Зарядное устройство на тиристоре. Тиристорное зарядное устройство для автомобильного аккумулятора: схема, принцип работы, преимущества

Как работает тиристорное зарядное устройство для автоаккумулятора. Какие преимущества дает использование тиристора в схеме. Как собрать простое тиристорное ЗУ своими руками. На что обратить внимание при выборе компонентов.

Содержание

Принцип работы тиристорного зарядного устройства

Тиристорное зарядное устройство для автомобильного аккумулятора представляет собой регулятор мощности с фазоимпульсным управлением. Основные компоненты схемы:

  • Понижающий трансформатор
  • Диодный мост
  • Тиристор
  • Схема управления тиристором

Принцип работы заключается в следующем:

  1. Напряжение сети понижается трансформатором до 18-24 В
  2. Выпрямляется диодным мостом
  3. Тиристор открывается управляющими импульсами в определенные моменты времени
  4. Изменяя момент открытия тиристора, регулируется средний ток заряда

Такая схема позволяет плавно регулировать зарядный ток от 0 до максимального значения.

Преимущества тиристорного зарядного устройства

Использование тиристора в качестве регулирующего элемента дает ряд преимуществ:


  • Высокий КПД — тиристор работает в ключевом режиме
  • Плавная регулировка тока в широких пределах
  • Простота схемы
  • Надежность
  • Низкая стоимость

При этом зарядный ток имеет импульсную форму, что считается полезным для аккумулятора.

Схема простого тиристорного зарядного устройства

Рассмотрим схему простого тиристорного ЗУ для автомобильного аккумулятора:

«`
Схема управления
«`

Основные элементы схемы:

  • Т1 — понижающий трансформатор
  • VD1-VD4 — диодный мост
  • VS1 — тиристор
  • R1, C1, VT1, VT2 — схема управления тиристором

Регулировка тока осуществляется переменным резистором R1, который изменяет время заряда конденсатора C1. От этого зависит момент открытия тиристора VS1 в каждом полупериоде сетевого напряжения.

Выбор компонентов для тиристорного зарядного устройства

При сборке тиристорного ЗУ важно правильно выбрать основные компоненты:

Трансформатор

Необходим понижающий трансформатор со вторичным напряжением 18-24 В. Мощность выбирается исходя из максимального зарядного тока, обычно 100-200 Вт.


Диодный мост

Выбирается на ток не менее максимального зарядного и напряжение не менее 50 В. Подойдут диоды серий Д242, КД213 и аналогичные.

Тиристор

Основные параметры при выборе тиристора:

  • Максимальный рабочий ток — не менее зарядного тока
  • Максимальное обратное напряжение — не менее 100 В
  • Ток управления — 50-100 мА

Подойдут тиристоры КУ202, Т122-25 и аналогичные.

Схема управления

Транзисторы VT1, VT2 — любые маломощные, например КТ315, КТ361. Конденсатор С1 — пленочный на 0.1-1 мкФ.

Сборка и настройка тиристорного зарядного устройства

Основные этапы сборки тиристорного ЗУ:

  1. Монтаж компонентов на печатной плате или макетной доске
  2. Установка тиристора и диодного моста на радиатор
  3. Подключение трансформатора
  4. Монтаж органов управления (переменный резистор, выключатель)
  5. Установка измерительных приборов (амперметр, вольтметр)

Настройка заключается в проверке работы схемы управления и калибровке измерительных приборов.

Меры безопасности при использовании тиристорного ЗУ

При работе с тиристорным зарядным устройством следует соблюдать основные правила электробезопасности:


  • Использовать изолированные инструменты
  • Не касаться оголенных проводов и контактов
  • Работать в сухом помещении
  • Не оставлять включенное устройство без присмотра
  • При зарядке обеспечить вентиляцию помещения

Корпус устройства должен быть надежно заземлен.

Преимущества самодельного тиристорного ЗУ

Изготовление тиристорного зарядного устройства своими руками дает ряд преимуществ:

  • Экономия средств по сравнению с покупкой готового устройства
  • Возможность адаптации под конкретные нужды
  • Понимание принципа работы и возможность ремонта
  • Получение опыта в радиоэлектронике

При этом важно тщательно соблюдать технику безопасности и правила сборки электронных устройств.

Заключение

Тиристорное зарядное устройство — простое и эффективное решение для зарядки автомобильных аккумуляторов. Его основные достоинства:

  • Плавная регулировка тока
  • Высокий КПД
  • Простота конструкции
  • Надежность

Сборка такого устройства своими руками вполне по силам начинающим радиолюбителям и позволяет получить качественное зарядное устройство при минимальных затратах.



Схема и описание тиристорного зарядного устройства для автомобильных аккумуляторов

 

Схема и описание простого самодельного зарядного устройства на тиристоре для зарядки автомобильных аккумуляторов.


Устройство с электронным управлением зарядным током, выполнено на основе тиристорного фазоимпульсного регулятора мощности. Оно не содержит дефицитных деталей, при заведомо исправных элементах не требует налаживания.

Это зарядное устройство на тиристоре позволяет заряжать автомобильные аккумуляторные батареи током от 0 до 10 А, а также может служить регулируемым источником питания для мощного низковольтного паяльника, вулканизатора, переносной лампы.

Зарядный ток по форме близок к импульсному, который, как считается, способствует продлению срока службы батареи. Устройство работоспособно при температуре окружающей среды от — 35 °С до + 35°С. Схема устройства показана на рис. 1.

Нажмите на картинку для просмотра.

Зарядное устройство представляет собой тиристорный регулятор мощности с фазоимпульсным управлением, питаемый от обмотки II понижающего трансформатора Т1 через диодный мостVD1 + VD4.

Узел управления тиристором выполнен на аналоге однопереходного транзистора VT1, VT2 Время, в течение которого конденсатор С2 заряжается до переключения однопереходного транзистора, можно регулировать переменным резистором R1. При крайнем правом по схеме положении его движка зарядный ток будет максимальным, и наоборот.

Диод VD5 защищает управляющую цепь тиристора VS1 от обратного напряжения, возникающего при включении тиристора.

Тиристорное зарядное устройство в дальнейшем можно дополнить различными автоматическими узлами (отключение по окончании зарядки, поддержание нормального напряжения батареи при длительном ее хранении, сигнализации о правильной полярности подключения батареи, защита от замыканий выхода и т. д.).

К недостаткам устройства можно отнести колебания зарядного тока при нестабильном напряжении электроосветительной сети.

Как и все подобные тиристорные фазоимпульсные регуляторы, устройство создает помехи радиоприему. Для борьбы с ними следует предусмотреть сетевой LC-фильтр, аналогичный применяемому в импульсных сетевых блоках питания.

Конденсатор С2 — К73-11, емкостью от0,47 до 1 мкФ, или. К73-16, К73-17, К42У-2, МБГП.

Транзистор КТ361А заменим на КТ361Б — КТ361Ё, КТ3107Л, КТ502В, КТ502Г, КТ501Ж — KT50IK, а КТ315Л — на КТ315Б + КТ315Д КТ312Б, КТ3102Л, КТ503В + КТ503Г, П307 Вместо КД105Б подойдут диоды КД105В, КД105Г или. Д226 с любым буквенным индексом.

Переменный резистор R1 — СП-1, СПЗ-30а или СПО-1.

Амперметр РА1 — любой постоянного тока со шкалой на 10 А. Его можно изготовить самостоятельно из любого миллиамперметра, подобрав шунт по образцовому амперметру.

Предохранитель F1 — плавкий, но удобно использовать и сетевой автомат на 10 А или автомобильный биметаллический на такой же ток.

Диоды VD1 + VP4 могут быть любыми на прямой ток 10 А и обратное напряжение не менее 50 В (серии Д242, Д243, Д245, КД203, КД210, КД213).

Диоды выпрямителя и тиристор устанавливают на теплоотводы, каждый полезной площадью около 100 см2. Для улучшения теплового контакта приборов с теплоотводами желательно использовать теплопроводные пасты.

Вместо тиристора. КУ202В подойдут КУ202Г — КУ202Е; проверено на практике, что устройство нормально работает и с более мощными тиристорами Т-160, Т-250.

Следует заметить, что в качестве теплоотвода тиристора допустимо использовать непосредственно металлическую стенку кожуха. Тогда, правда, на корпусе будет минусовой вывод устройства, что в общем-то нежелательно из-за опасности случайных замыканий выходного плюсового провода на корпус. Если крепить тиристор через слюдяную прокладку, опасности замыкания не будет, но ухудшится отдача тепла от него.

В устройстве может быть использован готовый сетевой понижающий трансформатор необходимой мощности с напряжением вторичной обмотки от 18 до 22 В.

Если у трансформатора напряжение на вторичной обмотке более 18 В, резистор R5 следует заменить другим, большего сопротивления (например, при 24…26 В сопротивление резистора следует увеличить до 200 Ом).

В случае, когда вторичная обмотка трансформатора имеет отвод от середины, или есть две одинаковые обмотки и напряжение каждой находится в указанных пределах, то выпрямитель лучше выполнить по стандартной двуполупериодной схеме на двух диодах.

При напряжении вторичной обмотки 28…36 В можно вообще отказаться от выпрямителя — его роль будет одновременно играть тиристор VS1 (выпрямление — однополупериодное). Для такого варианта блока питания необходимо между резистором R5 и плюсовым проводом включить разделительный диод КД105Б или Д226 с любым буквенным индексом (катодом к резистору R5). Выбор тиристора в такой схеме будет ограничен — подойдут только те, которые допускают работу под обратным напряжением (например, КУ202Е).

Для описанного устройства подойдет унифицированный трансформатор ТН-61. Три его вторичных обмотки нужно соединить согласно последовательно, при этом они способны отдать ток до 8 А.

Все детали устройства, кроме трансформатора Т1, диодов VD1 — VD4 выпрямителя, переменного резистора R1, предохранителя FU1 и тиристора VS1, смонтированы на печатной плате из фольгированного стеклотекстолита толщиной 1,5 мм.

Рекомендуем посмотреть:

Тиристорное зарядное устройство

Схема автоматического ЗУ на тиристорах и микросхеме


Как сделать доступное зарядное устройство на тиристоре

Пришла идея собрать еще одно зарядное устройство. У меня уже есть несколько зарядных для авто аккумулятора. Благо задумка проста, детали все давно есть. Все собирается на отечественных деталях. Ничего редкого, все доступное.

Для самоделки нам понадобится

  • трансформатор;
  • диодный мост;
  • тиристор;
  • амперметр;
  • корпус;
  • выключатель;
  • крокодилы;
  • инструменты.

О компонентах

Трансформатор у меня остался от старого проекта. Стоял трансформатор в корпусе. Корпус добротный, с ручками. На корпусе уже установлен сетевой разъем и предохранитель. Напряжение на вторичке трансформатора 17 вольт.

Обмотка диаметром около 2 мм по меди. У меня первичная цепь практически собрана. Установлю выключатель и готово.

 

Диодный мост сборной. Можно установить сборку из магазина, но у меня была из диодов. Диоды на 10 ампер, советские Д242. Были прикручены на радиаторе. Диоды установлены через слюдяные шайбы.

Амперметр на 20 ампер. Показывает в обе полярности, да просто такой был рабочий. На нем уже установлен шунт.

 

Тиристор с радиатором от материнки компьютера. Ку 202. Максимальный ток 10 ампер. Он не сильно греется.

 


Схема зарядного устройства

По сути, это импульсный регулятор. Тиристор в данной схеме не греется. Я предохранитель не ставил.

Сборка зарядного устройства

 

По методике ЛУТ изготовил плату.

 

Сверлю отверстия в пятачках. Деталей минимум, все доступно и просто.

 

Устанавливаю и распаиваю компоненты.

 

Нужно просверлить крепежные отверстия. Плату сделал довольно компактной. Просверлив отверстия, столкнулся с проблемой крепления. Сделал скобку с вырезом.

 

Крепить диодную сборку буду непосредственно к корпусу. Диоды изолированы. Сверлю четыре отверстия.

 

Прикручиваю радиатор с диодами.

 

Распаиваю диодный мост.

 

Тиристор на радиаторе я закрепил на изоляции. Пластинка из пластика, в ней нарезал резьбу.

 

Для передней панели, я взял отрезок композитного пластика. На нем пока защитная пленка. Делаю разметку под все компоненты, прямо 

по защитной пленке. Вырезаю прорези, и сверлю отверстия.

 

Собираю остатки схемы и тестирую. Регулируется все плавно.

 

После проверки все ставлю на место. Фиксирую по возможности провода.

 

Зарядка получилась хорошая и надежная. Данная схема очень популярна.

 

Видео по сборке прилагаю

]

Простое, автомобильное ЗУ на тиристоре с регулировкой тока 0…10 А

Сегодня нет недостатка в продаже зарядных устройств для свинцово-кислотных автомобильных аккумуляторов. Рынок наполнен различными моделями зарядных устройств от простых до сложных, автоматических и с ручным управлением.

Можно даже заказать готовые платы или DIY-наборы для самостоятельной сборки на Aliexpress, но результат может быть очень сомнителен.

Самостоятельное изготовление зарядного устройства, при наличии хотя бы базовых знаний по радиоэлектронике и основам пайки, не составляет особого труда. Большинство схем зарядных устройств просты в понимании и легки в настройке. Здесь вопрос можно поставить несколько иначе: целесообразность самостоятельного изготовления. Если говорить о схемах, где в качестве начального понижения напряжения питания используется силовой трансформатор, то именно от его наличия и зависит целесообразность сборки зарядного устройства.

Потому, как цены на трансформаторы промышленного изготовления мощностью от 100 Вт, довольно высоки и специально покупать его, дело сомнительное. А вот если есть в наличии такой трансформатор или хотя бы железо подходящей мощности с первичной обмоткой, то здесь уже вопросов не возникает.

Конструкция зарядного устройства, которую я хочу предложить Вам для повторения, как раз основана на понижении сетевого напряжения с помощью силового трансформатора, напряжение на вторичной обмотке которого лежит в диапазоне от 18 до 22 В.

Естественно трансформатор должен иметь соответствующую мощность, чтобы обеспечить конечный зарядный ток для аккумуляторной батареи. Данная схема рассчитана на максимальный зарядный ток в 10 А. поэтому и трансформатор должен обеспечивать выходной ток вторичной обмотки от 10 А. Схема позволяет регулировать зарядный ток практически от нулевого значения до максимального (здесь от 0 до 10 А). Регулирующий элемент — мощный тиристор.

Форма зарядного тока для этой схемы — импульсы сетевого выпрямленного напряжения со вторичной обмотки трансформатора Т1. Регулировка зарядного тока осуществляется путём изменения ширины этих импульсов. Существует мнение, что именно такой режим заряда аккумулятора позволяет продлить его срок службы, препятствуя образованию сульфата свинца на его пластинах.

Введите электронную почту и получайте письма с новыми поделками.

Глядя на схему, первое на что обращаешь внимание, это отсутствие сглаживающего конденсатора после диодного моста VD1. На самом деле, в этой схеме это принципиально важно. Сама схема зарядного устройства представляет собой не что иное, как регулятор мощности с фазоимпульсным управлением. VT1 и VT2 включены по схеме одно переходного транзистора. Время, за которое они переключаются определяется зарядом конденсатора С1. А время за которое конденсатор С1 зарядится, зависит от сопротивления резисторов, через которые он подключен к напряжению питания — в схеме это R1R2. Резистор R1 у нас переменный, значит этим временем можно управлять. Путём заряда-разряда, переключения VT1VT2 и формируется управляющий импульс на тиристоре VS1.

Длительность (ширина) управляющего импульса определяет время, в течении которого тиристор VS1 находится в активном режиме до перехода напряжения к нулю и на аккумуляторную батарею поступает зарядный ток. Средний зарядный ток на АКБ равен среднему времени длительности этих импульсов. Для наглядности ниже представлены три осциллограммы, соответствующие трём положениям движка резистора R1 — двум крайним и среднему. На осциллограммах представлены графики напряжений с управляющего электрода VS1 (управляющий импульс) и сетевого выпрямленного напряжения.

Если бы после диодного моста VD1 стояла сглаживающая ёмкость, то первый же управляющий импульс открыл бы тиристор, а т.к. напряжение всегда отличается от нуля, закрыть бы его было бы нечем.

Печатная плата (можно скачать) выполнена из фольгированного стеклотекстолита в одностороннем варианте.

Для контроля процесса заряда АКБ необходима стрелочная измерительная головка с соответствующим шунтом на ток 10-15 А. Цифровые индикаторы могут давать в таком режиме измерения погрешность. Тиристор VS1 вместе с платой крепят на радиаторе площадью 400 см2. При правильном монтаже и исправных деталях схема в наладке не нуждается.

Тиристорное зарядное устройство для автомобильного аккумулятора: характеристика и схема

Необходимость заряда машинного аккумулятора появляется у наших соотечественников регулярно. Кто-то делает это по причине разряда батареи, кто-то — в рамках технического обслуживания. В любом случае, наличие зарядного устройства (ЗУ) во многом облегчает эту задачу. Подробнее о том, что представляет собой тиристорное зарядное устройство для автомобильного аккумулятора и как изготовить такой девайс по схеме — читайте ниже.

Содержание

[ Раскрыть]

[ Скрыть]

Описание тиристорного ЗУ

Тиристорное зарядное устройство являет собой девайс с электронным управлением зарядным током. Такие девайсы производятся на основе тиристорного регулятора мощности, который является фазоимпульсным. В устройстве ЗУ такого типа нет дефицитных компонентов, а если все его детали будут целыми, то его даже не придется настраивать после изготовления.

С помощью такого ЗУ можно заряжать аккумулятор транспортного средства током от нуля до десяти ампер. Помимо этого, оно может применяться в качестве регулируемого источника питания для тех или иных приборов, к примеру, паяльника, переносной лампы и т.д. По своей форме зарядный ток очень похож на импульсный, а последний, в свою очередь, позволяет продлить ресурс эксплуатации аккумулятора. Использование тиристорного ЗУ допускается в температурном диапазоне от -35 до +35 градусов.

Схема

Если вы решите соорудить тиристорное ЗУ своими руками, то можно применять множество различных схем. Рассмотрим описание на примере схемы 1. Тиристорное ЗУ в данном случае питается от обмотки 2 трансформаторного узла через диодный мост VDI+VD4. Элемент управления выполнен в виде аналога однопереходного транзистора. В данном случае, при помощи переменного резисторного элемента можно регулировать время, на протяжении которого будет осуществляться заряд конденсаторного компонента С2. Если положение этой детали будет крайним правым, то показатель зарядного тока будет наибольшим, и наоборот. Благодаря диоду VD5 осуществляется защита управляющей цепи тиристора VS1.

Плюсы и минусы

Основное преимущество такого прибора — это качественная зарядка током, которая позволит не разрушить, а увеличить ресурс эксплуатации аккумулятора в целом.

Если нужно, ЗУ может быть дополнено всевозможными автоматическими компонентами, предназначенными для таких опций:

  • прибор сможет отключиться в автоматическом режиме, когда зарядка будет завершена;
  • поддержание оптимального напряжения аккумулятора в случае его длительного хранения без эксплуатации;
  • еще одна функция, которую можно расценивать как преимущество — тиристорное ЗУ может сообщать автовладельцу о том, правильно ли он подключил полярность АКБ, а это очень важно при зарядке;
  • также в случае добавления дополнительных компонентов может быть реализовано еще одно преимущество — защита узла от замыканий выхода (автор видео — канал Blaze Electronics).

Что касается непосредственно недостатков, то к ним можно отнести колебания зарядного тока, если напряжение в бытовой сети будет нестабильно. Кроме того, как и другие тиристорные регуляторы, такое ЗУ может создавать определенные помехи для передачи сигнала. Чтобы не допустить этого, при изготовлении ЗУ необходимо дополнительно установить LC-фильтр. Такие фильтрующие элементы, например, используются в сетевых блоках питания.

Как сделать ЗУ самостоятельно?

Если говорить о производстве ЗУ своими руками, то этот процесс рассмотрим на примере схемы 2. В данном случае тиристорное управления осуществляется посредством сдвига фаз. Весь процесс мы описывать не будем, поскольку он индивидуален в каждом случае, в зависимости от добавления дополнительных компонентов в конструкцию. Ниже рассмотрим основные нюансы, которые следует учесть.

В нашем случае устройство собирается на обычном оргалите, в том числе и конденсатор:

  1. Диодные элементы, отмеченные на схеме как VD1 и VD 2, а также тиристоры VS1 и VS2, следует установить на теплоотводе, монтаж последних допускается на общем теплоотводе.
  2. Элементы сопротивления R2, а также R5, следует использовать не менее, чем по 2 ватта.
  3. Что касается трансформатора, то его можно приобрести в магазине либо взять из паяльной станции (качественные трансформаторы можно найти в старых советских паяльниках). Можно перемотать вторичный провод на новый сечением около 1.8 мм на 14 вольт. В принципе, можно использовать и более тонкие провода, поскольку этой мощности будет достаточно.
  4. Когда все элементы будут у вас на руках, всю конструкцию можно установить в один корпус. Например, для этого можно взять старый осциллограф. В этом случае мы не будем давать какие-либо рекомендации, поскольку корпус — это личное дело каждого.
  5. После того, как зарядный прибор будет готов, необходимо проверить его работоспособность. Если у вас есть сомнения касательно качества сборки, то мы бы порекомендовали произвести диагностику прибора на более старой АКБ, которую в случае чего не жалко будет выбросить. Но если вы все сделали правильно, в соответствии со схемой, то проблем в плане эксплуатации возникнуть не должно. Учтите и то, что изготовленное ЗУ не нуждается в настройке, оно изначально должно работать правильно.
Простое тиристорное ЗУ в корпусе осциллографа

Видео «Простое тиристорное ЗУ своими руками»

Как сделать простое тиристорное ЗУ своими руками — смотрите на видео ниже (автор ролика — канал Blaze Electronics).

 Загрузка …

ЗАРЯДНОЕ УСТРОЙСТВО ДЛЯ АВТОМОБИЛЬНОГО АККУМУЛЯТОРА

ЗАРЯДНОЕ УСТРОЙСТВО ДЛЯ АВТОМОБИЛЬНОГО АККУМУЛЯТОРА

В интернете можно встретить много всяких схем зарядных устройств (по ссылке смотрите полный сборник). Какие-то лучше, какие-то хуже по своим параметрам. Спорить же о недостатках и достоинствах этих схем мы будем только после того, как лично соберём и испытаем. Ещё раз повторимся: голое теоретизирование не приветствуется! Только собрав и проверив в работе какое — либо устройство, мы имеем право осуждать и обсуждать его. Итак, на ваш суд уважаемый посетитель сайта «ТЕХНИК», предъявляем описание и схему очередного, но проверенного и достаточно эффективного, зарядно — восстановительного устройства для автомобильных аккумуляторов.

Схема его заимствована в гораздо упрощённом варианте от промышленного зарядного устройства для автомобильных аккумуляторов на основе тиристора. Принцип действия его похож на зарядно — восстановительное устройство из этой статьи.

Как видите всё довольно стандартно: трансформатор, выпрямитель, генератор импульсов с регулируемой скважностью и ключ на мощном тиристоре. Несколько упростив эту конструкцию, получаем более простую схему зарядного устройства для автомобильных аккумуляторов.

 

 

Здесь мы видим то-же самое: трансформатор, выпрямитель, генератор импульсов и ключ на тиристоре. Отличие лишь в том, что отсутствует узел контроля заряда. Да это и не обязательно. Опыт показывает, что для заряда автомобильных аккумуляторов достаточно выдержать определённое время заряда и прикинуть в конце напряжение на аккумуляторе вольтметром. Всё, и не надо ничего усложнять. Тиристор КУ202, установленный в схему, несколько слабоват, и есть вероятность его выхода из строя — пробой импульсами большого тока. Но проработав больше года схема по прежнему остаётся исправной. Вольтметр и амперметр обязательно нужны для лучшей информативности процесса заряда аккумулятора. Тиристор КУ202 и выпрямительные диоды обязательно крепим на алюминиевый радиатор. Площадь подобрать такую, чтоб ничего не грелось. Трансформатор Т1 — габаритной мощностью 100 — 150 Вт. Можно взять ТС180 от ламповых телевизоров и домотать вторичку до нужного напряжения. Провод для шнуров и обмоток берём в зависимости от тока по таблице:

Готовое зарядно — восстановительного устройства для автомобильных аккумуляторов помещаем в подходящий или самодельный, из пластика, изоляционный корпус.

Схему ещё одного достойного автомобильного зарядного устройства смотрите здесь , а вопросы по зарядному задаём на ФОРУМЕ

     Материал предоставил ZU77

Зарядные устройства для автомобильных аккумуляторов. Электронные схемы Кравцова Виталия. Авторская страница изобретателя

 

ЗАРЯДНОЕ  УСТРОЙСТВО  НА ТИРИСТОРАХ  С  ПЛАВНОЙ  РЕГУЛИРОВКОЙ  ВЫХОДНОГО  ТОКА

 И  ОГРАНИЧЕНИЕМ  НАПРЯЖЕНИЯ  ЗАРЯДКИ

 

        Еще  одна конструкция зарядного устройства с использованием микросхемы TL494 представлена ниже.  От предыдущей схемы устройство отличается  отсутствием силового диодного моста и транзисторного оптрона, а также силовым трансформатором  с двумя вторичными обмотками.  Технические характеристики обеих схем  идентичны  и выбор варианта определяется только доступностью элементной базы и личным вкусом. 

        Предлагаемое устройство  также имеет стабильную плавную регулировку  действующего значения  выходного тока в пределах 0,1 … 6А, что позволяет  заряжать любые аккумуляторы, а не только автомобильные. Из-за импульсного  характера тока зарядки  желательно использовать силовой трансформатор с мягкой  нагрузочной характеристикой,  без значительного запаса по мощности.  При зарядке  маломощных аккумуляторов  также желательно последовательно в цепь  включить  балластный резистор сопротивлением несколько Ом   или дроссель, т.к. пиковое   значение зарядного тока может быть достаточно большим из-за особенностей работы тиристорных   регуляторов.   Тиристоры  VS1 , VS2   через изолирующие прокладки устанавливаются на радиатор площадью не менее 100 см2   или  металлическое основание корпуса зарядного устройства .  Настройка прибора, как и в предыдущей схеме ,  сводится к  подбору резистора R19  под конкретный шунт R18, а затем  подбираются  резисторы  R20 и R22 для  установки правильных показаний  измерительного прибора.  В схеме  можно использовать любые доступные тиристоры  с  рабочим током не менее 5А.  Транзистор VT1  должен выдерживать рабочее напряжение не менее 50В   и  пропускать ток  не менее 1А,  например типа  КТ814В,Г ; КТ816В,Г и другие.  Транзисторы VT2, VT3  — любые  маломощные n-p-n транзисторы, например КТ315Г, КТ3102Б и т.д.  Стабилитроны VD1, VD9 —  любые доступные на напряжение стабилизации  10 … 15В.  Диоды VD2 … VD6, VD9 — любые импульсные маломощные, например КД521, КД522, КД509 и т.д.

Остальные схемы смотри далее:

1.  Зарядные устройства для автомобильных аккумуляторов ( главная страница раздела зарядных устройств для автомобилей)

2.  Зарядное устройство с автоматическим отключением от сети

3. Зарядное устройство с ключевым стабилизатором тока

4.  Зарядное устройство с микросхемой TLTL494

5.  Зарядное устройство с микросхемой TL494 и нормализатором напряжения шунта

6. Зарядное устройство с цифровой индикацией тока и напряжения.

7.  Зарядное устройство с цифровой индикацией и повышенным выходным током до 20А

8.  Зарядное устройство на тиристоре с улучшенными характеристиками и с использованием микросхемы TL494

9.  Зарядное устройство на двух тиристорах и с использованием микросхемы TL494

10.  Зарядное устройство для кислотно-свинцовых необслуживаемых аккумуляторов ёмкостью 4 … 17А/час

11.  Лабораторный блок питания 1,5 -30В, 0-5А + зарядное устройство на MOSFET транзисторе

12.  Лабораторный блок питания + зарядное устройство с усилителем напряжения шунта

13.  Лабораторный блок питания + зарядное устройство с узлом аварийной защиты

14.&.  Зарядное устройство с периодическим контролем ЭДС аккумулятора ( главная страница раздела зарядных устройств)

Зарядное устройство на симисторе — Морской флот

Зарядные устройства повышенной мощности

Простейшее зарядное устройство для автомобильных, тракторных и мотоциклетных аккумуляторных батарей обычно состоит из понижающего трансформатора и подключенного к его вторичной обмотке выпрямителя. Последовательно с батареей включают регулятор тока — мощный проволочный реостат, транзисторный или тиристорный стабилизатор тока. На всех этих элементах выделяется значительная тепловая мощность, что снижает КПД зарядного устройства и увеличивает вероятность возникновения пожара.
В основу работы устройства [16.1], предназначенного для восстановления 100% работоспособности засульфатированных аккумуляторных батарей, положена идея, защищенная а. с. 372599 СССР, см. также [16.2]. Для восстановления батарей предложено заряжать их асимметричным током при соотношении величин прямого и обратного тока 10:1 и времени протекания тока в прямом и обратном направлении 1:2 в течение 1.. .2 суток.
Входное напряжение должно вдвое превышать напряжение заряжаемого аккумулятора.
В схеме (рис. 16.1) использован однополупериодный выпрямитель, который работает на встречную ЭДС и обеспечивает в зарядной цепи пульсирующий ток с соотношением ток/пауза примерно 1:2, постоянная составляющая которого по амперметру РА1 устанавливается равной рекомендуемому для аккумулятора зарядному току. Наличие разрядного резистора (лампа накаливания) обеспечивает обратный ток, в 10 раз меньший зарядного.
Об эффективности заряда можно судить по напряжению на аккумуляторе: у засульфатированного аккумулятора из 6-ти банок конечное напряжение при заряде составит менее 15 В (при температуре электролита около 15°С), а у исправного — 15,8. 16,2 Б.
Стоит отметить, что автор устройства [16.1] для его питания использовал ток не совсем синусоидальной формы, поскольку понижающий трансформатор работал с вынужденным подмагничиванием.


Рис. 16.1. Схема выпрямителя для восстановления работоспособности аккумуляторных батарей


Рис. 16.2. Схема зарядного устройства для стартерных аккумуляторных батарей

Зарядное устройство Н. Таланова и В. Фомина (рис. 16.2) имеет широкие пределы регулирования зарядного тока — практически от нуля до 10 А — и может быть использовано для заряда аккумуляторов, рассчитанных на напряжение 12 В [16.3].
В устройстве использован симисторный регулятор В. Фомина с дополнительно введенными маломощным диодным мостом VD1 — VD4 и резисторами R3 и R4. После подключения устройства к сети при плюсовом ее полупериоде (плюс на верхнем по схеме проводе) начинает заряжаться конденсатор С2 через резистор R3, диод VD1 и последовательно соединенные резисторы R1 и R2. При минусовом полупериоде сети этот конденсатор заряжается через те же резисторы R2 и R1, диод VD2 и резистор R4. В обоих случаях конденсатор заряжается до одного и того же напряжения, меняется только его полярность.
Как только напряжение на конденсаторе достигнет порога зажигания неоновой лампы HL1, она зажигается, и конденсатор быстро разряжается через лампу и управляющий электрод симистора VS1. При этом симистор открывается. В конце полупериода симистор закрывается. Описанный процесс повторяется в каждом полупериоде напряжения сети.
Общеизвестно, например из [16.1], что управление тиристором посредством короткого импульса имеет тот недостаток, что при индуктивной или высокоомной активной нагрузке анодный ток прибора может не успеть достигнуть значения тока удержания за время действия управляющего импульса. Одной из мер по устранению этого недостатка является включение параллельно нагрузке резистора.
В описываемом зарядном устройстве после включения симистора VS1 его основной ток протекает не только через первичную обмотку трансформатора Т1, но и через один из резисторов — R3 или R4, которые в зависимости от полярности сетевого напряжения поочередно подключаются параллельно первичной обмотке трансформатора диодами VD4 и VD3 соответственно.
Этой же цели служит и мощный резистор R6, являющийся нагрузкой выпрямителя VD5 и VD6. Резистор R6, кроме того, формирует импульсы разрядного тока, которые, как утверждается в [16.4], продлевают срок службы батареи.
Трансформатор Т1 можно изготовить на базе лабораторного трансформатора ЛАТР-2М, изолировав его обмотку (она будет первичной) тремя слоями лакоткани и намотав вторичную обмотку, состоящую из 80 витков провода сечением не менее 3 мм2, с отводом от середины.
Конденсаторы С1 и С2 — МБМ или другие на напряжение не менее 400 и 160 б соответственно. Неоновая лампа HL1 — ИН-3, ИН-ЗА с одинаковыми по конструкции и размерам электродами для обеспечения симметричности импульсов тока через первичную обмотку трансформатора.
Диоды КД202А заменимы на Д242, Д242А или другие со средним прямым током не менее 5 А. Диод размещают на дюралюминиевой теплоотводящей пластине с площадью поверхности не менее 120 см2. Симистор — на теплоотводящей пластине примерно вдвое меньшей площади. Резистор R6 типа ПЭВ-10; его можно заменить пятью параллельно соединенными резисторами МЛТ-2 сопротивлением 110 Ом. Вместо резистора R6 можно установить лампу накаливания на напряжение 12 В мощностью 10 Вт. Она индицировала бы подключение зарядного устройства к аккумуляторной батарее и, одновременно, освещала бы рабочее место.
Цепи зарядного тока необходимо выполнять проводом марки МГШВ сечением 2.5. 3 мм2.
При налаживании устройства сначала устанавливают требуемый предел зарядного тока (но не более 10 А) резистором R2. Для этого к выходу устройства через амперметр на 10 А подключают батарею аккумуляторов, строго соблюдая полярность. Движок резистора R1 переводят в крайнее верхнее по схеме положение, а резистора R2 — в крайнее нижнее, и включают устройство в сеть. Необходимое значение максимального зарядного тока устанавливают перемещением движка резистора R2.
В процессе заряда ток через батарею изменяется, уменьшаясь примерно на 20%. Поэтому перед процессом заряда устанавливают начальный ток батареи несколько большим номинального значения (примерно на 10%). Окончание заряда определяют по плотности электролита или вольтметром — напряжение отключенной батареи должно быть в пределах 13,8. 14,2 В.
Для заряда свинцово-кислотных аккумуляторных батарей емкостью 9. 14 А-ч, а также для проведения циклов «заряд-разряд», необходимых для восстановления умеренно засульфатированных аккумуляторов и профилактики исправных, разработано специальное устройство [16.5].
Основой устройства является стабилизатор тока на составном транзисторе (VT1, VT2) с резистором R1 в эмиттерной цепи (рис. 16.3). В базовой цепи включен полевой транзистор VT3, который задает ВАХ стабилизатора тока. Потенциометром R5 устанавливают зарядный ток. Германиевые диоды VD2, VD3 служат для его термостабилизации. Подробно стабилизатор тока описан в статье [16.6].


Рис. 16.3. Схема устройства для заряда свинцово-кислотных аккумуляторных батарей емкостью 9. 14 А-ч

Для восстановления батареи необходимо заряжать ее импульсами тока; в промежутках между импульсами она разряжается через специальный резистор, подключаемый параллельно батарее GB1. Разрядный ток при этом меньше зарядного в 10 раз, а по длительности в 2 раза больше [16.7]. Импульсы зарядного тока формируются схемой сравнения напряжения VT4, VD5 и тиристором VS1. Стабилитрон VD4 ограничивает напряжение до 18 6 (т.е. до половины амплитудного) после выпрямительного диода VD1. При достижении на аккумуляторной батарее ЭДС около 14 В стабилитрон VD5 закрывается, вызывая запирание транзистора VT4 и тиристора VS1. Так осуществляется автоматическое прекращение процесса заряда, но при условии, что к аккумуляторной батарее не был подключен разрядный резистор. Измерительный прибор РА1 регистрирует средний зарядный ток, который в 3 раза меньше истинного зарядного. При подключении разрядного резистора ток следует увеличить на 10%.
Питание устройства осуществляется от трансформатора мощностью 50 Вт. Резистор R1 изготовлен из отрезка манганинового провода диаметром 0,51 мм или из другого материала с высоким удельным сопротивлением. Переменный резистор R5 — проволочный. Измерительный прибор РА1 со шкалой на 1 А.
Транзисторы VT1, VT2 и тиристор VS1 установлены на алюминиевой пластине толщиной 3 мм и размерами 80×100 мм, выполняющей роль теплоотвода. Диоды VD2, VD3 должны иметь тепловой контакт с корпусами транзисторов VT1, VT2.
Импульс зарядного тока, его длительность и паузу контролируют осциллографом на резисторе R1.
Принципиальная схема бестрансформаторного двухполупериодного выпрямителя по мостовой схеме для заряда аккумуляторных батарей показана на рис. 16.4 [16.8].


Рис. 16.4. Схема выпрямителя для заряда аккумуляторных батарей
Емкость С гасящих конденсаторов может быть определена как: 3250XI3/UC (мкФ), где I3 — зарядный ток, A, Uc — напряжение сети, В.
Так, для получения зарядного тока 2 А при напряжении сети 220 6 емкость батареи конденсаторов составит 3250*2/220=32 мкФ. Поскольку сейчас повсеместно используется сеть с напряжением 220 б, расчетное выражение упрощается: С (мкФ)=14,8Х13 (А).
Стоит напомнить, что для бестрансформаторных выпрямителей использовать электролитические конденсаторы нельзя, так как при прохождении переменного тока через полярные конденсаторы происходит разложение электролита, сопровождаемое обильным газовыделением, что вызывает взрыв конденсатора.
В таких выпрямителях обычно используют бумажные конденсаторы типа КБГ, МБГП, МБГЧ, МБГО и т.д.
Выпрямитель по схеме на рис. 16.5 [16.8] имеет емкостный делитель, образованный конденсаторами С1 — С5, включение и
выключение которых производится соответствующими тумблерами. Этим изменяется величина выпрямленного тока. Для предохранения диодов выпрямителя от пробоя при включении и выключении прибора и улучшения его выходной характеристики в схеме имеется дроссель L1. Неоновая лампа и резистивные цепи на входе выпрямителя служит для индикации включения, а также для разряда конденсаторов после выключения выпрямителя. Выходная мощность устройства может достигать 500 Вт. Диоды выпрямителя выбирают в зависимости от тока нагрузки.


Рис. 16.5. Схема выпрямителя для заряда аккумуляторов

В случае, когда аккумулятор длительное время хранится без дела, он в результате естественного саморазряда и сульфатации пластин приходит в негодность.
Для того чтобы длительное хранение не приводило к порче аккумуляторной батареи, ее нужно постоянно поддерживать в заряженном состоянии [16.9]. Заводы изготовители рекомендуют заряжать аккумуляторы током, равным 0,1 от номинальной емкости (т.е. для 6СТ-55 ток заряда будет 5,5 А), но это годится только для быстрого заряда «посаженной» батареи. Как показывает практика, для подзарядки аккумулятора в процессе длительного хранения требуется небольшой ток, около 0,1 . 0,3 А (для 6СТ-55). Если хранящийся аккумулятор периодически, примерно раз в месяц, ставить на такую подзарядку на 2. 3 дня, то можно быть уверенным в том, что он в любой момент будет готов к эксплуатации даже через несколько лет такого хранения.
На рис. 16.6 показана схема «подзаряжающего» устройства — бестрансформаторного источника питания, выдающего постоянное напряжение 14,4 В при токе до 0,3 А [16.9]. Источник построен по схеме параметрического стабилизатора с емкостным балластным сопротивлением. Напряжение от сети поступает на мостовой выпрямитель VD1 — VD4 через конденсатор С1. На выходе выпрямителя включен стабилитрон VD5 на 14,4 В. Конденсатор С1 ограничивает ток до величины не более 0,3 А. Конденсатор С2 сглаживает пульсации выпрямленного напряжения. Аккумуляторная батарея подключается параллельно стабилитрону VD5.

Рис. 16.6. Схема устройства для подзарядки аккумуляторных батарей

При саморазряде батареи до напряжения ниже 14,4 В начинается ее «мягкий» заряд малым током. Величина этого тока находится в обратной зависимости от напряжения на аккумуляторе, но в любом случае даже при коротком замыкании не превышает 0,3 А. При заряде батареи до напряжения 14,4 В процесс прекращается.
При эксплуатации устройства нужно соблюдать правила безопасности при работе с электроустановками.
Простое зарядное устройство для заряда автомобильных или тракторных аккумуляторов (рис. 16.7) [16.10] выгодно отличается повышенной безопасностью в эксплуатации по сравнению с бестрансформаторными аналогами. Однако его трансформатор
довольно сложен: для регулировки зарядного тока он имеет множество отводов.
Регулировка тока заряда производится галетным переключателем S1 за счет изменения числа витков первичной обмотки. Выпрямитель обеспечивает ток заряда 10. 15 А.

Рис. 16.7. Схема устройства для заряда автомобильных или тракторных аккумуляторов током 10. 15 А

Трансформатор Т1 — любой с габаритной мощностью не менее 400 Вт.
Первичная обмотка содержит 369+50+50+50+50 витков провода диаметром 0,7 мм. Вторичная обмотка содержит 38 витков провода диаметром 3 мм. Диоды выпрямительного моста VD1 — VD4 — любые с допустимым прямым током не менее 10 А, они установлены на радиатор площадью примерно 100 см2. В цепь нагрузки включен амперметр РА1 с пределом измерения 20 А.
Соблюдение режима эксплуатации и, в частности, режима заряда аккумуляторов гарантирует их безотказную работу. Заряд аккумуляторов необходимо производить током, который определяется по формулам [16.11]:
I=Q/10 — для кислотных аккумуляторов, l=Q/4 — для щелочных аккумуляторов,
где: Q — паспортная емкость аккумулятора, А-ч, — средний зарядный ток, А.
Кислотные аккумуляторы особенно чувствительны к отклонению параметров заряда от номинальных. Установлено, что заряд чрезмерно большим током приводит к деформации пластин и даже к их разрушению. Зарядный ток, рекомендуемый в инструкции по эксплуатации аккумуляторной батареи, обеспечивает
оптимальное протекание электрохимических процессов в аккумуляторе и нормальную его работу в течение длительного времени.
Степень заряженности аккумулятора можно контролировать по плотности электролита и напряжению (для кислотных аккумуляторов) или только по напряжению (для щелочных аккумуляторов). Окончание процесса заряда кислотного аккумулятора характеризуется установлением напряжения на одном элементе батареи, равного 2,5. 2,6 В.
Кислотные аккумуляторы чувствительны к недозарядам и перезарядам, поэтому следует своевременно заканчивать заряд.
Щелочные аккумуляторы менее критичны к режиму эксплуатации. Для них окончание заряда характеризуется установлением на одном элементе батареи аккумуляторов постоянного напряжения 1,4. 1,5 В.
Для регулировки зарядного тока можно использовать магазин конденсаторов, включенный последовательно с первичной обмоткой трансформатора и выполняющий функцию гасящего сопротивления [16.11]. Подобное устройство описано в статье [16.12]. Здесь тепловая (активная) мощность выделяется лишь на диодах выпрямительного моста и в трансформаторе. В этом устройстве ток заряда аккумулятора поддерживается на определенном уровне: в процессе заряда напряжение на аккумуляторе увеличивается, а ток через него стремится уменьшиться. Но при этом возрастает приведенное сопротивление первичной обмотки трансформатора Т1, падение напряжения на ней увеличивается, и ток через аккумулятор меняется мало.
Наибольшее значение тока через аккумулятор при заданной емкости конденсатора С будет при равенстве падений напряжения на конденсаторе и первичной обмотке трансформатора. Ее следует рассчитывать на полное напряжение сети — для большей надежности устройства и возможности применения готовых иловых трансформаторов. Вторичную обмотку следует рассчитывать на напряжение в 1,5 раза большее номинального напряжения нагрузки.
При изготовлении устройства желательно предусмотреть возможность его автоматического отключения от сети при обрыве цепи нагрузки, так как ненагруженный трансформатор вместе с конденсатором составят колебательный контур, в котором
возникнет резонанс, при этом конденсатор и трансформатор могут выйти из строя.
Зарядное устройство (рис. 16.8) обеспечивает заряд 12-вольтовых аккумуляторных батарей током до 15 А [16.11]. Ток заряда можно менять ступенями через 1 А. Предусмотрена возможность автоматического выключения устройства когда аккумулятор полностью зарядится. Устройство не боится кратковременных замыканий в цепи нагрузки и обрывов в ней. Магазин конденсаторов состоит из конденсаторов С1 — С4, суммарная емкость которых 37,5 мкФ. Переключателями SA2 — SA5 можно подключать различные комбинации конденсаторов и менять величину зарядного тока. Так, например, для получения тока 11/4 необходимо замкнуть переключатели SA2, SA3 и SA5.
Приборы РА1 и PU1 — типа М5-2, рассчитанные соответственно на 30 А и 30 В. Реле К1 типа РС-13, паспорт РС4.523.029. Контакты К1.1 образованы тремя группами параллельно соединенных контактов. Возможно применение реле типа МКУ-48 на переменное напряжение 220 В. Тогда надобность в выпрямителе VD1, С5 отпадает. Реле К2 типа РЭС-15, паспорт РС4.591.003. Диоды Д305 установлены через слюдяные прокладки на общем радиаторе с поверхностью охлаждения 300 см2. Трансформатор Т1 выполнен на магнитопроводе 11132×100. Обмотка I содержит 320 витков провода ПЭВ-2 диаметром 1,16 мм, обмотка II — 34 витка ПЭВ-2 диаметром 2,46 мм. Намотку можно вести также несколькими проводами меньшего диаметра.
Для заряда аккумуляторов большим током в последнее время используют и современную элементную базу с применением специализированных микросхем, а также полевых МОП-транзисторов с минимальным сопротивлением открытого канала (десятые-сотые доли Ом). Примеры таких устройств приведены ниже.
Портативное устройство, предназначенное для зарядки литиевых (ионно-литиевых) батарей пульсирующим током, показано на рис. 16.9 [16.13]. Автоматизированное зарядное устройство выполнено на основе специализированной микросхемы фирмы MAXIM — MAX1679. Питание зарядное устройство получает от сетевого адаптера, способного выдавать напряжение 6 В при токе до 800 мА. Для защиты схемы от неправильного подключения предназначен диод VD1 — диод Шоттки, — рассчитанный на прямой ток 1 А при максимальном обратном напряжении 30 В. Светодиод HL1 предназначен для индикации работы зарядного устройства.


Рис. 16.8. Схема устройства для заряда 12-вольтовых аккумуляторных батарей током от 1 до 15 А

Рис. 16.9. Схема зарядного устройства для ионно-литиевых батарей на основе микросхемы МАХ1679

Рис. 16.10. Схема повышающего преобразователя для заряда 13,8 В аккумуляторной батареи УКВ-радиостанции от бортовой сети автомобиля

Для повышения стабильности работы устройства при изменении температуры окружающей среды в пределах от 0 до 50°С использован термистор R2 типа NTC FENWAL 140-103LAG-RBI, имеющий сопротивление 10 кОм при температуре 25°С.
Напряжение ионно-литиевого элемента составляет 2,5 В на элемент.
Простое зарядное устройство [16.14], предназначенное для подзарядки аккумулятора напряжением 13,8 Б от бортовой сети автомобиля (около 12 В), выполнено на основе повышающего преобразователя напряжения на основе микросхемы LT1170CT )ис. 16.10). Микросхема вырабатывает импульсы частотой 00 кГц. Эти импульсы поступают на внутренний ключевой каскад микросхемы (его выход — вывод 4). Цепочка из резистивного деятеля R2, R3 предназначена для отслеживания колебаний выходного напряжения и организации следящей обратной связи по зпряжению (вывод 2 микросхемы). Выходное напряжение регулируют подбором именно этих резисторов. Выпрямитель преобразователя выполнен на диоде VD2 — диоде Шоттки типа MBR760 прямой ток до 5/4).
Зарядный ток аккумулятора — до 2 А. КПД преобразователь достигает 90%.

Разделы сайта

DirectAdvert NEWS

Друзья сайта

ActionTeaser NEWS

Статистика

Ни для кого не ново, если скажу, что у любого автомобилиста в гараже должно быть зарядное устройство для аккумуляторной батареи. Конечно, его можно купить в магазине, но, столкнувшись с этим вопросом, пришел к выводу, заведомо не очень хорошее устройство по приемлемой цене брать не хочется. Встречаются такие, у которых ток заряда регулируется мощным переключателем, который добавляет или уменьшает количество витков во вторичной обмотке трансформатора, тем самым увеличивая или уменьшая зарядный ток, при этом прибор контроля тока в принципе отсутствует. Это наверно самый дешевый вариант зарядника заводского исполнения, ну а толковый девайс стоит не так уж и дешево, цена прямо-таки кусается, поэтому решил найти схему в интернете, и собрать ее самому. Критерии выбора были такие:

– простая схема, без лишних наворотов;
– доступность радиодеталей;
– плавная регулировка зарядного тока от 1 до 10 ампер;
– желательно чтобы это была схема зарядно-тренировочного устройства;
– не сложная наладка;
– стабильность работы (по отзывам тех, кто уже делал данную схему).

Поискав в интернете, наткнулся на промышленную схему зарядного устройства с регулирующими тиристорами.

Все типично: трансформатор, мост (VD8, VD9, VD13, VD14), генератор импульсов с регулируемой скважностью (VT1, VT2), тиристоры в качестве ключей (VD11, VD12), узел контроля заряда. Несколько упростив эту конструкцию, получим более простую схему:

На этой схеме нет узла контроля заряда, а остальное – почти то же самое: транс, мост, генератор, один тиристор, измерительные головки и предохранитель. Обратите внимание, что в схеме стоит тиристор КУ202, он немного слабоват, поэтому чтобы не допустить пробоя импульсами большого тока его необходимо установить на радиатор. Трансформатор – ватт на 150, а можно использовать ТС-180 от старого лампового телевизора.

И еще одно устройство, не содержащее дефицитных деталей, с током заряда до 10 ампер. Оно представляет собой простой тиристорный регулятор мощности с фазоимпульсным управлением.

Узел управления тиристором собран на двух транзисторах. Время, за которое конденсатор С1 будет заряжаться до переключения транзистора, выставляется переменным резистором R7, которым, собственно, и выставляется величина зарядного тока аккумулятора. Диод VD1 служит для защиты управляющей цепи тиристора от обратного напряжения. Тиристор, также как и в предыдущих схемах, ставится на хороший радиатор, или на небольшой с охлаждающим вентилятором. Печатная плата узла управления выглядит следующим образом:

Схема не плохая, но в ней есть некоторые недостатки:
– колебания напряжения питания приводят к колебанию зарядного тока;
– нет защиты от короткого замыкания кроме предохранителя;
– устройство дает помехи в сеть (лечится с помощью LC-фильтра).

Это импульсное устройство может заряжать и восстанавливать практически любые типы аккумуляторов. Время заряда зависит от состояния батареи и колеблется в пределах 4 – 6 часов. За счет импульсного зарядного тока происходит десульфатация пластин аккумулятора. Смотрим схему ниже.

В этой схеме генератор собран на микросхеме, что обеспечивает более стабильную его работу. Вместо NE555 можно использовать российский аналог – таймер 1006ВИ1. Если кому не нравится КРЕН142 по питанию таймера, так ее можно заменить обычным параметрическим стабилизатором, т.е. резистором и стабилитроном с нужным напряжением стабилизации, а резистор R5 уменьшить до 200 Ом. Транзистор VT1 – на радиатор в обязательном порядке, греется сильно. В схеме применен трансформатор со вторичной обмоткой на 24 вольта. Диодный мост можно собрать из диодов типа Д242. Для лучшего охлаждения радиатора транзистора VT1 можно применить вентилятор от компьютерного блока питания или охлаждения системного блока.

В результате неправильной эксплуатации автомобильных аккумуляторов пластины их могут сульфатироваться, и он выходит из строя.
Известен способ восстановления таких батарей при заряде их «ассимметричным» током. При этом соотношение зарядного и разрядного тока выбрано 10:1 (оптимальный режим). Этот режим позволяет не только восстанавливать засульфатированные батареи аккумуляторов, но и проводить профилактическую обработку исправных.

На рис. 1 приведено простое зарядное устройство, рассчитанное на использование вышеописанного способа. Схема обеспечивает импульсный зарядный ток до 10 А (используется для ускоренного заряда). Для восстановления и тренировки аккумуляторов лучше устанавливать импульсный зарядный ток 5 А. При этом ток разряда будет 0,5 А. Разрядный ток определяется величиной номинала резистора R4.
Схема выполнена так, что заряд аккумулятора производится импульсами тока в течение одной половины периода сетевого напряжения, когда напряжение на выходе схемы превысит напряжение на аккумуляторе. В течение второго полупериода диоды VD1, VD2 закрыты и аккумулятор разряжается через нагрузочное сопротивление R4.

Значение зарядного тока устанавливается регулятором R2 по амперметру. Учитывая, что при зарядке батареи часть тока протекает и через резистор R4 (10%), то показания амперметра РА1 должны соответствовать 1,8 А (для импульсного зарядного тока 5 А), так как амперметр показывает усредненное значение тока за период времени, а заряд производится в течение половины периода.

В схеме предусмотрена защита аккумулятора от неконтролируемого разряда в случае случайного исчезновения сетевого напряжения. В этом случае реле К1 своими контактами разомкнет цепь подключения аккумулятора. Реле К1 применено типа РПУ-0 с рабочим напряжением обмотки 24 В или на меньшее напряжение, но при этом последовательно с обмоткой включается ограничительный резистор.

Для устройства можно использовать трансформатор мощностью не менее 150 Вт с напряжением во вторичной обмотке 22. 25 В.
Измерительный прибор РА1 подойдет со шкалой 0. 5 А (0. 3 А), например М42100. Транзистор VT1 устанавливаются на радиатор площадью не менее 200 кв. см, в качестве которого удобно использовать металлический корпус конструкции зарядного устройства.

В схеме применяется транзистор с большим коэффициентом усиления (1000. 18000), который можно заменить на КТ825 при изменении полярности включения диодов и стабилитрона, так как он другой проводимости (см. рис. 2). Последняя буква в обозначении транзистора может быть любой.

Для защиты схемы от случайного короткого замыкания на выходе установлен предохранитель FU2.
Резисторы применены такие R1 типа С2-23, R2 — ППБЕ-15, R3 — С5-16MB, R4 — ПЭВ-15, номинал R2 может быть от 3,3 до 15 кОм. Стабилитрон VD3 подойдет любой, с напряжением стабилизации от 7,5 до 12 В.
обратного напряжения.

Конечно, лучше брать гибкий медный многожильный, ну а сечение нужно выбрать из расчета какой максимальный ток будет проходить по этим проводам, для этого смотрим табличку:

Если вас интересует схемотехника импульсных зарядно-восстановительных устройств с применением таймера 1006ВИ1 в задающем генераторе – прочтите эту статью:

Давно уже известно, что заряд кислотных аккумуляторов автомобилей асимметричным током, при котором отношение Ток(заряд) / Ток(разряд) = 0,1 обеспечивает очищение пластин батареи от дендритов сульфата тем самым продлевая срок службы не новых автомобильных аккумуляторов.

До этого уже была рассмотрена схема самодельного автомобильного зарядника с регулируемым током заряда. В данной статье опишем зарядное устройство для автомобильного аккумулятора, которое способно не только зарядить кислотный аккумулятор, но и очистить его пластины от сульфатов, тем самым восстановить его утраченную емкость.

Еще следует заметить, что положительно на срок службы аккумулятора автомобиля не последнюю роль играет напряжение бортовой сети в автомобиле. Чрезмерно высокое напряжение приводит к перезаряду аккумулятора, а слишком малое к его быстрому разряду.

Принцип работы автомобильного зарядного устройства

В зарядном устройстве предусмотрено автоматическое выключение аппарата от сети переменного тока при достижении на клеммах батареи 14,4 вольт. А также автоматическое включение при понижении напряжения ниже 12,5 вольт, которое может происходить в результате саморазряда. Включение и отключение происходит бесконтактным способом, при помощи симистора. Тумблер SA1 предназначен для принудительного включения зарядного устройства в том случае, когда аккумулятор слишком сильно разряжен и его напряжение ниже 12,5В.

Зарядное устройство для автомобильного аккумулятора обладает преимуществом, а это то, что оно не включится, пока к нему не подключена аккумуляторная батарея, что в свою очередь исключает всевозможные замыкания. Так же к преимуществу данного прибора можно отнести то, что во время его работы отсутствует интенсивное «кипение» электролита.

На первичную обмотку трансформатора переменное напряжение сети подается через предохранитель FR1 и симистор VD1. Далее пониженное напряжение, равное 21 вольту, с вторичной обмотки через силовой диод VD3 и резистор R8 идет на плюсовой вывод аккумулятора. Для контроля параллельно подключен вольтметр с максимальной шкалой 15 вольт. Для автоматического включения и выключения прибора собран узел контроля.

Он представляет собой триггер Шмитта состоящего из диодов VD5, VD6 на которых происходит падение потенциала в 1,8В (величина гистерезиса) и переходе база – эмиттер транзистора VT2. Резистор R7 предназначен для выставления необходимого напряжения (14,4В) при котором зарядное устройство должно быть отключено.

При подключении автомобильного аккумулятора к клеммам зарядного устройства, транзистор открывается, что в свою очередь включает симистор VD1 через оптрон VD4. В результате чего на трансформатор подается напряжение питания и начинается зарядка. Для стабильной работы, управление симистором происходит через диодный мост VD2.

Режим десульфатация в зарядном устройстве автомобиля

При включении тумблера SA2 происходит подключение резистора R5. В результате этого на положительной полуволне вторичного напряжения происходит заряд аккумулятора, а на отрицательной полуволне совершается небольшой разряд батареи в результате протекания тока через балластный резистор R5. Светодиод VD8 указывает на включение режима десульфатации.

Детали зарядного устройства для автомобильного аккумулятора

Мощность силового трансформатора необходимо взять не менее 160 Вт и напряжением вторичной обмотки около 21 В. Нагрузочный резистор R8 — проволочный изготовленный из нихромовой проволоки диаметром 0,6 мм. Балластный резистор R5 марки ПЭВР мощностью от 10 до 15 Ватт. Выпрямительный диод VD3 может быть любой из Д242 -Д248 с любой буквой. Его необходимо разместить на радиаторе площадью примерно 200 см2. Оставшиеся резисторы типа – МЛТ. Симистор можно взять КУ208Н.

Зарядное устройство для тиристорных аккумуляторов

— HBL Power Systems Limited

Зарядное устройство для тиристорных аккумуляторов

Зарядное устройство на основе тиристоров использует принцип переключения тиристоров для достижения желаемой выходной мощности постоянного тока. В основном он состоит из трансформатора, полупроводникового мостового выпрямителя, схемы фильтра и схемы управления.

Напряжение сети переменного тока преобразуется до подходящего уровня и подается на выпрямительный мост. После сглаживания схемой фильтра он выпрямляет входной переменный ток и подает управляемый выход постоянного тока на батарею и нагрузку.Требуемая выходная мощность регулируется с помощью метода управления фазой, который обеспечивается схемой управления. Сигналы обратной связи от выхода к схеме управления используются для поддержания регулирования напряжения и ограничения тока.

В новой инновационной модели используется 16-битный контроллер DSP (опция) для переключения и управления тиристором для достижения желаемого выхода постоянного тока. Выходное напряжение зарядного устройства, выходной ток, ток аккумулятора и температурная компенсация аккумулятора контролируются цифровым сигнальным процессором.Параметры выхода зарядного устройства могут быть установлены или отрегулированы с помощью клавиатуры-дисплея на передней панели с защитой паролем. Он имеет порты связи для локального / удаленного мониторинга измерений и событий.

Улучшенные характеристики:

  • Аналоговые конструкции, проверенные временем более трех десятилетий.
  • DSP управляемая модель, отвечающая требованиям для систем нового поколения.
  • Расширяемый диапазон выходного напряжения и выходного тока.
  • Индивидуальные панели из классов CRCA, SS304 и SS316.
  • Пылевлагозащита до стандартов IP-65, Nema — 4x.
  • Отображение состояния системы и аварийных сигналов на графическом ЖК-дисплее 128 x 64.
  • Настройка отображения измерений и сигналов неисправности до 28 параметров.
  • Устройство для тестирования под мгновенной нагрузкой с регистрацией данных для проверки состояния батареи.
  • До 11 специальных функциональных клавиш на передней панели для пользовательского интерфейса.
  • MODBUS через RS485.

Приложения

  • Нефть и газ.
  • Телеком.
  • Энергетика.

Пожалуйста, отправьте электронное письмо по адресу [email protected] для получения дополнительной информации.

3600A 750V AC-DC Зарядное устройство с тиристорным управлением Выпрямитель 6-пульсное воздушное принудительное охлаждение Производители и завод Китай — индивидуальные продукты Цена

Система зарядного устройства предназначена для ЗАРЯДКИ АККУМУЛЯТОРОВ Navy с общей мощностью 2.7 МВт. Основная цепь зарядного устройства в основном состоит из одного тиристорного зарядного устройства на 3600 А / 750 В и одного индуктора. Модуль тиристорного зарядного устройства преобразует мощность переменного тока в мощность постоянного тока.

Подробнее о продукте

Видео 3600A, 750 В, тиристорный выпрямитель зарядного устройства

Система зарядного устройства предназначена для ЗАРЯДКИ АККУМУЛЯТОРОВ ВМФ с общей выходной мощностью 2,7 МВт.

Основная цепь зарядного устройства в основном состоит из одного тиристорного зарядного устройства на 3600 А / 750 В и одного индуктора.Модуль тиристорного зарядного устройства преобразует мощность переменного тока в мощность постоянного тока.

Подключение

Технические характеристики

Электрические характеристики

0

Параметр

Значение

Входное напряжение

03

0 600 В переменного тока, 3 фазы, 4 провода (A, B, C, PE)

Номинальный входной ток

3250A

Частота

50 Гц

Номинальный выходной ток

3600ADC

Номинальное выходное напряжение

750 В постоянного тока

Диапазон регулирования выходной мощности

0-3600A / 0-750 В

CC / CV

Цепь t топология

3-х фазный полный мост

Метод охлаждения

Воздушное охлаждение

Класс защиты

IP30

96 Диапазон рабочих температур

0 ~ 40 ℃

Влажность

<85%

Высота

<2000 м

060005

Параметр

Значение

Установка

Внутри помещения

Размеры (Ш * Г * В)

0, включая медные стержни

1100x1450x1900

Масса

647 кг

Цвет

RAL 7035 (светло-серый)

Положение входных кабелей

С задней стороны зарядного устройства

Положение выходной меди бар

С задней стороны зарядного устройства

Подробные детали выпрямителя

Процесс управления проектом

Hot Tags: 3600a 750v ac-dc зарядное устройство с тиристорным управлением выпрямитель 6-импульсное воздушное принудительное охлаждение Китай, Индия, производители, завод, индивидуальные, высокое качество, цена

Предыдущая

Охлаждение с принудительной циркуляцией воздуха источника питания электрохимии 5000А 15В ИГБТ Выпрямитель 4500A 15V для цинкования с воздушным охлаждением

Далее

Сопутствующие товары

Custom 220V 50Ah High Frequency Rectifier / Thyristor Charger / DC UPS, 220V 50Ah High Frequency Rectifier / Thyristor Charger / DC UPS Suppliers

Технические характеристики:


  • Универсальные режимы зарядки с постоянным напряжением и постоянным током.
  • Повышенная надежность: механическая конструкция, позволяющая выдерживать вертикальное и горизонтальное ускорение до 0,5 g в стандартной комплектации.
  • Ведущие технологии — тиристорная технология с фазовым управлением.
  • Встроенный микрокомпьютерный контроллер обрабатывает сигналы в 10 раз быстрее, чем стандартные аналоговые методы.
  • Гибкое обслуживание и сокращение среднего времени восстановления (MTTR): конструкция обеспечивает легкий доступ спереди ко всем жизненно важным модулям зарядного устройства.
  • Длительный расчетный срок службы до 20+ лет: Расчетный срок службы системы до 20+ лет при непрерывной эксплуатации при условии надлежащего технического обслуживания.
  • Изолирующий трансформатор.
  • Многоязычный цифровой графический дисплей со встроенным журналом событий.
  • Полная совместимость с литиевыми батареями, свинцово-кислотными и никель-кадмиевыми батареями, герметичными или вентилируемыми.
  • Большой ЖК-дисплей: удобное управление с большим ЖК-дисплеем, сенсорный экран опционально с возможностью выбора из 8 языков на заказ.
  • Интеллектуальная связь и удаленный мониторинг: через изолированные RS232, RS485, Ethernet. Полная регистрация данных.

Приложения для решения по питанию постоянного тока:


Серия выпрямителей-зарядных устройств EverExceed uXcel подходит для всех приложений постоянного тока, требующих большой резервной батареи:

  • Передача и распределение электроэнергии;
  • Непрерывные производственные процессы;
  • Нефтегазовая и нефтехимическая промышленность;
  • Транспорт (ж / д, метро, ​​трамвай).

Импульсное тиристорное зарядное устройство. Зарядное устройство

Устройство с электронным управлением зарядным током, выполненное на основе тиристорного импульсно-фазового регулятора мощности. Не содержит дефицитных деталей, при заведомо исправных элементах регулировки не требует.

Зарядное устройство позволяет заряжать автомобильные аккумуляторные батареи током от 0 до 10 А, а также может служить регулируемым источником питания для мощного низковольтного паяльника, вулканизатора, переносной лампы.Зарядный ток по форме близок к импульсному, что, как считается, помогает продлить срок службы батареи. Устройство работает при температуре окружающей среды от — 35 ° С до + 35 ° С.

Схема устройства представлена ​​на рис. 2.60.

Зарядное устройство представляет собой тиристорный регулятор мощности с фазоимпульсным управлением, питаемый от обмотки II понижающего преобразователя T1 через диод moctVDI + VD4.

Блок управления тиристором выполнен на аналоге однопереходного транзистора VT1, VT2.Время, в течение которого конденсатор C2 заряжается до переключения однопереходного транзистора, можно регулировать с помощью переменного резистора R1. В крайнем правом углу схемы положение его зарядного тока двигателя будет максимальным, и наоборот.

Диод VD5 защищает цепь управления тиристором VS1 от обратного напряжения, возникающего при включении тиристора.


В будущем зарядное устройство может быть дополнено различными автоматическими компонентами (отключение после зарядки, поддержание нормального напряжения аккумулятора при длительном хранении, сигнализация правильной полярности подключения аккумулятора, защита от коротких замыканий на выходе и т. Д.).

К недостаткам устройства можно отнести колебания зарядного тока при нестабильном напряжении электросети.

Как и все подобные тиристорные импульсно-фазовые регуляторы, устройство мешает радиоприему. Для борьбы с ними следует предусмотреть силовой LC-фильтр, аналогичный тому, что используется в импульсных блоках питания.

Конденсатор С2 — К73-11, емкостью от 0,47 до 1 мкФ, или. К73-16, К73-17, К42У-2, МБГП.

Транзистор КТ361А заменен на КТ361Б, КТ361Е, КТ310L, КТ502В, КТ502Г, КТ315Б, КТ315Б D226 с любым буквенным индексом.

Резистор переменный R1 — СП-1, СДР-30а или СПО-1.

Амперметр РА1 — любой постоянного тока со шкалой 10 А. Его можно изготовить независимо от любого миллиамперметра, сняв шунт на модельном амперметре.

Предохранитель F1 плавкий, но также удобно использовать автоматический выключатель на 10 А или биметаллический автомобиль на тот же ток.

Диоды VD1 + VP4 могут быть любыми на постоянный ток 10 А и обратное напряжение не менее 50 В (серии D242, D243, D245, KD203, KD210, KD213).

Выпрямительные и тиристорные диоды устанавливаются на радиаторах полезной площадью около 100 см2 каждый. Для улучшения теплового контакта устройств с радиаторами желательно использовать теплопроводящие пасты.

Вместо тиристора. КУ202В подходят КУ202Г — КУ202Е; Проверено на практике, устройство отлично работает с более мощными тиристорами Т-160, Т-250.

Следует отметить, что допускается использование металлической стенки корпуса непосредственно в качестве радиатора тиристора.Тогда, правда, на корпусе будет минусовой вывод устройства, что вообще нежелательно из-за опасности случайного замыкания выводного плюсового провода на корпус. Если установить тиристор через слюдяную прокладку, опасности закрытия не будет, но теплоотдача от него ухудшится.

В устройстве можно использовать готовый сетевой понижающий трансформатор необходимой мощности с вторичным напряжением от 18 до 22 В.

Если напряжение трансформатора на вторичной обмотке больше 18 В, резистор R5 должен быть заменяется другим, более высоким сопротивлением (например, когда 24… 26 В, сопротивление резистора следует увеличить до 200 Ом).

В случае, когда вторичная обмотка трансформатора имеет отвод от середины, либо имеется две идентичные обмотки и каждое напряжение находится в заданных пределах, то выпрямитель лучше выполнять по стандартной двухпериодной схеме на два диода.

При напряжении вторичной обмотки 28 … 36 В можно вообще отказаться от выпрямителя — его роль будет одновременно выполнять тиристор VS1 (выпрямление полуволновое).Для такого варианта блока питания необходимо между резистором R5 и плюсовым проводом включить разделительный диод КД105Б или Д226 с любым буквенным индексом (катод к резистору R5). Выбор тиристора в такой схеме будет ограничен — подойдут только те, которые допускают работу под обратным напряжением (например, КУ202Е).

:

Зарядное устройство для автомобильных аккумуляторов.

Ни для кого не новость, если я скажу, что у любого автомобилиста в гараже должно быть зарядное устройство для аккумулятора.Конечно, можно купить в магазине, но, столкнувшись с этим вопросом, я пришел к выводу, что брать не очень хорошее устройство по доступной цене я не хочу. Есть такие, ток заряда которых регулируется мощным переключателем, который добавляет или уменьшает количество витков во вторичной обмотке трансформатора, тем самым увеличивая или уменьшая ток заряда, при этом устройство контроля тока в основном отсутствует. Это, наверное, самый дешевый вариант заводского зарядного устройства, но умное устройство не такое уж и дешевое, цена кусается, поэтому я решил найти схему в интернете и собрать сам.Критерии выбора были следующие:

Простая схема, без лишних изысков;
— наличие радиодеталей;
— плавная регулировка зарядного тока от 1 до 10 ампер;
— желательно, чтобы это было зарядно-тренировочное устройство;
— несложная настройка;
— стабильность работы (по отзывам тех, кто уже делал эту схему).

Поискав в интернете, наткнулся на схему промышленного зарядного устройства с регулирующими тиристорами.

Все типично: трансформатор, мост (VD8, VD9, VD13, VD14), генератор импульсов с регулируемой скважностью (VT1, VT2), тиристоры как ключи (VD11, VD12), блок управления зарядом. Несколько упростив эту конструкцию, получим более простую схему:


На этой схеме нет узла контроля заряда, а все остальное практически одинаково: транс, мост, генератор, один тиристор, измерительные головки и предохранитель. Учтите, что в схеме присутствует тиристор КУ202, он немного слабоват, поэтому во избежание пробоя сильноточными импульсами его необходимо установить на радиатор.Трансформатор на 150 ватт, и вы можете использовать TC-180 от старого лампового телевизора.


Зарядное устройство регулируемое с током заряда 10А на тиристоре КУ202.

А еще прибор, не содержащий дефицитных деталей, с током заряда до 10 ампер. Это простой тиристорный регулятор мощности с фазоимпульсным управлением.

Блок управления тиристором собран на двух транзисторах. Время, необходимое для зарядки конденсатора С1 до переключения транзистора, задается переменным резистором R7, который, по сути, устанавливает значение зарядного тока аккумулятора.Диод VD1 служит для защиты цепи управления тиристором от обратного напряжения. Тиристор, как и в предыдущих схемах, ставится либо на хороший радиатор, либо на небольшой с вентилятором охлаждения. Плата управления выглядит следующим образом:


Схема неплохая, но имеет некоторые недостатки:
— колебания напряжения питания приводят к колебаниям зарядного тока;
— нет защиты от короткого замыкания кроме предохранителя;
— устройство дает помехи в сеть (лечится LC-фильтром).

Устройство для зарядки и восстановления аккумулятора.

it impulse устройство может заряжать и восстанавливать аккумулятор практически любого типа. Время зарядки зависит от состояния аккумулятора и колеблется от 4 до 6 часов. Из-за импульсного зарядного тока пластины аккумулятора десульфатируются. См. Схему ниже.


В данной схеме генератор собран на микросхеме, что обеспечивает его более стабильную работу. Вместо NE555 можно использовать российский аналог — таймер 1006VI1 .Если кому-то не нравится КРЕН142 по мощности таймера, то его можно заменить обычным параметрическим стабилизатором т.е. Стабилитрон и стабилитрон с желаемым напряжением стабилизации, а резистор R5 уменьшен до 200 Ом и Ом. Транзистор VT1 — на радиаторе в обязательном порядке сильно греется. В схеме используется трансформатор со вторичной обмоткой на 24 вольта. Диодный мост можно собрать из диода типа Д242 . Для лучшего охлаждения радиатора транзистора VT1 можно использовать вентилятор от блока питания компьютера или блока системы охлаждения.

Восстановление и зарядка аккумулятора.

В результате неправильного использования автомобильных аккумуляторов их пластины могут сульфатироваться, и это выходит из строя.
Известен способ восстановления таких батарей при их зарядке «асимметричным» током. При этом соотношение зарядного и разрядного тока было выбрано 10: 1 (оптимальный режим). Этот режим позволяет не только восстанавливать сульфатированные аккумуляторы, но и проводить профилактическую обработку исправных.



Рис. 1. Электрическая схема зарядного устройства

На рис. 1 показано простое зарядное устройство, предназначенное для использования вышеуказанного метода. Схема обеспечивает импульсный зарядный ток до 10 А (используется для ускоренной зарядки). Для восстановления и тренировки АКБ лучше выставить импульсный зарядный ток 5 А. При этом ток разряда будет 0,5 А. Ток разряда определяется номиналом резистора R4.
Схема разработана таким образом, что аккумулятор заряжается импульсами тока в течение половины периода.напряжение сети, когда напряжение на выходе схемы превышает напряжение на аккумуляторе. Во время второго полупериода диоды VD1, VD2 закрываются и аккумулятор разряжается через сопротивление нагрузки R4.

Значение зарядного тока устанавливается регулятором R2 в амперметре. Учитывая, что при зарядке АКБ часть тока протекает через резистор R4 (10%), то показания амперметра PA1 должны соответствовать 1,8 А (для импульсного тока зарядки 5 А), так как амперметр показывает средний ток в течение определенного периода времени, а заряд производится за половину периода.

Схема защищает аккумулятор от неконтролируемого разряда в случае случайного пропадания сетевого напряжения. В этом случае реле К1 своими контактами разомкнет цепь подключения аккумулятора. Реле К1 применяется типа РПУ-0 с рабочим напряжением обмотки 24 В или более низким напряжением, но в этом случае ограничительный резистор включается последовательно с обмоткой.

Для устройства можно использовать трансформатор мощностью не менее 150 Вт с напряжением во вторичной обмотке 22… 25 В.
Измерительный прибор PA1 подходит со шкалой 0 … 5 A (0 … 3 A), например, M42100. Транзистор VT1 установлен на радиаторе площадью не менее 200 кв. см, для чего удобно использовать конструкцию зарядного устройства в металлическом корпусе.

В схеме использован транзистор с большим коэффициентом усиления (1000 … 18000), который можно заменить на КТ825 с изменением полярности диодов и стабилитрона, так как он имеет другую проводимость (см. Рис. 2). Последняя буква в обозначении транзистора может быть любой.



Рис. 2. Электрическая схема зарядного устройства

Для защиты цепи от случайного короткого замыкания на выходе установлен предохранитель FU2. Резисторы
используются такие R1 типа C2-23, R2 — PPBE-15, R3 — C5-16MB, R4 — PEV-15, номинал R2 может быть от 3,3 до 15 кОм. Стабилитрон VD3 подойдет любому, со стабилизацией напряжения от 7,5 до 12 В.
обратное напряжение.

Какой провод лучше использовать от зарядного устройства до аккумулятора.

Конечно, лучше взять гибкую медную многожильную, ну и сечение нужно выбирать из расчета какой максимальный ток будет проходить по этим проводам, для этого смотрим на этикетку:

Если у вас Интересует схемотехника импульсных устройств зарядки и восстановления с использованием таймера 1006VI1 в задающем генераторе — прочтите эту статью:

Соблюдение режима работы аккумуляторов, а в частности режима зарядки, обеспечивает их безотказную работу в течение всего срока службы.Зарядка аккумуляторов вырабатывает ток, значение которого можно определить по формуле

.

, где I — средний зарядный ток, А., а Q — номинальная электрическая емкость аккумулятора, Ач.

Классическое автомобильное зарядное устройство состоит из понижающего трансформатора, выпрямителя и регулятора зарядного тока. В качестве регуляторов тока используются проволочные резисторы тока (см. Рис. 1) и транзисторные стабилизаторы тока.

В обоих случаях по этим элементам выделяются значимые элементы.тепловая мощность, снижающая эффективность зарядного устройства и повышающая вероятность его выхода из строя.

Для регулировки зарядного тока можно использовать накопитель конденсаторов, включенных последовательно с первичной (сетевой) обмоткой трансформатора и выполняющих функцию реактивного сопротивления, гасящего избыточное напряжение в сети. Упрощенное такое устройство показано на рис. 2

.


В данной схеме тепловая (активная) мощность распределяется только на диодах VD1-VD4 выпрямительного моста и трансформатора, поэтому нагрев устройства незначителен.

Недостатком рис. 2 является необходимость обеспечения напряжения на вторичной обмотке трансформатора в полтора раза больше номинального напряжения нагрузки (~ 18 ÷ 20В).

Схема зарядного устройства, обеспечивающая зарядку 12-вольтовых аккумуляторов током до 15 А, причем зарядный ток может изменяться от 1 до 15 А с шагом 1 А, показана на рис. 3


Возможно автоматическое выключение устройства при полной зарядке аккумулятора.Не боится короткого замыкания в цепи нагрузки и обрывов в ней.

Переключатели Q1 — Q4 могут подключать различные комбинации конденсаторов и тем самым регулировать ток зарядки.

Переменный резистор R4 устанавливает порог К2, который должен срабатывать при напряжении на выводах аккумулятора, равном напряжению полностью заряженного аккумулятора.

На рис. 4 показано другое зарядное устройство, в котором зарядный ток плавно регулируется от нуля до максимального значения.


Изменение тока в нагрузке достигается регулировкой угла открытия тринистора VS1. Узел управления выполнен на однопереходном транзисторе VT1. Величина этого тока определяется положением ползунка переменного резистора R5. Максимальный ток заряда АКБ — 10А, устанавливается амперметром. устройство питается от сети и нагрузки предохранителями F1 и F2.

Версия зарядного устройства для печатной платы (см. Рисунок 4), размером 60×75 мм, показана на следующем рисунке:


На схеме на рис.4 вторичная обмотка трансформатора должна быть рассчитана на ток в три раза больший, чем ток зарядки, и, соответственно, мощность трансформатора также должна быть в три раза больше мощности, потребляемой батареей.

Указанное выше обстоятельство является существенным недостатком зарядных устройств с триристорным регулятором тока (тиристором).

Примечание:

Диоды выпрямительного моста VD1-VD4 и тиристор VS1 должны быть установлены на радиаторах.

Можно значительно снизить потери мощности в тринисторе, а, следовательно, для увеличения КПД зарядного устройства можно перенести регулирующий элемент из вторичной цепи трансформатора в первичную цепь.Такое устройство показано на рис. 5.


На схеме на рис. 5 регулирующий блок аналогичен использовавшемуся в предыдущей версии устройства. Тринистор VS1 включен в диагональ выпрямительного моста VD1 — VD4. Поскольку ток первичной обмотки трансформатора примерно в 10 раз меньше тока заряда, на диодах VD1-VD4 и тринисторе VS1 выделяется относительно небольшая тепловая мощность и они не требуют установки на радиаторы.Кроме того, использование тринистора в первичной цепи трансформатора позволило немного улучшить форму кривой зарядного тока и снизить значение коэффициента формы кривой тока (что также приводит к увеличению КПД зарядного устройства). ). Недостатком этого зарядного устройства должно быть гальваническое соединение с сетью элементов блока управления, что необходимо учитывать при разработке конструкции (например, использовать переменный резистор с пластиковой осью).

Версия зарядного устройства для печатной платы на рисунке 5, размер 60×75 мм, показана на рисунке ниже:


Примечание:

Диоды выпрямительного моста VD5-VD8 необходимо устанавливать на радиаторы отопления.

В зарядном устройстве на рисунке 5 диодный мост VD1-VD4 типа КЦ402 или КЦ405 с буквами А, Б, B. Стабилитрон VD3 типа КС518, КС522, КС524 или состоящий из двух одинаковых стабилитронов с общим напряжением стабилизации 16 ÷ 24 вольт (КС482, Д808, КС510 и др.). Транзистор VT1 однопереходный, типа КТ117А, В, В, G. Диодный мост VD5-VD8 составлен из диодов, с рабочим током не менее ампер (Д242 ÷ Д247 и др.). На радиаторах площадью не менее 200 кв. См устанавливаются диоды, при этом радиаторы будут очень горячими, а в корпус зарядного устройства можно установить вентилятор.

Обычно аккумулятор в автомобиле заряжается при работающем генераторе. Однако во время длительных простоев автомобиля, на морозе или при наличии неисправностей аккумулятор может разрядиться до такой степени, что станет неспособным обеспечить ток, необходимый для запуска двигателя.И тут на помощь приходит автомобильное зарядное устройство. Однако стоимость зарядного устройства очень высокая, поэтому я решил собрать зарядное устройство самостоятельно. Он позволяет заряжать автомобильные аккумуляторы током от 0 до 10А, а также может служить регулируемым источником питания для мощного низковольтного паяльника, вулканизатора, переносной лампы, устройства для резки пены, автомобильной помпы-компрессора для накачки. колеса. Устройство не содержит дефицитных деталей и с хорошими элементами не требует регулировки. Для этой схемы использовался сетевой понижающий трансформатор ТС270-1 (оторванный от старого лампового телевизора) с вторичным напряжением 17В.Без изменений подойдет любой, у кого на вторичной обмотке напряжение от 17 до 22В. Кожух используется от блока управления поста катодной защиты газопровода КСС-600 (охлаждение в кожухе естественное). В этом зарядном устройстве можно при необходимости установить схему для зарядки малогабаритных аккумуляторов (типа Д-0,55С и др.). При этом контроль зарядного тока осуществляется установленным миллиамперметром.
Принципиальная схема устройства представлена ​​на фото ниже.

Принципиальная схема прибора


Это традиционный тринисторный регулятор мощности с фазоимпульсным управлением, питаемый от обмотки II понижающего трансформатора Т1 через диодный мост VD1-4. Блок управления тринистором выполнен на аналоге однопереходного транзистора VT1, VT2. Время, в течение которого конденсатор C1 заряжается перед переключением, можно регулировать переменным резистором R1. В крайнем правом углу схемы расположения его двигателя зарядный ток будет максимальным, и наоборот.Диод VD5 защищает цепь управления тринистора от обратного напряжения, возникающего при включении тринистора VS1. Печатная плата устройства и монтажная плата на фото ниже.


Печатная плата


Печатная плата


Если готовый, использованный трансформатор на вторичной обмотке больше 17В, резистор R5 следует заменить другим, более высоким сопротивлением (например, на 24 .. От 26В до 200 Ом).В том случае, когда вторичная обмотка имеет отвод от середины, либо имеется две идентичных обмотки и напряжение каждой находится в заданных пределах, то выпрямитель лучше выполнить по стандартной двухполупериодной схеме на двух диодах.
А при сборке выпрямителя точно по схеме подойдут следующие детали:
С1 — К73-11, емкостью от 0,47 до 1 мкФ, а также К73-16, К42У-2, МБГП.
Диоды VD1 — VD4 могут быть любыми на постоянный ток 10А и обратное напряжение не менее 50В (это серии D242, KD203, KD210, KD213).
Вместо тринистора Т10-25 подойдет КУ202Б — КУ202Е; На практике проверено, что устройство нормально работает с более мощными тринизорами Т-160, Т-250 (в моем случае это Т10-25).
Транзистор КТ361А будет заменен на КТ361Б — КТ361Е, КТ3107, КТ502В, КТ502Г, КТ501Ж — КТ501К и КТ315А — на КТ315Б — КТ315Д, КТ312Б, КТ3102А, К3152Б, К3152Б, КТ3152Б, КТ3152Б диод КД105Б, диоды КД105В, КД105 или Д226 подходят с любым буквенным индексом.
Резистор переменный R1 — СП-1, СП3-30а или СПО-1.
Амперметр РА1 — любой постоянного тока со шкалой 10А или сделай сам из любого миллиамперметра, подобрав для него шунт.
Вольтметр РV1 — любой постоянный ток с шкалой 16В.
Предохранитель FU1 — плавкий на 3А, FU2 — плавкий на 10А.
Диоды и тринистор необходимо установить на радиаторах, каждый с полезной площадью около 100 см². Для улучшения теплового контакта этих деталей с радиаторами желательно использовать теплопроводящие пасты.
Больше фото можно посмотреть в моем блоге.




Более современная конструкция несколько проще в изготовлении и настройке и содержит доступный силовой трансформатор с одной вторичной обмоткой, а характеристики регулировки выше, чем у предыдущей схемы.

Предлагаемое устройство имеет стабильную плавную регулировку. Фактическое значение выходного тока находится в диапазоне 0,1 … 6А, что позволяет заряжать любой аккумулятор, а не только автомобильный.При зарядке маломощных аккумуляторов желательно последовательно подключать к цепи балластный резистор в несколько Ом или дроссель, т.к. пиковое значение зарядного тока может быть довольно большим из-за характера работы. тиристорные регуляторы. Для снижения пикового зарядного тока в таких схемах используются силовые трансформаторы с ограниченной мощностью, не превышающей 80 — 100 Вт, и с плавной нагрузочной характеристикой, что исключает необходимость в дополнительном балластном сопротивлении или дросселе. Особенностью предложенной схемы является необычное использование широко используемой микросхемы TL494 (KIA494, K1114UE4).Задающий генератор микросхемы работает на низкой частоте и синхронизируется с полуволнами сетевого напряжения с помощью узла на оптопаре U1 и транзисторе VT1, что позволило использовать микросхему TL494 для фазового регулирования выходного тока. Микросхема содержит два компаратора, один из которых используется для регулирования выходного тока, а второй — для ограничения выходного напряжения, что позволяет отключать зарядный ток при достижении полной зарядки аккумулятора (для автомобильных аккумуляторов Umax = 14 .8 В). На НУ DA2 собран узел усилителя напряжения шунта для регулирования зарядного тока. При использовании шунта R14 с другим сопротивлением необходимо выбрать резистор R15. Сопротивление должно быть таким, чтобы при максимальном выходном токе не наблюдалось насыщения выходного каскада ОУ. Чем больше сопротивление R15, тем меньше минимальный выходной ток, но уменьшается и максимальный ток за счет ОС. Резистор R10 ограничивает верхний предел выходного тока. Основная часть схемы собрана на печатной плате размером 85 х 30 мм (см. Рисунок).

Конденсатор C7 припаян непосредственно к печатным проводникам. Чертеж печатной платы в натуральную величину.

В качестве измерительного прибора использован микроамперметр с самодельной шкалой, калибровка показаний производится резисторами R16 и R19. Вы можете использовать цифровой измеритель тока и напряжения, как показано в зарядном устройстве с цифровым дисплеем. Следует иметь в виду, что измерение выходного тока такого устройства производится с большой погрешностью из-за его импульсного характера, но в большинстве случаев она незначительна.В схеме можно использовать любые доступные транзисторные оптопары, например AOT127, AOT128. Операционный усилитель DA2 можно заменить практически любым доступным операционным усилителем, а конденсатор C6 можно исключить, если операционный усилитель имеет внутреннюю частотную коррекцию. Транзистор VT1 можно заменить на КТ315 или любой маломощный. В качестве VT2 можно использовать транзисторы КТ814 В, Г; КТ817В, Г и другие. В качестве тиристора VS1 можно использовать любой доступный с подходящими техническими характеристиками, например отечественный КУ202, импортный 2Н6504… 09, C122 (A1) и другие. Диодный мост VD7 можно собрать из любых доступных силовых диодов с подходящими характеристиками.

На втором рисунке показана схема внешних подключений печатной платы. Наладка устройства сводится к подбору сопротивления R15 под конкретный шунт, который можно применить к любым проволочным резисторам сопротивлением 0,02 … 0,2 Ом, мощности которых достаточно на длительный ток до 6 А. После настройки схемы выберите R16, R19 для конкретного измерителя и шкалы.

Коммутационные тиристоры серии надежны для бортовой зарядки электромобилей

Главная> Продукция> Переключающие тиристоры серии надежны для зарядки электромобилей на борту.

Мощность

8 августа 2017

Кэролайн Хейс

Серия переключающих тиристоров выпрямителя с кремниевым управлением (SCR) на 16 А от Littelfuse оптимизирована для систем бортовой зарядки электромобилей (EVOBC).Утверждается, что эти устройства предлагают «отличные» возможности работы с переменным током и устойчивость к импульсным перенапряжениям для входных выпрямителей.

Переключающий тиристорный тиристор S8016xA способен выдерживать переменный ток и устойчивость к импульсным перенапряжениям позволяет им выдерживать зарядку уровня 1 до 16 АПР при 120 В, зарядку уровня 2 до 16 АПР при 240 В при 100 ° C и до 25 АПР при 80 ° C. Утверждается, что они являются первой линейкой переключающих тиристоров SCR, способных выдерживать такие высокие уровни тока в корпусах TO-220R и TO-263, которые также соответствуют требованиям AEC-Q101 и способны поддерживать процесс утверждения производственных деталей (PPAP), делающий их подходит для защиты бортового зарядного устройства переменного тока уровня 1.

Типичные области применения — выпрямление входов линий переменного тока для бортовых и внешних зарядных устройств электромобилей.

Компактные корпуса TO-220R и TO-263 помогают минимизировать размер схемы. Максимальное повторяющееся напряжение вне каскада (VDRM) (800 В) может обрабатывать входы от сети переменного тока до 250 В (среднеквадратичное значение). Среднеквадратичный ток в открытом состоянии (IT (RMS)) до 25 А делает тиристоры пригодными для использования с зарядными устройствами переменного тока Уровня 1 и Уровня 2. Пиковое неповторяющееся запирающее напряжение (VDSM) 1300 В и непериодический пиковый импульсный ток (IPP) 2400 А позволяет тиристорам выдерживать скачок напряжения 6 кВ при использовании с автомобильным металлооксидным варистором (MOV) для сети переменного тока. защита от перенапряжения; компания цитирует собственную серию AUMOV.

Серия S8016xA доступна в упаковке TO-220R и TO 263 (D2-Pak). Образцы доступны по запросу у официальных дистрибьюторов производителя по всему миру.

тиристор% 20battery% 20charger% 2024v техническое описание и примечания по применению

2002 — Симистор к 220

Аннотация: Тиристорный симистор 400 В 16 А TRIAC 25 А 600 В симистор 600 В 25 А симистор 400 В 25 А Симистор 3 А 600 В симистор 10 А Тиристор 400 В 3 А 600 В Тиристор to 220
Текст: нет текста в файле


Оригинал
PDF ET013 ET015 ET020 SLA0201 STA203A STA221A TF321M TF321M-A TF321S TF341M Симистор to220 Тиристор симистор 400в 16а TRIAC 25a 600v симистор 600в 25а симистор 400в 25а Симистор 3а 600в симистор 10а 400в тиристор 3а 600в Тиристор к220
2008 — анодный затвор тиристор

Реферат: 3-фазная схема запуска тиристора схемы управления затвором быстрого тиристора 200A 3-фазный тиристорный привод постоянного тока pgh25016am 600A тиристорный scr демпфер ДЛЯ 3-фазного МОСТОВОГО выпрямителя схема запуска тиристора 200A схема управления тиристорным затвором 6 схема драйвера тиристора
Текст: нет текста в файле


Оригинал
PDF 108мм ПГх408 тиристор с анодным затвором Трехфазная схема включения тиристора быстрые тиристорные схемы управления затвором 200А 3-х фазный тиристорный привод постоянного тока pgh25016am 600А тиристорный scr демпфер ДЛЯ 3-ФАЗНОГО МОСТОВОГО ВЫПРЯМИТЕЛЯ схема включения тиристора Схема управления тиристорным затвором на 200 А 6 тиристорная схема драйвера
2011 — анодный затвор тиристор

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF 5×1014 1×107 DEAR0000112) тиристор с анодным затвором
1999 — Тиристор 470 А

Реферат: тиристорный эквивалент 1 кОм 4-контактный резисторный массив Тиристор Т 25 тиристорный направляющий тиристорный конденсатор 23 мкФ MITSUBISHI GATE ARRAY PULSE тиристор SA04
Текст: нет текста в файле


Оригинал
PDF ASA100) Тиристор 470 А тиристорный эквивалент 1 кОм 4-контактный массив резисторов Тиристор Т 25 направляющая тиристора тиристор конденсатор 23 мкф MITSUBISHI GATE ARRAY ИМПУЛЬСНЫЙ тиристор SA04
Тиристор ГТО

Реферат: Тиристор GTO 40A, тиристорный драйвер GTO, схема тиристорного инвертора THYRISTOR GTO, тиристор GTO Примечания по применению Схема привода затвора gto vvvf регулирование скорости 3-фазного асинхронного двигателя Блок привода затвора GTO Теория, конструкция и применение демпфирующих цепей
Текст: нет текста в файле


Оригинал
PDF
1998 — тиристор лтт

Реферат: SIEMENS THYRISTOR Тиристоры Siemens EUPEC Тиристор LTT постоянного тока в переменный, преобразователь тиристором BREAK OVER DIODE плата управления тиристорная защита тиристора абстрактный срок службы тиристора преобразователь переменного тока в постоянный тиристором
Текст: нет текста в файле


Оригинал
PDF D-

тиристор лтт SIEMENS THYRISTOR Тиристоры Сименс EUPEC Тиристор LTT преобразователь постоянного тока в переменный с помощью тиристора ПЕРЕРЫВ НАД ДИОДОМ плата управления тиристором Аннотация тиристорной защиты срок службы тиристора преобразователь переменного тока в постоянный с помощью тиристора
fgt313

Реферат: транзистор fgt313 SLA4052 RG-2A Diode SLA5222 fgt412 RBV-3006 FMN-1106S SLA5096, диод ry2a
Текст: нет текста в файле


Оригинал
PDF 2SA1186 2SC4024 2SA1215 2SC4131 2SA1216 2SC4138 100 В переменного тока 2SA1294 2SC4140 fgt313 транзистор fgt313 SLA4052 Диод РГ-2А SLA5222 fgt412 РБВ-3006 FMN-1106S SLA5096 диод ry2a
2015 — Тиристор с МОП-управлением

Реферат: срок службы тиристора
Текст: нет текста в файле


Оригинал
PDF
2001 — ТР250-180У

Реферат: TS600-170 «Power over LAN» TR250-145 REBD TS250-130-RA TSL250-080
Текст: нет текста в файле


Оригинал
PDF
2002 — микросхема драйвера scr выпрямителя 3 фазы

Реферат: OPTOCOUPLER микросхема драйвера тиристорного затвора SCR TRIGGER PULSE Схема OPTOCOUPLER для тиристорного затвора однофазный полумост, управляемый выпрямитель scr Оптопара с тиристором SCR Phase Control IC SCR TRIGGER PULSE scr драйвер для выпрямителя 3 фазы 6 выхода
Текст: нет текста в файле


Оригинал
PDF
тиристор тт 500 н 16

Реферат: тиристорный выпрямитель с фазовым регулированием тиристор t 500 n 1800 однофазный тиристорный выпрямитель тиристор tt 121 трехфазный мост полностью управляемый выпрямитель тиристор t 500 n 18 диод ECONOPACK w3 диод b6
Текст: нет текста в файле


Оригинал
PDF
2004 — драйвер затвора scr ic

Аннотация: микросхема драйвера scr для выпрямителя микросхема трехфазного драйвера для тиристора OPTOCOUPLER для тиристорного затвора микросхема управления трехфазным мостом SCR SCR TRIGGER PULSE схема OPTOCOUPLER триггер тиристор scr OPTOCOUPLER тиристор схема управления тиристором схема контактов тиристора
Текст: нет текста в файле


Оригинал
PDF
1998 — Трехфазный мостовой полностью управляемый выпрямитель

Реферат: tt 60 n 16 kof press-pack igbt однофазный полностью управляемый выпрямитель с тиристорным управлением с датчиком тока от постоянного к постоянному току с помощью тиристора.
Текст: нет текста в файле


Оригинал
PDF
2003 — EUPEC tt 162 n 16

Аннотация: тиристорный тиристорный модуль tt 162 n bsm 25 gp 120 igbt модуль bsm 100 gb 60 дл ДИСК ТИРИСТОРНЫЙ диод EUPEC tt 105 N 16 тиристорный модуль высокой мощности scr IGBT FZ
Текст: нет текста в файле


Оригинал
PDF кука-2003-инхальт EUPEC tt 162 n 16 тиристор тт 162 н тиристор большой мощности модуль bsm 25 gp 120 igbt модуль bsm 100 гб 60 дл ДИСК ТИРИСТОР диод EUPEC tt 105 N 16 тиристор большой мощности scr Модуль IGBT FZ
2001-ТИРИСТОР

Реферат: применение тиристора тиристор 10A примечания по применению тиристора технические характеристики тиристора тиристор высокой мощности тиристор с фазовым управлением тиристор eupec
Текст: нет текста в файле


Оригинал
PDF 119мм 05ITSM ТИРИСТОР применение тиристора тиристор 10А указания по применению тиристоров заметки по применению ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ тиристоров фазовый контроль тиристор большой мощности тиристор с фазовым регулированием eupec
тиристор тт 162 н

Реферат: быстрый тиристор 1000 В тиристор tt 162 n 16 IGBT модуль FZ 400 тиристор td 162 n тиристор TT 162 тиристор КОНФИГУРАЦИЯ ВЫВОДОВ тиристор tt 500 n 16 THYRISTOR H 1500 тиристор 162
Текст: нет текста в файле


Оригинал
PDF
Метод испытания тиристоров eupec

Реферат: SIEMENS hvdc THYRISTOR SIEMENS THYRISTOR для HVDC для 500 кВ ИМПУЛЬСНЫЙ тиристор автомобильный тиристор hvdc тиристор LTT тиристорный преобразователь проектирование схемы зажигания Схемы применения тиристоров
Текст: нет текста в файле


Оригинал
PDF D-81541 D-59581 D-

метод испытания тиристоров eupec SIEMENS hvdc THYRISTOR SIEMENS THYRISTOR тиристор для HVDC на 500 кВ ИМПУЛЬСНЫЙ тиристор автомобильный тиристор hvdc тиристор лтт схема зажигания тиристорного преобразователя Схемы применения тиристоров

2001 — ТР250-180У

Реферат: Тиристор SiBar TSL250-080 TSV250-130 «Power over LAN» TR600-150-RA TR600-150 TR250-145 TR250-120 GR-974
Текст: нет текста в файле


Оригинал
PDF
Тиристор с обратной проводимостью

Реферат: CRD5CM Тиристор to220 тиристорный регулятор CRD5C обратнопроводящий тиристор Gate Turn-off Thyristor to220
Текст: нет текста в файле


Оригинал
PDF 2010 — Ренесас О-220 Тиристор с обратной проводимостью CRD5CM Тиристор к220 тиристорный регулятор CRD5C обратнопроводящий тиристор Тиристор выключения затвора to220
2002 — тиристор EUPEC

Реферат: EUPEC Тиристор LTT тиристор ltt все типы тиристоров и схема Infineon процесс распределения энергии Тиристор LTT срок службы тиристора с использованием системы питания 6-дюймовый тиристор для HVDC ВЫСОКОВОЛЬТНЫЙ ТИРИСТОР
Текст: нет текста в файле


Оригинал
PDF D-59581 D-81541 EUPEC Тиристор EUPEC Тиристор LTT тиристор лтт все типы тиристоров и схемы Процесс распространения энергии Infineon LTT тиристор срок службы тиристора тиристорное использование энергосистемы 6 «тиристор для HVDC ВЫСОКОВОЛЬТНЫЙ ТИРИСТОР
тиристор тт 162 н 12

Реферат: тиристор tt 162 n тиристор TT 46 N тиристор TT 162 асимметричный тиристор тиристор tt 25 тиристор TD 25 N dd 55 n 14 тиристор powerblock tt 105 n 16 powerblock tt 162
Текст: нет текста в файле


Оригинал
PDF кука-2006-де-инхальт тиристор тт 162 н 12 тиристор тт 162 н тиристор ТТ 46 Н тиристор ТТ 162 асимметричный тиристор тиристор тт 25 тиристор ТД 25 Н dd 55 n 14 powerblock тиристор тт 105 н 16 powerblock tt 162
Тиристор Westcode

Реферат: WESTCODE TB 1KHZ тиристор R216Ch22FJO тиристор T 95 F 700 SM12CXC190 тиристор 910 тиристор h 250 tb 16 диодов westcode S антипараллельный тиристор
Текст: нет текста в файле


Сканирование OCR
PDF 151JL Тиристор Westcode WESTCODE TB Тиристор 1 кГц R216Ch22FJO тиристор Т 95 Ф 700 SM12CXC190 тиристор 910 тиристор h 250 тб 16 диоды westcode S Антипараллельный тиристор
OPTOCOUPLER тиристор

Реферат: тиристорный контактор, тиристор, использующий схему перехода через нуль, автомобильный тиристор, все типы тиристоров и приложения Оптопара с тиристором, модуль тиристоров, переключающий нуль, код тиристора BR6000T br6000
Текст: нет текста в файле


Оригинал
PDF IEC60439-1 / 2/3: D-81617 105 / V3 OPTOCOUPLER тиристор тиристорный контактор тиристор с использованием схемы перехода через нуль автомобильный тиристор все типы тиристоров и приложений Оптопара с тиристором Модуль тиристоров переключения с нулевым переходом код тиристора BR6000T br6000
однофазный мостовой полностью управляемый выпрямитель

Реферат: EUPEC DD 105 N 16 L однофазный полностью управляемый выпрямитель 3-фазный тиристорный выпрямительный контур EUPEC DD 151 N 14 k EUPEC tt 105 N 16 тиристор TT 18 N eupec FZ 800 R 16 EUPEC Тиристор B / B0615 DIODE
Текст: нет текста в файле


Оригинал
PDF
1999 — тиристор Т10

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF 120 мА 180 мА тиристор Т10

[PDF] Источники питания и зарядные устройства с тиристорным управлением

1 Источники питания и зарядные устройства с тиристорным управлением Входное напряжение: 115/230 В переменного тока, однофазное, 50/60 Гц или 208 Гц…

Источники питания и зарядные устройства с тиристорным управлением

■ ■ ■

Входное напряжение: 115/230 В переменного тока, однофазное, 50/60 Гц или 208/400/480 В переменного тока, трехфазное, 50/60 Гц Выходное напряжение: 12/24/48/60/72/110/220/400 В постоянного тока Выходной ток: до 3250 А Выходная мощность: 100 Вт — 500 кВт

Источники питания и зарядные устройства с тиристорным управлением представляют собой традиционный метод выпрямления и управления электроэнергия.Преимущества устройств с тиристорным управлением заключаются в простой технической концепции, обеспечивающей надежность и надежность. Типовые области применения

Электростанции Подстанции Распределительные устройства Химические заводы Железнодорожный транспорт Железнодорожные пути Трубопроводные системы Больницы

В зависимости от области применения используются никель-кадмиевые батареи, заливные или свинцово-кислотные батареи с регулируемым клапаном. используется для хранения энергии в системе электроснабжения. Для каждого типа аккумулятора требуется индивидуальная зарядная характеристика, которая может быть реализована с помощью управляющих карт.Кроме того, существует ряд опций и аксессуаров для индивидуальной настройки системы зарядного устройства.

104 Schaefer, Inc. · 200 Баттерфилд Драйв, Эшленд, Массачусетс 01721, США · Тел: 508-881-7330 · Факс: 508-231-0861 · [адрес электронной почты защищен] · www.schaeferpower.com

Тиристорный контроль блоки питания и зарядные устройства

Технические характеристики Входное напряжение. . . . . . . . . . . . . . . . . . . . 230 В переменного тока ± 10%, 1-фазный или 400 В переменного тока ± 10%, 3-фазный (другие напряжения по запросу) Частота.. . . . . . . . . . . . . . . . 50 или 60 Гц ± 5% тока. . . . . . . . . . . . . . . . . . . . см. таблицу Защита. . . . . . . . . . . . . . . . . . предохранителем Выход Номинальное напряжение. . . . . . . . . . . . см. таблицу (другие напряжения по запросу), регулируется в пределах 90–120% от уставки Unom Line (± 10%). . . . . . ± 0,5% Регулировка нагрузки (10 — 90%). . . ± 1% Динамическая нагрузка (10 — 90 — 10%). . ± 10% типичная пульсация. . . . . . . . . . . . . . . . . . . . . ≤ 5% среднеквадратичного значения без батареи, опция:

Источники питания и зарядные устройства с тиристорным управлением Серия QE, тиристорные выпрямители с 1-фазным входом, серия QD, тиристорные выпрямители с 3-фазным входом Опции и аксессуары Выход для управления и контроля стабилизация напряжения

Page 106 107 108 109 110

105 Schaefer, Inc.· 200 Butterfield Drive, Ashland, MA 01721, США · Тел: 508-881-7330 · Факс: 508-231-0861 · [адрес электронной почты защищен] · www.schaeferpower.com

Серия QE

с однофазным входом, 100 Вт — 5 кВт

L1

N

F1 Q1 T1

УПРАВЛЕНИЕ ТИРИСТОРОМ

V3 V4

V1 V2

A1 L1

R5

A

P5 9000 F31 — БАТАРЕЯ

размер корпуса 1)

R2

R3

R4 R5 R5 + 1) 2) 3)

L + + БАТАРЕЯ

Обозначение модели (пример): QE 24/20

V

однофазный вход номинальное выходное напряжение [В] макс.выходной ток [A]

F32

1L1L + DC-LOAD

номинальное выходное напряжение 48 В 60 В 24 В макс. выходной ток [A] 1,2 1 2,5 2,5 2 4 — — 6 4 3,5 8 — — 11 7 6 14 10 8 20 12,5 10 25 16 14 32 20 18 40 30 25 55 40 35 75 55 45100 70 60130

12 В 4 6 9 12 16 22 30 36 50 60 80110 — —

110 В

220 В

— 1-2 — 3,2 5 6 8 10 14 18 25 32

— — — 1 — 1,6 2,5 3 4 5 7 9 12,5 16

ок. сетевой ток 2) [A]

прибл.вес 3) [кг]

0,6 1 1,4 1,6 2 2,7 4 5 6,5 8 11 15 20 26

12 14 15 18 22 26 28 31 40 46 60 73 88 98

Дополнительное оборудование может потребоваться большего размера. Линейный ток относится к номинальному входному напряжению 230 В переменного тока. Вес указан для выпрямителя с тиристорным управлением на монтажной плате без кожуха.

Шкафы для настенного монтажа Обозначение корпуса

вес (пустой) [кг]

высота

ширина

глубина

размеры [мм]

R2

9

300

R3

120002

17

R4 +

26

600

R4T

22

380

R5

31

600

R5 +

600

R5 +

38

000

000

38

000

000

000 600350

Обозначение корпуса напольного монтажа

Вес (пустой) [кг]

R6

66

R6 +

80

R7

127

R7 +

150

150

R8 +

175

R9

250

высота *

ширина

глубина

размеры [мм] 1200

1800

6 00 800 600 800 600

2000

400

800 1200

500 600

*) При необходимости можно добавить высоту несущей рамы, приподнятую крышу и проушины для подвешивания.

106 Schaefer, Inc. · 200 Баттерфилд Драйв, Эшленд, Массачусетс 01721, США · Тел: 508-881-7330 · Факс: 508-231-0861 · [адрес электронной почты защищен] · www.schaeferpower.com

Серия

QD с Трехфазный вход, 1 — 500 кВт L1 L2 L3 F1-F3 Q1

УПРАВЛЕНИЕ ТИРИСТОРОМ

T1

V4 V5 V6

V1 V2 V3

A1 R5

L1

A

P5

P6 F6

V

F31 L- АККУМУЛЯТОР

размер корпуса 1) R4

R5 R5 + R6 R6 + R7 R7 + R8 R8 + R9

2 x R8 +

2 x R9 3 x R9) ) 3)

L + + АККУМУЛЯТОР

24 В 25 40 60 80100125160200240300350400500600700800 1000 1200 1600 2000 2250 2750 3250 — — — — —

F32

1L1L + DC-LOAD

Обозначение модели (пример): QD 60/32 трехфазный вход номинальное выходное напряжение [В] макс.выходной ток [A]

номинальное выходное напряжение 48 В 60 В 110 В макс. выходной ток [A] 12 10 5 20 16 8 30 25 12 40 32 16 50 40 20 60 50 25 80 65 32100 80 40120100 50150120 60170140 70200160 80250200100300240120350280140 400320160500400200250600500800600300 1000800400 11250 1375 1100600 1625 1300700 1800 1450800 2250 1800 1000 — 2750 1500 — — 2000 — — —

220 В

прибл. сетевой ток 2) [A]

2,5 4 6 8 10 12 16 20 25 30 35 40 50 60 70 80100120150200250300350400500750 1000 2000

1.1 2 3 4 5 6 8 10 11 14 16 19 24 28 33 38 48 57 76 95 120 142 166 190 238 356 475 950

прибл. вес 3) [кг] 48 62 74 78 85 95 130 150 180 260 310 340 390 420 450 510 620 680 740 780 920 1000 1180 1300 1450 1630 1875 2390

Дополнительное оборудование может потребоваться большего размера. Линейный ток относится к номинальному входному напряжению 3 x 400 В переменного тока. Вес указан для выпрямителя с тиристорным управлением на монтажной плате без кожуха.

107 Schaefer, Inc. · 200 Баттерфилд Драйв, Эшленд, Массачусетс 01721, США · Тел: 508-881-7330 · Факс: 508-231-0861 · [электронная почта защищена] · www.schaeferpower.com

Опции и аксессуары

Вход ■ ■

MCB, MCCB или плавный пуск изолятора

Выход ■ ■ ■ ■

Резервная работа

Защита от перегрузки с помощью электронного предохранителя 6 или 12-пульсный фильтрация производительности до 0,1% пикового значения (соответствует 0,035% среднеквадратического значения) или 2 мВ частотно-взвешенная стабилизация напряжения

Control

Характеристика IU в соотв. в соответствии с DIN 41773 и 41774 ■

■ ■

ручной выбор зарядной характеристики (плавление / выравнивание / ускорение) автоматический выбор зарядной характеристики с таймером температурной компенсации напряжения заряда

Контроль

аналоговый или управляемый микропроцессором ■ ■ ■ ■ ■ ■

входное напряжение выходное напряжение цепь заземления аккумуляторной батареи перегрев предохранители

интерфейсная плата RS 232 для контроля аккумулятор ■ ■

автоматические выключатели, автоматические выключатели или изоляторы защита от глубокой разрядки

распределительная панель постоянного тока, подключенная в соотв.по спецификации заказчика Механика / окружающая среда ■ ■ ■ ■ ■

шкафы

, IP 20 до IP 55, для зарядного устройства и / или батарей аналоговые или цифровые измерители рабочая температура до 65 ˚C (стандарт от –10 до +40 ˚C) тропическая защита сейсмостойкость

Преобразователи и инверторы ■ ■

импульсные преобразователи постоянного / постоянного тока от 50 Вт до 30 кВт импульсные преобразователи постоянного / переменного тока, преобразователи частоты и статические переключатели от 200 ВА до 30 кВА

108 Schaefer, Inc. · 200 Баттерфилд Драйв, Ашленд, Массачусетс 01721, США · Тел: 508-881-7330 · Факс: 508-231-0861 · [электронная почта защищена] · www.schaeferpower.com

Control & Supervision

Supervision

Блоки с тиристорным управлением обеспечивают постоянное выходное напряжение с ограничением тока в соответствии с характеристикой IU:

Зарядное устройство и аккумулятор можно контролировать с помощью различных съемных конструкций Карты наблюдения. У них есть светодиоды для индикации обнаружения тревоги. Кроме того, доступна светодиодная панель, обычно устанавливаемая на передней двери шкафа. Для удаленной сигнализации предусмотрены беспотенциальные контакты.Дополнительно доступна схема таймера для задержки сигнала тревоги или электронная память для хранения сигнала тревоги до тех пор, пока он не будет сброшен нажатием кнопки.

напряжение

Control

3 2

ограничение напряжения (ускоренная зарядка) выравнивание заряда плавающая зарядка

1

ток

ограничение тока ускоренного заряда

a Кривая 1 показывает режим постоянного напряжения / постоянного тока, оба значения регулируются подстроечным потенциометром.b Кривая 2 показывает операцию выравнивания заряда с постоянным уровнем напряжения, увеличенным на определенную величину, регулируемую подстроечным потенциометром. Этот режим работы запускается вручную нажатием кнопки или автоматически, когда напряжение батареи упало ниже определенного уровня. Прекращается вручную или электронным таймером. c Кривая 3 показывает операцию ускоренного заряда с током, запрограммированным ручкой, и с регулируемым ограничением напряжения. Он запускается только вручную, так как следует обращать внимание на то, чтобы не перезарядить аккумулятор.Прекращается вручную или электронным таймером. Если предел напряжения достигнут, зарядное устройство работает с постоянным напряжением, в то время как ток уменьшается по мере того, как батарея наполняется все больше и больше.

Дополнительно зарядное устройство может быть оснащено опцией «зарядное напряжение с температурной компенсацией». В случае высокой температуры аккумулятора зарядное напряжение будет автоматически снижено.

Контролируемый вход

Аварийный отказ сети

Критерии аварийного сигнала / использование Напряжение одной или нескольких фаз падает ниже регулируемого уровня.Выходной DC High Напряжение нагрузки или аккумулятора превышает регулируемый уровень напряжения. Аварийный сигнал может использоваться для БЛОКИРОВКИ (выключения) зарядного устройства или для отключения нагрузки с помощью контактора. DC Low Напряжение аккумулятора падает ниже регулируемого уровня. Чтобы избежать глубокого разряда батареи, можно активировать контактор для отключения нагрузки. Зарядное устройство Нет тока при низком заряде батареи. Напряжение сбоя. Аккумуляторная батарея Цепь аккумуляторной батареи Отклонение симметрии напряжений Отказ двух аккумуляторных секций относительно центральной точки.Первоначальную асимметрию можно компенсировать регулировкой. Схема определяет такие условия, как короткое замыкание ячеек, прерывание линии или низкое качество соединений между ячейками. Ток заземления от положительного полюса или отрицательного полюса изоляции к земле превышает регулируемый уровень отказа, обычно ± 4 мА.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *