Замена симистора двумя тиристорами: особенности и схемы подключения

Как заменить симистор двумя встречно-параллельными тиристорами. Какие преимущества и недостатки имеет такая замена. Какие схемы подключения тиристоров используются вместо симистора.

Содержание

Что такое симистор и зачем его заменять тиристорами

Симистор — это полупроводниковый прибор, способный проводить ток в обоих направлениях и управляемый током управляющего электрода. По сути симистор представляет собой два встречно-параллельно включенных тиристора с общим управляющим электродом.

Основные причины, по которым может потребоваться замена симистора на два тиристора:

  • Отсутствие подходящего по параметрам симистора
  • Более низкая стоимость пары тиристоров по сравнению с симистором
  • Возможность использовать имеющиеся в наличии тиристоры
  • Необходимость обеспечить более высокую нагрузочную способность

Схема замены симистора двумя тиристорами

Базовая схема замены симистора двумя встречно-параллельными тиристорами выглядит следующим образом:


[Здесь должна быть схема с двумя встречно-параллельными тиристорами]

Основные особенности такого включения:

  • Аноды тиристоров соединяются вместе и подключаются к одному выводу нагрузки
  • Катоды тиристоров соединяются вместе и подключаются ко второму выводу нагрузки
  • Управляющие электроды тиристоров соединяются параллельно
  • На управляющие электроды подаются импульсы управления

Преимущества и недостатки замены симистора тиристорами

Замена симистора парой тиристоров имеет как плюсы, так и минусы:

Преимущества:

  • Более высокая нагрузочная способность за счет параллельного включения
  • Возможность подобрать тиристоры с нужными параметрами
  • Часто более низкая стоимость
  • Возможность замены одного вышедшего из строя тиристора

Недостатки:

  • Более сложная схема подключения
  • Необходимость подбора пары тиристоров с близкими параметрами
  • Больший размер конструкции
  • Чуть более высокие потери мощности

Схемы управления парой тиристоров вместо симистора

Для управления парой встречно-параллельных тиристоров можно использовать следующие основные схемы:


1. Схема с общим управляющим электродом

[Схема с общим управляющим электродом]

В этой схеме управляющие электроды тиристоров соединяются параллельно и на них подаются импульсы управления. Простая схема, но требует более мощного управляющего сигнала.

2. Схема с раздельным управлением

[Схема с раздельным управлением тиристоров]

Здесь для каждого тиристора используется отдельная цепь управления. Позволяет точнее управлять моментом включения каждого тиристора.

3. Схема с оптронной развязкой

[Схема с оптронной развязкой]

Использование оптопар обеспечивает гальваническую развязку силовой и управляющей цепей. Повышает помехозащищенность и безопасность схемы.

Особенности выбора тиристоров для замены симистора

При подборе пары тиристоров для замены симистора следует учитывать следующие моменты:

  • Максимальное напряжение тиристоров должно быть не меньше, чем у заменяемого симистора
  • Максимальный ток каждого тиристора должен быть не менее половины тока симистора
  • Желательно выбирать тиристоры с близкими параметрами
  • Учитывать особенности управления выбранных тиристоров
  • Обеспечить хороший теплоотвод для тиристоров

Практические рекомендации по замене симистора тиристорами

При практической реализации схемы с заменой симистора на пару тиристоров рекомендуется:


  1. Использовать качественные тиристоры от проверенных производителей
  2. Обеспечить надежный электрический контакт в местах соединения тиристоров
  3. Применять радиаторы для отвода тепла от тиристоров
  4. Использовать снабберные RC-цепочки для защиты от помех
  5. Правильно рассчитать цепи управления тиристорами
  6. Проверить работу схемы на пониженном напряжении

Типовые области применения схем с заменой симистора тиристорами

Замена симистора парой тиристоров часто применяется в следующих устройствах:

  • Регуляторы мощности переменного тока
  • Устройства плавного пуска электродвигателей
  • Сварочные аппараты
  • Зарядные устройства
  • Источники бесперебойного питания
  • Преобразователи напряжения

При правильном подборе компонентов и корректной реализации схемы пара тиристоров может успешно заменить симистор во многих приложениях.


Как симистор заменить двумя тиристорами

Мы принимаем формат Sprint-Layout 6! Экспорт в Gerber из Sprint-Layout 6. Конденсаторы Panasonic. Часть 4.


Поиск данных по Вашему запросу:

Схемы, справочники, даташиты:

Прайс-листы, цены:

Обсуждения, статьи, мануалы:

Дождитесь окончания поиска во всех базах.

По завершению появится ссылка для доступа к найденным материалам. ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Урок №31. Тиристор, симистор, динистор.

Работа тиристора на индуктивную нагрузку?


Симистор СТ — тиристор, имеющий практически одинаковые характеристики при различных полярностях напряжения. В зависимости от того, где расположен управляющий электрод, существуют различные способы управления этим СТ.

Крайние p-n-переходы 1-й и 4-й зашунтированы объёмным сопротивлением соответствующих p-областей. Если подать напряжение, то 1-й p-n-переход окажется включенным в обратном направлении. За счёт шунтирования -областью этот переход полностью выкл.

В результате мы получаем структуру обычного тиристора, гдеI — катод, а II — катод. Работа ничем не отличается от работы тиристора. Если подать обратную полярность, то 4-й p-n-переход оказывается под обратным смещением и шунтирован зоной. При этом он полностью выкл. В результате получаем тиристор, у которогоI — катод и II — анод.

Если данную структуру сделать симметричной относительно зоны n, то получаем полностью симметричный прибор одинаковое напряжение включения. Данный прибор можно сделать управляемым.

Для этого нужно в одну из зон поместить дополнительные носители. Если вводить в и , то управление будет несимметричным. Поэтому делают выпрямляющийp-n-переход в каждой из p-областей, соединяемых между собой.

Можно подключить управляющий электрод к средней зоне n. В этом случае также можно управлять процессом включения-выключения. При применении симистора необходимо разобраться, какие сигналы могут подаваться на управляющий электрод. Туда могут подаваться как положительные импульсы, так и разнознаковые. Включение путём увеличения анодного напряжения до напряжения. При таком включении в одну из областей тиристора через управляющий электрод обеспечивают инжекцию неравновесных носителей заряда.

В некоторой области появляется избыточный заряд, и при достижении некоторого критического значения происходит включение тиристора. Этот процесс не может происходить мгновенно, поэтому нужно, чтобы управляющий импульс имел соответствующую амплитуду и длительность. Процесс включения тиристора можно представить в виде двух интервалов времени. Одновременно на тиристоре происходит падение напряжения. Напряжение уменьшается до 0,9.

В дальнейшем происходит накопление избыточных носителей заряда и увеличение тока. В течение т. Переход из точки 1 в точку 2, т. Это время t не зависит от управляющего импульса.

Оно сильно зависит от сопротивления нагрузки и от анодного напряжения. Чем меньше это время, тем меньше теряется мощности. Чем выше частота коммутации, тем больше вероятность перегрева тиристора. Включение тиристора за счёт быстрого изменения анодного напряжения. Через тиристор будет проходить ёмкостный ток, обусловленный наличием барьерных ёмкостей p-n-перехода:.

Тиристор может оказаться в выключенном состоянии только после рассасывания заряда в базовых областях. Если до полного рассасывания этого заряда вновь подать напряжение, то тиристор опять окажется во включённом состоянии, т. При выключении тиристора разрывом цепи рассасывание носителей заряда происходит только за счёт рекомбинации.

Время выключения зависит только от времени жизни носителей заряда. У большинства тиристоров во много раз больше, чем.

Время выключения задаёт частотные характеристики тиристора. Такой процесс выключения не влияет на время выключения. Происходят те же процессы, что и при обрыве анодной цепи. Это связано с тем, что для выключения тиристора необходимо уменьшить потенциал коллекторного перехода.

Файловый архив студентов. Логин: Пароль: Забыли пароль? Email: Логин: Пароль: Принимаю пользовательское соглашение. FAQ Обратная связь Вопросы и предложения.

Добавил: Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам. Твердотельна электроника конспект лекций. Скачиваний: Могут быть двухвыводные симисторы и симисторы с управляющим электродом. Симистор можно заменить двумя тиристорами. Процесс включения тиристора 1.

В этом случае тиристор включается по своей естественной характеристике. Включение с помощью тока управления. Рассмотрим выключение тиристора: 1. Выключение тиристора путём разрыва анодной цепи. Выключение тиристора за счёт подачи обратного напряжения. Тиристор — прибор с неполным управлением.


5.3 Симметричные тиристоры (симисторы)

В самом деле, реле это же сплошной гемор. Во первых они дорогие, во вторых, чтобы запитать обмотку реле нужен усиливающий транзистор, так как слабая ножка микроконтроллера не способна на такой подвиг. Ну, а в третьих, любое реле это весьма громоздкая конструкция, особенно если это силовое реле, расчитанное на большой ток. Если речь идет о переменном токе, то лучше использовать симисторы или тиристоры. Что это такое? А сейчас расскажу. Если на пальцах, то тиристор похож на диод , даже обозначение сходное.

Опубликовано: 1 июня Придется мощный диодный мост ставить. Схем полно, в том числе и на тиристорах. Цитата; Наверх.

Тиристорные коммутаторы нагрузки (10 схем)

Запросить склады. Перейти к новому. Замена симистора тиристорным ключом. Подскажите пожалуйста! Ввиду отсутствия симисторов на большие токи, возникла необходимость замены их тиристорами. Правильно ли я мыслю? Будет ли работать? Может что добавить нужно или изменить? Заранее благодарен.

Симисторы: принцип работы, проверка и включение, схемы

Замена симистора двумя тиристорами , Управление тиристорами. Подписка на тему Сообщить другу Версия для печати. Дата 3. Для коммутации первичной обмотки сварочного тр-ра для контактной сварки возникла необходимость замены симистора ТС на два тиристора 2ТВ2, включённых встречно-параллельно лежат без дела несколько штук Как осуществить управление двумя тиристорами, чтобы не было ложных срабатываний? Рассматриваю вариант с двумя вторичными обмотками и диодными мостами для управления тиристорами.

Какие дополнительные качества можно при этом получить? Различают диодные неуправляемые и триодные управляемые тиристоры.

Тиристоры и симисторы в ИИП

Тиристор Симистор Тиристор Тиристор — это переключающий полупроводниковый прибор, пропускающий ток в одном направлении. Этот радиоэлемент часто сравнивают с управляемым диодом и называют полупроводниковым управляемым вентилем Silicon Controlled Rectifier, SCR. Тиристор имеет три вывода, один из которых — управляющий электрод, можно сказать, «спусковой крючок» — используется для резкого перевода тиристора во включенное состояние. Тиристор совмещает в себе функции выпрямителя, выключателя и усилителя. Часто он используется как регулятор, главным образом, когда схема питается переменным напряжением. Нижеследующие пункты раскрывают четыре основных свойства тиристора:.

Симистор принцип работы

Однопереходный транзистор. Вниманию телезрителей предлагаю весьма полезный материал, по применению полупроводниковых транзисторов в электронных схемах. Это азбука транзисторной схемотехники. Помимо биполярных и полевых транзисторов существует так называемый однопереходный транзистор ОТ , представляющий собой кристалл полупроводника, в котором создан p-n переход, называемый инжектором 1. Этим переходом кристалл полупроводника разделяется как бы на две области базы. Поэтому однопереходный транзистор имеет и другое широко распространённое название — двухбазовый диод. Принцип действия транзистора основан на изменении объёмного сопротивления полупроводника базы при инжекции.

Пользователь Pank Anarxist задал вопрос в категории Техника и получил на него 4 ответа.

Что такое симистор (триак) и как он работает. Проверка мультиметром

Теория и практика. Кейсы, схемы, примеры и технические решения, обзоры интересных электротехнических новинок. Уроки, книги, видео. Профессиональное обучение и развитие.

Существенный недостаток тиристоров заключается в том, что это однополупериодные элементы, соответственно, в цепях переменного тока они работают с половинной мощностью. Избавиться от этого недостатка можно используя схему встречно-параллельного включения двух однотипных устройств или установив симистор. Давайте разберемся, что представляет собой этот полупроводниковый элемент, принцип его функционирования, особенности, а также сферу применения и способы проверки. Это один из видов тиристоров, отличающийся от базового типа большим числом p-n переходов, и как следствие этого, принципом работы он будет описан ниже. Характерно, что в элементной базе некоторых стран данный тип считается самостоятельным полупроводниковым устройством. Эта незначительная путаница возникла вследствие регистрации двух патентов, на одно и то же изобретение.

На страницу Пред.

Регистрация Вход. Ответы Mail. Вопросы — лидеры Задача по физике 1 ставка. Провод КСПВ, вопрос к электрикам 1 ставка. Мощность рассеивания транзистора? Зачем электродрели нужен редуктор, точнее большая шестеренка?

Современные тенденции в технике любого типа и вида — замена механических и электромеханических элементов на электронные или полупроводниковые. Они имеют более миниатюрные размеры, работают надежнее, позволяют реализовать более широкую функциональность. О том, что это за прибор, как он работает и для чего используется и будем говорить. Симистор — это симметричный тиристор.


Замена тиристора на симистор — Яхт клуб Ост-Вест

Автор На чтение 15 мин Просмотров 35 Опубликовано

Тиристоры нашли широкое применение в полупроводниковых устройствах и преобразователях. Различные источники питания, частотные преобразователи, регуляторы, возбудительные устройства для синхронных двигателей и много других устройств строились на тиристорах, а в последнее время их вытесняют преобразователи на транзисторах. Основной задачей для тиристора является включение нагрузки в момент подачи управляющего сигнала. В этой статье мы рассмотрим, как управлять тиристорами и симисторами.

Определение

Тиристор (тринистор) – это полупроводниковый полууправляемый ключ. Полууправляемый – значит, что вы можете только включать тиристор, отключается он только при прерывании тока в цепи или если приложить к нему обратное напряжение.

Он, подобно диоду, проводит ток только в одном направлении. То есть для включения в цепь переменного тока для управления двумя полуволнами нужно два тиристора, для каждой по одному, хотя не всегда. Тиристор состоит из 4 областей полупроводника (p-n-p-n).

Другой подобный прибор называется симистор – двунаправленный тиристор. Его основным отличием является то, что ток он может проводить в обе стороны. Фактически он представляет собой два тиристора соединённых параллельно навстречу друг другу.

Основные характеристики

Как и любых других электронных компонентов у тиристоров есть ряд характеристик:

Падение напряжения при максимальном токе анода (VT или Uос).

Прямое напряжение в закрытом состоянии (VD(RM) или Uзс).

Обратное напряжение (VR(PM) или Uобр).

Прямой ток (IT или Iпр) – это максимальный ток в открытом состоянии.

Максимально допустимый прямой ток (ITSM) — это максимальный пиковый ток в открытом состоянии.

Обратный ток (IR) — ток при определенном обратном напряжении.

Постоянный ток в закрытом состоянии при определенном прямом напряжении (ID или Iзс).

Постоянное отпирающее напряжение управления (VGT или UУ).

Ток управления (IGT).

Максимальный ток управления электрода IGM.

Максимально допустимая рассеиваемая мощность на управляющем электроде (PG или Pу)

Принцип работы

Когда на тиристор подают напряжение он не проводит ток. Есть два способа включит его – подать напряжение между анодом и катодом достаточное для открытия, тогда его работа ничем не будет отличаться от динистора.

Другой способ – это подать кратковременный импульс на управляющий электрод. Ток открытия тиристора лежит в пределах 70-160 мА, хотя на практике эта величина, как и напряжение которое нужно приложить к тиристору зависит от конкретной модели и экземпляра полупроводникового прибора и даже от условий, в которых он работает, таких, например, как температура окружающей среды.

Кроме управляющего тока, есть такой параметр как ток удержания – это минимальный ток анода для удержания тиристора в открытом состоянии.

После открытия тиристора управляющий сигнал можно отключать, тиристор будет открыт до тех пор, пока через него протекает прямой ток и подано напряжение. То есть в цепи переменного тиристор будет открыт в течении той полуволны напряжение которой смещает тиристор в прямом направлении. Когда напряжение устремится к нулю, снизится и ток. Когда ток в цепи упадет ниже величины тока удержания тиристора – он закроется (выключится).

Полярность управляющего напряжения должна совпадать с полярностью напряжения между анодом и катодом, что вы наблюдаете на осциллограммах выше.

Управление симистором аналогично хоть и имеет некоторые особенности. Для управления симистором в цепи переменного тока нужно два импульса управляющего напряжения – на каждую полуволну синусоиды соответственно.

После подачи управляющего импульса в первой полуволне (условно положительной) синусоидального напряжения ток через симистор будет протекать до начала второй полуволны, после чего он закроется, как и обычный тиристор. После этого нужно подать еще один управляющий импульс для открытия симистора на отрицательной полуволне. Это наглядно проиллюстрировано на следующих осциллограммах.

Полярность управляющего напряжения должна соответствовать полярности приложенного напряжения между анодом и катодом. Из-за этого возникают проблемы при управлении симисторами с помощью цифровых логических схем или от выходов микроконтроллера. Но это легко решается путем установки симисторного драйвера, о чем мы поговорим позже.

Распространенные схемы управления тиристорами или симисторами

Самой распространенной схемой является симисторный или тиристорный регулятор.

Здесь тиристор открывается после того как на конденсаторе будет достаточная величина для его открытия. Момент открытия регулируется с помощью потенциометра или переменного резистора. Чем больше его сопротивление – тем медленнее заряжается конденсатор. Резистор R2 ограничивает ток через управляющий электрод.

Эта схема регулирует оба полупериода, то есть вы получаете полную регулировку мощности почти от 0% и почти до 100%. Это удалось достичь, установив регулятор в диодном мосте, таким образом регулируется одна из полуволн.

Упрощенная схема изображена ниже, здесь регулируется лишь половина периода, вторая полуволна проходит без изменения через диод VD1. Принцип работы аналогичен.

Симисторный регулятор без диодного моста позволяет управлять двумя полуволнами.

По принципу действия почти аналогична предыдущим, но построена на симисторе с её помощью регулируются уже обе полуволны. Отличия заключаются в том, что здесь импульс управления подаётся с помощью двунаправленного динистора DB3, после того как конденсатор зарядится до нужного напряжения, обычно это 28-36 Вольт. Скорость зарядки также регулируется переменным резистором или потенциометром. Такая схема реализована в большинстве бытовых диммеров.

Такие схемы регулировки напряжения называется СИФУ – система импульсного фазового управления.

На рисунке выше изображен вариант управления симистором с помощью микроконтроллера, на примере популярной платформы Arduino. Симисторный драйвер состоит из оптосимистора и светодиода. Так как в выходной цепи драйвера установлен оптосимистор на управляющий электрод всегда подаётся напряжение нужной полярности, но здесь есть некоторые нюансы.

Дело в том, что для регулировки напряжения с помощью симистора или тиристора нужно подавать управляющий сигнал в определенный момент времени, так чтобы срез фазы происходил до нужной величины. Если наугад стрелять управляющими импульсами – схема работать конечно будет, но регулировок добиться не выйдет, поэтому нужно определять момент перехода полуволны через ноль.

Так как для нас не имеет значения полярность полуволны в настоящий момент времени – достаточно просто отслеживать момент перехода через ноль. Такой узел в схеме называют детектор нуля или нуль-детектор, а в англоязычных источниках «zero crossing detector circuit» или ZCD. Вариант такой схемы с детектором перехода через ноль на транзисторной оптопаре выглядит следующим образом:

Оптодрайверов для управления симисторами есть множество, типовые – это линейка MOC304x, MOC305x, MOC306X, произведенные компанией Motorola и другими. Более того – эти драйверы обеспечивают гальваническую развязку, что убережет ваш микроконтроллер в случае пробоя полупроводникового ключа, что вполне возможно и вероятно. Также это повысит безопасность работы с цепями управления, полностью разделив цепь на «силовую» и «оперативную».

Заключение

Мы рассказали базовые сведения о тиристорах и симисторах, а также управлении ими в цепях с «переменкой». Стоит отметить, что мы не затрагивали тему запираемых тиристоров, если вас интересует этот вопрос – пишите комментарии и мы рассмотрим их подробнее. Также не были рассмотрены нюансы использования и управления тиристорами в силовых индуктивных цепях. Для управления «постоянкой» лучше использовать транзисторы, поскольку в этом случае вы решаете, когда ключ откроется, а когда он закроется, повинуясь управляющему сигналу…

Есть необходимость с помощью реле включать электроклапан для подачи воды от стиральной машинки работающий на переменке 220В, и есть вот такая готовая схема релле. как в неё поставить вместо КУ202 симистор типа ВТ131-ВТ136? Нужно схемное решение.

Просто так, без серьёзного изменения схемы поменять не получится. Для более лёгкого выхода из положения проще поставить оптосимистор или оптодинистор, или использовать реле. Проблема в том, что вся схема завязана на тиристор и активную нагрузку, лампочку. Или Д

В замене нет необходимости, ибо показанная схема коммутирует переменку 220В.

sergey_sav написал :
В замене нет необходимости, ибо показанная схема коммутирует переменку 220В.

Обясни, каким макаром? на входе стоит мост. А при подключении электроклапана он дребезжит как диммер.

Medtech написал :
Просто так, без серьёзного изменения схемы поменять не получится. Для более лёгкого выхода из положения проще поставить оптосимистор или оптодинистор, или использовать реле. Проблема в том, что вся схема завязана на тиристор и активную нагрузку, лампочку. Или Д

Огромное спасибо за ссылочку! Всё нашёл и нормально расписано.

sergey_sav , Не, оно выпрямленное пульсирующее после моста на лампочку дает, ей-то безразлично.

Существенный недостаток тиристоров заключается в том, что это однополупериодные элементы, соответственно, в цепях переменного тока они работают с половинной мощностью. Избавиться от этого недостатка можно используя схему встречно-параллельного включения двух однотипных устройств или установив симистор. Давайте разберемся, что представляет собой этот полупроводниковый элемент, принцип его функционирования, особенности, а также сферу применения и способы проверки.

Что такое симистор?

Это один из видов тиристоров, отличающийся от базового типа большим числом p-n переходов, и как следствие этого, принципом работы (он будет описан ниже). Характерно, что в элементной базе некоторых стран данный тип считается самостоятельным полупроводниковым устройством. Эта незначительная путаница возникла вследствие регистрации двух патентов, на одно и то же изобретение.

Описание принципа работы и устройства

Основное отличие этих элементов от тиристоров заключается в двунаправленной проводимости электротока. По сути это два тринистора с общим управлением, включенных встречно-параллельно (см. А на рис. 1) .

Рис. 1. Схема на двух тиристорах, как эквивалент симистора, и его условно графическое обозначение

Это и дало название полупроводниковому прибору, как производную от словосочетания «симметричные тиристоры» и отразилось на его УГО. Обратим внимание на обозначения выводов, поскольку ток может проводиться в оба направления, обозначение силовых выводов как Анод и Катод не имеет смысла, потому их принято обозначать, как «Т1» и «Т2» (возможны варианты ТЕ1 и ТЕ2 или А1 и А2). Управляющий электрод, как правило, обозначается «G» (от английского gate).

Теперь рассмотрим структуру полупроводника (см. рис. 2.) Как видно из схемы, в устройстве имеется пять переходов, что позволяет организовать две структуры: р1-n2-p2-n3 и р2-n2-p1-n1, которые, по сути, являются двумя встречными тринисторами, подключенными параллельно.

Рис. 2. Структурная схема симистора

Когда на силовом выводе Т1 образуется отрицательная полярность, начинается проявление тринисторного эффекта в р2-n2-p1-n1, а при ее смене – р1-n2-p2-n3.

Заканчивая раздел о принципе работы приведем ВАХ и основные характеристики прибора.

ВАХ симистора

Обозначение:

  • А – закрытое состояние.
  • В – открытое состояние.
  • UDRM (UПР) – максимально допустимый уровень напряжения при прямом включении.
  • URRM (UОБ) – максимальный уровень обратного напряжения.
  • IDRM (IПР) – допустимый уровень тока прямого включения
  • IRRM (IОБ) – допустимый уровень тока обратного включения.
  • IН (IУД) – значения тока удержания.

Особенности

Чтобы иметь полное представление о симметричных тринисторах, необходимо рассказать про их сильные и слабые стороны. К первым можно отнести следующие факторы:

  • относительно невысокая стоимость приборов;
  • длительный срок эксплуатации;
  • отсутствие механики (то есть подвижных контактов, которые являются источниками помех).

В число недостатков приборов входят следующие особенности:

  • Необходимость отвода тепла, примерно из расчета 1-1,5 Вт на 1 А, например, при токе 15 А величина мощности рассеивания будет около 10-22 Вт, что потребует соответствующего радиатора. Для удобства крепления к нему у мощных устройств один из выводов имеет резьбу под гайку.

Симистор с креплением под радиатор

  • Устройства подвержены влиянию переходных процессов, шумов и помех;
  • Не поддерживаются высокие частоты переключения.

По последним двум пунктам необходимо дать небольшое пояснение. В случае высокой скорости коммутации велика вероятность самопроизвольной активации устройства. Помеха в виде броска напряжения также может привести к этому результату. В качестве защиты от помех рекомендуется шунтировать прибор RC цепью.

RC-цепочка для защиты симистора от помех

Помимо этого рекомендуется минимизировать длину проводов ведущих к управляемому выводу, или в качестве альтернативы использовать экранированные проводники. Также практикуется установка шунтирующего резистора между выводом T1 (TE1 или A1) и управляющим электродом.

Применение

Этот тип полупроводниковых элементов первоначально предназначался для применения в производственной сфере, например, для управления электродвигателями станков или других устройств, где требуется плавная регулировка тока. Впоследствии, когда техническая база позволила существенно уменьшить размеры полупроводников, сфера применения симметричных тринисторов существенно расширилась. Сегодня эти устройства используются не только в промышленном оборудовании, а и во многих бытовых приборах, например:

  • зарядные устройства для автомобильных АКБ;
  • бытовое компрессорное оборудования;
  • различные виды электронагревательных устройств, начиная от электродуховок и заканчивая микроволновками;
  • ручные электрические инструменты (шуроповерт, перфоратор и т.д.).

И это далеко не полный перечень.

Одно время были популярны простые электронные устройства, позволяющие плавно регулировать уровень освещения. К сожалению, диммеры на симметричных тринисторах не могут управлять энергосберегающими и светодиодными лампами, поэтому эти приборы сейчас не актуальны.

Как проверить работоспособность симистора?

В сети можно найти несколько способ, где описан процесс проверки при помощи мультиметра, те, кто описывал их, судя по всему, сами не пробовали ни один из вариантов. Чтобы не вводить в заблуждение, следует сразу заметить, что выполнить тестирование мультиметром не удастся, поскольку не хватит тока для открытия симметричного тринистора. Поэтому, у нас остается два варианта:

  1. Использовать стрелочный омметр или тестер (их силы тока будет достаточно для срабатывания).
  2. Собрать специальную схему.

Алгоритм проверки омметром:

  1. Подключаем щупы прибора к выводам T1 и T2 (A1 и A2).
  2. Устанавливаем кратность на омметре х1.
  3. Проводим измерение, положительным результатом будет бесконечное сопротивление, в противном случае деталь «пробита» и от нее можно избавиться.
  4. Продолжаем тестирование, для этого кратковременно соединяем выводы T2 и G (управляющий). Сопротивление должно упасть примерно до 20-80 Ом.
  5. Меняем полярность и повторяем тест с пункта 3 по 4.

Если в ходе проверки результат будет таким же, как описано в алгоритме, то с большой вероятностью можно констатировать, что устройство работоспособное.

Заметим, что проверяемую деталь не обязательно демонтировать, достаточно только отключить управляющий вывод (естественно, обесточив предварительно оборудование, где установлена деталь, вызывающая сомнение).

Необходимо заметить, что данным способом не всегда удается достоверно проверку, за исключением тестирования на «пробой», поэтому перейдем ко второму варианту и предложим две схемы для тестирования симметричных тринисторов.

Схему с лампочкой и батарейкой мы приводить не будем в виду того, что таких схем достаточно в сети, если вам интересен этот вариант, можете посмотреть его в публикации о тестировании тринисторов. Приведем пример более действенного устройства.

Схема простого тестера для симисторов

Обозначения:

  • Резистор R1 – 51 Ом.
  • Конденсаторы C1 и С2 – 1000 мкФ х 16 В.
  • Диоды – 1N4007 или аналог, допускается установка диодного моста, например КЦ405.
  • Лампочка HL – 12 В, 0,5А.

Можно использовать любой трансформатор с двумя независимыми вторичными обмотками на 12 Вольт.

Алгоритм проверки:

  1. Устанавливаем переключатели в исходное положение (соответствующее схеме).
  2. Производим нажатие на SB1, тестируемое устройство открывается, о чем сигнализирует лампочка.
  3. Жмем SB2, лампа гаснет (устройство закрылось).
  4. Меняем режим переключателя SA1 и повторяем нажатие на SB1, лампа снова должна зажечься.
  5. Производим переключение SA2, нажимаем SB1, затем снова меня ем положение SA2 и повторно жмем SB1. Индикатор включится, когда на затвор попадет минус.

Теперь рассмотрим еще одну схему, только универсальную, но также не особо сложную.

Схема для проверки тиристоров и симисторов

Обозначения:

  • Резисторы: R1, R2 и R4 – 470 Ом; R3 и R5 – 1 кОм.
  • Емкости: С1 и С2 – 100 мкФ х 10 В.
  • Диоды: VD1, VD2, VD5 и VD6 – 2N4148; VD2 и VD3 – АЛ307.

В качестве источника питания используется батарейка на 9V, по типу Кроны.

Тестирование тринисторов производится следующим образом:

  1. Переключатель S3, переводится в положении, как продемонстрировано на схеме (см. рис. 6).
  2. Кратковременно производим нажатие на кнопку S2, тестируемый элемент откроется, о чем просигнализирует светодиод VD
  3. Меняем полярность, устанавливая переключатель S3 в среднее положение (отключается питание и гаснет светодиод), потом в нижнее.
  4. Кратковременно жмем S2, светодиоды не должны загораться.

Если результат будет соответствовать вышеописанному, значит с тестируемым элементом все в порядке.

Теперь рассмотрим, как проверить с помощью собранной схемы симметричные тринисторы:

  • Выполняем пункты 1-4.
  • Нажимаем кнопку S1- загорается светодиод VD

То есть, при нажатии кнопок S1 или S2 будут загораться светодиоды VD1 или VD4, в зависимости от установленной полярности (положения переключателя S3).

Схема управления мощностью паяльника

В завершении приведем простую схему, позволяющую управлять мощностью паяльника.

Простой регулятор мощности для паяльника

Обозначения:

  • Резисторы: R1 – 100 Ом, R2 – 3,3 кОм, R3 – 20 кОм, R4 – 1 Мом.
  • Емкости: С1 – 0,1 мкФ х 400В, С2 и С3 – 0,05 мкФ.
  • Симметричный тринистор BTA41-600.

Приведенная схема настолько простая, что не требует настройки.

Теперь рассмотрим более изящный вариант управления мощностью паяльника.

Схема управления мощностью на базе фазового регулятора

Обозначения:

  • Резисторы: R1 – 680 Ом, R2 – 1,4 кОм, R3 – 1,2 кОм, R4 и R5 – 20 кОм (сдвоенное переменное сопротивление).
  • Емкости: С1 и С2 – 1 мкФ х 16 В.
  • Симметричный тринистор: VS1 – ВТ136.
  • Микросхема фазового регулятора DA1 – KP1182 ПМ1.

Настройка схемы сводится к подбору следующих сопротивлений:

  • R2 – с его помощью устанавливаем необходимую для работы минимальную температуру паяльника.
  • R3 – номинал резистора позволяет задать температуру паяльника, когда он находится на подставке (срабатывает переключатель SA1),

как проверить, принцип работы, характеристики

Современные тенденции в технике любого типа и вида — замена механических и электромеханических элементов на электронные или полупроводниковые. Они имеют более миниатюрные размеры, работают надежнее, позволяют реализовать более широкую функциональность. Во многих электронный устройствах применяется  тиристор, или его подвид — симистор. О том, что это за прибор, как он работает и для чего используется и будем говорить.

Содержание статьи

Что это за устройство, его обозначение

Симистор — это симметричный тиристор. В англоговорящих странах используется название triak, встречается и у нас транслитерация этого названия — триак. Понять принцип его работы несложно, если знаете как работает тиристор. Если коротко, тиристор пропускает ток только в одном направлении. И в этом он похож на диод, но ток проходит только при появлении сигнала на управляющем выводе. То есть, ток проходит только при определенных условиях. Прекращается его «подача» при снижении силы тока ниже определенного значения или разрывом цепи (даже кратковременным). Так как симистор, по сути, двусторонний тиристор, при появлении управляющего сигнала он пропускает ток в обоих направлениях направления.

В открытом состоянии симистор проводит ток в обоих направлениях.

На схеме он изображается как два включенных навстречу друг на другу тиристора с общим управляющим выводом.

Внешний вид симистора и его обозначение на схемах

Симистор имеет три вывода: два силовых и один управляющий. Через силовые выводы можно пропускать ток высокого напряжение, на управляющий подаются низковольтные сигналы. Пока на управляющем выводе не появится потенциал, ток не будет протекать ни в одном направлении.

Где используется и как выглядит

Чаще всего симистор используется для коммутации в цепях переменного тока (подачи питания на нагрузку). Это удобно, так как при помощи напряжения малого номинала можно управлять высоковольтным питанием. В некоторых схемах ставят симистор вместо обычного электромеханического реле. Плюс очевиден — нет физического контакта, что делает включение питания более надежным. Второе достоинство — относительно невысокая цена. И это при значительном времени наработки и высокой надежности схемы.

Минусы тоже есть. Приборы могут сильно нагреваться под нагрузкой, поэтому необходимо обеспечить отвод тепла. Мощные симисторы (называют обычно «силовые») монтируются на радиаторы. Еще один минус — напряжение на выходе симистора пилообразное. То есть подключаться может только нагрузка, которая не предъявляет высоких требований к качеству электропитания. Если нужна синусоида, такой способ коммутации не подходит.

Заменить симистор можно двумя тиристорами. Но надо правильно подобрать их по параметрам, да и схему управления придется переделывать — в таком варианте управляющих вывода два

По внешнему виду отличить тиристор и симистор нереально. Даже маркировка может быть похожей — с буквой «К». Но есть и серии, у которых название начинается с «ТС», что означает «тиристор симметричный». Если говорить о цоколевке, то это то, что отличает тиристор от симистора. У тиристора есть анод, катод и управляющий вывод. У симистора названия «анод» и «катод» неприменимы, так как вывод может быть и  катодом, и анодом. Так что их обычно называют просто «силовой вывод» и добавляют к нему цифру. Тот который левее — это первый, который правее — второй. Управляющий электрод может называться затвором (от английского слова Gate, которым обозначается этот вывод).

Принцип работы симистора

Давайте разберем, как работает симистор на примере простой схемы, в которой переменное напряжение подается на нагрузку через электронный ключ на базе этого элемента. В качестве нагрузки представим лампочку — так удобнее будет объяснять принцип работы.

Схема реле на симисторе (триаке)

В исходном положении прибор находится в запертом состоянии, ток не проходит, лампочка не горит. При замыкании ключа SW1 питание подается на на затвор G. Симистор переходит в открытое состояние, пропускает через себя ток, лампочка загорается. Поскольку схема работает от сети переменного напряжения, полярность на контактах симистора постоянно меняется. Вне зависимости от этого, лампочка горит, так как прибор пропускает ток в обоих направлениях.

При использовании в качестве питания источника переменного напряжения, ключ SW1 должен быть замкнуть все время, пока необходимо чтобы нагрузка была в работе. При размыкании контакта во время очередной смены полярности цепь разрывается, лампочка гаснет. Зажжется она снова только после замыкания ключа.

Если в той же схеме использовать источник постоянного тока, картина изменится. После того как ключ SW1 замкнется, симистор откроется, потечет ток, лампочка загорится. Дальше этот ключ может возвращаться в разомкнутое состояние. При этом цепь питания нагрузки (лампочки) не разрывается, так как симистор остается в открытом состоянии. Чтобы отключить питание, надо либо понизить ток ниже величины удержания (одна из технических характеристик), либо кратковременно разорвать цепь питания.

Сигналы управления

Управляется симистор не напряжением, а током. Для открытия на затвор надо подать ток определенного уровня. В характеристиках указан минимальный ток открывания — вот это и есть нужная величина. Обычно ток открывания совсем небольшой. Например, для коммутации нагрузки на 25 А, подается управляющий сигнал порядка 2,5 мА. При этом, чем выше напряжение, подаваемое на затвор, тем быстрее открывается переход.

Схема подачи напряжения для управления симистором

Чтобы перевести симистор в открытое состояние, напряжение должно подаваться между затвором и условным катодом. Условным, потому что в разные моменты времени, катодом является то один силовой выход, то другой.

Полярность управляющего напряжения, как правило, должна быть либо отрицательной, либо должна совпадать с полярностью напряжения на условном аноде. Поэтому часто используется такой метод управления симистором, при котором сигнал на управляющий электрод подаётся с условного анода через токоограничительный резистор и выключатель. Управлять симистором часто удобно, задавая определённую силу тока управляющего электрода, достаточную для отпирания. Некоторые типы симисторов (так называемые четырёхквадрантные симисторы) могут отпираться сигналом любой полярности, хотя при этом может потребоваться больший управляющий ток (а именно, больший управляющий ток требуется в четвёртом квадранте, то есть когда напряжение на условном аноде имеет  отрицательную полярность, а на управляющем электроде —  положительную).

Как проверить симистор

Привычка проверять все элементы пред пайкой приходит с годами. Проверить симистор можно при помощи мультиметра и при помощи небольшой проверочной схемы с батарейкой и лампочкой. В любом случае надо сначала разобраться, как располагаются выводы на вашем приборе. Сделать это можно по цоколевке каждой конкретной серии. Для этого в поисковик забиваем маркировку, которая есть на корпусе. В некоторых случаях можно добавить «цоколевка». Если есть русскоязычные описания, будет несколько проще. Если на русском информации нет, придется искать в интернете. Заменяем слово «цоколевка» словом «datasheet». Иногда можно ввести русскими буквами «даташит». В переводе это «техническая спецификация». По имеющимся в описании таблицам и рисункам легко понять, где расположены силовые выходы (T1 и T2), а где затвор (G).

Пример цоколевки. Все можно понять и без знания языка

С мультиметром

Проверка мультиметром симистора основана на принципе его работы. Берем обычный мультиметр, ставим его в положение прозвонки. Силовые выходы между собой должны звониться в обоих направлениях. Прикасаемся щупами к выходам Т1 и Т2. На экране должны высвечиваться цифры. Это сопротивление перехода. Если поменять щупы местами, сопротивление может измениться, но ни обрыва, ни короткого быть не должно.

Проверяем мультиметром

Зато между затвором и силовыми выходами должен быть «обрыв» (бесконечно большое сопротивление). То есть, «звониться» они не должны при любом расположении щупов. Проверив сопротивление между разными выводами, можно сделать вод о работоспособности симистора.

С лампочкой и батарейкой

Для проверки симистора без мультиметра придется собрать простенькую проверочную схему с питанием от девятивольтовой батарейки «Крона». Нужны будут три провода длиной около 20 см. Провода желательно гибкие, многожильные. Проще, если они будут разных цветов. Лучше всего красный, синий и любой другой. Пусть будет желтый. Синий разрезаем пополам, припаиваем лампочку накаливания на 9 В (или смотрите по напряжению, которое выдает ваша батарейка). Один кусок провода на резьбу, другой — на центральный вывод с нижней части цоколя. Чтобы работать было удобнее, на каждый провод лучше припаять «крокодилы» — пружинные зажимы.

Как проверить симистор без мультиметра

Собираем схему. Подключаем провода в таком порядке:

  • Красный одним концом на плюс кроны, вторым — на вывод Т1.
  • Синий — на минус кроны и на Т2.
  • Желтый провод одним краем цепляем к затвору G.

После того как собрали схему, лампочка не должна гореть. Если она горит, симистор пробит. Если не горит, проверяем дальше. Свободным концом желтого провода кратковременно прикасаемся к Т2. Лампочка должна загореться. Это значит, что симметричный тиристор открылся. Чтобы его закрыть, надо коснуться проводом вывода Т1. Если все работает, прибор исправен.

Как избежать ложных срабатываний

Так как для срабатывания симистора достаточно небольшого потенциала, возможны ложные срабатывания. В некоторых случаях они не страшны, но могут привести и к поломке. Поэтому лучше заранее принять меры. Есть несколько способов уменьшить вероятность ложных включений:

  • Уменьшить длину линии к затвору, соединять цепь управления — затвор и Т1 — напрямую. Если это невозможно, использовать экранированный кабель или витую пару.
  • Снизить чувствительность затвора. Для этого параллельно ставят сопротивление (до 1 кОм).

    Практически во всех схемах с симисторами в цепи затвора есть резистор, уменьшающий чувствительность прибора

  • Использовать триаки с высокой шумовой устойчивостью. В маркировке у них добавлена буква «Н», от «нечувствительный». Называют их «симисторы ряда «Н». Отличаются они тем, что минимальный ток перехода у них намного выше. Например, симистор BT139-600H имеет ток перехода IGT min =10mA.

Как уже говорили, симистор управляется током. Это дает возможность подключать его напрямую к выходам микросхем. Есть одно ограничение — ток не должен превышать максимально допустимый. Обычно это 25 мА.

Особенности монтажа

Так же как и тиристоры, симисторы при работе греются, поэтому при сборке необходимо обеспечивать отвод тепла. Если нагрузка маломощная или питание импульсное (кратковременное подключение на промежуток менее 1 сек) допускается монтаж без радиатора. В остальных случаях необходимо обеспечить качественный контакт с охлаждающим устройством.

Есть три способа фиксации симистора на радиаторе: клепка, на винте и на зажиме. Первый вариант при самостоятельном монтаже не рекомендуется, так как существует высокая вероятность повреждения корпуса. Наиболее простой способ монтажа в домашних условиях — винтовой.

Порядок монтажа симистора

Перед тем, как начинают монтаж, осматривают корпус прибора и радиатора (охладителя) на предмет царапин и сколов. Их быть не должно. Затем поверхность протирают от загрязнений чистой ветошью, обезжиривают, накладывают термопасту. После чего вставляют в отверстие с резьбой в радиаторе и зажимают шайбу. Крутящий момент должен быть  0.55Nm- 0.8Nm. То есть, необходимо обеспечить должный контакт, но перетягивать тоже нельзя, так как есть риск повредить корпус.

Схема регулятора мощности для индуктивной нагрузки на симисторе

Обратите внимание, что монтаж симистора производится до пайки. Это снижает механическую нагрузку на отводы прибора. И еще: при установке следите за тем, чтобы корпус плотно прижимался к охладителю.

Эквиваленты транзистора, динистора, тиристора, варикапа, замена деталей

В современных радиоэлектронных устройствах используется весьма широкий ассортимент самых разнообразных электронных приборов. Порой отсутствие одного или нескольких таких элементов может затормозить или даже прервать выполнение работы по монтажу или макетированию схемы.

Очень часто встречаются ситуации, когда необходимо один элемент заменить другим. Если речь идет о простой замене одного номинала резистора или конденсатора на другой, то решение задачи замены или подбора заменяющего номинала очевидно. Менее очевидны замены радиоэлементов, имеющих специфические, только им присущие свойства.

Ниже будут рассмотрены вопросы замены некоторых специальных полупроводниковых приборов их эквивалентами, выполненными из более доступных элементов.

В импульсной технике широко используют управляемые и неуправляемые коммутирующие элементы, имеющие вольт-амперную характеристику с N- или S-образным участком. Это лавинные транзисторы, газовые разрядники, динисторы, тиристоры, симисторы, однопереходные транзисторы, лямбда-диоды, туннельные диоды, инжекционно-полевые транзисторы и другие элементы.

В релаксационных генераторах импульсов, различных преобразователях электрических и неэлектрических величин в частоту широко используют биполярные лавинные транзисторы. Следует отметить, что специально такие транзисторы почти не выпускают. На практике в этих целях используют обычные транзисторы в необычном включении или режиме эксплуатации.

Эквивалент лавинного транзистора и динистора

Лавинный транзистор — полупроводниковый прибор, работающий в режиме лавинного пробоя. Такой пробой обычно возникает при напряжении, превышающем предельно допустимое значение.

Не допустить теплового пробоя (необратимого повреждения) транзистора можно при ограничении тока через транзистор (подключением высокоомной нагрузкой).

Лавинный пробой транзистора может наступать в «прямом» и «инверсном» включении транзистора. Напряжение лавинного пробоя при инверсном включении (полярность подключения полупроводникового прибора противоположна общепринятой, рекомендованной) обычно ниже, чем для «прямого» включения.

Вывод базы транзистора часто не используется (не подключается к другим элементам схемы). В ряде случаев базовый вывод соединяют с эмиттером через высокоом-ный резистор (сотни кОм — ед. МОм). Это позволяет в некоторых пределах регулировать величину напряжения лавинного пробоя.

На рис. 1 приведена схема равноценной замены «лавинного» транзистора интегрального прерывателя К101КТ1 ее дискретными аналогами. Интересно отметить, что при ближайшем рассмотрении эта схема тождественна эквивалентной схеме динистора (рис. 1), тиристора (рис. 2) и однопереходного транзистора (рис. 4).

Отметим попутно, что и вид вольт-амперных характеристик всех этих полупроводниковых приборов имеет общие характерные особенности. На их вольт-амперных характеристиках имеется S-образный участок, участок с так называемым «отрицательным» динамическим сопротивлением. Благодаря такой особенности вольт-амперной характеристики перечисленные приборы могут использоваться для генерации электрических колебаний.

Рис. 1. Аналог лавинного транзистора и динистора.

Эквивалент тиристора

Тиристоры, динисторы и им подобные элементы способны при весьма незначительных внутренних потерях управлять большими мощностями, подводимыми к нагрузке.

Тиристоры — приборы, обладающие двумя устойчивыми состояниями: состоянием низкой проводимости (проводимость отсутствует, прибор заперт) и состоянием высокой проводимости (проводимость близка к нулю, прибор открыт). Представители класса тиристоров [Вишневский А.И]:

  • диодные тиристоры (динисторы, диаки), имеющие два вывода (анод и катод), управляемые путем подачи на электроды напряжения с высокой скоростью его нарастания или повышения приложенного напряжения до величины, близкой к критической;
  • триодные тиристоры (тринисторы, триаки), трехэлектродные элементы, управляющий электрод которых служит для перевода тиристора из закрытого состояния в открытое;
  • тетродные тиристоры, имеющие два управляющих электрода;
  • симметричные тиристоры — симисторы, имеющие пятислой-ную структуру. Иногда этот полупроводниковый прибор называют семистором.

Диодные тиристоры (динисторы), ассортимент которых не столь велик, различаются, главным образом, максимально допустимым постоянным прямым напряжением в закрытом состоянии.

Так, для динисторов типов КН102А, Б, В, Г, Д, Е, Ж, И (2Н102А — И) значения этих напряжений составляют, соответственно, 5, 7, 10, 14, 20, 30, 40, 50 В при обратном токе не более 0,5 мА. Максимально допустимый постоянный ток в открытом состоянии для этих полупроводниковых приборов равен 0,2 А при остаточном напряжении в открытом состоянии 1,5 В.

На рис. 1 приведена эквивалентная схема низковольтного динистора. Если принять R1=R3=100 Ом, можно получить динистор с управляемым (с помощью резистора R2) напряжением переключения от 1 до 25 В [Войцеховский Я., Р 11/73-40, Р 12/76-29]. При отсутствии этого резистора и при условии R1=R3=5,1 кОм напряжение переключения составит 9 Б, а при R1=R3=3 кОм —12 В.

Аналог тиристора р-п-р-п-структуры, описанный в книге Я. Войцеховского, показан на рис. 2. Буквой А обозначен анод; К — катод; УЭ — управляющий электрод. В схемах (рис. 1, 2) могут быть использованы транзисторы типов КТ315 и КТ361.

Необходимо лишь, чтобы подводимое к полупроводниковому прибору или его аналогу напряжение не превышало предельных паспортных значений. В таблице (рис. 2) показано, какими величинами R1 и R2 следует руководствоваться при создании аналога тиристора на основе германиевых или кремниевых транзисторов.

Рис. 2. Аналог тиристора.

В разрывы электрической цепи, показанные на схеме (рис. 2) крестиками, можно включить диоды, позволяющие влиять на вид вольт-амперной характеристики аналога. В отличие от обычного тиристора, его аналогом (рис. 2) можно управлять, используя дополнительный вывод — управляющий электрод УЭдоп, подключенный к базе транзистора VT2 (верхний рисунок) или VT1 (нижний рисунок).

Обычно тиристор включают кратковременной подачей напряжения на управляющий электрод УЭ. При подаче напряжения на электрод УЭдоп тиристор, напротив, можно перевести из включенного состояния в выключенное.

Аналог управляемого динистора

Аналог управляемого динистора может быть создан с использованием тиристора (рис. 3) [Р 3/86-41]. При указанных на схеме типах элементов и изменении сопротивления резистора R1 от 1 до 6 кОм напряжение переключения динистора в проводящее состояние изменяется от 15 до 27 В.

Рис. 3. Аналог управляемого динистора.

Эквивалент однопереходного транзистора

Рис. 4. Аналог однопереходного транзистора.

Эквивалентная схема используемого в генераторных устройствах полупроводникового прибора — однопереходного транзистора — показана на рис. 4. Б1 и Б2 — первая и вторая базы транзистора.

Эквивалент инжекционно-полевого транзистора

Инжекционно-полевой транзистор представляет собой полупроводниковый прибор с S-образной ВАХ. Подобные приборы широко используют в импульсной технике — в релаксационных генераторах импульсов, преобразователях напряжение-частота, ждущих и управляемых генераторах и т.д.

Такой транзистор может быть составлен объединением полевого и обычного биполярного транзисторов (рис. 5, 6). На основе дискретных элементов может быть смоделирована не только полупроводниковая структура.

Рис. 5. Аналог инжекционно-полевого транзистора п-структуры.

Рис. 6. Аналог инжекционно-полевого транзистора р-структуры.

Эквивалент низковольтного газового разрядника

На рис. 7 показана схема устройства, эквивалентного низковольтному газовому разряднику [ПТЭ 4/83-127]. Этот прибор представляет собой газонаполненный баллон с двумя электродами, в котором возникает электрический межэлектродный пробой при превышении некоторого критического значения напряжения.

Напряжение «пробоя» для аналога газового разрядника (рис. 7) составляет 20 В. Таким же образом, может быть создан аналог, например, неоновой лампы.

 

Рис. 7. Аналог газового разрядника — схема эквивалентной замены.

Эквивалентная замена лямбда-диодов

Совершенно особым видом ВАХ обладают полупроводниковые приборы типа лямбда-диодов, туннельных диодов. На вольт-амперных характеристиках этих приборов имеется N-об-разный участок.

Лямбда-диоды и туннельные диоды могут быть использованы для генерации и усиления электрических сигналов. На рис. 8 и рис. 9 показаны схемы, имитирующие лямбда-ди-од [РТЕ 9/87-35].

Практически в генераторах чаще используют схему, представленную на рис. 9 [ПТЭ 5/77-96]. Если между стоками полевых транзисторов включить управляемый резистор (потенциометр) либо транзистор (полевой или биполярный), то видом вольт-амперной характеристики такого «лямбда-диода» можно управлять в широких пределах: регулировать частоту генерации, модулировать колебания высокой частоты и т.д.

Рис. 8. Аналог лямбда-диода.

Рис. 9. Аналог лямбда-диода.

Эквивалентная замена туннельных диодов

Рис. 10. Аналог туннельного диода.

Туннельные диоды также используют для генерации и усиления высокочастотных сигналов. Отдельные представители этого класса полупроводниковых приборов способны работать до мало достижимых в обычных условиях частот — порядка единиц ГГц. Устройство, позволяющее имитировать вольт-амперную характеристику туннельного диода, показано на рис. 10 [Р 4/77-30].

Схема эквивалента варикапа

Варикапы — это полупроводниковые приборы с изменяемой емкостью. Принцип их работы основан на изменении барьерной емкости полупроводникового перехода при изменении приложенного напряжения.

Чаще на варикап подают обратное смещение, реже — прямое. Такие элементы обычно применяют в узлах настройки радио- и телеприемников. В качестве варикапов могут быть использованы обычные диоды и стабилитроны (рис. 11), а также их полупроводниковые аналоги (рис. 12 [F 9/73-434], рис. 13 [ПТЭ 2/81-151]).

Рис. 11. Варикап.

Рис. 12. Схема аналога варикапа.

Рис. 13. Схема аналога варикапа на основе полевого транзистора.


Литература: Шустов М.А. Практическая схемотехника (Книга 1).

Тиристоры, Симисторы допольнение к материалу№2404 — Теоретические материалы — Теория

Тиристоры и симисторы — это ключевые полупроводниковые элементы, которые могут находиться в одном из двух устойчивых состояний — проводящем (открытом) и непроводящем (закрытом). Перевод из непроводящего в проводящее состояние осуществляется относительно слабым постоянным или импульсным сигналом.

Эти свойства обуславливают основное предназначение тиристоров и симисторов как ключевых элементов для коммутации токов в нагрузке. В отличие от контактных коммутаторов — электромеханических реле, пускателей и контакторов — тиристоры и симисторы осуществляют бесконтактную коммутацию тока в нагрузке со всеми вытекающими из этого положительными последствиями.

Тиристоры в открытом состоянии проводят ток только в одном направлении, симисторы — в двух. Таким образом, один симистор может заменить два встречно-параллельно включенных тиристора. Поэтому решения на симисторах представляются более экономичными.
Контактная и бесконтактная коммутация тока

Прежде чем переходить к рассмотрению принципов работы тиристоров и симисторов и их основных характеристик, сравним контактные (электромеханические реле, пускатели, контакторы) и бесконтактные (тиристоры и симисторы) способы коммутации тока, преимущества и недостатки каждого из них.

Ресурс, количество переключений

Количество переключений полупроводниковых коммутаторов практически неограниченно. Долговечность полупроводников определяется перепадами рабочих температур: количеством циклов и их амплитудой.

Реле, а тем более электромагнитные пускатели, имеют ограниченный ресурс переключений. Различают механический ресурс (механическую износостойкость в отсутствие тока через контакты), который у современных реле составляет 1-2 миллиона переключений, и коммутационную износостойкость при максимальной нагрузке, которая в 10-100 раз ниже. Для оценки укажем, что при непрерывной работе и периоде переключений 10 с, ресурс вырабатывается через 2 недели, при периоде переключений 5 мин — через 1 год. Отсюда сразу следует, что применение контактных коммутаторов оправдано только при редких коммутациях нагрузки (с периодов больше 10 мин).
Частота коммутации

Полупроводниковые коммутаторы допускают коммутацию нагрузки на каждом полупериоде сетевого напряжения.

Примечание: В специальных схемотехнических решениях, в которых применяется принудительное закрытие элементов, частота коммутации может быть еще выше.

У электромеханических устройств, помимо количества циклов переключений, есть и еще одно важное негативное свойство — низкая частота коммутаций цепи нагрузки. Она определяется и механическими свойствами реле и тем, что при возрастании частоты коммутаций реле начинает перегреваться. Выше отмечалось, что при необходимости осуществлять коммутацию электромеханическими устройствами с малыми периодами, срок службы этих устройств будет невелик.

Кроме того, механика — это движущиеся части. А движущиеся части всегда являются источником повышенного риска: истирание осей, увеличение люфта, общее расшатывание механизма вплоть до потери функциональности и т. д.
Искрообразование

Бесконтактные коммутаторы по определению не искрят.

Коммутация при помощи электромеханических устройств неизбежно сопровождается искрообразованием, которое, с одной стороны, приводит к обгоранию контактов и снижению ресурса, а с другой, вызывает сильные высокочастотные электромагнитные помехи, которые могут приводить к сбоям в работе измерительных и микропроцессорных приборов.
Электромагнитные помехи

Для того, чтобы не создавать электромагнитные помехи, возникающие при коммутации сильных токов (проводники с быстро меняющимся током работают как обычные антенны), желательно коммутацию производить в моменты времени, когда эти токи минимальны (в идеале равны нулю). Полупроводниковые коммутаторы, благодаря возможности управления моментом переключения, позволяют применять решения, в которых коммутация производится в моменты нулевого тока в сети.

Контактная коммутация, как правило, осуществляется в произвольные моменты времени, а значит, и в моменты максимальных значений токов. Соответственно, контактная коммутация сопровождается сильными электромагнитными помехами. В результате устойчивость работы контрольно-измерительных систем снижается.
Потери на коммутирующем элементе

Падение напряжения на открытом симисторе составляет 1-2 В и мало зависит от протекающего тока. Как следствие, на открытом симисторе выделяется относительно большая мощность. Например, при токе 40 А на симисторе выделяется 40-80 Вт тепла, которые необходимо отвести. Для этого применяются радиаторы. Это обстоятельство является самым серьёзным недостатком бесконтактных коммутаторов, так как требует дополнительное место для радиатора и удорожает решение.

На контактах реле и пускателей также выделяется определенная мощность, но она меньше, чем у симисторов. Однако, следует иметь в виду, что по мере обгорания контактов выделяемое тепло возрастает. Для борьбы с этим явлением требуется регулярная зачистка контактов или замена всего устройства. Всё это приводит к росту эксплуатационных расходов. Кроме того, необходимо учитывать выделение тепла за счёт прохождения тока через обмотку во включенном состоянии коммутатора.
Экономические соображения

Рассматривая целесообразность применения контактного или бесконтактного способа коммутации, необходимо, помимо сугубо технических преимуществ того или иного способа, учесть следующие экономические соображения.

С одной стороны, контактные коммутаторы, как правило, значительно дешевле бесконтактных устройств, особенно в совокупности с радиаторами.

С другой стороны, ресурс бесконтактных коммутаторов практически неограничен, обслуживание устройств не требуется. Контактные коммутаторы имеют ограниченный ресурс, требуют проведения регламентных работ и регулярной замены в течение срока службы. Как следствие, эксплуатационные расходы растут, а надёжность систем, в которых применяются контактные коммутаторы с малыми периодами переключения, снижается.
Принцип работы

Тиристоры и симисторы относятся к семейству полупроводниковых приборов, свойства которых определяются наличием в полупроводниковой пластине смежных слоёв с разными типами проводимости.

Как отмечалось выше, упрощенно симистор представляет собой два тиристора, подключенных параллельно навстречу друг другу. Поэтому для простоты принцип действия поясним на примере тиристора. Каждый тиристор ? это прибор с четырёхслойной структурой p-n-p-n. Схематически тиристор обозначен на рис. 1.

Крайняя область p-структуры, к которой подключается положительный полюс источника напряжения, называется анодом (А), крайняя область n-типа, к которой подключается отрицательный полюс источника — катодом (К). Вывод от внутренней области — p-управляющим электродом.

На рис. 2 изображена модель тиристора в виде схемы с двумя транзисторами с различными типами проводимости. База и коллектор транзистора VT1 соединяются соответственно с коллектором и базой транзистора VT2. В результате, база каждого транзистора питается коллекторным током другого транзистора. В схеме образуется цепь положительной обратной связи.


Если ток Iу через управляющий электрод отсутствует, то оба транзистора закрыты и ток через нагрузку не течёт — тиристор закрыт. Если подать ток Iу больше определенного уровня, то в схеме за счёт положительной обратной связи начинается лавинообразный процесс и оба транзистора открываются — тиристор открывается и остаётся в этом стабильном состоянии, даже если ток Iу больше не подавать.

Таким образом, тиристором можно управлять как постоянным током, так и импульсным. Для того, чтобы тиристор перевести в непроводящее состояние, необходимо снизить ток через него до такого уровня, при котором обратная связь не может больше удерживать схему в стабильном открытом состоянии. Это так называемый ток удержания.

назначение и основные характеристики, принцип работы для «чайников» и проверка в схемах

Характеристики Тиристора

Тиристоры могут иметь прямое или обратное смещение. Посмотрим, как это работает в обоих направлениях.

Тиристоры в состоянии смещения вперед

Когда анод становится положительным, PN-соединения на концах смещены вперед, а центральное соединение (NP) становится смещенным назад. Он будет оставаться в заблокированном (ВЫКЛ) режиме (также известном как этап прямой блокировки) до тех пор, пока он не будет вызван импульсом тока затвора или приложенное напряжение не достигнет напряжения прямого отключения.

Запуск по импульсу тока затвора — Когда он запускается импульсом тока затвора, он начинает проводить и будет действовать как переключатель замыкания. Тиристоры остаются во включенном состоянии, то есть остаются в заблокированном состоянии. Здесь вход теряет контроль, чтобы выключить устройство.

Запуск по напряжению прямого отключения — Когда подается прямое напряжение, ток утечки начинает протекать через блокировку (J2) в среднем соединении тиристоров. Когда напряжение превышает прямое отключение перенапряжения или критического предела, то J2 выходит из строя и достигает состояния ON.

Когда ток затвора (Ig) увеличивается, он уменьшает площадь блокировки и, таким образом, уменьшается прямое отключающее напряжение. Он включится, когда будет поддерживаться минимальный ток, называемый запирающим током.

Когда ток затвора Ig = 0 и ток анода падают ниже определенного значения, называемого удерживающим током, во время состояния ВКЛ, он снова достигает своего состояния прямой блокировки.

Тиристоры в обратном смещенном состоянии

Если анод является отрицательным по отношению к катоду, то есть с приложением обратного напряжения, оба PN-перехода на конце, то есть J1 и J3, становятся смещенными в обратном направлении, и центральное соединение J2 становится смещенным в прямом направлении. Через него протекает только небольшой ток утечки. Это режим блокировки обратного напряжения или выключенное состояние тиристора.

Когда обратное напряжение увеличивается еще больше, то при определенном напряжении происходит лавинный пробой J1 и J2, и он начинает проводить в обратном направлении. Максимальное обратное напряжение, при котором тиристор начинает проводить ток, называется обратным напряжением пробоя.

  • Тиристор блокирует напряжение как в прямом, так и в обратном направлении, и, таким образом, образуется симметричная блокировка.
  • Тиристор включается при приложении положительного тока затвора и выключается, когда напряжение на аноде падает до нуля.
  • Небольшой ток от затвора к катоду может запустить тиристор, изменив его с разомкнутой цепи на короткое замыкание.

Тиристор имеет три режима работы:

  • Блокировка вперед
  • Обратная блокировка
  • Прямая проводимость
Блокировка вперед

В этом состоянии или режиме прямая проводимость тока блокируется. Верхний диод и нижний диод смещены в прямом направлении, а соединение в центре — в обратном направлении. Таким образом, тиристор не включается, поскольку затвор не срабатывает, и через него не протекает ток.

Обратная блокировка

В этом режиме соединение анода и катода меняется на обратное, и через него по-прежнему не протекает ток. Тиристоры могут проводить ток только в одном направлении, и он блокирует в обратном направлении, поэтому поток тока блокируется.

Прямая проводимость

При подаче тока на затвор срабатывает тиристор, и он начинает проводить ток. Он остается включенным до тех пор, пока прямой ток не упадет ниже порогового значения, и этого можно достичь, отключив цепь.

Способы проверки

При выходе из строя какого-либо устройства необходимо прозвонить элементы и заменить сгоревшие, причем необязательно выпаивать триак из схемы. Проверка симистора мультиметром аналогична проверке тиристора мультиметром в схеме не выпаивая. Сделать это довольно просто, но этот метод не даст точного результата.

Как проверить тиристор ку202н мультиметром: необходимо освободить УЭ. Как проверить симистор мультиметром не выпаивая: необходимо освободить его УЭ (выпаять или выпаять деталь — одним словом, отделить устройство от всей схемы) и произвести измерения мультиметром на предмет пробитого перехода. Для проверки необходимо использовать стрелочный тестер. Этот метод является более точным, так как ток, генерируемый тестером способен открыть переход. Нужно найти информацию о симисторе и приступить к проверке:

  1. Подключить щупы к выводам T1 и T2.
  2. Установить кратность х1.
  3. Только при показании бесконечного сопротивления деталь исправна, а во всех остальных случаях — пробита.
  4. При положительном результате (бесконечное сопротивление) соединить вывод Т2 и управляющий. В результате R падает до 20..90 Ом.
  5. Сменить полярность прибора и повторить 3 и 4.

Этот метод является более точным, чем предыдущий, но не дает полной гарантии определения исправности полупроводникового прибора. Для этих целей существуют специальные схемы, которые можно собрать самостоятельно.

Профессиональные схемы

Пробник для проверки симистора или тиристора достаточно простого исполнения и с наименьшим количеством деталей представлен на схеме 1.

Схема 1 — Простой пробник для проверки симистора или тиристора

Перечень деталей пробника:

  1. Трансформатор подбирается любого типа, но с напряжением на вторичной обмотке около 6,3 В.
  2. Диод VD1 на напряжение от 10 В и более и с выпрямительным током более 350 мА (можно найти подходящий по справочнику радиолюбителя или в интернет).

При работе нужно подключить симистор и поставить S2 в положение «=», после чего включить SA1 (SB1 пока не нажимать). При этом лампочка не должна светиться. Нажимаем SB1 (лампа загорается) и при отпускании SB1 лампа накаливания должна гореть. Поставить SА1 в положение «0», и лампа гаснет. SА1 в положение поставить «переменного» тока и лампа не должна гореть. При нажатии SB1 лампа загорается, а при отпускании — гаснет.

Универсальная схема устройства для проверки симистора изображена на схеме 2. Она является более сложной, но очень эффективной.

Схема 2 — Универсальная современная схема устройства для проверки симистора или тиристора

Перечень радиоэлементов:

  1. Трансформатор со II обмоткой 2 и 9 вольт (I = 0,2..0,3 А).
  2. Конденсаторы керамические: C3, C4, C9, C10.
  3. Конденсаторы электролитические — остальные.
  4. Диод VD1: U > 50 В и I > 1 А.
  5. Диоды VD2, VD3: U > 25 В и I > 300 мА.
  6. Микросхемы и их аналоги: 7805 (КР142ЕН5(А,В)) и 7905 (КР1162ЕН5(А,Б) или КР1179ЕН05).

При проверке необходимо SA3 задать ток управления (подача на УЭ). Для проверки тиристора нужно поставить SA2 в режим «прямое» и включить питание пробника (лампа гореть не должна).

Нажать кнопку SВ2 — лампа горит даже при ее отпускании (SВ2). Нажать SВ1, и лампа должна погаснуть.

Таким образом, симисторы получили широкое распространение в различных устройствах с электронным регулированием. Они выходят из строя, и проверить их несложно. Для этого необходимо выбрать лишь метод проверки. Проверка мультиметром менее точна, чем стрелочным омметром, ток которого способен открыть переход триака. Для более точного и профессионального определения исправности собирается специальная схема.

Originally posted 2018-04-06 09:24:37.

Симисторы: принцип работы, проверка и включение, схемы

К сожалению, чаще бывает наоборот.

Как работает симистор?

Если у тиристора есть конкретные анод и катод, то электроды симистора так охарактеризовать нельзя, поскольку каждый электрод является и анодом, и катодом одновременно. Поэтому в отличие от тиристора, который проводит ток только в одном направлении, симистор способен проводить ток в двух направлениях. Именно поэтому симистор прекрасно работает в сетях переменного тока.

Очень простой схемой, характеризующей принцип работы и область применения симистора, может служить электронный регулятор мощности. В качестве нагрузки можно использовать что угодно: лампу накаливания, паяльник или электровентилятор.

Симисторный регулятор мощности

После подключения устройства к сети на один из электродов симистора подаётся переменное напряжение. На электрод, который является управляющим, с диодного моста подаётся отрицательное управляющее напряжение. При превышении порога включения симистор откроется, и ток пойдёт в нагрузку. В тот момент, когда напряжение на входе симистора поменяет полярность, он закроется. Потом процесс повторяется.

Чем больше уровень управляющего напряжения, тем быстрее включится симистор и длительность импульса на нагрузке будет больше. При уменьшении управляющего напряжения длительность импульсов на нагрузке будет меньше. После симистора напряжение имеет пилообразную форму с регулируемой длительностью импульса. В данном случае, изменяя управляющее напряжение, мы можем регулировать яркость электрической лампочки или температуру жала паяльника.

Симистор управляется как отрицательным, так и положительным током. В зависимости от полярности управляющего напряжения рассматривают четыре, так называемых, сектора или режима работы. Но этот материал достаточно сложен для одной статьи.

Если рассматривать симистор, как электронный выключатель или реле, то его достоинства неоспоримы:

  • Невысокая стоимость.

  • По сравнению с электромеханическими приборами (электромагнитными и герконовыми реле) большой срок службы.

  • Отсутствие контактов и, как следствие, нет искрения и дребезга.

К недостаткам можно отнести:

  • Симистор весьма чувствителен к перегреву и монтируется на радиаторе.

  • Не работает на высоких частотах, так как просто не успевает перейти из открытого состояния в закрытое.

  • Реагирует на внешние электромагнитные помехи, что вызывает ложное срабатывание.

Для защиты от ложных срабатываний между силовыми выводами симистора подключается RC-цепочка.

Величина резистораR1 от 50 до 470 ом, величина конденсатораC1 от 0,01 до 0,1 мкф. В некоторых случаях эти величины подбираются экспериментально.

Основные параметры симистора.

Основные параметры удобно рассмотреть на примере популярного отечественного симистора КУ208Г. Будучи разработан и выпущен достаточно давно, он продолжает оставаться востребованным у любителей сделать что-то своими руками. Вот его основные параметры.

  • Максимальное обратное напряжение – 400V. Это означает, что он прекрасно может управлять нагрузкой в сети 220V и ещё с запасом.

  • В импульсном режиме напряжение точно такое же.

  • Максимальный ток в открытом состоянии – 5А.

  • Максимальный ток в импульсном режиме – 10А.

  • Наименьший постоянный ток, необходимый для открытия симистора – 300 мА.

  • Наименьший импульсный ток – 160 мА.

  • Открывающее напряжение при токе 300 мА – 2,5 V.

  • Открывающее напряжение при токе 160 мА – 5 V.

  • Время включения – 10 мкс.

  • Время выключения – 150 мкс.

Как видим, для открывания симистора необходимым условием является совокупность тока и напряжения. Больше ток, меньше напряжение и наоборот

Следует обратить внимание на большую разницу между временем включения и выключения (10 мкс. против 150 мкс.)

Оптосимистор.

Современная и перспективная разновидность симистора – это оптосимистор. Название говорит само за себя. Вместо управляющего электрода в корпусе симистора находится светодиод, и управление осуществляется изменением напряжения на светодиоде. На изображении показан внешний вид оптосимистора MOC3023 и его внутреннее устройство.

Оптосимистор MOC3023

Устройство оптосимистора

Как видим, внутри корпуса смонтирован светодиод и симистор, который управляется за счёт излучения светодиода. Выводы, отмеченные как N/C и NC, не используются, и не подключаются к элементам схемы. NC – это сокращение от Not Connect, которое переводится с английского как «не подключается».

Самое ценное в оптосимисторе это то, что между цепью управления и силовой цепью осуществлена полная гальваническая развязка. Это повышает уровень электробезопасности и надёжности всей схемы.

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

Практические примеры для повторения

Наибольшей популярностью среди радиолюбителей пользуются схемы, предназначенные для управления яркостью светильника и изменения мощности паяльника. Такие схемы просты для повторения и могут собираться без использования печатных плат простым навесным монтажом.

Схемы, выполненные самостоятельно, ничем не уступают по работоспособности заводским, так как не требуют настроек и при исправных радиодеталях сразу готовы к использованию. В случае отсутствия возможности или желания изготовить прибор своими руками с «нуля», можно приобрести наборы для самостоятельного изготовления. Такие комплекты содержат все необходимые радиоэлементы, печатную плату и схему с инструкцией по сборке.

Доминирующая схема

Такой прибор проще всего собрать на тиристоре. Работа схемы основана на способности открывания тиристора при прохождении входной синусоиды через ноль, в результате чего сигнал обрезается, и величина напряжения на нагрузке изменяется.

Схема для повторения тиристорного регулятора мощности построена на использовании тиристора VS1, в качестве которого используется КУ202Н. Это радиоэлемент изготавливается из кремния и имеет структуру p-n-p типа. Применяется в качестве симметричного переключателя сигналов средней мощности и коммутации силовых цепей на переменном токе.

При подаче напряжения 220в входной сигнал выпрямляется и поступает на конденсатор C1. Как только значение падения напряжения на C1 сравняется с величиной разности потенциалов, в точке между сопротивлениями R3 и R4 биполярные транзисторы VT1 и VT2 открываются. Уровень напряжения ограничивается стабилитроном VD1. Сигнал поступает на управляющий вывод КУ202Н, а конденсатор C1 разряжается. При возникновении сигнала на управляющем выводе тиристор отпирается. Как только конденсатор разрядится, VT1 и VT2 закрываются, соответственно запирается и тиристор. При следующем полупериоде входного сигнала всё повторяется вновь.

Такой регулятор возможно использовать не только как диммер, но и для управления мощностью коллекторного двигателя. Доминирующая схема может работать при токах до 10 ампер, эта величина напрямую зависит от характеристик используемого тиристора, при этом он обязательно устанавливается на радиатор.

Контроллер нагрева паяльника

Управление мощностью паяльника не только положительно сказывается на сроке его службы, предотвращая жало и внутренние его элементы от перегревания, но и позволяет выпаивать радиоэлементы, критичные к температуре устройства.

Приборы для контроля температуры паяльника выпускаются давно. Одним из его видов был отечественный прибор, выпускающийся под названием «Добавочное устройство для электропаяльника типа П223». Он позволял подключать низковольтный паяльник к сети 220В.

Проще всего выполняется регулятор для паяльника с применением симистора КУ208Г.

Силовые контакты подключаются последовательно к нагрузке. Поэтому ток, протекающий через симистор, совпадает с током нагрузки. Для управления ключевым режимом применяется динистор VS2. Конденсатор C1 заряжается через резисторы: R1 и R2. Индикация работы организовывается под средством VD1 и светодиода LED. Из-за того, что для изменения напряжения на конденсаторе требуется время, образуется сдвиг фаз между сетевым и конденсаторным напряжением. Изменяя величину сопротивления R2, регулируется величина фазового сдвига. Чем дольше конденсатор заряжается, тем меньше находится в открытом состоянии симистор, а значит и значение мощности ниже.

Такой регулятор рассчитан на подключение нагрузки с мощностью до 300 ватт. При использовании паяльника с мощностью более 100 ватт симистор следует устанавливать на радиатор. Изготовленная плата с лёгкостью помещается на текстолите размером 25х30 мм и свободно размещается во внутренней сетевой розетке.

Originally posted 2018-07-04 07:13:04.

Где используется и как выглядит

Чаще всего симистор используется для коммутации в цепях переменного тока (подачи питания на нагрузку). Это удобно, так как при помощи напряжения малого номинала можно управлять высоковольтным питанием. В некоторых схемах ставят симистор вместо обычного электромеханического реле. Плюс очевиден — нет физического контакта, что делает включение питания более надежным. Второе достоинство — относительно невысокая цена. И это при значительном времени наработки и высокой надежности схемы.

Минусы тоже есть. Приборы могут сильно нагреваться под нагрузкой, поэтому необходимо обеспечить отвод тепла. Мощные симисторы (называют обычно «силовые») монтируются на радиаторы. Еще один минус — напряжение на выходе симистора пилообразное. То есть подключаться может только нагрузка, которая не предъявляет высоких требований к качеству электропитания. Если нужна синусоида, такой способ коммутации не подходит.

Заменить симистор можно двумя тиристорами. Но надо правильно подобрать их по параметрам, да и схему управления придется переделывать — в таком варианте управляющих вывода два

По внешнему виду отличить тиристор и симистор нереально. Даже маркировка может быть похожей — с буквой «К». Но есть и серии, у которых название начинается с «ТС», что означает «тиристор симметричный». Если говорить о цоколевке, то это то, что отличает тиристор от симистора. У тиристора есть анод, катод и управляющий вывод. У симистора названия «анод» и «катод» неприменимы, так как вывод может быть и  катодом, и анодом. Так что их обычно называют просто «силовой вывод» и добавляют к нему цифру. Тот который левее — это первый, который правее — второй. Управляющий электрод может называться затвором (от английского слова Gate, которым обозначается этот вывод).

Принцип работы

Радиотехнический термин thyristor составлен из двух частей. В начале употреблено слово thyra, что означает на греческом языке «дверь» или «вход». Затем использовано окончание английского слова resistor, которое переводится как «сопротивление».

Тиристором называется полупроводниковое устройство, где на базе монокристалла собираются более двух p — n переходов. Суть электронно-дырочного соединения пары химических элементов — так расшифровывается понятие «p — n переход» — состоит в том, что при подключении прямого тока на выводах появляется разность потенциалов. При обратном токе совершается блокировка носителей заряда.

В устройство коммутируется сигнальный контакт, назначение которого состоит в управлении током пробоя границы разнозаряженных зон. На электрических схемах обозначение тиристора почти совпадает со значком диода. Различие состоит в том, что к катодному выводу пририсована стрелка управляющего электрода.

Конструкция прибора

Полупроводниковый прибор представляет собой структуру, которую образуют четыре слоя разной полярности, соединённых последовательно. Образуется цепочка p — n — p — n типа. К наружному слою с положительным зарядом подключён анодный вывод, к отрицательному полупроводнику — катод. К внутренним прослойкам допустимо присоединение до двух управляющих контактов.

Основообразующим элементом тиристора является кристалл кремния с заданной толщиной. Для формирования p-слоя применяются примеси бора и алюминия. Чтобы получить n-область используется фосфор. Нанесение добавок происходит с помощью диффузионной технологии. При температуре от 1000° C до 1300° C создаётся переходный слой глубиной 60 Мкм.

Внешний вид современных устройств непохож на детали, изготовленные два десятка лет назад. Раньше они выглядели как «летающие тарелки». Минусовый электрод и сигнальный контакт располагались на торце, а анодный вывод устанавливался с противоположной стороны или сбоку изделия. Сейчас тиристор представляет собой небольшой пластмассовый коробок с тремя электродами внизу. Расположение контактов указывается в описании устройства.

Режимы работы

Принцип действия тиристора характеризуется работой в двух устойчивых состояниях. Положение «закрыто» свидетельствует о низкой проводимости. Значение «открыто» указывает высокую электропроводность.

Как работает тиристор, для чайников объяснит диаграмма зависимости силы тока от напряжения. В исходной позиции полупроводниковый элемент заперт.

Но стоит подать ток на управляющий вывод, как тиристор откроется. В этот момент линейный отрезок на графике круто изменяет угол наклона, близкий к вертикальному положению. От величины сигнального тока зависит уровень пробойного напряжения. Вольт-амперная характеристика объясняет, зачем требуется применение управляющего электрода. После обнуления командного сигнала устройство останется открытым, пока напряжение не уменьшится до уровня удержания.

Работа транзистора также основана на взаимодействии p — n переходов. От полупроводникового триода, который, как вентиль, плавно регулирует напряжение, тиристорный элемент отличается скачкообразным ростом разности потенциалов после появления сигнала управления. Своеобразный электронный ключ по команде открывает дорогу питанию электрической цепи.

Особенности

Чтобы иметь полное представление о симметричных тринисторах, необходимо рассказать про их сильные и слабые стороны. К первым можно отнести следующие факторы:

  • относительно невысокая стоимость приборов;
  • длительный срок эксплуатации;
  • отсутствие механики (то есть подвижных контактов, которые являются источниками помех).

В число недостатков приборов входят следующие особенности:

Необходимость отвода тепла, примерно из расчета 1-1,5 Вт на 1 А, например, при токе 15 А величина мощности рассеивания будет около 10-22 Вт, что потребует соответствующего радиатора. Для удобства крепления к нему у мощных устройств один из выводов имеет резьбу под гайку.

Симистор с креплением под радиатор

  • Устройства подвержены влиянию переходных процессов, шумов и помех;
  • Не поддерживаются высокие частоты переключения.

По последним двум пунктам необходимо дать небольшое пояснение. В случае высокой скорости коммутации велика вероятность самопроизвольной активации устройства. Помеха в виде броска напряжения также может привести к этому результату. В качестве защиты от помех рекомендуется шунтировать прибор RC цепью.

RC-цепочка для защиты симистора от помех

Помимо этого рекомендуется минимизировать длину проводов ведущих к управляемому выводу, или в качестве альтернативы использовать экранированные проводники. Также практикуется установка шунтирующего резистора между выводом T1 (TE1 или A1) и управляющим электродом.

Тестирование элемента

Существует несколько способов проверки симистора на работоспособность. Для самого простого понадобится только лишь мультиметр, а для более сложных измерений — автономный источник питания или тестовая схема.

С помощью тестера проверка происходит с использованием знаний, основанных на принципе работы симистора. Диагностика мультиметром не сможет определить все характеристики элемента, но вполне достаточной будет для первичного тестирования работоспособности.

Простую проверку можно осуществить, используя лампочку и элемент питания. Для этого одна клемма батарейки подключается на управляющие и рабочие выводы симистора, а вторая — на цоколь лампочки. Вывод элемента соединяется с центральным контактом осветителя. В этом случае переход должен быть открыт, тогда лампочка загорится.

Проверка тестером

Для проведения тестов подойдёт прибор любого типа действия, но при этом необходимо, чтобы значения выдаваемого им тока хватило для переключения элемента. Поэтому более предпочтительным будет использование аналогового прибора. Например, чтобы проверить тестером BTB12-800CW, понадобится обеспечить ток порядка 30 мА, а для BTB16-700BW этот показатель должен быть равен 15 мА.

Также понадобится обратить внимание на состояние батарейки, стоящей в тестере. В цифровом устройстве на экране не должен высвечиваться значок замены батарейки, а в аналоговом при закорачивании щупов друг на друга стрелка должна указывать на ноль

Суть измерения сводится к проверкам переходов прибора. Для этого тестер переключается в режим прозвонки сопротивлений на самый маленький диапазон. Выполнять проверку лучше всего в следующей последовательности:

  1. Измерительные щупы подключаются к силовым выводам симистора T1 и T2. Если радиоэлемент исправен, то мультиметр должен показать бесконечно большое сопротивление.
  2. Меняется полярность приложенного сигнала на рабочих выводах. Для этого измерительные щупы переставляются. Сопротивление также должно быть большим.
  3. Кратковременно соединяется рабочий вывод T1 или T2 и управляющий электрод G.
  4. Снова измеряется сопротивление перехода между T1 и T2. В одну сторону оно должно измениться. Так, для BTB12-800CW оно составит около 50 Ом.
  5. Изменяется полярность. При этом импеданс перехода должен быть большим, что соответствует отсутствию обратного пробоя.

Использование схемы

Существует множество различных схем, использующихся радиолюбителями для тестирования работоспособности триака. Но лучше применять универсальную схему, способную проверить любой элемент тиристорного семейства, например, BTB16-700BW. Она не нуждается в настройке и работает сразу после сборки. Для того чтобы её собрать, понадобятся следующие элементы:

  1. Резисторы R1—R4 470 Ом, R4—R5 1 кОм.
  2. Конденсаторы С1 и С2 — 100 мкФ х 6,5 В.
  3. Диоды VD1, VD2, VD5 и VD6 — 2N4148; VD2 и VD3 — АЛ307.

В качестве источника питания можно использовать батарейку типа КРОНА.

Суть измерений сводится к следующим действиям: переключатель S3 переставляется в верхнее положение, в результате на устройство подаётся питание. После этого кратковременным нажатием на кнопку S2 подаётся ток на управляющий вывод элемента.

Если BTB16-700BW рабочий, то его переход должен открыться, о чём просигнализирует светодиод VD3. Затем переключатель устанавливается в среднее положение, светодиод должен погаснуть. На следующем этапе S3 переключается в нижнее положение, и нажимается кнопка S2. Результатом этих действий будет загорание светодиода VD4. Такое поведение симистора позволит со стопроцентной уверенностью заявить о его работоспособности.

Проверить симистор не так уж и сложно, особенно если использовать тестер, хотя лучше собрать специальную схему. Но при этом стоит отметить, что из-за высокой чувствительности триаков к току переключения в качестве мультиметров лучше применять стрелочные приборы.

Нередко радиолюбителям приходится собирать различные приспособления из деталей, которые были добыты путем разборки старых электрических или радиоприборов. Понятно, что после долгого лежания в ящиках сам владелец этого мини-склада уже и не помнит, в каком состоянии находятся детали. То есть, они исправны или нет. Поэтому используемую деталь обычно проверяют. А так как тема нашей статьи – как проверить симистор, то будем разбираться в этом вопросе досконально.

Проверка симисторов

Любой, даже наиболее надёжный прибор может выйти из строя. Не исключение и симистор

По этой причине немаловажно понимать, как можно проконтролировать его на работоспособность, для того чтобы осуществить его замену. Для этого можно применять 2 способа

Первый способ состоит в применении 2-ух аналоговых омметров. Следующие измерения выполняют следующим способом:

  1. Щупы 1 омметра подсоединяют к катоду и аноду симистора. Будет комфортнее, если щупы закрепить зажимами, для того чтобы они не прыгали. В случае если ввести устройство, сопротивление станет весьма обширно: указатель будет «лежать»;
  2. Щупы 2 омметра подсоединяют следующим способом: единственный щуп закрепляется на аноде, а другим щупом дотрагиваются до управляющего электрода.

Если соразмерный тиристор исправен, то произойдёт его раскрывание, а противодействие в первом омметре опустится до нескольких ом.

Второй способ контроля предполагает прозвонку мультиметром. Для того чтобы измерения были надёжными, переключатель тестера устанавливается в положение «проверка диодов». Потом измерительные щупы закрепляются в аноде и катоде. В случае со щупами-иглами можно применять переходник с проволоки. В отличие от омметра, мультиметр продемонстрирует противодействие равное 1. Потом тонкой проволокой запираем отрицательный электрод и затвор. Случится отпирание полупроводника, и в экране тестера отобразится реальное противодействие симистора.

Симметричный тиристор

Если проанализировать путь развития полупроводниковой электроники, то почти сразу становится понятно, что все полупроводниковые приборы созданы на переходах или слоях (n-p, p-n).

Простейший полупроводниковый диод имеет один переход (p-n) и два слоя.

У биполярного транзистора два перехода и три слоя (n-p-n, p-n-p). А что будет, если добавить ещё один слой?

Тогда мы получим четырёхслойный полупроводниковый прибор, который называется тиристор. Два тиристора включенные встречно-параллельно и есть симистор, то есть симметричный тиристор.

В англоязычной технической литературе можно встретить название ТРИАК (TRIAC – triode for alternating current).

Вот таким образом симистор изображается на принципиальных схемах.

У симистора три электрода (вывода). Один из них управляющий. Обозначается он буквой G (от англ. слова gate – «затвор»). Два остальных – это силовые электроды (T1 и T2). На схемах они могут обозначаться и буквой A (A1 и A2).

А это эквивалентная схема симистора выполненного на двух тиристорах.

Следует отметить, что симистор управляется несколько по-другому, нежели эквивалентная тиристорная схема.

Симистор достаточно редкое явление в семье полупроводниковых приборов.

По той простой причине, что изобретён и запатентован он был в СССР, а не в США или Европе.

Простейшая схема симисторного регулятора

Рассмотрим самую простую схему симисторного регулятора напряжения.

В этой схеме всего пять элементов, но она вполне работоспособна. Время заряда емкости регулируется переменным резистором.

Когда напряжение на конденсаторе достигнет уровня примерно 30 В, динистор начинает проводить ток и открывает симистор, который остается в открытом состоянии до конца полупериода, когда ток начнет переходить через 0. Затем цикл повторяется уже с другой полярностью.

Это универсальная схема. Она может применяться для самых разных нагрузок. Для управления индуктивными нагрузками, такими как двигатель пылесоса, необходимо защитить симистор от бросков напряжения при выключении варистором и RC-цепочкой, присоединенными параллельно симистору.

Простейший ключ

В дальнейшем полевым транзистором мы будет называть конкретно MOSFET,
то есть полевые транзисторы с изолированным
затвором
(они же МОП, они же МДП). Они удобны тем, что управляются
исключительно напряжением: если напряжение на затворе больше
порогового, то транзистор открывается. При этом управляющий ток через
транзистор пока он открыт или закрыт не течёт. Это значительное
преимущество перед биполярными транзисторами, у которых ток течёт всё
время, пока открыт транзистор.

Также в дальнейшем мы будем использовать только n-канальные MOSFET
(даже для двухтактных схем). Это связано с тем, что n-канальные
транзисторы дешевле и имеют лучшие характеристики.

Простейшая схема ключа на MOSFET приведена ниже.

Опять же, нагрузка подключена «сверху», к стоку. Если подключить её
«снизу», то схема не будет работать. Дело в том, что транзистор
открывается, если напряжение между затвором и истоком превышает
пороговое. При подключении «снизу» нагрузка будет давать
дополнительное падение напряжения, и транзистор может не открыться или
открыться не полностью.

Несмотря на то, что MOSFET управляется только напряжением и ток через
затвор не идёт, затвор образует с подложкой паразитный
конденсатор. Когда транзистор открывается или закрывается, этот
конденсатор заряжается или разряжается через вход ключевой схемы. И
если этот вход подключен к push-pull выходу микросхемы, через неё
потечёт довольно большой ток, который может вывести её из строя.

При управлении типа push-pull схема разряда конденсатора образует,
фактически, RC-цепочку, в которой максимальный ток разряда будет равен

где — напряжение, которым управляется транзистор.

Таким образом, достаточно будет поставить резистор на 100 Ом, чтобы
ограничить ток заряда — разряда до 10 мА. Но чем больше сопротивление
резистора, тем медленнее он будет открываться и закрываться, так как
постоянная времени увеличится

Это важно, если транзистор
часто переключается. Например, в ШИМ-регуляторе

Основные параметры, на которые следует обращать внимание — это
пороговое напряжение , максимальный ток через сток и
сопротивление сток — исток у открытого транзистора. Ниже приведена таблица с примерами характеристик МОП-транзисторов

Ниже приведена таблица с примерами характеристик МОП-транзисторов.

Модель
2N70003 В200 мА5 Ом
IRFZ44N4 В35 А0,0175 Ом
IRF6304 В9 А0,4 Ом
IRL25052 В74 А0,008 Ом

Для приведены максимальные значения. Дело в том, что у разных
транзисторов даже из одной партии этот параметр может сильно
отличаться. Но если максимальное значение равно, скажем, 3 В, то этот
транзистор гарантированно можно использовать в цифровых схемах с
напряжением питания 3,3 В или 5 В.

Сопротивление сток — исток у приведённых моделей транзисторов
достаточно маленькое, но следует помнить, что при больших напряжениях
управляемой нагрузки даже оно может привести к выделению значительной
мощности в виде тепла.

Справочники по тиристорам и аналогам , Замена тиристоров, замена диодов

Тиристоры и их зарубежные аналоги. Справочник. Черепанов В. П., Хрулев А. К. 2002г.

Во втором томе справочного издания приводятся данные по элект рическим параметрам габаритным размерам, предельным эксплуата ционным характеристикам сведения по основному функциональному назначению отечественных силовых тиристоров Приводятся динами-ческие импульсные частотные температурные зависимости парамет ров а также описываются особенности применения тиристоров в ра диоэлектронной аппаратуре

Для инженерно-технических рабогникои занимающихся разработ кой эксплуатацией и ремонтом радиоэлектронной аппаратуры

Скачать книгу >>>

Программа для чтения книги: 

СОДЕРЖАНИЕ Предисловие 10 

Оцените статью:

Все статьи | Методичка КОНТРоль и АВТоматика

Выберите продукцию из спискаНормирующие преобразователи измерительные …НПСИ-ТП нормирующий преобразователь сигналов термопар и напряжения …НПСИ-237-ТП нормирующий преобразователь сигналов термопар и напряжения, IP65 …НПСИ-ТС нормирующий преобразователь сигналов термосопротивлений …НПСИ-237-ТС нормирующий преобразователь сигналов термосопротивлений, IP65 …НПСИ-150-ТП1 нормирующий преобразователь сигналов термопар и напряжения …НПСИ-150-ТС1 нормирующий преобразователь сигналов термометров сопротивления …НПСИ-110-ТП1 нормирующий преобразователь сигналов термопар и напряжения …НПСИ-110-ТС1 нормирующий преобразователь сигналов термометров сопротивления …НПСИ-250/500-УВ1 нормирующий преобразователь сигналов термопар, термосопротивлений и потенциометров…НПСИ-230-ПМ10 нормирующий преобразователь сигналов потенциометров …НПСИ-200-ГРТП модули гальванической развязки токовой петли…НПСИ-200-ГР1/ГР2 модули гальванической развязки токового сигнала (4…20) мА…НПСИ-200-ГР1.2 модуль разветвления 1 в 2 и гальванической развязки сигнала (4…20) мА…НПСИ-ДНТВ нормирующий преобразователь действующих значений напряжения и тока…НПСИ-ДНТН нормирующий преобразователь действующих значений напряжения и тока …НПСИ-200-ДН/ДТ нормирующие преобразователи действующих значений напряжения и тока…НПСИ-МС1 преобразователь мощности, напряжения, тока, коэффициента мощности…НПСИ-500-МС3 измерительный преобразователь параметров трёхфазной сети с RS-485 и USB …НПСИ-500-МС1 измерительный преобразователь параметров однофазной сети с RS-485 и USB …НПСИ-УНТ нормирующий измерительный преобразователь унифицированных сигналов с сигнализацией…НПСИ-237-УНТ нормирующий измерительный преобразователь унифицированных сигналов с сигнализацией, IP65 …НПСИ-ЧВ/ЧС нормирующие преобразователи частоты, периода, длительности сигналов, частоты сети…ПНТ-х-х нормирующий преобразователь сигналов термопар…ПСТ-х-х нормирующий преобразователь сигналов термосопротивлений…ПНТ-a-Pro нормирующий преобразователь сигналов термопар программируемый…ПCТ-a-Pro нормирующий преобразователь сигналов термосопротивлений программируемый…ПНТ-b-Pro нормирующий преобразователь сигналов термопар программируемый…ПCТ-b-Pro нормирующий преобразователь сигналов термосопротивлений программируемыйБарьеры искрозащиты (барьеры искробезопасности)…КА5003Ех барьеры искрозащиты, разветвители 1 в 2 сигналов термопар, термометров сопротивления и потенциометров, 1-канальные, USB, RS-485…КА5004Ех барьеры искрозащиты, сигналы термопар, термометров сопротивления и потенциометров, сигнализация, USB, RS-485…КА5011Ех барьеры искрозащиты (барьеры искробезопасности), приёмники аналогового сигнала (4…20) мА, 1-канальные, HART …КА5022Ех барьеры искрозащиты (барьеры искробезопасности), приёмники аналогового сигнала (4…20) мА, 2-канальные…КА5013Ех барьеры искрозащиты (барьеры искробезопасности), приемники-разветвители 1 в 2 аналогового сигнала (4…20) мА, 1-канальные, HART, шина питания …КА5031Ех барьеры искрозащиты (барьеры искробезопасности), приёмники аналогового сигнала (4…20) мА, 1-канальные, HART …КА5032Ех барьеры искрозащиты (барьеры искробезопасности), приёмники аналогового сигнала (4…20) мА, 2-канальные, HART …КА5131Ех барьеры искрозащиты (барьеры искробезопасности), передатчики аналогового сигнала (4…20) мА, 1-канальные, HART …КА5132Ех барьеры искрозащиты (барьеры искробезопасности), передатчики аналогового сигнала (4…20) мА, 2-канальные…КА5241Ех барьеры искрозащиты (барьеры искробезопасности), приёмники дискретных сигналов, 1-канальные…КА5242Ех барьеры искрозащиты (барьеры искробезопасности), приёмники дискретных сигналов, 2-канальные…КА5262Ех барьеры искрозащиты (барьеры искробезопасности), приёмники дискретных сигналов, 2-канальные…КА5232Ех барьеры искрозащиты (барьеры искробезопасности), приёмники дискретных сигналов, 2-канальные…КА5234Ех барьеры искрозащиты (барьеры искробезопасности), приёмники дискретных сигналов, 4-канальныеКонтроллеры, модули ввода-вывода…MDS AIO-1 Модули комбинированные ввода-вывода аналоговых и дискретных сигналов…MDS AIO-1/F1 Модули комбинированные функциональные ввода-вывода аналоговых и дискретных сигналов…MDS AIO-4 Модули комбинированные ввода-вывода аналоговых и дискретных сигналов…MDS AIO-4/F1 Модули комбинированные ввода-вывода аналоговых и дискретных сигналов, 4 ПИД регулятора…MDS AI-8UI Модули ввода аналоговых сигналов тока и напряжения…MDS AI-8TC Модули ввода сигналов термопар, тока и напряжения…MDS AI-8TC/I Модули ввода сигналов термопар, тока и напряжения с индивидуальной изоляцией между входами…MDS AI-3RTD Модули ввода сигналов термосопротивлений и потенциометров…MDS AO-2UI Модули вывода сигналов тока и напряжения…MDS DIO-16BD Модули ввода-вывода дискретных сигналов…MDS DIO-4/4 Модули ввода-вывода дискретных сигналов …MDS DIO-12h4/4RA Модули ввода-вывода дискретных сигналов высоковольтные…MDS DIO-8H/4RA Модули ввода-вывода дискретных сигналов высоковольтные…MDS DI-8H Модули ввода дискретных сигналов высоковольтные…MDS DO-8RС Модули вывода дискретных сигналов …MDS DO-16RA4 Модули вывода дискретных сигналов …MDS IC-USB/485 преобразователь интерфейсов USB и RS-485…MDS IC-232/485 преобразователь интерфейсов RS-232 и RS-485…I-7561 конвертер USB в RS-232/422/485…I-7510 повторитель интерфейса RS-485/RS-485…I-7520 преобразователь интерфейса RS-485/RS-232Измерители-регуляторы технологические…МЕТАКОН-6305 многофункциональный ПИД-регулятор с таймером выдержки…МЕТАКОН-4525 многоканальный ПИД-регулятор…МЕТАКОН-1005 измеритель технологических параметров, щитовой монтаж, RS-485…МЕТАКОН-1015 измеритель, нормирующий преобразователь, щитовой монтаж, RS-485…МЕТАКОН-1105 измеритель, позиционный регулятор, щитовой монтаж, RS-485…МЕТАКОН-1205 измеритель-регулятор, нормирующий преобразователь, контроллер, щитовой монтаж, RS-485…МЕТАКОН-1725 двухканальный измеритель-регулятор, нормирующий преобразователь, щитовой монтаж, RS-485…МЕТАКОН-1745 четырехканальный измеритель-регулятор, нормирующий преобразователь, щитовой монтаж, RS-485…МЕТАКОН-512/522/532/562 многоканальные измерители-регуляторы…Т-424 универсальный ПИД-регулятор…МЕТАКОН-515 быстродействующий универсальный ПИД-регулятор…МЕТАКОН-513/523/533 ПИД-регуляторы…МЕТАКОН-514/524/534 ПДД-регуляторы…МЕТАКОН-613 программные ПИД-регуляторы…МЕТАКОН-614 программные ПИД-регуляторы…СТ-562-М источник тока для ПМТ-2, ПМТ-4Регистраторы видеографические…ИНТЕГРАФ-1100 видеографический безбумажный 4/8/12/16 канальный регистратор данных …ИНТЕГРАФ-1000/1010 видеографические безбумажные 8/16 канальные регистраторы данных …ИНТЕГРАФ-3410 видеографический безбумажный регистратор-контроллер термообработки… DataBox Накопитель-архиваторСчётчики, реле времени, таймеры…ЭРКОН-1315 восьмиразрядный одноканальный счётчик импульсов, поддержка RS-485, щитовой монтаж…ЭРКОН-315 счётчик импульсов одноканальный, поддержка RS-485, щитовой монтаж…ЭРКОН-325 счетчик импульсов двухканальный, поддержка RS-485, щитовой монтаж…ЭРКОН-415 тахометр-расходомер…ЭРКОН-615 счетчик импульсов реверсивный многофункциональный, поддержка RS-485, щитовой монтаж…ЭРКОН-714 таймер астрономический…ЭРКОН-214 одноканальное реле времени, цифровая индикация, монтаж на DIN-рельс или на панель…ЭРКОН-224 двухканальное реле времени, цифровая индикация, монтаж на DIN-рельс или на панель…ЭРКОН-215 реле времени программируемое одноканальное, поддержка RS-485, щитовой монтаж, цифровая индикацияБлоки питания и коммутационные устройства…PSM-120-24 блок питания 24 В (5 А, 120 Вт)…PSM-72-24 блок питания 24 В (3 А, 72 Вт)…PSM-36-24 блок питания 24 В (1,5 А, 36 Вт)…PSL низковольтные DC/DC–преобразователи на DIN-рейку 3 и 10 Вт…PSM-4/3-24 многоканальный блок питания 24 В (4 канала по 0,125 А, 3 Вт)…PSM-2/3-24 блок питания 24 В (2 канала по 0,125 А, 3 Вт)…PSM/4R-36-24 блок питания и реле, 24 В (1,5 А, 36 Вт)…БП-24/12-0,5 блок питания 24В/12В (0,5А)…ФС-220 фильтр сетевой…БПР блок питания и реле…БКР блок коммутации реверсивный (пускатель бесконтактный реверсивный)…БР4 блок реле…PS3400.1 блок питания 24 В (40 А) …PS3200.1 блок питания 24 В (20 А)…PS3100.1 блок питания 24 В (10 А)…PS3050.1 блок питания 24 В (5 А)…PS1200.1 блок питания 24 В (20 А)…PS1100.1 блок питания 24 В (10 А)…PS1050.1 блок питания 24 В (5 А)Программное обеспечение…SetMaker конфигуратор……  История  версий…MDS Utility конфигуратор…RNet программное обеспечение…OPC-сервер для регулятров МЕТАКОН…OPC-сервер для MDS-модулей

Почему симистор не так популярен, как оправдывают тиристор?

Вопрос задан: Кэтрин Дэвис
Оценка: 4,4/5 (29 голосов)

Недостатки симистора

Они не сильно надежны по сравнению с SCR . Его рейтинг (dv/dt) ниже, чем у SCR. Доступны более низкие рейтинги по сравнению с SCR. Нам нужно быть осторожными со схемой запуска, поскольку она может запускаться в любом направлении.

Является ли TRIAC тиристором?

Симисторы

представляют собой подмножество тиристоров (аналогично реле в том, что небольшое напряжение и ток могут управлять гораздо большими напряжением и током) и относятся к кремниевым управляемым выпрямителям (SCR)…. Двунаправленность симисторов делает их удобными переключателями переменного тока (AC).

В чем разница между тиристором и симистором?

Основное отличие тиристора от симистора состоит в том, что тиристор является однонаправленным устройством, в то время как в симисторе это двунаправленное устройство. Тиристор, также называемый SCR, означает выпрямитель с кремниевым управлением, а TRIAC означает триод для переменного тока. …

Можно ли заменить тиристор симистором?

Симистор

может не только заменить два однонаправленных тиристора встречно-параллельно , но и требует всего одну триггерную схему, что более удобно в использовании.Характеристика TRIAC заключается в том, что через него может проходить переменный ток, который в основном используется для управления источником питания переменного тока и регулировки напряжения переменного тока.

Каковы недостатки TRIAC?

Недостатки симистора:

Он может срабатывать в любом направлении поэтому нужно быть осторожным с триггерной схемой. По сравнению с SCR имеет низкий рейтинг. TRIAC не очень надежен по сравнению с SCR. Рейтинг dv/dt очень низкий по сравнению с устройством SCR.

Найдено 19 связанных вопросов

Каковы преимущества TRIAC?

Преимущества симистора

  • Может запускаться при положительной или отрицательной полярности стробирующих импульсов.
  • Требуется только один радиатор немного большего размера, тогда как для SCR требуется два радиатора меньшего размера.
  • Для защиты требуется один плавкий предохранитель.

Что такое TRIAC и его применение?

TRIAC (триод для переменного тока) представляет собой полупроводниковое устройство, широко используемое в приложениях управления питанием и переключения .Он находит применение в коммутации, управлении фазой, конструкциях прерывателей, управлении яркостью ламп, управлении скоростью вентиляторов, двигателей и т. д.

Можно ли симистор заменить SCR?

Да . В отличие от SCR симистор может быть проводящим в обоих направлениях. Помимо этой проблемы, вы можете использовать симистор вместо SCR.

Какова функция обратного диода в цепи выпрямителя?

Основное назначение обратного диода — обеспечить путь для затухания тока через индуктивную нагрузку при выключенном выключателе .Он также известен как диод обратного хода.

Какова основная функция симистора?

Симисторы — это электронные компоненты, которые широко используются в приложениях управления питанием переменного тока . Они могут переключать высокое напряжение и высокий уровень тока, а также обе части сигнала переменного тока. Это делает симисторные схемы идеальными для использования в различных приложениях, где требуется переключение питания.

Что такое полная форма симистора?

Триод для переменного тока (TRIAC) или триод для переменного тока представляет собой трехполюсное двунаправленное полупроводниковое коммутационное устройство, которое может управлять переменным током (AC) в нагрузке.Он широко используется в приложениях управления питанием и коммутации.

Можно ли использовать симистор для постоянного тока?

Да , Может использоваться в терминале GATE для запуска.. но после запуска он будет оставаться включенным бесконечно. Таким образом, он имеет очень ограниченное применение в области постоянного тока. В конечном счете, TRIAC представляет собой трехконтактное электронное устройство, которое работает как переключатель для сигналов переменного тока.

Какой символ у тиристора?

Кремниевый управляемый выпрямитель, SCR или символ тиристора, используемый для принципиальных схем или цепей, стремится подчеркнуть характеристики своего выпрямителя, а также показывает управляющий вентиль.В результате символ тиристора показывает традиционный символ диода с управляющим затвором, входящим вблизи перехода.

Что такое DIAC и его применение?

DIAC представляет собой электронный компонент, который широко используется для облегчения даже срабатывания a TRIAC при использовании в переключателях переменного тока, и в результате они часто встречаются в регуляторах освещенности, таких как те, которые используются в домашнем освещении. Эти электронные компоненты также широко используются в пусковых схемах для люминесцентных ламп.

Сколько минимальных тиристоров составляет симистор?

Сколько минимальных тиристоров составляет симистор (триод переменного тока)? Пояснение: 2 тиристора составляют симистор (триод переменного тока). Эти тиристоры подключены параллельно друг другу, но в противоположном направлении. Их затворы сделаны общими, что делает его 3-х оконечным устройством.

Какова основная функция обратного диода?

Назначение обратноходового диода

Основное назначение обратноходового или обратноходового диода состоит в том, чтобы высвобождать накопленную энергию в катушке индуктивности путем создания пути короткого замыкания .Это необходимо, иначе внезапное падение тока в цепи приведет к повышению напряжения на контактах переключателя и диоде.

Для чего нужен диод свободного хода?

Диоды свободного хода или обратноходовые диоды в основном подключаются к индуктивным катушкам для предотвращения скачков напряжения в случае отключения питания устройств . При подаче питания на индуктивную нагрузку произойдет резкий скачок напряжения, т.е.е. катушки и другие катушки индуктивности выключены.

Какова основная функция измельчителя?

Прерыватель — это устройство, которое напрямую преобразует фиксированное входное постоянное напряжение в переменное выходное постоянное напряжение . По сути, прерыватель — это электронный переключатель, который используется для прерывания одного сигнала под управлением другого.

Как проверить TRIAC?

Пошаговая процедура проверки симистора:

  1. Оставьте цифровой мультиметр в режиме омметра.
  2. Используя диод-переходник, определите, какой вывод омметра положительный, а какой отрицательный. …
  3. Подсоедините положительный вывод омметра к MT2, а отрицательный вывод к MT1. …
  4. С помощью перемычки подключите Gate of the Triac к MT2.

Как вы управляете симистором?

Конфигурации тиристоров

Другими словами, симистор может быть запущен в проводимость как положительным, так и отрицательным напряжением, приложенным к его аноду, и с положительными и отрицательными импульсами запуска, подаваемыми на его вывод затвора, что делает его двухквадрантным переключающим устройством, управляемым затвором.

Является ли TRIAC транзистором?

Симистор — это небольшое полупроводниковое устройство , похожее на диод или транзистор. Как и транзистор, симистор состоит из различных слоев полупроводникового материала. … Вы можете видеть, что симистор имеет две клеммы, которые подключены к двум концам цепи.

Как называется симистор и символ?

Операция переключения TRIAC.Символ симистора. Символ состоит из трех терминалов: Gate, Anode или Main . Две клеммы помечены как анод1 или анод2, основная клемма MT1 или MT2. Со стороны символ выглядит как тиристор спина к спине, что мы можем наблюдать на символе.

Каковы области применения тиристоров?

Тиристоры могут использоваться в цепях переключения мощности , схемах замены реле, схемах инвертора, схемах генераторов, схемах детекторов уровня , схемах прерывателя, схемах диммирования света, недорогих схемах таймеров, логических схемах, схемах управления скоростью , цепи управления фазой и т.д.

Каковы характеристики TRIAC?

Типичный симистор имеет следующие значения напряжения/тока:

  • Мгновенное напряжение во включенном состоянии – 1,5 Вольта.
  • Ток во включенном состоянии – 25 Ампер.
  • Ток удержания, I H – 75 миллиампер.
  • Средний ток срабатывания, I G – 5 миллиампер.

Каковы преимущества и недостатки SCR?

SCR Преимущества, недостатки и области применения

  • Выдерживает большие напряжения, токи и мощность.
  • Небольшое падение напряжения на проводящем SCR. …
  • Легко включается.
  • Цепи запуска просты.
  • Можно защитить с помощью предохранителя.
  • Мы можем контролировать мощность, подаваемую на нагрузку.

Симисторные схемы

  • Изучив этот раздел, вы должны уметь:
  • Распознавание типичных симисторных пакетов:
  • Изучите типичную диаграмму характеристик симистора.
  • Понимание функции квадрантов при срабатывании симисторов:
  • Понимание основных принципов оптотриаков.
  • Разобраться в работе диаков.
  • Понимать методы и ограничения для внесхемного тестирования тиристоров.
  • Меры безопасности при использовании устройств среднего и высокого напряжения.

Симистор

Рис.6.3.1 Симисторные пакеты

На рис. 6.3.1 показаны некоторые типичные корпуса симистора вместе с символом схемы симистора. Симистор представляет собой двунаправленный тиристор, аналогичный по принципу действия двум тиристорам, включенным в обратную параллель, но с использованием общего затвора. Следовательно, симистор может проводить и управляться как во время положительных, так и во время отрицательных полупериодов сигнала сети. Однако вместо соединений с положительным анодом и отрицательным катодом основные токоведущие соединения симистора обычно обозначаются MT1 и MT2, обозначающими основные клеммы 1 и 2 (хотя могут использоваться другие буквы), поскольку любая клемма может быть положительной или отрицательной.Симистор можно перевести в проводимость импульсом тока, подаваемым на клемму затвора (G). После срабатывания симистор будет продолжать работать до тех пор, пока основной ток не упадет ниже порога удержания тока, близкого к нулю.

Рис. 6.3.2 Характеристики симистора

  • На рис. 6.3.2 показаны основные характеристики симистора.
  • В BO — это максимальное прямое или обратное напряжение, которое может выдержать симистор, прежде чем он перейдет в неконтролируемую проводимость.
  • В DRM — это максимальное повторяющееся пиковое напряжение (обычно максимальное пиковое напряжение приложенной волны переменного тока), которое можно надежно выдержать.
  • В GT — это диапазон напряжений затвора, при которых запускается проводимость.
  • I L — это минимальный ток, при котором симистор защелкивается и продолжает проводить ток после снятия напряжения срабатывания затвора.
  • I H — минимальный ток удержания, ниже которого проводящий симистор перестанет проводить ток.

Рис. 6.3.3 Симисторные квадранты

Симисторные квадранты

Поскольку управляющий ток или импульс, используемые для запуска симистора, могут подаваться, когда клемма MT2 имеет положительное или отрицательное значение, а управляющий ток или импульс также могут быть положительными или отрицательными, существует четыре различных способа запуска симистора. Обычно они описываются как «Квадранты», как показано на рис. 6.3.3

.

Большинство симисторов могут запускаться в любом из четырех квадрантов, и два из четырех возможных квадрантов необходимы для запуска проводимости в течение двух (положительных и отрицательных) полупериодов волны переменного тока.Квадранты I и III или квадранты II и III являются предпочтительными методами запуска, поскольку квадрант IV гораздо менее чувствителен к запуску из-за того, как устроен диак. Таким образом, если квадрант IV используется с любым из трех других квадрантов, для положительных и отрицательных полупериодов потребуются разные значения триггерного тока, что создает ненужные сложности. Кроме того, если симистор срабатывает в квадранте IV, его способность справляться с любыми быстрыми изменениями тока (δI/δt) снижается, что делает симистор более восприимчивым к повреждениям в результате таких событий, как случайные выбросы сильного тока и неизбежные высокие пусковые токи при работе ламп накаливания. включены.

Важной целью многих современных конструкций является борьба с потенциально опасными пиками перенапряжения и уменьшение склонности симистора к повторному срабатыванию во время выключенной части цикла. Это происходит во время каждого цикла переменного тока между моментом, когда ток падает ниже тока удержания тиристора, и перед следующим триггерным импульсом. Хотя обычно это не проблема, когда симистор управляет резистивной нагрузкой, такой как лампа накаливания, при использовании с индуктивными нагрузками, такими как двигатели, напряжение нагрузки и ток нагрузки, скорее всего, не будут «в фазе» друг с другом, поэтому напряжение может на самом деле быть около своего пикового значения, когда ток падает до нуля (как описано здесь), вызывая большое и быстрое изменение напряжения на симисторе, что может привести к мгновенному повторному срабатыванию симистора и, таким образом, к его повторному включению, так что контроль будет потерян.

Стандартные симисторы

использовались для управления переменным током в течение многих лет, но за это время диапазон различных конструкций симисторов значительно увеличился. Современные конструкции симисторов, такие как симисторы 3Q HIGH-COM (3 квадранта, высокая коммутация) от NXP/WeEn и симисторы Snubberless TM от ST Microelectronics, имеют много преимуществ, таких как улучшенная производительность, меньше ложных срабатываний, удобство использования как с резистивными, так и с индуктивными нагрузками и улучшенные возможности отключения без необходимости использования дополнительных схем, таких как демпферы.Дополнительное согласование входа также является функцией некоторых конструкций, включая преобразование стробирующих импульсов, таких как детекторы пересечения нуля, входы логического уровня и т. д.

Поскольку многие функции управления в настоящее время выполняются с использованием микропроцессоров и/или логических схем, также существует множество симисторов, которые принимают логические сигналы для запуска, а не полагаются исключительно на традиционные методы управления фазой. Одним из таких симисторов является симистор 6073A Sensitive Gate от ON Semiconductor, который используется в демонстрационной схеме низкого напряжения в Тиристорном модуле 6.4.

Рис. 6.3.4. Оптотриак

Оптотриак

Материалы, используемые при производстве симисторов и тринисторов, как и любые полупроводниковые устройства, чувствительны к свету. Их проводимость изменяется при наличии света; вот почему они обычно упаковываются в маленькие кусочки черного пластика. Однако, если в комплект входит светодиод, он может включить выход высоковольтного устройства в ответ на очень небольшой входной ток через светодиод. Этот принцип используется в Opto-Triacs и Opto-SCR, которые легко доступны в виде интегральных схем (IC) и не требуют очень сложных схем, чтобы заставить их работать.Просто подайте небольшой импульс в нужное время, чтобы зажечь встроенный светодиод, и питание будет включено. Основным преимуществом этих оптически активируемых устройств является превосходная изоляция (обычно несколько тысяч вольт) между цепями малой и большой мощности. Это обеспечивает безопасную изоляцию между низковольтной цепью управления и высоковольтным сильноточным выходом. Хотя выходной ток оптронных симисторов обычно ограничен десятками миллиампер, они обеспечивают полезный интерфейс, когда выход используется для запуска симистора большой мощности от симистора низкого напряжения.

Диак

Рис. 6.3.5 DB3 Diac & Circuit Symbol

Диак представляет собой двунаправленный триггерный диод (см. рис. 6.3.5), который в течение многих лет используется в качестве основного триггерного компонента для стандартных симисторов. Он блокирует протекание тока, когда приложенное к нему напряжение меньше его потенциала пробоя V BO (см. рис.6.3.6), но сильно проводит, когда приложенное напряжение равно V BO . Однако, в отличие от других диодов, проводящих только в одном направлении, диак имеет одинаковое напряжение пробоя как в положительном, так и в отрицательном направлениях.Как только переменное напряжение, подаваемое на диак, достигает либо +V BO , либо -V BO , генерируется положительный или отрицательный импульс тока. Разрыв по потенциалу для диаков обычно составляет от 30 до 40 вольт. Это действие делает диаки особенно полезными для запуска симисторов в цепях управления переменным током из-за его способности запускать симистор во время положительного или отрицательного полупериода формы сетевого (линейного) сигнала. Условное обозначение его схемы (показанное на рис. 6.3.5) похоже на обозначение симистора, но без клеммы затвора.

Рис. 6.3.6 Типичные характеристики диака.

Характеристики диака, показанные на рис. 6.3.6, показывают, что при напряжении ниже V BO диак имеет высокое сопротивление (характеристическая кривая почти горизонтальна, указывая на то, что ток утечки небольшой, всего несколько мкА, но как только достигается +V BO или -V BO , диак показывает отрицательное сопротивление Обычно закон Ома гласит, что увеличение тока через компонент с фиксированным значением сопротивления вызывает увеличение напряжения на этом компоненте Однако здесь происходит обратный эффект, диатор оказывает отрицательное сопротивление в момент пробоя, когда ток резко возрастает, хотя напряжение фактически падает.Режим отрицательного сопротивления длится около 2 мкс, за это время прямое напряжение падает примерно до 5 В, а через диод проходит ток 10 мА. Это действие достаточно (хотя и не совсем) симметрично как в положительной (+V), так и в отрицательной областях характеристик.

Рис. 6.3.7. Триак с внутренним запуском (Quadrac)

Триак с внутренним запуском (Quadrac)

Типов диаков, доступных у поставщиков компонентов, гораздо меньше, чем симисторов.Кроме того, проще выбрать идеальный диод для срабатывания конкретного симистора, когда он уже встроен в корпус. Так обстоит дело с Quadrac или симистором с внутренним запуском, показанным на рис. 6.3.7. Эти устройства также уменьшают количество компонентов и место на печатной плате.

Чувствительные симисторы затвора

Триаки, запуск которых зависит от диака, имеют недостаток для многих современных приложений с низким напряжением. Напряжение, необходимое для того, чтобы диак генерировал триггерный импульс, должно быть, по крайней мере, равно или больше, чем его разрывной потенциал (V BO ), что составляет около 30 В или более.Однако доступны симисторы — симисторы с чувствительным затвором, которые могут запускаться гораздо более низкими напряжениями в пределах диапазона устройств TTL, HTL, CMOS и OP AMP, а также выходов микропроцессора.

Демонстрационная схема управления симистором чувствительного затвора показана в Тиристорном модуле 6.4.

Проверка тиристоров, симисторов и диаков.

В Интернете есть много страниц, предлагающих методы проверки тиристоров и симисторов с помощью мультиметра. В основном они включают проверку сопротивления тестируемого устройства, чтобы установить, является ли оно разомкнутой цепью.Измерение сопротивления между анодом и катодом тиристора или между двумя основными клеммами симистора должно показать очень высокое сопротивление при измерении в любом направлении путем перестановки щупов измерителя.

В обоих тестах измеритель должен регистрировать значения сопротивлений, выходящие за пределы допустимого диапазона (обычно отображаемые на дисплее как «1» или «OL»), также называемые бесконечным или бесконечным сопротивлением. Аналогичные тесты сопротивления можно провести, измерив сопротивление снова в обоих направлениях между затвором SCR и его катодом или затвором и MT1 на симисторе, и оно должно показать гораздо более низкое сопротивление, но не ноль омов.

Если какой-либо из этих четырех тестов дает нулевое значение сопротивления, можно предположить, что компонент неисправен; однако, если результаты не показывают ошибок, это только ВОЗМОЖНО означает, что компонент в порядке. Испытания на сопротивление этих высоковольтных компонентов имеют ограниченное применение, и на них можно полагаться только как на простое руководство; они не показывают, что устройство сработает при правильном напряжении или что ток удержания правильный. Тиристоры и симисторы обычно работают при сетевом (линейном) напряжении, и когда они выходят из строя, результаты могут быть драматичными.По крайней мере, бурное перегорание предохранителя будет обычным результатом короткого замыкания SCR или симистора. Однако вполне возможно, что эти устройства неисправны и не проявляют никаких признаков неисправности при проверке омметром. Они могут казаться нормальными при низком напряжении, используемом в измерительных приборах, но все равно не работают в условиях сетевого напряжения. Высоковольтные компоненты, такие как тиристоры и симисторы, также могут быть повреждены невидимыми скачками напряжения или перегрузками по току.

Обычным методом проверки оборудования, использующего тиристоры или симисторы, является проверка напряжений и форм сигналов, если цепь работает, или замена подозрительной детали в случае ее повреждения (например,г. перегорели предохранители) очевидно. Во многих случаях компоненты в источниках питания или высоковольтных схемах управления промышленного оборудования обозначаются как «критичные для безопасности компоненты» и должны заменяться только с использованием методов и компонентов, рекомендованных производителями. Обычно производители указывают полные «ремонтные комплекты» нескольких полупроводниковых устройств и, возможно, других связанных компонентов, каждый из которых должен быть заменен, поскольку отказ одного устройства управления питанием может легко повредить другие компоненты, что не всегда очевидно. на момент ремонта.

ЛЮБЫЕ РАБОТЫ С СЕТЕВЫМИ ЦЕПЯМИ ДОЛЖНЫ ВЫПОЛНЯТЬСЯ ПРИ ПОЛНОСТЬЮ ОТКЛЮЧЕННОМ СЕТИ. ТАКЖЕ ЛЮБЫЕ КОМПОНЕНТЫ, АККУМУЛИРУЮЩИЕ ЗАРЯД (например, КОНДЕНСАТОРЫ), ДОЛЖНЫ БЫТЬ РАЗРЯЖЕНЫ, ЕСЛИ ЭТО НЕ СОВЕРШЕННО НЕИЗБЕЖНО.

Если вы не обучены безопасным методам работы, необходимым для работы с этими типами цепей, НЕ ДЕЛАЙТЕ ЭТОГО! Эти цепи могут убить!

 

 

Электротехника — Можно ли использовать последовательно два стабилитрона…

Непонятно, что вы на самом деле пытаетесь сделать, но если вы пытаетесь заменить левую цепь правой, это плохая идея:

Левая цепь переключает , чтобы, по-видимому, передать частичное напряжение. Это означает, что он не рассеивает много энергии. Мощность в чем-то — это напряжение на нем, умноженное на ток через него. Полностью выключенный переключатель не рассеивает мощность, потому что ток через него равен 0. Полностью включенный переключатель не рассеивает мощность, потому что напряжение на нем равно 0.

Второй контур всегда «съедает» фиксированное напряжение. Когда он подключен последовательно с нагрузкой, он будет рассеивать 32 В или около того, оно падает в несколько раз больше тока нагрузки. Это может быть довольно значительная сила.

Сделайте шаг назад, покажите исходную схему и объясните, чего вы пытаетесь достичь.

Ответ на схему

Теперь, когда вы опубликовали схему, мы видим, что вы хотите заменить часть, которая запускает элемент прохода, а не сам элемент прохода.

Два встречных стабилитрона — это не то же самое, что диак.Оба могут быть настроены так, чтобы иметь порог, ниже которого они не будут проводить. Однако диак обладает особым свойством: после запуска проводимости падение напряжения становится намного ниже, и устройство остается включенным до тех пор, пока ток не упадет ниже некоторого порога.

Есть и другие устройства, которые демонстрируют такое поведение фолдбэка, но, вероятно, не подходят для вашего случая. Неоновые лампочки обладают этим свойством, но для срабатывания обычного типа обычно требуется около 80 В. Искровые разрядники также обладают этим свойством, но являются устройствами с гораздо более высоким напряжением.Было бы сложно сделать так, чтобы искровой разрядник надежно срабатывал только при напряжении 32 В.

Можно попробовать другой симистор с затвором, управляемым резисторным делителем между анодом и катодом. Или используйте стабилитрон между анодом и затвором. Это будет более сложно, чем диак, но, возможно, его можно заставить работать, когда это все, что у вас есть. Диак можно представить себе как симистор, который автоматически срабатывает при заранее определенном пороговом напряжении.

опубликовано более 1 года назад

более 1 года назад

Ошибка 404 — Страница не найдена

Страна COUNTRYAfghanistanÅland IslandsAlbaniaAlgeriaAmerican SamoaAndorraAngolaAnguillaAntigua и BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelgiumBelizeBeninBermudaBhutanBoliviaBosnia и HerzegovinaBotswanaBouvet IslandBrazilBritish Индийский океан TerritoryBruneiBulgariaBurkina FasoBurundiCambodiaCameroonCanadaCape VerdeCaribbean NetherlandsCayman IslandsChadChileChinaChristmas IslandCocos IslandsColombiaComorosCongo, Демократическая RepublicCook IslandsCosta RicaCroatiaCubaCuraçaoCyprusCzech RepublicDenmarkDjiboutiDominicaDominican RepublicEast TimorEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFalkland IslandsFaroe IslandsFijiFinlandFranceFrench GuianaFrench PolynesiaFrench Южный TerritoriesGabonGambiaGeorgiaGermanyGhanaGibraltarGreeceGreenlandGrenadaGuadeloupeGuamGuatemalaGuernseyGuineaGuinea-BissauGuyanaHaitiHondurasHong KongHungaryIcelandIndiaIndonesiaIranIraqIrelandIsle из ManIsraelItalyIvory CoastJamaicaJapanJerseyJordan KazakhstanKenyaKiribatiKosovoKuwaitKyrgyzstanLaosLatviaLebanonLesothoLiberiaLibyaLiechtensteinLithuaniaLuxembourgMacaoMacedoniaMadagascarMalawiMalaysiaMaldivesMaliMaltaMarshall IslandsMartiniqueMauritaniaMauritiusMayotteMexicoMicronesiaMoldovaMonacoMongoliaMontenegroMontserratMoroccoMozambiqueMyanmarNamibiaNauruNepalNetherlandsNew CaledoniaNew ZealandNicaraguaNigerNigeriaNiueNorfork IslandNorwayOmanPakistanPalauPalestinian TerritoryPanamaPapua Новый GuineaParaguayPeruPhilippinesPitcairn IslandPolandPortugalPuerto RicoQatarRepublic из CongoReunionRomaniaRussiaRwandaSaint HelenaSaint Киттс и NevisSaint LuciaSaint Пьер и MiquelonSaint Винсент и GrenadinesSamoaSan MarinoSao Томе и PrincipeSaudi ArabiaSenegalSerbiaSeychellesSierra LeoneSingaporeSint MaartenSlovakiaSloveniaSolomon IslandsSomaliaSouth AfricaSouth Грузии и Южные Сандвичевы IslandsSouth KoreaSouth SudanSpainSri LankaSudanSurinameSvalbard и Ян MayenSwazilandSwedenSwitzerlandSyriaTaiwanTajikistanTanzaniaThaila ндТогоТокелауТонгаТринидад и ТобагоТунисТурцияТуркменистанОстрова Теркс и КайкосТувалуУгандаУкраинаОбъединенные Арабские ЭмиратыВеликобританияСоединенные ШтатыОтдаленные малые острова СШАУругвайУзбекистанВануатуВатиканВенесуэлаВьетнамВиргинские острова, Британские Виргинские острова, СШАЗападная СахараЙеменЗамбияЗимбабве

Принципы и схемы симистора — Часть 1


Симистор — это управляемый твердотельный переключатель переменного тока с полузащелкой средней и высокой мощности.В этой статье, состоящей из двух частей, объясняется его основная работа и показаны различные способы его использования. Большинство практических схем показывают два набора значений компонентов для использования с обычными бытовыми/коммерческими источниками переменного напряжения 50 Гц или 60 Гц с номинальным значением либо 240 В (как используется в большинстве стран Европы), либо (в скобках) 120 В (как используется в большинстве стран Европы). Соединенные Штаты Америки). В каждой конструкции пользователь должен использовать симистор с номиналами, соответствующими его или ее конкретному приложению.

Основы симистора

РИСУНОК 1.Символы симистора.
РИСУНОК 2. Простой выключатель питания переменного тока с резистивной (ламповой) нагрузкой.

Симистор представляет собой твердотельный тиристор с тремя выводами (MT1, затвор и MT2), который использует альтернативные обозначения на рис. Терминал. Он может проводить ток в любом направлении между своими клеммами MT1 и MT2 и, таким образом, может использоваться для прямого управления питанием переменного тока.Он может запускаться как положительным, так и отрицательным током затвора, независимо от полярности тока MT2, и, таким образом, он имеет четыре возможных режима запуска или «квадранта», обозначенных следующим образом:

I+     Mode = ток MT2 +ve, ток затвора +ve
I-      Mode = ток MT2 +ve, ток затвора -ve
III+   Mode = ток MT2 -ve, ток затвора +ve
III+   Mode = ток MT2 -ve, ток затвора текущий -ве

Чувствительность триггерного тока максимальна, когда токи MT2 и затвора имеют одинаковую полярность (либо оба положительные, либо оба отрицательные), и обычно вдвое меньше, когда они имеют противоположную полярность.

На рис. 2 показан симистор, используемый в качестве простого переключателя питания переменного тока, управляющий резистивной ламповой нагрузкой; Предположим, что SW2 закрыт. Когда SW1 разомкнут, симистор действует как разомкнутый переключатель, и лампа пропускает нулевой ток. Когда SW1 замкнут, симистор запирается через R1 и самоблокируется вскоре после начала каждого полупериода, таким образом переключая полную мощность на ламповую нагрузку. Симистор автоматически разблокируется в конце каждого полупериода переменного тока, когда мгновенное напряжение питания (и, следовательно, ток нагрузки) кратковременно падает до нуля.

В рис. 2 задача резистора R1 заключается в ограничении пикового мгновенного тока затвора симистора при включении до безопасного значения; его сопротивление (вместе с сопротивлением нагрузки) должно быть больше, чем пиковое напряжение питания (примерно 350 В в цепи 240 В переменного тока, 175 В в цепи 120 В), деленное на номинальный пиковый ток затвора симистора (который обычно указывается в документации производителя симистора). расширенные технические данные).

Обратите внимание на рис. 2 (и в большинстве других симисторных цепей, показанных в этой мини-серии), что — из соображений безопасности — нагрузка подключается последовательно с нейтральной линией (N) источника переменного тока и главным выключателем. SW2 может изолировать всю цепь от действующей (L) линии.

Эффект скорости симистора

РИСУНОК 3. Простой выключатель питания переменного тока с индуктивной нагрузкой и демпфирующей цепью C1-R2 для подавления эффекта скорости.

Большинство симисторов, как и SCR, подвержены проблемам «скорости-эффекта». Между основными выводами и затвором симистора неизбежно существуют внутренние емкости, и если на одном из основных выводов появляется резко возрастающее напряжение, оно может — если его скорость нарастания превышает номинальную dV/dt симистора — вызвать достаточный прорыв к гейт, чтобы включить симистор.Это нежелательное включение «эффекта скорости» может быть вызвано переходными процессами в линии питания; однако проблема особенно серьезна при управлении индуктивными нагрузками, такими как электродвигатели, в которых токи и напряжения нагрузки не совпадают по фазе, что приводит к внезапному появлению большого напряжения на основных клеммах каждый раз, когда симистор размыкается, когда ток на его основной клемме падает. почти до нуля в каждом рабочем полупериоде.

Проблемы с эффектом скорости обычно можно решить, подключив RC-демпферную сеть между MT1 и MT2, чтобы ограничить скорость нарастания напряжения до безопасного значения, как показано (например) в цепи переключателя питания симистора в . Рисунок 3 , где R2-C1 образуют демпферную сеть.Некоторые современные симисторы имеют повышенные характеристики dV/dt (обычно 750 В/мс) и практически не подвержены влиянию скорости; эти симисторы известны как «бесшумные» типы.

Подавление радиопомех

РИСУНОК 4. Базовый диммер лампы переменного тока с подавлением радиопомех через C1-L1.

Симистор можно использовать для управления переменной мощностью переменного тока с помощью метода «переключения с фазовой задержкой», при котором симистор срабатывает частично в течение каждого полупериода.При каждом включении симистора ток его нагрузки резко (за несколько микросекунд) переключается от нуля до значения, заданного его сопротивлением нагрузки и мгновенными значениями напряжения питания. В схемах с резистивной нагрузкой, таких как диммеры ламп, это действие переключения неизбежно генерирует импульс ВЧ-помех, который наименьший, когда симистор срабатывает вблизи точек пересечения нуля 0° и 180° осциллограммы линии питания (при которой переключатель токи включения минимальны) и максимальны, когда устройство срабатывает через 90° после начала каждого полупериода (где токи включения максимальны).

Импульсы радиочастотных помех возникают на частоте, вдвое превышающей частоту сети, и могут быть очень раздражающими. В диммерах ламп РЧ-помехи обычно можно устранить, установив на диммер простую сеть LC-фильтров, как показано на рис. 4 . Фильтр устанавливается рядом с симистором и значительно снижает скорость нарастания токов в сети переменного тока.

РИСУНОК 5. Символ диака.

Диаки и квадраки

Диак представляет собой двунаправленное триггерное устройство с двумя выводами; он может использоваться с напряжениями любой полярности и обычно используется в сочетании с симистором; На рис. 5 показан символ схемы.Основное действие диака таково, что при подключении к источнику напряжения через токоограничивающий нагрузочный резистор он действует как высокоимпедансный резистор до тех пор, пока приложенное напряжение не поднимется примерно до 35 В, после чего он срабатывает и действует как низкоимпедансный 30-вольтовый резистор. стабилитрон, и 30 В вырабатывается на диаке, а остальные 5 В появляются на нагрузочном резисторе. Диак остается в этом состоянии до тех пор, пока его прямой ток не упадет ниже минимального удерживающего значения (это происходит, когда напряжение питания падает ниже значения «стабилитрона» 30 В), после чего диак снова отключается.

РИСУНОК 6. Базовая схема диммера лампы с регулируемой фазовой задержкой. Рисунок 7 . Символ квадрака.

Диак чаще всего используется в качестве пускового устройства в приложениях управления мощностью с фазным триаком, как в базовой схеме регулятора мощности лампы Рисунок 6 . Здесь в каждом полупериоде линии электропередачи сеть R1-RV1-C1 применяет вариант полупериода с переменной задержкой по фазе к затвору симистора через диак, и когда напряжение C1 возрастает до 35 В, диак срабатывает и подает триггерный импульс 5В (от С1) на затвор симистора, тем самым включая симистор и одновременно подавая питание на ламповую нагрузку и отключая привод от RC-цепи.Таким образом, средняя мощность нагрузки (интегрированная за полный период полупериода) полностью изменяется от почти нуля до максимума через RV1.

В первые дни разработки симистора некоторые специализированные устройства производились со встроенным диаком последовательно с затвором симистора; такие устройства были известны как квадраки и использовали символ схемы Рисунок 7 . Quadrac не имели коммерческого успеха и сейчас устарели.

Варианты выключателя питания переменного тока

Самый простой тип переключателя питания симистора — это переключатель (рис. 2 ), в котором симистор включается через R1, когда SW1 замкнут; Только 1 В или около того генерируется на симисторе, когда он включен, поэтому R1 и SW1 потребляют очень небольшую среднюю мощность; На рис. 3 показана та же цепь, оснащенная «демпфирующей» сетью.Есть много полезных вариантов этих основных схем. На Рисунке 8 , например, показана версия, которая может запускаться от источника постоянного тока переменного тока. C1 заряжается (через R1-D1) до +10 В в каждом положительном полупериоде линии питания переменного тока, и этот заряд запускает симистор, когда SW1 замкнут. Обратите внимание, что R1 постоянно подвергается почти полному напряжению сети переменного тока и, следовательно, требует довольно высокой номинальной мощности, и что все части этой схемы находятся под напряжением, что затрудняет взаимодействие с внешней схемой управления.

РИСУНОК 8. Переключатель питания переменного тока с запуском по постоянному току переменного тока. РИСУНОК 9. Выключатель питания переменного тока с изолированным входом (с оптической развязкой), срабатывающий от постоянного тока.


На рис. 9 показана вышеприведенная схема, модифицированная для обеспечения «изолированного» взаимодействия с внешней схемой управления. SW1 просто заменяется транзистором Q2, который управляется со стороны фототранзистора оптрона.Светодиод соединителя питается от внешнего источника постоянного тока через R1, а симистор включается только при замыкании SW1; При желании SW1 можно заменить электронной коммутационной схемой.

РИСУНОК 10. Выключатель питания переменного тока с изолированным входом, срабатывающий от переменного тока. РИСУНОК 11. Переключатель питания переменного тока с запуском по постоянному току с помощью транзистора.


На рис. 10 показан вариант, в котором симистор запускается по переменному току в каждом полупериоде через импеданс переменного тока C1-R1 и через встречно-параллельные стабилитроны ZD1-ZD2, а C1 рассеивает около нуля сила.Мостовой выпрямитель D1-D4 подключен к сети ZD1-ZD2-R2 и нагружен Q2. Когда Q2 выключен, мост фактически разомкнут, и симистор открыт в каждом полупериоде, но когда Q2 включен, между ZD1-ZD2-R2 возникает почти короткое замыкание, и симистор выключен. Q2 управляется через оптопару от изолированной внешней цепи, а симистор включен, когда SW1 разомкнут, и выключен, когда SW1 замкнут.

РИСУНОК 12. Выключатель питания переменного тока с изолированным входом и срабатыванием по постоянному току.

На рисунках 11 и 12 показаны варианты, в которых симистор запускается с помощью трансформаторного источника постоянного тока и транзисторного ключа. В Рисунок 11 , Q2 и симистор оба включены, когда SW1 замкнут, и выключены, когда SW1 разомкнут. На практике SW1 можно заменить электронной схемой, позволяющей активировать симистор с помощью тепла, света, звука, времени и т. д. Обратите внимание, однако, что вся эта схема находится под напряжением.’ На рис. 12 показана схема, модифицированная для работы с оптопарой, позволяющая активировать ее через полностью изолированную внешнюю схему.

Запуск UJT

Другой способ получить полностью изолированное симисторное переключение — использовать схемы UJT в , рисунки 13, и , 14, , в которых UJT является старым типом 2N2646 или его современным аналогом. В этих схемах пусковое действие достигается за счет UJT-генератора Q2, который работает на частоте несколько кГц и подает выходные импульсы на затвор симистора через импульсный трансформатор T1, который обеспечивает желаемую «развязку».Из-за довольно высокой частоты колебаний UJT запускает симистор в пределах нескольких градусов от начала каждого полупериода линии электропередачи переменного тока, когда генератор активен.

РИСУНОК 13. Выключатель питания переменного тока с изолированным входом (с трансформаторной связью). РИСУНОК 14. Выключатель питания переменного тока с изолированным входом.


В Рис. 13 Q3 включен последовательно с основным времязадающим резистором UJT, поэтому UJT и симистор включаются только при замыкании SW1.В Рис. 14 Q3 подключен параллельно основному времязадающему конденсатору UJT, поэтому UJT и симистор включаются только тогда, когда SW1 разомкнут.

РИСУНОК 15. Типичная схема симистора с оптронной развязкой и рабочие характеристики.
Рис. 16. Управление маломощными лампами через оптронный симистор.

Триаки с оптической развязкой

Затворы «голого» симистора по своей природе светочувствительны, и, таким образом, симистор с оптической развязкой можно изготовить, установив «голый» симистор и светодиод близко друг к другу в одном корпусе. На рис. 15 показана схема и перечислены характеристики типичной шестиконтактной версии DIL такого устройства, в которой светодиод имеет максимальный номинальный ток 50 мА, симистор имеет максимальные номинальные значения 400 В и 100 мА среднеквадратичного значения (и номинальный ток 1,2 А для 10 мс), а весь пакет имеет номинальное напряжение изоляции 1,5 кВ и типичную чувствительность срабатывания по входному току 5 мА.

Триаки с оптопарой

просты в использовании и обеспечивают превосходную электрическую изоляцию между входом и выходом.Вход используется как обычный светодиод, а выход как маломощный симистор. На рис. 16 показано устройство, используемое для включения лампы накаливания с питанием от сети переменного тока, которая должна иметь среднеквадратичное значение ниже 100 мА и номинальный пиковый пусковой ток ниже 1,2 А.

РИСУНОК 17. Управление большой мощностью через симисторный ведомый. РИСУНОК 18. Приведение в действие индуктивной нагрузки.


На рис. 17 показан симистор с оптронной развязкой, используемый для активации подчиненного симистора, тем самым управляя нагрузкой любой требуемой номинальной мощности.Эта схема подходит для использования только с неиндуктивными нагрузками, такими как лампы и нагревательные элементы. Его можно модифицировать для использования с индуктивными нагрузками, такими как электродвигатели, с помощью соединений Рисунок 18 . Здесь цепь R2-C1-R3 обеспечивает определенный фазовый сдвиг в цепи затвора-привода симистора, чтобы обеспечить правильное срабатывание симистора, а R4-C2 образуют демпферную сеть для подавления эффектов скорости.

Синхронное переключение питания при нулевом напряжении

Синхронный силовой выключатель «нулевого напряжения» (или «интегрального цикла») — это переключатель, в котором симистор неизменно включается сразу после начала каждого полупериода питания (т.е., около точки нулевого напряжения сигнала), а затем снова автоматически выключается в конце, таким образом генерируя минимальные радиопомехи. В большинстве схем переключения мощности, показанных до сих пор в этой статье, симистор включается в произвольной точке своего начального полупериода включения, тем самым создавая потенциально высокий начальный всплеск радиопомех, но затем дает синхронное действие переключения при нулевом напряжении. на все последующие полупериоды.

Истинно синхронная схема с нулевым напряжением использует систему переключения Рисунок 19 , в которой симистор может быть включен только вблизи начальной точки или точки «нулевого напряжения» каждого полупериода, и, таким образом, создает минимальные ВЧ-помехи.Эта система широко используется для включения/выключения сильноточных нагрузок, таких как электрические нагреватели и т. д.

РИСУНОК 19. Система синхронного переключения питания переменного тока с нулевым напряжением. РИСУНОК 20. Синхронный выключатель питания переменного тока.


На рис. 20 показан практичный синхронный выключатель питания переменного тока с нулевым напряжением; 10 В постоянного тока получают от переменного тока через R7-D1-ZD1 и C2 и переключают на затвор симистора через Q2, который управляется через SW1 и детектор «нулевого напряжения» Q3-Q4-Q5 и может подавать ток затвора только тогда, когда SW1 закрыт, а Q3 выключен.

РИСУНОК. 21 Альтернативный вариант синхронного выключателя переменного тока.

В детекторе нулевого напряжения транзисторы Q4 или Q5 включаются всякий раз, когда напряжение в сети переменного тока превышает или ниже нуля более чем на несколько вольт (задается RV1), тем самым активируя Q3 через резистор R5 и блокируя Q2. Таким образом, ток затвора может подаваться на симистор только тогда, когда SW1 замкнут, а мгновенное линейное напряжение переменного тока находится в пределах нескольких вольт от нуля; Таким образом, эта схема генерирует минимальные коммутационные радиочастотные помехи.

На рис. 21 показана схема, модифицированная таким образом, что симистор может включаться только при разомкнутом переключателе SW1. Обратите внимание, что в обоих случаях на симистор подается только узкий импульс тока затвора, и, таким образом, средний ток затвора составляет всего 1 мА или около того. При желании SW1 можно заменить электронным переключателем или оптопарой, что позволяет активировать нагрузку по уровню освещенности или температуры, по времени и т. д.

На практике самый простой способ создать действительно эффективную синхронную схему управления симистором «нулевого напряжения» — это использовать специальную ИС, функционирующую как синхронный симистор малой мощности с оптронной связью, который может легко использоваться в качестве ведомого устройства для синхронного управления обычным мощным симистором.

В следующем и последнем эпизоде ​​будут даны практические подробности таких схем, а также другие схемы и информация, связанные с симисторами. НВ

Строительство, работа, режимы срабатывания и их применение

Мы знаем, что однонаправленное устройство, такое как SCR, включает в себя характеристики обратного тока блокировки, поскольку оно останавливает протекание тока в состоянии обратного смещения, однако для некоторых приложений такой тип управления током необходим, особенно в цепях переменного тока.Таким образом, это может быть достигнуто с помощью SCR, где соединение двух SCR должно быть выполнено встречно-параллельно для управления как положительными, так и отрицательными входными полупериодами. Но это расположение можно изменить с помощью специального полупроводникового устройства под названием TRIAC, используемого для достижения двунаправленного управления. Это устройство точно управляет переменным током и часто используется для управления скоростью двигателя, устройствами управления переменным током, цепями переменного тока, диммерами света, системами контроля давления и т. д.


Что такое TRIAC?

TRIAC (триод для переменного тока) представляет собой полупроводниковый прибор, широко используемый для управления питанием и коммутации.Он находит применение в коммутации, управлении фазой, конструкциях прерывателей, управлении яркостью ламп, управлении скоростью вентиляторов, двигателей и т. д. Система управления мощностью предназначена для управления уровнем распределения переменного или постоянного тока. Такие системы управления питанием можно использовать для переключения питания на приборы вручную или когда уровни температуры или освещенности превышают заданный уровень.

Симистор или триод для переменного тока

Он эквивалентен двум тиристорам, соединенным инверсно-параллельно с затворами, соединенными вместе.В результате он функционирует как двунаправленный переключатель, пропуская ток в обоих направлениях после срабатывания затвора. Это трехконтактное устройство с основным терминалом 1 (MT1), основным терминалом 2 (MT2) и шлюзом. Клеммы MT1 и MT2 используются для соединения линий фазы и нейтрали, а ворота используются для подачи запускающего импульса. Ворота могут срабатывать как при положительном, так и при отрицательном напряжении.

Когда на клемму MT2 подается положительное напряжение по отношению к клемме MT1, а на вентиль подается положительный триггер, срабатывает левый SCR симистора, и цепь замыкается.Но если поменять полярность напряжения на клеммах МТ2 и МТ1 и подать на затвор отрицательный импульс, то правый тринистор симистора проводит. Когда ток затвора снимается, симистор выключается. Таким образом, на затворе должен поддерживаться минимальный удерживающий ток, чтобы TRIAC оставался проводящим.

Строительство

Конструкция TRIAC показана ниже. Он включает в себя четыре слоя, а также шесть областей легирования. Конструкция его терминала затвора может быть выполнена с помощью омического контакта с использованием двух областей, а именно области P и области N, чтобы это устройство могло активироваться через обе полярности.Несмотря на то, что это двунаправленное устройство, ток и напряжение которого можно указать с помощью MT1, например, для уменьшения путаницы.

В случае SCR выводы симистора могут быть обозначены MT1 и MT2, как анод и катод, а вывод затвора может быть представлен через «G», как тиристор. Терминал затвора «G» подключен к областям P2 и N4 через металлический контакт и находится рядом с терминалом MT1.
Подключение MT1 может быть выполнено к обеим областям P2 и N2, тогда как MT2 может быть подключено к областям как P1, так и N3.Следовательно, два терминала, такие как MT1 и MT2, подключены к обеим областям P и N устройства. Таким образом, ток, протекающий между этими двумя выводами, может определяться через слои в устройстве.

MT2 подключается к плюсу при открытом затворе по сравнению с MT1 для симистора, который подключен с прямым смещением. Таким образом, симистор работает в режиме прямой блокировки до тех пор, пока напряжение на симисторе не станет низким по сравнению с перенапряжением пропадания. Аналогично клемма МТ2 становится отрицательной, когда симистор подключается в обратном смещении по отношению к клемме МТ1 через затвор, тогда это устройство работает в режиме обратной блокировки.Симистор можно сделать проводящим через либо +ve, либо -ve напряжение на клемме затвора.

Работа симистора

Когда приложенное напряжение в симисторе эквивалентно напряжению пробоя, симистор перейдет в состояние проводимости. Однако наиболее предпочтительным методом включения симистора является подача либо положительного, либо отрицательного стробирующего сигнала.

Если ток на клемме затвора высокий, то для включения симистора требуется меньшее напряжение, и он имеет возможность включить обе полярности по направлению к сигналу затвора.Работа TRIAC может выполняться в четырех режимах, подобных следующим.

  • Клемма MT2 является положительной по отношению к клемме MT1 через положительную полярность затвора по отношению к клемме MT1.
  • Терминал MT2 является плюсовым по отношению к терминалу MT1 через отрицательную полярность затвора по отношению к MT1.
  • Клемма MT2 является отрицательной по отношению к клемме MT1 из-за отрицательной полярности затвора по отношению к клемме MT1.
  • Клемма MT2 является отрицательной по отношению к клемме MT1 через положительную полярность затвора по отношению к клемме MT1.

Режим-1

В этом режиме, как только терминал MT2 становится +ve по отношению к терминалу MT1, ток будет течь в направлении P1-N1-P2-N2. На протяжении всего этого процесса соединение между слоями, такими как P1-N1 и P2-N2, подключается с прямым смещением, а соединение между N1-P2 подключается с обратным смещением. Как только сигнал +ve подается на клемму затвора, соединение между P2-N2 подключается с прямым смещением, и происходит пробой.

Режим-2

Как только клемма MT2 будет + ve, а сигнал затвора — ve, то ток будет аналогичен первому режиму P1-N1-P2-N2, однако здесь соединение между P2-N2 может быть подключены в прямом смещении, и текущие носители добавляются в слой P2.

Режим-3

После того, как клемма MT2 станет положительной и отрицательной, сигнал может быть направлен к клемме затвора, тогда ток будет течь в направлении P2-N1-P2-N2.На протяжении всего этого процесса соединение между двумя слоями, такими как P2-N1 и P1-N4, подключается с прямым смещением, а соединение между слоями N1-P1 подключается с обратным смещением. Таким образом, этот TRIAC будет работать в области отрицательного смещения.

Режим-4

Как только клемма MT2 становится отрицательной, а клемма затвора активируется положительным сигналом, соединение между P2-N2 подключается в смещенном направлении, и добавляются носители тока, поэтому симистор включается.Обычно TRIAC не работает в этом режиме из-за того недостатка, что его нельзя использовать для цепей с высоким di/dt.

Высокая чувствительность срабатывания TRIAC при использовании режимов 2 и 3. Отрицательный сигнал затвора можно использовать в случае незначительной активирующей способности. Активация режима 1 чувствительна по сравнению с другими режимами, такими как 2 и 3, однако для активации используется сигнал стробирования +ve. Наиболее часто используемые режимы 2 и 3.

Работа TRIAC

Показана простая прикладная схема симистора.Как правило, TRIAC имеет три вывода M1, M2 и затвор. Триак, ламповая нагрузка и источник питания соединены последовательно. Когда питание включено в положительном цикле, то ток протекает через лампу, резисторы и DIAC (при условии, что импульсы запуска подаются на контакт 1 оптопары, в результате чего контакты 4 и 6 начинают проводить) затвор и достигает питания, и тогда только лампа светится для этого полупериода непосредственно через клеммы M2 и M1 симистора.

В отрицательном полупериоде повторяется то же самое.Таким образом, лампа светится в обоих циклах контролируемым образом в зависимости от запускающих импульсов на оптоизоляторе, как показано на графике ниже. Если это дается двигателю вместо лампы, мощность контролируется, что приводит к регулированию скорости.

Цепь TRIACTRIAC Wave Forms
Запуск TRIAC

Обычно в TRIAC возможны 4 режима срабатывания:

TRIAC-SYMBOL
  1. Положительное напряжение на MT2 и положительный импульс на затворе
  2. Положительное напряжение на МТ2 и отрицательный импульс на затворе
  3. Отрицательное напряжение на МТ2 и положительный импульс на затворе
  4. Отрицательное напряжение на МТ2 и отрицательный импульс на затворе

Различные типы корпусов TRIAC

Для удобства использования и различных применений симисторы разработаны в различных корпусах, таких как штыревой/стандартный тип, тип капсулы/диска и тип шпильки.

Штифт
или стандартный тип

Этот тип TRIAC выглядит как крошечная интегральная схема с тремя клеммами, такими как MT1, MT2 и Gate, и радиатором на вершине. Эти триаки в основном используются в бытовой электронике. Общие пакеты TRIAC стандартного типа включают TMA36S-L, TMA54S-L, TMA124S-L, TMA84S-L, TMA126S-L, TMA106S-L, TMA206S-L и т. д.

Тип капсулы/диска

Симисторы капсульного типа, в противном случае дисковые симисторы будут иметь форму диска с длинными проводами, направленными к клеммам.Эти типы симисторов обладают высокой допустимой нагрузкой по току и имеют керамическое уплотнение.

Применение капсульного или дискового типа включает в себя быстрое управление двигателем, а также переключение переменного тока. Распространенными упаковками капсульного типа являются KS200A, KS100A, KS500A, KS300A, KS600A, KS1000A, а также KS800A.

Тип шпильки

Симисторы со шпильками в основном используются в приложениях высокой мощности, поскольку они имеют резьбовое дно, чтобы работать как основные клеммы, и имеют две клеммы на вершине, которые являются другой основной клеммой, а также клеммой затвора.

Они в основном используются в приложениях управления фазой, таких как цепи освещения, преобразователи, RPS, регулирование скорости и температуры цепей и т. Д. Пакеты симисторного типа со шпильками включают TO-93, TO-118, TO-94, TO-48, ТО-48, РСД7 и ТО-65.

Воздействующие факторы

В отличие от SCR, TRIACS требует соответствующей оптимизации для правильного функционирования. У симисторов есть присущие им недостатки, такие как эффект скорости, эффект люфта и т. Д. Поэтому проектирование схем на основе симистора требует надлежащего внимания.

Эффект скорости серьезно влияет на работу TRIAC

Между выводами MT1 и MT2 симистора имеется внутренняя емкость. Если на клемму МТ1 подать резко возрастающее напряжение, то это приводит к скачку напряжения на затворе. Это приводит к ненужному срабатыванию симистора. Это явление называется эффектом скорости. Эффект скорости обычно возникает из-за переходных процессов в сети, а также из-за высокого пускового тока при включении тяжелых индуктивных нагрузок.Это можно уменьшить, подключив сеть RC между терминалами MT1 и MT2.

RATE EFFECT
Сильный эффект люфта в цепях диммера лампы:

Эффект люфта — это сильный гистерезис управления, который возникает в цепях управления лампой или скоростью, использующих потенциометр для управления током затвора. Когда сопротивление потенциометра увеличивается до максимума, яркость лампы уменьшается до минимума. Когда горшок повернут назад, лампа никогда не загорится, пока сопротивление горшка не уменьшится до минимума.

Причина этого разрядка конденсатора в симисторе. В схемах диммера лампы используется дияк для подачи запускающего импульса на затвор. Поэтому, когда конденсатор внутри симистора разряжается через диак, возникает эффект обратной реакции. Это можно исправить, подключив резистор последовательно к диаку или добавив конденсатор между затвором и клеммой MT1 симистора.

Эффект люфта
Влияние радиопомех на TRIAC

Радиочастотные помехи сильно влияют на работу симисторов.Когда симистор включает нагрузку, ток нагрузки резко возрастает от нуля до высокого значения в зависимости от напряжения питания и сопротивления нагрузки. Это приводит к генерации импульсов РЧ-помех. Сила ВЧ-помех пропорциональна проводу, соединяющему нагрузку с симистором. Подавитель LC-RFI исправит этот дефект.

VI Характеристики

Характеристика VI TRIAC обсуждается ниже. Эти характеристики относятся к SCR, однако они подходят как для положительного, так и для отрицательного напряжения TRIAC.Его работу можно рассмотреть в четырех квадрантах, которые обсуждаются ниже.

В первом квадранте напряжение на клемме MT2 положительное по сравнению с клеммой MT1, а также напряжение на клемме затвора также положительное, чем на первой клемме

Во втором квадранте напряжение на второй клемме, такой как MT2, положительное, чем на MT1, а напряжение на клемме затвора отрицательное, чем на клемме 1, такой как MT1.

В третьем квадранте напряжение на клемме 1, такой как MT1, положительное, чем на клемме 2, такой как MT2, а напряжение на клемме затвора отрицательное.

В четвертом квадранте напряжение на клемме 2, такой как MT2, отрицательное, чем на клемме 1 MT1, а напряжение на клемме затвора положительное.

Что такое TRIAC Dimming?

Во многих системах освещения симисторные диммеры играют важную роль. Диммеры в основном используются для фиксации уровня освещения, чтобы можно было экономить энергию. Как только диммер подключен через светодиодный источник света, экономия энергии может быть довольно значительной.

Наиболее распространенными контроллерами диммирования являются диммеры с фазовой отсечкой, широко известные как диммеры TRIAC.Изготовление светодиодных ламп с помощью диммера TRIAC в прошлом было довольно сложным, но теперь драйверы светодиодов, использующие диммер TRIAC, довольно просты.

TRIAC диммирование в основном работает как переключатель с высокой скоростью, используемый для управления количеством электрической энергии, протекающей через лампочку. Триггер приказывает, с какого конца устройство начинает подавать электричество, в основном прерывая сигнал напряжения, отключая напряжение от источника питания при полной нагрузке.

После того, как симисторный диммер используется в светодиодном светильнике, важно убедиться, что устройство является полупроводниковым симисторным.Эти диммеры в основном предназначены для резистивных нагрузок, поэтому очень важно правильно их настроить. Если можно использовать ложный триак-драйвер диммирования светодиодов, свет не будет работать так, как ожидалось, что сократит срок службы светодиодов.

TRIAC однонаправленный или двунаправленный?

TRIAC является однонаправленным устройством, поскольку он может коммутировать обе половины сигнала переменного тока. Можно проанализировать работу симистора, поставив тиристоры спиной к спине. Символ тиристора указывает на то, как работает TRIAC.Со стороны кажется, что тиристоры соединены встык.

TRIAC является идеальным устройством для коммутации переменного тока, поскольку он может регулировать протекание тока по обеим биссектрисам переменного ряда. Тиристор просто управляет ими выше половины ряда. В течение оставшейся половины проводимости не происходит, и, следовательно, можно использовать только половину сигнала.

Триак BT136

TRIAC BT136 относится к семейству TRIAC, имеет ток 6А.Мы уже видели приложение TRIAC, используя BT136 выше.

Характеристики BT136

  • Прямой запуск от маломощных драйверов и логических ИС
  • Возможность высокого блокирующего напряжения
  • Низкий ток удержания для слаботочных нагрузок и самые низкие электромагнитные помехи при коммутации
  • Planar Passivived для прочности и надежности напряжения
  • Чувствительный затвор
  • Запуск во всех четырех квадрантах

Приложения BT136:

  • универсально полезно в управлении двигателем
  • Коммутация общего назначения

Triac BT139

TRIAC BT139 также поставляется под семейством Triac, она имеет текущую скорость 9мпов.Основным отличием между BT139 и BT136 является текущая скорость и Triacs BT139 используются для приложений с высокой мощностью.

Особенности BT139 включают следующее.

  • Прямой запуск от маломощных драйверов и логики ICS
  • Возможность высокого блокирующего напряжения
  • Пассивированный планар для устойчивости к напряжению и надежности
  • Чувствительный затвор
  • Запуск во всех четырех квадрантах

Приложения BT139 включают следующее.

  • Моторное управление
  • Промышленное и бытовое освещение
  • Нагрев и статическое переключение

В чем разница между Тиристором и Тиристором?

Разница между SCR и TRIAC включает следующее.

СКР

TRIAC

Тиристор также известен как SCR или кремниевый управляемый выпрямитель Расшифровывается как триод для переменного тока
Однонаправленное устройство Это двунаправленное устройство
SCR или тиристор включает в себя четыре терминала Включает три клемма
Он надежен Это менее надежный
Тиристор использует радиаторы носка нужно просто одну радиатор
Номинал тиристора большой Рейтинг Triac маленький
SCR можно активировать через UJT Может запускаться через DIAC
Тиристор используется для управления питанием постоянного тока Он управляет питанием как переменного, так и постоянного тока
В тиристоре возможен один режим работы Включает четыре различных режима работы
Тиристор работает только в одном квадранте VI характеристики Он работает просто в двух квадрантах VI Характеристики
Тиристор можно просто активировать положительным напряжением затвора. Его можно активировать через положительное напряжение затвора или отрицательное напряжение затвора
Обладает высоким током Обладает низким током

Преимущества

Преимущества TRIAC включают следующее.

  • В нем используется радиатор немного большего размера или немного большего размера, тогда как для SCR необходимо использовать два радиатора небольшого размера.
  • Защищенный пробой возможен в любом направлении, однако защита SCR должна обеспечиваться через параллельный диод.
  • В приложениях постоянного тока SCR необходимо подключать через параллельный диод для защиты от обратного напряжения, в то время как TRIAC может работать без использования диода, поскольку достижим безопасный пробой в любом направлении.
  • Как только напряжение упадет до нуля, TRIAC будет выключен.
  • Его можно активировать положительной или отрицательной полярностью стробирующих сигналов
  • Может быть защищен одним предохранителем.

Недостатки

К недостаткам TRIAC относятся следующие.

  • По сравнению с SCR ненадежны
  • Низкая надежность по сравнению с SCR.
  • Он будет активирован в любом направлении, поэтому будьте осторожны при включении цепи.
  • Слишком большая задержка переключения
  • Номинал dv/dt значительно меньше, чем SCR
  • TRIAC будет иметь меньшие номинальные характеристики по сравнению с выпрямителями с кремниевым управлением.
  • Не применяется в приложениях постоянного тока

Применение TRIAC

Симисторы

используются во многих приложениях, таких как регуляторы освещенности, регуляторы скорости электрических вентиляторов и других электродвигателей, а также в современных компьютеризированных схемах управления многочисленными бытовыми мелкими и крупными приборами.Их можно использовать как в цепях переменного, так и постоянного тока, однако первоначальная конструкция заключалась в том, чтобы заменить использование двух тиристоров в цепях переменного тока. Существует два семейства симисторов, которые в основном используются для прикладных целей, это BT136, BT139.

Таким образом, это все об обзоре TRIAC, который известен как триод для переменного тока, конструкции, работе, корпусах, различиях с SCR, преимуществах, недостатках и областях применения. Вот вопрос к вам, какова функция SCR?

Фотокредиты

Что такое TRIAC: схема переключения и применение

Силовые электронные переключатели, такие как BJT, SCR, IGBT, MOSFET и TRIAC, являются очень важными компонентами, когда речь идет о схемах переключения, таких как Преобразователи постоянного тока , Контроллеры скорости двигателя , Драйверы двигателей и , регуляторы частоты и т. д.Каждое устройство имеет свои уникальные свойства и, следовательно, у них есть свои особые области применения. В этом уроке мы узнаем о TRIAC , который является двунаправленным устройством, что означает, что он может работать в обоих направлениях. Благодаря этому свойству TRIAC используется исключительно там, где используется синусоидальное питание переменного тока.

 

Введение в TRIAC

Термин TRIAC означает TRI или A чередующийся C ток.Это трехконтактное переключающее устройство, похожее на SCR (тиристор), но оно может работать в обоих направлениях, поскольку построено путем объединения двух SCR в встречно-параллельном состоянии. Символ и вывод TRIAC показаны ниже.

 

Поскольку TRIAC является двунаправленным устройством, ток может течь либо от MT1 к MT2, либо от MT2 к MT1 при срабатывании затворной клеммы. Для TRIAC это триггерное напряжение, которое должно быть приложено к клемме затвора, может быть как положительным, так и отрицательным по отношению к клемме MT2.Таким образом, это переводит TRIAC в четыре рабочих режима , перечисленных ниже

.
  • Положительное напряжение на MT2 и положительный импульс на затвор (квадрант 1)
  • Положительное напряжение на MT2 и отрицательный импульс на затвор (квадрант 2)
  • Отрицательное напряжение на MT2 и положительный импульс на затвор (Квадрант 3)
  • Отрицательное напряжение на MT2 и отрицательный импульс на затвор (Квадрант 4)

 

V-I Характеристики симистора

На рисунке ниже показано состояние TRIAC в каждом квадранте.

 

Характеристики включения и выключения TRIAC можно понять, посмотрев на график характеристик VI TRIAC, который также показан на рисунке выше. Поскольку TRIAC представляет собой просто комбинацию двух SCR в встречно-параллельном направлении, график V-I характеристик похож на график SCR. Как вы можете видеть, TRIAC в основном работает в квадранте 1, и 3, , .

 

Характеристики включения

Для включения симистора необходимо подать положительное или отрицательное напряжение/импульс затвора на вывод затвора симистора.При срабатывании одного из двух тиристоров внутри симистор начинает работать в зависимости от полярности выводов MT1 и MT2. Если MT2 положительный, а MT1 отрицательный, то работает первый SCR, а если вывод MT2 отрицательный, а MT1 положительный, то работает второй SCR. Таким образом, любой из SCR всегда остается включенным, что делает TRIAC идеальным для приложений переменного тока.

Минимальное напряжение, которое должно быть приложено к выводу затвора для включения симистора, называется пороговым напряжением затвора (V GT ) , а результирующий ток через вывод затвора называется пороговым током затвора (I ГТ ). Как только это напряжение подается на контакт затвора симистора, он смещается в прямом направлении и начинает проводить ток, время, необходимое симистору для перехода из выключенного состояния во включенное, называется временем включения (t на ).

Так же, как SCR, TRIAC, однажды включенный, останется включенным, если он не коммутирован. Но для этого условия ток нагрузки через симистор должен быть больше или равен 90 330 тока фиксации (I 90 179 L 90 180) 90 331 симистора. Таким образом, симистор останется включенным даже после удаления импульса затвора, пока ток нагрузки больше, чем значение тока фиксации.

Подобно току фиксации, существует еще одно важное значение тока, называемое током удержания. Минимальное значение тока, при котором симистор находится в режиме прямой проводимости, называется током удержания (I H ). Симистор перейдет в режим непрерывной проводимости только после прохождения тока удержания и тока фиксации, как показано на графике выше. Также значение тока фиксации любого симистора всегда будет больше значения тока удержания.

 

Характеристики отключения

Процесс выключения симистора или любого другого силового устройства называется коммутацией , а связанная с ним схема для выполнения задачи называется коммутационной схемой. Наиболее распространенный метод, используемый для отключения симистора, заключается в снижении тока нагрузки через симистор до тех пор, пока он не станет ниже значения тока удержания (I H ). Такой тип коммутации называется принудительной коммутацией в цепях постоянного тока.Мы узнаем больше о том, как TRIAC включается и выключается через его прикладные схемы.

 

Применение симистора TRIAC

очень часто используется в местах, где необходимо контролировать мощность переменного тока, например, он используется в регуляторах скорости потолочных вентиляторов, цепях диммера ламп переменного тока и т. Д. Давайте рассмотрим простую схему переключения TRIAC, чтобы понять, как это работает на практике. .

 

Здесь мы использовали TRIAC для включения и выключения нагрузки переменного тока с помощью кнопки .Затем источник сетевого питания подключается к небольшой лампочке через TRIAC, как показано выше. Когда ключ замкнут, фазное напряжение подается на вывод затвора симистора через резистор R1. Если это напряжение затвора выше порогового напряжения затвора, то через вывод затвора протекает ток, который будет больше, чем пороговый ток затвора.

В этом состоянии TRIAC входит в прямое смещение, и ток нагрузки будет течь через лампу. Если нагрузка потребляет достаточный ток, симистор переходит в состояние фиксации.Но поскольку это источник питания переменного тока, напряжение будет достигать нуля в течение каждого полупериода, и, таким образом, ток также будет достигать нуля на мгновение. Следовательно, в этой схеме блокировка невозможна, и симистор выключится, как только переключатель будет разомкнут, и здесь не требуется коммутационная схема. Этот тип коммутации симистора называется естественной коммутацией . Теперь давайте соберем эту схему на макетной плате с использованием симистора BT136 и проверим, как она работает.

При работе с источниками питания переменного тока необходимо проявлять особую осторожность. Рабочее напряжение снижено в целях безопасности. Стандартная мощность переменного тока 230 В 50 Гц (в Индии) понижается до 12 В 50 Гц с помощью трансформатора.В качестве нагрузки подключена маленькая лампочка. После завершения экспериментальная установка выглядит так, как показано ниже.

 

При нажатии кнопки на контакт затвора подается напряжение затвора, и, таким образом, симистор включается. Лампа будет светиться, пока кнопка удерживается нажатой. Как только кнопка будет отпущена, TRIAC будет в защелкнутом состоянии, но, поскольку входное напряжение является переменным, ток через TRIAC упадет ниже тока удержания, и, таким образом, TRIAC выключится, полную работу также можно найти в . видео, данное в конце этого урока.

 

Управление TRIAC с использованием микроконтроллеров

Когда симисторы используются в качестве регуляторов освещенности или для управления фазой, импульс затвора, подаваемый на вывод затвора, должен управляться с помощью микроконтроллера. В этом случае штифт затвора также будет изолирован с помощью оптопары. Принципиальная схема для того же показана ниже.

 

Для управления симистором с помощью сигнала 5 В/3,3 В мы будем использовать оптопару , такую ​​как MOC3021 , внутри которой находится симистор.Этот TRIAC может запускаться напряжением 5 В/3,3 В через светоизлучающий диод. Обычно сигнал ШИМ будет подаваться на контакт 1 st MOC3021, а частота и рабочий цикл сигнала ШИМ будут варьироваться для получения желаемого выходного сигнала. Этот тип схемы обычно используется для управления яркостью лампы или скоростью двигателя.

 

Эффект скорости – демпфирующие цепи

Все TRIAC страдают от проблемы, называемой эффектом скорости. То есть, когда терминал MT1 подвергается резкому увеличению напряжения из-за шума переключения или переходных процессов или скачков напряжения, симистор прерывает его как сигнал переключения и автоматически включается.Это связано с наличием внутренней емкости между клеммами MT1 и MT2.

Самый простой способ решить эту проблему — использовать схему снаббера. В приведенной выше схеме резистор R2 (50 Ом) и конденсатор C1 (10 нФ) вместе образуют RC-цепочку, которая действует как снабберная цепь. Любые пиковые напряжения, подаваемые на MT1, будут отслеживаться этой RC-цепью.

 

Эффект люфта

Другой распространенной проблемой, с которой сталкиваются разработчики при использовании TRIAC, является эффект обратной реакции.Эта проблема возникает, когда для управления напряжением затвора симистора используется потенциометр. Когда потенциометр установлен на минимальное значение, на контакт затвора не подается напряжение, и, таким образом, нагрузка отключается. Но когда POT повернут на максимальное значение, TRIAC не включится из-за эффекта емкости между выводами MT1 и MT2, этот конденсатор должен найти путь для разрядки, иначе он не позволит TRIAC включиться. Этот эффект называется эффектом обратной реакции. Эту проблему можно решить, просто включив резистор последовательно со схемой переключения, чтобы обеспечить путь для разрядки конденсатора.

 

Радиочастотные помехи (RFI) и симисторы Схемы переключения TRIAC

более подвержены радиочастотным помехам (EFI), потому что при включении нагрузки ток внезапно возрастает от 0 А до максимального значения, создавая всплеск электрических импульсов, который вызывает радиочастотный интерфейс. Чем больше ток нагрузки, тем сильнее будут помехи. Использование цепей подавителя, таких как LC-подавитель, решит эту проблему.

 

TRIAC – Ограничения

Когда требуется переключать формы сигналов переменного тока в обоих направлениях, очевидно, TRIAC будет первым выбором, поскольку это единственный двунаправленный силовой электронный переключатель.Он действует так же, как два SCR, соединенных спиной к спине, и также имеют те же свойства. Хотя при проектировании схем с использованием TRIAC необходимо учитывать следующие ограничения

  • TRIAC имеет внутри две структуры SCR, одна проводит в положительной половине, а другая в отрицательной половине. Но они не срабатывают симметрично, вызывая разницу в положительном и отрицательном полупериодах выхода
  • .
  • Кроме того, поскольку переключение несимметрично, это приводит к высоким гармоникам, которые вызывают шум в цепи.
  • Эта проблема с гармониками также приведет к электромагнитным помехам (EMI)
  • При использовании индуктивных нагрузок существует огромный риск протекания пускового тока к источнику, поэтому необходимо обеспечить полное отключение симистора и безопасный разряд индуктивной нагрузки через альтернативный путь