Защита от токов короткого замыкания: Защита от короткого замыкания | Полезные статьи

Защита от короткого замыкания: требования, особенности

Защита от короткого замыкания — это защита, отключающая электрическую цепь при возникновении в ней короткого замыкания.

Требования.

Обратимся к книге [1] автора Харечко Ю.В., который, проведя анализ нормативной документации, заключил следующее:

« Требования к защите электрических цепей от короткого замыкания приведены в разделе 434 «Защита от тока короткого замыкания» стандарта МЭК 60364‑4‑43 и разработанного на его основе ГОСТ Р 50571.4.43-2012 [2]. Стандартами предусмотрено обязательное выполнение в электроустановках зданий защиты от короткого замыкания проводников ее электрических цепей, как правило, посредством их отключения устройствами защиты от сверхтока, к которым, прежде всего, относятся автоматические выключатели и плавкие предохранители.

Автоматические выключатели — устройства, которые применяются для защиты от короткого замыкания (в качестве примера: А — однополюсные, Б — трехполюсные)

В соответствии с требованиями международного и национального стандартов устройства защиты от короткого замыкания должны отключать любые токи короткого замыкания вплоть до их номинальной коммутационной способности при коротком замыкании раньше, чем эти токи вызовут опасные повышения температуры проводников и контактов в местах их соединений или опасные механические воздействия на проводники. Эти устройства могут быть установлены в местах, где защита от токов перегрузки не требуется или ее выполняют другими защитными устройствами. »

Любое устройство защиты от короткого замыкания должно отвечать двум следующим условиям:

  1. его номинальная коммутационная способность при коротком замыкании устройства должна быть не менее значения ожидаемого тока короткого замыкания в том месте, где оно установлено;
  2. время отключения короткого замыкания в любой точке электрической цепи не должно превышать промежуток времени, в течение которого температура проводников достигнет предельно допустимого значения.

Для короткого замыкания продолжительностью до 5 с время отключения короткого замыкания можно приблизительно рассчитать по формуле: [2]

t = (k*S/I)2

где t – продолжительность, с;
S – площадь поперечного сечения проводника, мм2;
I – действующее значение тока короткого замыкания, А;
k – коэффициент, зависящий от материала проводника и его изоляции, начальной и конечной температур проводника и других условий. Значения этого коэффициента приведены в таблицах 43A обоих стандартов.

Харечко Ю.В. в своей книге [1] приводит пример подбора коэффициента k:

« Например, для медных проводников с поливинилхлоридной изоляцией и для соединений медных проводников, выполняемых пайкой, при начальной и конечной температурах, соответственно равных 70 °С и 160 °С, k = 1151. Для алюминиевых проводников с поливинилхлоридной изоляцией при указанных условиях k = 762. Для медных проводников с резиновой изоляцией при начальной и конечной температурах, соответственно равных 60 °С и 200 °С, k = 141, а для алюминиевых проводников k = 93. »

Также Харечко Ю.В. заостряет внимание на ошибках в таблице 43A ГОСТ Р 50571.4.43 [1]:

« Примечание 1: Эти данные в таблице 43A ГОСТ Р 50571.4.43 указаны неправильно. Для материала проводника «медь» коэффициент установлен равным 1, «паянные оловом» – 76. Кроме того, в таблице 43A ГОСТ Р 50571.4.43 указан коэффициент, равный 115, для материала проводника «соединения меди», которого нет в стандарте МЭК 60364‑4‑43. »

« Примечание 2: Эти данные в таблице 43A ГОСТ Р 50571.4.43 указаны неправильно. Для материала проводника «алюминий» коэффициент установлен равным 15. »

Харечко Ю.В. продолжает [1]:

« В стандарте МЭК 60364‑4‑43 указано, что для времени оперирования защитных устройств меньше 0,1 с, когда существенна асимметрия электрического тока, а также для токоограничивающих устройств защиты от сверхтока значение k2S2 должно быть больше значения пропускаемой энергии I2t, заявленного производителем защитного устройства. Посредством характеристики I2t устройства защиты от сверхтока устанавливают его способность ограничивать ожидаемый сверхток в защищаемых им электрических цепях. Поэтому необходимо обеспечить следующее соотношение между характеристиками устройства защиты от сверхтока и защищаемых им проводников: I2t < k2S2. »

« В ГОСТ Р 50571. 4.43 рассматриваемое требование искажено относительно требования международного стандарта: «Для защитных устройств с времени срабатывания меньше 0,1 с и при значительной асимметрии тока токоограничение устройства защиты k2S2 должно быть больше чем значение I2t, указанное производителем». В национальном стандарте характеристика проводников k2S2 неправомерно упомянута в качестве характеристики защитного устройства, посредством которой оценивают его способность ограничивать сверхток. Однако такой характеристикой является характеристика I2t.

