Зарядка свинцово кислотных аккумуляторов 12в: Как правильно зарядить свинцово-кислотный аккумулятор

Содержание

схемы доработки кислотной батареи, время, когда подключить зарядное устройство, и как правильно заряжать током?

Многие считают, что для того, чтобы зарядить кислотно-свинцовый аккумулятор, достаточно обратиться к заводским инструкциям. Но на самом деле ни один документ не сможет предложить достаточную и полную информацию для осуществления зарядки: условия, применяемые средства и время. Для того, чтобы решить этот вопрос, необходимо использовать дополнительные источники информации.

Тип и режим работы кислотной АКБ с напряжением 12 В

Для начала необходимо определить класс батареи, работа которой строится на реакции свинца и серной кислоты между собой. Это делается для того, чтобы выявить алгоритм зарядки для конкретной АКБ. По теории каждый свинцовый аккумулятор имеет два режима зарядки:

  • Буферный. Заряжается от сети, редко производит самостоятельную зарядку.
  • Циклический. Зарядка происходит сменой циклов, состоящих из разрядки-подзарядки.

К SLA-аккумуляторам преимущественно относятся автомобильные аккумуляторы классического типа. Среди АКБ, которые используются в велобайках и другом индивидуальном электротранспорте, числятся гелевые, буферные, герметичные и необслуживаемые свинцово-кислотные источники тока.

Как правильно заряжать свинцовую аккумуляторную батарею?

Для того, чтобы восстановить затраченную ёмкость, необходимо зарядить свинцовый аккумулятор. Заряженная свинцовая аккумуляторная батарея всегда будет исправно работать, если в автомобиле исправен генератор и машина постоянно используется, если же мощность для источника энергии потеряна, то ее можно вернуть, если воспользоваться специальным устройством для зарядки кислотной АКБ при номинальном напряжении в 12 В.

Правила зарядки аккумуляторной батареи автомобиля

Для того, чтобы зарядить АКБ, необходимо следовать простым правилам:

  • устройство должно быть установлено только на ровную поверхность;
  • без строгого соблюдения полярности зарядка производиться не будет, поэтому проверьте правильность подключения «крокодильчиков» к клеммам батареи;
  • зарядный ток необходимо выставить.

Если электролитная жидкость имеет слишком высокую или слишком низкую температуру, то приступать к зарядке нельзя. Дождитесь, когда жидкость станет комнатной температуры.

Постоянным током

Разновидность аккумуляторов определяет основные параметры зарядки:

  1. Если брать классическую АКБ, которая заполнена жидким электролитом, то величина заряда в этом случае не должна превышать показатель в 10% от ёмкости, указанной фирмой-производителем.
  2. Показатель в 10-30% характерен для AGM-аккумуляторов.
  3. Для АКБ с гелеобразным наполнителем эта цифра варьирует от 20 до 30%.

Постоянным напряжением

Для того, чтобы время зарядки кислотного аккумулятора не превышало допустимое, нельзя допускать полной потери емкости. Помните, что время зарядки напрямую зависит от количества остаточной ёмкости.

У аккумуляторной батареи, которая полностью разряжена, напряжение находится в пределах 12.7-13 В. Если включить мотор, то эти показатели увеличатся на 1.5 В. Стоит помнить, что оптимальная зарядка требует того, чтобы цифровые показатели напряжения не превышали 14,6 В. Если этот показатель превысить, то электронная жидкость закипит, произойдет перезарядка аккумулятора, а сам прибор придет в негодность.

Когда это нужно делать?

Необходимость в зарядке возникает тогда, когда:

  • у генератора и аккумуляторной батареи выявлена неисправность цепи;
  • при редком использовании автомобиля, либо при эксплуатации машины на небольшие расстояния;
  • если запустить мотор на морозе.

Как влияет температура на процесс?

  1. Если температура составляет ниже — 15 градусов, то не рекомендуют производить зарядку аккумулятора, т.к. низкая температура может спровоцировать остановку работы механизма рекомбинации газов в герметичной ёмкости свинцового аккумулятора, при этом потеряется вода в электролите. Чтобы исправить недозаряд, необходимо подключать температурную компенсацию, равную – 3мВ /° С.
  2. При температуре более 40 градусов напряжение заряда уменьшается и может произойти перезарядка.

Обязательно ли снимать АКБ с машины, прежде чем подключить к устройству?

Многие автомобилисты стараются не снимать аккумулятор с машины для зарядки, мотивируя это тем, что после полной зарядки и установки АКБ на прежнее место возникают проблемы с электроникой. Такие опасения имеют под собой почву, поэтому если вы все же решили заряжать аккумулятор на машине, то постарайтесь придерживаться следующих правил:

  1. верхнюю поверхность следует хорошо очистить и включить выводы, предварительно сняв защитную крышку и выкрутив металлические болты;
  2. уровень электролита должен быть достаточным, при нехватке долейте дистиллированную воду, иначе вы не получите 100%-го заряда АКБ;
  3. подключать устройство в сеть следует только после того, как будет соблюдена полярность.

Какие есть особенности у зарядного устройства?

От правильной зарядки аккумулятора зависит очень многое. В исправной машине АКБ служит 2-3 года при пробеге 70-100 тыс км. Если батарея будет в заряженном состоянии, то ее срок службы значительно повысится. Рекомендуют заряжать аккумулятор в том случае, когда он станет разряжен наполовину, но при этом не стоит делать это слишком часто.

Схема доработки

Для того, чтобы АКБ не выходила из строя и прослужила долгое время, необходимо ее доработать. Для тех, кто в этом разбирается, можно найти в интернете различные схемы и пошаговые инструкции, как это сделать с наименьшими затратами.

Выбор выходного напряжения

Чтобы стабилизировать выходное напряжение, необходимо использовать TL431. Для делителя R2 напряжение всегда выдает 2.5 между R1 и R2. Это значит, что с такими показателями аккумулятор должен быть разряжен. Чтобы увеличить напряжение до 14.2 В при блоке питания 12 В необходимо изменить показатели R1 и R2: первый увеличить, а второй уменьшить. При этом блок питания выдаст 14.1. Этого достаточно для того, чтобы больше не менять данные делителя.

Схема зарядного устройства для свинцового аккумулятора с использованием TL431:

Добавление светодиода зеленого цвета и резистора r4 параллельно оптрону

Для стабилизации напряжения током в светодиоде оптрона управляет TL431.

При низком напряжении TL431 закрывается, останавливая ток в оптроне. Чтобы получать информацию о заряде аккумулятора необходимо поставить зеленый светодиод.

Ток оптрона при нормальном функционировании аккумулятора равен 0.5 мА – получаем слабое свечение зеленого светодиода. Для большей яркости необходимо подсоединить резистор R4 с номиналом в 220 Ом параллельно оптрону. Ток в зеленом диоде при этом увеличится до 5 мА.

Схема зарядного устройства свинцово кислотных аккумуляторов с добавлением светодиода зеленого цвета и резистора r4 параллельно оптрону:

Добавление петли гистерезиса ограничения тока

При большой перегрузке, такой, например, как короткое замыкание, необходимо сделать так, чтобы контроллер смог запустить БП. Для этого понадобится резистор мощности R5 и R6, красный светодиод и транзистор Т1. Переключатель включается параллельно с резисторами, при этом ток получает постоянное значение в 3.5 А. Недостаток такого соединение – сильное нагревание резисторов. Заменить одиночный резистор можно токовым зеркалом или операционным усилителем.

Схема зарядного устройства свинцово кислотных аккумуляторов с ограничением тока:

Заряжаем свинцово кислотный аккумулятор

Многие автовладельцы не знают, как правильно зарядить свинцово-кислотный аккумулятор. Прежде, чем его ставить на зарядку, необходимо разобраться, что из себя представляет АКБ.

Какие батареи относятся к свинцово кислотным

Свинцово-кислотная АКБ состоит из пластин, покрытых свинцовым суриком и опущенных в водный раствор серной кислоты. Во время подключения к электродам внешней нагрузки, начинается электрохимическая реакция.

Такие батареи имеют низкую цену и большое количество циклов электрозаряда. Около 500 за полный ресурс жизни аккумулятора. Обладает высокой удельной мощностью.

Когда нужно ставить аккумулятор на зарядку

Если при повороте ключа зажигание стартер испытывает трудности, а напряжение на клеммах упало до 12-12.2 V, то батарея считается разряженной и ее необходимо поставить на зарядку. При дальнейшей эксплуатации батарея может полностью разрядиться и случится глубокий разряд.

На самом деле, чем чаще заряжать батарею, не допуская глубокого разряда, тем больше жизненный ресурс. Если автовладелец покупает качественный аккумулятор у прямого поставщика завода-производителя, такой батарее не страшны постоянные частые подзарядки.

Наоборот, для качественных АКБ постоянное присутствие буферного заряда является излюбленным режимом. Батарея постоянно пребывает под правильным напряжением. Характеристики АКБ не изменяются по истечении времени службы. Если допустить полный разряд , то при температуре ниже нуля, корпус раздуется, пластины погнутся и замкнутся между собой.

горит аккумулятор на панели приборов

Подготовка батареи к зарядке

К зарядке необходимо подготовить батарею. Во-первых, важна температура окружающей среды. При температуре ниже нуля заряжать аккумулятор не рекомендуется. Низкая температура приводит к потере воды в электролите.

Шаги подготовки АКБ касаются только обслуживаемой батареи. снимается с машины и ставится на зарядку автоматическим или неавтоматическим зарядным устройством.

Если заряжается аккумулятор перед зимой, то требуется долить электролит, чтобы повысить плотность, если же – летом, то требуется залить дистиллированную воду. Жарким и знойным летом АКБ не нужна высокая плотность, которая может только разрушить свинцовые стенки.

Шаги процедуры подготовки обслуживаемого АКБ

  1. Снять АКБ с машины. Предварительно открутить болты клемм и отсоединить их с выводов электродов.
  2. Занести в теплое помещение, если дело происходит зимой. Дать ему время на приобретение температуры окружающей среды.
  3. Зачистить выводы электродов до блеска, если есть видимый налет окислов.
  4. Протереть поверхность АКБ тряпкой, смоченной в 10 процентном растворе нашатырного спирта.
  5. Открыть пробки на банках. Чтобы не допустить переизбытка давления внутри корпуса.
  6. По необходимости долить дистиллированную воду в банки.

Теперь аккумулятор готов для подзарядки. Правильная зарядка также имеет большое значение.

Техника безопасности и меры предосторожности

Установить АКБ требуется на ровную поверхность перед зарядкой, чтобы не допустить утечки электролита. Необслуживаемые батареи можно заряжать в любом положении, потому что в них используется гелеобразный электролит.

Перед зарядкой требуется открыть все окна и двери в помещении, чтобы не допустить отравления парами, которые могут образовываться во время процесса. Содержать заряжаемый объект как можно дальше от огня и любых других искр, которые могут привести к взрыву или воспламенению объекта.

Если автовладелец не может снять АКБ с машины, то рекомендуется отключить минус или лучше оба провода.

Внимание! Запрещено заряжать батарею на холоде, в помещении, где температура выше 30 градусов.

Как правильно заряжать аккумулятор

Правильная зарядка состоит из нескольких способов. Первый способ, посредством которого заряд происходит постоянным током, проходит под контролем человека. Второй способ, с помощью постоянного напряжение, более простой. Но АКБ зарядится только на 80 процентов.

Есть еще один метод. Он соединяет первые два и называется комбинированным и не является бюджетным. Так как требует покупки дорогого зарядного устройства.

Зарядное устройство

Зарядка постоянным током

Шаги процедуры зарядки первым методом:

  1. Подключить зарядной устройство к АКБ. Положительную клемму – к выводу со знаком «плюс», отрицательную клемму – к выводу со знаком «минус»
  2. Установить ток в размере 10 процентов от номинального.
  3. Заряжать в течение нескольких часов. Затем проверить мультиметром напряжение в выводах электродов.
  4. Устройство должно показать 14 Вольт. Перестать заряжать.
  5. Если автовладелец заряжал АКБ силой тока 6 Ампер, то снизить силу до 3 А. иначе повысится кипение.
  6. Когда напряжение повысится до 15 Вольт, понизить силу тока еще раз до 1,5 А. Продолжать заряжать до тех пор, пока эти значения тока и напряжения изменяться не будут.

Процесс зарядки постоянным напряжением проще.

Зарядка постоянным напряжением

Используя этот способ, нужно установить напряжение заряда около 14 В. Если первый метод был медленным, то процесс данной подзарядки пройдет быстро. Около 6 часов понадобится, чтобы зарядить АКБ до 90 процентов.

Зарядка в автоматическом режиме

Еще более просто метод – это зарядка в автоматическом режиме. Устройство питания подключают к аккумулятору, далее прибор самостоятельно настраивает нужный способ зарядки для подключенного АКБ.

После того, как будет заряжен аккумулятор полностью, зарядный прибор отключается.

Вымпел 150 Автоматическое зарядное устройство Вымпел 150

Когда аккумулятор зарядится и как проверить

При использовании простого способа зарядки АКБ зарядится после 6 часов, будучи подключенным к прибору. Остальные методы требуют зарядки в течении суток.

После того, как снят АКБ с зарядки его осматривают на наличие налета на поверхности банок или выводов. Если есть такой налет, особенно у необслуживаемых аккумуляторов, то это значит, что батарея заряжалась неправильно. Не должно выделяться никаких пузырьков или сероводорода. Он должен выглядеть как новый, а процесс подзарядки никак не влияет на состояние.

Затем его необходимо проверить тестером. Если повышается сопротивление, то АКБ не был до конца заряжен или происходит процессы разряда внутри аккумулятора. Это говорит о том, что батарея непригодна к работе.

Если был выбран наименьший процент тока от напряжения АКБ, то длительность зарядки будет увеличена до нескольких дней. Этот процесс равен хранению батареи в разряженном состоянии на складе в холоде. Происходит , батарея в скором времени выйдет из строя.

Установить батарею в машину и проверить, как она заводится. Прокатится на машине, включить приборы, которые потребляют большое количество мощности АКБ. Проверить напряжение. Если все в порядке, то аккумулятор был заряжен правильно и исправен.

Проверка с помощью мультиметра

Внимание! Обязательно проводите корректировку силы тока и напряжения при зарядке.

Обслуживание батареи после зарядки

После зарядки корпус промывается и просушивается. Проверяется напряжение на нем. Если напряжение выше нуля, то рекомендуется промыть крышку раствором соды. Так как оно пропускает ток.

Остались вопросы или есть что добавить? Тогда напишите нам об этом в комментариях, это позволит сделает материал более полезным, полным и точным.

Свинцово кислотный аккумулятор — принцип работы, как правильно заряжать

Свинцово-кислотный аккумулятор – один из самых надёжных АКБ, разработанный ещё в XIX веке, но до сих пор используемый во многих областях. В его основе лежит химическая реакция с переносом электронов от анода к катоду. Аккумулятор со временем портится при разрядке-подзарядке, так что данный процесс должен выполняться по всем правилам, чтобы продлить жизнь батареи.

Устройство и принцип работы свинцово-кислотного аккумулятора

Свинцово кислотные аккумуляторы

Свинцово кислотные аккумуляторы

Данный тип стационарного АКБ довольно тяжёлый, так как состоит из плотно параллельно упакованных плёнок свинца и оксида свинца. И те и другие в аккумуляторе расположены очень густо. Свинцовые пластины тёмно-серого цвета с синим оттенком, оксидно-свинцовые – тёмно-коричневые с рыжим оттенком.

Обе пластины находятся в серной кислоте, из-за чего в названии АКБ есть соответствующее слово. При включении аккумулятора ток протекает от оксидно-свинцового катода к свинцовому аноду. При этом свинец выделяет электроны, которые оксид свинца принимает.

В результате изменения заряда двух пластин они вступают в реакцию с серной кислотой вокруг и превращаются в сульфаты свинца.

Pb + HSO4– => PbSO4 + H+ + 2e–

PbO2 + HSO4– + 3H+ + 2e– => PbSO4 + 2h3O

Пара пластин производит 2 вольта, поэтому, чтобы увеличить количество вольт, которое может дать аккумулятор, пластины соединяют параллельно во множество пар слоёв. Они упаковываются плотно в банку, чтобы уменьшить объём батареи. Но так как электроны должны передаваться через терминалы, то пары пластин разъединяются специальными изоляционными плёнками.

При этом аккумулятор может иметь либо высокую плотность энергии, либо мощности. То есть аккумулятор или сохраняет большое количество энергии и отдаёт её в течение длительного времени, или он отдаёт огромный заряд очень быстро. В автомобилях используется второй вариант, так как надо отдать более 400 ампер, чтобы завести двигатель.

При глубокой разрядке батареи на пластинах образуется налёт сульфата свинца. Именно из-за этого если посадить аккумулятор до нулевого заряда несколько раз, то можно просто уничтожить его. Сульфат свинца полностью покрывает поверхность пластин, после чего его уже невозможно будет зарядить.

Типы и особенности свинцово-кислотных АКБ

Типы и особенности свинцово-кислотных АКБ

Типы и особенности свинцово-кислотных АКБ

Идеальных аккумуляторов не существует, в инженерных конструкциях часто приходится жертвовать желаемыми характеристиками, чтобы получить необходимые параметры. Для каждой цели создан свой тип устройства.

В первую очередь АКБ делят на герметичные и негерметичные батареи. Вторые требуют постоянного контроля над уровнем электролита и состоянием катодов и анодов, могут работать лишь в определённых положениях. Аккумулятор герметичный свинцово-кислотный используется чаще, так как не нуждается в особом уходе.

Кроме того, все батареи можно разделить на следующие группы:

  • Стартерные. Выдают большое количество энергии за одно мгновение, из-за чего обладают большим саморазрядом. Отлично подходят для того, чтобы заводить автомобили. Требуют определённого обслуживания и вентиляции.
  • Буферные батареи. Предназначены для краткосрочного хранения небольшого количества энергии, работают в постоянном режиме подзарядки.
  • Аккумуляторы для бесперебойной аппаратуры. Устанавливаются в офисах для аварийного завершения работ.
  • Аккумуляторы длительного электроснабжения. Большие тяжёлые батареи, которые выдают достаточно много энергии длительное время. Используются в реанимационных отделениях на случай отключения электричества.
  • Гелевые аккумуляторы. Хорошо переносят циклы заряжения-разряжения. Благодаря этому могут использоваться в сильных морозах. Среди них отдельно можно выделить солнечные батареи, которые рассчитаны на многократные циклы.

Как достигается такая вариация характеристик свинцово-кислотных аккумуляторных батарей? Если требуется выдавать огромное количество энергии за короткое время, то пластины делаются тонкими, но высокими и широкими (больше по площади поверхности), а расстояние между ними уменьшается. Благодаря этому увеличивается соотношение поверхности и массы, в результате энергия отдаётся быстрее.

Если требуется дольше сохранять энергию, но можно уменьшить мощность, то пластины делаются толще, но короче и уже (меньше по площади поверхности), а расстояние между ними увеличивается. Из-за чего уменьшается соотношение поверхности и массы, в итоге электроэнергия отдаётся медленнее.

Кроме того, на свойства аккумулятора влияют характеристики электролита и другие параметры. Гелевые электролиты хуже реагируют со свинцовыми и оксидно-свинцовыми плитами, а также делают конструкцию защищённой от вытекания. Повышает срок эксплуатации использование свинцово-кальциевых сплавов.

Области применения свинцово-кислотных аккумуляторов

Свинцово-кислотные аккумуляторы используются повсеместно, так как свинец и его оксид отвечают наиболее важным требованиям:

  • элементы часто встречаются в природе и довольно легко добываются;
  • они в паре способны накапливать и отдавать энергию лучше, чем все другие элементы;
  • аккумуляторы из них просты и дешевы в производстве;
  • долгий срок службы, возможность многократной перезарядки;
  • простое обслуживание, что особенно характерно для герметичных конструкций.

Из-за этого батареи применяются в следующих областях:

  • сигнализационные системы;
  • стартёры в автомобилях;
  • системы пожарной безопасности;
  • системы аварийной подачи электроэнергии на телевидении, в реанимационных отделениях;
  • электрические весы и кассовые аппараты;
  • системы бесперебойного электроснабжения или аварийного отключения в компьютерной технике или их сетях;
  • детские игрушки;
  • в лёгких самолётах.

Тем не менее, имеются некоторые минусы:

  • аккумуляторы чувствительны с холоду;
  • отходы из них опасны для экологии;
  • количество циклов довольно ограничено;
  • есть лимиты у выдаваемой мощности.

Как правильно заряжать свинцово-кислотные аккумуляторы

Как правильно заряжать свинцово-кислотные аккумуляторы

Как правильно заряжать свинцово-кислотные аккумуляторы

Принцип зарядки состоит в том, что нужно изменить направление тока. Из-за этого электролит и материя двух пластин восстанавливает свой прежний химический состав. Данный процесс именуется циклом, и он может быть многократным. Но чтобы не повредить и продлить срок службы батареи, надо знать, как правильно заряжать свинцово-кислотный аккумулятор.

Важно! Для процедуры потребуется источник тока и устройство, которым можно регулировать силу тока и напряжение.

Прежде всего, нужно знать параметры аккумулятора, которые можно посмотреть на самой коробке устройства. Производители часто указывают информацию на английском языке. Обозначается всё это следующим образом:

На английскомНа русском
12V12 вольт
7.2Ah7.2 ампер-часов

Также производитель может указывать напрямую, каким током можно заряжать аккумулятор:

На английскомНа русском
Standby use – 13.5-13,8VЕсли вы используете батарею, как резервный источник электричества – 13,5-13,8 вольт
Cycle use – 14.4VЕсли вы его применяете в качестве стартёра, то есть циклическое использование – 14.4 вольт
2.16A MAXПри любой зарядке ток не должен превышать 2.16 ампера

А что если производитель не указал, каким током заряжать аккумулятор? В этом случае можно пользоваться простым правилом – напряжение не должно превышать 10% от его номинальной ёмкости. То есть если у батареи указан параметр 7.2Ah, то заряжать надо при 0.72A.

После того как разобрались с основными параметрами, нужно сделать прибор, которым можно зарядить аккумулятор. Для этого потребуется крепкая коробка (лучше пластиковая) с отверстиями для вентиляции, блок питания от ноутбука, плата для регулировки тока и напряжения.

Дополнительно можно встроить многооборотистые переменные резисторы для более тонкой настройки, а также вольтамперметр. Для зарядки автомобильных аккумуляторов потребуется понижающий преобразователь напряжения и более мощный блок питания.

Собрав конструкцию, можно переходить непосредственно к главной процедуре. Для начала на неподключенном к аккумулятору устройстве нужно выставить напряжение, которым надо заряжать АКБ. Далее необходимо убавить силу тока до минимума, в результате чего сразу же упадёт напряжение. После этого подключаем устройство к аккумулятору (плюс к плюсу, минус к минусу).

В этот момент вольтамперметр будет показывать напряжение, которое есть на батарее. Включаем устройство в розетку и поднимаем силу тока до необходимой величины (метод её расчёта описан выше). В этот момент возможно незначительное снижение напряжения, говорящее о том, что ток уходит на прогрев электролита и преодоление сопротивления аккумулятора. Это нормально.

К концу зарядки аккумулятора сила тока на вольтамперметре будет практически равна нулю.

Как заряжать герметичные свинцово-кислотные аккумуляторы

При использовании герметичные свинцово-кислотные аккумуляторы со временем тратят свой заряд, и его необходимо периодически восстанавливать. Аспекты этого процесса и будут рассмотрены в рамках статьи.

Что называют зарядкой

герметичные свинцово кислотные аккумуляторыТак называют процесс, который является обратным разрядке. Во время зарядки свинцово-кислотных герметичных аккумуляторов они запасаются энергией, питаясь при этом от внешнего источника тока. В конечном результате накапливается заряд, что равен емкости. А как выглядят зарядные устройства для герметичных свинцовых кислотных аккумуляторов? Они представляют собой преобразователь энергии и два вывода, каждый из которых подключается к аноду и катоду. Герметичный необслуживаемый свинцово-кислотный аккумулятор при подключении в сеть начнёт процесс восстановления и превращения электрической энергии (подаваемой из сети) в химическую. Чтобы в последующем, как только возникнет необходимость, он мог проводить обратный процесс и обеспечивать энергоснабжение различных устройств и приборов.

Заряжаем просто и безопасно

герметичный необслуживаемый свинцово кислотный аккумуляторДля этого необходимо воспользоваться методом «ток-напряжение». В чем он заключается? Первоначально аккумулятор заряжается постоянным током. Когда необходимые показатели достигаются, начинает идти поддержка постоянного напряжения. Чтобы узнать начальный ток зарядки, обычно достаточно внимательно осмотреть корпус – там указывается данный параметр. Обычно эта величина составляет до 0,3 емкости аккумулятора. Чтобы было более понятно, представим, что у нас есть устройство с параметром в 100 А/час. Тогда ток заряда не должен превышать 30А. Но это безопасный максимум, многие производители в своих зарядных устройствах используют правило десяти процентов. Это позволяет заряжать аккумуляторы без наименьшей боязни сделать что-то не так и вывести его из строя. А сколько же нужно заряжать? Если начальный ток равен 20% емкости, то резерв аккумулятора будет восстановлен на 90% примерно за 5-6 часов. На оставшиеся 10% понадобится примерно сутки. Вот такие особенности своего функционирования имеет зарядное для герметичных свинцово-кислотных аккумуляторов. Можно ли как-то ускорить этот процесс? Да, и мы сейчас рассмотрим, как.

Быстрая зарядка свинцово-кислотных герметичных аккумуляторов

Нормой считается зарядка постоянным током при напряжении в 13,8. Больше этого не рекомендуется из-за возможных негативных последствий. Но если они вас не страшат, то можете повысить напряжение к 14,5 В (это для аккумуляторов на 12 В). В результате аккумулятор при 20% показателе зарядится за 6 часов. Применяется такой способ исключительно при работе в циклическом режиме.

Влияние температуры

зарядное для герметичных свинцово кислотных аккумуляторовВсё, что было написано выше, относится только к случаю, когда температура составляет 20 градусов Цельсия. При других показателях необходимо вводить компенсацию зарядного напряжения. Заряжать свинцово-кислотные аккумуляторы можно в диапазоне от -15 до 40 градусов. Чем большая температура, тем меньшим должно быть напряжение для избегания перезарядки. В противоположном случае данный показатель, наоборот, следует увеличить, чтобы избежать недозарядки. Герметичный необслуживаемый свинцово-кислотный аккумулятор из-за этого желательно заряжать именно в условиях 20 градусов Цельсия плюс-минус несколько. Конечно, можно и высчитывать каждый раз, но это не всегда удобно. В качестве идеального места по температурному параметру часто выбирают свои жилища, но тогда необходимо позаботиться о качественном проветривании места зарядки как во время этого процесса, так и через несколько часов после его окончания.

Последствия при несоблюдении техники безопасности

Описанные выше способы нацелены на быструю и безопасную зарядку. При этом ставится задача максимального сохранения ресурса свинцово-кислотного аккумулятора путём минимизации факторов его старения. А теперь давайте осмотрим отклонения. Что будет, если использовать ток больший, чем максимально допустимый? Первоначально следует отметить, что герметичные свинцово-кислотные аккумуляторы не смогут полностью зарядиться. Также из-за уменьшения эффективности механизма рекомбинации газов электролит будет терять воду. Поэтому даже разовой зарядки хватит, чтобы сократить ресурс работы.

А что будет, если уменьшить ток к 0,5 проценту от емкости? Герметичные свинцово-кислотные аккумуляторы зарядятся и в таком случае, но продолжаться данный процесс будет несколько недель. К тому же устройство будет находиться в состоянии, что эквивалентно разряженному. А это приводит к сульфатации и ускоренному старению. Конечно, одной зарядки с малым током недостаточно для серьезных повреждений, но ими лучше не пользоваться. Также необходимо следить и за конечным напряжением, чтобы не произошло недозаряда устройства и уменьшения его ресурса.

А почему свинцово-кислотные аккумуляторы имеют такой диапазон температур для зарядки? Дело в том, что при выходе из них прекращается работа механизма рекомбинации газов, и электролит теряет свою воду.

Всё ли хорошо было сделано

зарядные устройства для герметичных свинцовых кислотных аккумуляторов

Чтобы получить хороший результат, необходимо соблюдать требуемые параметры в необходимых рамках. Главное место в этом вопросе должны занимать ток и напряжение (учитывайте температуру). Тогда герметичные свинцово-кислотные аккумуляторы будут заряжаться успешно и смогут прослужить длительное время. Если же вокруг предохранительных клапанов есть электролит, белый налёт или пузырьки, то восстановление характеристик устройства было совершено неправильно. Для определения состояния можно использовать тестер. Восстановление герметичных свинцово-кислотных аккумуляторов осуществляется с помощью специальных зарядных устройств (которым может потребоваться несколько суток) или дополнительных механических действий (как-то подлить электролит).

Заключение

зарядка свинцово кислотных герметичных аккумуляторовКак видите, процесс зарядки свинцово-кислотных аккумуляторов нельзя назвать сложным. При соблюдении техники безопасности непросто будет получить что-то не то. Но напоследок хочется порекомендовать заряжать их в отдельных помещениях, а если устройства восстанавливают в условиях жилого дома, то необходимо позаботиться о качественном проветривании во время процесса, а также нескольких часов после него. Эти меры безопасности необходимы из-за того, что, пускай и в микроскопических дозах, но свинец может попадать в воздух, а через него и в организм, откуда он очень медленно выводится и постоянно оказывает отравляющее воздействие.

Свинцово-кислотный аккумулятор и схема его зарядки

В 1860 году француз Гастон Плантэ изобрёл аккумулятор со свинцовыми электродами, погружёнными в раствор серной кислоты. При зарядке электрическая энергия превращается в химическую с образованием твердых химических соединений.

 

Если заряженный свинцовый аккумулятор поставить на разрядку, то будет происходить обратно превращение химической энергии в электрическую. Не вдаваясь в подробностях физико-химических процессах – такой аккумулятор требовал несколько продолжительных зарядов и разрядов. Такой процесс назывался формовкой. Для сокращения время формовки изобретатель Камилла Фор в 1881 году предложил покрывать обе свинцовые пластины слоем сурика или свинцового галета. В течение времени свинцово-кислотный аккумулятор менялся только в конструкции и в технологии его изготовления.

 

Автомобильный стартёрный аккумулятор (AK} состоит из шести последовательно соединённых банок. Напряжение каждой банки аккумулятора при зарядки достигает до 2,5В, но после размыкания цепи опускается до 2,1В. Следовательно, напряжение заряженного АК будет 12,6В.

 

АК характеризуется его ёмкостью, т. е. способность отдать в нагрузку количество энергии. Такая ёмкость измеряется ампер-часами (A.ч). Например, ёмкость АК – 54А.ч. То это значить при разряде его на нагрузку током в 3А он будет разряжаться 18 часов.

 

Во время пуска двигателя стартёр потребляет (100-200)A и более в зимнее время. Коэффициент полезного действия АК – (75-95)%. За сутки АК теряет 1% своей ёмкости. Через 30 дней хранения требуется заряжать. Во время сильного мороза АК теряет, почти половина свей ёмкости. В этом заключается одна из причин трудности запуска двигателя в зимнее время. Боится короткого замыкания. Заряжают АК током 10% от его ёмкости, но для продления его жизни лучше заряжать током (7-8) %. Зарядка обычно длится (12-15) часов. Во время запуска двигателя напряжение АК не должно понижаться ниже 11В. При напряжении на за жимах АК 10,8В немедленно ставить его на зарядку. Подзарядка должна быть один раз в три месяца. Роз в году нужно производить формовку АК. Устройство для формовки найдёте на сайте www.cxem.info. Мне пришлось его ремонтировать после модернизации владельцем. Как говорил авиаконструктор А.Н.Туполев своим коллегам: если мы будем постоянно модернизировать, то наш самолёт никогда не взлетит.

 

Срок службы стартёрного АК – 100 и более заряд – разряд. По времени эксплуатации АК это соответствует 600 моточасов.

АК эксплуатируйте согласно инструкции изготовителя!

 

Схема автоматического зарядного устройства.

 

 

В основу заложена схема предложенное А. Евсеевым. Для регулировки зарядного тока применена схема на тиристоре из сайта www.cxem.info. Такой способ регулировки обеспечивает плавную установку зарядный ток 12- вольтового АК до 8А. На транзисторе VT1, микросхеме DD1 и реле К2 собрано пороговое устройство, срабатывающее при напряжении на клеммах ХТ4 – ХТ5, равном напряжению (14,6 – 14,7)В, полностью заряженного АК. Контакты реле К1.2 необходимы для исключения разряда АК через пороговое узел, а К2.1 – отключение устройство от сети. Детали. Переменный резистор R2 с удлинённой изолированной ручкой управления типа СП-1 или СП4-2М. измерительный прибор РА1 — на 10А. В устройстве применён трансфор- матор ТС-180-2 без всех вторичных обмоток. На каждую катушку укладывают новую обмотку типа АПВ проводом сечением 2.5мм2 по 15 витков. В устройстве применяется принудительное охлаждение радиатора с выпрямителем VD1 вентилятором от источника питания ПК. На радиаторе установлен тепловое реле КК1, от которого можно отказаться.

  

Наладку порогового узла производят следующим образом. К клеммам ХТ4 и ХТ5 подключается нагрузка, например, автомобильная лампочка на 12В с параллельно подключенным вольтметром. После включения зарядного устройства плавно поднимаем напряжение на клеммах резистором R7 до (14.6-14.7)В. После установки данного напряжения, резистором R7 устанавливаем порог срабатывания реле К2. Эту операцию нужно повторить несколько раз. Зарядное устройство подготовлен к работе.

 

 


Комментарии

Отзывы читателей — Скажите свое мнение!

Оставьте свое мнение


Отзывы читателей — Скажите свое мнение!

Кислотные аккумуляторы; чтобы больше не было отвратительно читать то что люди о них пишут

Случайно узрел статью с комментариями к ней, и так злость во мне закипела по поводу безграмотности людей в области кислотных (свинцовых в простонародье) аккумуляторов, что не выдержал и решил написать «гикам» (чтобы быть гиком, как оказывается, мало купить дорогой телефон) краткую статью об аккумуляторах. С рассмотрением тех ошибок, которые мне постоянно мусолят глаза и вызывают праведное желание их исправить.

Начнем с названия. Я очень часто вижу что тремя буквами А-К-Б называют все что можно зарядить, абсолютно любой аккумулятор. Особенно тремя буквами люди любят называть аккумуляторы типа Li-ion. На самом-же деле АКБ аббревиатура от Аккумуляторная Кислотная Батарея. Под ними подразумевается лишь один тип аккумулятора — свинцовый кислотный. С современной точки зрения это название вызывает некоторый когнитивный диссонанс т.к. на данный момент значение слова «батарейка» т.е. гальванического элемента который зарядить нельзя перешло на слово «батарея». И получается как будто бы из-за слова «аккумуляторная» это аккумулятор который зарядить можно, а из-за слова «батарея» это как будто батарейка которую зарядить нельзя. В реальности-же батарея — просто цепь гальванических элементов и со словом «батарейка» имеет общий лишь корень.

Далее перейдем к некоторым мифам, а именно главный миф — АКБ для автомобиля имеет некие существенные отличия от АКБ для ИБП. И вот нельзя их применять и там и там.

С химической точки зрения любые АКБ абсолютно одинаковы. Как-же они устроены? Очень кратко — если аккумулятор заряжен, то один электрод представляет собой свинцовую решетку с нанесенной на нее пастой из PbO2, второй -такую-же решетку с пастой губчатого свинца. Электролитом служит раствор серной кислоты. В процессе разряда PbO2 восстанавливается и взаимодействуя с серной кислотой образует PbSO4. Свинец на другом электроде окисляется и опять-же образует PbSO4. В конце разрядки мы имеем обе решетчатые пластины заполненные (более или менее) сульфатом свинца. При зарядке аккумулятора происходит электролиз и из сульфата свинца вновь образуется диоксид и металлический свинец. Конечно-же, тут нужно подчеркнуть, что электроды при этом не равны и путать их полярность не стоит т.к. еще на стадии производства в намазку электродов вводятся соответствующие добавки, улучшающие их эксплуатационные свойства. При этом добавки полезные для одного электрода вредны для другого. В очень старые времена, где-то в начале прошлого века, в условиях простых аккумуляторов, вероятно, была допустима переполюсовка аккумулятора по ошибке или с какими-то целями и он какое-то время после этого работал. В том что она допустима сейчас я сомневаюсь.

Таких ячеек в 12В аккумуляторе 6 шт, в 6В — 3 шт. и т.д. Многих вводит в заблуждение значение напряжения на аккумуляторах. Причем значений напряжения номинального, заряда, разряда. С одной стороны, аккумуляторы называются 12В (и 6В, 24В тоже есть, по-моему, даже 4В изредка встречаются) но на корпусе тех-же аккумуляторов для ИБП производитель указывает напряжение выше 13.5В.

Например:


Тут мы видим, что в форсированном режиме напряжение заряда может быть аж 15В.

Все разъяснит кривая напряжения на АКБ:

image

Слева мы видим напряжение для аккумулятора из 12 ячеек (24В номинальных), 6 (12В номинальных) и, самое полезное, для одной ячейки. Там-же отмечены области нежелательных напряжений при разряде/ заряде. Из кривой можно сделать выводы:

1 Напряжение 12В, 24В и т.д. являются номинальными и показывают лишь число гальванических ячеек (путем деления на два) в батарее. Это просто название для удобства.

2 Напряжение при заряде могут достигать 2.5 В/ ячейку что для 12В аккумулятора соответствует 15В.

3 Напряжение заряженной батареи считается допустимым при значении 2.1-2.2 В/ячейку, что для 12В аккумулятора соответствует 12.6-13.2В.

Теоретически, батарею можно зарядить и до значений 2.4 В/ячейку или даже немного выше, однако, такая зарядка будет негативно сказываться как на состоянии электродов, так и на концентрации электролита. Однажды, перед сдачей в утиль, я легко зарядил 12В батарею до напряжения ок. 14.5В (уже не помню точное значение).

Итак, автор статьи с которой я начал, решил, что напряжение заряда автомобильной АКБ и АКБ от ИБП отличаются. Это неверно, у них одинаковый тип электродов и одинаковая концентрация серной кислоты в электролите (подобранная давным-давно экспериментальным путем, чтобы предоставлять максимальное напряжение и минимальном саморазряде). Однако, что-же происходит в батарее, почему ее нельзя заряжать при слишком высоком значении напряжения?

Почему в автомобильную АКБ нужно подливать воду, а в АКБ от ИБП не нужно? Эти вопросы позволяют нам плавно перейти в область напряжения разложения воды. Как я написал выше, при зарядке аккумулятора происходит электролиз. Однако, не весь ток расходуется на превращение PbSO4 в PbO2 и Pb. Часть тока будет неизбежно расходоваться и на разложение воды, составляющей значительную часть электролита:

2H2O = 2H2 + O2

Теоретический расчет дает значение напряжения для этой реакции ок. 1.2В. Напоминаю, что напряжение на ячейке при заряде заведомо более 2В. К счастью, активно вода начинает разлагаться только выше 2В, а в промышленности для получения водорода и кислорода из нее процесс ведут и вовсе при 2.1-2.6В (при повышенной температуре). Как бы то ни было, тут мы приходим к выводу, что в конце процесса заряда АКБ будет неизбежно происходить процесс разложения воды в электролите на элементы. Образующиеся кислород и водород попросту улетучиваются из сферы реакции. Про них бытуют следующие мифы:

1. Водород крайне взрывоопасен! Перезарядишь аккумулятор и как минимум лишишься комнаты где тот был!

На самом деле, водорода в процессе электролиза выделяется ничтожно мало по сравнению с объемом комнаты. Водород взрывается при концентрации от 4% в воздухе. Если мы допустим, что электролиз ведется в комнате размером 3*3*3 метра или 27 метров куб., то нам понадобится наполнить помещение 27*0.04=1.1 метров куб. водорода. Для получения такого количества h3 нужно было бы полностью разложить ок. 49 моль воды или 884 грамма ее. Если кто-то наблюдал электролиз, то поймет насколько это много. Или попробуем перейти ко времени. При силе тока в стандартной зарядке для крупногабаритных АКБ в 6А, уравнение Фарадея дает время, необходимое для получения этого количества водорода, аж 437 часов или 18.2 дня. Чтобы наполнить комнату водородом до взрывоопасной концентрации нужно забыть про зарядку на 2 с половиной недели! Но даже если это случится, концентрация серной кислоты просто будет расти пока ее раствор не приобретет слишком высокое сопротивление для жалких 12В зарядки и сила тока не станет ничтожной. Да и водород попросту улетучится.

Очень редко случаются взрывы непосредственно в корпусах крупногабаритных АКБ из-за того, что выделяющийся водород по какой-то причине не может покинуть замкнутого пространства. Но и в этом случае нечего страшного не бывает — чаще всего взрыва хватает только на небольшую деформацию верхней части корпуса, но не на разрыв свинцовых соединений. И АКБ еще может работать дальше даже после таких повреждений.

2. При электролизе может образоваться смертельно ядовитый и, не менее взрывоопасный чем водород, сероводород!

Не наш, периодически попадался миф в англоязычных постах. Теоретически конечно возможно подать такое большое напряжение и создать т.о. такую большую силу тока, что на катоде начнется процесс восстановления сульфат-иона. Напряжение для этого будет достаточным, а продукты восстановления не будут успевать диффундировать подальше от электрода и восстановление будет идти дальше. Но зарядка в пределах десятка-трех вольт и с ограничением силы тока в 6А на такое едва ли способна. Однажды, я наблюдал процесс восстановления сульфата до SO2, да, это возможно; однокурсницы по ошибке что-то сделали не то во время опыта. Но это большая редкость т.к. там концентрация серной кислоты была заметно выше той, что используется в АКБ, была иная конструкция электрода и иной его материал и, естественно, напряжения и сила тока были были непомерными. И SO2 не H2S.

3. При электролизе мышьяк и сурьма из материала решеток будут восстанавливаться до ядовитых арсина и стибина!

Действительно, решетки содержат относительно много сурьмы, мышьяка в современных решетках, вероятно, нет вообще. При работе АКБ та решетка на которой происходит восстановление, т.е. катод, разрушению не может подвергаться. Выделяйся даже каким-то образом стибин, он бы тут-же взаимодействовал с PbSO4, восстанавливая его до металла.

Однако, некоторая практическая неприятность тут есть. Газообразные водород и кислород могут увлекать за собой капельки электролита, создавая аэрозоль серной кислоты. Аэрозоль серной кислоты, даже концентрированной, для человека не опасен и просто вызывает кашель. Однако, серная кислота — кошмар для тканей и бумаги. Стоит даже небольшому количеству серной кислоты попасть на одежду и там обязательно появятся дырки или ткань разорвется по этому месту. Через недели, если кислоты много, через месяц, но одежда истлеет.

Так что газовыделения опасаться не стоит с бытовой точки зрения или стоит, но нужно ориентироваться именно на аэрозоль серной кислоты.

Итак, вода начала разлагаться на водород кислород, ее в электролите становится все меньше, что-же дальше? Если это АКБ в котором электролит просто налит в виде слоя жидкости, то начнется повышение саморазряда из-за повышения концентрации серной кислоты. Занятно, что это будет сопровождаться небольшим повышением напряжения (концентрация кислоты растет) на ячейке. Именно поэтому автовладельцы должны постоянно контролировать концентрацию серной кислоты в своих АКБ (при помощи ареометра) и доливать туда воду. Процедура доливания воды — необходимая часть процесса обслуживания любой АКБ. Кроме одного их типа, и мы сейчас об этом поговорим.

Иметь аккумулятор в котором болтается слой едкой, по отношению к металлам, жидкости конечно-же неудобно, а потому попытки избавиться непосредственно от жидкости предпринимались давно, начались чуть ли не в первой половине 20-го века. К слову сказать, не то чтобы слой серной кислоты прямо плескался вокруг электродов. В реальности она неплохо распределена между электродами и окружающими их сепараторами даже в дешевых моделях. Итак, первым вариантом было использование стекловолокна. Достаточно просто окружить электроды стекловолокном которое пропитано серной кислотой и большинство проблем решится. Этот тип АКБ носит название AGM (absorbent glass mat) и таких АКБ для ИБП подавляющее большинство. Хотя такие АКБ малого форм-фактора и зачастую позиционируются как те, которые можно эксплуатировать в любом положении, с этим нельзя вполне согласиться. Вскрытие крышки стандартного дешевого AGM аккумулятора показывает, что никаких особых крышек там нет, а следовательно, электролит от вытекания удерживают лишь капиллярные силы. Я почти уверен, что если погонять AGM аккумулятор перевернутым вверх дном, то уже после одной зарядки из него польется серная кислота под давление газов.

Второй распространенный тип интереснее, это т.н. гелевые АКБ. А получаются они благодаря следующему. Если подкислять растворимые силикаты, то будет происходить выделение кремневой кислоты:

Na2SiO3 + H2SO4 = Na2SO4 + SiO2 + H2O

Если исходный раствор силиката не отличается качеством, то кремневая кислота будет выделяться в виде стекловидной массы, но если он достаточно чист, то кремневая кислота осадится в виде красивого куска однородного полупрозрачного геля. На этом и основан способ получения гелевых АКБ — простое добавление силикатов к электролиту вызывает его затвердение в гелеобразную массу. Соответственно, вытекать оттуда уже нечему и АКБ действительно можно эксплуатировать в любом положении. Сам по себе процесс образования геля не повышает емкости АКБ и не улучшает его качеств, однако, производители его используют при производстве наиболее качественных моделей, а потому эти АКБ отличаются высоким качеством и большей емкостью. Занятно, что в обоих случаях носителем электролита является SiO2 в той или иной форме.

Оба типа АКБ объединяются в славный тип VRLA — valve-regulated lead-acid battery который и применяется в ИБП. Формально они считаются необслуживаемыми и терпящими эксплуатацию в любом положении, но это не совсем так. Более того, многие уже встречались с эффектом, когда буквально несколько мл воды возвращают к жизни, казалось бы, дохлую АКБ от ИБП. Так получается, потому что и эти аккумуляторы не капли не застрахованы от электролиза воды в электролите, а следовательно, и пересыхания. Все происходит точно так-же, как в крупногабаритных АКБ. А вот самые дорогие и крутые необслуживаемые АКБ содержат катализатор для рекомбинации выделяющихся газов обратно в воду и вот уже у них корпус действительно выполнен абсолютно герметичным. Обращаю внимание, что по-настоящему герметичным и необслуживаемым может быть и аккумулятор типа AGM и GEL, но они-же могут ими и не быть и не содержать катализатора рекомбинации кислорода и водорода. Тогда, несмотря на казалось бы продвинутую конструкцию, пользователю придется либо чаще покупать новые аккумуляторы, либо доливать воду при помощи шприца.

Хотелось бы добавить несколько слов о режимах разряда. Производители АКБ указывают какой ток максимально допустим для той или иной модели, но нужно понимать, что аккумулятор — просто смесь химических веществ и ЭДС генерируется исключительно химическим путем. Это не конденсатор который, по электрогидравлической аналогии, можно сравнить с неким механическим сосудом (с гибкой мембраной). Хотя АКБ могут выдавать очень большие значения силы тока, в реальности они лучше всего эксплуатируются как раз при небольших токах, что в разряде, что в заряде. Поэтому ИБП, рассчитанные на заряды небольших АКБ, при работе с крупногабаритными будут заряжать их в наиболее щадящем режиме. Впрочем, в течении далеко не одних суток. Интересно обратить внимание на то, что чем выше мощность ИБП, тем больше аккумуляторов последовательно предпочитает собирать производитель. Тут все логично — большие токи разряда маленькие АКБ выдерживают очень плохо.

Подводя итоги:

1. Малогабаритные и крупногабаритные АКБ идентичны по устройству.

2. Для подавляющего большинства АКБ любого размера доливание воды является необходимой частью текущего обслуживания.

3. Лишь немногие из дорогих моделей АКБ содержат механизм рекомбинации газов и могут быть названы действительно необслуживаемыми.

4. Сам по себе водород, который выделяется при заряде (а это равно постоянной работе в ИБП) АКБ, не является существенной угрозой или проблемой.

5. Нужно очень внимательно работать с АКБ, тщательно избегая пролива даже малейших капель электролита, или лишитесь одежды.

6. Разряд и заряд малыми токами являются наиболее предпочтительными режимами эксплуатации АКБ.

Автоматическое зарядное устройство для свинцово-кислотных аккумуляторных батарей.

РадиоКот >Схемы >Питание >Зарядные устройства >

Автоматическое зарядное устройство для свинцово-кислотных аккумуляторных батарей.

Необходимость зарядного устройства для свинцово -кислотных аккумуляторных батарей возникла давно. Первое зарядное было сделано еще для автомобильного аккумулятора на 55А.Ч. Со временем в хозяйстве появились необслуживаемые гелиевые батареи различных номиналов, тоже нуждающиеся в зарядке. Городить для каждой батареи отдельное зарядное устройство, по крайней мере, неразумно. Поэтому пришлось взять в руки карандаш, проштудировать доступную литературу, в основном журнал «Радио», и совместно с товарищами родить концепцию универсального автоматического зарядного устройства (УАЗУ) для 12-ти вольтовых аккумуляторов от 7АЧ до 60АЧ. Получившуюся конструкцию выношу на ваш суд. Сделано в железе более 10 шт. с различными вариациями. Все устройства работают без нареканий. Схема легко повторяется с минимальными настройками.
За основу сразу был взят блок питания от старого ПК формата АТ, поскольку обладает целым комплексом положительных качеств: малые размеры и вес, хорошая стабилизация, мощность с большим запасом, ну и самое главное уже готовая силовая часть, к которой осталось прикрутить блок управления. Идею БУ подсказал С. Голов в своей статье «Автоматическое зарядное устройство для свинцово-кислотной аккумуляторной батареи», журнал «Радио» №12 2004г., спасибо ему отдельное.
Коротко повторю алгоритм зарядки батареи. Весь процесс состоит из трех этапов. На первом этапе, когда батарея полностью или частично разряжена, допустимо проводить зарядку большим током, достигающим 0,1:.0,2С, где С — емкость аккумулятора в ампер-часах. Зарядный ток должен быть ограничен сверху указанным значением или стабилизирован. По мере накопления заряда растет напряжение на клеммах батареи. Это напряжение контролируем. По достижению уровня 14,4 — 14,6 вольта первый этап завершен. На втором этапе необходимо поддерживать постоянным достигнутое напряжение и контролировать зарядный ток, который будет снижаться. Когда ток заряда упадет до 0,02С, батарея наберет заряд не менее 80%, переходим к третьему этапу заключительному. Уменьшаем напряжение заряда до 13,8 в. и поддерживаем его на этом уровне. Ток заряда постепенно снизится до 0,002:.0,001С и стабилизируется на этом значении. Такой ток для батареи не опасен, в этом режиме батарея может находиться долго, без вреда для себя и всегда готова к применению.
Теперь собственно поговорим о том как это все сделано. БП от компьютера был выбран из соображения наибольшего распространения схемного решения, т.е. узел управления выполнен на микросхеме TL494 и ее аналогах (MB3759, КА7500, КР1114ЕУ4) и слегка переделан:

Демонтированы схемы выходных напряжений 5в, -5в, -12в, отпаяны резисторы обратной связи по 5 и 12в, отключена схема защиты от перенапряжения. На фрагменте схемы отмечено крестиком места разрыва цепей. Оставлена только выходная часть 12в, можно еще заменить диодную сборку в цепи 12в на сборку снятую с 5-ти вольтовой цепи, она помощней, хотя не обязательно. Убраны все лишние провода, оставили только по 4 провода черного и желтого цвета длинной сантиметров по10, выход силовой части. К 1-й ноге микросхемы припаиваем проводок длинной 10 см это будет управление. На этом доработка закончена.
В блоке управления дополнительно, по просьбам многочисленных желающих иметь такую штуку, реализован режим тренировки и схема защиты от переполюсовки батареи для особо невнимательных. И так БУ:

Основные узлы: параметрический стабилизатор опорного напряжения 14,6в VD6-VD11, R21
Блок компараторов и индикаторов, реализующих три этапа зарядки батареи DA1.2, VD2 первый этап, DA1.3, VD5 второй, DA1.4, VD3 третий.
Стабилизатор VD1, R1, C1 и делители R4, R8, R5, R9, R6, R7 формирующие опорное напряжение компараторов. Переключатель SA1 и резисторы обеспечивают изменение режима зарядки для различных аккумуляторов.
Блок тренировки DD К561ЛЕ5, VT3, VT4, VT5, VT1, DA1.1.
Защита VS1, DA5, VD13.

Как это работает. Предположим что мы заряжаем автомобильный аккумулятор 55АЧ. Компараторы отслеживают падение напряжения на резисторе R31. На первом этапе схема работает как стабилизатор тока, при включении ток заряда будет около 5А, горят все 3 светодиода. DA1.2 будет держать ток заряда пока напряжение на батарее не достигнет 14,6в., DA1.2 закроется, погаснет VD2 красный. Начался второй этап.
На этом этапе напряжение 14,6в на батарее поддерживается стабилизаторомVD6-VD11, R21, т.е. ЗУ работает в режиме стабилизации напряжения. По мере увеличения заряда батареи, ток падает и как только он опустится до 0,02С, сработает DA1.3. Погаснет желтый VD5 и откроется транзистор VT2. Шунтируются VD6, VD7, напряжение стабилизации скачком снижается до 13,8 в. Перешли к третьему этапу.
Дальше идет дозаряд батареи очень маленьким током. Поскольку к этому моменту батарея набрала примерно 95-97% заряда, ток снижается постепенно до 0,002С и стабилизируется. На хороших батареях может снизится до 0,001С. На этот порог и настроен DA1.4. Светодиод VD3 может погаснуть, хотя на практике он продолжает слабо светить. На этом процесс можно считать завершенным и использовать аккумулятор по назначению.

Режим тренировка. При длительном хранении аккумулятора, его периодически рекомендуется тренировать, так как это может продлить жизнь старых батарей. Поскольку аккумулятор штука весьма инерционная, заряд-разряд должны длиться по несколько секунд. В литературе встречаются устройства которые тренируют батареи с частотой 50ГЦ, что печально сказывается на ее здоровье. Ток разряда составляет примерно десятую часть тока заряда. На схеме переключатель SA2 показан в положении тренировка, SA2.1 разомкнут SA2.2 замкнут. Включена схема разряда VT3, VT4, VT5, R24, SA2.2, R31 и взведен триггер DA1.1, VT1. На элементах DD1.1 и DD1.2 микросхемы К561ЛЕ5 собран мультивибратор. Он выдает меандр с периодом 10-12 секунд. Триггер взведен, элемент DD1.3 открыт, импульсы с мультивибратора открывают и закрывают транзисторы VT4 и VT3. Транзистор VT3 в открытом состоянии шунтирует диоды VD6-VD8 блокируя зарядку. Ток разряда батареи идет через R24, VT4, SA2.2, R31. Батарея 5-6 секунд получает заряд и такое же время разряжается малым током. Этот процесс длится первый и второй этап зарядки, затем срабатывает триггер, закрывается DD1.3, закрываются VT4 и VT3. Третий этап проходит в обычном режиме. В дополнительной индикации режима тренировки нет необходимости, поскольку мигают светодиоды VD2, VD3 и VD5. После первого этапа мигают VD3 и VD5. На третьем этапе VD5 светит не мигая. В режиме тренировки заряд батареи длится почти в 2 раза дольше.

Защита. В первых конструкциях вместо тиристора стоял диод, который защищал ЗУ от обратного тока. Работает очень просто, при правильном включении оптрон открывает тиристор, можно включать зарядку. При неправильном, загорается светодиод VD13, меняй местами клеммы. Между анодом и катодом тиристора нужно припаять неполярный конденсатор 50 мкф 50 вольт или 2 встречно спаянных электролита 100мкф 50в.

Конструкция и детали. ЗУ собрано в корпусе БП от компьютера. БУ изготовлен по лазерно-утюжной технологии. Рисунок печатной платы прилагается в архивном файле, выполнен в SL4. Резисторы МЛТ-025, резистор R31 — кусок медного провода. Измерительную головку РА1 можно и не ставить. Просто валялась и ее приспособили. Поэтому значения R30 и R33 зависят от миллиамперметра. Тиристор КУ202 в пластмассовом исполнении. Собственно исполнение видно на прилагаемых фото. Разъем и кабель для подключения питания монитора использовали для включения батареи. Переключатель выбора тока зарядки малогабаритный на 11 положений, резисторы припаяны к нему. Если ЗУ будет заряжать только автомобильные аккумуляторы переключатель можно не ставить, впаяв просто перемычку. DA1 — LM339. Диоды КД521 или аналогичные. Оптрон PC817 можно поставить другой с транзисторной исполнительной частью. Платка БУ прикручена к алюминиевой пластине толщиной 4 мм. Она служит радиатором для тиристора и КТ829, на ней же в отверстия вставлены светодиоды. Получившийся блок прикручен к передней стенке БП. ЗУ не греется, поэтому вентилятор подключен к БП через стабилизатор КР140ен8б, напряжение ограничено до 9в. Вентилятор вращается помедленней и практически его не слышно.

Регулировка. Первоначально устанавливаем вместо тиристора VS1 мощный диод , не впаивая VD4 и R20, подбираем стабилитроны VD8-VD10 так чтобы напряжение на выходе, без нагрузки, было 14,6вольта. Далее запаиваем VD4 и R20 и подбором R8, R9, R6 выставить пороги срабатывания компараторов. Вместо батареи подключаем проволочный переменный резистор 10 Ом, устанавливаем ток 5 ампер, впаиваем переменный резистор вместо R8, крутим его при напряжении 14,6в должен погаснуть светодиод VD2, мереям введенную часть переменного резистора и впаиваем постоянный. Впаиваем переменный резистор вместо R9, выставив примерно 150 Ом. Включаем ЗУ, увеличиваем ток нагрузки пока не сработает DA1.2, затем начинаем уменьшать ток до значения 0,1 ампера. Затем уменьшаем R9 пока не сработает компаратор DA1,3. Напряжение на нагрузке должно упасть до 13,8в и погаснет желтый светодиод VD5. Снижаем ток до 0,05 ампера, подбором R6 гасим VD3. Но лучше всего наладку проводить на хорошем разряженном аккумуляторе. Впаиваем переменные резисторы, выставляем их чуть больше указанных на схеме, подключаем амперметр и вольтметр к клеммам аккумулятора и делаем это за один раз. Батарею не сильно разряженную используем, тогда будет быстрее и точнее. Практика показала, что регулировка практически не требуется, если точно подобрать R31. Добавочные резисторы подбираются тоже легко: при соответствующем токе нагрузки, падение напряжения на R31 должно составлять 0,5в, 0,4в, 0,3в, 0,2в, 0,15в, 0,1в и 0,07в.
Вот, собственно и все. Да, еще, если дополнительным двухполюсным тумблером, одной половиной закоротить диод VD6, а другой стабилитрон VD9, то получится ЗУ для 6-ти вольтовых гелиевых батарей. Ток заряда надо выбрать наименьший переключателем SA1. На одном из собранных эта операция была успешно осуществлена.

Файлы:
Печатная плата в формате SL 4.0.

Вопросы, как обычно, складываем тут.


Как вам эта статья?

Заработало ли это устройство у вас?

Информация о зарядке свинцово-кислотных аккумуляторов — Battery University

Узнайте, как оптимизировать условия зарядки, чтобы продлить срок службы.

В свинцово-кислотных аккумуляторах используется метод заряда постоянного тока и постоянного напряжения (CCCV). Регулируемый ток увеличивает напряжение на клеммах до тех пор, пока не будет достигнут верхний предел напряжения заряда, после чего ток падает из-за насыщения. Время зарядки составляет 12–16 часов и до 36–48 часов для больших стационарных батарей.Благодаря более высоким токам заряда и многоступенчатым методам зарядки время зарядки можно сократить до 8–10 часов; однако без полной дозаправки. Свинцово-кислотный аккумулятор работает медленно и не может заряжаться так быстро, как другие аккумуляторные системы. (См. BU-202: Новые свинцово-кислотные системы.)

При использовании метода CCCV свинцово-кислотные аккумуляторы заряжаются в три этапа: [1] заряд постоянным током, [2] дополнительный заряд и [3] плавающий заряд. Заряд постоянным током составляет основную часть заряда и занимает примерно половину необходимого времени зарядки; дополнительный заряд продолжается при более низком токе заряда и обеспечивает насыщение, а плавающий заряд компенсирует потери, вызванные саморазрядом.

Во время зарядки постоянным током аккумулятор заряжается примерно до 70 процентов за 5–8 часов; оставшиеся 30 процентов заполняются более медленным доливающим зарядом, который длится еще 7–10 часов. Подзарядка важна для благополучия аккумулятора и может быть сравнена с небольшим отдыхом после хорошей еды. При постоянном отключении аккумулятор в конечном итоге потеряет способность принимать полный заряд, и производительность снизится из-за сульфатации. Плавающий заряд на третьем этапе поддерживает полную зарядку аккумулятора.Рисунок 1 иллюстрирует эти три этапа.


Рис. 1: Этапы зарядки свинцово-кислотной батареи.
Аккумулятор полностью заряжен, когда ток падает до установленного низкого уровня. Напряжение холостого хода снижено. Плавающий заряд компенсирует саморазряд, который наблюдается у всех батарей.
Предоставлено Cadex

Переключение со стадии 1 на 2 происходит плавно и происходит, когда батарея достигает

.Свинцово-кислотный аккумулятор

: работа, конструкция и зарядка / разрядка

Практически каждое портативное и портативное устройство состоит из аккумулятора. Батарея представляет собой накопительное устройство, в котором накапливается энергия для обеспечения ее в любой момент. В современном мире электроники доступны различные типы батарей, среди которых Свинцовые Кислотные батареи обычно используются для источников питания высокой мощности. Обычно свинцово-кислотные батареи больше по размеру, имеют прочную и тяжелую конструкцию, они могут хранить большое количество энергии и обычно используются в автомобилях и инверторах.

Даже после конкуренции с литий-ионными батареями спрос на свинцово-кислотные батареи растет день ото дня, потому что они дешевле и проще в обращении по сравнению с литий-ионными батареями. Согласно некоторым исследованиям рынка, рынок свинцово-кислотных аккумуляторов в Индии будет расти со среднегодовым темпом роста более 9% в течение 2018-24 годов. Таким образом, он имеет огромный рыночный спрос в области автоматизации, автомобилестроения и бытовой электроники. Хотя большая часть электромобилей поставляется с литий-ионными батареями, все же есть много электрических двухколесных транспортных средств, в которых для питания автомобиля используются свинцово-кислотные батареи.

В предыдущем уроке мы узнали о литий-ионных аккумуляторах, здесь мы разберемся с принципом работы , конструкцией и применением свинцово-кислотных аккумуляторов. Мы также узнаем о характеристиках зарядки / разрядки, требованиях и безопасности свинцово-кислотных аккумуляторов.

Строительство свинцово-кислотной батареи

Что такое свинцово-кислотный аккумулятор? Если мы сломаем название Свинцово-кислотный аккумулятор, мы получим Свинцовый, Кислотный и Аккумулятор .Свинец — это химический элемент (обозначение — Pb, атомный номер 82). Это мягкий и податливый элемент. Мы знаем, что такое кислота; он может отдавать протон или принимать пару электронов, когда реагирует. Так, аккумулятор, который состоит из свинца и безводной свинцовой кислоты (иногда ошибочно называемой пероксидом свинца), называется свинцово-кислотным аккумулятором.

Итак, , что такое внутренняя конструкция?

Свинцово-кислотная батарея состоит из следующих элементов, мы можем видеть это на изображении ниже:

Lead Acid Battery Internal Diagram

Свинцово-кислотная батарея состоит из пластин, сепаратора и электролита, твердого пластика с твердым резиновым корпусом .

В аккумуляторах пластины двух типов , положительные и отрицательные. Положительный состоит из диоксида свинца, а отрицательный — из губчатого свинца. Эти две пластины разделены разделителем , который представляет собой изоляционный материал. Вся конструкция хранится в жестком пластиковом ящике с электролитом. Электролит — вода и серная кислота.

Жесткий пластиковый корпус одноклеточный. Одноячеечное хранилище обычно 2.1В. По этой причине свинцово-кислотная батарея на 12 В состоит из 6 ячеек и обычно обеспечивает 6 x 2,1 В / элемент = 12,6 В.

Теперь, , какова емкость накопителя заряда?

Это сильно зависит от активного материала (количества электролита) и размера пластины. Возможно, вы видели, что емкость литиевой батареи описывается в мАч или миллиампер-часах, но в случае свинцово-кислотной батареи это ампер-час. Мы опишем это в следующем разделе.

Работа свинцово-кислотных аккумуляторов

Работа свинцово-кислотного аккумулятора — это все о химии, и очень интересно узнать о ней. В процессе зарядки и разрядки свинцово-кислотных аккумуляторов происходят огромные химические процессы. Разбавленная серная кислота H 2 SO 4 молекулы распадаются на две части при растворении кислоты. Он создаст положительные ионы 2H + и отрицательные ионы SO 4 -. Как мы уже говорили ранее, два электрода соединены как пластины, анод и катод.Анод улавливает отрицательные ионы, а катод притягивает положительные ионы. Эта связь в аноде и SO 4 — и катоде с 2H + обменивается электронами и далее реагирует с h3O или с водой (разбавленная серная кислота, серная кислота + вода).

Батарея имеет два состояния химической реакции: Зарядка и Разрядка .

Зарядка свинцово-кислотных аккумуляторов

Как мы знаем, чтобы зарядить аккумулятор, нам нужно обеспечить напряжение, превышающее напряжение на клеммах.Таким образом, для зарядки аккумулятора 12,6 В можно подать напряжение 13 В.

Но что на самом деле происходит, когда мы заряжаем свинцово-кислотную батарею?

Ну, те же химические реакции, которые мы описали ранее. В частности, когда аккумулятор соединен с зарядным устройством, молекулы серной кислоты распадаются на два иона: положительные ионы 2H + и отрицательные ионы SO 4 -. Водород обменивается электронами с катодом и становится водородом, этот водород реагирует с PbSO 4 на катоде и образует серную кислоту (H 2 SO 4 ) и свинец (Pb).С другой стороны, SO 4 — обмениваются электронами с анодом и становятся радикальными SO 4 . Этот SO 4 реагирует с PbSO 4 анода и образует пероксид свинца PbO 2 и серную кислоту (H 2 SO 4 ). Энергия накапливается за счет увеличения плотности серной кислоты и увеличения потенциального напряжения ячейки.

Как объяснено выше, в процессе зарядки на аноде и катоде происходят следующие химические реакции.

На катоде

  PbSO  4  + 2e  -  => Pb + SO  4   2-   

На аноде

  PbSO  4  + 2H  2  O => PbO  2  + SO  4   2- + 4H - + 2e -  

В сочетании двух приведенных выше уравнений общая химическая реакция будет

.
  2PbSO  4  + 2H  2  O => PbO  2  + Pb + 2H  2  SO  4   

Lead Acid Battery Charging

Существуют различные методы зарядки свинцово-кислотных аккумуляторов.Каждый метод может использоваться для конкретных свинцово-кислотных аккумуляторов для конкретных приложений. В некоторых приложениях используется метод зарядки с постоянным напряжением , в некоторых приложениях используется метод с постоянным током , в то время как зарядка от щекотки также полезна в некоторых случаях. Обычно производитель аккумуляторов предоставляет правильный метод зарядки определенных свинцово-кислотных аккумуляторов. Зарядка постоянным током обычно не используется при зарядке свинцово-кислотных аккумуляторов .

Наиболее распространенным методом зарядки, используемым в свинцово-кислотных аккумуляторах, является метод зарядки постоянным напряжением , который является эффективным с точки зрения времени зарядки.В течение полного цикла зарядки напряжение заряда остается постоянным, а ток постепенно уменьшается с увеличением уровня заряда аккумулятора.

Свинцово-кислотная батарея разряжается

Разрядка свинцово-кислотной батареи снова связана с химическими реакциями. Серная кислота находится в разбавленной форме, обычно в соотношении 3: 1 с водой и серной кислотой. Когда нагрузки подключаются поперек пластин, серная кислота снова распадается на положительные ионы 2H + и отрицательные ионы SO 4 .Ионы водорода реагируют с PbO 2 и образуют PbO и воду H 2 O. PbO начинает реагировать с H 2 SO 4 и создает PbSO 4 и H 2 O.

С другой стороны, SO 4 — ионы обмениваются электронами с Pb, образуя радикал SO 4 , который в дальнейшем создает PbSO 4 , реагирующий с Pb.

Как объяснено выше, в процессе разряда на аноде и катоде происходят следующие химические реакции.Эти реакции прямо противоположны реакциям зарядки:

На катоде

  Pb + SO  4   2- => PbSO  4  + 2e -  

На аноде:

  PbO  2  + SO  4   2-  + 4H - + 2e - => PbSO  4  + 2H  2  O  

В сочетании двух приведенных выше уравнений общая химическая реакция будет

.
  PbO  2  + Pb + 2H  2  SO  4  => 2PbSO  4  + 2H  2  O  

Lead Acid Battery Discharging

Из-за обмена электронами между анодом и катодом нарушается баланс электронов на пластинах.Затем электроны проходят через нагрузку, и батарея разряжается.

Во время этого разряда плотность разбавленной серной кислоты уменьшается. Кроме того, в то же время уменьшается разность потенциалов ячейки.

Фактор риска и электрические характеристики

Свинцово-кислотный аккумулятор опасен при ненадлежащем обслуживании. Поскольку аккумулятор выделяет водород во время химического процесса, он очень опасен, если не используется в вентилируемом помещении.Кроме того, неточная зарядка серьезно повреждает аккумулятор.

Каковы стандартные характеристики свинцово-кислотных аккумуляторов?

Каждая свинцово-кислотная батарея снабжена таблицей данных по стандартному току заряда и току разряда. Обычно свинцово-кислотный аккумулятор на 12 В, применимый в автомобильной промышленности, может иметь диапазон от 100 Ач до 350 Ач. Этот рейтинг определяется как рейтинг разряда с 8-часовым периодом времени.

Например, батарея емкостью 160 Ач может обеспечить 20 А тока питания нагрузки в течение 8 часов диапазона .Мы можем потреблять больше тока, но делать это не рекомендуется. Потребление тока, превышающего максимальный ток разряда в течение 8 часов, приведет к снижению эффективности батареи, а также может измениться внутреннее сопротивление батареи, что еще больше увеличит температуру батареи.

С другой стороны, во время фазы зарядки мы должны быть осторожны с полярностью зарядного устройства , оно должно быть правильно подключено с полярностью батареи. Обратная полярность опасна для зарядки свинцово-кислотных аккумуляторов.Готовое зарядное устройство поставляется с измерителем зарядного напряжения и зарядного тока с возможностью управления. Мы должны обеспечить большее напряжение, чем напряжение аккумулятора, чтобы зарядить аккумулятор. Максимальный ток заряда должен быть таким же, как и максимальный ток питания при 8-часовой разряде. Если мы возьмем тот же пример 12 В 160 Ач, то максимальный ток питания составляет 20 А, поэтому максимальный безопасный ток зарядки составляет 20 А.

Мы не должны увеличивать или обеспечивать большой зарядный ток , так как это приведет к нагреву и увеличению газообразования.

Правила обслуживания свинцово-кислотных аккумуляторов

  1. Полив — это функция, которой часто пренебрегают при обслуживании залитых свинцово-кислотных аккумуляторов. Поскольку перезарядка уменьшает воду, нам нужно часто ее проверять. Меньшее количество воды вызывает окисление пластин и снижает срок службы батареи. При необходимости доливайте дистиллированную или ионизированную воду.
  2. Проверьте вентиляционные отверстия, они должны быть усовершенствованы резиновыми заглушками, часто резиновые заглушки слишком плотно прилегают к отверстиям.
  3. Заряжайте свинцово-кислотные батареи после каждого использования. Длительный период без подзарядки обеспечивает сульфатирование в пластинах.
  4. Не замораживайте аккумулятор и не заряжайте его более чем на 49 градусов по Цельсию. При низкой температуре окружающей среды аккумуляторы необходимо полностью заряжать, поскольку полностью заряженные аккумуляторы безопаснее, чем разряженные аккумуляторы в отношении замерзания.
  5. Не разряжайте аккумулятор ниже 1,7 В на элемент.
  6. Для хранения свинцово-кислотного аккумулятора его необходимо полностью зарядить, а затем слить электролит.Тогда аккумулятор высохнет и его можно будет хранить долгое время.
.Цепи зарядного устройства свинцово-кислотных аккумуляторов

Цепи зарядного устройства свинцово-кислотных аккумуляторов, описанные в этой статье, можно использовать для зарядки всех типов свинцово-кислотных аккумуляторов с заданной скоростью.

В этой статье рассказывается о нескольких схемах зарядного устройства для свинцово-кислотных аккумуляторов с автоматической перезарядкой и отключением при малой разрядке. Все эти конструкции проходят тщательные испытания и могут использоваться для зарядки всех автомобильных аккумуляторов и аккумуляторов SMF емкостью до 100 Ач и даже 500 Ач.

Введение

Свинцово-кислотные батареи обычно используются в тяжелых условиях, требующих много сотен ампер.Для зарядки этих аккумуляторов нам особенно нужны зарядные устройства, рассчитанные на длительные периоды зарядки при высоком токе. Зарядное устройство для свинцово-кислотных аккумуляторов специально разработано для зарядки аккумуляторов большой мощности с помощью специализированных цепей управления.

5 представленных ниже полезных и высокомощных схем зарядного устройства для свинцово-кислотных аккумуляторов могут использоваться для зарядки больших сильноточных свинцово-кислотных аккумуляторов емкостью от 100 до 500 Ач, конструкция полностью автоматическая и переключает питание на аккумулятор, а также как только аккумулятор полностью зарядится.


ОБНОВЛЕНИЕ: вы также можете создать эти простые схемы зарядного устройства для 12 В 7 Ач аккумуляторной батареи s , проверьте их.


Что означает Ач

Единица Ач или Ампер-час в любой батарее означает идеальную скорость , при которой батарея будет полностью разряжена или полностью заряжена в течение 1 часа. Например, если аккумулятор на 100 Ач заряжался при токе 100 ампер, для полной зарядки аккумулятора потребуется 1 час.Точно так же, если бы аккумулятор был разряжен при токе 100 ампер, время поддержки продлилось бы не более часа.

Но подождите, никогда не пробуйте этот , так как зарядка / разрядка на полной мощности может иметь катастрофические последствия для вашей свинцово-кислотной батареи.

Единица Ач используется только для того, чтобы предоставить нам контрольное значение, которое можно использовать для определения приблизительного времени заряда / разряда батареи при установленной скорости тока.

Например, когда вышеупомянутый аккумулятор заряжается на 10 ампер, используя значение Ah, мы можем найти время полной зарядки по следующей формуле:

Поскольку скорость зарядки обратно пропорциональна времени, мы имеем:

Время = Ач значение / скорость зарядки

T = 100/10

где 100 — уровень заряда батареи в Ач, 10 — ток зарядки, T — время при скорости 10 А

T = 10 часов.

Формула предполагает, что в идеале для оптимальной зарядки аккумулятора при мощности 10 ампер потребуется около 10 часов, но для реальной батареи это может быть около 14 часов для зарядки и 7 часов для разрядки. Потому что в реальном мире даже новый аккумулятор не будет работать в идеальных условиях, и с возрастом ситуация может ухудшиться.

Важные параметры, на которые следует обратить внимание

Свинцово-кислотные батареи дороги, и вам нужно убедиться, что они прослужат как можно дольше.Поэтому, пожалуйста, не используйте дешевые и непроверенные зарядные устройства, которые могут показаться простыми, но могут медленно повредить аккумулятор.

Большой вопрос: необходим ли идеальный способ зарядки аккумулятора? Простой ответ — НЕТ. Потому что, когда мы применяем идеальный метод зарядки, описанный на сайтах «Википедия» или «Университет аккумуляторов», мы стараемся зарядить аккумулятор до максимально возможной емкости. Например, при идеальном уровне 14,4 В ваша батарея может быть полностью заряжена, но делать это обычными методами может быть рискованно.

Чтобы достичь этого без риска, вам, возможно, придется использовать усовершенствованную схему ступенчатого зарядного устройства, которую может быть сложно построить и может потребоваться слишком много вычислений.

Если вы хотите избежать этого, вы все равно можете зарядить аккумулятор оптимально (@ около 65%), убедившись, что аккумулятор отключен на немного более низком уровне. Это позволит батарее всегда находиться в менее напряженном состоянии. То же самое касается уровня и скорости разряда.

Как правило, он должен иметь следующие параметры для безопасной зарядки, не требующей специальных ступенчатых зарядных устройств:

  • Фиксированный ток или постоянный ток (1/10 номинала батареи в Ач)
  • Фиксированное напряжение или постоянное напряжение (на 17% выше, чем Напряжение, указанное на батарее)
  • Защита от перезарядки (отключение, когда батарея заряжается до указанного выше уровня)
  • Подзарядка (необязательно, не обязательно)

Если в вашей системе нет этих минимальных параметров, тогда это может постепенно ухудшить производительность и повредить аккумулятор, резко сократив время автономной работы.

  1. Например, если ваша батарея рассчитана на 12 В, 100 Ач, то фиксированное входное напряжение должно быть на 17% выше, чем напечатанное значение, что равно примерно 14,1 В (не 14,40 В, если вы не используете ступенчатое зарядное устройство) .
  2. Ток (в амперах) в идеале должен составлять 1/10 от уровня в ампер-часах, указанного на батарее, так что в нашем случае это может быть 10 ампер. Чуть более высокий вход усилителя может быть нормальным, поскольку наш полный уровень заряда уже ниже.
  3. Автоматическое отключение зарядки рекомендуется при вышеуказанном 14.1 В, но это не обязательно, так как уровень полного заряда у нас уже немного ниже.
  4. Плавающий заряд — это процесс снижения тока до незначительных пределов после того, как аккумулятор полностью зарядился. Это предотвращает саморазряд батареи и постоянно поддерживает ее на полном уровне до тех пор, пока пользователь не извлечет ее для использования. Совершенно необязательно . Это может быть необходимо только в том случае, если вы не используете аккумулятор в течение длительного времени. В таких случаях также лучше вынимать аккумулятор из зарядного устройства и периодически подзаряжать его каждые 7 дней.

Самый простой способ получить фиксированное напряжение и ток — это использовать микросхемы стабилизаторов напряжения, как мы узнаем ниже.

Еще один простой способ — использовать в качестве источника входного сигнала готовый 12-вольтный импульсный блок питания на 10 ампер с регулируемой предустановкой. SMPS будет иметь небольшую предустановку в углу, которая может быть настроена на 14,0 В.

Помните, что вам придется держать аккумулятор подключенным не менее 10–14 часов или пока напряжение на клеммах аккумулятора не достигнет 14,2 В. Хотя это уровень может выглядеть немного заниженным, чем стандартный 14.Полный уровень 4 В гарантирует, что ваша батарея никогда не перезарядится и гарантирует длительный срок службы батареи.

Все подробности представлены в этой инфографике ниже:

Однако, если вы любитель электроники и заинтересованы в создании полноценной схемы со всеми идеальными опциями, в этом случае вы можете выбрать следующие комплексные схемы.

[Новое обновление] Автоматическое отключение батареи, зависящее от тока

Обычно во всех обычных схемах зарядного устройства используется автоматическое отключение при обнаружении напряжения или зависящее от напряжения.

Тем не менее, функция определения тока может также использоваться для инициирования автоматического отключения, когда батарея достигает оптимального уровня полной зарядки. Полная принципиальная схема для автоматического отключения по току показана ниже:

ПОЖАЛУЙСТА, ПОДКЛЮЧИТЕ РЕЗИСТОР 1K ПОСЛЕ ПРАВОЙ СТОРОНЫ 1N4148 ДИОД

Принцип работы

Резистор 0,1 Ом действует как датчик тока, создавая эквивалентную разность потенциалов. через себя. Номинал резистора должен быть таким, чтобы минимальное отклонение потенциала на нем было не менее 0.На 3 В выше, чем падение диода на выводе 3 ИС, пока аккумулятор не достигнет желаемого уровня полного заряда. По достижении полного заряда этот потенциал должен упасть ниже уровня падения диода.

Первоначально, когда батарея заряжается, в потребляемом токе возникает отрицательная разность потенциалов, скажем, -1 В на входных контактах ИС. Это означает, что напряжение на контакте 2 теперь становится ниже напряжения на контакте 3 как минимум на 0,3 В. Благодаря этому на выводе 6 микросхемы появляется высокий уровень, позволяющий полевому МОП-транзистору проводить и соединять батарею с источником питания.

Когда батарея заряжается до оптимального уровня, напряжение на резисторе измерения тока падает до достаточно низкого уровня, в результате чего разность потенциалов на резисторе становится почти нулевой.

Когда это происходит, потенциал контакта 2 повышается выше, чем потенциал контакта 3, вызывая низкий уровень на контакте 6 ИС и отключая полевой МОП-транзистор. Таким образом, аккумулятор отключается от источника питания, что приводит к прекращению процесса зарядки. Диод, подключенный к контакту 3 и контакту 6, блокирует или фиксирует цепь в этом положении до тех пор, пока питание не будет отключено и снова включено для нового цикла.

Вышеуказанная схема зарядки, зависящая от тока, также может быть выражена следующим образом:

При включении питания конденсатор емкостью 1 мкФ заземляет инвертирующий вывод операционного усилителя, вызывая кратковременный высокий уровень на выходе операционного усилителя, который включает МОП-транзистор. Это начальное действие подключает батарею к источнику питания через полевой МОП-транзистор и измерительный резистор RS. Ток от батареи вызывает соответствующий потенциал для развития через RS, который поднимает нон-invering вход ОУ над входом опорного инвертирующий (3V).

Теперь выход операционного усилителя фиксируется и заряжает батарею, пока она не будет почти полностью заряжена. Такое положение уменьшает ток через RS таким образом, что потенциал на него падает ниже 3 ссылки V и ОУ выход включается низким уровень, выключая MOSFET и процесс зарядки для аккумулятора.

1) Использование одиночного операционного усилителя

Глядя на первую сильноточную схему для зарядки больших батарей, мы можем понять идею схемы с помощью следующих простых моментов:

В показанной конфигурации в основном три этапа, а именно: питание каскад питания, состоящий из трансформатора и мостовой выпрямительной сети.

Конденсатор фильтра после мостовой сети был проигнорирован для простоты, однако для лучшего вывода постоянного тока на батарею можно добавить конденсатор 1000 мкФ / 25 В между положительным и отрицательным полюсом моста.

Выходной сигнал источника питания подается непосредственно на аккумулятор, который необходимо зарядить.

Следующий каскад состоит из компаратора напряжения IC на операционном усилителе 741, который сконфигурирован так, чтобы измерять напряжение батареи во время ее зарядки и переключать свой выход на вывод № 6 с соответствующим ответом.

Контакт № 3 ИС подключен к батарее или положительному полюсу питания схемы через предустановку 10K.

Предварительная установка настроена таким образом, что ИС меняет свой выходной сигнал на выводе №6, когда батарея полностью заряжается, и достигает примерно 14 вольт, что является напряжением трансформатора при нормальных условиях.

Контакт # 2 IC зажимают с фиксированной ссылкой через делитель напряжения сети, состоящей из 10K резистор и стабилитрон 6 вольт.

Выходной сигнал ИС подается на каскад драйвера реле, где транзистор BC557 образует главный управляющий компонент.

Первоначально питание схемы инициируется нажатием переключателя «пуск». При этом выключатель обходит контакты реле и мгновенно запитывает цепь.

Микросхема определяет напряжение батареи, и, поскольку на этом этапе оно будет низким, на выходе микросхемы появится низкий логический уровень.

Включает транзистор и реле, реле мгновенно фиксирует питание через соответствующие контакты, так что теперь, даже если «пусковой» переключатель отпущен, цепь остается включенной и начинает заряжать подключенную батарею.

Теперь, когда заряд батареи достигает примерно 14 вольт, микросхема определяет это и мгновенно переводит свой выходной сигнал на высокий логический уровень.

Транзистор BC557 реагирует на этот высокий импульс и выключает реле, которое, в свою очередь, переключает питание на схему, размыкая защелку.

Цепь полностью отключается до тех пор, пока кнопка пуска не будет нажата еще раз, и подключенный аккумулятор не будет иметь заряд ниже установленной отметки 14 вольт.

Как настроить.

Это очень просто.

Не подключайте аккумулятор к цепи.

Включите питание, нажав кнопку пуска и удерживая ее нажатой вручную, sim

.

Зарядка аккумуляторов с источником питания — Battery University

Узнайте, как заряжать аккумулятор без специального зарядного устройства.

Батареи можно заряжать вручную с помощью блока питания с настраиваемым пользователем напряжением и ограничением тока. Я подчеркиваю manual , потому что зарядка требует ноу-хау и ее нельзя оставлять без присмотра; прекращение начисления не автоматизировано. Из-за трудностей определения полного заряда никелевых батарей я рекомендую заряжать только свинцовые и литиевые батареи вручную.

Свинцово-кислотный

Перед подключением аккумулятора рассчитайте напряжение заряда в соответствии с количеством последовательно соединенных ячеек, а затем установите желаемое напряжение и ограничение тока. Чтобы зарядить 12-вольтную свинцово-кислотную батарею (шесть элементов) до предельного напряжения 2,40 В, установите напряжение на 14,40 В (6 x 2,40). Выберите зарядный ток в соответствии с размером батареи. Для свинцово-кислотной кислоты это от 10 до 30 процентов от номинальной мощности. Аккумулятор на 10 Ач при 30 процентах заряда примерно 3 А; процент может быть меньше.Стартерная батарея на 80 Ач может заряжаться до 8 А. (Уровень заряда 10 процентов равен 0,1C.)

Наблюдайте за температурой, напряжением и силой тока батареи во время зарядки. Заряжайте только при температуре окружающей среды в хорошо вентилируемом помещении. Когда аккумулятор полностью заряжен и ток упал до 3 процентов от номинального Ач, заряд завершается. Отключите зарядку. Также отключите заряд через 16–24 часа, если ток упал до минимума и не может упасть; высокий саморазряд (мягкое короткое замыкание) может препятствовать достижению аккумулятором низкого уровня насыщения.Если вам нужен плавающий заряд для готовности к работе, уменьшите напряжение заряда примерно до 2,25 В / элемент.

Вы также можете использовать источник питания для выравнивания напряжения свинцово-кислотной батареи, установив напряжение заряда на 10 процентов выше рекомендуемого. Время перезарядки критично, и его необходимо тщательно соблюдать. (См. BU-404: Что такое уравнительный заряд.)

Источник питания также может обращать сульфатирование. Установите напряжение заряда выше рекомендуемого уровня, отрегулируйте ограничение тока до минимального практического значения и наблюдайте за напряжением аккумулятора.Полностью сульфатированная свинцовая кислота может сначала потреблять очень небольшой ток, и по мере растворения сульфатного слоя ток будет постепенно увеличиваться. Повышение температуры и установка батареи на ультразвуковой вибратор также могут помочь в этом процессе. Если аккумулятор не принимает заряд через 24 часа, восстановление маловероятно. (См. BU-804b: Сульфатирование и способы его предотвращения.)

Литий-ионный

Литий-ионный заряжается так же, как свинцово-кислотный, и вы также можете использовать источник питания, но проявляйте особую осторожность.Проверьте напряжение полной зарядки, которое обычно составляет 4,20 В на элемент, и установите соответствующий порог. Убедитесь, что ни одна из последовательно соединенных ячеек не превышает это напряжение. (Схема защиты в коммерческом блоке делает это.) Полная зарядка достигается, когда элемент (-ы) достигает напряжения 4,20 В / элемент, а ток падает до 3 процентов от номинального тока или достигает дна и не может упасть дальше. После полной зарядки отсоедините аккумулятор. Никогда не позволяйте ячейке оставаться при 4,20 В более чем на несколько часов.(См. BU-409: Зарядка литий-ионных аккумуляторов.)

Обратите внимание, что не все литий-ионные аккумуляторы заряжаются до порогового значения напряжения 4,20 В на элемент. Фосфат лития-железа обычно заряжается до предельного напряжения 3,65 В на элемент, а титанат лития — до 2,85 В на элемент. Некоторые энергетические элементы могут принимать 4,30 В на элемент и выше. Важно соблюдать эти пределы напряжения. (См. BU-205: Типы литий-ионных аккумуляторов.)

NiCd и NiMH

Зарядка никелевых аккумуляторов с помощью источника питания является сложной задачей, поскольку обнаружение полного заряда основывается на сигнатуре напряжения, которая изменяется в зависимости от приложенного зарядного тока.Если вам необходимо зарядить NiCd и NiMH от регулируемого источника питания, используйте повышение температуры при быстрой зарядке на 0,3–1 ° C как показатель полной зарядки. При зарядке малым током оцените уровень оставшегося заряда и рассчитайте время зарядки. Пустой никель-металлгидридный аккумулятор емкостью 2 Ач будет заряжаться примерно за 3 часа при токе 750–1000 мА. Капельный заряд, также известный как плата за обслуживание, должен быть уменьшен до 0,05 ° C. (См. BU-407: Загрузка никель-кадмия; BU-408: Загрузка никель-металлогидрида.)

Последнее обновление 27.02.2016


*** Пожалуйста, прочтите комментарии ***

Комментарии предназначены для «комментирования», открытого обсуждения среди посетителей сайта.Battery University отслеживает комментарии и понимает важность выражения точек зрения и мнений на общем форуме. Однако при общении необходимо использовать соответствующий язык, избегая спама и дискриминации.

Если у вас есть вопрос, вам нужна дополнительная информация, у вас есть предложение или вы хотите сообщить об ошибке, используйте форму «свяжитесь с нами» или напишите нам по адресу: [email protected]. Хотя мы прилагаем все усилия, чтобы точно ответить на ваши вопросы, мы не можем гарантировать результаты.Мы также не можем нести ответственность за любой ущерб или травмы, которые могут возникнуть в результате предоставленной информации. Пожалуйста, примите наш совет как бесплатную общественную поддержку, а не как инженерную или профессиональную услугу.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *