Зарядное устройство на транзисторах: Автомобильное зарядное на транзисторах

Содержание

Автомобильное зарядное на транзисторах

Это автомобильное зарядное устройство может быть использовано для зарядки 12В и 6В аккумуляторов авто или скутера. Если оно использует трансформатор, который может выдать ток 4 — 5А при напряжении в пределах 12,6 — 16V, тогда можно вообще избавиться от переключателя для 6V или 12V батареи.

Схема принципиальная автомобильного зарядного на транзисторах

В этой схеме ток зарядки аккумулятора автоматически ограничивается до 4.2A. Если напряжение на R1 (ток 4A через него) есть 600mV, то транзистор T1 начинает открываться. Избыточный зарядный ток блокируется, поскольку напряжение базы мощных транзисторов делается ограниченным. Разница между приложенным током нагрузки (в коллекторе T4) и реальным напряжением батареи сбалансировано через коллектор-эмиттер T4.

Потребляемая мощность регулируемого транзистора Т4 (2N3055) — это произведение тока нагрузки и падения напряжения на нём.

При зарядке 6V аккумулятора автомобиля это значение достигает максимум 40 ватт. Выпрямительные диоды должны быть в состоянии обеспечить 5A на 40В. T4 — 2N3055 должен быть смонтирован на хорошем радиаторе для отвода тепла. А напоследок некоторые полезные рекомендации по техобслуживанию для увеличения жизни батареи вашего автомобиля.

Советы по техобслуживанию АКБ

  1. Всегда заряжайте батареи с крышками на открытом пространстве.
  2. Заполняйте батарею дистиллированной водой ещё до зарядки. Это уменьшает пространство для накопления газа.
  3. Следите чтоб не было горючих газов или жидкостей вблизи заряжаемой батареи, особенно в ваше отсутствие.
  4. Зарядное устройство должно быть подключено к розетку только после подключения к клеммам аккумуляторной батареи. Это предотвращает образование искр в контактах (при подсоединении проводов).
  5. Не помещайте никакие металлические предметы на аккумулятор, чтобы предотвратить случайное короткое замыкание.
  6. Всегда отсоедините отрицательный вывод АКБ первым.
  7. Ржавчина и окалина, образовывающаяся на клеммах АКБ, создает высокое сопротивление, что приводит к уменьшению тока заряда.
  8. Всегда предпочтительно использовать обычный трансформатор в основе зарядного устройства.
  9. Снимайте зажимы с аккумулятора только после отключения зарядки от сети переменного тока 220В.

Схема и описание автоматического зарядного устройства на микросхеме и транзисторах

 

Схема и описание самодельного автоматического зарядного десульфатирующего устройства для зарядки и восстановления автомобильных аккумуляторов.


Устройство позволяет не только заряжать, но и восстанавливать аккумуляторы с засульфатированными пластинами за счет использования ассиметричного тока при зарядке в режиме заряд (5 А) — разряд (0,5 А) за полный период сетевого напряжения. В устройстве предусмотрена также возможность при необходимости ускорить процесс заряда.

Данное устройство имеет ряд дополнительных функций, способствующих удобству их использования. Так, при окончании заряда схема автоматически отключит аккумулятор от зарядного устройства. А при попытке подключить неисправный аккумулятор (с напряжением ниже 7 В) или же аккумулятор с неправильной полярностью схема не включится в режим заряда, что предохранит зарядное устройство и аккумулятор от повреждений.

В случае короткого замыкания клемм Х1 (+) и Х2 (-) при работе устройства перегорит предохранитель FU1.

Электрическая схема (рис. 1) состоит из стабилизатора тока на транзисторе VT1, контрольного устройства на компараторе D1, тиристора VS1 для фиксации состояния и ключевого транзистора VT2, управляющего работой реле К1.

Рис. 1. Нажмите на рисунок для просмотра.

При включении устройства тумблером SA1 загорится светодиод HL2, и схема будет ждать, пока подсоединим аккумулятор к клеммам Х1, Х2. При правильной полярности подключения аккумулятора небольшой ток, протекающий через диод VD7 и резисторы R14, R15 в базу VT2, будет достаточным, чтобы транзистор открылся и сработало реле К1.

При включении реле транзистор VT1 начинает работать в режиме стабилизатора тока — в этом случае будет светиться светодиод HL1. Ток стабилизации задается номиналами резисторов в эмиттерной цепи VT1, а опорное напряжение для работы получено на светодиоде HL1 и диоде VD6 .

Стабилизатор тока работает на одной полуволне сетевого напряжения. В течение второй полуволны диоды VD1, VD2 закрыты и аккумулятор разряжается через резистор R8. Номинал R8 выбран таким, чтобы ток разряда составлял 0,5 А. Экспериментально установлено, что оптимальным является режим заряда током 5 А, разряда — 0,5 А.

Пока идет разряд, компаратор производит контроль напряжения на аккумуляторе, и при превышении значения 14,7 В (уровень устанавливается при настройке резистором R10) он включит тиристор. При этом начнут светиться светодиоды HL3 и HL2. Тиристор закорачивает базу транзистора VT2 через диод VD9 на общий провод, что приведет к выключению реле. Повторно реле не включится, пока не будет нажата кнопка СБРОС (SB1) или же не отключена на некоторое время вся схема (SA1).

Для устойчивой работы компаратора D1 его питание стабилизировано стабилитроном VD5. Чтобы компаратор сравнивал напряжение на аккумуляторе с пороговым (установленным на входе 2) только в момент, когда производится разряд, пороговое напряжение цепью из диода VD3 и резистора R1 повышается на время заряда аккумулятора, что исключит его срабатывание. Когда происходит разряд аккумулятора, эта цепь в работе не участвует.

При изготовлении конструкции транзистор VT1 устанавливается на радиатор площадью не менее 200 кв. см.

Силовые цепи от клемм Х1, Х2 и трансформатора Т1 выполняются проводом с сечением не менее 0,75 кв. мм.

В схеме применены конденсаторы С1 типа К50-24 на 63 В, С2 — К53-4А на 20 В, подстроечный резистор R10 типа СП5-2 (многооборотный).

постоянные резисторы R2…R4 типа С5-16МВ, R8 типа ПЭВ-15, остальные — типа С2-23. Реле К1 подойдет любое, с рабочим напряжением 24 В и допустимым током через контакты 5 А; тумблеры SA1, SA2 типа Т1, кнопка SB1 типа КМ1-1.

Для регулировки зарядного устройства потребуется источник постоянного напряжения с перестройкой от 3 до 15 В. Удобно воспользоваться схемой соединений, показанной на рис. 2

Рис. 2. Нажмите на рисунок для просмотра.

Настройку начинаем с подбора номинала резистора R14. Для этого от блока питания А1 подаем напряжение 7 В и изменением номинала резистора R14 добиваемся, чтобы реле К1 срабатывало при напряжении не менее 7 В. После этого увеличиваем напряжение с источника А1 до 14,7 В и настраиваем резистором R10 порог срабатывания компаратора (для возврата схемы в исходное состояние после включения тиристора надо нажать кнопку SB1). Может также потребоваться подбор резистора R1.

В последнюю очередь настраиваем стабилизатор тока.

Для этого в разрыв цепи коллектора VT1 в точке «А» временно устанавливаем стрелочный амперметр со шкалой 0…5 А. Подбором резистора R4 добиваемся показаний по амперметру 1,8 А (для амплитуды тока 5 А), а после этого при включенном SA2 настраиваем R4, значение 3,6 А (для амплитуды тока 10 А).

Разница в показании стрелочного амперметра и фактической величины тока связана с тем, что амперметр усредняет измеряемую величину за период сетевого напряжения, а заряд производится только в течение половины периода.

В заключение следует отметить, что окончательную настройку тока стабилизатора лучше проводить на реальном аккумуляторе в установившемся режиме — когда транзистор VT1 прогрелся и эффект роста тока за счет изменения температуры переходов в транзисторе не наблюдается. На этом настройку можно считать законченной.

По мере заряда аккумулятора напряжение на нем будет постепенно возрастать, и, когда оно достигнет значения 14,7 В, схема автоматически отключит цепи заряда.

Автоматика также отключит процесс зарядки в случае каких-то других непредвиденных воздействий, например при пробое VT1 или же исчезновении сетевого напряжения. Режим автоматического отключения может также срабатывать при плохом контакте в цепях от зарядного устройства до аккумулятора. В этом случае надо нажать кнопку СБРОС (SB1).

Читать далее — Самодельное зарядное устройство на симисторе

Популярные схемы зарядных устройств:

Схема тиристорного зарядного устройства

Десульфатирующее зарядное устройство

Простое зарядное устройство

Схема автомата включения-выключения зарядного устройства


Зарядное устройство на транзисторах IRF540 • HamRadio

Зарядное устройство на транзисторах IRF540 в качестве примера приведу очень простое зарядное устройство для свинцово-кислотных аккумуляторов, которое использует переключающие свойства транзисторов NF-MOSFET серии IRF540 для регулирования тока зарядки. Принципиальная схема зарядное устройство на транзисторах IRF540 показана на рисунке.

Вторичное выходное напряжение от сетевого трансформатора 16В и током 6А подается на входные клеммы P1 печатной платы, затем оно выпрямляется двумя мостовым выпрямителем на диодах D1-D4 и сглаживается электролитическим конденсатором C1. Зарядный ток регулируется двумя силовыми транзисторами N-MOS типа IRF540 (T1, T2), которые соединены параллельно. Транзисторы открываются положительными импульсами напряжения, которые формируются выпрямлением переменного напряжения с клеммной колодки P1 при помощи диодов D5 и D6.

Ток зарядки регулируется потенциометром R3. Подстроечный резистор R1 устанавливает максимальный ток, а R2 минимальный (он может быть практически равен нулю) зарядного тока (настройки обоих потенциометров взаимодействуют). От регулирующего потенциометра R3 импульсы управления подаются на управляющие электроды транзисторов T1 и T2 через диод D7. Резистор R6 формирует нагрузку диода D7, стабилитрон D8 вместе с резисторами R4 и R5 защищают управляющие электроды транзисторов от чрезмерного напряжения.

 

Силовой диод D9 вместе с предохранителем F1 (F 5 A) защищает зарядное устройство в случае неправильно подключенной (с обратной полярностью) батареи. Предохранитель F1 не показан на схеме на рисунке и подключен к цепи зарядного тока за клеммной колодкой P2 (но все же дорисовал предохранитель что бы не вводить в заблуждение). Среднее значение зарядного тока измеряется амперметром AMP1 с диапазоном 10А. Печатная плата зарядное устройство на транзисторах IRF540 приведена на рисунке, а также расположение компонентов на следующем в тексте статьи.

Оба транзистора установлены на общем радиаторе. Не плохо применить вентилятор охлаждения. Измеритель AMP1 можно использовать любой подходящий с диапазоном измерения 10А. Перед вводом в эксплуатацию зарядного устройства установите подстроечный резистор R1 в среднее положение, а R2 на наименьшее сопротивление и ползунок потенциометра R3 повернуть к общему проводу. Например, к выходу зарядного устройства подключаем автомобильную лампу мощностью 12В / 45 до 55 Вт.

После включения зарядного устройства медленно увеличивайте напряжение на управляющих электродах транзисторов T1 и T2 при помощи потенциометра R3. Транзисторы должны открываться при напряжении около 2,5В. Все это контролируем по амперметру AMP1 по мере увеличения выходного тока. Когда амперметр отреагирует на изменение тока, мы можем отключить лампочку нагрузки.

Далее возвращаем потенциометр R3 в исходное положение, подключаем заряженную свинцово-кислотную батарею и постепенно увеличиваем зарядный ток до 6А. Установите максимальный выбранный зарядный ток с помощью подстроечного резистора R1 и минимальный R3. Рекомендуется повторить настройку подстроечников несколько раз, так как изменение положения бегунка каждого из резисторов влияет на оба предела зарядного тока (минимальный, максимальный). Зарядное устройство очень простое и работает при первом включении. Ток зарядки почти постоянен до конца цикла зарядки (немного уменьшается к концу зарядки).

Навигация по записям

Зарядное для аккумулятора автомобиля.

Электронные схемы Кравцова Виталия. Авторская страница изобретателя

ЗАРЯДНОЕ  УСТРОЙСТВО  С  МОЩНЫМ  МОП   n-КАНАЛЬНЫМ  ТРАНЗИСТОРОМ

 

             Все ранее рассмотренные схемы зарядных устройств  в качестве силового ключа использовали мощные  p-n-p или  n-p-n   транзисторы, которые позволяли  получить  достаточно большой ток  при небольшом количестве  электронных элементов.  Однако  у  используемых биполярных транзисторов  имеется существенный недостаток — большое падение напряжения  коллектор-эмиттер  в режиме насыщения, достигающее  2 … 2,5 В  у составных транзисторов, что приводит  к  их повышенному  нагреву  и  необходимости установки транзисторов на  большой радиатор.  Гораздо  экономичней вместо  биполярных транзисторов устанавливать  силовые МОП  (MOSFET) транзисторы, которые  при тех же токах  имеют  гораздо меньшее ( в 5 -10 раз)  падение напряжения  на открытом переходе сток-исток.

Проще всего вместо силового  p-n-p  транзистора  установить  мощный  p-канальный полевой транзистор, ограничив с помощью  дополнительного стабилитрона напряжение между истоком и затвором на уровне 15В.  Параллельно стабилитрону подключается резистор сопротивлением около 1 кОм для быстрой разрядки ёмкости  затвор-исток.  

          Гораздо  более распространены и доступней  силовые  n— канальные  МОП транзисторы, но  принципиальная схема устройства с такими транзисторами несколько усложняется, т.к. для  полного открытия  канала сток-исток  на затвор необходимо  подать напряжение на 15 В выше напряжения  силовой части.

          Ниже рассмотрена схема такого устройства.   Основа конструкции мало отличается от  ранее рассмотренных устройств на биполярных силовых транзисторах.  С помощью конденсаторов С1-С3 и диодов VD1-VD5  в схеме формируется  повышенное на 15 В  напряжение, которое с помощью транзисторов VT2, VT3  подаётся на затвор полевого транзистора  VT1.

          В схеме  желательно использовать  MOSFET  с наиболее низким сопротивлением  открытого канала, но максимальное допустимое напряжение  этих транзисторов должно быть  в 1,5  — 2 раза  выше напряжения силовой цепи.  В качестве диода VD8 желательно использовать диоды с барьером Шоттки  с рабочим напряжением выше максимального в силовой цепи,  в крайнем случае можно использовать КД213А или КД2997, КД2799, но их придётся установить на небольшой радиатор.   Требования  к изготовлению накопительного дросселя DR1 изложены  в публикациях по зарядным устройствам  с биполярными ключевыми  транзисторами ( см. остальные схемы раздела).    

        При отсутствии  подходящего проволочного резистора, используемого в качестве токового шунта R17  схему можно доработать,  используя небольшой отрезок  манганинового провода диаметром 2 мм  или мощные проволочные резисторы сопротивлением 0,01 …0,05 Ом. Нормализацию  напряжения на токовом шунте  осуществляют с помощью усилителя на  любом доступном  ОУ.     Как это сделать? — смотри  следующую страницу :  Лабораторный блок питания  с усилителем -нормализатором  напряжения шунта.

 

Остальные схемы смотри далее:

1.  Зарядные устройства для автомобильных аккумуляторов ( главная страница раздела зарядных устройств для автомобилей)

2.  Зарядное устройство с автоматическим отключением от сети

3. Зарядное устройство с ключевым стабилизатором тока

4.  Зарядное устройство с микросхемой TL494

5.  Зарядное устройство с микросхемой TL494 и нормализатором напряжения шунта

6. Зарядное устройство с цифровой индикацией тока и напряжения.

7.  Зарядное устройство с цифровой индикацией и повышенным выходным током до 20А

8.  Зарядное устройство на тиристоре с улучшенными характеристиками и с использованием микросхемы TL494

9.  Зарядное устройство на двух тиристорах и с использованием микросхемы TL494

10.   Зарядное устройство для кислотно-свинцовых необслуживаемых аккумуляторов ёмкостью 4 … 17А/час

11.  Лабораторный блок питания 1,5 -30В, 0-5А + зарядное устройство на MOSFET транзисторе

12.  Лабораторный блок питания + зарядное устройство с усилителем напряжения шунта

13.  Лабораторный блок питания + зарядное устройство с узлом аварийной защиты

14.  Зарядное устройство с периодическим контролем ЭДС аккумулятора ( главная страница раздела зарядных устройств)

 

ЗАРЯДНОЕ УСТРОЙСТВО НА ОДНОМ ТРАНЗИСТОРЕ


   Мобильное зарядное устройство для мобильного телефона на одном транзисторе — метод повышения надежности. Существует множество конструкций и схем зарядных устройств для мобильных телефонов. Сегодня мы поговорим о характеристиках и схемах зарядных устройств выполненных на двух транзисторах. Чаще всего выходное напряжение у зарядных устройств ограничено 7.8 вольтами. Под нагрузкой 0.5 ампер напряжение падает примерно до 4-5 вольт, что достаточно для зарядки мобильного телефона.

   Главная часть всей конструкции — трансформатор, выполнен он на ферромагнитном сердечке и в основном содержит 3 отдельные обмотки. иногда Обмотки подсоединены к «минусу» одним концом. Второй конец никуда не подцеплен. Иногда трансформатор может содержать дополнительные обмотки, эти обмотки могут играют роль экранов и применяются также для динамического подавления возможных ЭМИ помех, возникающих во время работы импульсного трансформатора. Сотовые телефоны комплектуют зарядными устройствами, построенными на основе обратноходового импульсного преобразователя напряжения, часто такие зарядные устройства собраны по упрощенной схеме и имеют невысокую надежность. Это как правило китайские зарядные устройства выполненные по схеме одного транзистора. Напряжение сети через резистор, который иногда выполняет функции предохранителя, поступает на мостовой выпрямитель (диодный мост), выполнен на любых диодах с напряжением на 400 вольт. Далее напряжение сглаживается конденсатором.  

   Производители зарядных устройств, сетевые фильтры для подавления помех используют очень редко (их можно встретить в оригинальных зарядниках нокия), кроме того, часто применяют не мостовой, а однополупериодный выпрямитель. Стабилизация выходного напряжения осуществляется разными методами. Для этого напряжение обмотки III трансформатора выпрямляется диодом, сглаживается конденсатором и через стабилитрон поступает на базу транзистора. В момент подключения зарядного устройства к сети, а также при резких колебаниях напряжения в сети ток через первый транзистор превышает максимально допустимое значение, что приводит к выходу его из строя, чаще всего такие проблемы имеют зарядники на одном транзисторе. 

   В большинстве случаев выходят из строя также резисторы и стабилитрон. Для повышения надежности зарядного устройства предлагается его доработка, заключающаяся во введении дополнительных элементов VT2, R8, обведенных на схеме штрихпунктирной линией. При увеличении тока через транзистор VT1 более 60…70 мА транзистор VT2 открывается и шунтирует базовую цепь транзистора VT1, ограничивая протекающий через через первый транзистор ток. Можно применить транзисторы типа КТ315, КТ3102 с любыми буквенными индексами, резистор любой на 1 ватт. 


Поделитесь полезными схемами

ЛОГИЧЕСКИЕ ЭЛЕМЕНТЫ

   Элементы математической логики — логические элементы. Цифровые микросхемы предназначены для выполнения определенных логических действий над входными сигналами. Если, например, на выходе цифровой микросхемы должно появиться напряжение высокого уровня в том случае, если напряжение высокого уровня присутствует хотя бы на одном из выходов, то говорят, что данная микросхема выполняет логическую операцию ИЛИ.


USB DAC — СХЕМА ЦАП

   Преобразователь цифрового сигнала компьютера, снимаемого с USB,  обычный аналоговый НЧ.


ВЫЖИГАТЕЛЬ ПО ДЕРЕВУ

   Электронный трансформатор поможет вам создать простой и безопастный электровыжигатель по дереву.



РЕГУЛЯТОР МОЩНОСТИ НА СИМИСТОРЕ

   Простой регулятор мощности на симисторе и динисторе DB-3 — классическая, проверенная 1000 раз схема. Плюс ещё один вариант, без использования редких деталей.


Схема автомобильного зарядного устройства

Как правило, во всех зарядных устройствах, регулировка тока зарядки осуществляется мощным тиристором или транзистором которые установлены на большом радиаторе и занимающие много места и не малые по весу. Соответственно из-за больших нагревов регулирующих элементов уменьшается коэффициент полезного действия и надежность всего узла. В автомобильном зарядном устройстве, которое предлагается в этой статье, эти недостатки устранены.

Схема автомобильного зарядного устройства работающего по принципу импульсного регулятора тока представлена на рисунке ниже.

Генератор импульсов, собранный на двух логических элемента 2И-НЕ (DD1.1 и DD1.2), является собственно блоком управления нашего зарядного. Резистором R3 регулируется скважность импульсов вырабатываемых данным блоком.

Элементы DD1.3 и DD1.4, включенные параллельно, выступают в роли буферного усилителя и инвертора выходного сигнала генератора. А полевой транзистор VT1 это регулятор тока.

При параметрах деталей, которые указаны на схеме, частота вырабатываемых импульсов будет составлять около 13 килогерц.

Принцип регулировки тока зарядки основан на изменении частоты генератора. При увеличении частоты скважность импульсов будет уменьшаться, соответственно будет уменьшаться и ток, протекающий через транзистор и аккумулятор, так как транзистор, будет меньше времени находится в открытом состоянии за период. При уменьшении частоты все наоборот.

В открытом состоянии сопротивление транзистора составляет примерно 0,017 Ом. Но так как он работает в режиме ключа на частоте около 13 килогерц, то при токе зарядки аккумулятора 5 ампер нагрев практически отсутствует. И тепловая мощность, рассеиваемая им в атмосферу, будет всего около 0.55 ватта. Соответственно площадь радиатора будет совсем небольшой, или же вообще можно обойтись без радиатора.

Для надежной работы зарядного устройства трансформатор Т1 должен быть мощностью ни менее 150 ватт, с вторичной обмоткой которая обеспечит 16-17 вольт на сглаживающем конденсаторе С1, и током ни менее 6 ампер. Но еще лучше будет, если использовать так называемый «электронный трансформатор», который применяется с галогенными лампами на 12 вольт. Это транзисторный преобразователь с трансформаторным выходом. Его преимуществом является малый размер и меньшее потребление энергии. Можно использовать широко распространенный трансформатор выпускаемый фирмой «Taschibra», мощностью 150 ватт и напряжением 12 вольт. Но для этого его необходимо немного переделать. Нужно домотать вторичную обмотку. Она у него состоит из 4-х параллельных проводов (жгута), каждый 1 мм, 9 витков. Дополняем вторичку еще тремя витками такого же жгута. Это можно сделать не разбирая ферритовый магнитопровод. После такой доработки, напряжение на конденсаторе C1 повысится до необходимых нам 17 вольт, при нагрузке 5,5 ампер.

Далее после трансформатора стоит диодный мост, собранный из диодов Шоттки. При этом VD1 это два диода в одном корпусе (можно и раздельно), VD2-VD3 дискретные. Все диоды устанавливаются на радиаторе через изолирующую прокладку с теплопроводной пастой.

Транзистор то же устанавливается на радиаторе из меди или алюминия размером 50х50х1 мм.

Амперметр взят от бытового магнитофона советского производства М476/2. Можно установить и любой другой, подобрав при этом шунт.

Конденсатор C1 желательно установить как можно большей емкости на напряжение не ниже 25 вольт. C2 примерно 10МкФ 16 вольт.

Микросхему К561ЛА7 можно заменить импортным аналогом, а транзистор на IRFZ44N.

Данное устройство можно использовать не только как зарядное, но и как регулятор мощности различных нагревательных и осветительных приборов или регулировки частоты вращения коллекторных двигателей. При этом выходное напряжение и ток зависят только от номиналов деталей схемы.

Еще одной особенностью этой схемы является возможность регулировать ток от нуля до максимального, в отличие от многих других схем.

 


Анекдот:

Внимательно вчитавшись в название «Калгон»,
я подумал, что оно идеально бы подошло для слабительного.

Обзор схем зарядных устройств автомобильных аккумуляторов. Обзор схем зарядных устройств автомобильных аккумуляторов Для схемы «Простой терморегулятор»

Это зарядное устройство я сделал для зарядки автомобильных аккумуляторов, выходное напряжение 14.5 вольт, максимальный ток заряда 6 А. Но им можно заряжать и другие аккумуляторы, например литий-ионные, так как выходное напряжение и выходной ток можно регулировать в широких пределах. Основные компоненты зарядного устройства были куплены на сайте АлиЭкспресс.

Вот эти компоненты:

Еще потребуется электролитический конденсатор 2200 мкФ на 50 В, трансформатор для зарядного устройства ТС-180-2 (как распаивать трансформатор ТС-180-2 посмотрите в ), провода, сетевая вилка, предохранители, радиатор для диодного моста, крокодилы. Трансформатор можно использовать другой, мощностью не менее 150 Вт (для зарядного тока 6 А), вторичная обмотка должна быть рассчитана на ток 10 А и выдавать напряжение 15 – 20 вольт. Диодный мост можно набрать из отдельных диодов, рассчитанных на ток не менее 10А, например Д242А.

Провода в зарядном устройстве должны быть толстые и короткие. Диодный мост нужно закрепить на большой радиатор. Необходимо нарастить радиаторы DC-DC преобразователя, или использовать для охлаждения вентилятор.




Сборка зарядного устройства

Подсоедините шнур с сетевой вилкой и предохранителем к первичной обмотке трансформатора ТС-180-2, установите диодный мост на радиатор, соедините диодный мост и вторичную обмотку трансформатора. Припаяйте конденсатор к плюсовому и минусовому выводам диодного моста.


Подключите трансформатор к сети 220 вольт и произведите замеры напряжений мультиметром. У меня получились такие результаты:

  1. Переменное напряжение на выводах вторичной обмотки 14.3 вольта (напряжение в сети 228 вольт).
  2. Постоянное напряжение после диодного моста и конденсатора 18.4 вольта (без нагрузки).

Руководствуясь схемой, соедините с диодным мостом DC-DC понижающий преобразователь и вольтамперметр.

Настройка выходного напряжения и зарядного тока

На плате DC-DC преобразователя установлены два подстроечных резистора, один позволяет установить максимальное выходное напряжение, другим можно выставить максимальный зарядный ток.

Включите зарядное устройство в сеть (к выходным проводам ничего не подсоединено), индикатор будет показывать напряжение на выходе устройства, и ток равный нулю. Потенциометром напряжения установите на выходе 5 вольт. Замкните между собой выходные провода, потенциометром тока установите ток короткого замыкания 6 А. Затем устраните короткое замыкание, разъединив выходные провода и потенциометром напряжения, установите на выходе 14.5 вольт.

Данное зарядное устройство не боится короткого замыкания на выходе, но при переполюсовке может выйти из строя. Для защиты от переполюсовки, в разрыв плюсового провода идущего к аккумулятору можно установить мощный диод Шоттки. Такие диоды имеют малое падение напряжения при прямом включении. С такой защитой, если перепутать полярность при подключении аккумулятора, ток протекать не будет. Правда этот диод нужно будет установить на радиатор, так как через него при заряде будет протекать большой ток.


Подходящие диодные сборки применяются в компьютерных блоках питания. В такой сборке находятся два диода Шоттки с общим катодом, их нужно будет запараллелить. Для нашего зарядного устройства подойдут диоды с током не менее 15 А.


Нужно учитывать, что в таких сборках катод соединен с корпусом, поэтому эти диоды нужно устанавливать на радиатор через изолирующую прокладку.

Необходимо еще раз отрегулировать верхний предел напряжения, с учетом падения напряжения на диодах защиты. Для этого, потенциометром напряжения на плате DC-DC преобразователя нужно выставить 14.5 вольт измеряемых мультиметром непосредственно на выходных клеммах зарядного устройства.

Как заряжать аккумулятор

Протрите аккумулятор тряпицей смоченной в растворе соды, затем насухо. Выверните пробки и проконтролируйте уровень электролита, если необходимо, долейте дистиллированную воду. Пробки во время заряда должны быть вывернуты. Внутрь аккумулятора не должны попадать мусор и грязь. Помещение, в котором происходит заряд аккумулятора должно хорошо проветриваться.

Подключите аккумулятор к зарядному устройству и включите устройство в сеть. Во время заряда напряжение будет постепенно расти до 14.5 вольт, ток будет со временем уменьшаться. Аккумулятор можно условно считать заряженным, когда зарядный ток упадет до 0.6 – 0.7 А.

Соблюдение режима эксплуатации аккумуляторных батарей, и в частности режима зарядки, гарантирует их безотказную работу в течение всего срока службы. Зарядку аккумуляторных батарей производят током, значение которого можно определить по формуле

где I — средний зарядный ток, А., а Q — паспортная электрическая емкость аккумуляторной батареи, А-ч.

Классическая зарядного устройства для автомобильного аккумулятора состоит из понижающего трансформатора, выпрямителя и регулятора тока зарядки. В качестве регуляторов тока применяют проволочные реостаты (см. Рис. 1) и транзисторные стабилизаторы тока.

В обоих случаях на этих элементах выделяется значительная тепловая мощность, что снижает КПД зарядного устройства и увеличивает вероятность выхода его из строя.

Для регулировки зарядного тока можно использовать магазин конденсаторов, включаемых последовательно с первичной (сетевой) обмоткой трансформатора и выполняющих функцию реактивных сопротивлений, гасящих избыточное напряжение сети. Упрощенная такого устройства приведена на рис. 2.

В этой схеме тепловая (активная) мощность выделяется лишь на диодах VD1-VD4 выпрямительного моста и трансформаторе, поэтому нагрев устройства незначителен.

Недостатком на Рис. 2 является необходимость обеспечить напряжение на вторичной обмотке трансформатора в полтора раза большее, чем номинальное напряжение нагрузки (~ 18÷20В).

Схема зарядного устройства, обеспечивающее зарядку 12-вольтовых аккумуляторных батарей током до 15 А, причем ток зарядки можно изменять от 1 до 15 А ступенями через 1 А, приведена на Рис. 3.

Предусмотрена возможность автоматического выключения устройства, когда батарея полностью зарядится. Оно не боится кратковременных коротких замыканий в цепи нагрузки и обрывов в ней.

Выключателями Q1 — Q4 можно подключать различные комбинации конденсаторов и тем самым регулировать ток зарядки.

Переменным резистором R4 устанавливают порог срабатывания К2, которое должно срабатывать при напряжении на зажимах аккумулятора, равном напряжению полностью заряженной батареи.

На Рис. 4 представлена еще одного зарядного устройства, в котором ток зарядки плавно регулируется от нуля до максимального значения.

Изменение тока в нагрузке достигается регулированием угла открывания тринистора VS1. Узел регулирования выполнен на однопереходном транзисторе VT1. Значение этого тока определяется положением движка переменного резистора R5. Максимальный ток заряда аккумулятора 10А, устанавливается амперметром. устройства обеспечена со стороны сети и нагрузки предохранителями F1 и F2.

Вариант печатной платы зарядного устройства (см. рис. 4), размером 60х75 мм приведен на следующем рисунке:

В схеме на рис. 4 вторичная обмотка трансформатора должна быть рассчитана на ток, втрое больший зарядного тока, и соответственно мощность трансформатора также должна быть втрое больше мощности, потребляемой аккумулятором.

Названное обстоятельство является существенным недостатком зарядных устройств с регулятором тока тринистором (тиристором).

Примечание:

Диоды выпрямительного мостика VD1-VD4 и тиристор VS1 необходимо установить на радиаторы.

Значительно снизить потери мощности в тринисторе, а следовательно, повысить КПД зарядного устройства можно, регулирующий элемент перенести из цепи вторичной обмотки трансформатора в цепь первичной обмотки. такого устройства показана на рис. 5.

В схеме на Рис. 5 регулирующий узел аналогичен примененному в предыдущем варианте устройства. Тринистор VS1 включен в диагональ выпрямительного моста VD1 — VD4. Поскольку ток первичной обмотки трансформатора примерно в 10 раз меньше тока заряда, на диодах VD1-VD4 и тринисторе VS1 выделяется относительно небольшая тепловая мощность и они не требуют установки на радиаторы. Кроме того, применение тринистора в цепи первичной обмотки трансформатора позволило несколько улучшить форму кривой зарядного тока и снизить значение коэффициента формы кривой тока (что также приводит к повышению КПД зарядного устройства). К недостатку этого зарядного устройства следует отнести гальваническую связь с сетью элементов узла регулирования, что необходимо учитывать при разработке конструктивного исполнения (например, использовать переменный резистор с пластмассовой осью).

Вариант печатной платы зарядного устройства на рисенке 5, размером 60х75 мм приведен на рисунке ниже:

Примечание:

Диоды выпрямительного мостика VD5-VD8 необходимо установить на радиаторы.

В зарядном устройстве на рисунке 5 диодный мостик VD1-VD4 типа КЦ402 или КЦ405 с буквами А, Б, В. Стабилитрон VD3 типа КС518, КС522, КС524, или составленный из двух одинаковых стабилитронов с суммарным напряжением стабилизации 16÷24 вольта (КС482, Д808, КС510 и др.). Транзистор VT1 однопереходной, типа КТ117А, Б, В, Г. Диодный мостик VD5-VD8 составлен из диодов, с рабочим током не менее 10 ампер (Д242÷Д247 и др.). Диоды устанавливаются на радиаторы площадью не менее 200 кв.см, а радиаторы будут сильно нагреваться, в корпус зарядного устройства можно установить вентилятор для обдува.

Схема десульфатирующего зарядного устройства предложена Самунджи и Л. Симеоновым. Зарядное устройство выполнено но схеме одпополупериодного выпрямителя на диоде VI с параметрической стабилизацией напряжения (V2) и усилителем тока (V3, V4). Сигнальная лампочка Н1 горит при включенном в сеть трансформаторе. Средний зарядный ток приблизительно 1,8 А регулируется подбором резистора R3. Разрядный ток задается резистором R1. Напряжение на вторичной обмотке трансформатора равно 21 В (амплитудное важность 28 В). Напряжение на аккумуляторе при номинальном зарядном токе равно 14 В. Поэтому зарядный ток аккумулятора возникает лишь тогда, когда амплитуда выходного напряжения усилителя тока превысит напряжение аккумулятора. Описание микросхемы 0401 За пора одного периода переменного напряжения формируется один импульс зарядного то-ка в течение времени Тi. Разряд аккумулятора происходит в течение времени Тз= 2Тi. Поэтому амперметр показывает среднее важность зарядного тока, равное примерно одной трети от амплитудного значения суммарного зарядного и разрядного токов. В зарядном ycтройстве можно использовать трансформатор ТС-200 от телевизора. Вторичные обмотки с обеих катушек трансформатора снимают и проводом ПЭВ-2 1,5 мм наматывают новую обмотку, состоящую из 74 витков (по 37 витков на каждой катушке). Транзистор V4 устанавливают на радиатор с эффективной площадью поверхности приблизительно 200 см кв. Детали: Диоды VI типа Д242А. Д243А, Д245А. Д305, V2 один или два включенных последовательно стабилитрона Д814А, V5 типа Д226: транзисторы V3 типа КТ803А, V4 типа КТ803А или КТ808А.При настройке…

Для схемы «Зарядное устройство для герметичных кислотно-свинцовых аккумуляторов»

Многие из нас для освещения в случае отключения электроэнергии используют импортные фонари и светильники. Источник питания в них — герметичные кислотно-свинцовые аккумуляторные батареи небольшой емкости, для зарядки которых встроенные примитивные зарядные устройства, не обеспечивающие нормального режима. В результате срок службы батареи немаловажно уменьшается. Поэтому надобно применять более совершенные зарядные устройства, исключающие возможную перезарядку батареи.Подавляющее большинство промышленных зарядных устройств ориентировано на эксплуатацию совместно с автомобильными аккумуляторными батареями, поэтому их применение для зарядки батарей малой емкости нецелесообразно. Применение специализированных импортных микросхем экономически невыгодно, поскольку цена(у) такой микросхемы порой в несколько раз превышает цена(у) самого аккумулятора.Автор предлагает свой вариант для подобных аккумуляторных батарей. Схемы конвертера радиолюбителя Мощность, выделяемая на этих резисторах, Р = R.Iзар2 = 7,5. 0,16 = 1,2 Вт.Для уменьшения степени нагрева в ЗУ применены два резистора по 15 Ом мощностью 2 Вт, включенных параллельно.Вычислим сопротивление резистора R9:R9=Uобр VT2 . R10/(Iзар. R — Uобр VT2)=0,6 . 200/(0,4 . 7,5 — 0.6) = 50 Ом.Выбираем резистор с ближайшим к рассчитанному сопротивлением 51 Ом.В устройстве применены импортные оксидные конденсаторы Реле JZC-20F с напряжением срабатывания 12 В. Можно применить и другое реле, имеющееся в наличии, однако в этом случае придется подкорректировать печатную плату. …

Для схемы «ЗАРЯДНОЕ УСТРОЙСТВО ДЛЯ СТАРТЕРНЫХ БАТАРЕЙ АККУМУЛЯТОРОВ»

Автомобильная электроникаЗАРЯДНОЕ УСТРОЙСТВО ДЛЯ СТАРТЕРНЫХ БАТАРЕЙ АККУМУЛЯТОРОВПростейшее зарядное устройство для автомобильных и мотоциклетных аккумуляторных батарей, как правило, состоит из понижающего трансформатора и подключенного к его вторичной обмотке двухполупериодного выпрямителя . Последовательно с батареей включают мощный реостат для установки необходимого тока. Однако такая конструкция получается очень громоздкой и излишне энергоемкой, а другое способы регулирования тока обычно ее существенно усложняют. В промышленных зарядных устройствах для выпрямления зарядного тока и изменения его значения иногда применяют тринисторы КУ202Г. Здесь следует отметить, что прямое напряжение на включенных тринисторах при большом зарядном токе может добиваться 1,5 В. Симистор тс112 и схемы на нем Из-за этого они сильно нагреваются, а по паспорту температура корпуса тринистора не должна превышать +85°С. В таких устройствах приходится принимать меры по ограничению и температурной стабилизации зарядного тока, что приводит к дальнейшему их усложнению и удорожанию.Описываемое ниже сравнительно простое зарядное устройство имеет широкие пределы регулирования тока — практически от нуля до 10 А — и может быть использовано для зарядки различных стартерных батарей аккумуляторов на напряжение 12 В. В основу (см. схему) положен симисторный регулятор, опубликованный в , с дополнительно введенными маломощным диодны…

Для схемы «Простой терморегулятор»

Для схемы «Устройство удержания телефонной линии»

ТелефонияУстройство удержания телефонной линии Предлагаемое устройствовыполняет функцию удержания телефонной линии («HOLD»), чтопозволяет во час разговора положить трубку на рычаг и перейти кпараллельному телефонному аппарату. Устройство не перегружает телефонную линию (ТЛ) ине создает в ней помех. Во час срабатывания вызывающий абонент слышитмузыкальную заставку. Схема устройства удержания телефонной линиипоказана на рисунке. Выпрямительный мост на диодах VD1-VD4 обеспечиваетнужную полярность питания устройства независимо от полярности подключенияего к ТЛ. Переключатель SF1 связан с рычагом телефонного аппарата (ТА) изамыкается при поднятии трубки (т.е. блокирует кнопку SB1 при положенной трубке). Если во час разговора нужно перейти к параллельному ТА, надократковременно нажать кнопку SB1. При этом срабатывает реле K1 (замыкаются контакты K1.1, а контакты K1.2 размыкаются), к ТЛ подключается эквивалентнагрузки (цепь R1R2K1) и отключается ТА, с которого велся разговор. Как подключить реостат к зарядному устройству Теперьможно положить трубку на рычаг и перейти к параллельному ТА. Падение напряжения на эквиваленте нагрузкисоставляет 17 В. При поднятии трубки на параллельном ТА напряжение в ТЛпадает до 10 В, реле K1 отключается и эквивалент нагрузки отключается отТЛ. Транзистор VT1 должен иметь коэффициент передачине менее 100, при этом амплитуда переменного напряжения звуковой частоты,выдаваемого в ТЛ, достигает 40 мВ. В качестве музыкального синтезатора (DD1)использована микросхема УМС8, в которой «зашиты» две мелодии исигнал будильника. Поэтому вывод 6 («выбор мелодии») соединен свыводом5. В этом случае воспроизводится один раз первая мелодия, а затемвторая бесконечно. В качестве SF1 можно использоватьмикропереключатель МП или геркон, управляемый магнитом (магнит должен быть приклеен к рычагу ТА). Кнопка SB1 — КМ1.1, светодиод HL1 — любой из серииАЛ307. Диоды…

Для схемы «Ремонт зарядного устройства для MPEG4-плеера»

После двух месяцев эксплуатации вышло из строя «безымянное» зарядное устройство к карманному проигрывателю MPEG4/MP3/WMA. Схемы его, конечно, не было, поэтому пришлось составить ее по монтажной плате. Нумерация активных элементов на ней (рис.1) — условная, остальные соответствуют надписям на печатной плате.Узел преобразователя напряжения реализован на маломощном высоковольтном транзисторе VT1 типа MJE13001, узел стабилизации выходного напряжения произведен на транзисторе VT2 и оптроне VU1. Кроме того, транзистор VT2 защищает VT1 от перегрузки. Транзистор VT3 предназначен для индикации окончания зарядки аккумуляторов.При осмотре изделия оказалось, что транзистор VT1 «ушел на обрыв», a VT2 — пробит. Сгорел также резистор R1. На поиск и устранение неисправностей ушло не более 15 минут. Но при грамотном ремонте любою радиоэлектронного изделия обычно недостаточно одного лишь устранения неисправностей, надобно ещё узнать причины их возникновения, чтобы подобное не повторилось. Структурная схема микросхемы 251 1НТ Как оказалось, во час работы более того при отключенной нагрузке и открытом корпусе транзистор VT1, выполненный в корпусе ТО-92, разогревался до температуры приблизительно 90°С. Поскольку, поблизости не было более мощных транзисторов, подходящих на замену MJE13001, я решил приклеить к нему небольшой теплоотвод.Фотография зарядного устройства показана на рис.2. Дюралюминиевый радиатор размерами 37x15x1 мм приклеен к корпусу транзистора теллопроводящим клеем «Радиал». Этим же клеем можно приклеить радиатор и к монтажной плате. С теплоотводом температура корпуса транзистора снизилась до 45…..

Для схемы «Зарядное устройство для малогабаритных элементов»

ЭлектропитаниеЗарядное устройство для малогабаритных элементовВ. БОНДАРЕВ, А. РУКАВИШНИКОВ г. МоскваМалогабаритные элементы СЦ-21, СЦ-31 и другие используются, например, в современных электронных наручных часах. Для их подзарядки и частичного восстановления работоспособности, а значит, продления срока службы, можно применить предлагаемое зарядное устройство (рис. 1). Оно обеспечивает ток зарядки 12 мА, достаточный для «обновления» элемента через 1,5…3 часа после подключения к устройству. рис. 1 На диодной матрице VD1 выполнен выпрямитель, на который подается сетевое напряжение через ограничительный резистор R1 и конденсатор С1. Резистор R2 способствует разрядке конденсатора после отключения устройства от сети. На выходе выпрямителя стоит сглаживающий конденсатор С2 и стабилитрон VD2, ограничивающий выпрямленное напряжение на уровне 6,8 В. Далее следуют источник зарядного тока, выполненный на резисторах R3, R4 и транзисторах VT1-VT3, и сигнализатор окончания зарядки, состоящий из транзистора VT4 и светодиода HL).Как только напряжение на заряжаемом элементе возрастет до 2,2 В, часть коллекторного тока транзистора VT3 потечет через цепь индикации. Схемы таймер для периодического включения нагрузки Зажжется светодиод HL1 и просигнализирует об окончании цикла зарядки.Вместо транзисторов VT1, VT2 можно использовать два последовательно включенных диода с прямым напряжением 0,6 В и обратным напряжением более 20 В каждый, вместо VT4 — один такой диод, а вместо диодной матрицы — любые диоды на обратное напряжение не менее 20 В и выпрямленный ток более 15 мА. Светодиод может быть любой прочий, с постоянным прямым напряжением приблизительно 1,6 В. Конденсатор С1 — бумажный, на номинальное напряжение не ниже 400 В, оксидиый конденсатор С2-К73-17 (можно К50-6 на напряжение не ниже 15 В).Детали смонт…

Для схемы «ТЕРМОРЕГУЛЯТОР НА ТИРИСТОРЕ»

Бытовая электроникаТЕРМОРЕГУЛЯТОР НА ТИРИСТОРЕТерморегулятор, схема которого изображена на рисунке, предназначен для поддержания постоянной температуры воздуха в помещения, воды в аквариуме и т. п. К нему можно подключать нагреватель мощностью до 500 Вт. Терморегулятор состоит из порогового устройства (на транзисторе Т1 и Т1). электронного реле (на транзисторе ТЗ и тиристоре Д10) и блока питания. Датчиком температуры служит терморезистор R5, включенный в поставленная проблема подачи напряжения на базу транзистора Т1 порогового устройства. Если окружающая среда имеет необходимую температуру, транзистор Т1 порогового закрыт, а Т1 открыт. Транзистор ТЗ и тиристор Д10 электронного реле в этом случае закрыты и напряжение сети не поступает на нагреватель. При понижении температуры среды сопротивление терморезистора увеличивается, в результате чего напряжение на базе транзистора Т1 повышается. Очень мошне зарядне устройство схема Когда оно достигает порога срабатывания устройства, транзистор Т1 откроется, а T2 — закроется. Это приведет к открыванию транзистора T3. Напряжение, возникающее на резисторе R9, приложено между катодом и управляющим электродом тиристора Д10 и будет довольно для открывания его. Напряжение сети через тиристор и диоды Д6-Д9 поступит на нагреватель.Когда температура среды достигнет необходимой величины, терморегулятор отключит напряжение от нагревателя. Переменный резистор R11 служит для установки пределов поддерживаемой температуры. В терморегуляторе применен терморезистор ММТ-4. Трансформатор Тр1 выполнен на сердечнике Ш12Х25. Обмотка I его содержит 8000 витков провода ПЭВ-1 0,1, а обмотка II-170 витков провода ПЭВ-1 0,4.А.СТОЯНОВ г. Загорск…

Для схемы «БЛОКИРАТОР МЕЖГОРОДА»

ТелефонияБЛОКИРАТОР МЕЖГОРОДАДанное устройство предназначено для запрещения междугородной связи с телефонного аппарата, который через него подключен к линии. Устройство собрано на ИМС серии К561 и питается от телефонной линии. Потребляемый ток — 100 150 мкА. При его подключении к линии надобно соблюдать полярность. Устройство работает с АТС, имеющими напряжение на линии 48 60В. Некоторая сложность схемы вызвана тем, что алгоритм работы устройства реализован аппаратно, в отличие от похожих устройств , где алгоритм реализуется программно с использованием однокристальных ЭВМ или микропроцессоров, что не вечно доступно радиолюбителю. Функциональная схема устройства приведена на рис.1. В исходном состоянии ключи SW открыты. ТА подключен через них к линии и может принимать вызывной сигнал и осуществлять набор номера. Если после снятия трубки первая набранная цифра окажется индексом выхода на междугородную связь, в схеме менеджмента срабатывает ждущий мультивибратор, который закрывает ключи и разрывает шлейф, производя таким образом отбой АТС. Т160 схема регулятора тока Индекс выхода на межгород может быть любым. В данной схеме задана цифра «8». Время отключения аппарата от линии можно установить от долей секунды до 1,5 мин. Принципиальная схема устройства приведена на рис.2. На элементах DA1, DA2, VD1…VD3, R2, С1 собран источник питания микросхемы напряжением 3,2 В. Диоды VD1 и VD2 защищают устройство от неправильного подключения к линии. На транзисторах VT1…VT5, резисторах R1, R3, R4 и конденсаторе С2 собран преобразователь уровня напряжения телефонной линии в уровень, необходимый для работы МОП-микросхем. Транзисторы в данном случае включены как микромощные стабилитроны с напряжением стабилизации 7…8 В при токе несколько микроампер . На элементах DD1.1, DD1.2, R5, R3 собран триггер Шмитта, обеспечивающий необходимую кр…

Схема простого зарядного для аккумулятора авто

В старых телевизорах, которые работали еще на лампах а не микрочипах, есть силовые трансформаторы ТС-180-2

В статье приводится как сделать из такого трансформатора простое зарядное устройство для аккумулятора своими руками

Читаем

Схема устройства:

У ТС-180-2 есть две вторичные обмотки, рассчитанные на напряжение 6.4 В и ток 4.7 А, если их соединить последовательно, то получим выходное напряжение 12.8 В. Этого напряжения достаточно, чтобы зарядить аккумулятор. На трансформаторе нужно соединить толстым проводом выводы 9 и 9 штрих, а к выводам 10 и 10 штрих, тоже толстыми проводами припаять диодный мост, состоящий из четырех диодов Д242А или других рассчитанных на ток не менее 10 А.


Диоды нужно установить на большие радиаторы. Конструкцию диодного моста можно собрать на стеклотекстолитовой пластине подходящего размера. Первичные обмотки трансформатора тоже необходимо соединить последовательно, перемычку нужно поставить между выводами 1 и 1 штрих, а к выводам 2 и 2 штрих припаять шнур с вилкой для сети 220 В. Желательно в первичную и вторичную цепи установить предохранители, в первичную – 0.5 А, во вторичную 10 А.


Провода, которые вы используете при изготовлении зарядного устройства, должны быть сечением не менее 2.5 мм2. Площадь радиатора для диода, не менее 32 см2 (для каждого). В нашем случае вторичные обмотки рассчитаны на ток 4.7 А, поэтому нельзя чтобы зарядный ток продолжительное время превышал это значение. Напряжение на клеммах аккумулятора во время заряда не должно превышать 14.5 В, особенно если заряжается необслуживаемая батарея.

В нашем устройстве зарядный ток ограничен за счет небольшого выходного напряжения трансформатора (12.8 В), но величина выходного напряжения зависит от величины входного. Если у вас в сети напряжение больше 220 В, то соответственно и на выходе трансформатора будет больше 12.8 В.

Ограничить зарядный ток можно включив последовательно с аккумулятором в разрыв минусового провода 12 вольтовою лампу мощностью от 21 до 60 Вт. Чем меньше мощность лампы, тем меньше будет зарядный ток. Чтобы контролировать ток и напряжение необходимо подключить к зарядному устройству амперметр с пределом измерения не менее 10 А, и вольтметр с пределом измерения не менее 15 В. Или можно пробрести мультиметр с пределом измерения тока не менее 10 А и периодически контролировать параметры с его помощью.

Внимательно подсоединяйте аккумулятор. Не допускается даже кратковременно перепутать при подключении аккумулятора плюс с минусом. Также нельзя проверять работоспособность устройства кратковременным замыканием выводов («проверка на искру»). Зарядное устройство во время подсоединения, отсоединения аккумулятора должно быть обесточено. При изготовлении и использовании зарядного устройства будьте осторожны, соблюдайте правила пожарной и электро безопасности. Не оставляйте работающее устройство без присмотра.

Смотрите схему еще одного зярядного устройства для

Создайте интеллектуальное зарядное устройство с использованием однотранзисторной схемы

Загрузите эту статью в формате .PDF

Следующая конструкция автоматического зарядного устройства создана с использованием схемы, которая может квалифицироваться как простейший оконный компаратор, когда-либо построенный на одном транзисторе (см. Рисунок) . Зарядка начинается, когда напряжение батареи падает выше заданного значения, и прекращается, когда достигается верхнее заданное напряжение.

% {[data-embed-type = «image» data-embed-id = «5df275eff6d5f267ee210c16» data-embed-element = «aside» data-embed-align = «left» data-embed-alt = «Www Electronicdesign Com Сайты Electronicdesign com Файлы Рисунок 01 «data-embed-src =» https: // base.imgix.net/files/base/ebm/electronicdesign/image/2002/11/www_electronicdesign_com_sites_electronicdesign.com_files_figure_01.png?auto=format&fit=max&w=1440 «data-embed-caption =» «]}%

С помощью источника точного переменного напряжения были установлены верхний и нижний уровни напряжения. Нормально подключенный (NC) вывод реле не подключен к источнику постоянного тока 15 В, что блокирует прохождение этого напряжения на выводы батареи. Это позволит точно установить верхний и нижний уровни. Но в схему был включен зарядный блок на 15 В постоянного тока.

Во-первых, переменное питание фиксируется на 13,3 В постоянного тока — напряжении полностью заряженной батареи — и связано с точкой батареи в цепи. Ползунок VR1 повернут до крайнего конца со стороны, прикрепленной к плюсовой клемме аккумулятора. Ползунок VR2 следует повернуть к концу, который подключен к VR1. Транзистор включается, шунтируя VR1. Затем ползунок VR1 поворачивается к другому концу, то есть концом, соединенным с VR2.

Теперь испытательное напряжение питания установлено на 11.8 В постоянного тока, что является напряжением разряженной батареи. Затем VR2 настраивается так, что он просто снова отключает транзистор. Испытательное напряжение снова повышается до 13,3 В постоянного тока, и VR1 настраивается так, чтобы транзистор включился. Когда установлен верхний и нижний уровни, точка NC подключается к цепи (напряжение зарядки 15 В постоянного тока). Теперь зарядное устройство установлено и готово к работе.

Прочтите комментарий к этой статье от Anoop Hegde: Если вы построите интеллектуальное зарядное устройство с использованием однотранзисторной схемы, остерегайтесь последствий.

Зарядное устройство солнечной батареи на основе транзистора

с автоматическим отключением

В этом уроке мы создаем простое транзисторное зарядное устройство для солнечных батарей с функцией автоматического отключения. Когда аккумулятор полностью заряжен, солнечная панель продолжает работать, и это может привести к глубокому разряду аккумулятора, что сократит срок его службы. Или энергия солнечной панели может быть потрачена впустую. Чтобы преодолеть все эти проблемы, мы придумали эту схему.

Он заряжает аккумулятор от солнечной панели и отключает его, когда он полностью заряжен.

Компоненты оборудования

900 7
S.no. Компонент Значение Количество
1 Солнечная панель 1
2 Батарея 12 В 1
3 Диод 1N5823 1
4 Стабилитрон 9,1 В 1
5 Транзистор 2N4401 3
6 Транзистор TIP127 1
Радиатор 1
8 Светодиод 1
9 Резистор 1 кОм, 10 кОм, 4.7 кОм 3, 2, 1
Принципиальная схема

Рабочее пояснение

В этой схеме используются четыре транзистора и другие пассивные компоненты. Подключается аккумулятор на 12 В, вход которого идет от солнечной панели. Транзисторы используются для определения момента зарядки аккумулятора. Светодиодный индикатор заряда используется, чтобы указать, когда батарея заряжается, и гаснет, когда зарядка полная. Эта схема может обеспечить батарею только до 5 А.

Регулировка цепи

Для использования этой схемы сначала необходимо произвести следующие настройки:

  • Отключите аккумулятор от этой цепи и замените его регулируемым блоком питания с установленным на него выходом 15 В.
  • Регулируйте переменный резистор 10 кОм, пока светодиод не погаснет. Теперь ваша схема готова

Несмотря на то, что эта схема настроена для батареи 12 В, вы можете легко настроить ее для зарядки батареи с другим напряжением, выполнив ту же процедуру.Для этого вам необходимо знать полное напряжение заряда батареи, которое обычно указано на батареях в их характеристиках. В описанной выше процедуре для батареи 12 В мы устанавливаем выход на 15 В, потому что батарея SLA 12 В полностью заряжается, когда во время зарядки на цифровом мультиметре отображается 15 В. Точно так же батарея 6 В отображает 7,2 В, когда она полностью заряжена, поэтому вам придется установить 7,2 В на регулируемом источнике питания при использовании батареи 6 В.

Как сделать схему зарядного устройства для сильноточной батареи с автоматическим отключением с помощью одного транзистора

В заявке рассказывается об одной схеме зарядного устройства для свинцово-кислотных аккумуляторов на основе сильноточного транзистора с функцией автоматического отключения при перезарядке.


Да, он будет работать, что позволит ему прекратить зарядку батареи, когда на клеммах батареи будет напряжение около 14 В.
, но я сомневаюсь, что номинал базового резистора 1 Ом … его следует определять правильно.
Транзистор и ИС могут быть установлены на общем радиаторе с использованием комплекта сепаратора слюды. Это может выиграть от функции тепловой защиты ИС и поможет защитить оба устройства от перегрева.
Описание схемы
Представленное однотранзисторное сильноточное зарядное устройство для батареи представляет собой простой способ зарядки батареи, а также выполнение автоматического отключения, когда батарея достигает полного уровня заряда.
Схема действительно представляет собой каскад на транзисторах с общим коллектором, использующий продемонстрированное силовое устройство 2N6292.
Конструкция, кроме того, представлена ​​как эмиттерный повторитель, и, как указывает этот термин, эмиттер следует за базовым напряжением и позволяет транзистору проводить только при условии, что потенциал эмиттера на 0,7 В ниже, чем используемый потенциал базы.
На показанной схеме на базу транзистора подается управляемое напряжение 15 В от IC 7815, что гарантирует потенциальное улучшение примерно на 15-0.7 = 14,3 В на эмиттере / земле транзистора.
Диод не нужен, и его следует снять с базы транзистора, чтобы иметь возможность уменьшить ненужное падение на дополнительные 0,7 В.
Вышеупомянутое напряжение также превращается в напряжение зарядки для соответствующей батареи на этих выводах.
Пока батарея заряжается, а напряжение на ее клеммах остается ниже отметки 14,3 В, базовое напряжение транзистора продолжает повышаться и обеспечивать необходимое зарядное напряжение для батареи.
Несмотря на это, в тот момент, когда батарея начинает достигать полного заряда, превышающего 14,3 В, база блокируется от падения 0,7 В на эмиттере, что заставляет транзистор прекратить работу, и напряжение зарядки отключается на батарее на время в настоящее время, когда уровень заряда батареи начинает опускаться ниже отметки 14,3 В, транзистор снова включается … цикл повторяется, чтобы обеспечить безопасную зарядку подключенной батареи.
Базовый резистор = Hfe x внутреннее сопротивление батареи

Преобразование старого мобильного зарядного устройства в усилитель звука: 9 шагов

Введение: преобразование старого мобильного зарядного устройства в усилитель звука

Hii friend,

Сегодня я собираюсь использовать усилитель звука с помощью мобильного зарядного устройства.Мы также можем использовать отходы зарядного устройства. Нам понадобится только транзистор мобильного зарядного устройства, а также мы можем использовать резистор 1K зарядного устройства, которое подключено к светодиодному индикатору.

Давайте начнем,

Добавьте TipAsk QuestionDownload

Шаг 1: Возьмите все материалы, как показано ниже

Необходимые материалы —

(1.) Транзистор — C9014 (от старого мобильного зарядного устройства) x1

(2.) Конденсатор — 25 В 100 мкФ / 16 В 100 мкФ x1

(3.) Резистор — 1K x1

(4.) Динамик x1

(5.) Батарея — 9V x1

(6.) Аккумуляторный зажим x1

(7.) Вспомогательный кабель x1

Добавить TipAsk QuestionDownload

Шаг 2: Транзистор C9014

На этом рисунке показан контакт выходы транзистора С9014.

Добавить TipAsk QuestionDownload

Шаг 3: Подключите все компоненты

Во-первых, мы должны соединить все компоненты в соответствии с принципиальной схемой, как показано на рисунке.

Добавить TipAsk QuestionDownload

Шаг 4: Подключите резистор 1 кОм

Подключите резистор 1 кОм к транзистору.

Припаяйте резистор 1 кОм к контакту коллектора и базы транзистора C9014, как вы можете видеть на рисунке.

Добавить TipAsk QuestionDownload

Шаг 5: Подключите конденсатор

Затем мы должны подключить конденсатор к цепи.

Припаяйте положительный вывод конденсатора к транзистору базы, как показано на рисунке.

Добавить TipAsk QuestionDownload

Шаг 6: Подключите провод вспомогательного кабеля

Затем мы должны подключить провод вспомогательного кабеля к цепи.

Припаяйте плюсовой провод вспомогательного кабеля к отрицательному выводу конденсатора и

припаяйте отрицательный провод вспомогательного кабеля к эмиттеру транзистора, как вы можете видеть на рисунке.

Добавить TipAsk QuestionDownload

Шаг 7: Подключение провода зажима аккумулятора

Затем нам нужно подключить провод зажима аккумулятора, чтобы обеспечить питание цепи.

Припаяйте плюсовой провод зажима аккумулятора к коллектору транзистора, как показано на рисунке.

Добавить TipAsk QuestionDownload

Шаг 8: Подключите провод динамика

Теперь подключите провод динамика.

Припаяйте положительный провод динамика к выводу эмиттера транзистора и

припаяйте отрицательный провод динамика к проводу зажима аккумулятора, как вы можете видеть на рисунке.

Добавить TipAsk QuestionDownload

Шаг 9: КАК ИСПОЛЬЗОВАТЬ

Подключите аккумулятор к машинке для стрижки аккумулятора и подключите вспомогательный кабель к мобильному телефону и воспроизводите песни.

ПРИМЕЧАНИЕ. Мы можем подавать на эту схему входное питание 5-9 В постоянного тока.

Если вы хотите делать больше подобных электронных проектов, подпишитесь на utsource прямо сейчас.

Спасибо

Добавить вопрос Задать вопросСкачать

Будьте первым, кто поделится

Вы сделали этот проект? Поделитесь с нами!

Я сделал это! Рекомендации

Зарядное устройство постоянного тока от 2 светодиодов и транзистора NPN

Зарядное устройство постоянного тока с 2 светодиодами и NPN-транзистором



Двухканальная плата


Передний

Задний

Падение напряжения на диоде

В определенных пределах напряжение питания может изменяться, но на светодиодах, диодах или транзисторах наблюдается постоянное падение напряжения.

Диоды и транзисторы падают около 0,6 В. Светодиоды различаются. Очень точные диоды, созданные для этой цели, называются стабилитронами и бывают разных напряжений.

Как это работает

Синяя сторона обеспечивает постоянное напряжение.

Черная сторона преобразует постоянное напряжение в постоянный ток.

Резистор 1 кОм и 2 светодиода создают постоянное напряжение 3,19 В.

3,19 В течет в базу транзистора, уменьшается на одно падение диода (около 0.6В) и выходит из эмиттера на 2,66 В.

Напряжение эмиттера 2,66 В и сопротивление 235 Ом определяют токовый выход этой схемы.

Выходной ток можно рассчитать по закону Ома.

I = E / R = 2,66 / 235 = 0,011

Синяя сторона — источник постоянного напряжения

Есть довольно много разных схем, которые вы можете построить, чтобы обеспечить постоянное напряжение.Вы можете использовать стабилитроны, трехконтактные стабилизаторы, светодиоды, диоды или даже транзистор.

Я использовал два последовательно соединенных светодиода, чтобы получить постоянное напряжение 3,19 В. Это немного меняется по мере нагрева схемы.

Черная сторона — повторитель эмиттера

Транзистор очень старается сделать так, чтобы

EmitterVoltage = BaseVoltage — 0,6 В

Но для этого через 2 параллельно подключенных резистора на 470 Ом должно протекать 11 мА.

I = E / R = 2.66/235 = 0,011

Транзистору безразлично, протекает ли ток через базу или через коллектор.

Почти весь необходимый ток будет проходить через коллектор, а не через базу. Отношение тока коллектора к току базы равно коэффициенту усиления транзистора. Используемый мной 2N2222 имеет коэффициент усиления 200, поэтому через базу проходит очень небольшой ток.

В определенных пределах транзистор потребляет ток коллектора 11 мА независимо от того, какая нагрузка к нему подключена.Нагрузкой может быть резистор, светодиод, батарея или даже короткое замыкание.

Результаты

А В С Д E
мА 10,8 10,8 .1 10,8 10,8

Комментарии

При отключении питания аккумулятор разряжается.Чтобы этого не произошло, между транзистором и батареей должен быть диод.

Я построил двухканальное зарядное устройство для одновременной зарядки двух аккумуляторов. Вы можете подключить оба канала параллельно к одной батарее для быстрой зарядки.

Эта схема может использоваться как источник постоянного тока для светодиодов.

Напряжения и ток на схеме являются фактическими измерениями, а не расчетными или смоделированными значениями. Вот почему они не совсем сходятся.

Транзистор может быть любым NPN. Я использовал 2Н2222. Резисторы на 1/4 Вт.

Я рекомендую сначала собрать синюю часть из светодиодов или диодов, которые у вас есть под рукой. Резистор 1K должен работать с блоками питания от 12 до 20 Вольт . Затем измерьте напряжение на верхней части диодной цепочки. Вычтите 0,6 В, и у вас будет напряжение, которое можно использовать по закону Ома для расчета номинала базового резистора.

E = 3,19 В - 0,6 В
Я = 0.011
R = E / I
R = 2,56 / 0,11
R = 232 Ом
 


Рекомендации

Ремонт зарядного устройства путем дублирования транзистора

Зарядное устройство модели KCA-1220 пришло в мой магазин на прошлой неделе в аварийном состоянии, я открыл крышку, надеясь, что дело в перегорании предохранителя, заметив, что я ожидал,

Я продолжал проверять, пока не дошел до питания транзистора Q1: 2SC3320 короткое замыкание.Я посмотрел на таблицу данных, которую я нашел (VCEO = 400V, IC = 15A, IB = 5A).

К сожалению, я не нашел в своих ящиках ничего, что могло бы заменить его. единственный транзистор с большим номером у меня есть BU508A, но этот транзистор только 8A. (VCEO = 700V, IC = 8A, IB = 2.5A)

Сразу хочу отметить, что я не смог найти оригинальную запчасть на местном рынке, и из-за политической нестабильности в нашей стране сделать заказ через Интернет стало сложнее.

В любом случае, я сравнил данные с двумя транзисторами, они выглядят одинаково, единственная разница — их текущий рейтинг.

Я решил сделать 2 блока BU508A параллельно, чтобы увеличить номинальный ток, эта идея пришла мне в голову, потому что я пересек многие схемы, разработанные на этой базе.

Сделал и работает ..

Эту статью для вас подготовил муфтах Х. Шавиш из Мисрата, Ливия. Он имеет более чем 25-летний опыт поиска и устранения неисправностей и ремонта промышленных систем, электронных систем управления, регуляторов температуры, приводов двигателей и автомобильных блоков управления.Он был выпускником BET, в настоящее время работает менеджером отдела ремонта электрооборудования в ливийской сталелитейной компании, а также руководит собственной мастерской по ремонту электроники.

Пожалуйста, поддержите, нажав на кнопки социальных сетей ниже. Ваш отзыв о публикации приветствуется. Пожалуйста, оставьте это в комментариях.

P.S- Если вам понравилось это читать, нажмите здесь , чтобы подписаться на мой блог (бесплатная подписка). Так вы никогда не пропустите сообщение . Вы также можете переслать ссылку на этот сайт своим друзьям и коллегам — спасибо!

Примечание: вы можете проверить его предыдущую статью о ремонте по ссылке ниже:

https: // www.jestineyong.com/modification-of-transistorresistors-in-ac-37kw-ls-inverter/

Нравится (207) Не понравилось (6)

Двухтранзисторная печатная плата для мобильного зарядного устройства по цене 13 рупий / кусок | Печатная плата зарядного устройства для сотового телефона, Печатная плата зарядного устройства для сотового телефона, Печатная плата зарядного устройства для мобильного телефона, मोबाइल फोन चार्जर पीसीबी — Shorya Enterprises, Дели

Двухтранзисторная печатная плата для мобильного зарядного устройства по 13 рупий / штука | Печатная плата зарядного устройства для сотового телефона, Печатная плата зарядного устройства для сотового телефона, Печатная плата зарядного устройства для сотового телефона, Печатная плата зарядного устройства для мобильного телефона, फोन चार्जर — Shorya Enterprises, Delhi | ID: 15149712055
Уведомление : преобразование массива в строку в / home / indiamart / public_html / prod-fcp / cgi / view / product_details.php на линии 290

Технические характеристики изделия

Тип Электрический
Напряжение 5.8 В
Выходной ток 800 мА
Минимальное количество заказа 1000 штук

Описание продукта

Печатная плата для мобильного зарядного устройства с двумя транзисторами изготовлена ​​из сырья оптимального качества, подходящего для использования в мобильных зарядных устройствах.

Заинтересовал этот товар? Получите последнюю цену у продавца

Связаться с продавцом


О компании

Год основания 2009

Юридический статус Фирмы Физическое лицо — Собственник

Характер бизнеса Производитель

Количество сотрудников До 10 человек

Годовой оборот До рупий50 лакх

Участник IndiaMART с марта 2015 г.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *