Закон ома для неполной цепи: Закон Ома для участка цепи, формула, определение

Содержание

Закон Ома для участка цепи, формула, определение

Закон Ома для участка цепи, безусловно, можно описать известной из школьного курса физики формулой: I=U/R, но некоторые изменения и уточнения внести, думаю, стоит.

Возьмем замкнутую электрическую цепь (рисунок 1) и рассмотрим ее участок между точками 1-2. Для простоты я взял участок электрической цепи, не содержащий источников ЭДС (Е).

Итак, закон Ома для рассматриваемого участка цепи имеет вид:

φ1-φ2=I*R, где

  • I — ток, протекающий по участку цепи.
  • R — сопротивление этого участка.
  • φ1-φ2 — разность потенциалов между точками 1-2.

Если учесть, что разность потенциалов это напряжение, то приходим к производной формулы закона Ома, которая приведена в начале страницы: U=I*R

Это формула закона Ома для пассивного участка цепи (не содержащего источников электроэнергии).

В неразветвленной электрической цепи (рис.2) сила тока во всех участках одинакова, а напряжение на любом участке определяется его сопротивлением:

  • U1=I*R1
  • U2=I*R2
  • Un=I*Rn
  • U=I*(R1+R2+…+Rn

Отсюда можно получить формулы, которые пригодятся при практических вычислениях. Например:

U=U1+U2+…+Un или U1/U2/…/Un=R1/R2/…/Rn

Расчет сложных (разветвленных) цепей осуществляется с помощью законов Кирхгофа.

ПРАВИЛО ЗНАКОВ ДЛЯ ЭДС

Перед тем как рассмотреть закон Ома для полной (замкнутой) цепи приведу правило знаков для ЭДС, которое гласит:

Если внутри источника ЭДС ток идет от катода (-) к аноду (+) (направление напряженности поля сторонних сил совпадает с направлением тока в цепи, то ЭДС такого источника считается положительной (рис.3.1). В противном случае — ЭДС считается отрицательной (рис.3.2).

Практическим применением этого правила является возможность приведения нескольких источников ЭДС в цепи к одному с величиной E=E

1+E2+…+En, естественно, с учетом знаков, определяемых по вышеприведенному правилу. Например (рис.3.3) E=E1+E2-E3.

При отсутствии встречно включенного источника E3 (на практике так почти никогда не бывает) имеем широко распространенное последовательное включение элементов питания, при котором их напряжения суммируются.

ЗАКОН ОМА ДЛЯ ПОЛНОЙ ЦЕПИ

Закон Ома для полной цепи — его еще можно назвать закон ома для замкнутой цепи, имеет вид I=E/(R+r).

Приведенная формула закона Ома содержит обозначение r, которое еще не упоминалось. Это внутреннее сопротивление источника ЭДС.

Оно достаточно мало, в большинстве случаев при практических расчетах им можно пренебречь (при условии, что R>>r — сопротивление цепи много больше внутреннего сопротивления источника). Однако, когда они соизмеримы, пренебрегать величиной r нельзя.

Как вариант можно рассмотреть случай, при котором R=0 (короткое замыкание). Тогда приведенная формула закона Ома для полной цепи примет вид: I=E/r, то есть величина внутреннего сопротивления будет определять ток короткого замыкания. Такая ситуация вполне может быть реальной.

Закон Ома рассмотрен здесь достоточно бегло, но приведенных формул достаточно для проведения большинства расчетов, примеры которых, по мере размещения других материалов я буду приводить.

© 2012-2020 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов


Закон Ома для неоднородного участка цепи

На практике видно, что для поддержания стабильного тока в замкнутой цепи необходимы силы принципиально иной природы, нежели кулоновские, тогда наблюдается случай, когда на участке цепи на свободные электрические заряды одновременно действуют как силы электрического поля, так и сторонние силы (любые неконсервативные силы, действующие на заряд, за исключением сил электрического сопротивления (кулоновских сил)). Такой участок называется неоднородным участком цепи. На рисунке ниже приведен пример такого участка.

Напряженность поля в любой точке цепи равна векторной сумме поля кулоновских сил и поля сторонних сил:

Сформулируем закон Ома для неоднородного участка цепи — Сила тока прямо пропорциональна напряжению на этом участке и обратно пропорциональна его полному сопротивлению:

– формула закона Ома для неоднородного участка цепи.

Где

  • I – сила тока,
  • U12 – напряжение на участке,
  • R – полное сопротивление цепи.

Работа на неоднородном участке цепи

Разность потенциалов характеризует работу силы электрического поля по переносу единичного положительного заряда (q) из точки 1 в точку 2:

— где φ1 и φ 2 – потенциалы на концах участка.

ЭДС характеризует работу сторонних сил по переносу единичного положительного заряда точки 1 в точку 2: — где ε12 – ЭДС, действующая на данном участке, численно равна работе по перемещению единичного положительного заряда вдоль контура.

Напряжение на участке цепи представляет собой суммарную работу сил ЭП и сторонних сил:

Тогда закон Ома примет вид:

ЭДС может быть как положительной, так и отрицательной. Это зависит от полярности включения ЭДС в участок. Если внутри источника тока обход совершается от отрицательного полюса к положительному, то ЭДС положительная (см. рисунок). Сторонние силы при этом совершают положительную работу. Если же обход совершается от положительного полюса к отрицательному, то ЭДС отрицательная. Проще говоря, если ЭДС способствует движению положительных зарядов, то ε>0, иначе ε

Решение задач по закону ому для неоднородного участка цепи

Определить ток, идущий по изображенному на рисунке участку АВ. ЭДС источника 20 В, внутреннее сопротивление 1 Ом, потенциалы точек А и В соответственно 15 В и 5 В, сопротивление проводов 3 Ом.

Дано:Решение:
  • ε = 20 В
  • r = 1 Ом
  • φ1 = 15 В
  • φ2 = 5 В
  • R = 3 Ом
  • Запишем закон Ома для неоднородного участка цепи —
  • Считая, что точка А начало участка, а точка В – конец, возьмем ЭДС со знаком «минус» и, подставив исходные данные, получим
  • Знак «минус» говорит о том, что ток идет от точки В к точке А, от точки с меньшим потенциалом к точке с большим, что обычно для источников тока.
  • Ответ: –2,5 А

Два элемента соединены «навстречу» друг другу, как показано на рисунке. Определить разность потенциалов между точками А и В, если ε1 = 1,4 В, r1 = 0,4 Ом, ε2 = 1,8 В, r2 = 0,6 Ом.

Дано:Решение:
  • ε1 = 1,4 В
  • r1 = 0,4 Ом
  • ε2 = 1,8 В
  • r2 = 0,6 Ом
  • Запишем закон Ома для неоднородного участка цепи —
  • Разобьём схему на два участка: АЕ2В и ВЕ1А. Тогда получим — для первого участка цепи, — для второго участка.
  • Ток на участках один и тот же, то есть можем приравнять правые части уравнений.
  • Знак «минус» показывает, что потенциал точки В выше, чем потенциал точки А.
  • Ответ: -1,56 В.

Закон Ома для однородного участка цепи

Обязательным условием существования электрического тока является наличие электрического поля, для существования которого, в свою очередь, необходима разность потенциалов (напряжение). Ток будет направлен в сторону уменьшения потенциалов (на рисунке – влево), а свободные электроны будут двигаться в обратную сторону.

На концах участка проводника заданы потенциалы φ_1 и φ_2, причем φ_1>φ_2. Напряжение в таком случае можно найти по формуле:

В 1826 году Георг Ом, обобщив итоги опытов, показавших, что, чем больше напряжение на участке, тем больше сила тока, проходящего через него, получил зависимость, названную законом Ома. В ходе экспериментов Ом выявил, что различные проводники при одинаково заданном напряжении будут проводить ток по-разному, т.е., каждый проводник обладает различной мерой проводимости. Эту величину назвали электрическим сопротивлением.

Определеение Закона Ома для однородного участка цепи гласит: сила тока для однородного проводника на участке цепи прямо пропорциональна напряжению на этом участке и обратно пропорциональна сопротивлению проводника.

Формула закона Ома для однородного участка цепи

  • I [А] – сила тока,
  • U [В] – напряжение,
  • R [Ом] – электрическое сопротивление.

Сопротивление – главная характеристика проводника. В зависимости от строения проводника, в них существует различное количество узлов кристаллической решетки и атомов примесей, взаимодействуя с которыми электроны замедляются.

Сопротивление будет зависеть от рода и размеров проводника:

где:
  • P — удельное сопротивление проводника (табличная величина, характеризующая способность материала к сопротивлению).
  • l [м] – длина проводника,
  • S [мм2] – площадь поперечного сечения проводника.
  • Решение задачи по теме Закон Ома для однородного участка цепи

    Рассчитать силу тока, проходящую по медному проводу длиной 100 м, площадью поперечного сечения 1 мм2, если к концам провода приложено напряжение 8,5 В.

Закон Ома ? для участка цепи, формула. Закон Ома ? в дифференциальной форме для полной цепи и её участка

Автор Даниил Леонидович На чтение 5 мин. Просмотров 4.5k. Опубликовано Обновлено

Физический закон ома получен путём экспериментов. 3 формулировки ома – одни из основополагающих в физике, устанавливающие связь между электротоком, сопротивлением и энергонапряжением. Год открытия – 1826. Впервые все 3 физических закона ома сформулировал физик-экспериментатор немецкого происхождения Георг Ом, с фамилией которого связано их определение.

Мнемоническая схема

Согласно мнемосхеме, чтобы высчитать электросопротивление по закону ома для участка цепи постоянного тока, необходимо комплексное напряжение на участке цепи разделить на силу тока для полной цепи. Однако, с физико-математической точки зрения, формулу ома для участка цепи для вычисления только по первому закону ома принято считать неполной.

Альтернативный способ вычислить токовое сопротивление по закону ома кратко подразумевает умножение электросопротивления материи, из которой выполнен проводник, на длину с последующим делением на площадь пересекающегося сечения.

Для выполнения вычислений сформулируйте по закону ома для участка цепи уравнение, исходя из имеющихся числовых данных:

Применение на линии электропередач

В процессе доставки на линию электропередач потери энергии должны быть минимизированы. Причиной энергетических потерь является нагрев провода, во время которого энергия электротока превращается в теплоэнергию.

Чтобы дать определение по закону ома потерянной мощности, необходимо показатель электрической мощности во второй степени умножить на внутреннее сопротивление источника напряжения и разделить на ЭДС в квадрате.

Из этого следует, что рост потери энергомощности осуществляется пропорционально протяжённости линии электропередач и квадрату электродвижущей силы.

Поскольку электродвижущую силу ограничивает прочность обмотки генератора, то повышение энергонапряжения возможно после того, как из генератора выйдет электроток, на участке входа линии.

Переменный ток легче всего распределяется по линии через трансформатор. Однако, поскольку следствием повышения энергонапряжения является потеря коронирования, а надёжность изоляции обеспечивается с трудом, напряжение на участке цепи протяжённой линии электропередач не превышает миллиона вольт.

Внимание!

Поведение линии электропередач в пространстве подобно антенне, ввиду чего берётся во внимание потеря на излучение.

Отображение в дифференциальной форме

На подсчёт сопротивления влияет тип материи, по которой протекает электроток, а также геометрические габариты проводника.

Дифференциальная форма формулировки Ома, записывающаяся достаточно кратко, отображает электропроводящие характеристики изотропных материалов и заключается в умножении удельной проводимости на вектор напряжённости электрополя с целью вычисления вектора плотности энерготока.

Для выполнения требуемых вычислений, уравнение сформулируйте по закону ома:

Интересно!

Если исходить из научных данных, следует сделать вывод о законе ома в дифференциальной форме об отсутствии зависимого соотношения геометрических габаритов.

При использовании анизотропеновых электроэлементов нередко встречается несовпадение вектора плотности токового энергонапряжения. Данное суждение справедливо для закона ома в интегральной и дифференциальной формах.

Переменный ток

Величины являются комплексными, если речь идёт о синусоидальных формах энерготока с циклической частотой, в цепях которых присутствуют активная ёмкость с индуктивностью.

В перечень комплексных величин входят:

  • разность между потенциалами;
  • сила тока;
  • комплексное электросопротивление;
  • модуль импеданса;
  • разность индуктивного и ёмкостного сопротивлений;
  • омическое электросопротивление;
  • фаза импеданса.

Если несинусоидальный энерготок допустимо измерить временными показателями, закон ома для неполной электрической цепи может быть представлен в виде сложенных синусоидальных Фурье-компонентов. В линейной цепи составные элементы фурье-разложения являются независимо функционирующими. В нелинейных цепях образуются гармоники и множество колебаний. Таким образом, можно сделать вывод о невозможности выполнения правила Ома для нелинейной электроцепи.

Внимание!

Гармоника – это колебание, частота которого кратна частоте напряжения.

Как трактуется правило Ома

Так как обобщённая формула ома не считается основополагающей, правило применяется для описания разновидностей проводников в условиях приближения незначительной частоты, плотности тока и напряжения электрополя. Следует отметить, что в ряде случаев как первый закон, так и второй закон, применяемый для полной цепи, не соблюдаются.

Существует теория Друде, для выражения которой используются следующие величины:

  • удельная электропроводимость;
  • концентрированное размещение электронов;
  • показатель элементарного заряда;
  • время затихания по импульсам;
  • эффективная масса электрона.

Внимание!

Все формулы Ома – первый, второй физический закон ома и третий распространяются на омические компоненты.

Перечень условий, при которых становится невозможным соблюдения правила Ома:

  1. высокие частоты с чрезмерно большой скоростью изменения электротока;
  2. пониженная температура сверхпроводимого вещества;
  3. перегрев проводника проходящим электротоком;
  4. в ситуации пробоя, возникшего в результате подсоединения к проводниковому элементу высокого напряжения;
  5. в вакуумной или газонаполненной электролампе;
  6. для гетерогенного полупроводникового прибора;
  7. при образовании пространственного диэлектрического заряда в контакте металлического диэлектрика.

Интерпретация

Определяющаяся действием приложенного напряжения мощностная сила тока является пропорциональной показателю его напряжения. К примеру, при двойном увеличении приложенного напряжения, интенсивность постоянного тока также удваивается.

Интересно!

Наиболее часто правило Ома применяется для металла и керамики.

Методы запоминания формулы

Чтобы легче запомнить формулу расчёта напряжения на участке цепи, следует выписать на бумажном листе все величины, из которых она состоит, в которую также входит сопротивление и сила тока. Искомую величину закрыть пальцем, вследствие чего соотношение оставшихся величин будет отображать действие, которое необходимо совершить для её вычисления.

Ниже будет представлено видео с подробным объяснением всех правил и формул, относящихся к рассматриваемой теме.

Закон Ома – один из самых несложных для понимания, который входит в программу школьных учебников физики начального уровня. Пользуясь графическим приёмом расчёта величин – при необходимости или для самопроверки, можно получить безошибочные результаты вычислений.

Закон ома для неполной цепи

ответьте 9. Для нормальной жизнедеятельности человека необходимо 0, 65 м3 кислорода в сутки. Вычислите массу кислорода, если его плотность 1,43 кг/м31 … 0. Пользуясь шестом как рычагом, человек поднял груз на высоту 0,2 м, совершив работу 280 Дж. Длинное плечо рычага в 5 раз больше короткого. С какой силой человек действовал на рычаг​

ДОПОМОЖІТЬЬ ПЖЖЖЖЖЖЖЗа графіком залежності шляху від часу для рівномірного руху визначте швидкість руху тіла. Відповідь запишіть у км/год та м/с.Побуд … уйте графік залежності швидкості руху від часу.ДАМ МАКСИМУМ БАЛІВ​

у чому відмінність провідності електролітів від провідності металів​

Тепловой двигатель от нагревателя получает 200 МДж тепла и 40% отдаёт холодильнику. Вычислите КПД теплового двигателя.​

між кульками розрядника електронної машини проскакує іскра чи можна стверджувати що між кульками розрядника тече струм відповідь обгрунтуйте​

горіх масою 5 кг падає з висоти 10 м. Знайти його кінетичну і потенціальну енергію на висоті 8 м40см​

Площадь большого поршня гидравлического пресса равна 1000 см кв. Малого — 25 см кв. Ход малого поршня составляет 20 см. сколько раз нужно сдвинуть мал … ый поршень, чтобы большой поднялся на 10 см?​

Установите соответствие между формулой, описывающей физический закон, и физической величиной, которую можно вычислить с помощью этой формулы.​

5. Предмет, що був на відстані 40см від плоского дзеркала, перемістилина 20см далі від дзеркала. Виберіть правильне твердження:а) Відстань від предмет … а до зображення стане 120см;б) відстань від зображення до плоского дзеркала 20см;в) відстань від предмета до зображення зменшиться на 20см;г) зображення предмета знаходиться на поверхні дзеркала.​

Установите соответствие между измерительными приборами и единицами измерения физических величин.А. Динамометр. 1. с.Б. Мензурка. 2. см.В .Мерная лента … 3. Н4. см3​

Решение задач на закон Ома для участка и полной цепи

Решение задач на закон Ома сводится к нахождению одной из трех неизвестных составляющих: тока, сопротивления или напряжения. Сам же закон описывает, как они соотносятся между собой.

Напомним, что согласно закону Ома сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению.

Формула закона Ома для участка цепи:

Формула закона Ома для полной цепи:

Задача 1

Утюг включенный в сеть напряжением 220 В, потребляет ток 1,2 А. Определите сопротивление утюга.

Дано 

U = 220 В

I = 1,2 А

Решение

Согласно закону Ома для участка цепи:

Найти

R — ?

Ответ: R = 183,3 Ом.

Задача 2

К аккумулятору с ЭДС 12 В, подключена лампочка и два параллельно соединенных резистора сопротивлением каждый по 10 Ом. Известно, что ток в цепи 0,5 А, а сопротивление лампочки R/2. Найти внутреннее сопротивление аккумулятора.

Дано 

E = 12 В

I = 0,5 А

Rл = Rр/2

Rр = 10 Ом

Решение

Найдем экв. сопротивление двух параллельно соединённых резисторов:

Сопротивление лампочки:

Согласно закону Ома для полной цепи:

Найти

r — ?

Ответ: r = 14 Ом.

Задача 3

К участку цепи с напряжением 12 В через резистор сопротивлением 2 Ом подключены десять одинаковых лампочек сопротивлением 10 Ом. Найти напряжение на каждой лампочке.

Дано 

Uобщ = 10 В

Rр = 2 Ом

Rл = 10 Ом

Решение

Так как лампочки подключены параллельно, напряжение на них будет одинаковым, согласно закону Ома для участка цепи:

При последовательном соединении ток в цепи общий:

Выразим Uл через Uобщ:

Найдем Rэкв:

Окончательно получим:

Найти

Uл — ?

Ответ: Uл = 4 В.

Задача 4

Как определить длину мотка медной проволоки, не разматывая его?

Решение:

Для решения данной задачи необходимо воспользоваться формулой:

отсюда длина проволоки

В этой формуле, l – длина проволоки, R – сопротивление, S – площадь поперечного сечения, ρ – удельное сопротивление металлов, в данном случае ρ для меди равно 0.0175 Ом/м.

Сопротивление R проволоки можно измерить с помощью омметра, а площадь S с помощью штангенциркуля, измерив  диаметр проволоки и по формуле Πr2 вычислив ее значение. Значение удельного сопротивления ρ не только для меди, но и других металлов можно найти в справочнике, или тут. Подставив все известные величины в формулу, приведенную выше, получим длину проволоки.

Задача 5

Начертите схему электрической цепи, состоящей из источника тока, выключателя и двух ламп, включенных параллельно. Что произойдет в цепи при перегорании одной лампы?

Решение:

При перегорании одной из лампочек, вторая будет гореть, так как, при параллельном включении проводников токи I1 и I2 проходящие через них не зависят друг от друга и при разрыве параллельной цепочки ток продолжает протекать.

  • Просмотров: 45272
  • Рассмотрим неоднородные участки электрических цепей и действующие в них законы

    Наиболее применяемое в электротехнике соотношение между основными электрическими величинами – закон Ома, установленный немецким физиком Георгом Омом, эмпирическим способом, в 1826 г. С его помощью устанавливается связь между напряжением (электродвижущей силой), сопротивлением элементов этой цепи, силой проходящего тока.

    Измерение тока и напряжения

    Электрические параметры, которые описываются законом Ома:

    • Сила тока определяется количеством заряда, проходящего по проводнику за некоторое время, обозначается буквой I, единица измерения – ампер (А). Входит в основные единицы международной системы Си;
    • Электрическое напряжение, единица измерения – вольт, понятие ввёл тот же Георг Ом. Вольт может быть выражен через работу по перемещению заряда, выделяемую мощность при токе 1 ампер, имеет эталонные источники в виде высокостабильных гальванических элементов. Часто указывается как разность потенциалов, в некоторых случаях применяется понятие электродвижущая сила (ЭДС). Для обозначения могут использоваться буквы U, V;
    • R – сопротивление (электрическое), указывает на свойства проводника, оказывающие препятствия прохождению тока. Значительно зависит от материала проводника и температуры. Единица измерения – 1 ом, обозначение Ом или Ω.

    Классическая формулировка закона Ома: сила тока на участке цепи прямо пропорциональна напряжению и обратно пропорциональна сопротивлению.

    I = U/R.

    Это выражение справедливо для электрической цепи, которая не содержит дополнительной электродвижущей силы, обеспечивающей электрический ток, цепи, определяемой как однородная. В большинстве случаев применяется именно такая формула. На практике часто требуется вычислить значение тока, протекающего через некоторый элемент с известным сопротивлением, для этого достаточно измерить падение напряжения (разность потенциалов) на выводах этого устройства, например, резистора. При заданных любых двух значениях можно рассчитать неизвестное, так же, кроме величин, входящих в выражение, определяется электрическая мощность.

    Важно! При расчётах используются величины только одной размерности – целые значения вольт, ампер, ом или соответствующие им кратные и дольные единицы.

    I – сила тока, R – сопротивление, U – напряжение, P – мощность

    Неоднородная цепь

    Закон Ома для отдельного участка цепи не учитывает присутствие источника питания, его свойства не входят в вычисления. Для цепи, называемой неоднородной, содержащей ЭДС любого рода и её источник, в известную формулу следует добавить внутреннее сопротивление самого питающего устройства:

    I = E/(R + r).

    Здесь Е – ЭДС источника напряжения, r – его внутреннее сопротивление. Варианты наименований – закон Ома для неоднородного участка цепи, для полной или замкнутой цепи. Выражение мало отличается от приведённого выше – вместо напряжения присутствует ЭДС и сопротивление источника питания.

    Следует отметить, что понятие внутреннего сопротивления имеет смысл исключительно для химических источников тока, в случае применения других устройств, таких как любого вида блоков питания без батарей, говорят о выходном сопротивлении и нагрузочной способности этого блока.

    В практических применениях закон Ома для неоднородного участка цепи в таком виде применяется редко, в основном для измерения самого внутреннего сопротивления аккумулятора, других элементов питания.

    Закон применим и для переменного напряжения, если сопротивлением является активная нагрузка. С его помощью определяются действующие (среднеквадратичные) параметры цепи. В случае индуктивной, ёмкостной или комплексной нагрузки и для разных частот сопротивление является реактивным, значительно отличающимся от измеренного обычным методом – омметром.

    Закон Ома получен практическим путём, поэтому не может быть фундаментальным, но точно описывает взаимосвязь между наиболее часто используемыми электрическими величинами.

    Видео

    Оцените статью:

    Закон Ома | Encyclopedia.com

    Закон Ома — это уравнение, описывающее взаимосвязь между напряжением на электрическом компоненте, электрическим сопротивлением компонента и током, протекающим через компонент. Он назван в честь его первооткрывателя Георга Симона Ома (1789–1854). Ом обнаружил, что для большинства электрических цепей напряжение в цепи было равно току, протекающему по цепи, умноженному на электрическое сопротивление цепи. При одинаковом напряжении цепь с низким сопротивлением будет иметь более высокий ток, чем цепь с более высоким сопротивлением.Напряжение, правильное название разности потенциалов, измеряется в вольтах, а ток — в амперах. Следовательно, сопротивление выражается в единицах вольт на ампер, определяемых как омы (Ом).

    Закон Ома не является фундаментальным законом, который всегда применяется, например, закон всемирного тяготения. Скорее, это эмпирический закон, который, как было установлено экспериментально, достаточно хорошо работает большую часть времени. Однако бывают моменты, обычно в крайних случаях, когда закон Ома нарушается. Например, если на цепь подается высокое напряжение, закон Ома не может предсказать правильное значение тока.Хотя закон Ома применим не всегда, он работает в большинстве повседневных ситуаций и поэтому очень полезен.

    Например, почему короткое замыкание приведет к срабатыванию предохранителя или автоматического выключателя? Когда происходит короткое замыкание, большая часть электрического сопротивления в цепи обходится. Фактически создается новая цепь с очень низким сопротивлением. Итак, согласно закону Ома, если сопротивление очень низкое, ток должен быть очень большим. Предохранители и автоматические выключатели предназначены для защиты цепи путем перегорания (плавления или размыкания), когда ток становится слишком высоким.Следовательно, короткое замыкание производит ток, достаточный для размыкания цепи.

    В электронных устройствах часто устанавливаются резисторы для увеличения сопротивления и, следовательно, ограничения тока. Кроме того, всякий раз, когда ток проходит через сопротивление, энергия рассеивается в виде тепла. Поэтому нежелательное сопротивление тратит энергию. Некоторые резистивные устройства, такие как нагревательные спирали в фенах, предназначены для преобразования большого количества электроэнергии непосредственно в тепло.

    19.Закон 1 Ома — Физика

    Постоянный и переменный ток

    Так же, как вода течет с большой высоты на низкую, электроны, которые могут свободно перемещаться, будут перемещаться из места с низким потенциалом в место с высоким потенциалом. Батарея имеет две клеммы с разным потенциалом. Если клеммы соединены проводом, электрический ток (заряды) будет течь, как показано на рисунке 19.2. Затем электроны будут перемещаться от низкопотенциальной клеммы батареи (отрицательный конец , ) по проводу и попадут в высокопотенциальную клемму батареи (положительный конец , ).

    Рис. 19.2 У батареи есть провод, соединяющий положительную и отрицательную клеммы, который позволяет электронам перемещаться от отрицательной клеммы к положительной.

    Поддержка учителя

    Поддержка учителя

    Подчеркните, что электроны движутся от отрицательного вывода к положительному, потому что они несут отрицательный заряд, поэтому они отталкиваются кулоновской силой от отрицательного вывода.

    Электрический ток — это скорость движения электрического заряда.Большой ток, такой как тот, который используется для запуска двигателя грузовика, перемещает большое количество очень быстро, тогда как небольшой ток, такой как тот, который используется для работы портативного калькулятора, перемещает небольшое количество заряда медленнее. В форме уравнения электрический ток I определяется как

    , где ΔQΔQ — это количество заряда, которое проходит через заданную область, а ΔtΔt — время, за которое заряд проходит мимо этой области. Единицей измерения электрического тока в системе СИ является ампер (А), названный в честь французского физика Андре-Мари Ампера (1775–1836).Один ампер — это один кулон в секунду, или

    Электрический ток, движущийся по проволоке, во многом похож на ток воды, движущийся по трубе. Чтобы определить поток воды через трубу, мы можем подсчитать количество молекул воды, которые проходят мимо данного участка трубы. Как показано на рисунке 19.3, электрический ток очень похож. Считаем количество электрических зарядов, протекающих по участку проводника; в данном случае провод.

    Рис. 19.3 Электрический ток, движущийся по этому проводу, — это заряд, который проходит через поперечное сечение A, деленный на время, необходимое этому заряду, чтобы пройти через участок A .

    Поддержка учителя

    Поддержка учителя

    Обратите внимание на то, что носители заряда на этом рисунке положительны, поэтому они движутся в том же направлении, что и электрический ток.

    Предположим, что каждая частица q на рисунке 19.3 несет заряд q = 1nCq = 1nC, и в этом случае общий заряд будет равен ΔQ = 5q = 5nCΔQ = 5q = 5nC. Если эти заряды пройдут мимо области A и за время Δt = 1 нсΔt = 1 нс, то ток будет

    . I = ΔQΔt = 5nC1ns = 5A.I = ΔQΔt = 5nC1ns = 5A.

    19,1

    Обратите внимание, что мы присвоили зарядам на рис. 19.3 положительный заряд. Обычно отрицательные заряды — электроны — являются подвижным зарядом в проводах, как показано на рисунке 19.2. Положительные заряды обычно застревают в твердых телах и не могут свободно перемещаться. Однако, поскольку положительный ток, движущийся вправо, аналогичен отрицательному току такой же величины, движущемуся влево, как показано на рисунке 19.4, мы определяем обычный ток, который течет в том направлении, в котором протекал бы положительный заряд, если бы он мог двигаться. .Таким образом, если не указано иное, предполагается, что электрический ток состоит из положительных зарядов.

    Также обратите внимание, что один кулон — это значительная величина электрического заряда, поэтому 5 А — это очень большой ток. Чаще всего вы увидите ток порядка миллиампер (мА).

    Рис. 19.4 (a) Электрическое поле направлено вправо, ток движется вправо, а положительные заряды движутся вправо. (б) Эквивалентная ситуация, но отрицательные заряды движутся влево.Электрическое поле и ток по-прежнему справа.

    Поддержка учителя

    Поддержка учителя

    Обратите внимание на то, что электрическое поле одинаково в обоих случаях, и что ток направлен в направлении электрического поля.

    Предупреждение о заблуждении

    Убедитесь, что учащиеся понимают, что ток — это , определяемое как как направление, в котором будет течь положительный заряд, даже если электроны чаще всего являются мобильными носителями заряда. Математически результат один и тот же, независимо от того, предполагаем ли мы положительный заряд в одну сторону или отрицательный заряд в противоположном направлении.Однако физически ситуация совершенно иная (хотя разница уменьшается после определения отверстий).

    Snap Lab

    Vegetable Current

    Эта лабораторная работа помогает студентам понять, как работает ток. Учитывая, что частицы, заключенные в трубе, не могут занимать одно и то же пространство, толкание большего количества частиц в один конец трубы приведет к вытеснению того же количества частиц из противоположного конца. Это создает поток частиц.

    Найдите солому и сушеный горох, которые могут свободно перемещаться в соломе.Положите соломинку на стол и засыпьте ее горошком. Когда вы вдавливаете одну горошину с одного конца, другая горошина должна выходить из другого конца. Эта демонстрация представляет собой модель электрического тока. Определите часть модели, которая представляет электроны, и часть модели, которая представляет собой подачу электроэнергии. В течение 30 секунд подсчитайте, сколько горошин вы можете протолкнуть через соломинку. Когда закончите, вычислите горох, текущий , разделив количество горошин на время в секундах.

    Обратите внимание, что поток гороха основан на том, что горох физически сталкивается друг с другом; электроны толкают друг друга за счет взаимно отталкивающих электростатических сил.

    Проверка захвата

    Предположим, у вас есть резервуар с горохом, каждый заправлен до 1 нКл. Если вы пропустите горошек через соломинку со скоростью четыре горошины в секунду, как бы вы рассчитали электрический ток, переносимый заряженным горошком?

    1. Измерьте длину соломинки, затем разделите на расход гороха и умножьте на расход на горошину.
    2. Умножьте расход гороха на расход гороха.
    3. Измерьте длину соломинки, затем умножьте на скорость потока гороха и разделите на расход на горошину.
    4. Разделите скорость потока гороха на расход на горошину.

    Направление обычного тока — это направление, в котором будет течь положительный заряд . В зависимости от ситуации могут перемещаться положительные заряды, отрицательные заряды или и то, и другое.В металлических проводах, как мы видели, ток переносится электронами, поэтому отрицательные заряды движутся. В ионных растворах, таких как соленая вода, движутся как положительно заряженные, так и отрицательно заряженные ионы. То же самое и с нервными клетками. Чистые положительные токи относительно редки, но встречаются. История отмечает, что американский политик и ученый Бенджамин Франклин описал ток как направление, в котором положительные заряды проходят через провод. Он назвал тип заряда, связанный с электронами, отрицательным задолго до того, как стало известно, что они переносят ток во многих ситуациях.

    Когда электроны движутся по металлической проволоке, они сталкиваются с препятствиями, такими как другие электроны, атомы, примеси и т. Д. Электроны рассеиваются от этих препятствий, как показано на рисунке 19.5. Обычно электроны теряют энергию при каждом взаимодействии. Таким образом, чтобы электроны двигались, требуется сила, создаваемая электрическим полем. Электрическое поле в проводе направлено от конца провода с более высоким потенциалом к ​​концу провода с более низким потенциалом. Электроны, несущие отрицательный заряд, движутся в среднем ( дрейф ) в направлении, противоположном электрическому полю, как показано на рисунке 19.5.

    Рис. 19.5. Свободные электроны, движущиеся в проводнике, совершают множество столкновений с другими электронами и атомами. Показан путь одного электрона. Средняя скорость свободных электронов находится в направлении, противоположном электрическому полю. Столкновения обычно передают энергию проводнику, поэтому для поддержания постоянного тока требуется постоянный запас энергии.

    До сих пор мы обсуждали ток, который постоянно движется в одном направлении. Это называется постоянным током, потому что электрический заряд течет только в одном направлении.Постоянный ток часто называют током DC .

    Многие источники электроэнергии, такие как плотина гидроэлектростанции, показанная в начале этой главы, вырабатывают переменный ток, направление которого меняется взад и вперед. Переменный ток часто называют . Переменный ток . Переменный ток перемещается вперед и назад через равные промежутки времени, как показано на рисунке 19.6. Переменный ток, который исходит из обычной розетки, не меняет направление внезапно.Скорее, он плавно увеличивается до максимального тока, а затем плавно уменьшается до нуля. Затем он снова растет, но в противоположном направлении, пока не достигнет того же максимального значения. После этого он плавно уменьшается до нуля, и цикл начинается снова.

    Рисунок 19.6 При переменном токе направление тока меняется на противоположное через равные промежутки времени. График вверху показывает зависимость тока от времени. Отрицательные максимумы соответствуют движению тока влево.Положительные максимумы соответствуют току, движущемуся вправо. Ток регулярно и плавно чередуется между этими двумя максимумами.

    Teacher Support

    Teacher Support

    Помогите ученикам интерпретировать график, подчеркнув, что ток не меняет направление мгновенно, а плавно переходит от одного максимума к противоположному максимуму и обратно. Объясните, что четыре изображения внизу показывают ток в соответствующих максимумах. Обратите внимание, что для упрощения интерпретации операторы мобильной связи на изображении считаются положительными.

    Устройства, использующие переменный ток, включают пылесосы, вентиляторы, электроинструменты, фены и многие другие. Эти устройства получают необходимую мощность, когда вы подключаете их к розетке. Настенная розетка подключена к электросети, которая обеспечивает переменный потенциал (потенциал переменного тока). Когда ваше устройство подключено к сети, потенциал переменного тока толкает заряды вперед и назад в цепи устройства, создавая переменный ток.

    Однако во многих устройствах используется постоянный ток, например в компьютерах, сотовых телефонах, фонариках и автомобилях.Одним из источников постоянного тока является аккумулятор, который обеспечивает постоянный потенциал (потенциал постоянного тока) между своими выводами. Когда ваше устройство подключено к батарее, потенциал постоянного тока толкает заряд в одном направлении через цепь вашего устройства, создавая постоянный ток. Другой способ получения постоянного тока — использование трансформатора, который преобразует переменный потенциал в постоянный. Маленькие трансформаторы, которые вы можете подключить к розетке, используются для зарядки вашего ноутбука, мобильного телефона или другого электронного устройства. Люди обычно называют это зарядным устройством или батареей , но это трансформатор, который преобразует напряжение переменного тока в напряжение постоянного тока.В следующий раз, когда кто-то попросит одолжить зарядное устройство для ноутбука, скажите им, что у вас нет зарядного устройства для ноутбука, но они могут одолжить ваш преобразователь.

    Рабочий пример

    Ток при ударе молнии

    Удар молнии может передать до 10201020 электронов из облака на землю. Если удар длится 2 мс, каков средний электрический ток в молнии?

    Стратегия

    Используйте определение тока, I = ΔQΔtI = ΔQΔt. Заряд ΔQΔQ из 10201020 электронов ΔQ = neΔQ = ne, где n = 1020n = 1020 — количество электронов, а e = −1.60 · 10−19Ce = −1.60 · 10−19C — заряд электрона. Это дает

    ΔQ = 1020 × (-1,60 × 10-19 ° C) = -16,0 ° C. ΔQ = 1020 × (-1,60 × 10-19 ° C) = -16,0 ° C.

    19,2

    Время Δt = 2 × 10–3 с Δt = 2 × 10–3 с — это продолжительность удара молнии.

    Решение

    Ток при ударе молнии

    I = ΔQΔt = −16,0C2 × 10−3s = −8kA.I = ΔQΔt = −16,0C2 × 10−3s = −8kA.

    19,3

    Обсуждение

    Отрицательный знак отражает тот факт, что электроны несут отрицательный заряд.Таким образом, хотя электроны текут от облака к земле, положительный ток должен течь от земли к облаку.

    Рабочий пример

    Средний ток для заряда конденсатора

    В цепи, содержащей конденсатор и резистор, зарядка конденсатора емкостью 16 мкФ с использованием батареи 9 В. занимает 1 мин. Какой средний ток в это время?

    Стратегия

    Мы можем определить заряд конденсатора, используя определение емкости: C = QVC = QV.Когда конденсатор заряжается батареей 9 В, напряжение на конденсаторе будет V = 9VV = 9V. Это дает заряд

    Подставляя это выражение для заряда в уравнение для тока, I = ΔQΔtI = ΔQΔt, мы можем найти средний ток.

    Решение

    Средний ток

    I = ΔQΔt = CVΔt = (16 × 10−6F) (9V) 60s = 2,4 × 10−6A = 2,4 мкА I = ΔQΔt = CVΔt = (16 × 10−6F) (9V) 60s = 2,4 × 10−6A = 2,4 мкА.

    19,5

    Обсуждение

    Этот небольшой ток типичен для тока, встречающегося в таких цепях.

    Сопротивление и закон Ома

    Как упоминалось ранее, электрический ток в проводе во многом похож на воду, протекающую по трубе. На поток воды, который может течь по трубе, влияют препятствия в трубе, такие как засорения и узкие участки в трубе. Эти препятствия замедляют ток через трубу. Точно так же электрический ток в проводе может замедляться многими факторами, включая примеси в металле провода или столкновения между зарядами в материале.Эти факторы создают сопротивление электрическому току. Сопротивление — это описание того, насколько провод или другой электрический компонент препятствует прохождению через него заряда. В XIX веке немецкий физик Георг Симон Ом (1787–1854) экспериментально обнаружил, что ток через проводник пропорционален падению напряжения на проводнике с током.

    Константа пропорциональности — это сопротивление материала R , что приводит к

    Это соотношение называется законом Ома.Его можно рассматривать как причинно-следственную связь, в которой напряжение является причиной, а ток — следствием. Закон Ома — это эмпирический закон, подобный закону трения, что означает, что это экспериментально наблюдаемое явление. Единицы сопротивления — вольт на ампер или В / А. Мы называем V / A Ом , что обозначается заглавной греческой буквой омега (ΩΩ). Таким образом,

    1 Ом = 1 В / А (1,4). 1 Ом = 1 В / А (1,4). Закон

    Ома справедлив для большинства материалов и при обычных температурах. При очень низких температурах сопротивление может упасть до нуля (сверхпроводимость).При очень высоких температурах тепловое движение атомов в материале препятствует потоку электронов, увеличивая сопротивление. Многие вещества, для которых действует закон Ома, называются омическими. Омические материалы включают в себя хорошие проводники, такие как медь, алюминий и серебро, а также некоторые плохие проводники при определенных обстоятельствах. Сопротивление омических материалов остается практически неизменным в широком диапазоне напряжения и тока.

    Watch Physics

    Знакомство с электричеством, цепями, током и сопротивлением

    В этом видео представлен закон Ома и показана простая электрическая схема.Говорящий использует аналогию давления, чтобы описать, как электрический потенциал заставляет заряд двигаться. Он обращается к электрическому потенциалу как электрическому давлению . Другой способ размышления об электрическом потенциале — это представить, что множество частиц одного знака скопилось в небольшом замкнутом пространстве. Поскольку эти заряды имеют одинаковый знак (все они положительные или все отрицательные), каждый заряд отталкивает другие вокруг себя. Это означает, что множество зарядов постоянно выталкивается за пределы пространства.Полная электрическая цепь подобна открытию двери в небольшом пространстве: какие бы частицы ни толкали к двери, теперь у них есть способ убежать. Чем выше электрический потенциал, тем сильнее каждая частица толкает друг друга.

    Проверка захвата

    Если вместо одного резистора R на схеме, показанной в видео, нарисовать два резистора с сопротивлением R каждый, что вы можете сказать о токе, протекающем в цепи?

    1. Сила тока в цепи должна уменьшиться вдвое.
    2. Сила тока в цепи должна увеличиться вдвое.
    3. Ток в цепи должен оставаться неизменным.
    4. Количество тока в цепи увеличится вдвое.

    Виртуальная физика

    Закон Ома

    Это моделирование имитирует простую схему с батареями, обеспечивающими источник напряжения, и резистором, подключенным к батареям.Посмотрите, как на ток влияет изменение сопротивления и / или напряжения. Обратите внимание, что сопротивление моделируется как элемент, содержащий малых рассеивающих центров . Они представляют собой загрязнения или другие препятствия, препятствующие прохождению тока.

    Проверка захвата

    В цепи, если сопротивление оставить постоянным, а напряжение удвоить (например, с 3 \, \ text {V} до 6 \, \ text {V}), как изменится ток? Соответствует ли это закону Ома?

    1. Сила тока удвоится.Это соответствует закону Ома, поскольку ток пропорционален напряжению.
    2. Сила тока удвоится. Это не соответствует закону Ома, поскольку сила тока пропорциональна напряжению.
    3. Сила тока увеличится вдвое. Это соответствует закону Ома, поскольку ток пропорционален напряжению.
    4. Сила тока уменьшится вдвое. Это не соответствует закону Ома, поскольку сила тока пропорциональна напряжению.

    Рабочий пример

    Сопротивление фары

    Каково сопротивление автомобильной фары, через которую проходит 2,50 А при напряжении 12,0 В?

    Стратегия

    Закон

    Ома говорит нам, что Vheadlight = IRheadlightVheadlight = IRheadlight. Падение напряжения при прохождении через фару — это просто повышение напряжения, обеспечиваемое аккумулятором, Vheadlight = VbatteryVheadlight = Vbattery. Мы можем использовать это уравнение и изменить закон Ома, чтобы найти сопротивление RheadlightRheadlight фары.

    Решение

    Решение закона Ома для сопротивления фары дает

    Vheadlight = IRheadlight Vbattery = IRheadlight Rheadlight = VbatteryI = 12V2.5A = 4.8Ω. Vheadlight = IRheadlightVbattery = IRheadlightRheadlight = VbatteryI = 12V2.5A = 4.8Ω.

    19,6

    Обсуждение

    Это относительно небольшое сопротивление. Как мы увидим ниже, сопротивление в цепях обычно измеряется в кВт или МВт.

    Рабочий пример

    Определите сопротивление по графику «ток-напряжение»

    Предположим, вы прикладываете к цепи несколько различных напряжений и измеряете ток, протекающий по цепи.График результатов показан на рисунке 19.7. Какое сопротивление цепи?

    Рисунок 19.7 Линия показывает зависимость тока от напряжения. Обратите внимание, что ток указан в миллиамперах. Например, при 3 В ток составляет 0,003 А или 3 мА.

    Стратегия

    График показывает, что ток пропорционален напряжению, что соответствует закону Ома. По закону Ома (V = IRV = IR) константа пропорциональности — это сопротивление R . Поскольку на графике показан ток как функция напряжения, мы должны изменить закон Ома в следующей форме: I = VR = 1R × VI = VR = 1R × V.Это показывает, что наклон линии I по сравнению с V составляет 1R1R. Таким образом, если мы найдем наклон линии на рисунке 19.7, мы сможем вычислить сопротивление R .

    Решение

    Наклон линии равен подъему , разделенному на подъема . Глядя на нижний левый квадрат сетки, мы видим, что линия поднимается на 1 мА (0,001 А) и проходит через напряжение 1 В. Таким образом, наклон линии равен

    . наклон = 0.001A1V. Наклон = 0,001A1V.

    19,7

    Приравнивая наклон к 1R1R и решая для R , получаем

    1R = 0,001A1R = 1V0,001A = 1000 Ом 1R = 0,001A1R = 1V0,001A = 1000 Ом

    19,8

    или 1 кОм.

    Обсуждение

    Это сопротивление больше, чем то, что мы обнаружили в предыдущем примере. Подобные сопротивления часто встречаются в электрических цепях, как мы узнаем в следующем разделе. Обратите внимание, что если бы линия на рисунке 19.7 не была прямой, то материал не был бы омическим, и мы не смогли бы использовать закон Ома.Материалы, которые не подчиняются закону Ома, называются безомными.

    закон Ома | физика | Britannica

    Закон Ома , описание взаимосвязи между током, напряжением и сопротивлением. Величина постоянного тока через большое количество материалов прямо пропорциональна разности потенциалов или напряжению на материалах. Таким образом, если напряжение В, (в единицах вольт) между двумя концами провода, сделанного из одного из этих материалов, утроится, ток I (амперы) также утроится; и частное V / I остается постоянным.Частное В, / I для данного куска материала называется его сопротивлением, R, , измеренным в единицах, называемых омами. Сопротивление материалов, для которых действует закон Ома, не изменяется в огромных диапазонах напряжения и тока. Математически закон Ома может быть выражен как V / I = R . То, что сопротивление или отношение напряжения к току для всей или части электрической цепи при фиксированной температуре, как правило, является постоянным, было установлено к 1827 году в результате исследований немецкого физика Георга Симона Ома.

    Альтернативные утверждения закона Ома заключаются в том, что ток I в проводнике равен разности потенциалов В поперек проводника, деленной на сопротивление проводника, или просто I = В / R , и что разность потенциалов в проводнике равна произведению тока в проводнике и его сопротивления, В = IR . В цепи, в которой разность потенциалов или напряжение постоянна, ток можно уменьшить, добавив большее сопротивление, или увеличить, удалив некоторое сопротивление.Закон Ома также может быть выражен в терминах электродвижущей силы или напряжения E источника электроэнергии, такого как батарея. Например, I = E / R .

