Как работает зарядное устройство на тиристоре КУ202Н. Каковы особенности его схемы и сборки. Какие преимущества дает использование тиристорного регулятора мощности в зарядном устройстве. Как правильно собрать и настроить такое устройство.
Принцип работы тиристорного регулятора мощности в зарядном устройстве
Тиристорный регулятор мощности является ключевым элементом данного зарядного устройства. Его принцип работы основан на изменении угла открытия тиристора в течение каждого полупериода сетевого напряжения. Это позволяет плавно регулировать среднее значение выходного напряжения и тока.
Основные преимущества использования тиристорного регулятора в зарядном устройстве:
- Плавная регулировка выходной мощности
- Высокий КПД
- Простота конструкции
- Надежность работы
Как работает тиристорный регулятор в данной схеме? Управляющие импульсы на тиристор КУ202Н подаются с некоторой задержкой относительно перехода сетевого напряжения через ноль. Изменяя эту задержку с помощью переменного резистора R3, можно регулировать угол открытия тиристора и, соответственно, выходную мощность.
Особенности схемы зарядного устройства на тиристоре КУ202Н
Рассмотрим основные элементы схемы зарядного устройства:
- Трансформатор T1 — понижает сетевое напряжение до необходимого уровня
- Диодный мост VD1-VD4 — выпрямляет переменное напряжение
- Тиристор VS1 (КУ202Н) — регулирует выходную мощность
- Транзисторы VT1-VT2 — формируют управляющие импульсы для тиристора
- Конденсатор C1 и резисторы R2-R3 — задают временные параметры управляющих импульсов
Важную роль играет правильный подбор номиналов элементов схемы. Например, емкость конденсатора C1 влияет на диапазон регулировки мощности. Слишком малая емкость сузит этот диапазон, а слишком большая может привести к нестабильной работе.
Сборка и настройка зарядного устройства
При сборке зарядного устройства на тиристоре КУ202Н необходимо учитывать следующие моменты:
- Тиристор следует установить на радиатор достаточной площади
- Силовые цепи нужно выполнить проводом соответствующего сечения
- Элементы схемы управления лучше разместить на отдельной печатной плате
- Важно обеспечить надежную изоляцию всех токоведущих частей
Настройка устройства заключается в подборе номиналов резисторов R2 и R3 для получения оптимального диапазона регулировки. При этом необходимо контролировать форму выходного напряжения осциллографом.
Преимущества использования тиристорного регулятора в зарядном устройстве
Применение тиристорного регулятора мощности в зарядном устройстве дает ряд существенных преимуществ:
- Плавная регулировка тока заряда в широком диапазоне
- Высокий КПД преобразования энергии
- Простота конструкции и надежность
- Возможность автоматизации процесса заряда
- Низкий уровень помех
Все это делает зарядные устройства на тиристорах весьма эффективными для заряда автомобильных и других свинцово-кислотных аккумуляторов.
Особенности применения тиристора КУ202Н в зарядном устройстве
Тиристор КУ202Н имеет следующие ключевые параметры, важные для использования в зарядном устройстве:
- Максимальное рабочее напряжение — 400 В
- Максимальный рабочий ток — 10 А
- Ток управления — не более 150 мА
- Время выключения — не более 25 мкс
Эти характеристики позволяют применять КУ202Н в зарядных устройствах мощностью до 200-300 Вт. При этом важно обеспечить эффективный теплоотвод от корпуса тиристора, особенно при работе на максимальной мощности.
Возможные проблемы и их решение при сборке зарядного устройства
При сборке и настройке зарядного устройства на тиристоре могут возникнуть некоторые проблемы:
- Нестабильная работа регулятора — может быть вызвана неправильным подбором емкости C1 или сопротивлений R2-R3. Решение — подобрать оптимальные номиналы экспериментально.
- Перегрев тиристора — обычно связан с недостаточным теплоотводом. Необходимо увеличить площадь радиатора или применить принудительное охлаждение.
- Сильные помехи в сеть — могут возникать из-за крутых фронтов коммутации. Рекомендуется установить сетевой фильтр на входе устройства.
- Узкий диапазон регулировки — чаще всего вызван неоптимальным выбором параметров времязадающей цепи. Нужно скорректировать номиналы R2, R3 и C1.
Внимательный подход к сборке и настройке позволит избежать большинства проблем и получить надежно работающее зарядное устройство.
Заключение
Зарядное устройство на тиристоре КУ202Н представляет собой простое, но эффективное решение для заряда автомобильных аккумуляторов. Его основные преимущества:
- Плавная регулировка тока заряда
- Высокий КПД
- Простота конструкции
- Надежность в эксплуатации
При правильной сборке и настройке такое устройство способно обеспечить качественный заряд аккумуляторов различной емкости. Важно соблюдать меры безопасности при работе с сетевым напряжением и обеспечивать хороший теплоотвод от силовых элементов схемы.
Выпрямители с тиристорным регулятором напряжения.
При разработке регулируемого источника питания без высокочастотного преобразователя разработчик сталкивается с такой проблемой, что при минимальном выходном напряжении и большом токе нагрузки на регулирующем элементе стабилизатор рассеивается большая мощность. До настоящего времени в большинстве случаев эту проблему решали так: делали несколько отводов у вторичной обмотки силового трансформатора и разбивали весь диапазон регулировки выходного напряжения на несколько поддиапазонов. Такой принцип использован во многих серийных источниках питания, например, УИП-2 и более современных. Понятно, что использование источника питания с несколькими поддиапазонами усложняется, усложняется также дистанционное управление таким источником питания, например, от ЭВМ.
Выходом мне показалось использование управляемого выпрямителя на тиристоре т. к. появляется возможность создания источника питания, управляемого одной ручкой установки выходного напряжения или одним управляющим сигналом с диапазоном регулировки выходного напряжения от нуля (или почти от нуля) до максимального значения. Такой источник питания можно будет изготовить из готовых деталей, имеющихся в продаже.
К настоящему моменту управляемые выпрямители с тиристорами описаны и весьма подробно в книгах по источникам питания, но практически в лабораторных источниках питания применяются редко. В любительских конструкциях они также редко встречаются (кроме, конечно, зарядных устройств для автомобильных аккумуляторов). Надеюсь, что настоящая работа поможет изменить это положение дел.
В принципе, описанные здесь схемы могут быть применены для стабилизации входного напряжения высокочастотного преобразователя, например, как это сделано в телевизорах “Электроника Ц432”. Приведенные здесь схемы могут также быть использованы для изготовления лабораторных источников питания или зарядных устройств.
Описание своих работ я привожу не в том порядке как я их проводил, а более или менее упорядочено. Сначала рассмотрим общие вопросы, затем “низковольтные” конструкции типа источников питания для транзисторных схем или зарядки аккумуляторов и затем “высоковольтные” выпрямители для питания схем на электронных лампах.
Работа тиристорного выпрямителя на емкостную нагрузку
В литературе описано большое количество тиристорных регуляторов мощности, работающих на переменном или пульсирующем токе с активной (например, лампы накаливания) или индуктивной (например, электродвигатель) нагрузкой. Нагрузкой же выпрямителя обычно является фильтр в котором для сглаживания пульсаций применяются конденсаторы, поэтому нагрузка выпрямителя может иметь емкостный характер.
Рассмотрим работу выпрямителя с тиристорным регулятором на резистивно-емкостную нагрузку. Схема подобного регулятора приведена на рис. 1.
Рис. 1.
Здесь для примера показан двухполупериодный выпрямитель со средней точкой, однако он может быть выполнен и по другой схеме, например, мостовой. Иногда тиристоры кроме регулирования напряжения на нагрузке Uн выполняют также функцию выпрямительных элементов (вентилей), однако такой режим допускается не для всех тиристоров (тиристоры КУ202 с некоторыми литерами допускают работу в качестве вентилей). Для ясности изложения предположим, что тиристоры используются только для регулирования напряжения на нагрузке Uн, а выпрямление производится другими приборами.
Принцип работы тиристорного регулятора напряжения поясняет рис. 2. На выходе выпрямителя (точка соединения катодов диодов на рис. 1) получаются импульсы напряжения (нижняя полуволна синусоиды “вывернута” вверх), обозначенные U
Рис. 2.
Рисунок 2 выполнен для случая, когда задержка tз превышает половину периода пульсаций. В этом случае схема работает на падающем участке волны синусоиды. Чем больше задержка момента включения тиристора, тем меньше получится выпрямленное напряжение U н на нагрузке. Пульсации напряжения на нагрузке Uн сглаживаются конденсатором фильтра Cф. Здесь и далее сделаны некоторые упрощения при рассмотрении работы схем: выходное сопротивление силового трансформатора считается равным нулю, падение напряжения на диодах выпрямителя не учитывается, не учитывается время включения тиристора. При этом получается что подзаряд емкости фильтра Cф происходит как бы мгновенно. В реальности после подачи запускающего импульса на управляющий электрод тиристора заряд конденсатора фильтра занимает некоторое время, которое, однако, обычно намного меньше периода пульсаций Тп.
Теперь представим, что задержка момента включения тиристора tз равна половине периода пульсаций (см. рис. 3). Тогда тиристор будет включаться, когда напряжение на выходе выпрямителя проходит через максимум.
Рис. 3.
В этом случае напряжение на нагрузке Uн также будет наибольшим, примерно таким же, как если бы тиристорного регулятора в схеме не было (пренебрегаем падением напряжения на открытом тиристоре).
Здесь мы и сталкиваемся с проблемой. Предположим, что мы хотим регулировать напряжение на нагрузке почти от нуля до наибольшего значения, которое можно получить от имеющегося силового трансформатора. Для этого с учетом сделанных ранее допущения потребуется подавать на тиристор запускающие импульсы ТОЧНО в момент, когда Uвыпр проходит через максимум, т. е. tз=Tп/2. С учетом того, что тиристор открывается не моментально, а подзарядка конденсатора фильтра Cф также требует некоторого времени, запускающий импульс нужно подать несколько РАНЬШЕ половины периода пульсаций, т. е. tз<Tп/2. Проблема в том, что во-первых сложно сказать насколько раньше, т. к. это зависит от таких причин, которые при расчете точно учесть сложно, например, времени включения данного экземпляра тиристора или полного (с учетом индуктивностей) выходного сопротивления силового трансформатора. Во-вторых, даже если произвести расчет и регулировку схемы абсолютно точно, время задержки включения tз, частота сети, а значит, частота и период Tп пульсаций, время включения тиристора и другие параметры со временем могут измениться. Поэтому для того чтобы получить наибольшее напряжение на нагрузке Uн возникает желание включать тиристор намного раньше половины периода пульсаций.
Предположим, что так мы и поступили, т. е. установили время задержки tз намного меньшее Тп/2. Графики, характеризующие работу схемы в этом случае приведены на рис. 4. Заметим, что если тиристор откроется раньше половины полупериода, он будет оставаться в открытом состоянии пока не закончится процесс заряда конденсатора фильтра Cф (см. первый импульс на рис. 4).
Рис. 4.
Оказывается, что при малом времени задержки tз возможно возникновение колебаний выходного напряжения регулятора. Они возникают в том случае, если в момент подачи на тиристор запускающего импульса напряжение на нагрузке Uн оказывается больше напряжения на выходе выпрямителя Uвыпр. В этом случае тиристор оказывается под обратным напряжением и не может открыться под действием запускающего импульса. Один или несколько запускающих импульсов могут быть пропущены (см. второй импульс на рис. 4). Следующее включение тиристора произойдет когда конденсатор фильтра разрядится и в момент подачи управляющего импульса тиристор будет находиться под прямым напряжением.
Вероятно, наиболее опасным является случай, когда оказывается пропущен каждый второй импульс. В этом случае через обмотку силового трансформатора будет проходить постоянный ток, под действием которого трансформатор может выйти из строя.
Для того чтобы избежать появления колебательного процесса в схеме тиристорного регулятора вероятно можно отказаться от импульсного управления тиристором, но в этом случае схема управления усложняется или становится неэкономичной. Поэтому автор разработал схему тиристорного регулятора в которой тиристор нормально запускается управляющими импульсами и колебательного процесса не возникает. Такая схема приведена на рис. 5.
Рис. 5.
Здесь тиристор нагружен на пусковое сопротивление Rп, а конденсатор фильтра Cф и нагрузка Rн подключены через пусковой диод VDп. В такой схеме запуск тиристора происходит независимо от напряжения на конденсаторе фильтра Cф. После подачи запускающего импульса на тиристор его анодный ток сначала начинает проходить через пусковое сопротивление Rп и, затем, когда напряжение на Rп превысит напряжение на нагрузке Uн, открывается пусковой диод VDп и анодный ток тиристора подзаряжает конденсатор фильтра Cф. Сопротивление Rп выбирается такой величины чтобы обеспечить устойчивый запуск тиристора при минимальном времени задержки запускающего импульса tз. Понятно, что на пусковом сопротивлении бесполезно теряется некоторая мощность. Поэтому в приведенной схеме предпочтительно использовать тиристоры с малым током удержания, тогда можно будет применить пусковое сопротивление большой величины и уменьшить потери мощности.
Схема на рис. 5 имеет тот недостаток, что ток нагрузки проходит через дополнительный диод VDп, на котором бесполезно теряется часть выпрямленного напряжения. Этот недостаток можно устранить, если подключить пусковое сопротивление Rп к отдельному выпрямителю. Схема с отдельным выпрямителем управления, от которого питается схема запуска и пусковое сопротивление Rп приведена на рис. 6. В этой схеме диоды выпрямителя управления могут быть маломощными т. к. ток нагрузки протекает только через силовой выпрямитель.
Рис. 6.
Низковольтные источники питания с тиристорным регулятором
Ниже приводится описание нескольких конструкций низковольтных выпрямителей с тиристорным регулятором. При их изготовлении я взял за основу схему тиристорного регулятора, применяемого в устройствах для заряда автомобильных аккумуляторов (см. рис. 7). Эта схема успешно применялась моим покойным товарищем А. Г. Спиридоновым.
Рис. 7.
Элементы, обведенные на схеме (рис. 7), устанавливались на небольшой печатной плате. В литературе описано несколько подобных схем, отличия между ними минимальны, в основном, типами и номиналами деталей. В основном отличия такие:
1. Применяют времязадающие конденсаторы разной емкости, т. е. вместо 0.5mF ставят 1mF, и, соответственно, переменное сопротивление другой величины. Для надежности запуска тиристора в своих схемах я применял конденсатор на 1mF.
2. Параллельно времязадающему конденсатору можно не ставить сопротивление (3kW на рис. 7). Понятно, что при этом может потребоваться переменное сопротивление не на 15kW, а другой величины. Влияние сопротивления, параллельного времязадающему конденсатору на устойчивость работы схемы я пока не выяснил.
3. В большинстве описанных в литературе схем применяются транзисторы типов КТ315 и КТ361. Порою они выходят из строя, поэтому в своих схемах я применял более мощные транзисторы типов КТ816 и КТ817.
4. К точке соединения базы pnp и коллектора npn транзисторов может быть подключен делитель из сопротивлений другой величины (10kW и 12kW на рис. 7).
5. В цепи управляющего электрода тиристора можно установить диод (см. на схемах, приведенных ниже). Этот диод устраняет влияние тиристора на схему управления.
Схема (рис. 7) приведена для примера, несколько подобных схем с описаниями можно найти в книге “Зарядные и пуско-зарядные устройства: Информационный обзор для автолюбителей / Сост. А. Г. Ходасевич, Т. И. Ходасевич -М.:НТ Пресс, 2005”. Книга состоит из трех частей, в ней собраны чуть ли не все зарядные устройства за историю человечества.
Простейшая схема выпрямителя с тиристорным регулятором напряжения приведена на рис. 8.
Рис. 8.
Рис. 9.
Достоинством данной схемы является меньшее число силовых диодов, требующих установки на радиаторы. Заметим, что диоды Д242 силового выпрямителя соединены катодами и могут быть установлены на общий радиатор. Анод тиристора соединенный с его корпусом подключен к “минусу” нагрузки.
Монтажная схема этого варианта управляемого выпрямителя приведена на рис. 10.
Рис. 10.
Для сглаживания пульсаций выходного напряжения может быть применен LC-фильтр. Схема управляемого выпрямителя с таким фильтром приведена на рис. 11.
Рис. 11.
Я применил именно LC-фильтр по следующим соображениям:
1. Он более устойчив к перегрузкам. Я разрабатывал схему для лабораторного источника питания, поэтому перегрузки его вполне возможны. Замечу, что даже если сделать какую-либо схему защиты, то у нее будет некоторое время срабатывания. За это время источник питания не должен выходить из строя.
2. Если сделать транзисторный фильтр, то на транзисторе обязательно будет падать некоторое напряжение, поэтому КПД будет низкий, а транзистору может потребоваться радиатор.
В фильтре использован серийный дроссель Д255В.
Рассмотрим возможные модификации схемы управления тиристором. Первая из них показана на рис. 12.
Рис. 12.
Обычно времязадающую цепь тиристорного регулятора делают из включенных последовательно времязадающего конденсатора и переменного сопротивления. Иногда удобно построить схему так, чтобы один из выводов переменного сопротивления был подключен к “минусу” выпрямителя. Тогда можно включить переменное сопротивление параллельно конденсатору, как сделано на рисунке 12. Когда движок находится в нижнем по схеме положении, основная часть тока, проходящего через сопротивление 1.1kW поступает во времязадающий конденсатор 1mF и быстро заряжает его. При этом тиристор запускается на “макушках” пульсаций выпрямленного напряжения или немного раньше и выходное напряжение регулятора получается наибольшим. Если движок находится в верхнем по схеме положении, то времязадающий конденсатор закорочен и напряжение на нем никогда не откроет транзисторы. При этом выходное напряжение будет равно нулю. Меняя положение движка переменного сопротивления, можно изменять силу тока, заряжающего времязадающий конденсатор и, таким образом, время задержки запускающих импульсов.
Иногда требуется производить управление тиристорным регулятором не при помощи переменного сопротивления, а от какой-нибудь другой схемы (дистанционное управление, управление от вычислительной машины). Бывает, что детали тиристорного регулятора находятся под большим напряжением и непосредственное присоединение к ним опасно. В этих случаях вместо переменного сопротивления можно использовать оптрон.
Рис. 13.
Пример включения оптрона в схему тиристорного регулятора показан на рис. 13. Здесь используется транзисторный оптрон типа 4N35. База его фототранзистора (вывод 6) соединена через сопротивление с эмиттером (вывод 4). Это сопротивление определяет коэффициент передачи оптрона, его быстродействие и устойчивость к изменениям температуры. Автор испытал регулятор с указанным на схеме сопротивлением 100kW, при этом зависимость выходного напряжения от температуры оказалась ОТРИЦАТЕЛЬНОЙ, т. е. при очень сильном нагреве оптрона (оплавилась полихлорвиниловая изоляция проводов) выходное напряжение уменьшалось. Вероятно, это связано с уменьшением отдачи светодиода при нагреве. Автор благодарит С. Балашова за советы по использованию транзисторных оптронов.
Рис. 14.
Рассмотрим также пример схемы с тиристорным регулятором на большее напряжение (см. рис. 15). Схема питается от вторичной обмотки силового трансформатора ТСА-270-1, дающей переменное напряжение 32V. Номиналы деталей, указанные на схеме, подобраны под это напряжение.
Рис. 15.
Схема на рис. 15 позволяет плавно регулировать выходное напряжение от 5V до 40V, что достаточно для большинства устройств на полупроводниковых приборах, таким образом, эту схему можно взять за основу при изготовлении лабораторного источника питания.
Недостатком этой схемы является необходимость рассеивать достаточно большую мощность на пусковом сопротивлении R7. Понятно, что чем меньше ток удержания тиристора, тем больше может быть величина и меньше мощность пускового сопротивления R7. Поэтому здесь предпочтительно использовать тиристоры с малым током удержания.
Заметим также следующее. Часто в схемах тиристорных регуляторов применяют пороговые элементы с неизменным порогом срабатывания. При макетировании схемы автор решил так поступить чтобы обеспечить подачу в управляющий электрод тиристора импульсов постоянной амплитуды. Попытка стабилизировать порог срабатывания транзисторной схемы управления привела к ухудшению стабильности ее работы. Поэтому от стабилизации напряжения на конденсаторе C1, при котором открываются транзисторы было решено отказаться; к точке соединения базы VT1 и коллектора VT2 подключен делитель R4R5, питающийся пульсирующим напряжением с выпрямителя на диодах VD1-VD4. В этом случае схема работает устойчиво и в ней не замечено паразитных колебаний.
Кроме обычных тиристоров в схеме тиристорного регулятора может быть использован оптотиристор. На рис. 16. приведена схема с оптотиристором ТО125-10.
Рис. 16.
Здесь оптотиристор просто включен вместо обычного, но т.к. его фототиристор и светодиод изолированы друг от друга, схемы его применения в тиристорных регуляторах могут быть и другими. Заметим, что благодаря малому току удержания тиристоров ТО125 пусковое сопротивление R7 требуется менее мощное, чем в схеме на рис. 15. Поскольку автор опасался повредить светодиод оптотиристора большими импульсными токами, в схему было включено сопротивление R6. Как оказалось, схема работает и без этого сопротивления, причем без него схема лучше работает при низких напряжениях на выходе.
