устройства дифференциального тока (рисунок на базе рисунка 1 из [5])

Дифференциальный трансформатор двухполюсного устройства дифференциального тока имеет две первичные обмотки, выполненные двумя проводниками главной цепи УДТ, и одну вторичную обмотку, к которой подключен расцепитель дифференциального тока.

« Под расцепителем дифференциального тока понимают расцепитель, вызывающий срабатывание УДТ с выдержкой времени или без нее, когда дифференциальный ток превышает заданное значение. »

[2]

Рассмотрим нормальные условия оперирования электрической цепи, когда отсутствуют какие-либо повреждения основной изоляции опасных частей, находящихся под напряжением. Через главную цепь УДТ не протекает ток замыкания на землю, поскольку в электрической цепи нет замыкания на землю.

В обоих проводниках главной цепи устройства дифференциального тока протекают электрические токи, равные по своему абсолютному значению току нагрузки Iн (смотрите примечание 1 ниже). То есть электрические токи I1 и I2, протекающие в первичных обмотках дифференциального трансформатора, равны между собой по абсолютному значению:

│I1│ = │I2│.

« Примечание 1. При отсутствии тока утечки. Если в электрической цепи протекает ток утечки, электрические токи, протекающие в фазном и нейтральном проводниках главной цепи УДТ, отличаются друг от друга приблизительно на величину тока утечки.

»

[2]

Поскольку электрические токи, протекающие в главной цепи УДТ, направлены навстречу друг другу, их векторная сумма равна нулю.

Магнитные потоки Ф1 и Ф2, создаваемые электрическими токами I1 и I2 в сердечнике дифференциального трансформатора, также направлены навстречу друг другу и равны между собой по абсолютному значению. Поскольку указанные магнитные потоки взаимно компенсируют друг друга, суммарный магнитный поток в сердечнике дифференциального трансформатора равен нулю.

Следовательно, абсолютная величина электрического тока, который может протекать в электрической цепи, подключенной к вторичной обмотке дифференциального трансформатора, также будет равна нулю:

│Iр│ = 0.

Поэтому в нормальных условиях расцепитель дифференциального тока не может инициировать срабатывание УДТ, которое, в свою очередь, не отключает присоединенные к нему внешние электрические цепи.

Рассмотрим оперирование электрической цепи в условиях повреждения основной изоляции опасной части, находящейся под напряжением и ее замыкания на землю, когда через главную цепь УДТ протекает ток замыкания на землю.

В условиях повреждения по одному из проводников главной цепи УДТ помимо тока нагрузки Iн протекает ток замыкания на землю IEF. Поэтому абсолютное значение электрического тока, протекающего в одной из первичных обмоток дифференциального трансформатора, превышает абсолютное значение электрического тока, который протекает в другой его первичной обмотке:

│I1│ > │I2│.

Следовательно, векторная сумма электрических токов, протекающих в главной цепи УДТ, будет отлична от нуля.

Магнитные потоки Ф1 и Ф2 в сердечнике дифференциального трансформатора, прямо пропорциональные электрическим токам I

1 и I2, не равны между собой по абсолютному значению. Они не могут компенсировать друг друга. Поэтому суммарный магнитный поток в сердечнике дифференциального трансформатора отличен от нуля.

Следовательно, абсолютная величина электрического тока, который протекает в электрической цепи, подключенной к вторичной обмотке дифференциального трансформатора, также не равна нулю:

│Iр│ > 0.

Поэтому в указанных условиях расцепитель дифференциального тока сработает под воздействием электрического тока Iр, побуждая устройство дифференциального тока разомкнуть свои главные контакты и отключить присоединенные к нему внешние электрические цепи.

Харечко Ю.В. подчеркивает особенности функционирования трехполюсных и четырехполюсных УДТ [2]:

« В трехфазных трехпроводных электрических цепях применяют трехполюсные устройства дифференциального тока, а в трехфазных четырехпроводных электрических цепях – четырехполюсные УДТ, которые оснащены дифференциальными трансформаторами, имеющими соответственно три и четыре первичные обмотки.

Эти дифференциальные трансформаторы функционируют так же, как и дифференциальный трансформатор двухполюсного УДТ. Векторные суммы электрических токов, протекающих в главных цепях УДТ, они определяют с учетом запаздывания и опережения по фазе электрических токов в проводниках разных фаз, подключенных к УДТ. »

[2]

Таким образом, посредством определения дифференциального тока выполняют обнаружение и оценку тока замыкания на землю, например, через тело человека, прикоснувшегося к фазному проводнику. От токов замыкания на землю защищают и людей, и электроустановки зданий.

При замыкании на землю какой-либо токоведущей части дифференциальный ток практически равен току замыкания на землю. В нормальных условиях дифференциальный ток приблизительно равен току утечки, протекающему в электрической цепи.

Виды дифференциальных токов

Все многообразие дифференциальных токов, которые могут возникнуть в главной цепи устройства дифференциального тока бытового назначения, в стандартах ГОСТ IEC 61008-1-2020 [3] и ГОСТ IEC 61009-1-2020 [4] сведено к следующим двум видам: синусоидальному дифференциальному току и пульсирующему постоянному дифференциальному току.

Харечко Ю.В. в своей книге [2], на мой взгляд, максимально простым языком расписал особенности этих 2 видов дифференциального тока. Приведу основные цитаты:

« Синусоидальный дифференциальный ток имеет место в тех случаях, когда в электрических цепях переменного тока, которые подключены к устройству дифференциального тока, не применяют выпрямители, светорегуляторы, регулируемые электроприводы и аналогичные им устройства, существенно изменяющие форму синусоидального тока. Ток утечки и ток замыкания на землю в таких электрических цепях имеют форму, близкую к синусоиде. Такую же синусоидальную форму имеет и дифференциальный ток (рис. 2).

Рис. 2. Синусоидальный ток частотой 50 Гц (на основе рисунка 2 из [2] автора Харечко Ю.В.)

При использовании в электроустановках зданий выпрямителей, светорегуляторов, регулируемых электроприводов и аналогичных им устройств форма синусоидального тока в электрических цепях может существенно изменяться.

Если в каком-то электроприемнике в качестве дискретного регулятора потребляемой им мощности использован диод, в случае повреждения основной изоляции токоведущей части, подключенной после диода, может возникнуть ток замыкания на землю, который будет протекать только в течение половины периода (180° или 10 мс). Такой электрический ток в стандартах ГОСТ IEC 61008-1-2020 и ГОСТ IEC 61009-1-2020 назван пульсирующим постоянным током. Протекание пульсирующего постоянного тока в главной цепи устройства дифференциального тока существенно изменяет его характеристики по сравнению с синусоидальным током.

В электроустановках жилых зданий применяют большое число электроприемников, имеющих встроенные выпрямители. Все они характеризуются небольшими постоянными токами утечки, которые могут создавать суммарный (фоновый) постоянный ток утечки, протекающий через главную цепь устройства дифференциального тока. Протекание даже малого постоянного тока через первичную обмотку дифференциального трансформатора УДТ существенно изменяет (ухудшает) его характеристики. Поэтому в стандартах ГОСТ IEC 61008-1-2020 и ГОСТ IEC 61009-1-2020 учтена возможность протекания небольшого постоянного тока через главную цепь устройства дифференциального тока.

Пульсирующий постоянный ток определен в международных и национальных стандартах как волнообразные импульсы электрического тока длительностью (в угловой мере) не менее 150° за один период пульсации, следующие периодически с номинальной частотой и разделенные промежутками времени, в течение которых электрический ток принимает нулевое значение или значение, не превышающее 0,006 А постоянного тока.

Пульсирующий постоянный ток характеризуют также углом задержки тока, под которым понимают промежуток времени в угловой величине, в течение которого устройство фазового управления задерживает момент протекания электрического тока в электрической цепи. На рис. 3 и 4 показан пульсирующий постоянный ток при углах задержки тока α, равных 0°, 90° и 135°.

Рис. 3. Пульсирующий постоянный ток частотой 50 Гц без составляющей постоянного тока (на основе рисунка 3 из [2] автора Харечко Ю.В.)Рис. 4. Пульсирующий постоянный ток частотой 50 Гц с составляющей постоянного тока до 0,006 А включительно ((на основе рисунка 4 из [2] автора Харечко Ю.В.)

Появление в главной цепи устройства дифференциального тока пульсирующего постоянного тока существенно изменяет характеристики УДТ. Устройства дифференциального тока типа АС, которые рассчитаны на работу только при синусоидальном токе, не могут корректно функционировать при появлении пульсирующего постоянного тока. Поэтому в некоторых странах их применение в электроустановках зданий запрещено или существенно ограничено. Устройства дифференциального тока типа АС заменяют более современными УДТ типа A, которые предназначены для применения и при синусоидальном, и при пульсирующем постоянном токе.

В 2016 году был введен в действие ГОСТ IEC 62423-2013, который распространяется на УДТ типа F и типа B бытового назначения. УДТ типа F предназначены для защиты электрических цепей, к которым подключены частотные преобразователи. Они оперируют так же, как УДТ типа A, и дополнительно:

  • при сложных дифференциальных токах;
  • при пульсирующем постоянном дифференциальном токе, наложенном на сглаженный постоянный ток 0,01 А.

Устройства дифференциального тока типа B оперируют так же, как УДТ типа F, и дополнительно:

  • при синусоидальных переменных дифференциальных токах, имеющих частоту до 1000 Гц включительно;
  • при пульсирующем постоянном дифференциальном токе, который появляется в двух и более фазах;
  • при сглаженных постоянных дифференциальных токах.

Таким образом, самые современные УДТ типа B корректно оперируют в электрических цепях переменного тока при протекании в них токов замыкания на землю различных форм, начиная от синусоидального тока частотой 50 Гц и заканчивая постоянным током. »

Список использованной литературы

  1. ГОСТ 30331.1-2013
  2. Харечко Ю.В. Краткий терминологический словарь по низковольтным электроустановкам. Часть 3// Приложение к журналу «Библиотека инженера по охране труда». – 2013. – № 4. – 160 c.;
  3. ГОСТ IEC 61008-1-2020
  4. ГОСТ IEC 61009-1-2020
  5. Электрика. – 2010. – № 2.– С. 33–36. Принцип действия устройств дифференциального тока.

Химические Источники Тока (ХИТ): Характеристики, Применение

Любая батарейка или аккумулятор дает ток за счет протекающих внутри них химических реакций

Химические источники тока (сокращенно ХИТ) – это источники электродвижущей силы (ЭДС), в которых в электрическую энергию превращается энергия протекающих внутри химических реакций. Используют их сегодня повсеместно – это и современные электромобили и портативная радиоэлектроника, и медицинское оборудование, и портативные компьютеры.

Все это делает источники тока электрохимические очень важным изобретением, которым пользуются вот уже 2-ю сотню лет. Именно про ХИТ мы подробно и поговорим в сегодняшней статье.

Классификация химических источников тока

Классификация ХИТ

Все ХИТ принято подразделять на три основные категории:

Как устроены гальванические батареи

  • Первичные гальванические элементы – внутри таких источников происходят химические окислительно-восстановительные реакции, энергия которых и переходит в электрическую. Данные реакции являются необратимыми, поэтому элементы невозможно перезарядить.
  • Состоят такие батареи из двух электродов, которые имеют разный электродный потенциал, металлического проводника, по которому могут перемещаться электроны, и электролита, который помогает перемещению ионов между электродами.

Интересно знать! Напомним, что именно поток электронов и приводит к возникновению электрического тока.

Вторичный химический источник тока

  • Вторичные ХИТ, они же электрические аккумуляторы – тоже являются гальваническими элементами, однако их особенность заключается в том, что возможна перезарядка.
  • В отличие от батарей, которые исчерпывают свою работоспособность при разряде, аккумуляторы могут регенерироваться, то есть повторно накапливать энергию и перезапускать цикл химических реакций.
  • Возобновление заряда происходит при пропускании через элемент электрического тока, для чего нужна внешняя цепь. Все мы ежедневно заряжаем свои телефоны и смартфоны, ноутбуки и планшеты. Аккумуляторы применяются практически везде, и это не удивительно – их ресурс намного выше, чем у любой первичной батареи в сотни раз, при том, что цена больше до 10-ти раз.
  • Прообраз первой аккумуляторной батареи был создан в далеком 1803 году немецким физиком-химиком И. Риттером. Его устройство имело в составе пятьдесят медных кружков, между которыми было проложено влажное сукно. Когда через него проходил ток от Вольтова столба, изделие само становилось источником электрического тока.

Топливный источник тока химический

  • Последним типом химических источников тока являются топливные элементы, или электрохимические генераторы. Основное отличие их от гальванических элементов это то, что вещества необходимые для электрохимической реакции подаются внутрь извне, а продукты от реакций, наоборот, удаляются.
  • Подобный подход позволяет организовать долгую непрерывную работу без фактической перезарядки.
  • Впервые применять топливные источники тока стали во второй половине 20-го века, несмотря на то, что основные принципы функционирования были открыты в далеком 1839 году. В 1965 году их впервые задействовали в космической технике – это был элемент КК «Джемини». Его изначальное расчетное время работы составляло от суток, до 2-х месяцев. Эти элементы имели достаточное преимущество перед солнечными батареями с буферными химическими батареями в плане массы и габаритов, а также удельной мощности.
  • Первая топливная батарея КК «Джемини» состояла из 3 блоков по 32 элемента, каждый из которых выдавал напряжение в 0,8В, и работала на газообразном топливе (кислород и водород).

Характеристики гальванических источников тока

Щелочные аккумуляторы и их свойства

Характеристика химических источников тока включает в себя следующие параметры:

Уравнение Нернста для электродного потенциала

  • Электродвижущая сила – этот параметр гальванического элемента зависит от состава используемого электролита и типов металлов, из которых изготовлены электроды. Описывают ЭДС термодинамические функции (уравнение Нернста), приложенные к протекающим электрохимическим процессам.

Измеряется емкость обычно в миллиамперах в час

  • Емкость элемента питания – тут все просто, имеется в виду количество энергии, которое элемент может отдать при разряде. Данный параметр напрямую зависит от массы запасенного в батарее реагентов и скорости их превращения. Емкость элемента будет снижаться, если элемент будет охлажден, либо вырастет ток разряда.
  • Энергия гальванического элемента. Этот параметр высчитывается путем перемножения емкости на выдаваемое напряжение. Энергия будет уменьшаться по мере роста разрядного тока. Обратный эффект будет достигнут при росте температуры (до определенного уровня) и увеличении используемых реагентов.

Прототип гальванической батареи

  • Сохраняемость – по сути, срок годности элемента, в течение которого он способен не менять своих основных характеристик в допустимых пределах.

Совет! Чем выше температура, тем быстрее сокращается срок хранения.

  • Плотность энергии – количество запасенной энергии в расчете на единицу массы аккумулятора или его объема.
  • Саморазряд первичного химического источника тока – очень важный параметр, указывающий на потерю емкости батареей без подключенной к ней нагрузки. То есть параметр фактически сопоставим со сроком службы элемента.
  • Саморазряд химических источников тока вторичных, по сути, то же самое, однако этот параметр меняется во времени. Особенно высоко его значение после полной подзарядки аккумулятора, но по мере разрядки он ослабевает.

Интересно знать! Для никель-кадмиевых аккумуляторов, функционирующих исправно, не допускается потеря более 10% от максимального заряда за 1 сутки. Никель-металлгидридные имеют меньший показатель, а у литий-ионных этот эффект практически отсутствует, растягиваясь на месяцы. Герметичные кислотные аккумуляторы потеряют за год всего 40% своего заряда, однако, если температура воздуха будет выше 20 градусов, процесс потечет куда быстрее, и наоборот, приближаясь к нулю – будет замедляться.

Более подробное строение элементов

Гальваническая батарейка в разрезе

Мы уже дали определение химических источников тока и назвали их основные типы. Теперь давайте рассмотрим немного глубже, как они устроены, и какие химические реакции внутри протекают.

Элемент Даниэля-Якоби

  • Итак, начнем с первичных гальванических элементов. В их состав входят реагенты (окислители и восстановители), которые участвуют в прямом преобразовании энергии. Выработка тока прекращается после того, как реагенты полностью израсходуются.
  • В качестве примера того, как функционирует элемент, давайте опишем давно известное устройство Даниэля-Якоби. Выше представлена его схема.
  • Итак, два электрода (цинковый и медный) опущены в колбы наполненные растворами сульфатов цинка и меди, соответственно.
  • Растворы разъединены внутренней цепью (полупроницаемой перегородкой), а электроды соединяются внешней цепью (металлический проводник) через гальванометр, обозначенный на схеме как 2.

Элемент Даниэля

  • Когда цепь замкнута, на обоих электродах протекают процессы гидратации ионов металлов. Между самим металлом и его ионами в растворе устанавливается химическое равновесие.
  • В связи с тем, что цинк и медь имеют разную активность электродных потенциалов, электроды приобретают разный заряд по величине, то есть концентрация свободных электронов на них будет значительно отличаться.
  • Как только будет замкнута внешняя цепь, концентрация электронов придет в равновесие и они по внешнему проводнику начнут перемещаться от цинкового электрода к медному.
  • По этой причине концентрация электронов на цинковом электроде начинает уменьшаться, из-за чего происходит смещение равновесия на границе Zn|ZnSO4 в сторону катионов цинка (их образования). Другими словами цинк начинает растворяться.
  • С медным электродом происходит обратный процесс – равновесие смещается в другую сторону и начинает образовываться металлическая медь, или другими словами – медь начинает восстанавливаться.
  • Если говорить более конкретно, то на цинковом электроде происходит процесс окисления, который в электрохимии называется анодным процессом, а сам электрод – анодом. На медном электроде (катоде) – процесс восстановления, называемый еще катодным.

Классическая солевая батарейка

  • Наиболее широко распространились элементы питания, состоящие из марганца и цинка. Они не содержат раствора электролита, поэтому называются сухими.
  • Эти элементы при всем конструкционном многообразии делят всего лишь на два типа, в зависимости от рН электролита и состава: солевые и щелочные. Для солевых марганцево-цинковых элементов (МЦ) используется электрохимическая схема Лекланше (Zn|Nh5Cl|MnO2) – в качестве катода выступает цинковый электрод, в качестве анода – электрод их диоксида марганца и графита, а электролитом является паста из муки или крахмала с раствором хлорида аммония.
  • В щелочных элементах питания применяется другая схема (Zn|KOH|MnO2). При этом электроды делаются из тех же материалов, а в качестве электролита применяется паста из гидроксида калия.
  • Такие элементы обладают большей емкостью, лучше переносят низкие температуры и высокие разрядные токи. Однако они намного сложнее солевых источников, почему и имеют значительно большую цену.
  • Данные элементы имеют многоцелевое назначение и применяются в быту повсеместно. Они могут выступать источниками автономного питания для любой радиоаппаратуры, фотоаппаратов, калькуляторов, различных тестовых приборов, часов, фонариков, для запитки схем Биоса материнских плат персональных компьютеров и прочего.

Процесс зарядки аккумуляторных батарей

  • Аккумуляторы, или вторичные химические источники тока – отличает эти элементы то, что благодаря воздействию внешнего тока, электрическая энергия может переходить в химическую, а при подключении внешней цепи происходит обратный процесс.
  • Одним из часто встречающихся типов таких устройств являются свинцовые аккумуляторы, которые также называют и кислотными.
  • В качестве электролита выступает 25-30%-ый раствор серной кислоты, а материалом для электродов служат свинцовые решетки. При взаимодействии этих веществ свинец превращается в следующее соединение — PbSO
  • Процессы, протекающие на аккумуляторных электродах, до сих пор до конца не изучены, что говорит об их высокой сложности. Допускается, что одновременно происходят изменения в твердой фазе и в растворе, с зависимостью скоростей этих реакций от условий поляризации.
  • Применяются такие элементы в основном в качестве источников питания в автомобилях.
  • Помимо кислотных существуют и щелочные аккумуляторы, среди которых больше остальных распространились никель-металлгидридные и никель-кадмиевые устройства, электролитом в которых является гидроксид калия (КОН).
  • Для переносной электроники, например, ноутбуков, планшетов, смартфонов используются в основном литий-ионные аккумуляторы, а также литий-полимерные, обладающие приличной емкостью и отсутствием эффекта памяти.

Про литий-ионные аккумуляторы мы поговорим в отдельной главе, так как эти устройства на сегодня в быту самые часто встречающиеся.

Строение электрохимического генератора тока

  • Топливные элементы питания, по сути, тоже являются гальваническими, только восстановитель и окислитель находятся вне самого элемента. Они подаются во время работы к электродам раздельно и непрерывно.
  • При работе такого элемента сами электроды не расходуются, как в обычных батарейках.
  • В качестве окислителя обычно применяется кислород (чистый или из воздуха), а в качестве восстановителя – водород, метан и метанол, которые могут быть как в жидком, так и в газообразном состоянии.
  • Электролитом при этом является щелочь.

Литий-ионные аккумуляторные батареи

Теперь, как и обещали, давайте подробно обсудим, что такое литий-ионные аккумуляторы, как они устроены и как ими правильно пользоваться. Тема очень интересная, и поможет не только увеличить объем теоретических знаний, но и практических, которые, к примеру, помогут продлить срок службы вашего телефонного или любого другого аккумулятора.

Строение

На фото — литий-ионный аккумулятор от сотового телефона

  • В качестве катода (отрицательного электрода) используется алюминий, а в качестве анода (положительного электрода) – медь. Выполняются они обычно в виде фольги, в форме цилиндра или продолговатого пакета.
  • Разделяются электроды пористым сепаратором, который пропитал электролитом.

Схематическое строение литий-ионного аккумулятора

  • Все электроды устанавливаются в прочный корпус и подсоединяются к токосъемным клеммам.
  • Попутно внутри корпуса могут устанавливаться и отдельные устройства, которые призваны продлить срок службы аккумулятора и сделать эксплуатацию безопасной. К таковым относятся:
  1. Устройства, реагирующие на изменения температурного коэффициента изменением сопротивления.
  2. Устройство разрыва контакта между катодом и клеммой, в случае превышения допустимого давления газов внутри.
  3. Предохранительные клапаны, способные сбрасывать аварийное давление.
  • Также используются и внешние устройства электронной защиты, которые также предупреждают аварийный перегрев, перезаряд и короткое замыкание.
  • Конструктивно аккумуляторы изготавливают цилиндрического типа (как обычные батарейки) либо призматического (как в телефонах). В первом случае электроды с сепаратором сворачиваются рулоном, а во втором они накладываются друг на друга.
  • Литий-ионные аккумуляторы абсолютно герметичные устройства, что продиктовано необходимостью защиты от утечки электролита, а также защитой от попадания внутрь паров воды и кислорода, что приводит к выходу элемента из строя.

Принцип работы

Как работает аккумулятор

Разберем сначала разряд.

  • При подключении во внешнюю цепь заряженного аккумулятора, начинает протекать химическая реакция, благодаря которой образуются свободные электроны, которые, как мы помним, «хотят» попасть на катод. Через электролит им не пройти, поэтому они «отправляются в путь» через внешнюю цепь – так образуется ток, который питает подключенные к источнику устройства.
  • «Улетевшие» электроны оставляют ионы лития (положительно заряженные), которые через электролит направляются к катоду.
  • После полного перемещения электронов, аккумулятор остается разряженным.

Чтобы восполнить запас энергии, процесс нужно обратить вспять. К аккумулятору подключается зарядное устройство, из-за чего электроны устремляются обратно к аноду, пока тот не соберет прежнее количество электронов. Далее цикл может повторяться большое количество раз.

Емкость литий-ионной батареи – это ни что иное, как количество ионов лития, которые могут «прилипнуть» к электродам. Попадают они в кратеры (микроскопические поры на аноде и катоде).

При выходе аккумулятора из строя требуется его замена на новый

  • Со временем материал электродов начинает деградировать. По этой причине они уже не могут удерживать прежнее количество ионов лития, то есть происходит потеря емкости. Данный процесс будет продолжаться до тех пор, пока элемент полностью не утратит свою работоспособность.
  • Строение литий-ионных аккумуляторов таково, что постоянно требуется контроль за уровнем заряда. С этой целью в симбиозе с ними применяют контроллеры заряда. Эти устройства полностью ведут процесс зарядки, выставляя необходимое напряжение в зависимости от стадии.

Зарядное устройство

  • Процесс зарядки через контроллер протекает обычно в следующей последовательности. Вначале подается ток, составляющий 10% от номинального. Напряжение при этом составляет 2,8 Вольт. Далее происходит увеличение тока при достижении напряжением отметки в 4,2 Вольта. Приближаясь к финалу, ток постепенно ослабевает, но напряжение так и остается на достигнутом уровне.
  • Описанный процесс, в принципе, универсален, но может отличаться в зависимости от типов аккумулятора и применяемого контроллера.

Характеристики аккумуляторов

Именно такие аккумуляторы установлены в батареи для ноутбуков

Изготавливаемые сегодня литий-ионные аккумуляторы бывают двух видов: таблеточные и цилиндрические.

Все они могут иметь следующие рабочие параметры и характеристики:

  • Минимальное рабочее напряжение составляет 2,2-2,5 В;
  • Максимальное напряжение обычно не превышает 4,35 В, тогда как маркировка указывает 5 В.
  • Время зарядки зависит от мощности зарядного устройства и емкости самого аккумулятора, поэтому обобщить данные достаточно сложно. Обычно этот параметр составляет 2-4 часа.
  • Саморазряд при комнатной температуре не превышает 7% в год, что как понимаете, очень мало.
  • Работать аккумуляторы могут при температурах от -20 до +60 градусов, естественно, меняя свои рабочие характеристики.
  • Аккумуляторы теряют около 20% своей емкости по истечении от 500 до 1000 циклов заряда\разряда.

Для таких аккумуляторов характерны следующие плюсы:

  • Высокая плотность энергии, по сравнению с никель-кадмиевыми и никель-металлгидридными аккумуляторами.
  • Высокое напряжение одного элемента. Для сравнения один никель-металлгидридный аккумулятор выдает всего лишь 1,2 В, поэтому их используют в количестве 4-х штук, чтобы получить то же рабочее напряжение.
  • «Эффект памяти» у них отсутствует, что намного упрощает процесс эксплуатации.

«Эффект памяти» требует особого подхода к заряду аккумулятора

Интересно знать! Эффект памяти – это изменение полезной емкости аккумулятора, из-за нарушения режима зарядки. То есть, если постоянно заряжать не до конца севший аккумулятор, он «запомнит» нижний порог и будет «считать» его нулевым.

  • Большое число циклов перезарядки.
  • Достаточно длительная эксплуатация.
  • Высокий диапазон рабочих температур, что позволяет использовать такие устройства в разных погодных условиях.
  • Литий-ионные аккумуляторы более безопасны в плане экологии.

Советы по эксплуатации аккумуляторов

А теперь самые простые советы, которые помогут прослужить вашим аккумуляторам максимально долго.

  • Берегите элементы питания от огня и воды – оба фактора чреваты выходом из строя.
  • Чрезмерное охлаждение и нагревание, а также резкая смена температур тоже губительны.
  • Применяйте соответствующий вашему аккумулятору тип зарядки, коих есть аж 4 штуки.
  • Первый – это медленный заряд низким постоянным током. Происходит он в течение довольно длительного времени – до 18 часов. Такой метод подходит почти для всех аккумуляторов и является самым безопасным.
  • Второй – быстрый заряд. Происходит в течение 3-5 часов при постоянном токе в 1/3С.
  • Третий – дельта V заряд (ускоренный) — начальные ток равен номинальной емкости элемента, напряжение постоянно меняется. Заряд происходит за 1-1,5 часа. При этом возможен перегрев и разрушение устройства.
  • Четвертый тип называется реверсивным. При нем длинные импульсы заряда сменяются короткими импульсами разряда. Такой метод наиболее полезен для аккумуляторов с «эффектом памяти».

Совет! Прилагаемая к аккумуляторным батареям инструкция обычно содержит рекомендации по режиму зарядки.

На этом закончим наш обзор. Мы разобрали электрохимические источники тока и получили простейшее представление об их работе. Если вы хотите изучить тему глубже, то уже не обойтись без учебных пособий и видео, которые можно легко отыскать в сети.

Урок 27. Лекция 27-1. Электрический ток, его характеристики. Сопротивление. Закон Ома.

Проводники отличаются от диэлектриков тем, что в них есть свободные заряды, которые могут перемещаться по всему объему проводника.

Если изолированный проводник поместить в электрическое поле , то на свободные заряды qв проводнике будет действовать сила . В результате в проводнике возникает кратковременное перемещение свободных зарядов. Этот процесс закончится тогда, когда собственное электрическое поле зарядов, возникших на поверхности проводника, не скомпенсирует полностью внешнее поле. Результирующее электростатическое поле внутри проводника равно нулю.

Однако, в проводниках может при определенных условиях возникнуть непрерывное упорядоченное движение свободных носителей электрического заряда. Такое движение называется электрическим током.

Электрический ток – упорядоченное движение заряженных частиц.

За направление электрического тока принято направление движения положительных свободных зарядов.

В металлах носителями зарядов являются электроны — отрицательно заряженные частицы, поэтому электрический ток в металлах всегда направлен против дижения электронов.

Количественной мерой электрического тока служит сила тока I.

Сила тока – скалярная физическая величина, равная отношению заряда q, переносимого через поперечное сечение проводника за интервал времени t, к этому интервалу времени:

Сила тока численно равна количеству зарядов, прошедших через поперечное сечение проводника за 1 секунду.

Упорядоченное движение электронов в металлическом проводнике
I — сила тока, S – площадь поперечного сечения проводника,  – электрическое поле.

Единица измерения силы тока в Международной системе единиц СИ ампер [А].

Прибор для измерения силы тока называется амперметр.

Амперметр включается последовательно в разрыв электрической цепи, чтобы через него проходил весь измеряемый ток.

На схемах электрических цепей амперметр обозначается .

Амперметр обладает некоторым внутренним сопротивлением RA. Внутреннее сопротивление амперметра должно быть достаточно малым по сравнению с полным сопротивлением всей цепи.

Если сила тока и его направление не изменяются со временем, то такой ток называетсяпостоянным.

Кратковременный ток в проводнике можно получить, если соединить этим проводником два заряженных проводящих тела, которые имеют различный потенциал. Ток в проводнике исчезнет, когда потенциал тел станет одинаковым. Для существования электрического тока в проводнике необходимо создать в нем и длительное время поддерживать электрическое поле.

Условия существования электического тока:

1.Наличие свободных зарядов внутри проводника,

2. Наличие разности потенциалов на концах проводника (создание электрического поля внутри проводника)

Электрический ток – это упорядоченное движение заряженных частиц, которое создается электрическим полём, а оно при этом совершает работу. Работа тока – это работа сил электрического поля, создающего электрический ток.

Постоянный электрический ток может быть создан только в замкнутой цепи, в которой свободные носители заряда циркулируют по замкнутым траекториям. При перемещении электрического заряда в электростатическом поле по замкнутой траектории, работа электрических сил равна нулю. Поэтому для существования постоянного тока необходимо наличие в электрической цепи устройства, способного создавать и поддерживать разности потенциалов на участках цепи за счет работы сил неэлектростатического происхождения. При перемещении единичного положительного заряда по некоторому участку цепи работу совершают как электростатические (кулоновские), так и сторонние силы.

Работа электростатических сил при перемещении единичного заряда равна разности потенциалов Δφ12 = φ1 – φ2 между начальной (1) и конечной (2) точками неоднородного участка. Величину U12 принято называть напряжением на участке цепи 1–2.

Напряжение – это физическая величина, характеризующая действие электрического поля на заряженные частицы, численно равно работе электрического поля по перемещению заряда из точки с потенциалом φ1 в точку с потенциалом φ2.


В случае однородного участка напряжение равно разности потенциалов: U12 = φ1 – φ2

Единица измерения напряжения в Международной системе единиц СИ вольт [В].

Прибор для измерения напряжения называется вольтметр.

 

Вольтметр предназначен для измерения разности потенциалов, приложенной к его клеммам. Он подключается параллельно участку цепи, на котором производится измерение разности потенциалов.

На схемах электрических цепей амперметр обозначается .

Любой вольтметр обладает некоторым внутренним сопротивлением RB. Для того, чтобы вольтметр не вносил заметного перераспределения токов при подключении к измеряемой цепи, его внутреннее сопротивление должно быть велико по сравнению с сопротивлением того участка цепи, к которому он подключен. Поскольку внутри вольтметра не действуют сторонние силы, разность потенциалов на его клеммах совпадает по определению с напряжением. Поэтому можно говорить, что вольтметр измеряет напряжение.

Аналогично тому, как трение в механике препятствует движению, сопротивление проводника создает противодействие направленному движению зарядов и определяет превращение электрической энергии во внутреннюю энергию проводника. Причина сопротивления: столкновение свободно движущихся зарядов с ионами кристаллической решетки.

Величина, характеризующая противодействие электрическому току в проводнике, которое обусловлено внутренним строением проводника и хаотическим движением его частиц, называется электрическим сопротивлением проводника.

В СИ единицей электрического сопротивления проводников служит ом [Ом]. Сопротивлением в 1 Ом обладает такой участок цепи, в котором при напряжении 1 В возникает ток силой 1 А.

Электрическое сопротивление проводника зависит от размеров и формы проводника и отматериалаиз которого изготовлен проводник.

S – площадь поперечного сечения проводника
l – длина проводника
ρ – удельное сопротивление проводника.

Сопротивление проводника прямо пропорционально его длине и обратно пропорционально площади его поперечного сечения.

Величину ρ, характеризующую зависимость сопротивления проводника от материала, из которого он сделан, и от внешних условий, называют удельным сопротивлением проводника. Оно численно равно сопротивлению проводника длиной 1 м и площадью сечения 1 мм2 , изготовленного из данного вещества. Единица удельного сопротивления в СИ [1 Ом*м = 1 Ом*мм2/м]

Сопротивление проводника зависит и от его состояния, а именно от температуры.

Эта зависимость выражается формулой  или 

α – температурный коэффициент сопротивления. Для всех чистых металлов .

При нагревании чистых металлов их сопротивление увеличивается, а при охлаждении – уменьшается.

Закон Ома для участка цепи.

Немецкий физик Г. Ом в 1826 году экспериментально установил, что сила тока I, текущего по однородному металлическому проводнику (то есть проводнику, в котором не действуют сторонние силы), пропорциональна напряжению U на концах проводника:

Это соотношение выражает закон Ома для однородного участка цепи: сила тока в проводнике прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротивлению проводника.

Проводник, обладающий электрическим сопротивлением, называется резистором.

Проводники, подчиняющиеся закону Ома, называются линейными.

Графическая зависимость силы тока I от напряжения U называется вольт-амперная характеристика (сокращенно ВАХ). Она изображается прямой линией, проходящей через начало координат.

По вольт-амперной характеристике проводника можно судить о его сопротивлении: чем больше угол наклона графика к оси напряжения, тем меньше сопротивление проводника.

Электрический ток. Действие электрического тока. Условия существования электрического тока. Основные характеристики электрического тока.

Стр 1 из 8Следующая ⇒

Электрический ток. Действие электрического тока. Условия существования электрического тока. Основные характеристики электрического тока.

Электрический ток — это упорядоченное (направленное) движение заряженных частиц.

1. Направленное движение свободных зарядов в проводнике под действием сил тока называется электрическим током проводимости или электрическим током.
2. За направление тока принимают направление движения положительно заряженных частиц,которое совпадает с направлением электрического поля.
Действия тока:
• Проводник, по которому течёт ток, нагревается.
• Электрический ток может изменять химический состав проводника.

• Ток оказывает силовое воздействие на соседние токи и намагниченные тела, что является основным свойством тока.
Условия существования электрического тока.
• Наличие свободных заряженных частиц
• Наличие электрического поля

Основные характеристики электрического тока
1. Характеристика тока (самая зависимая величина). Величина, измеряемая отношением заряда, проходящего через поперечное сечение проводника за какой-нибудь промежуток времени, к величине этого промежутка, называется силой тока. Если сила тока со временем не меняется, то ток называют постоянным.

I=g/t, кл/с=А

2. Характеристика источника питания(зависимая только от силы электрического поля). Напряжение — это физическая величина, характеризующая работу электрического поля по перемещению заряда

U=A/g, Дж/кл=В

З. Характеристика проводника. Электрическое сопротивление выражается в Омах.

Ом=В/А

Закон Ома для участка цепи. Вольт — амперная характеристика тока. Соединение проводников.

Когда по какому-либо участку протекает ток, то между силой тока и напряжением для этого участка существует определённая функциональная зависимость, которую называют вольт-амперной характеристикой.
Сила тока на участке цепи прямо пропорциональна напряжению на концах проводника и обратно пропорциональна его сопротивлению.

I=U/R

Соединение проводников
• Последовательное соединение
1. При последовательном соединении сила тока во всех участках цепи одинакова

2. При последовательном соединении напряжение на внешней цепи равно сумме напряжений на отдельных участках
U=U+U+U
З. Напряжение на отдельных участках цепи при последовательном соединении прямо пропорциональны сопротивлениям участков

UUU=RRR
4. При последовательном соединении эквивалентное сопротивление всей цепи равно сумме сопротивлений отдельных участков цепи

R=R+R+R
• Параллельное соединение
1. При параллельном соединении напряжения на отдельных ветвях и на всём разветвлении одинаково

U=U=U=U
2. Ток до и после разветвления равен сумме токов в отдельных ветвях

I=I+I+I

3. Токи в отдельных ветвях разветвления обратно пропорциональны сопротивлениям этих ветвей
I+I+I=1/R+1/R+1/R

4. Проводимость всего разветвления равна сумме проводимостей. отдельных ветвей

1/R=1/R+1/R+1/R

Закон Ома для полной цепи. Физический смысл ЭДС. Внутренней и внешнее сопротивление цепи. Соединение одинаковых источников электрической энергии в батарею.

Сила тока в электрической цепи с одним источником ЭДС прямо пропорциональна электродвижущей силе и обратно пропорциональна сумме сопротивлений внешней и внутренней цепей.

I= ɛ/(R+r)

Величина, измеряемая отношением работы сторонних сил, совершаемой источником тока при перемещении заряда по замкнутой цепи, к величине заряда, называется электродвижущей силой источника (ЭДС)
ɛ=A/g — ЭДСчисленно равна энергии, полученной единичным электрическим зарядом во внутренней цепи, а напряжение равно той энергии, которую он теряет во внешней цепи.

Внутренней цепью является источник электрической энергии, а внешней вся остальная часть.

 

 

Магнитный поток. Закон электромагнитной индукции. Правило правой руки для индукционного тока.

Магнитный Поток — поток вектора магнитной индукции В через какую-либо поверхность. через малую площадку dS, в пределах которой вектор В неизменен. Для замкнутой поверхности магнитный поток равен нулю, что отражает отсутствие в природе магнитных зарядов — источников магнитного поля.

Закон электромагнитной индукции — ЭДС индукции в замкнутом контуре равна по модулю скорости изменения магнитного потока через поверхность, ограниченную контуром.

Правило правой руки.Направление индукционного тока, возникающего в прямолинейном проводнике при его движении в магнитном поле, определяется правилом правой руки: Если правую руку расположить вдоль проводника так, чтобы линии магнитной индукции входила в ладонь, а отогнутый большой палец показывал направление движения проводника, то четыре вытянутых пальца укажут направление индукционного тока в проводнике.

Автоколебательные системы. Ток высокой частоты и его особенности.

Для того чтобы получить незатухающие колебания нужно иметь посторонний источник энергии.,

удовлетворяющий 2 условиям: Поступление энергии за период должно быть точно ее убыли из системы.

Внешняя сила должна действовать в «такт» с собственными колебаниями.


Производство электрической энергии. Генератор.

Индукционные генераторы.

Электрические машины, в которых механическая энергия превращается в электрическую с помощью явления электромагнитной индукции, называется индукционными генераторами.

Закон преломления света.

1. Преломленный луч лежит в той же плоскости, в которой лежат падающий луч и перпендикуляр, восстановленный в точке падения луча к границе разделов двух сред.

2. При всех изменениях углов падения и преломления отношение синуса угла падения к синусу угла преломления для данных двух сред есть величина постоянная, называется показателем преломления второй среды относительно первой. (относительный показатель преломления)Он показывает, насколько среда уменьшает скорость распространения света в себе.

Абсолютный показатель преломления-показатель преломления данного вещества по отношению к вакууму. Указывает во сколько раз скорость света в вакууме больше скорости света в данном веществе. N=

Явление при котором световое излучение полностью отражается от поверхности раздела прозрачных сред, называется полным отражением. Наименьший угол падения, при котором наступает полное отражение, называется предельным углом полного отражения.Используется в оптических приборах: бинокли, перископах.

 

Цвета тонких пленок.

Белый свет падает на тонкую пленку. Частично свет отражается от верхней поверхности пленки, частично, пройдя пленку, отражается от ее нижней поверхности. Обе отраженные волны отличаются разностью хода. Белый свет монохроматичен он содержит электромагнитные волны разной длин от 400 до 760нм. Из-за того что разность хода зависит от длины волны, максимумы интерференционной картины для разных длин волн получаются в разных точках приемника. Поэтому пленки имеют радужный окрас.

Голография и её применение.

Сущность идеи состояла в фиксации полной информации о предмете.. Изображения получаемые

в фотоаппаратах регистрируют интенсивность волны. Фаза волны теряется. Габорг предложил

использовать явление интерференции чтоб зафиксировать частотные соотношения в волне. Если фотография регистрирует 1 параметр волны –амплитуду то, по методу регистрации полная информации о всех параметрах волны –частоте фазы и амплитуде. Голографический метод состоит из 2 этапов. Сначала получают интерференционную картину, Оба потока которые отражаются от зеркала и от предмета образуют интерференционную картину., представляющую собой чередование темных и светлых пятен. Для восстановления голограммы ее освещают излучениями.

Достоинства: В обычной фотографии каждый участок эмульсии изображает отдельный участок предмета. В голограмме каждый участок содержит информацию о всей картине .Голограмму характеризует большая емкость информации по сравнению с фотоснимком.

Применяется в количественном исследовании воздушных потоков в аэродинамических трубах.

52. Виды излучения. Тепловое и люминесцентное излучение (основные характеристики с примерами).

Свет- Электромагнитные волны излучают при ускоренном движении заряженных частиц. Излучение переходит при переходе из стационарного состояния с большей энергией в стационарное состояние с меньшей .При поглощении света атом переходит из стационарного состояния с меньшей энергией в состояние в большей энергией, Излучая атом теряет полученную энергию и для непрерывного свечения необходим приток энергии .

Тепловое излучение — электромагнитное излучение с непрерывным спектром, испускаемое нагретыми телами за счёт их тепловой энергии. Примером теплового излучения является свет от лампы накаливания.

Спектром люминесценции называют зависимость интенсивности люминесцентного излучения от длины

волны испускаемого света.

Квантовая оптика. Абсолютно чёрное тело. Закон Стефана — Больцмана. Распределение энергии в спектре. Квантовая гипотеза Планка.

Излучение испускаемое нагретыми телами наз. тепловым. Каждое тело может не только испускать но и поглощать. Опыты показали что чем больше энергии тело излучает тем сильнее оно поглощает излучение. Хар-кой любого тела является поглощательная способность(показывает какая доля энергии поглощается телом)

Тело которое при любой не разрушающей его температуре полностью поглощает всю энергию падающего на него света любой частоты наз абсолютно черным.(отверстие в ящике сферической формы)Абсолютно черное тело является наиболее интенсивным источником теплового излучения. При оной температуре черное тело испускает в единицу времени больше энергии чем любое другое тело.

Закон ст.б-интегральной светимостью тела наз отношение мощность излучения к площади поверхности излучателя. Спектральной светимостью наз отношение светимости в данном диапазоне длин волн к ширине диапазона.

Задача о распределении энергии излучения абсолютно черного тела между волнами разной длинны сыграла огромную роль .ее решение привело к созданию квантовой физики. на рисунке хар-ие распределение энергии в спектре при разных Темп. площадь ограниченная каждой кривой определяет интенсивность полного излучения. Площадь быстро растет с увелич темп. все кривые имеют максимумы. Длинна волны на которую приходится максимум энергии излучения обратно пропорциональная абсолютной температуре.

Планка- абсолютно черное тело испускает и поглощает свет не непрерывно а определенными порциями энергии –квантами

59. Фотоэффект. Законы фотоэффекта. Квантовая теория фотоэффекта. Фотон и его энергетические характеристики.

Явление выравнивания электронов из твердых и жидких тел под действием света наз внешним фотоэлектрическим эффектом. Фотоэффект создается ультрафиолетовыми лучами.

Законы: максимальная начальная скорость фотоэлектронов определяется частотой света и не зависит от его интенсивности,

-для каждого вещества сущ красная граница фотоэффекта

-число фотоэлектронов вырываемых из катода за 1 с прямо пропорционально интенсивности света

Ур Эйнштейна –h*v=Aв+m*vв2 /2 Красная граница фотоэффекта зависит только от работы выхода электрона.

Фотон его импульс направлен световому лучу .чем больше частота тем больше энергия фотона и тем отчетливее выражены корпускулярные свойства света.

Фотохимические законы

1. Каждый поглощенный веществом фотон вызывает превращение одной молекулы.

2. Молекула вступает в фотохимическую реакцию под действием фотона лишь в том случае, когда энергия фотона не меньше определеннного значения необходимого для разрыва молекулярных связей.

Световое давление.Прибор Лебедева представляет собой очень чувствительные крутильные весы подвижной частью является легкая рама с укрепленными на ней крылышками — светлыми и черными дисками. Так на черный диск почти вдвое меньше давления, чем на светлый. Плотность энергии Лебедев измерял с помощью специально сконструированного калориметра, направляя на него пучок света на определенное время и регистрируя повышение температуры.

Свет – это распространяющиеся в пространстве фотоны, то фотон обладает импульсом. Импульс фотона существенно отличается от импульса других элементарных частиц. Покоящихся фотонов не существует .Если распространяющуюся волну остановить то свет прекратит свое существование, значит фотоны будут поглощены атомами вещества, а их энергия перейдет в другой вид энергии.

Открытие нейтрона. Открытие протона. Протонно — нейтронная модель ядра. Нуклоны.

Открытие нейтрона. В начале 30-х гг. были обнаружены неизвестные ранее лучи. Они были названы бериллиевым излучением. так как возникали при бомбардировке альфа — частицами бериллия.
В 1932 г английский учёный Джеймс Чедвик (ученик Резерфорда) с помощью опытов, проведённых в камере Вильсона, доказал, что бериллиевое излучение представляет собой поток электрически нейтральных частиц, масса которых приблизительно равна массе протона. Отсутствие у исследуемых частиц электрического заряда следовало, в частности, из того, что они не отклонялись ни в электрическом, ни в магнитном поле. А массу частиц удалось оценить по их взаимодействию с другими частицами.
Эти частицы были названы нейтронами (ни тот, ни другой).

Открытие протона.В 1913 г. Э. Резерфорд выдвинул гипотезу о том, что одной из частиц, входящих в состав атомных ядер всех химических элементов, является ядро атома водорода.

Основание: массы атомов химических элементов превышают массу атома водорода в целое число раз (т.е. кратны ей).

В 1919 г. Резерфорд поставил опыт по исследованию взаимодействия альфа — частиц с ядрами атомов азота.

В этом опыте альфа — частица, летящая с огромной скоростью, при попадании в ядро атома азота выбивала из него какую- то частицу. По предположению Резерфорда, этой частицей было ядро атома водорода, которое Резерфорд назвал протоном (первый).

Нуклон.Так как протон и нейтрон по взаимодействию ядерными силами не отличаются друг от друга, их часто рассматривают как одну частицу нуклон в двух различных состояниях (ядро). Нуклон в состоянии без электрического заряда называется нейтроном, нуклон в состоянии с положительным электрическим зарядом называется протоном.

Одно из замечательных свойств ядерных сил — свойство насыщения — заключается в том, что нуклон оказывается способным к ядерному взаимодействию одновременно лишь с небольшим числом нуклонов-соседей. Свойство насыщения ядерных сил делает их в некоторой мере сходными с силами связи атомов в молекулах.

Электрический ток. Действие электрического тока. Условия существования электрического тока. Основные характеристики электрического тока.

Электрический ток — это упорядоченное (направленное) движение заряженных частиц.

1. Направленное движение свободных зарядов в проводнике под действием сил тока называется электрическим током проводимости или электрическим током.
2. За направление тока принимают направление движения положительно заряженных частиц,которое совпадает с направлением электрического поля.
Действия тока:
• Проводник, по которому течёт ток, нагревается.
• Электрический ток может изменять химический состав проводника.

• Ток оказывает силовое воздействие на соседние токи и намагниченные тела, что является основным свойством тока.
Условия существования электрического тока.
• Наличие свободных заряженных частиц
• Наличие электрического поля

Основные характеристики электрического тока
1. Характеристика тока (самая зависимая величина). Величина, измеряемая отношением заряда, проходящего через поперечное сечение проводника за какой-нибудь промежуток времени, к величине этого промежутка, называется силой тока. Если сила тока со временем не меняется, то ток называют постоянным.

I=g/t, кл/с=А

2. Характеристика источника питания(зависимая только от силы электрического поля). Напряжение — это физическая величина, характеризующая работу электрического поля по перемещению заряда

U=A/g, Дж/кл=В

З. Характеристика проводника. Электрическое сопротивление выражается в Омах.

Ом=В/А



Читайте также:

 

Билет 7 — Параметры электрического тока.

Электрический ток — упорядоченное движение заряженных частиц.

Условия существования электрического тока:

1. Наличие свободных заряженных частиц в проводнике.

2. Электрическое поле, под действием которого заряженные частицы будут двигаться упорядоченно.

За положительное направление электрического тока принимается направление движения положительно заряженных частиц.

Проводники делятся на проводники первого и второго рода.

К проводникам первого рода относятся все металлы и их сплавы, носителем электрического заряда в проводнике первого рода являются свободные электроны.

К проводникам второго рода относятся электролиты. Растворы и расплавы веществ, которые проводят электрический ток (щелочи, кислоты, соли, воду). Носителями зарядов в проводниках второго рода являются ионы.

 

Сила тока.Силой тока называется количество заряженных частиц, проходящих через поперечное сечение проводника за единицу времени.

[I] = А

Напряжение – разность потенциалов на концах проводника.

 

U= 12

[U]=B.

Плотность тока.

Отношение силы тока к площади поперечного сечения проводника.

Билет 8 — Закон Ома для участка цепи.

I = U / R; [A = В / Ом]

Закон Ома для участка цепи гласит: ток прямо пропорционален напряжению и обратно пропорционален сопротивлению

Билет 9 — Закон Ома для полной цепи.

Cила тока прямо пропорциональна сумме ЭДС цепи, и обратно пропорциональна сумме сопротивлений источника и цепи

, где E – ЭДС, R- сопротивление цепи, r – внутреннее сопротивление источника.

Формулу закона Ома для полной цепи можно представить в другом виде. А именно: ЭДС источника цепи равна сумме падений напряжения на источнике и на внешней цепи.

 

Билет 10 — Основные понятия, относящиеся к электрической цепи: проводимость, сопротивление, удельное сопротивление, удельная проводимость.

Электри́ческая проводи́мость — способность тела проводить электрический ток, а также физическая величина, характеризующая эту способность и обратная электрическому сопротивлению

Формула: g = I / U или g = 1 / R

В сименсах (См). [См]=[1/Ом]

g — проводимость проводника, ом;

R — сопротивление проводника, Ом;

l — сила тока, А;

Электри́ческое сопротивле́ние — физическая величина, характеризующая свойства проводника препятствовать прохождению электрического тока и равная отношению напряжения на концах проводника к силе тока, протекающего по нему.

Формула: R = U / I; [A = В / Ом]

R — сопротивление проводника, Ом;

l — сила тока, А;

 

Удельное сопротивление вещества —физическая величина, характеризующая способность вещества препятствовать прохождению электрического тока.

В отличие от электрического сопротивления, являющегося свойством проводника и зависящего от его материала, формы и размеров, удельное электрическое сопротивление является свойством только вещества.

 

Расчётная формула .. ρ = R*S / l

Где:

R — сопротивление проводника, Ом;

ρ — удельное сопротивление проводника; Ом·м

l — длина проводника, м;

S — сечение проводника, мм2.

 

Удельная проводимость(удельная электропроводность) — это мера способности вещества проводить электрический ток. Ом−1·м−1

γ = 1 / ρ

ρ — Удельное сопротивление вещества

γ — Удельная проводимость

 



Читайте также:

 

Электрический ток. Физические характеристики электрического тока. Поражающее воздействие электрического тока на организм.

⇐ ПредыдущаяСтр 6 из 7Следующая ⇒

Электрический ток– это упорядоченное движение электрических зарядов. Сила тока в участке цепи прямо пропорциональна разности потенциалов (т. е. напряжению на концах участка) и обратно пропорциональна сопротивлению участка цепи.

Характер и глубина воздействия электрического тока на организм человека зависят от силы и рода тока, времени его действия, пути прохождения через тело человека, физического и психического состояния последнего.

Электрическая травма — результат действия на живой орга­низм технического (от силовой и осветительной сети) и атмо­сферного (молния) электричества.

Преимущественно эти несчастные случаи в быту и на произ­водстве встречаются вследствие нарушения техники безопасно­сти, технической неисправности электрооборудования, прибо­ров и электроаппаратуры, повреждения электроизоляции. Слу­чаи убийства и самоубийства электротоком редки.

Судебно-медицинская экспертиза проводится и в случаях необходимости определения степени утраты трудоспособности у лиц, пораженных электротоком.

Факторы и условия действия технического электричества на организм.Поражающее действие электротока на организм обу­словлено его физическими свойствами, условиями действия и состоянием организма.

Чаще поражение электротоком наступает вследствие прямого контакта с токонесущим объектом, реже — на небольшом рас­стоянии от источника тока (например, шаговое напряжение, действующее в зоне упавшего провода высоковольтной сети на расстоянии нескольких шагов).

Физические свойства электрического тока определяются его напряжением, силой, типом и частотой. Низкое напряжение то­ка — 110—220 В, высокое — свыше 250 В. На электрических железных дорогах напряжение достигает 1500—3000 В. Преиму­щественно наблюдаются случаи поражения током низкого на­пряжения, с которыми человек чаще контактирует в быту и на производстве.

Сила тока в 50 мА опасна для жизни, а свыше 80—100 мА — наступает смертельный исход.

По типу различают переменный и постоянный ток. Пораже­ние переменным током встречается чаще. Переменный ток на­пряжением до 500 В опаснее постоянного. Последний более вре­ден при напряжении свыше 5000 В.

Опасен переменный низкочастотный ток (40—60 колебаний в секунду). Токи, высокой частоты (от 10 тыс. до 1 млн ГЦ и боль­ше) не опасны для организма и применяются в медицинской практике при проведении физиотерапевтических процедур.

Приведенные цифры не абсолютны. Существенное значение имеют условия действия тока.

Условия действия тока. К ним относятся: величина сопро­тивления тканей тела, площадь и плотность контакта с элек­тропроводником, время воздействия тока, путь прохождения тока в теле.

Сопротивление тела обусловлено влажностью кожи, ее тол­щиной, кровенаполнением, состоянием внутренних органов.

Сопротивление кожи колеблется от 50 000 до 1 млн Ом. Резко снижается сопротивление влажной кожи. Плохо защи­щает от электротока влажная одежда. Сопротивление внутрен­них органов (особенно головного мозга и сердца) намного ни­же сопротивления кожи. Поэтому прохождение тока через ор­ганы с небольшим сопротивлением очень опасно, особенно при включении в электрическую цепь обеих рук, голова — ноги, левая рука — ноги.

Существует понятие о токоопасных помещениях — с повы­шенной влажностью (бани, умывальные комнаты, землянки и др.).

Чем плотнее контакт с токонесущим проводником и про­должительнее время воздействия тока, тем больше его пора­жающее действие.

Существенное значение имеет состояние организма. Сопро­тивление току снижено у детей и стариков, больных, утомлен­ных, находящихся в состоянии алкогольного опьянения.

Механизм действия электротока на организм. Электрический ток оказываеттепловое действие — от местных ожогов до обуг­ливания, механическое — повреждение тканей от судорожных сокращений мышц, при отбрасывании тела от проводника иэлектрическое — электролиз тканевых жидкостей.

При несмертельных повреждениях могут наблюдаться рас­стройства со стороны нервной системы (параличи), органов зрения и слуха. Иногда поражение электрическим током сопровож­дается глубокой потерей сознания.

Различают несколько типов наступления смерти при пора­жении электротоком:мнимая смерть; быстрая смерть; замед­ленная смерть, когда человек пытается освободиться от провод­ника, кричит; прерванная смерть, когда пострадавший освобож­дается от проводника, но вскоре умирает; смерть в поздний пери­одэлектротравмы. При этом мероприятия по оживлению про­должают до появления трупных пятен.

Признаки электротравмы. Специфическим признаком пора­жения электротоком являются электрометки. Они возникают от контакта с токонесущим проводником обычно при напряжении тока 100—250 В и выделяющейся при этом температуре не выше 120°С. В 10—15% случаев электрометки не образуются (особен­но на участках влажной и тонкой кожи).

Типичная электрометка представляет собой повреждение в виде образований округлой или овальной формы, серовато-белого, бледно-желтоватого цвета с валикообразными краями и западающим центром, обычно без признаков воспаления, иногда с отеком тканей вокруг и налетом частичек металла, от­слоением эпидермиса. Размеры электрометок обычно в преде­лах до 1 см.

Ожоги от действия тока высокого напряжения могут быть большой площади. Металлизация электрометки в зависимости от металлов, входящих в состав проводника, придает ей соответст­вующую окраску. В электрометке может отражаться форма про­водника. Электрометки могут иметь различную локализацию, но чаще они располагаются на ладонях и подошвенных поверхно­стях стоп.

 

57. Ионизирующее излучение (α, β, γ). Воздействие радиации на организм человека (острые поражения, лучевая болезнь, воздействие на глаза, кожу, кровь, органы внутренней секреции, репродуктивную систему и т. д.)

· Альфа-частицы — это относительно тяжелые частицы, заряженные положительно, представляют собой ядра гелия.

· Бета-частицы — обычные электроны.

· Гамма-излучение — имеет ту же природу, что и видимый свет, однако гораздо большую проникающую способность.

· Нейтроны — это электрически нейтральные частицы, возникающие в основном рядом с работающим атомным реактором, доступ туда должен быть ограничен.

· Рентгеновские лучи — похожи на гамма-излучение, но имеют меньшую энергию. Кстати, Солнце — один из естественных источников таких лучей, но защиту от солнечной радиации обеспечивает атмосфера Земли.

Наиболее опасно для человека Альфа, Бета и Гамма излучение, которое может привести к серьезным заболеваниям, генетическим нарушения и даже смерти. Степень влияния радиации на здоровье человека зависит от вида излучения, времени и частоты. Таким образом, последствия радиации, которые могут привести к фатальным случаям, бывают как при однократном пребывании у сильнейшего источника излучения (естественного или искусственного), так и при хранении слаборадиоактивных предметов у себя дома (антиквариата, обработанных радиацией драгоценных камней, изделий из радиоактивного пластика). Заряженные частицы очень активны и сильно взаимодействуют с веществом, поэтому даже одной альфа-частицы может хватить, чтобы уничтожить живой организм или повредить огромное количество клеток. Впрочем, по этой же причине достаточным средством защиты от радиации данного типа является любой слой твердого или жидкого вещества, например, обычная одежда.

· По мнению специалистов www.dozimetr.biz, ультрафиолетовое излучение или излучение лазеров нельзя считать радиоактивным. Чем же отличается радиация и радиоактивность?

· Источники радиации — ядерно-технические установки (ускорители частиц, реакторы, рентгеновское оборудование) и радиоактивные вещества. Они могут существовать значительное время, никак не проявляя себя, и Вы можете даже не подозревать, что находитесь рядом с предметом сильнейшей радиоактивности.



Читайте также:

 

1.3.1 Вольт-амперная характеристика

Измерение зависимости между туннельным током и напряжением зонд-образец выполняется в режим спектроскопии. В спектроскопия основана на зависимости туннельного тока от числа электронных состояний , образующих туннельный контакт проводников, в диапазоне энергий от уровня Ферми к (рис. 1) , что на дает (см. (7) в , глава 1.2,1 )

(1)

Таким образом, зависимость туннельного тока при постоянном разделении зонда и образца представляет собой распределение разорванных связей, а также других электронных состояний, соответствующих разным энергиям, т. е. зонную структуру зонда либо острия, либо поверхности. Функция , который был введен в (6) главы 1.2.1 , зависит от плотности электронных состояний плоскости фазового пространства, которая перпендикулярна направлению туннелирования при данном .

Рис. 1. Модель МИМ-системы с потенциальным барьером произвольной формы.
К правому металлу приложен положительный потенциал.

Используя выражение (1) и кривая при постоянном расстоянии между зондом и образцом , можно вычислить плотность электронных состояний:

(2)

Таким образом, проверка и его производная кривые позволяют исследовать распределение уровней энергии с атомным разрешением.Можно определить тип проводимости, в частности для полупроводников — обнаружить валентную зону, полосу проводимости и примесную зону [ 1-3 ].

Согласно (2) и (3) из главы 1.2.2 туннельная проводимость не зависит от приложенного напряжения в случае

(3)

в отношения между и параболический

(4)

На рис. 2, 3 экспериментальные зависимости , , которые были измерены для образцов Pt и HOPG и зонда Pt-Ro с помощью STM Solver P47.Экспериментальные данные хорошо согласуются с предсказаниями теории (1) — (4).

Рис. 1а. Экспериментальная (точки) и теоретическая (сплошная линия)
зависимости для Pt

Рис. 1б. Экспериментальная зависимость
для Pt

Фиг.2а. Экспериментальная (точки) и теоретическая (сплошная линия)
зависимости для HOPG

Рис. 2б. Экспериментальная зависимость
для HOPG


Резюме.

  • Туннельная вольт-амперная характеристика представляет собой количество электронных состояний и их распределение в энергетическом спектре электродов, что создает туннельный контакт.
  • Дифференциальная проводимость пропорциональна плотности электронного состояния. Для металлов при низких напряжениях не зависит от приложенного напряжения (3). При промежуточных напряжениях соотношение между и приложенное напряжение параболическое (4).
  • Экспериментальная вольт-амперная и дифференциальная характеристики хорошо согласуются с теорией.

Список литературы.

  1. G. Binnig., H. Rohrer.Сканирующая туннельная микроскопия. Helv. Phys. Acta. — 1982, — Т. 55 726.
  2. А. Бурштейн, С. Лундквист. Туннельные явления в твердых телах. Мир, 1973.
  3. Э. Вольф. Принципы электронной туннельной спектроскопии. Киев: «Наукова думка», 1990, 454 с. (на русском).

5.3.6 Характеристики тока питания

Электрические характеристики

STM32F405xx, STM32F407xx

Таблица 19.Характеристики встроенного блока сброса и управления мощностью (продолжение)

Обозначение

Параметр

Условия

Мин.

Тип

Макс

Блок

ВБОРгист (1)

Гистерезис BOR

100

мВ

TRSTTEMPO (1) (2)

Время сброса

0.5

1,5

3,0

мс

Пусковой ток на

ИРУШ (1)

регулятор напряжения

160

200

мА

при включении (POR или

пробуждение из режима ожидания)

Энергия InRush на

VDD = 1.8 В, TA = 105 ° C,

ЕРУШ (1)

регулятор напряжения

5,4

мкКл

включение питания (POR или

IRUSH = 171 мА для 31 мкс

пробуждение из режима ожидания)

1.Гарантированно конструктивно, на производстве не тестировалось.

2. Время сброса измеряется от включения питания (сброс POR или пробуждение из VBAT) до момента, когда первая инструкция считана кодом пользовательского приложения.

Потребляемый ток является функцией нескольких параметров и факторов, таких как рабочее напряжение, температура окружающей среды, нагрузка на контакты ввода-вывода, конфигурация программного обеспечения устройства, рабочие частоты, частота переключения контактов ввода-вывода, расположение программы в памяти и исполняемый двоичный код.

Ток потребления измеряется, как показано на Рисунке 22: Схема измерения потребления тока.

Все измерения потребления тока в рабочем режиме, приведенные в этом разделе, выполняются с использованием кода, совместимого с CoreMark.

Типичное и максимальное потребление тока

MCU находится в следующих условиях:

• При запуске все контакты ввода / вывода конфигурируются встроенным ПО как аналоговые входы.

• Все периферийные устройства отключены, кроме случаев, когда это явно указано.

• Время доступа к флэш-памяти настроено на частоту fHCLK (0 состояний ожидания от 0 до 30 МГц, 1 состояние ожидания от 30 до 60 МГц, 2 состояния ожидания от 60 до 90 МГц, 3 состояния ожидания от 90 до 120 МГц, 4 состояний ожидания от 120 до 150 МГц и 5 состояний ожидания от 150 до 168 МГц).

• Когда периферийные устройства включены, HCLK — это системные часы, fPCLK1 = fHCLK / 4 и fPCLK2 = fHCLK / 2, за исключением случаев, когда это явно указано.

• Максимальные значения получены для VDD = 3,6 В и максимальной температуры окружающей среды (TA), а типовые значения для TA = 25 ° C и VDD = 3.3 В, если не указано иное.

Характеристики импульсного тока 570 Hybrid SPD

1 Характеристики импульсных перенапряжений 570 Hybrid SPD White Paper Апрель 2013 г. Аннотация. В этом документе анализируются характеристики защиты от импульсных перенапряжений устройства защиты от перенапряжения (SPD) 570.Включено описание характеристик фиксации и импульсного тока металлооксидного варистора (MOV) и кремниевого лавинного диода (SAD), а также философия конструкции, лежащая в основе уникального сочетания различных технологий защиты от перенапряжения. Введение. Хорошо известно, что электронные устройства, используемые для повышения и защиты нашего уровня жизни, уязвимы для колебаний и аномалий в распределении электроэнергии. Эти аномалии, такие как переходные процессы в линии электропередачи, вызванные молнией и магнитной связью, являются источником деградации и / или неисправности электрического оборудования.Переходные процессы в электрической распределительной сети имеют много характеристик и были идентифицированы Институтом инженеров по электротехнике и электронике (IEEE) в [1]. Четыре формы волны, связанные с переходными процессами, индуцированными молнией, были идентифицированы IEEE [1]. Первая и вторая переходные формы волны описываются комбинированной волной, состоящей из специально идентифицированного напряжения холостого хода и тока короткого замыкания, представляют собой переходные процессы, которые наиболее вероятны на служебном входе в объект и в электрической распределительной сети в положениях меньше чем в двадцати метрах от служебного входа, см. Рисунок 1 и Рисунок 2.Третья форма переходной волны, кольцевая волна, представляет собой переходные процессы, которые наиболее вероятны в распределительной сети предприятия на расстоянии более двадцати метров от служебного входа. Четвертая форма волны переходного процесса — это длинноволновый переходный процесс. Это дополнительный переходный процесс, который также может произойти на служебном входе в объект. Национальные [2] и международные [3], [4] стандарты производительности и безопасности, используемые для проектирования, разработки, тестирования и спецификации устройств защиты от перенапряжения (SPD), используют переходные процессы, вызванные комбинированной волной, вызванной молнией.Комбинированный переходный процесс имеет уникальные характеристики напряжения холостого хода и тока короткого замыкания. Напряжение холостого хода имеет время нарастания 1,2 с и время спада до пятидесяти процентов от пиковой амплитуды 50 с. Ток короткого замыкания имеет время нарастания 8 с и время спада до пятидесяти процентов пиковой амплитуды 20 с. Диапазон значений напряжения холостого хода и тока короткого замыкания варьируется от спецификации к спецификации. Общие амплитуды, определенные IEEE в различных местах на предприятии, показаны в таблице 1.Чтобы смягчить идентифицированные переходные процессы, вызванные молнией, все с разной амплитудой и способностью доставки энергии, необходимо обсуждение обычно используемых компонентов подавления перенапряжения. Топологии подавления перенапряжения. Исторически сложилось так, что для защиты от переходных процессов использовались различные топологии и технологии. В этих топологиях используются такие устройства, как газоразрядные трубки (GDT), металлооксидные варисторы (MOV), кремниевые лавинные диоды (SAD) и даже селеновые выпрямители для предотвращения переходных процессов, индуцированных молнией.Каждый из этих компонентов подавления перенапряжения имеет множество характеристик, которые полезны в определенных приложениях, но не в других. Чтобы ограничить влияние неблагоприятных характеристик, некоторые производители объединили две или более различных технологий подавления скачков напряжения. Хорошо известными примерами этих комбинаций являются MOV и SAD, MOV и селеновые выпрямители, MOV и GDT. Были объединены другие комбинации компонентов подавления,

2, такие как SAD и GDT, но они не так распространены.Хотя комбинация компонентов подавления преобладает в индустрии подавления переходных процессов, многие производители не использовали все потенциальные преимущества этих комбинаций. Например, многие производители используют MOV и SAD в своих SPD. Типичная топология использует SAD в качестве основного средства подавления. MOV используются в качестве резервной защиты. При появлении большого переходного процесса, индуцируемого в электрической распределительной сети, блоки SAD принимают полный переходный процесс.Если энергетическая способность переходного процесса больше, чем способность обработки энергии SAD, SAD выходит из строя и отключается. В этом сценарии произошел сбой SPD, но оборудование или объект по-прежнему защищены MOV, которые предусмотрены в качестве резервной защиты. Традиционно производители конструировали свои системы SPD таким образом, чтобы замена компонентов подавления SAD могла быть выполнена относительно легко при условии наличия необходимых заменяемых элементов.Хотя концепция резервной защиты от переходных процессов с чрезвычайно большой подачей энергии очень желательна, отказ какой-либо части системы SPD — нет. Замена компонентов подавления SAD может быть простой и быстрой, но требуются запасные части. Кроме того, до тех пор, пока не будет проведено техническое обслуживание, чувствительное оборудование, которое считается достаточно важным, чтобы иметь систему SPD, требующую гибридной технологии, не полностью защищен. Гибридный SPD 570 использует все возможности комбинирования двух различных компонентов подавления: SAD и MOV.Чтобы полностью понять принцип работы 570, необходимо знать характеристики компонентов подавления перенапряжения. Описание каждого устройства будет представлено вместе с запатентованной технологией Emerson Network Power, разработанной для использования полезных характеристик каждого компонента. Металлооксидные варисторы (МОВ). MOV уже давно используется для обеспечения грубого подавления переходных процессов, вызванных молнией, в сети переменного тока. Рабочие характеристики MOV могут быть изменены для применения при различных напряжениях и требованиях к переходным воздействиям.Изменяя толщину компонента, можно получить разные рабочие напряжения. Кроме того, варьируя диаметр компонента, можно получить различные характеристики импульсного тока. Описательно, MOV — это биполярное устройство с нелинейным управлением напряжением. Активация MOV происходит, когда приложенное напряжение превышает пороговое значение. При превышении порогового напряжения MOV переходит из состояния с высоким импедансом в состояние с низким импедансом. MOV продолжает работать в состоянии с низким импедансом, отклоняя ток между противоположными полярностями, пока подаваемое напряжение не снизится до значения ниже порогового напряжения.MOV построен из многочисленных границ специально легированного керамического материала. Эти границы создают области пробоя, которые можно сравнить с областями пробоя стабилитрона. Манипулируя общей толщиной устройства и, следовательно, количеством последовательных границ, можно получить различные напряжения пробоя. Дополнительное изменение общей ширины материала приводит к многочисленным параллельным траекториям. Количество параллельных путей определяет общую способность компонента к импульсному току.Для определения характеристик фиксации MOV [5] используется EQ1 1 IV k EQ1, где V — напряжение ограничения MOV, I — ток, отводимый через MOV, k — внутренняя характеристика MOV, а наклон, который соответствует области линейного импульсного тока MOV. Для MOV диапазоны значений от девяти до двенадцати, с типичным значением десять. Значение k находится в диапазоне от 0,1×10-24 до 10x. Типичная линейная характеристика фиксации для 130-вольтного MOV показана на рисунке 3.Конкретными рабочими характеристиками MOV по сравнению с другими устройствами подавления являются низкий ток утечки, отсутствие последующего тока, умеренные характеристики фиксации, высокая емкость

3, высокая устойчивость к импульсным токам и низкая стоимость. Время отклика MOV можно охарактеризовать как умеренно быстрое. Кремниевые лавинные диоды (SAD). SAD использовался на протяжении десятилетий для обеспечения защиты от переходных процессов в системах с низким напряжением, обычно расположенных на сборке печатной платы (PWB).SAD может быть настроен для различных характеристик напряжения и импульсного тока, регулируя общий размер полупроводникового p-n перехода. SAD, как и MOV, также является устройством, управляемым напряжением. перенаправляется через устройство после превышения порогового напряжения. Как только приложенное напряжение упадет до уровня ниже порогового напряжения, устройство вернется в состояние с высоким импедансом. САД построен из полупроводникового p-n перехода, предназначенного для работы в области обратного пробоя.В чистом виде p-n переход SAD представляет собой униполярное устройство с определенным прямым и обратным падением напряжения. Применяя два SAD p-n перехода в конфигурации «спина к спине», создается биполярное устройство. Характеристики зажима SAD также можно охарактеризовать уравнением EQ1. Однако значения и k различны. Значения находятся в диапазоне от 30 до 40, с типичным значением 37. Значение k находится в диапазоне от 1×10-89 до 10x. Типичная фиксирующая характеристика для 130-вольтового биполярного SAD показана на рисунке 3.Конкретные рабочие характеристики SAD по сравнению с другими устройствами подавления: низкая утечка, отсутствие последующего тока, характеристики плотного зажима, малая емкость, способность к низким импульсным токам и высокая стоимость. Теоретическое время отклика SAD меньше, чем у большинства других устройств подавления, в первую очередь MOV. Топология 570. Как показано на рисунке 3, зажимные характеристики компонентов подавления MOV и SAD различаются. Кроме того, MOV имеет более высокий импульсный ток по сравнению с эквивалентным напряжением SAD.Когда компоненты подавления работают в своей линейной области, а не в областях с низким или высоким током, точное напряжение фиксации каждого устройства может быть определено из EQ1 и рисунка 3. После того, как напряжения ограничения и общая способность к импульсному току SPD был определен, эффективный im

Вольт-амперные характеристики | Примечания к редакции

A Level Physics

Введение

В этой статье обсуждается взаимосвязь между током и напряжением для омического проводника, полупроводникового диода и лампы накаливания.Обсуждается также закон Ома.

Если исследовать соотношение между током через проводник и разностью потенциалов на его конце, соотношение будет варьироваться в зависимости от элемента схемы. Проводники, у которых вольт-амперные характеристики являются прямыми, называются омическими проводниками . Металл при постоянной температуре демонстрирует такую ​​зависимость. Когда вольт-амперные характеристики демонстрируют нелинейное поведение, говорят, что проводник неомический .Нить накала лампы и полупроводниковый диод — два примера неомических проводников.

Закон Ома для омических проводников

Давайте выясним взаимосвязь между током и напряжением омического проводника, используя схему, как показано на Рис. 1 . Если мы подключим батарею на длину соединительного провода, ток через соединительный провод можно будет измерить с помощью амперметра. Ячейки в батарее заменяются на 1, 2, 3 или 4 элемента, и соответствующий ток отмечен в таблице как
, показанной ниже.

Рисунок 1: Схема для определения сопротивления соединительного провода

Полученные результаты представлены в виде графика, как показано на Рис. 2 . Результат показывает, что существует простая взаимосвязь между разностью потенциалов на соединительном проводе и током через него. Когда этот эксперимент повторяется для других проводов, получаются аналогичные отношения. График всегда представляет собой прямую линию, проходящую через начало координат. Это соотношение было впервые обнаружено немецким физиком Георгом Омом в 1826 году и названо законом Ома.

Рисунок 2: Разница между током и разностью потенциалов омического проводника

Если температура и другие физические факторы остаются постоянными, ток через провод пропорционален разности потенциалов на его концах. Когда ток в 1 А проходит через проводник с сопротивлением 1 Ом, на нем возникает разность потенциалов 1 В. Это приводит к простому математическому соотношению, которое устанавливает закон Ома .

Б.Лампа накаливания

Лампа накаливания изготовлена ​​из тонкой металлической проволоки. Давайте рассмотрим аналогичную схему, показанную на рис. 1 , но теперь соединительный провод заменен лампой накаливания, чтобы найти ее вольт-амперные характеристики. Полученные результаты показаны на рис. 3 . Сначала график показывает прямолинейную связь. Следовательно, сопротивление в этой области постоянно. Затем график изгибается, что означает, что сопротивление увеличивается с током в этой области.

Вольт-амперные характеристики лампы накаливания и металлической проволоки различаются. Есть еще одно важное отличие, связанное с температурой. В этом эксперименте температура металлической проволоки постоянна. Но для лампы накаливания температура повышается примерно до 1500 ° C. Температура нити накала не остается постоянной. Температура нити накала увеличивается с течением через нее тока. Следовательно, он не подчиняется закону
Ома.

Рисунок 3: Вольт-амперные характеристики лампы накаливания

С.Диод

Диод изготовлен из полупроводникового материала. Условное обозначение диода показано на рис. 4 . Диод проводит, когда ток направлен в направлении стрелки. Это состояние называется прямым смещением. В этом случае потенциал на левой стороне диода более положительный, чем потенциал на правой стороне. Когда напряжение меняется на противоположное, диод имеет обратное смещение. Диод не проводит обратного смещения.

Рисунок 4: Условное обозначение диода

Диоды — это неомические проводники.Сопротивление диода очень велико для низких напряжений в прямом смещении, то есть для напряжения, меньшего, чем встроенное напряжение диода. Встроенное напряжение различается для диодов из разных материалов. Например: кремниевый диод имеет встроенное напряжение 0,7 В, а германиевые диоды имеют встроенное напряжение 0,3 В. При напряжениях выше этого значения сопротивление диода уменьшается при прямом смещении. Вольт-амперная характеристика диода показана на Рис. 5 ниже.

Рисунок 5: Вольт-амперные характеристики диода

Д.Резюме

  • Закон Ома: для проводника при постоянной температуре ток в проводнике пропорционален разности потенциалов на нем.

Добавить комментарий

Ваш адрес email не будет опубликован.