    С изменениями закон Ома применяется также к цепям переменного тока, в которых соотношение между напряжением и током более сложное, чем для постоянного тока. Именно из-за того, что ток меняется, помимо сопротивления возникают другие формы противодействия току, называемые реактивным сопротивлением.Комбинация сопротивления и реактивного сопротивления называется импедансом, Z. Когда полное сопротивление, эквивалентное отношению напряжения к току, в цепи переменного тока является постоянным, обычно применяется закон Ома. Например, V / I = Z .

    С дальнейшими изменениями закон Ома был расширен до постоянного отношения магнитодвижущей силы к магнитному потоку в магнитной цепи.

    Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту.Подпишитесь сейчас

    Закон Ома

    Электрические цепи используются в авиакосмической технике, от систем управления полетом до приборов в кабине и двигателей системы управления, чтобы аэродинамическая труба приборостроение и эксплуатация. Самая простая схема включает один резистор и источник электрического потенциала или напряжения . Электроны проходят через цепь вырабатывает ток электричества.Сопротивление, напряжение и ток связаны друг с другом соотношением Закон Ома , как показано на рисунке. Если обозначить сопротивление R , ток i , а напряжение V , то закон Ома гласит, что:

    V = i R

    Сопротивление — это свойство цепи, которое противодействует потоку электронов. через провод. Это аналог трения в механической системе или аэродинамической системе. тащить.Сопротивление измеряется в Ом и зависит от геометрия резистора и материал, из которого он изготовлен. На атомном уровне свободные электроны в материале находятся в постоянном случайном движении, постоянно сталкиваясь друг с другом и с окружающими атомами материала. При приложении электрического поля электроны преимущественно движутся в направлении, противоположном полю. Атомы образуют матрицу, через которую электроны двигаться. В зависимости от шага, размера и ориентации матрицы скорость потока электронов будет меняться.Разные материалы имеют разные значения электропроводности . Удельное сопротивление материала является обратной величиной проводимости и обозначается rho . Если материал имеет длину l и площадь поперечного сечения A , сопротивление равно предоставлено:

    R = (rho * l) / А

    Поскольку электроны движутся через материал, сталкиваясь друг с другом и с атомной матрицей, электроны генерируют случайную тепловую энергию или тепло.2 р

    Таким образом, резистор имеет два номинала: 1) его омическое значение и 2) его способность рассеивать мощность.

    Потому что сопротивление зависит от геометрии резистора или провода, а геометрия можно изменить приложенной силой, мы можем построить электрическую цепь для обнаружения сил по изменению сопротивления. Электрический тензодатчики — один из самых распространенных типов инструментов, используемых в испытания в аэродинамической трубе.При построении практической схемы обычно используется более одного резистора. Резисторы может быть подключен к параллельно или в серия с источником питания. Специальная схема, называемая Мост Уитстона используется при испытаниях в аэродинамической трубе для устранить температурную погрешность в тензодатчиках.


    Деятельность:


    Навигация ..

    Руководство для начинающих Домашняя страница

    3.Закон 2 Ома: сопротивление и простые схемы

    Сопротивление и простые схемы

    Если напряжение управляет током, что ему мешает? Электрическое свойство, препятствующее току (примерно такое же, как трение и сопротивление воздуха), называется сопротивлением R.R. size 12 {R} {} Столкновения движущихся зарядов с атомами и молекулами в веществе передают энергию веществу и ограничивают ток. Сопротивление обратно пропорционально току, или

    . 3.13 I∝1R.I∝1R. размер 12 {Я подпираю {{1} над {R}} ».»} {}

    Таким образом, например, ток уменьшается вдвое, если сопротивление увеличивается вдвое. Комбинируя отношения тока к напряжению и тока к сопротивлению, получаем

    3.14 I = VR.I = VR. размер 12 {I = {{V} больше {R}} «.»} {}

    Это соотношение также называется законом Ома. Закон Ома в такой форме действительно определяет сопротивление определенных материалов. Закон Ома (как и закон Гука) не универсален. Многие вещества, для которых действует закон Ома, называются омическими. К ним относятся хорошие проводники, такие как медь и алюминий, и некоторые плохие проводники при определенных обстоятельствах.Омические материалы имеют сопротивление RR размером 12 {R} {}, которое не зависит от напряжения VV, размера 12 {V} {} и тока I.I. размер 12 {I} {} Объект с простым сопротивлением называется резистором , даже если его сопротивление невелико. Единицей измерения сопротивления является Ом и обозначается символом ΩΩ размер 12 {% OMEGA} {} (греческое омега в верхнем регистре). Перестановка I = V / RI = V / R размер 12 {I = ital «V / R»} {} дает R = V / IR = V / I размер 12 {R = ital «V / I»} {}, и Таким образом, единицы сопротивления равны 1 Ом = 1 вольт на ампер.

    На рисунке 3.8 показана схема простой схемы. Простая схема имеет один источник напряжения и один резистор. Можно предположить, что провода, соединяющие источник напряжения с резистором, имеют незначительное сопротивление, или их сопротивление можно включить в R.R. размер 12 {R} {}

    Рис. 3.8 Простая электрическая цепь, в которой замкнутый путь прохождения тока обеспечивается проводниками (обычно металлическими), соединяющими нагрузку с выводами батареи, представленной красными параллельными линиями.Зигзагообразный символ представляет собой единственный резистор и включает любое сопротивление в соединениях с источником напряжения.

    Установление соединений: Соединения в реальном мире

    Закон Ома (V = IRV = IR) — это фундаментальная зависимость, которая может быть представлена ​​линейной функцией, в которой наклон линии является сопротивлением. Сопротивление представляет собой напряжение, которое необходимо приложить к резистору для создания в цепи тока 1 А. График (на рисунке ниже) показывает это представление для двух простых схем с резисторами, которые имеют разное сопротивление и, следовательно, разные наклоны.

    Рис. 3.9 На рисунке показано соотношение между током и напряжением для двух разных резисторов. Наклон графика представляет значение сопротивления, которое составляет 2 Ом и 4 Ом для двух показанных линий.

    Установление соединений: Соединения в реальном мире

    Материалы, которые подчиняются закону Ома, имея линейную зависимость между напряжением и током, известны как омические материалы. С другой стороны, некоторые материалы демонстрируют нелинейную зависимость напряжения от тока и, следовательно, известны как неомические материалы.На рисунке ниже показаны соотношения между текущим напряжением для двух типов материалов.

    Рисунок 3.10 Показаны отношения между напряжением и током для омических и неомических материалов.

    Очевидно, что сопротивление омического материала, показанного на (а), остается постоянным и может быть вычислено путем определения наклона графика, но это неверно для неомического материала, показанного на (b).

    Пример 3.4 Расчет сопротивления: Автомобильная фара

    Какое сопротивление проходит у автомобильной фары? 2.50 А при подаче на него 12,0 В?

    Стратегия

    Мы можем изменить закон Ома, как указано I = V / RI = V / R размер 12 {I = ital «V / R»} {}, и использовать его для определения сопротивления.

    Решение

    Перестановка I = V / RI = V / R, размер 12 {I = ital «V / R»} {} и замена известных значений дает

    3,16 R = VI = 12,0 В 2,50 A = 4,80 Ом R = VI = 12,0 В 2,50 A = 4,80 Ом. размер 12 {R = {{V} больше {I}} = {{«12» «.» «0 В»} больше {2 «.» «50 A»}} = «4» «.» «80% ОМЕГА».»} {}

    Обсуждение

    Это относительно небольшое сопротивление, но оно больше, чем хладостойкость фары. Как мы увидим в разделе «Сопротивление и удельное сопротивление», сопротивление обычно увеличивается с температурой, поэтому лампа имеет меньшее сопротивление при первом включении и потребляет значительно больший ток во время короткого периода прогрева.

    Сопротивление может быть разным. Некоторые керамические изоляторы, например те, которые используются для поддержки линий электропередач, имеют сопротивление 1012 Ом 10 12 Ом или более.У сухого человека сопротивление руки к ноге может составлять 105 Ом, 105 Ом, в то время как сопротивление человеческого сердца составляет около 103 Ом · 103 Ом. Кусок медного провода большого диаметра длиной в метр может иметь сопротивление 10-5 Ом, 10-5 Ом, а сверхпроводники вообще не имеют сопротивления (они неомичны). Сопротивление связано с формой объекта и материалом, из которого он состоит, как будет показано в разделах «Сопротивление и удельное сопротивление».

    Дополнительную информацию можно получить, решив I = V / RI = V / R размер 12 {I = ital «V / R»} {} для V, V, размер 12 {V} {}, что дает

    3.17 В = ИК. В = ИК. размер 12 {V = ital «IR.»} {}

    Это выражение для VV размером 12 {V} {} можно интерпретировать как падение напряжения на резисторе, создаваемое током I.I. размер 12 {I} {} Фраза IRIR size 12 {ital «IR»} {} drop часто используется для этого напряжения. Например, у фары в Примере 3.4 падение IRIR размера 12 {ital «IR»} {} составляет 12,0 В. Если напряжение измеряется в различных точках цепи, будет видно, что оно увеличивается на источнике напряжения и уменьшается в резистор.Напряжение аналогично давлению жидкости. Источник напряжения подобен насосу, создающему перепад давления, вызывающему ток — поток заряда. Резистор похож на трубу, которая снижает давление и ограничивает поток из-за своего сопротивления. Здесь сохранение энергии имеет важные последствия. Источник напряжения подает энергию (вызывая электрическое поле и ток), а резистор преобразует ее в другую форму (например, тепловую энергию). В простой схеме (с одним простым резистором) напряжение, подаваемое источником, равно падению напряжения на резисторе, так как PE = qΔVPE = qΔV размер 12 {«PE» = qΔV} {}, и такой же размер qq 12 {q} {} протекает через каждую.Таким образом, энергия, подаваемая источником напряжения, и энергия, преобразуемая резистором, равны. (См. Рисунок 3.11.)

    Рисунок 3.11 Падение напряжения на резисторе в простой цепи равно выходному напряжению батареи.

    Установление соединений: сохранение энергии

    В простой электрической цепи единственный резистор преобразует энергию, поступающую от источника, в другую форму. Здесь о сохранении энергии свидетельствует тот факт, что вся энергия, подаваемая источником, преобразуется в другую форму только с помощью резистора.Мы обнаружим, что сохранение энергии имеет и другие важные применения в схемах и является мощным инструментом анализа схем.

    Использование закона Ома со схемами

    Как использовать закон Ома

    В виде уравнения закон Ома можно записать как I = V / R . Это позволяет рассчитать три величины для конкретной цепи. Например, если вы знаете ток и сопротивление, вы можете определить напряжение.

    Вы можете использовать закон Ома для отдельного компонента внутри цепи: ток через лампочку, напряжение на лампочке и сопротивление лампочки.Или вы можете использовать закон Ома для всей цепи, используя полный ток, напряжение батареи (общее напряжение) и общее сопротивление. Вы даже можете сделать это для отдельной ветви в последовательной цепи. Это все еще работает.

    Закон Ома

    Однако, чтобы закон Ома работал, компоненты в цепи должны быть ОМИ. Не все электрические компоненты подчиняются закону Ома — не все омичны — но большинство из них.

    Пример

    Допустим, у вас есть параллельная цепь, содержащая 12-вольтовую батарею и две лампочки в отдельных ветвях: одна с сопротивлением 4 Ом, а другая с сопротивлением 3 Ом.Как вы думаете, как мы будем рассчитывать ток, проходящий через резистор сопротивлением 3 Ом?

    Чтобы решить эту проблему, нам нужно использовать закон Ома для резистора 3 Ом. Помните, что ток равен напряжению, разделенному на сопротивление, или I = V / R.

    Общее напряжение цепи составляет 12 вольт, и поскольку это параллельная цепь, каждая ветвь также получит полные 12 вольт. Это означает, что на резистор сопротивлением 3 Ом также подается напряжение 12 В. Итак, мы знаем, что V = 12 вольт, а R = 3 Ом.Чтобы вычислить ток, мы разделим 12 на 3 и получим 4 ампера, что и является нашим ответом.

    Пример решения

    Резюме урока

    Закон Ома гласит, что по мере увеличения сопротивления ток уменьшается. И наоборот, при повышении напряжения возрастает и ток. Ток — это электрический ток вокруг электрической цепи, который мы измеряем в амперах. Сопротивление , которое мы измеряем в омах, — это способность компонента сдерживать прохождение тока. Напряжение означает разность потенциалов между двумя частями цепи, которую мы измеряем в вольтах.

    Закон Ома выражается как I = V / R , уравнение, которое позволяет определить три величины указанной цепи. Закон Ома можно использовать для одного компонента в цепи, для параллельной ветви или для всей цепи. В последнем случае вы используете напряжение батареи, общий ток и общее сопротивление. Этот подход работает только для омических резисторов, к которым относится большинство электронных устройств.

    2.2.4 Закон Ома и почему мы заботимся о сопротивлении

    2.2.4 Закон Ома и почему мы заботимся о сопротивлении

    Устройство, известное нам как тостер, на удивление простое. Он состоит в основном из провода, по которому пропускается ток. Проволока нагревается, поджаривая хлеб. Это оно!

    а почему нагревается провод? Ответ в том, что провод имеет некоторое сопротивление. Когда ток проходит через материал с некоторым сопротивлением, материал нагревается.Это тепло в первую очередь является рассеянием некоторой части электроэнергии, проходящей через материал. Это рассеяние мощности в виде тепла называется «потерями» в электросети.

    Сопротивление материала, через который проходит ток, помогает определить потери, но это не единственный фактор. Напряжение, при котором энергия проходит через материал, также имеет значение, как и величина тока.

    Эта взаимосвязь четко резюмируется в законе Ома, который гласит, что напряжение равно произведению тока и сопротивления, или V = I × R.Закон Ома используется для определения величины напряжения, необходимого для перемещения заданного количества тока (I) через некоторый материал с заданным сопротивлением (R).

    Между тем, вспомните наше определение мощности: P = I × V. По сути, это количество мощности, передаваемой в цепи, подобной той, что была в нашем последнем упражнении.

    Мы можем включить закон Ома в наше определение мощности, чтобы получить:

    P = I × V = I × (I × R) = I2 × R

    Это уравнение описывает количество мощности, рассеиваемой в цепи.Он также описывает количество потерь. Таким образом, закон Ома говорит нам, что потери будут увеличиваться пропорционально квадрату тока. Таким образом, если мы сохраним постоянное напряжение и удвоим ток, потери увеличатся в четыре раза.

    Чтобы понять важность этого, предположим, что мы пропускаем 1000 ампер тока через цепь с падением напряжения 100 В. Итак, у нас есть мощность 100 кВт. Потери в цепи будут пропорциональны I2 × R, или 10002 × R в этом случае.

    Но, если бы нам нужно было 100 кВт мощности, мы могли бы сделать это по-другому, пропустив через цепь 100 А при напряжении 1000 В.Сопротивление в цепи не изменится, но потери в цепи теперь будут пропорциональны 100 2 × R.

    Таким образом, увеличивая напряжение (и уменьшая ток) в 10 раз, мы уменьшили наши потери в 100 раз. Это объясняет причину, по которой у нас есть сеть переменного тока вместо сети постоянного тока. Помните, что в технологии питания постоянного тока Эдисона напряжение в источнике должно быть близко к напряжению в точке потребления.

    Добавить комментарий

    Ваш адрес email не будет опубликован.