Высоковольтные источники питания с тиристорным регулятором
При разработке высоковольтных источников питания с тиристорным регулятором за основу была взята схема управления оптотиристором, разработанная В. П. Буренковым (ПРЗ) для сварочных аппаратов. Для этой схемы разработаны и выпускаются печатные платы. Автор выражает благодарность В. П. Буренкову за образец такой платы. Схема одного из макетов регулируемого выпрямителя с использованием платы конструкции Буренкова приведена на рис. 17.
Рис. 17.
Детали, установленные на печатной плате обведены на схеме пунктиром. Как видно из рис. 16, на плате установлены гасящие сопротивления R1 и R2, выпрямительный мост VD1 и стабилитроны VD2 и VD3. Эти детали предназначены для питания от сети 220V. Чтобы испытать схему тиристорного регулятора без переделок в печатной плате, использован силовой трансформатор ТБС3-0,25У3, вторичная обмотка которого подключена таким образом, что с нее снимается переменное напряжение 200V, т. е. близкое к нормальному питающему напряжению платы. Схема управления работает аналогично описанным выше, т. е. конденсатор С1 заряжается через подстроечное сопротивление R5 и переменное сопротивление (установлено вне платы) до того момента, пока напряжение на нем не превысит напряжение на базе транзистора VT2, после чего транзисторы VT1 и VT2 открываются и происходит разряд конденсатора С1 через открывшиеся транзисторы и светодиод оптронного тиристора.
Достоинством данной схемы является возможность подстройки напряжения, при котором открываются транзисторы (при помощи R4), а также минимального сопротивления во времязадающей цепи (при помощи R5). Как показывает практика, иметь возможность такой подстройки весьма полезно, особенно если схема собирается в любительских условиях из случайных деталей. При помощи подстроечных сопротивлений R4 и R5 можно добиться регулировки напряжения в широких пределах и устойчивой работы регулятора.
С этой схемы я начинал свои ОКР по разработке тиристорного регулятора. В ней же и был обнаружен пропуск запускающих импульсов при работе тиристора на емкостную нагрузку (см. рис. 4). Желание повысить стабильность работы регулятора привело к появлению схемы рис. 18. В ней автор опробовал работу тиристора с пусковым сопротивлением (см. рис 5.
Рис. 18.
В схеме рис. 18. использована та же плата, что и в схеме рис. 17, только с нее удален диодный мост, т.к. здесь используется один общий для нагрузки и схемы управления выпрямитель. Заметим, что в схеме на рис. 17 пусковое сопротивление подобрано из нескольких параллельно включенных чтобы определить максимально возможное значение этого сопротивления, при котором схема начинает устойчиво работать. Между катодом оптотиристора и конденсатором фильтра включено проволочное сопротивление 10W. Оно нужно для ограничения бросков тока через опторитистор. Пока это сопротивление не было установлено, после поворота ручки переменного сопротивления оптотиристор пропускал в нагрузку одну или несколько целых полуволн выпрямленного напряжения.
На основании проведенных опытов была разработана схема выпрямителя с тиристорным регулятором, пригодная для практического использования. Она приведена на рис. 19.
Рис. 19.
Рис. 20.
Печатная плата SCR1M0 (рис. 20) разработана для установки на нее современных малогабаритных электролитических конденсаторов и проволочных сопротивлений в керамическом корпусе типа SQP. Автор выражает благодарность Р. Пеплову за помощь с изготовлением и испытанием этой печатной платы.
Поскольку автор разрабатывал выпрямитель с наибольшим выходным напряжением 500V, потребовалось иметь некоторый запас по выходному напряжению на случай снижения напряжения сети. Увеличить выходное напряжение оказалось возможным если пересоединить обмотки силового трансформатора, как показано на рис. 21.
Рис. 21.
Замечу также, что схема рис. 19 и плата рис. 20 разработаны с учетом возможности их дальнейшего развития. Для этого на плате SCR1M0 имеются дополнительные выводы от общего провода GND1 и GND2, от выпрямителя DC1
Разработка и налаживание выпрямителя с тиристорным регулятором SCR1M0 проводились совместно со студентом Р. Пеловым в ПГУ. C его помощью были сделаны фотографии модуля SCR1M0 и осциллограмм.
Рис. 22. Вид модуля SCR1M0 со стороны деталей
Рис. 23. Вид модуля SCR1M0 со стороны пайки
Рис. 24. Вид модуля SCR1M0 сбоку
Таблица 1. Осциллограммы при малом напряжении
№ п/п | Минимальное положение регулятора напряжения | По схеме | Примечания |
1 | На катоде VD5 | 5 В/дел 2 мс/дел | |
2 | На конденсаторе C1 | 2 В/дел 2 мс/дел | |
3 | т.соединения R2 и R3 | 2 В/дел 2 мс/дел | |
4 | На аноде тиристора | 100 В/дел 2 мс/дел | |
5 | На катоде тиристора | 50 В/дел 2 мс/де |
Таблица 2. Осциллограммы при среднем напряжении
№ п/п | Среднее положение регулятора напряжения | По схеме | Примечания |
1 | На катоде VD5 | 5 В/дел 2 мс/дел | |
2 | На конденсаторе C1 | 2 В/дел 2 мс/дел | |
3 | т.соединения R2 и R3 | 2 В/дел 2 мс/дел | |
4 | На аноде тиристора | 100 В/дел 2 мс/дел | |
5 | На катоде тиристора | 100 В/дел 2 мс/дел |
Таблица 3. Осциллограммы при максимальном напряжении
№ п/п | Максимальное положение регулятора напряжения | По схеме | Примечания |
1 | На катоде VD5 | 5 В/дел 2 мс/дел | |
2 | На конденсаторе C1 | 1 В/дел 2 мс/дел | |
3 | т.соединения R2 и R3 | 2 В/дел 2 мс/дел | |
4 | На аноде тиристора | 100 В/дел 2 мс/дел | |
5 | На катоде тиристора | 100 В/дел 2 мс/дел |
По ходу налаживания схемы была выявлена ее склонность к паразитным колебаниям “выбросам” при малом (менее 100V) выходном напряжении. Т. е. в течение некоторого времени регулятор работает нормально и дает, скажем, 30V выходного напряжения, потом дает выброс вольт в 400, потом снова работает нормально, потом снова выброс и т. д. Возникло подозрение, что это явление возникает из-за того, что тиристор не успевает закрыться если он был открыт в самом конце полупериода. Тогда он может оставаться некоторое время открытым и пропустить ВЕСЬ следующий полупериод.
Чтобы избавиться от этого недостатка схема регулятора была изменена. Было установлено два тиристора – каждый на свой полупериод. С этими изменениями схема испытывалась несколько часов и “выбросов” замечено не было.
Рис. 25. Схема SCR1M0 с доработками
shemu.ru
Автомобильное зарядное устройство на тиристоре. Испытание тиристорного регулятора мощности
Рассказать в:На сайте: RADIOсвалка я наткнулся на интересную схему зарядного устройства для автомобильного аккумулятора (рисунок 1). Регулировка выходной мощности реализована на тиристоре КУ202Н.Рисунок 1 – Принципиальная электрическая схема зарядного устройства.Схему я решил повторить навесным монтажом, для того, чтобы убедится в ее работоспособности. Смотрим на получившееся безобразие на рисунке 2.Рисунок 2 – Собранный регулятор мощности навесным монтажом.Вместо трансформатора для наглядности подключил лампу, рассчитанную на 220В мощностью 10Вт. Диодный мост VDS2 предлагается по схеме собрать из диодов КД202. Я использовал диодный мост RS405, рассчитанный на максимальное постоянное обратное напряжение 600В и максимальный прямой ток в 4А. Вместо транзистора КТ203Б использовал КТ361.Процесс регулировки отображен в видеоролике:
www.cavr.ru
Тиристорное зарядное устройство
- Подробности
- Категория: Источники питания
Для обеспечения надежной работы аккумуляторной батареи необходимо соблюдать правила его эксплуатации. Недопустим разряд кислотной аккумуляторной батареи до напряжения менее 1,8 В на элемент. Разряженная аккумуляторная батарея не более чем через 12 ч следует поставить на заряд, так как по истечении этого срока наступает сульфатация пластин, что в свою очередь приводит к уменьшению емкости аккумулятора. Заряжаются аккумуляторы током, равным 0,1 Q, где Q . емкость аккумулятора. Заряд осуществляется в том случае, когда напряжение зарядного устройства превышает напряжение аккумулятора. Предлагаю схему зарядного устройства на тиристорах (см. рисунок).
Устройство для заряда аккумуляторной батареи на тиристорах
Напряжение на выходе зарядного устройства изменяется плавно от 0 до 20 В. Ток заряда до 10 А. Между эмиттером VT2 и HL1 включить диод, а R5 уменьшить до нуля (показано штриховой линией). В этом варианте потребляемый ток может быть менее 1 А, так как скважность импульсов генератора около 10. Схема удобна еще и тем, что имеет всего два вывода, так как соединена последовательно с источником питания и HL1. Ее можно собрать в виде небольшой капсулы, подобной элементу питания, особенно если использовать детали для поверхностного монтажа. Транзисторы могут быть любые n-p-n и pn- p типа соответственно по параметрам, близкие к тем, что указаны на рисунке.
Детали используемые для изготовления зарядного устройства. Трансформатор TV мощностью 180-200 Вт. Можно использовать трансформатор ТС-180-2, у которого удаляют все обмотки, кроме первичной на 220 В, и наматывают на двух катушках две секции проводом ПЭ диаметром 2.2,5 мм на напряжение 25 В. В каждой секции укладывают 40 витков. Диоды VD1 и VD2 типа Д242А. Тиристоры VS1 и VS2 типа КУ202Н. Прибор для измерения тока и напряжения можно использовать любой постоянного тока чувствительностью 0,1.1 мА. В зависимости от чувствительности подбирают сопротивление шунта и добавочного резистора.
Схема управления тиристорами:
Диоды VD3, VD6 типа Д227
Стабилитроны VD7, VD8 типа Д814А.
Транзисторы VT1 типа КТ361
VТ2 типа КТ315.
Резисторы R1, R2 по 33 кОм 0,25 Вт; R3, R4 51 Ом 0,125 Вт; R6 2 кОм 0,125 Вт; R8 15 кОм 0,125 Вт; R9 1 кОм 0,125 Вт; R10 20 кОм 0,125 Вт; R11 30 кОм 0,125 Вт; R7 типа СП-0,5 150 кОм;
R5 510 Ом 5 Вт — нагрузочный резистор, его используют при настройке зарядного устройства аккумуляторной батареи. С1 0,1 мкФ. Для заряда аккумулятор необходимо подключить к клеммам «+» и «.» и, установив переключатель S2 в положение «U», измерить напряжение аккумулятора. Включить устройство в сеть 220 В, установить переключатель в положение «А», а ток заряда резистором R7 равным 0,1 Q.
Добавить комментарий
radiofanatic.ru
Принципиальная схема тиристорного зарядного устройства, которое автоматически прекращает заряд АКБ при достижении полного заряда. Принцип работы: сетевое напряжение 220 вольт поступая на трансформатор Т1 понижается и поступает на выпрямительные диоды Д1 Д2, далее пониженное напряжение 12 вольт двумя путями поступает через Д3R1R2 и тиристор большой мощности Д4. Через первую цепь аккумулятор заряжается током всего 0,1 ампер. Значение этого тока близко к значению саморазряда аккумулятора, поэтому даже продолжительный заряд аккумулятора не причинит ему вреда и будет всегда его поддерживать в полной готовности. Установка тока производится резистором R2. Вторая цепь заряда идет через тиристор Д4, через него может протекать ток до 6 ампер. Управление тиристором производится с помощью стабилитрона Д6 (8 вольт), тиристора Д7 и делителя напряжения на цепочке R5R6, средняя точка которого через диод Д5 соединена с управляющим электродом Д4. Уровень останова заряда большим током устанавливается с помощью делителя напряжения на R3 и переменным резистором R4. Постоянное напряжение снимается с движка R4 и управляет включением и выключением тиристора Д7 через стабилитрон Д6. Пороговое напряжение при котором АКБ заряжен полностью и ток заряда должен быть значительно снижен, устанавливается при помощи резистора R4 индивидуально для каждого аккумулятора. При сборке схемы необходим трансформатор мощностью не менее 100 ватт, вторичная обмотка которого должна быть рассчитана на напряжение 45 вольт с выводом от середины. Если в наличии нет нужного трансформатора то можно взять силовой трансформатор от старого лампового телевизора оставив первичную обмотку без изменений, и намотать вторичную обмотку на 45 вольт проводом диаметром не менее 2 мм. Количество витков должно быть таковым: количество витков для накала катода кинескопа умноженное на 7. Обмотка наматывается проводом ПЭЛ, ПЭВ-1 или ПЭВ-2. Все детали отечественные, найдется у каждого радиолюбителя. Довольно простая схемка. |
radiohome.ru