Если характеристики устройства защиты от перегрузки соответствует требованиям, предъявляемым к характеристикам устройства защиты от короткого замыкания, оно может быть использовано в качестве единого устройства, которое применяют и для защиты от перегрузки, и для защиты от короткого замыкания.

В противном случае следует применять два защитных устройства, согласовав их характеристики так, чтобы мощность короткого замыкания не превышала значения, которое может выдержать устройство защиты от перегрузки.

Особенности.

Об особенностях использования устройств для защиты от короткого замыкания хорошо, на мой взгляд, написал Харечко Ю.В. в своей книге [1]:

« В электроустановках зданий для защиты электрических цепей от коротких замыканий обычно применяют автоматические выключатели, соответствующие ГОСТ IEC 60898-1-2020 [3] и АВДТ, соответствующие ГОСТ IEC 61009‑1. По нормативным требованиям эти автоматические выключатели должны отключать короткие замыкания за промежуток времени менее, чем за 0,1 с.

Фактически они могут отключать короткие замыкания еще быстрее – менее чем за 0,01 с. Такое срабатывание автоматического выключателя происходит при сверхтоках, превышающих верхнюю границу стандартного диапазона токов мгновенного расцепления. Поэтому целесообразно обеспечивать следующее соотношение характеристик автоматического выключателя и короткозамкнутой электрической цепи:

kIn ≤ IКЗ min,

где k – коэффициент, равный 5, 10 или 20 соответственно для автоматического выключателя, имеющего тип мгновенного расцепления B, C или D;
In – номинальный ток автоматического выключателя, А;
IКЗ min – минимальный ток однофазного короткого замыкания в наиболее удаленной точке электрической цепи, защищаемой автоматическим выключателем, А.

Иными словами, минимальный ток однофазного короткого замыкания в наиболее удаленной точке электрической цепи должен быть больше или равен верхней границе стандартного диапазона токов мгновенного расцепления автоматического выключателя, который защищает эту электрическую цепь. Выполнение рассматриваемого условия позволит автоматическим выключателям наиболее быстро отключать токи короткого замыкания во всех электрических цепях, минимизировав их негативное воздействие на проводники и другое электрооборудование.

Указанное согласование характеристик автоматического выключателя и короткозамкнутой электрической цепи предопределяет следующие предпочтительные области применения автоматических выключателей с разными типами мгновенного расцепления.

Автоматические выключатели с типом мгновенного расцепления В, которые имеют стандартный диапазон токов мгновенного расцепления свыше 3 до 5 In, целесообразно применять для защиты от сверхтока большинства конечных электрических цепей в электроустановках индивидуальных жилых домов, в электроустановках квартир и других, им подобных, электроустановках. Например, с помощью таких автоматических выключателей можно выполнять защиту конечных электрических цепей освещения и штепсельных розеток. Препятствием, ограничивающим использование этих автоматических выключателей, является наличие больших пусковых токов электрооборудования.

Автоматические выключатели с типом мгновенного расцепления С, которые имеют стандартный диапазон токов мгновенного расцепления свыше 5 до 10 In, обычно используют для защиты от сверхтока электрических цепей, в которых возможны большие пусковые токи при включении электрооборудования, например, конечных электрических цепей освещения, в которых предусмотрено одновременное включение большого числа светильников, конечных электрических цепей, в состав которых входит электрооборудование с электродвигателями, и др.

Автоматические выключатели с типом мгновенного расцепления D, которые имеют стандартный диапазон токов мгновенного расцепления свыше 10 до 20 In, применяют для защиты от сверхтока тех электрических цепей, в которых имеются большие импульсные пусковые токи, появляющиеся, например, при включении трансформаторов, электромагнитных клапанов, больших емкостных нагрузок и др.

Автоматические выключатели, мгновенно срабатывающие при меньшей кратности номинального тока, чем автоматические выключатели с типом мгновенного расцепления В, используют для защиты от сверхтока электрических цепей с полупроводниковыми приборами, измерительных цепей с преобразователями, а также электропроводок большой протяженности. Однако диапазоны токов мгновенного расцепления для таких автоматических выключателей производители устанавливают по своему усмотрению, поскольку они не стандартизированы.

Для защиты от короткого замыкания конечных электрических цепей целесообразно использовать токоограничивающие автоматические выключатели, которые имеют класс ограничения электроэнергии 3 (см. табл. 3 в статье «Технические характеристики автоматических выключателей»), и токоограничивающие плавкие предохранители, поскольку токоограничивающие устройства защиты от сверхтока обеспечивают наиболее сильное снижение негативного воздействия токов короткого замыкания на проводники и другое электрооборудование. »

  1. Харечко Ю.В. Краткий терминологический словарь по низковольтным электроустановкам. Часть 5// Приложение к журналу «Библиотека инженера по охране труда». – 2017. – № 2. – 160 c
  2. ГОСТ Р 50571.4.43-2012
  3. ГОСТ IEC 60898-1-2020

Защита от короткого замыкания

В электротехнике нередко возникают различные аварийные ситуации, из которых наибольшую опасность представляет короткое замыкание. В таких случаях источники напряжения начинают работать в особом режиме, вызывающем разрушения всех составляющих электрической цепи, расположенных на данном участке. Основном причиной этого явления считается прямое замыкание между собой выходных клемм генератора или аккумуляторной батареи. Вся мощь источника тока сосредотачивается в одном месте, сжигая оборудования и травмируя находящихся рядом людей.

Поэтому при работе с электрическими сетями большое значение приобретает надежная защита от короткого замыкания, осуществляемая разными способами. Ее основная функция заключается в предотвращении опасных ситуаций и локализации возможных негативных последствий.

Содержание

Физические свойства данного явления

Опасность короткого замыкания напрямую связана с физическими законами, объясняющими природу этого явления. В первую очередь, это закон Ома, согласно которого ток в электрической цепи находится в прямой пропорции с напряжением и в обратной пропорции – с сопротивлением (I = U/R). То есть, при малом сопротивлении ток будет высокий, а при большом он пропорционально снижается. Кроме того, при росте напряжения одновременно возрастает и сила тока.

Сопротивление при коротком замыкании представляет собой сумму сопротивлений проводов и контактов вместе с внутренним сопротивлением источника питания. Как правило, в бытовых условиях их значения чрезвычайно малы и составляют всего лишь несколько долей Ом. Проводка домашней сети рассчитана на 16-40 ампер, тогда как в момент короткого замыкания ток может доходить до сотен, и даже тысяч ампер.

Явление КЗ тесным образом связано еще и с законом Джоуля-Ленца. Он касается количества теплоты, выделяемой на данном участке за единицу времени. Ее значение определяется квадратом силы тока умноженном на сопротивление этого участка цепи. Это означает рост выделяемого тепла проводником при повышении его сопротивления. Каждый проводник обладает собственным сопротивлением, но греются они все без исключения, но выделяют при этом разное количество тепла.

Во избежание перегрева, сечение каждого из них подбирается под определенную силу тока. В противном случае слишком тонкие проводники под высокими нагрузками становятся горячими, а провода с большим сечением практически не греются, поскольку успевают отдать тепло с большой площади в окружающую среду. Все эти физические законы и явления обязательно учитываются, когда оборудуется защита от токов короткого замыкания.

Виды коротких замыканий

Данное явление нередко наблюдается под действием природных электрических аномалий. Как правило, это мощные грозовые разряды, сопровождаемые молниями. Их основным источником служит статическое электричество с огромным потенциалом, с различными знаками и величинами, накопленное облаками в процессе перемещения силой ветра с одного места на другое на большие расстояния.

Влажные пары, находящиеся в облаке, поднимаются на высоту, охлаждаются естественным путем. Образующийся конденсат проливается на землю в виде дождя. Из-за низкого сопротивления влажной среды воздушная прослойка подвергается пробою, по которому и проходит высокий электрический ток, представляющий собой молнию.

Для прохождения электрического разряда требуется два отдельных объекта с разными значениями потенциалов. Чаще всего, это два облака, идущие на сближение, или сама грозовая туча и поверхность земли. В первом случае опасность грозит в основном летательным аппаратам, а во втором под действие разряда могут попасть любое устройство или объект, в том числе и воздушные ЛЭП. Защита обеспечивается путем установки молниеотводов, нейтрализующих грозовые разряды.

В других случаях коротким замыканиям подвергаются цепи постоянного тока. У всех аккумуляторов или выпрямителей на выходе установлены контакты с положительным и отрицательным потенциалом. В обычных условиях они поддерживают рабочий режим схемы, обеспечивая нормальную работу потребителей.

Все процессы определяются математическим выражением закона Ома для полной цепи. Происходит равномерное распределение нагрузки в обоих контурах – внутреннем и внешнем.

При возникновении аварийной ситуации, между плюсовой и минусовой клеммами возникает непредвиденный контакт в виде короткой цепи, в которой чрезвычайно низкое электрическое сопротивление. Внешний контур выключается из работы, и циркуляция тока происходит лишь по внутреннему контуру с маленьким сопротивлением. ЭДС, при этом, остается неизменной, что приводит к резкому росту силы тока. Все это сопровождается большим тепловыделением и нарушениями целостности цепи.

Процессы в цепях переменного тока также попадают под действие закона Ома. В отличие от предыдущего варианта, эти схемы могут быть одно- или трехфазными, подключаться к заземляющему контуру. Короткие замыкания в таких цепях возникают в самых разнообразных формах: «фаза-земля», «фаза-фаза», «фаза-фаза-земля», «фаза-фаза-фаза», «фаза-фаза-фаза-земля».

В воздушных ЛЭП применяются изолированная и глухозаземленная схемы подключения нейтрали. В каждой из них ток короткого замыкания будет прокладывать собственный путь, который обязательно учитывается при создании защитной системы.

Иногда замыкания могут возникнуть внутри самой нагрузки, например, в электродвигателях. При одной фазе возможен пробой изоляции корпуса или нулевого проводника. У трехфазных потребителей возможны замыкания между фазами и другие аналогичные сочетания. В любом случае все это приводит к аварийному режиму с тяжелыми последствиями. Предотвратить подобные ситуации помогает автомат снимающий опасное напряжение с участка цепи и подключенного оборудования.

Правильный выбор сечения проводов и кабелей

Основным мероприятием по защите от коротких замыканий является выбор подходящего сечения для кабелей и проводников. Следует учитывать и условия будущей эксплуатации, а также оборудование, которое планируется к подключению.

Способность проводников к работе в условиях продолжительных нагрузок целиком зависит от площади сечения жил, измеряемой в мм2. Существуют специальные таблицы, облегчающие выбор, в которых подробно расписаны показатели проводников, в соответствии с нагрузкой, учитывая электрические параметры сети.

Все проводники выбираются с некоторым запасом, поэтому в большинстве домашних сетей на освещение используются проводники 1,5 мм2, а для розеточной группы – 2,5 мм2. При необходимости выполняются индивидуальные расчеты электропроводки, исключающие перегрев и другие негативные последствия.

Следует учитывать и материал проводников. Например, сопротивление алюминия примерно в 1,8 раза превышает этот показатель у меди. То есть, при одинаковой силе тока и сечении, алюминиевая жила нагреется в 2 раза быстрее. Поэтому в современных схемах проводки используется кабельно-проводниковая продукция только с медными жилами. Алюминиевые провода используются лишь в электроустановках высокой мощности и для передачи электроэнергии по ЛЭП.

Электротехнические средства защиты

Защитить электрическую цепь от КЗ помогают различные типы предохранителей. Наиболее простыми считаются плавкие предохранители одноразового действия, различающиеся по внешнему виду. Они выступают в качестве наиболее слабого звена и в случае аварии срабатывают, разрывая цепь и защищая вверенный участок. Жертвуя собой, эти компоненты предотвращают разрушение и выход из строя других, более важных приборов от действия высоких температур, образовавшихся из-за резкого увеличения силы тока.

Плавкие предохранители для защиты от короткого замыкания выпускаются в широком ассортименте и могут работать с напряжением 600-35000В и силой тока от нескольких миллиампер до 1 тысячи ампер. Конструкция у всех одинаковая, состоит из плавкой вставки, контакта, дугогасящей среды или устройства для гашения дуги. Все элементы размещаются в общем корпусе. Срабатывание предохранителя происходит следующим образом. Вначале вставка нагревается до температуры плавления, после чего она расплавляется и испаряется. Одновременно возникает электрическая дуга, которая быстро гасится в изоляционном промежутке. После этого цепь в электроустановках оказывается полностью разорванной.

Обеспечить нормальную защиту можно лишь соблюдая определенные условия:

  • Времятоковая характеристика предохранителя должна быть ниже этого показателя на защищаемом участке.
  • Срабатывание происходит за минимальный промежуток времени.
  • Защитный элемент должен обладать высокой отключающей способностью.
  • Простая конструкция, позволяющая быстро заменить сгоревшую плавкую вставку.

Кроме одноразовых, существует автоматический предохранитель, проводящий ток в нормальном состоянии, и отключающий его в случае отклонений от нормы. Он устанавливается в начале линии и обеспечивает защиту электрооборудования от перегрузок, коротких замыканий и пониженного напряжения. Основным плюсом этих устройств считается их многоразовое использование в течение продолжительного времени.

Более серьезная защита от короткого замыкания, получившая широкое распространение, представлена автоматическим выключателем он же автомат. Все компоненты устройства помещены в корпус из диэлектрического материала. Для включения и выключения прибора предусмотрен выключатель-рычажок. Подключение проводов осуществляется через винтовые клеммы. Автомат коммутирует электрическую цепь с помощью подвижного и неподвижного контактов.

К подвижному контакту подводится пружина, обеспечивающая быстрое расцепление. Сами контакты разъединяются за счет действия электромагнитного или теплового расцепителя. Первое устройство срабатывает практически мгновенно, сердечник втягивается, когда ток превышает заданное значение. Тепловой расцепитель является биметаллической пластиной, нагревающейся под действием тока. Далее, она сгибается и производит разъединение контактов. Величина тока срабатывания устанавливается с помощью регулировочного винта.

Полное руководство по электронным схемам защиты

Все электронные устройства нуждаются в защитных схемах. Они используются, как следует из названия, либо для защиты источника питания от вынужденной подачи чрезмерного тока при перегрузке или коротком замыкании, либо для защиты подключенной цепи от обратного подключения источника питания или напряжения, превышающего расчетное напряжение схемы. Их можно классифицировать следующим образом:

Защита от перенапряжения

Схема «ломика» (показана на рис. 1) может защитить ваше устройство от перенапряжения. При нормальном использовании питание 12 В поступает на выход через диод обратной защиты и предохранитель. Стабилитрон выбран чуть выше; в данном случае 15В. Когда входное напряжение достигает 15 В, стабилитрон проводит ток, создавая напряжение на резисторе R2. Когда оно достигает напряжения срабатывания SCR (менее 1 В), SCR срабатывает, создавая короткое замыкание на входе, что приводит к перегоранию предохранителя. C1 гарантирует, что пики, вызванные переходными процессами переключения, не вызовут срабатывание SCR. SCR и стабилитрон должны выдерживать внезапный пусковой ток до тех пор, пока не перегорит предохранитель.

Рис. 1: Плата защиты от перенапряжения Crowbar вышеприведенной схемы

На Рис. 2 показана почти такая же схема, за исключением того, что стабилитрон заменен программируемым стабилитроном (U1), который называется прецизионным программируемым эталоном TL431. Изменяя напряжение на его входе с помощью R6, вы можете установить напряжение запуска, обеспечивая гораздо большую гибкость. Наконец, на рис. 3 показана та же схема, добавленная к регулятору напряжения и индикатору перегоревшего предохранителя, а также изображение завершенного проекта.

Рис. 2: Программируемая защита от перенапряжения Рис. 3: Проект регулятора с защитой от перенапряжения
Готовая печатная плата для приведенной выше схемы

Другой формой перенапряжения является кратковременный скачок напряжения в линии электропередачи. Скорее всего, это проблема на конце блока питания переменного тока. Часто используемое решение состоит в том, чтобы подключить к источнику питания варистор на основе оксида металла (MOV). MOV подобен высокомощному резистору (несколько сотен кОм), который очень быстро реагирует на повышение напряжения. Во время переходных падений его сопротивление достаточно низкое, чтобы избежать всплеска. См. рис. 4 ниже.

Рисунок 4: Защита MOV

Защита от перегрузки по току

В предыдущей статье мы рассмотрели регуляторы напряжения и способы ограничения электрического тока. Давайте еще раз посмотрим на это сейчас.

На рис. 5 транзистор Q8 является основным проходным транзистором, регулируемым транзисторами Q10 и D8. Часть перегрузки по току — R19 и Q9. Если напряжение между базой и эмиттером Q9 достигает 0,6 В, Q9 начинает включаться. Затем это «отнимает» ток у основания Q8, заставляя его начать отключаться. Хитрость заключается в том, чтобы спроектировать R19падение 0,6В на токе отсечки. Так что, если мы хотим отсечь при 2 А, R=V/I = 0,6/2 = 0,3 или 0,33 Ом. Поскольку он несет полный ток нагрузки, он должен потреблять его, возможно, типа 5 Вт.

Обратите внимание, что вы должны оставить длину выводов на компонентах, которые, как ожидается, будут немного нагреваться, и увеличить площадь контакта с печатной платой. Кроме того, припаяйте его, чтобы значительно увеличить их способность рассеивать тепло (но не делайте этого с ВЧ-компонентами!).

Рисунок 5: Регулятор с защитой от перегрузки по току

Другая защита от перегрузки по току

Конечно, есть и другие устройства перегрузки по току, такие как предохранители и автоматические выключатели для больших токов переменного тока, возможно, в вашем домашнем электроснабжении.

Предохранители — это просто специальная тонкая проволока, которая быстро нагревается и плавится. К ним были добавлены различные устройства, такие как натяжные пружины, чтобы замедлить их срабатывание, и порошок, окружающий плавкий предохранитель, чтобы предотвратить разбивание стекла при срабатывании. Предохранители обычно выбираются с номиналом 150% нормального тока. Здесь есть хорошая статья о предохранителях.

Автоматические выключатели — отдельная тема. Но проще говоря, это простые выключатели, у которых есть механизм их срабатывания. В обычном автоматическом выключателе это биметаллическая полоса, по которой протекает ток и изгибается при нагреве. Затем он механически прикрепляется к расцепляющему механизму и срабатывает при определенном токе. Автоматические выключатели также имеют небольшой индуктивный компонент, поэтому выключатель можно настроить на медленное срабатывание при перегрузке или очень быстрое срабатывание при коротком замыкании. Вот отличное видео, показывающее замедленное отключение.

Защита от обратной полярности Защита

Защиту от обратной полярности реализовать проще всего. Подойдет простой диод на пути входящего питания. Но это должно иметь соответствующий текущий рейтинг. На рисунке 6 1N4006 имеет номинальный ток 1 А и PIV (пиковое обратное напряжение) 800 В, так что этого должно быть достаточно для большинства проектов. Диод вызовет постоянное падение напряжения от 0,6 до 0,7 В, но это не должно быть проблемой. Однако, если у вас есть схема, которая должна работать при очень низком напряжении, падение 0,6 В на последовательном диоде может стать проблемой. В этом случае на рис. 6 (справа) показан шунтирующий диод.

При обратном входном напряжении диод открывается, что приводит к перегоранию предохранителя. Это работает, но есть некоторые вещи, о которых следует знать, например, диод должен выдерживать полную мощность источника питания в течение времени, необходимого для срабатывания предохранителя. Это будет существенно, и необходим диод, по крайней мере, от 5 до 10 А.

Рисунок 6: Защита от обратного напряжения

Защита от обратной полярности противо-ЭДС

Существует еще одна форма обратной полярности, которая возникает, когда вы этого не ожидаете. Каждый раз, когда индуктивность, по которой течет ток, отключается, магнитное поле, хранящееся в катушке индуктивности, должно разрушиться, и он попытается сделать это в обратном направлении через свои клеммы. Мало того, это могут быть сотни вольт. (Вот как работают старые автоматические свечи зажигания.) Вы также можете защитить свое устройство от этой обратной ЭДС, используя перевернутый диод на индуктивности, как показано на рисунке 7.

Обратите внимание, что диод должен иметь высокий рейтинг PIV и 1N4006 будет достаточно.

Рисунок 7: Защита от противо-ЭДС

Наконец, помните, что плавкие предохранители работают медленно. Есть шутка, в которой говорится, что транзистор за 50 долларов часто перегорает первым, чтобы защитить предохранитель за 10 центов! Не стесняйтесь оставлять комментарии ниже, если у вас есть вопросы…


Схема защиты от короткого замыкания

Короткое замыкание — это непреднамеренное соединение между двумя клеммами, которые подают питание на нагрузку. Это может произойти как в цепи переменного, так и постоянного тока, если это источник переменного тока, то короткое замыкание может отключить источник питания всей области, но на многих уровнях, от электростанции до дома, есть предохранители и схемы защиты от перегрузки. И если это источник постоянного тока, такой как батарея, то он может нагреть батарею, и батарея будет разряжаться очень быстро. В некоторых случаях батарея может взорваться. Существует множество способов защиты цепи от короткого замыкания, а для защиты от перегрузки доступно множество типов предохранителей.

 

Мы собираемся спроектировать и изучить простую схему защиты от короткого замыкания низкого напряжения для постоянного напряжения . Схема разработана с целью безопасной работы схемы микроконтроллера и может защитить ее от повреждения из-за короткого замыкания в другой части схемы.

 

Требуемые компоненты
  • Транзистор SK100B PNP — 1 шт.
  • Транзистор BC547B NPN — 1 шт.
  • Резистор 1 кОм — 1 шт.
  • Резистор 10 кОм — 1 шт.
  • Резистор 330 Ом — 2 шт.
  • Резистор 470 Ом — 1 шт.
  • Источник питания 6 В постоянного тока — 1 шт.
  • Макет — 1 шт.
  • Соединительные провода — согласно требованию

 

SK100B PNP Транзистор

 

Начиная с выреза транзистора — эмиттер, середина — база, последний — коллектор

  • Основание — В
  • Коллектор — С

 

Транзистор BC547B NPN

 

Схема защиты от короткого замыкания провод. В этом состоянии батарея может загореться и даже взорваться. Вот что часто происходит с мобильными батареями в мобильных телефонах.

Чтобы избежать короткого замыкания, Используется схема защиты от короткого замыкания . Схема защиты от короткого замыкания отклонит поток тока или разорвет контакт между цепью и источником питания.

Иногда мы сталкиваемся с отключением электроэнергии из-за внезапной искры при использовании некоторых неисправных бытовых приборов, таких как духовка, утюг и т. д., а затем. Причина этого в том, что где-то через какую-то цепь внутри неисправного устройства протекает избыточный ток. Это может привести к поражению электрическим током или привести к возгоранию дома, если оно не защищено. Итак, 9Предохранитель 0030 или автоматический выключатель используется во избежание таких повреждений. В таком состоянии автоматический выключатель или предохранитель отключают основное питание дома. Цепь плавкого предохранителя также является формой схемы защиты от короткого замыкания , , в которой используется провод с низким сопротивлением, который плавится и отключает основной источник питания от дома всякий раз, когда через него проходит избыточный ток.

Итак, здесь мы собираемся изучить и разработать схему, чтобы избежать повреждения из-за короткого замыкания в ней.

Схема схемы

Работа с цепи защиты короткого замыкания

Простая низкая мощность DC Shrotecuit Current показана выше, которая содержит две транзисторные цирки, One BC547. Транзисторная схема NPN и другая схема транзистора SK100B PNP. Вход подается на схему с помощью источника питания постоянного тока 5 В, который может быть либо от батареи, либо от трансформатора.

 

Работа схемы проста, когда горит зеленый светодиод D1, это означает, что схема работает нормально и нет риска повреждения. Ожидается, что красный светодиод D2 загорится только при коротком замыкании.

При включении источника питания транзистор Q1 смещается и начинает проводить ток, а светодиод D1 включается. В это время красный светодиод D2 остается выключенным, так как короткого замыкания нет.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *