Защитное зануление определение: Упс. Вы не туда попали!

Содержание

Что такое защитное зануление — схема и принцип работы

Зануление представляет собой специальное подключение открытых металлических частей электрооборудования (электроустановок) к нейтрали. Это относится к металлическим не токоведущим частям оборудования, которые в нормальном (рабочем) режиме не находятся (и не должны находиться) под напряжением. Нейтраль, с которой происходит соединение, должна быть глухо заземлена.

В трёхфазных электрических сетях – это нейтраль генератора или силового трансформатора, в однофазной сети – это глухозаземлённый вывод источника питания.

Нулевым защитным проводником (не путать с нулевым рабочим проводником) является такой проводник, который соединяет металлические занулённые части электрооборудования с глухозаземлённой нейтралью, идущей от генератора или питающего силового трансформатора.

Цель защитного зануления – обеспечить электрическую безопасность в случае короткого замыкания на металлический корпус электрооборудования или электроустановки.

Принцип зануления

Защитное зануление работает следующим образом. Если при поданном электрическом питании происходит попадание фазы (случайное попадание или пробой изоляции фазного проводника) на металлический корпус с занулением, то возникает короткое замыкание, резко увеличивается значение электрического тока и срабатывает аппарат защиты (автоматический выключатель) или перегорает плавкая вставка защитного предохранителя, тем самым обесточивая электрооборудование или электроустановку.

Сопротивление защитного нулевого проводника должно быть очень низким. Это необходимо для того, чтобы обеспечить уровень тока короткого замыкания, достаточный для действия защиты. Т.е. значение тока к.з. должно быть достаточным для того, чтобы сработал защитный аппарат.

Если электрооборудование просто заземлить, то, например, в случае пробоя фазы на корпус ток короткого замыкания может быть недостаточным для того, чтобы сработал автоматический выключатель или перегорела плавкая вставка предохранителя.

Ввиду того, что нейтраль заземлена на генераторе или трансформаторе, благодаря защитному занулению обеспечивается достаточно малое напряжение прикосновения на корпусе. Т.е. защитное зануление можно считать своего рода разновидностью заземления.

Видео — Зануление и заземление — в чем разница?

Схемы защитного зануления

Существует несколько схем, по которым выполняется защитное зануление.

Система TN-C

Достаточно простая система, по которой выполняется защитное зануление. В ней нулевой проводник N и защитный проводник PE по всей длине объединены в один общий проводник PEN. Для реализации защитного зануления по системе TN-C необходимо соблюдать очень высокие требования к системе уравнивания потенциалов, а также к размеру поперечного сечения совмещённого PEN-проводника.

Зануление по системе TN-C применяется в трёхфазных электрических сетях, а в однофазных сетях такое зануление категорически запрещено.

Система TN-C-S

Данная система представляет собой соединённые N и PE проводники в части сети, начиная от электрического источника питания. По данной системе допускается зануление электрооборудования в однофазных сетях.

Область применения защитного зануления

Защитное зануление применяется в однофазных и трёхфазных сетях переменного тока до 1кВ. Сеть должна быть с глухозаземлённой нейтралью.

Проверка эффективности защитного зануления

Суть защитного зануления заключается в том, чтобы в случае короткого замыкания фазы на корпус электрооборудования произошло автоматическое отключение повреждённого участка цепи. Для того чтобы проверить на сколько эффективно выполнено защитное зануление, необходимо измерить сопротивление петли фаза-ноль в самой удалённой от источника питания точке. Это позволит определить, сработает ли аппарат защиты в случае однофазного к.з. на корпус.

Сопротивление петли фаза-ноль измеряется при помощи специальных измерительных приборов. Приборы для измерения петли фаза-ноль имеют два щупа. При измерении один щуп подключается к действующей фазе, а второй – к занулённой части электрооборудования.

В результате замера выясняется значение сопротивления петли фаза-ноль. Зная величину измеренного сопротивления и значение питающего напряжения, по формуле закона Ома для участка цепи можно рассчитать ток однофазного короткого замыкания, расчётное значение которого должно быть больше (или равно) тока срабатывания защитного устройства.

Допустим, для защиты цепи от токовых перегрузок и от коротких замыканий установлен автоматический выключатель, ток мгновенного срабатывания которого равен 100А. Измеренное значение сопротивления петли фаза-ноль равно 2 Ом, фазное напряжение в сети равно стандартному  значению 220В.

Рассчитываем значение тока однофазного короткого замыкания. По закону Ома I = U/R = 220В/2Ом = 110А.

Т.к. расчётный ток к.з. больше чем ток мгновенного срабатывания (отсечки) автоматического выключателя, то защитное зануление будет эффективным. Если бы расчетный ток к.з. получился меньше тока мгновенного срабатывания автомата, то для эффективности защитного зануления пришлось бы или менять автоматический выключатель на устройство с меньшим током срабатывания, или искать решение по уменьшению сопротивления петли фаза-ноль.

Очень часто в расчётах ток срабатывания автоматического выключателя умножается на так называемый коэффициент надёжности Кн или коэффициент запаса. Дело в том, что отсечка автомата не всегда соответствует указанному значению, т.е. может быть некоторая погрешность, для этого и вводится в расчёты указанный коэффициент. Для старых автоматов Кн может равняться, например, 1,25 или 1,4. Для новых современных автоматов он может быть равен 1,1. Это связано с тем, что новые аппараты защиты работают более точно.

область применения и принцип работы

  1. Главная
  2. Электробезопасность
  3. Принцип действия защитного зануления

Любое электрооборудование, которое находится в работе (под напряжением) может иметь проводящие металлические части. А уверены ли Вы в том, что по этим частям не пройдет электрический ток, в случае, если изоляция повредится и произойдет короткое замыкание на корпус двигателя. Но бояться не надо, ведь для безопасности в таких случаях и изобрели защитное зануление (ЗЗ).

Защитное зануление – это преднамеренное соединение проводящих частей электроустановки, не находящихся под напряжением в нормальном режиме, с глухозаземленной нейтралью трансформатора или с заземленной точкой источника питания в случае с сетями постоянного тока.

Зануление в разных системах заземления

Рассмотрим зануление в системе TN, систем TT и IT коснемся в другом материале.

Система TN, где T означает, что нейтраль источника питания заземлена, а N – что открытые проводящие части присоединены к нейтрали источника через нулевые проводники.

Существует два нулевых проводника – это PE и N. PE – нулевой защитный проводник (желто-зеленый провод), N – нулевой рабочий проводник (черный провод).

PE – это и есть шина, провод зануления.

У системы TN есть три подсистемы – ТN-С, TN-S, TN-S-C.

Где C означает, что PE+N=PEN, то есть функции нулевого защитного и нулевого рабочего совмещены в одном проводе под названием PEN.

S означает, что PE // N, то есть нулевой защитный и нулевой рабочий на протяжении линии идут по разным проводам. Это самая дорогая и надежная система. Применяется в Великобритании.

S-C – на протяжении линии в одной части функции нулевого защитного и нулевого рабочего совмещены в одном проводе PEN, в другой части они разделены.

Зануление применяется в электрических сетях с глухозаземленной нейтралью постоянного и переменного тока напряжением до 1000В.

Принцип действия защитного зануления

Рассмотрим схематически принцип действия зануления на примере четырехпроводной сети с подключенной однофазной нагрузкой.

Ситуация следующая, фаза, в нашем случае L1 замкнулась в случае пробоя изоляции на корпус. Ток пошел по корпусу через провод зануления. Образовался контур, состоящий из фазы источника питания (трансформатора), цепи фазного и нулевого проводов. Этот контур еще называют петля «фаза-ноль».

Сопротивление петли «фаза-ноль» достаточно мало, вследствие чего, ток возрастает до аварийной величины, что в свою очередь вызывает срабатывание устройства защиты (автомата). После срабатывания автомата, поврежденная линия отключается. Время срабатывания защиты для отключения линии при КЗ на корпус в сетях до 1кВ составляет:

Номинальное фазное напряжение, В Время отключения, с
120 0,8
230 0,4
400 0,2
Более 400 0,1

Защитное зануление электроустановок, назначение, принцип действия, схема заземления

Автор Фома Бахтин На чтение 3 мин. Просмотров 7.7k. Опубликовано Обновлено

19 ноября

 

Зануление — это специально предусмотренное электрическое подключение открытых токопроводящих частей потребителей электроэнергии:

  • к нейтральной точке генератора (трансформатора) в сетях трехфазного тока,
  • к глухозаземленныму выводу сети однофазного напряжения,
  • к заземленной точке источника постоянного тока.

Такое подключение выполняется в целях обеспечения электробезопасности человека.

Для обеспечения подключения незащищенных от прикосновения токопроводящих частей электропотребителей к нейтральной точке источника электроэнергии предусмотрено применение нулевого защитного проводника.

Нулевой защитный проводник (обозначается PE – проводник для системы TN – S) — токопроводящая цепь, соединяющая открытые токопроводящие поверхности и глухозаземленную нейтральную точку на источнике питания в трехфазных сетях или заземленный вывод однофазной сети, или заземленную среднюю точку источника постоянного тока.

Следует различать понятия нулевого защитного проводника и нулевого рабочего или PEN – проводника. Рабочий нулевой проводник (обозначается, как N – проводник для системы TN – S) – это провод в электропотребителях напряжением до 1 кВ, применяемый для обеспечения электропитания, который соединен с глухозаземленным нейтральным выводом на генераторе или трансформаторе в сетях трехфазного тока, либо с глухозаземленной точкой на источнике однофазного тока, либо с глухозаземленным выводом на источнике в сети постоянного тока.

На практике допускается применение совмещенного (обозначается, как PEN — проводник для системы TN– C) нулевого защитного и нулевого рабочего проводника. Его роль выполняет цепь в электропотребителях напряжением до 1 кВ, совмещающая нулевой защитный и нулевой рабочий проводник. Использование зануления требуется для осуществления защиты человека от воздействия электрического тока при его прикосновении к токоведущим поверхностям за счет быстрого снижения напряжения на корпусе электропотребителя относительно земли, сопровождаемого быстрым отключением электроустановки от питающей сети

Зануление электроустановок

Обязательное защитное зануление необходимо выполнять на:

  • электроустановках напряжением питания до 1 кВ (трехфазные сети переменного тока, имеющие заземленную нейтраль). Чаще всего это сети переменного тока напряжением 380/220, реже — 660/380 В;
  • электроустановках напряжением питания до 1 кВ (однофазные сети переменного тока, имеющие заземленный вывод). Напряжение, как правило – 220 вольт;
  • электроустановках постоянного тока с напряжением до 1 кВ в сетях, имеющих заземленную среднюю точку источника.

Физически зануление осуществляется специальным проводом, имеющим надежный электрический контакт с открытыми токоведущими поверхностями электропотребителей.

Принцип действия защитного зануления

В случае замыкания фазного провода на корпус электропотребителя, имеющий зануление, возникает электрическая цепь тока с коротким замыканием (происходит замыкание фазного и нулевого защитного проводников). Появление тока короткого замыкания приводит к срабатыванию токовой защиты. Как следствие, происходит отключение такой электроустановки от электропитающей сети. Попутно, до наступления срабатывания автоматической токовой защиты обеспечивается снижение напряжения на поврежденном корпусе относительно земли. Это связано с наличием защитного действия повторного заземления на нулевом защитном проводнике и перераспределения напряжений в сети вследствие протекания тока в короткозамкнутой цепи.

Принципиальная схема зануления

Рассмотрим схему заземления:

Мы искренне надеемся, что наша статья помогла вам понять определение заземления, его назначение и принцип действия.

Зануление и заземление. В чем разница между ними?


Рабочее и защитное заземление


Зануление и заземление


Защитное зануление. Работа и устройство. Применение и особенности

Во всем мире используется защита, основанная на соединении нетоковедущих проводящих частей оборудования с землей и заземленной нейтралью источника. В России эта система называется защитное зануление. Защитное действие этой системы основано на принципе достижения нулевого напряжения на корпусе прибора, за счет многократного заземления и соединения нетоковедущих частей с нейтралью источника.

Несмотря на ряд недостатков, зануление продолжает служить основным электрозащитным средством во всем мире. Открытые части установки соединяют отдельным нулевым защитным проводником.

Зануление – соединение металлических частей электрооборудования с нулевым защитным проводом. Зануление служит мерой защиты от случайного попадания под напряжение.

Защитное зануление рассчитано на случай короткого замыкания. Распределение нагрузки на предприятии осуществляется равномерно, нулевой провод исполняет функции защиты. Ноль соединяется с корпусом электродвигателя. Когда происходит короткое замыкание, то возникает напряжение на корпусе электродвигателя.

При этом происходит срабатывание автоматического выключателя. При применении заземляющей шины промышленные электроустановки соединяются.

Принцип действия

Замыкание случается при касании подключенного к напряжению фазного провода на корпус прибора, который соединен с нулем. Возникает большая сила тока, срабатывают аппараты защиты, отключающие питание неисправного прибора.

Время срабатывания защиты и отключения неисправной линии по правилам не должно быть более 0,4 секунды. Для зануления можно применить третью неиспользуемую жилу в кабеле для 1-фазной сети питания.

Фаза и ноль должны быть с небольшой величиной сопротивления. Только тогда аппарат защиты отключит напряжение в установленное время. Чтобы было хорошее зануление необходимо обеспечить качественные контакты соединений.

Защитное зануление дает возможность создать быстрое выключение от сети неисправного питания. Вероятность удара током человека практически исчезает. Зануление считается одним из видов заземления.

Порядок зануления

Зануление для защиты в доме начинается с нейтрали, соединенной с заземленной нейтралью трансформатора.

Нейтраль с 3-фазной линией приходит в здание дома в шкаф ввода. Далее, она разветвляется по щиткам на разных этажах. От нее используется рабочий ноль, образующий 1-фазное напряжение. Ноль имеет название рабочего, так как он применяется для работы.

Зануление для защиты создается отдельным нулем в щитке. Ноль соединен с заземленной нейтралью. Нужно знать, что в схеме соединения ноля с нейтралью не должно быть аппаратов коммутации (рубильников, автоматов).

Как известно в цепях трехфазного переменного напряжения обмотка трансформатора может соединяться в треугольник и в звезду. Рассмотрим звезду. Звезда имеет нулевую точку, или нейтраль. Это та точка, в которой сумма всех трех напряжений сети будет равна нулю.

При такой схеме трансформатора могут быть две возможные схемы. Схема с изолированной нейтралью показана на нашем рисунке. Такая схема обычно используется при работе трехфазных систем, а также однофазных систем, но используется именно изолированная нейтраль.

Также есть еще глухозаземленная нейтраль.

Нейтраль трансформатора соединяется с землей. Эта схема может быть использована не только для работы в трехфазной или однофазной системе, но также для защитного зануления.

Схема состоит из переменного источника напряжения 220 В, его датчика напряжения, нагрузки, сопротивления, которое в нормальном состоянии отключено. Но когда возникает пробой изоляции при выполнении неправильного монтажа, на корпусе появляется напряжение. Измерим напряжение на нагрузке относительно земли. Рассмотрим схему на базе однофазного источника напряжения.

Мы заземляем нулевую точку. Делаем имитацию пробоя изоляции на корпус. На корпусе установилось напряжение, которое будет равно напряжению источника. При таком состоянии если прикоснуться к корпусу, то человека ударит током. Как избежать этой ситуации? Все очень просто. Используют схему защитного зануления, а именно, корпус соединяют с глухозаземленной нейтралью трансформатора. Напряжение на корпусе становится равным нулю.

Почему опасно защитное зануление в квартире

Его используют для защиты людей и животных от поражения электрическим током, а также для срабатывания защитной аппаратуры в случае возникновения утечки тока на землю. Возникает вопрос: если мы используем глухозаземленную нейтраль, то можно соединить точку защитного заземления с нейтралью?

Этого делать нельзя. По правилам это запрещено. Если при выполнении монтажных работ будут перепутаны местами фаза и ноль, а мы поставим перемычку для соединения заземления с нейтралью, получим следующую неприятную ситуацию. При подключении устройства к сети, корпус оказывается под напряжением относительно земли. Как гласит ПУЭ использование нулевого рабочего проводника в качестве защитного зануления категорически запрещено.

Для защитного зануления отводится специальная шина, которая будет соединена с заземляющим устройством или с глухозаземленной нейтралью. Все заземляющие провода подключаются к этой шине параллельно. Поэтому, не нужно ставить перемычки. А перед тем, как реализовывать защитное заземление или зануление нужно ознакомиться с правилами.

Некоторые специалисты делают заземление приборов перемычкой клеммы ноля в розетке на контакт защиты.
Такой способ запрещен.

На входе в квартиру устанавливают аппарат, служащий для подключения питания сети. Это может быть пакетный выключатель или автомат. Опасность самодельного заземления с помощью перемычки в том, что корпус устройства, подключенного к этой розетке, в случае повреждения изоляции нуля станет доступным напряжению фазы. А если оборвется провод нуля, то работа прибора прекратится. Возникнет ложная видимость провода, как обесточенного. Это опасно для жизни.

Такая розетка сделает много неприятностей, если в нее запитать стиральную машину. Если отгорит ноль, то стиральная машина может убить человека в случае прикосновения к ней.

Если человек принимает душ из электрического водонагревателя, а в это время нулевой провод в розетке отсоединится, то человека ударит током. Такое зануление очень опасно выполнять в квартире.

Применение зануления
Применяется в электроустановках до 1 кВ в:
  • Сетях постоянного тока со средней точкой заземления.
  • 1-фазных сетях с заземленным выводом.
  • 3-фазных сетях с заземленным нулем.

Защитное зануление служит для защиты от удара током. Если внутри электроприбора повредилась изоляция и корпус прибора оказался под током, то отреагирует защита и отключит сеть питания.

Образование тока КЗ возникает, если произошло замыкание нулевого и фазного провода на зануленный корпус. Для скорейшего отключения устройства применяют автоматы, предохранители, магнитные пускатели с защитой от перегрева, контакторы с реле.

Похожие темы:

зануление — это… Что такое зануление?

  • зануление — Преднамеренное электрическое соединение с нулевым защитным проводником металлических нетоковедущих частей, которые могут оказаться под напряжением [ГОСТ 12.1.009 76] Защитное зануление в электроустановках напряжением до 1 кВ Преднамеренное… …   Справочник технического переводчика

  • Зануление — Зануление  это преднамеренное электрическое соединение открытых проводящих частей электроустановок, не находящихся в нормальном состоянии под напряжением, с глухозаземлённой нейтральной точкой генератора или трансформатора, в сетях… …   Википедия

  • зануление — обнуление Словарь русских синонимов. зануление сущ., кол во синонимов: 1 • обнуление (1) Словарь синонимов ASIS. В.Н. Тришин …   Словарь синонимов

  • Зануление — преднамеренное электрическое соединение с нулевым проводником металлических нетоковедущих частей, которые могут оказаться под напряжением… Источник: ИНСТРУКЦИЯ ПО ЗАЗЕМЛЕНИЮ УСТРОЙСТВ ЭЛЕКТРОСНАБЖЕНИЯ НА ЭЛЕКТРИФИЦИРОВАННЫХ ЖЕЛЕЗНЫХ ДОРОГАХ… …   Официальная терминология

  • Зануление — преднамеренное электрическое соединение открытых проводящих частей электроустановки, которые могут оказаться под напряжением вследствие замыкания на корпус и по др. причинам, с глухозаземленной нейтральной точкой обмотки источника тока… …   Российская энциклопедия по охране труда

  • Зануление — – преднамеренное электрическое соединение с нулевым защитным проводником металлических нетоковедущих частей, которые могут оказаться под напряжением. [ГОСТ 12.1.009 76] Рубрика термина: Энергетическое оборудование Рубрики энциклопедии:… …   Энциклопедия терминов, определений и пояснений строительных материалов

  • зануление — rus зануление (с), присоединение (с) к нейтральной точке; нейтральный режим (м) eng neutral connection (electricity) fra mise (f) au neutre, régime (m) du neutre deu Nullung (f) spa neutro (m) a tierra, régimen (m) del neutro, puesta (f) al… …   Безопасность и гигиена труда. Перевод на английский, французский, немецкий, испанский языки

  • ЗАНУЛЕНИЕ — соединение нормально не находящихся под напряжением элементов электрич. устройств с т. н. цепью нулевого потенциала (напр., с четвёртым нейтральным проводом трёхфазной системы) или (и) с корпусом изолиров. от земли объекта (напр., самолёта). 3.… …   Большой энциклопедический политехнический словарь

  • Зануление Ндп. — 24. Зануление Ндп. Защитное зануление Преднамеренное электрическое соединение с нулевым защитным проводником металлических нетоковедущих частей, которые могут оказаться под напряжением Источник: ГОСТ 12.1.009 76: Система стандартов безопасности… …   Словарь-справочник терминов нормативно-технической документации

  • Зануление защитное — Защитное зануление: электрическое соединение металлических частей электроустановок с заземленной точкой источника питания электроэнергией при помощи нулевого защитного проводника… Источник: РД 52.04.716 2009. Руководящий документ. Правила… …   Официальная терминология

  • Защитное зануление: особенности и принцип действия

    Требования электробезопасности: выдержки из ГОСТ

    В соответствии с ГОСТ 12.1.009–76:

    • защитное заземление – это преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могут  оказаться под напряжением;
    • зануление – это преднамеренное электрическое соединение с нулевым защитным проводником металлических нетоковедущих частей, которые могут оказаться под напряжением.

    В ГОСТ Р 50571.2– 94 «Электроустановки зданий. Часть 3. Основные характеристики» приводится классификация систем заземления электрических сетей: IT, TT, TN–С, TN–C–S, TN–S.

    Однако иногда возможности заземлить устройства, нет. Тогда делается защитное зануление

    Согласно ПУЭ заземление выполняется (при наличии контура или возможности его монтажа) в обязательном порядке. Заземленными должны быт все металлические корпуса электроприборов, которые гипотетически могут попасть под напряжение. Если возможность заземления отсутствует, производится защитное зануление с обязательной установкой устройств защитного отключения (УЗО) и автоматических выключателей в вводном электрическом щите.

    Конечно, язык, которым написаны ПУЭ и ГОСТ бывает сложен для человека без электротехнического образования, а значит стоит разобрать подробно, что такое заземление и зануление на обычном языке, понятном простому обывателю.

    Все металлические шкафы и корпуса приборов должны быть заземлены или занулены

    Понятие и особенности

    Под занулением понимают подключение металлического корпуса и прочих деталей бытовой техники и промышленного оборудования, которые не должны находиться в рабочем состоянии под линией сетевого напряжения, к нулевому или нейтральному проводу системы подачи энергии. В одной из точек провод должен иметь глухое заземление.

    Важным является отличие нейтрального защитного провода от нулевого провода основной питающей сети. Проводники совершенно различны. Сеть с трехфазовой подачей представляет собой нулевой провод, проходящий от устройств, генерирующих электроэнергию, или силовой трансформаторной подстанции. Однофазная имеет только прочно заземлённый провод.

    Главное целевое назначение механизма — организация защиты людей от поражения электрическим током при возникновении короткого замыкания фазы сети на токопроводящие части установленного оборудования.

    Как выполняется зануление электрооборудования

    Далее расскажем о том, откуда защитное зануление попадает в наш дом, и рассмотрим его путь от трансформаторной подстанции и безопасно ли выполнять зануление в квартире. Начинается такое зануление с глухозаземлённой нейтрали – соединенной с заземляющим устройством нейтрали силового трансформатора.

    Нейтраль вместе с трехфазной линией сначала попадает во вводной шкаф. Оттуда же она распределяется по находящимся на этажах электрическим щиткам.

    От нее берется рабочий ноль, образующий вместе с фазой привычное для нас фазное напряжение. Название «рабочий ноль» связано с тем, что он используется для работы электроустановок или электроприборов.

    Взятым с электрощитка защитным отдельным нулем, имеющим электрическое соединение с глухозаземлённой нейтралью, и образуется защитное зануление. Необходимо обязательно знать, что в цепи защитных зануляющих проводников никаких коммутационных аппаратов (автоматов, рубильников и т.п.), а также предохранителей быть не должно.

    Что используется в новостройках: заземление или зануление?

    Новостройки по всем правилам обеспечиваются трехпроводным кабелем (фаза, ноль, земля) в однофазной системе и пятипроводным кабелем (три фазы, ноль, земля) в трехфазной системе, т.е. по системе заземления TN-C-S или TN-S. В таких системах занулением и не пахнет.


    Ошибки в реализации зануления

    Иногда считают, что заземление на отдельный контур, не связанный с нулевым проводом сети, лучше, потому что при этом нет сопротивления длинного PEN-проводника от электроустановки потребителя до заземлителя КТП (комплектной трансформаторной подстанции). Такое мнение ошибочно, потому что сопротивление заземления, особенно кустарного, гораздо больше сопротивления даже длинного провода. И при замыкании фазы на заземлённый таким образом корпус электроприбора ток замыкания из-за большого сопротивления местного заземления может оказаться недостаточным для срабатывания АВ (автоматического выключателя) или предохранителя, защищающего эту линию. В таком случае корпус прибора будет находиться под опасным потенциалом. Кроме того, даже если применить АВ небольшого номинала, срабатывающий от тока замыкания на землю, всё равно обеспечить требуемое ПУЭ время автоматического отключения повреждённой линии практически невозможно.

    Поэтому раньше, до начала массового применения УЗО, заземление корпусов электроприёмников без их зануления (то есть заземление по системе ТТ) вообще не допускалось. Пункт 1.7.39 ПУЭ-6:

    В электроустановках до 1 кВ с глухозаземлённой нейтралью или глухозаземлённым выводом источника однофазного тока, а также с глухозаземлённой средней точкой в трёхпроводных сетях постоянного тока должно быть выполнено зануление. Применение в таких электроустановках заземления корпусов электроприёмников без их зануления не допускается.

    Распространённым заблуждением является утверждение, что согласно новой редакции ПУЭ (п. 1.7.59), заземление корпусов электроприёмников без их зануления допускается, но только при обязательном применении УЗО. Пункт 1.7.39 ПУЭ-7:

    Питание электроустановок напряжением до 1 кВ от источника с глухозаземлённой нейтралью и с заземлением открытых проводящих частей при помощи заземлителя, не присоединённого к нейтрали (система ТТ), допускается только в тех случаях, когда условия электробезопасности в системе TN не могут быть обеспечены. Для защиты при косвенном прикосновении в таких электроустановках должно быть выполнено автоматическое отключение питания с обязательным применением УЗО. При этом должно быть соблюдено условие: Ra * Iа ≤ 50 В, где Iа — ток срабатывания защитного устройства; Ra — суммарное сопротивление заземлителя и заземляющего проводника, при применении УЗО для защиты нескольких электроприёмников — заземляющего проводника наиболее удалённого электроприёмника.

    В рассматриваемом пункте ПУЭ речь идёт о системе ТТ. Указывается, что в системе ТТ электробезопасность при косвенном прикосновении обеспечивается использованием УЗО. Система сети определяется состоянием нейтрали источника питания (п. 1.7.3), в большинстве случаев трансформатора подстанции, а также способами подключения открытых проводящих частей оборудования к элементам защиты, которые чётко определены для каждой системы — глухозаземлённой нейтрали трансформатора или заземляющему устройству.

    2. Нормирование зануления

    Технические требования к организации систем защитного зануления определены следующими документами:

    • Правила устройства электроустановок (ПУЭ), глава 1.7,
    • ГОСТ Р 50571.5.54-2013 (пункт 543),
    • ГОСТ 12.1.030-81 (пункт 7).

    Механизм зануления основан на автоматическом отключении поврежденного участка сети, время которого не должно превышать значений согласно пункту 1.7.79 ПУЭ-7.

    Наибольшее допустимое время защитного автоматического отключения для системы TN

    Номинальное фазное напряжение Uo, В Время отключения, с
    127 0,8
    220 0,4
    380 0,2
    более 380 0,1

    Нулевой рабочий и защитный проводники должны обладать сопротивлением, достаточным для срабатывания защиты. Активные и индуктивные сопротивления проводников образуют полное сопротивление петли «фаза-ноль». Активные сопротивления проводников зависят от их длины, удельного сопротивления материала и сечения. Индуктивные сопротивления различают для проводников из меди и стали. В стальном проводе они находятся в обратной зависимости от плотности тока и отношения периметра к площади сечения проводника. Индуктивные сопротивления стальных проводников выше, чем медных. В пункте 1.7.126 ПУЭ-7 установлены наименьшие площади поперечного сечения защитных проводников для случаев, когда они изготовлены из того же материала, что и фазные проводники. Сечения защитных проводников из других материалов должны быть эквивалентны по проводимости приведенным.

    Наименьшие сечения защитных проводников

    Сечение фазных проводников, мм2 Наименьшее сечение защитных проводников, мм2
    S ≤ 16 S
    16 < S ≤ 35 16
    S > 35 S/2

    Двухпроводная линия, состоящая из рабочего и защитного проводников, образует один большой виток, сопротивление взаимоиндукции которого (рекомендуемое значение для расчётов – 0,6 Ом/км) зависит от длины линии, диаметра проводов и расстояния между ними. Сопротивление заземления нейтрали источника питания не должно превышать 2, 4 и 8 Ом соответственно при линейных напряжениях 660, 380 и 220 В источника трехфазного тока см. пункт 1.7.101 ПУЭ-7. Увеличение тока короткого замыкания достигают путем понижения сопротивления трансформатора и петли, для чего используют схему треугольник-звезда. Обмотки мощных трансформаторов и так имеют не большое сопротивление. Меньшее сопротивление линий зануления достигают выполняя их короткими и простыми, увеличивая сечение проводников, заменяя стальные проводники на изготовленные из цветных металлов с малым индуктивным сопротивлением. Наибольшее сопротивление нулевого защитного провода не должно превышать удвоенного сопротивления фазного провода. Сокращая расстояние между ними, снижают внешнее индуктивное сопротивление. Уменьшение сопротивления повторных заземлителей и приближение их к узлам нагрузки, способствует понижению силы тока на зануленных частях оборудования. Соединение с нулевым проводником всех заземленных металлические конструкций здания повышает потенциал поверхности пола, на котором стоит человек, и тем самым значительно снижает напряжение его прикосновения до величины, примерно равной от 0,1 до 0,01 Uз.

    Назначение и принцип работы защитного заземления

    Уже отмечалось, что система электрического заземления предназначена для защиты персонала, обслуживающего электроустановки и рядовых пользователей от высокого напряжения. Опасный потенциал чаще всего попадает на металлические части оборудования или бытовых приборов совершенно случайно (из-за повреждения изоляции, например). Назначение и сам принцип действия ЗУ проще понять, если вспомнить о том, что надежный контакт с землей приводит к растеканию опасного тока и снижению уровня потенциала.

    Таким образом, назначение защитного устройства – создать условия, уменьшающие риск поражению живых организмов током опасной величины за счет снижения напряжения в точке замыкания.

    Принцип действия системы заземления заключается в снижении высокого потенциала, случайно оказавшегося на корпусе оборудования, до безопасного для организма человека значения. В отсутствие функционального заземления неумышленное прикосновение к нему равносильно непосредственному контакту с фазной жилой. С учетом того, что оператор чаще всего стоит на железобетонном полу, а обувь у него не всегда сухая – через его тело может протекать значительный по величине ток.

    Наличие защитного заземления создает условия для того, чтобы основная часть тока с системы стекала в землю

    Наличие функционального заземления создает условия для того, чтобы основная часть тока с системы стекала в землю. Его доля, приходящаяся на организм человека, будет ничтожно мала и не причинит ему никакого вреда (смотрите фото слева). Это гарантирует требуемый уровень электробезопасности при работе с заземляемым устройством.

    Дополнительная информация: Системы заземления наряду с уже известным нам техническим занулением – не единственные варианты обеспечения безопасности при эксплуатации электроустановок.

    Наряду с ними ПУЭ рекомендуются к применению специальные устройства аварийного отключения питающей линии (УЗО), срабатывающие при появлении утечек на землю.

    Можно ли в старом фонде сделать заземление?

    Старый фонд очень редко подвергается реконструкции. Для того чтобы перевести с системы TN-C, т.е. двухпроводная система (фаза и ноль), на такие эффективные системы как TN-C-S и TN-S, в которых предусмотрен защитный проводник РЕ (земля), своими силами практически не возможно. Модернизацией в основном занимается специализированная электротехническая компания.


    В системе TN-C нет защитного проводника (земли). Никто не станет тянуть из своей квартиры отдельный заземляющий провод для того, чтобы сделать заземление, к примеру, в подвале. Хотя, некоторые решаются обеспечить себя заземлением, если квартира расположена на первом этаже. Но большинству населения такой маневр осуществить не представляется возможным.

    Прежде чем подключить защитный проводник РЕ (земля) из квартиры, нужно определить, какие есть возможности.Определите наличие заземления в щитовой, к которой можно подключить третий проводник. В щитовой должна быть либо заземляющая шина РЕ, либо все этажные щитовые должны быть соединены между собой металлической шиной, и в итоге подсоединены к общему контуру заземления дома, т.е. речь идет о повторном заземлении. Это дает возможность подключить к щиту заземляющий проводник из квартиры. Если эти два варианта отсутствуют, значит, в доме нет заземления и в этом случае делают запрещенное зануление. Как уже было сказано ранее, такой метод в жилом секторе совсем не безопасен.

    Что такое зануление электроприборов: возможности применения

    Защитное зануление электроприборов используется, если смонтировать заземление невозможно. Такая ситуация может возникнуть в случае, если многоквартирный дом построен в советские времена. Своего контура у таких домов нет, а самостоятельно его устроить не получится.

    Защитное зануление – это система, выполняющая отличную от заземления работу. Если второе призвано увести напряжение в землю, исключая возможность поражения электрическим током, то первое выполняется с целью создания (при пробое изоляции и попадания напряжения на корпус) короткого замыкания. В этом случае срабатывает автоматика и электричество отключается.

    Источником опасности может стать любой незаземленный электроприбор

    Важная информация! В многоквартирных домах современной постройки и частных секторах в наши дни монтаж зануления запрещен. Это продиктовано целями безопасности проживающих. Автоматика может подвести, что приведет к непоправимым последствиям.

    Защитное зануление требует правильного монтажа. Не стоит думать, что достаточно бросить перемычку с нулевого контакта внутри розетки на заземляющий. Это категорически запрещено. Рассмотрим ситуацию, когда уже «подгоревший» ноль подвергается нагрузке короткого замыкания, а автомат еще не успевает сработать. Ноль отгорает, исключив замыкание, но прибор остается под напряжением. Человек, надеясь на отсутствие электричества (света ведь нет, ноль отгорел) на ощупь продвигается к выходу и облокачивается на корпус бытового прибора, находящегося под напряжением. Исход ясен, не так ли?

    Правильно  выполненное заземление вкупе с защитной автоматикой – залог спокойствия проживающих в доме или квартире

    См. также

    • Правила устройства электроустановок
    • Заземление

    Устройство защитного отключения

    Для повышения безопасности при эксплуатации эл. приборов используют и так называемое устройство защитного отключения, сокращенно — УЗО. Совместно с заземлением УЗО дают 100% гарантии защиты человека от поражения электрическим током.

    Давайте разберём принцип действия УЗО, для чего представим электропроводку как водопроводную систему. Вода течёт по трубам, как и ток – по проводам. И если вдруг в трубе образовалось отверстие, вода начинает уходить, а её количество на выходе участка будет меньше, чем на входе. УЗО и контролирует подобную утечку, но не воды, а электричества.

    Если корпус прибора под напряжением, но утечки нет – УЗО не реагирует. Но как только корпуса касается человек – появляется путь для утечки тока, «дыра» – УЗО за доли секунды размыкает цепь.

    Можно ли сделать зануление в квартире?

    Можно,но не нужно. Чем это грозит? Предположим ваше оборудование (стиральная машина,бойлер и др.) занулены. Если нулевой провод по каким-либо причинам обгорит или электрик случайно перепутал подключение проводов (вместо нуля подключил фазу), то ваше оборудование просто перегорит из-за большого напряжения.

    Если вы запланировали электромонтажные работы в своем жилье, а затем узнаете, что в доме нет заземления ни в каком виде, все же лучше прокладывать трехжильный кабель. Две жилы (фаза и ноль) подключаем планово, а вот третий проводник защитного заземления оставляем незадействованным до ожидания реконструкции стояков, где будет предусмотрено заземление.

    Если вы все же надумали сделать в квартире зануление, нужно помнить, что вы берете на себя огромную ответственность. В любом случае, при наличии заземления или зануления, нельзя пренебрегать установкой защитной аппаратуры, таких как УЗО (Устройство защитного отключения) и ограничитель напряжения.

    Защитное зануление – система, в которой токопроводящие части оборудования, не находящиеся в норме под напряжением, соединены с нейтралью. В защитных целях преднамеренно создается соединение между открытыми проводящими элементами глухозаземленной нейтрали (в сетях трехфазного тока).

    В сетях однофазного тока создают контакт с глухозаземленным выводом источника однофазного тока, а в случае с постоянным током – с глухозаземленной точкой источника тока. Хотя зануление характеризуется серьезными недостатками, система по-прежнему широко применяется во многих сферах для защиты от тока.

    Что такое защитное зануление

    Риск поражения электрическим током и в наше время остается реальной опасностью. Рабочее напряжение любой сети начиная со 127 вольт, при неблагоприятных условиях замыкания на тело человека, способно вызвать смертельный ток. Кроме того, даже не приведшая к немедленному летальному исходу электротравма может быть опасна нарушениями сердечной деятельности.

    Главное отличие

    Самое главное, что нужно запомнить: схемы зануления и заземления имеют различное защитное действие. Ноль гарантирует быструю реакцию на изменение потенциалов или утечку тока для обеспечивающих защиту установок. Соответственно, при высоком напряжении обеспечивается отключение всех потребителей энергии: осветительных приборов, компьютера и других машин (в том числе, станков, трансформаторов).

    Фото — отличие зануления и заземления

    Заземлением же обеспечивается выравнивание потенциалов и защита от поражения током. Земля чаще применяется в домашних условиях, её монтаж можно легко сделать своими руками. Но здесь нет гарантии, что предохранители быстро отреагируют на утечку. Оптимальным вариантом для повышения гарантии безопасности является совместное применение зануления и заземления сетей и открытых частей машин.

    Перед установкой любого из этих вариантов защиты, нужно обязательно получить разрешение на проведение работ. Также дополнительно проводится расчет защитного проводника, подведение к каждому потребителю в жилище земли и установка защитного оборудования.

    Чем опасно зануление в квартире

    Зануление значительно отличается от заземления. Попробуем рассмотреть это отличие более подробно. В соответствии с ПУЭ, использование на бытовом уровне такой преднамеренной защиты, как зануление, запрещено из-за ее небезопасности.

    Но, несмотря на то, что практиковаться такая система должна только в промышленном производстве, многие ставят ее и в своих квартирах. Прибегают к этой далекой от совершенства защите, в частности, в связи с отсутствием иного варианта или вследствие недостатка знаний в данной сфере.

    Действительно, зануление в квартире сделать можно, но последствия от этого будут далеко не наилучшими. Далее на примерах рассмотрим некоторые ситуации, которые могут возникать в случае выполнения в квартире зануления.

    1) Зануление в розетках

    Иногда предлагается выполнить «заземление» электрических приборов посредством перемычки клеммы рабочего нуля в розетке на защитный контакт. Такой метод «заземления» не соответствует требованиям пункта 1.7.132 ПУЭ, ведь он подразумевает использование нулевого проводника двухпроводной сети в качестве защитного и рабочего нуля одновременно.

    Помимо того, на вводе в квартиру обычно имеется аппарат, предназначенный для коммутации как фазы, так и нуля, к примеру, пакетник или двухполюсный аппарат. Но коммутировать нулевой проводник, который используется в качестве защитного, запрещено. То есть, нельзя использовать в качестве защитного проводник, цепь которого имеет коммутационный аппарат.

    Опасность «заземления» перемычкой в розетке заключается в том, что корпуса электроприборов при нарушении целостности нуля в любом месте окажутся под фазным напряжением. При обрыве же нулевого провода работа электроприемника прерывается, и тогда такой провод имеет вид обесточенного, то есть безопасного, что, конечно же, усугубляет ситуацию.

    Можно только представить, сколько беды наделает такая розетка, если в нее включить стиральную машину. В данном случае можно увидеть перемычку, которая соединяет «нулевой» контакт с защитным. И, если бы отгорел «ноль», то такая стиральная машина превратилась бы в «убийцу».

    Если же во время принятия человеком душа вывалится нулевая «сопля» в розетке, к которой подключен бойлер, такого человека просто «прошьет» током. Поэтому такое зануление в квартире крайне опасно и его запрещено выполнять.

    2) Перепутаны местами фаза и ноль

    Рассмотрев следующий пример, можно наглядно увидеть наиболее вероятную опасность в двухпроводном стояке. Нередко при осуществлении каких-либо ремонтных работ в домовом электрохозяйстве ноль “N” ошибочно меняют местами с фазой “L”.

    Отличительной окраски жилы проводов в электрощитке в домах с двухпроводкой не имеют, и при выполнении каких-либо работ в щитке любой электрик может переключить ноль и фазу местами – корпуса электроприборов в таком случае тоже окажутся под фазным напряжением.

    Необходимо обязательно помнить о высокой опасности выполнения защитного зануления в двухпроводной системе. Поэтому, в соответствии с правилами, это делать запрещено!

    3) Отгорания нуля

    Что такое «отгорание нуля», или обрыв нуля, знает каждый электрик, но далеко не каждый потребитель электроэнергии. Попробуем разобраться в значении данной фразы, и выяснить, какова опасность отгорания нуля?

    Очень часто обрыв «нуля» фиксируется в домах со старыми проводками, основанием для проектирования которых являлся расчет примерно 2 кВт на квартиру. Конечно, нынешняя оснащенность квартир всевозможными электрическими приборами на порядок увеличивает данные цифры.

    В случае обрыва «нуля» перекос фаз может происходить на трансформаторной подстанции, от которой запитан многоэтажный дом, в общем электрощите или в щитке на лестничной площадке этого дома, в расположенной после этого обрыва электролинии. Результатом может стать поступление в одну часть квартир пониженного напряжения, а в другую – повышенного.

    Пониженное напряжение опасно для холодильников, кондиционеров, сплит – систем, вытяжек, вентиляторов и другой техники с электродвигателями. Что касается повышенного напряжения, то при нем может выйти из строя любой прибор бытовой техники.

    Похожие материалы на сайте:

    Требования, предъявляемые к заземлению и занулению

    Поняв, что такое заземление и зануление, легко разобраться с требованиями, предъявляемыми к ним. Основное – это обеспечение безопасности и защита человека от поражения электрическим током. Об остальном уже говорилось, но стоит обобщенно повторить.

    Требования к занулению – отключение защитной автоматики при соприкосновении токонесущих частей (смотри «оголенных проводов») к поверхностям корпусов бытовой техники, частям, где напряжения быть не должно.

    Требование к заземлению – отвод напряжения в землю, исключающий поражение человека электрическим током.

    Так должно быть не только на производстве. Распределительные щиты подъездов – не исключение для ПУЭ

    Лучший вариант защиты это заземляющее устройство?

    Единственно правильный ответ на этот вопрос – да. Это действительно так. Контур заземления, смонтированный по всем правилам, защитит человека намного лучше предыдущего варианта. Улучшить защиту можно при помощи дополнительных устройств – автоматических выключателей, УЗО или дифавтоматов. Ведь что такое защитное заземление? По своей сути это система отвода электрического тока в случае аварии туда, где он не может навредить человеку.

    Так должен выглядеть готовый контур заземления частного дома

    Касаемо заземляющего устройства можно сказать, что оно может быть различным – контур заземления по периметру здания, «треугольник» во дворе или естественный заземлитель. Все правила и способы его монтажа мы обязательно рассмотрим в одной из ближайших тем. Но для общей информации имеет смысл понять определение, что является естественным заземлителем.

    Полезно знать! В качестве естественного заземлителя можно использовать любые металлические конструкции, находящиеся под землей, за исключением трубопроводов ГСМ, канализации и предметов, покрытых антикоррозийными составами. Водопроводные трубы для этой цели могут использоваться.

    В таких домах заземление не предусмотрено – придется довольствоваться занулением

    Особенности зануления в квартире

    У потребителя часто возникает вопрос: что необходимо занулять в квартире, а чего делать не следует? Коротко ответим на этот вопрос. Сначала расскажем чего делать не следует. Зануление в квартире не рекомендуется использовать для изделий, которые заземлены через трубы. К ним относятся металлические ванны, умывальники, смесители и другие предметы, связанные с землей через стальные трубы. В случае зануления этих изделий можно получить поражение электрическим током при включении бытовой техники. Выравнивать потенциалы металлических предметов на кухне, в ванной и туалете следует используя заземление.

    Все бытовые приборы в квартире необходимо занулять. В новых домах эта проблема, как правило, решена, так как нейтраль уже подведена к розеткам, а все современные бытовые приборы имеют вилку с заземляющим контактом. В старых домах электропроводка выполнена по двухпроводной схеме. В этом случае для зануления бытовой техники необходимо завести отдельный провод от квартирного электрического щитка, что позволит занулить оборудование через розетки.

    Важно! Зануление бытовой техники в квартире необходимо выполнять с соблюдением правил электробезопасности. Работы следует проводить на полностью обесточенном оборудовании!

    Ссылки

    • Заземление силового оборудования и цеховых сетей

    Когда следует использовать зануление, а когда заземление

    В этой части статьи мы ответим на вопрос в чем разница между заземлением и занулением и в каком случае использовать тот или иной метод защиты человека от поражения электрическим током. Принцип действия защитного зануления похож на функциональные возможности заземления, но между ними есть существенная разница!

    Обе системы предназначены для защиты человека от поражения электричеством. Разница между ними в том, что зануление мгновенно обесточивает оборудование, а заземление отводит опасный электрический ток в землю. Вот в этом и заключается вся разница! На ниже приведенной схеме наглядно показаны различия между этими двумя способами.

    Какой же метод лучше использовать в каждом конкретном случае? Однозначно ответить на этот вопрос невозможно. Например, в многоэтажных домах создание заземляющего контура — это трудное и затратное мероприятие. Поэтому в большинстве квартир используется защитное зануление, подключаемое к бытовой технике через электрические розетки. В частном доме монтаж заземляющего контура не вызовет затруднений. Каждая из систем защиты следующие преимущества и недостатки.

    1. Заземление в частном доме можно сделать собственными руками, а для зануления необходимы познания в электротехнике, с проведением расчетов и выбора оптимального варианта подключения к нейтральному проводу системы электроснабжения. К тому же зануление перестает работать при обрыве нулевого провода.
    2. В многоэтажных домах устройство контура заземления является сложной задачей, так как необходимо будет выполнить комплекс монтажных работ высокой стоимости. Для квартир в основном используется принцип зануления бытовых приборов, хотя этому способу защиты человека от поражения электрическим током присущи определенные недостатки.

    Исходя из всего вышесказанного следует сделать вывод, что для частного дома лучше выбирать заземление, а для квартиры зануление. Правда, в том случае если объект запитывается от однофазной двухпроводной линии, что характерно для дачных поселков, без контура заземления не обойтись!

    Важно! Часто в специальной литературе можно встретить такой термин, как защитное заземление по системе TN-C-S и TN-C. Следует сказать, что это не прямое заземление через специально смонтированный контур, а все то же защитное зануление!

    Подведем итоги

    Обеспечение безопасности жизни и здоровья – первоочередная задача государства, общества и естественно самого человека. Для этого необходимо строго придерживаться установленных правил, инструкций и требований. Одним из факторов опасных для здоровья человека является электричество, поэтому очень важно обеспечить достаточную электробезопасность на производстве и в быту при помощи определенных мероприятий и защитных технических средств.

    Если у вас остались вопросы по этой теме или возникли новые, то пишите в комментариях, наша команда постарается ответить на них.

    Экономьте время: отборные статьи каждую неделю по почте

    Зануление это просто, что такое защитное зануление

    Не все понимают разницу между такими понятиями, как зануление и заземление, хотя, в принципе, это одно и то же. Защитное зануление – это соединение нейтрали трансформатора с металлическим корпусом бытового прибора. А так как система электроснабжения с глухозаземленной нейтралью – основная схема подачи электричества в дома, соответственно схема зануления присутствует в каждом доме.

    При всей непонятности названия: глухозаземленная нейтраль – в реалии все достаточно просто. Электроснабжение домов производится от электрической подстанции, в которой установлен трансформатор. Фазные обмотки трансформатора соединены в одной точке, данная схема называется звездой. Разность потенциалов в данной точке равна нулю, то есть, напряжение здесь отсутствует. Именно эта точка соединяется с заземляющим контуром, который расположен внутри подстанции. И от этой точки в дома проводится провод, который называется нулевым. То есть, в каждую квартиру или дом входит два проводника: фазный и нулевой, которые и подают напряжение в 220 вольт.

    Теперь, что такое зануление? Современные бытовые приборы в процессе производства комплектуются заземляющим проводом, который соединяет их металлический корпус с вилкой. В последней установлена третья клемма заземления. Соответственно современные розетки также снабжены третьим заземляющим контактом. При установке вилки в розетку происходит замыкание заземляющих контактов, то есть, бытовой прибор подключается к заземляющему контуру, расположенному в подстанции, через нулевой провод. И хотя эта одна из разновидностей заземления, название она получила от нулевого проводника.

    Как работает система

    Принцип действия зануления очень простой. Он основан на правилах устройства электроустановок (ПУЭ). В них регламентированы нормативы, в которых обозначено, что при появлении короткого замыкания в сети защитное устройство (автомат) должно среагировать за 0,4 секунды. За этот небольшой промежуток времени человек останется в живых, если он коснулся корпуса прибора, который находится под напряжением в виду пробивки изоляции внутри электроустановки.

    Есть два тонких момента, которые определяют принцип действия защитного зануления.

    1. При ее использовании значительно уменьшается сопротивление петли «фаза-ноль».
    2. Увеличивается значение тока короткого замыкания, которое становится причиной срабатывания защитного автоматического выключателя.
    По второму пункту необходимо дать пояснения. У каждого автомата есть свой определенный предел реагирования на величину тока. Он обычно обозначается на корпусе прибора, к примеру, 16 А. То есть, автомат будет реагировать на силу тока, равную или выше 16 ампер. Все величины ниже данного значения автомат пропускает, то есть, на них он не реагирует, а значит, и не отключает подачу электричества в помещения. Поэтому зануление дома — это защита, которая повышает значение тока короткого замыкания, чтобы автоматы в распределительном щитке срабатывали в независимости от реального пониженного значения.

    Внимание! Есть одно требование, которое зафиксировано в ПУЭ. Нельзя изготавливать своими руками отдельный заземляющий контур на улице и подключать к нему заземляющий провод, если в доме используется сеть с глухозаземленной нейтралью. Все дело в том, что самодельный контур может иметь более значительное сопротивление, чем зануляющая система через нейтраль. А это снижение силы тока короткого замыкания, на который не отреагируют защитные автоматы в распределительном щитке.

    Это же самое касается создания заземляющего контура через отопление или водопроводные металлические трубы.

    Область применения зануления обширна. К ней на промышленных объектах подключаются все электроустановки: электродвигатели, генераторы, трансформаторы, конструкции распределительных устройств и прочие. В быту к ней подключаются бытовые приборы, электрические инструменты и станки, светильники, распределительные щиты.

    Назначение защитного зануления – это безопасная эксплуатация электроустановок. Но насколько оно эффективнее настоящей заземляющей сети. Во-первых, необходимо отметить, что отдельно устанавливаемый заземляющий контур – это провод, который проложен от распределительного щитка в доме к трансформатору и подключен к заземляющей сети внутри подстанции.

    Во-вторых, могут возникнуть ситуации, когда нулевой проводник по каким-то причинам отгорит. То есть, при коротком замыкании внутри бытового прибора весь потенциал будет направлен на его корпус. А так как при занулении нулевой провод соединен с заземляющим, то последний также не будет задействован в системе безопасности. Последствия при соприкосновении с корпусом прибора – удар током. В заземлении такого не произойдет, потому что оба проводника: ноль и земля – это два отдельно проведенных контура.

    Обобщение по теме

    Требования ПУЭ точно определяют нормативы, при которых питающая электрическая цепь должна сработать на отключение при возникновении короткого замыкания. Для этого сила тока короткого замыкания должна быть в три раза больше, чем номинальный, обозначенный на автоматическом выключателе. Это касается жилых домов и офисных зданий, где установлены автоматические выключатели с плавкими вставками. Для защитных устройств с электромагнитными расцепителями повышающий коэффициент равен 1,4. Для взрывоопасных помещений используется коэффициент 4-6.

    Чтобы ток такой силы мог спокойно растекаться по зануляющей сети, необходимо, чтобы ее сопротивление при 220 вольт было 8 Ом, при 380 вольтах – 4 Ома. Это может обеспечить медный провод сечением 4 мм², не меньше. Этот размер применяется в бытовых сетях, где используется напряжение 220 В.

    Обобщая информацию, можно дать окончательное определение зануляющей системе. Итак, занулением называется соединение нетоковедущих металлических частей электроустановок (бытовых приборов) с нейтралью трансформатора. Последняя соединяется с заземлением. Добавим, что заземляющие и зануляющие провода имеют один окрас – желто-зеленый. Это делается для облегчения монтажа и для легкости определения проводников в процессе проводимого ремонта.

    Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

    Применение средств индивидуальной защиты — охрана труда и безопасность

    Применение средств индивидуальной защиты

    Перед установкой средств индивидуальной защиты всегда проверяйте цепи на отсутствие напряжения. То, что вы знаете, что он обесточен, не означает, что это действительно так.

    • Джеймс Р. Уайт
    • 1 июня 2013 г.

    Основания индивидуальной защиты в отрасли имеют несколько наименований: «временные защитные площадки», «заземляющие комплексы», «наземные кластеры» или просто грунтовые площадки.«Средства индивидуальной защиты используются всякий раз, когда рабочие выполняют работы в электроэнергетических системах, которые по какой-либо причине могут быть повторно задействованы, например, повторным включением выключателей или автоматических выключателей, статическим напряжением, индуцированным напряжением на внешних подстанциях или линиях, а также емкостными разрядами. В то время как большинство технических специалистов подумайте об использовании средств индивидуальной защиты при работе с системами высокого напряжения, они также необходимы при работе с системами низкого напряжения, особенно когда в цепь могут быть подключены конденсаторы (системы ИБП и частотно-регулируемые приводы) или когда цепь может быть повреждена. с учетом одной из проблем, упомянутых ранее.Использование индивидуального защитного заземления регулируется OSHA 1910.269 (n), «Заземление для защиты сотрудников» и NFPA 70E, раздел 120.3, «Временное защитное заземление». Оба источника содержат очень похожие требования.

    NFPA 70E Раздел 120.3 (A) Размещение состояния, «Временные защитные площадки (средства индивидуальной защиты) должны быть размещены таким образом, чтобы они не подвергали сотрудников опасным перепадам потенциалов.Земля не может быть размещена слишком близко к месту работы и должна быть размещена или закреплена так, чтобы она не могла контактировать с людьми ». Земля должна быть размещена достаточно близко, чтобы защитить рабочих, но не настолько близко, чтобы они могли ударить по ним, если земля станет возобновляется подача энергии, особенно из-за токов аварийного уровня. Ток, протекающий через заземляющий кабель, может создать магнитное поле, достаточно сильное, чтобы заставить кабель ломаться, как хлыст, что может привести к поломке костей или сбиванию рабочих с строений.

    Линейщики должны быть осторожны с тем, где размещены средства индивидуальной защиты, потому что они должны создавать эквипотенциальную зону и работать в этой зоне.А.Б. Chance является одним из источников информации о средствах индивидуальной защиты, и у него есть несколько хороших буклетов и видеороликов, в которых подробно рассказывается об эффективном размещении территорий. На рис. 1 показан правильно спроектированный и правильно установленный комплект заземления на распределительном трансформаторе, установленном на площадках. Сравните это с рисунком 2, который очень похож на акт самоубийства.


    Эта статья впервые появилась в июньском выпуске журнала «Охрана труда и безопасность» за 2013 год.

    Требования к защитному заземлению

    Сборка кабеля заземления для индивидуальной защиты

    Каждый регион должен внедрить процедуры для обеспечения соответствия защитных заземлений и должен периодически пересматривать методы заземления на каждом объекте, чтобы определить надлежащий размер, длину и количество (если требуются параллельные заземления. ) защитных оснований.

    Регионы должны вести и периодически обновлять список максимальных токов короткого замыкания на каждом объекте или месте, где сотрудники мелиорации применяют защитные основания.

    Эти проверки следует проводить с интервалом в 5 лет1 или раньше, если изменения в оборудовании или условиях системы требуют особого пересмотра.

    Требования

    Кабели защитного заземления и соответствующее заземление Оборудование должно отвечать следующим требованиям:

    1

    Способно проводить максимальный ток короткого замыкания, который может возникнуть на заземленной рабочей площадке, если обесточенная линия или оборудование будут запитаны от источника питания. любой источник и время устранения неисправности.

    Заземление или перемычка, размер которой позволяет проводить максимально доступный ток короткого замыкания, должны быть достаточными для безопасного отвода токов от других источников опасной энергии, включая установившиеся токи, индуцированные электромагнитной связью от близлежащих линий или оборудования, находящихся под напряжением.

    2

    Способен выдерживать максимально доступный ток повреждения, включая постоянный ток смещения из-за асимметрии формы сигнала для высоких значений отношения X / R полного сопротивления цепи повреждения. Информацию о допустимой нагрузке на кабель см. В Разделе 5, а в разделе 6 — о процедуре выбора размеров проводника.

    3

    Способен выдерживать второе включение в течение 30 циклов после первого случайного включения.

    4

    Применяется на рабочем месте таким образом, чтобы контактное напряжение рабочего или контактное напряжение с телом не превышало значений, указанных в параграфе 4.1, в то время как заземляющие кабели проводят ток короткого замыкания. Обратитесь к Разделу 6, чтобы узнать, как определить рабочее напряжение.

    5

    Подключается непосредственно к заземляемому оборудованию, шине или проводнику.Никакое полное сопротивление или устройство (автоматический выключатель, разъединитель, трансформатор, линейный ограничитель и т. Д.) Не должны быть включены последовательно между точкой подключения защитного заземления и местом контакта рабочих.

    6

    Простота применения, соответствие требованиям полевых условий, минимальное время и подготовка к установке, а также широкий спектр применения. Стандартизация, насколько это практически возможно, желательна в каждом месте, чтобы свести к минимуму количество размеров и типов.

    7

    Изготовлен как сборка компонентов подходящего номинала (провод, наконечники, зажимы), чтобы выдерживать тепловые и электромеханические нагрузки, возникающие при проведении тока короткого замыкания (Раздел 5).

    8

    Хранить и транспортировать должным образом, чтобы избежать повреждений, и поддерживать в хорошем рабочем состоянии (Раздел 10).

    9

    Выключатели заземления оконечных устройств линии и оборудования не должны использоваться для средств индивидуальной защиты. Однако выключатели заземления могут быть замкнуты параллельно с защитным заземлением, чтобы уменьшить ток короткого замыкания через заземляющие кабели и снизить рабочее напряжение на рабочем месте.

    Заземляющие кабели должны быть рассчитаны на максимально доступный ток короткого замыкания без преимущества какого-либо снижения тока из-за замкнутых переключателей заземления.

    Некоторые типы заземляющих выключателей предназначены для статического заземления оборудования и не пропускают ток короткого замыкания. Перед включением параллельно с защитным заземлением проверьте характеристики заземляющего выключателя.

    10

    Временное снятие защитных заземлителей для проверки обесточенного оборудования не допускается. Скорее, защитное заземление должно быть установлено таким образом, чтобы обеспечить надежную изоляцию обесточенного оборудования при испытании от цепи (ей) защитного заземления на время испытания.

    Метод заземления с двойной изоляцией обеспечивает эффективное средство изоляции оборудования для испытаний.

    ИСТОЧНИК: Индивидуальное защитное заземление для объектов электроэнергетики и линий электропередач — Инструкции, стандарты и методы для оборудования Том 5-1

    Важность индивидуального защитного заземления

    Линейщики, работающие на ЛЭП и опорах, выполняют опасную работу. Они часто работают высоко над землей и обеспечивают обслуживание цепей и линий электропередач с опасными электрическими токами.Линейным мастерам важно защищать себя во время работы, используя подходящее оборудование и средства индивидуальной защиты.

    Что такое защитное заземление?

    Защитное заземление — это то, что линейные и другие коммунальные работники используют для защиты от поражения электрическим током при работе с линиями электропередач и цепями. Линейщики строят защитные заземления, используя кабели и зажимы, которые эффективно заземляют любой электрический ток, который может проходить по линиям электропередач и работающей цепи.Это сделано для защиты линейных монтеров в случае, если линии электропередач не обесточены или снова включатся из-за одного из нескольких возможных факторов.

    Как заземление электросети защищает линейных операторов

    Когда линейные монтеры работают на коммунальном оборудовании, через оборудование всегда проходит электрический ток. Защитное заземление не убивает ток, а вместо этого обеспечивает путь для заземления тока.

    Оборудование защитного заземления не устанавливается до тех пор, пока цепь не будет проверена на отсутствие напряжения.В случае повторного включения силовых линий или цепи защитное заземление позволит максимальному току короткого замыкания в системе.

    Выбор подходящего средства индивидуальной защиты для заземления

    Средство индивидуального защитного заземления должно быть установлено правильно, и важно использовать правильное оборудование для ситуации. Плохое соединение может привести к неисправности защитного заземления, что подвергнет опасности линейных.

    Выбирая кабели заземления высокого напряжения для использования в качестве защитного заземления, вы должны учитывать номинальную стойкость кабеля и длину.Рейтинг устойчивости показывает, какой ток могут выдерживать кабели и как долго.

    Проверка и очистка защитного заземления

    Перед установкой оборудования защитного заземления необходимо убедиться, что оно находится в безупречном рабочем состоянии для эффективной защиты линейных игроков. Это оборудование необходимо тщательно осмотреть перед установкой и очистить, чтобы оно работало должным образом.

    Инспекция защитных территорий

    Убедитесь, что вы проверили кабели и зажимы на наличие следующих проблем.Если вы обнаружите, что оборудование повреждено одним из следующих способов, вам следует немедленно прекратить его использование.

    • Проверьте, не являются ли участки кабеля плоскими, обрезанными или изогнутыми.
    • Ищите обрывы жил кабеля в точках подключения.
    • Ищите вздутые оболочки кабелей или мягкие пятна, которые могут указывать на коррозию.
    • Обратите внимание на трещины, трещины и другие повреждения зажимов.
    • Проверить зажимные губки на износ.
    • Проверить на износ резьбы стяжных болтов зажима.
    • Обратите внимание на неплотные соединения между зажимами и кабелями и наконечниками.
    • Убедитесь, что резьбовой зажимной механизм работает плавно.

    Очистка защитных оснований

    Фазовые проводники и электроды не должны иметь окисления перед подключением к заземляющим кабелям. Убедитесь, что вы очистили эти детали жесткой проволочной щеткой, чтобы удалить окисление.

    Испытания защитного заземления

    Последнее, что вам нужно сделать перед началом работы, — это проверить заземление.Тестирование важно, чтобы убедиться, что средства индивидуальной защиты и защитят линейных гонщиков. После того, как вы установили защитное заземление, лучше всего будет нанять профессионала, который проверит защитное заземление за вас.

    Divergent Alliance предоставляет комплексные услуги наземных испытаний средств индивидуальной защиты. Мы проверим кабели, наконечники и зажимы, чтобы убедиться, что они правильно подключены. Мы также будем искать признаки повреждений оборудования и при необходимости можем почистить соединительные детали.

    Убедившись, что защитное заземление установлено правильно и оборудование находится в хорошем состоянии, мы проверим его, чтобы убедиться, что оно работает эффективно. Наши испытания проводятся в соответствии со стандартными спецификациями ASTM F2249 и ASTM F855 для получения точных результатов.

    Свяжитесь с Divergent Alliance, чтобы узнать больше о наших услугах по испытанию и ремонту защитного заземления , а также об оборудовании заземления, которое мы предоставляем.

    Классы функционального заземления и защиты в источниках питания

    При выборе источника питания необходимо учитывать множество технических характеристик и требований.В частности, вам необходимо учитывать необходимый вам класс защиты и может ли потребоваться функциональное заземление для уменьшения электромагнитных помех (EMI). В этом руководстве мы обсудим классы защиты Международной электротехнической комиссии (МЭК) и объясним, чем они отличаются друг от друга. Мы также подробно рассмотрим, чем функциональное заземление отличается от заземления и как оно влияет на электрические устройства, особенно на медицинском рынке.

    КЛАССЫ ЗАЩИТЫ IEC

    IEC установил три класса защиты для электронного оборудования: класс I, класс II и класс III.В этом руководстве мы в первую очередь обсудим классы I и II, которые обеспечивают защиту пользователя от поражения электрическим током.

    Классы I и II IEC предотвращают поражение электрическим током за счет использования двух типов защиты. Они могут обеспечивать защиту от опасного напряжения с помощью одного или нескольких типов систем изоляции. Базовая система изоляции и система усиленной изоляции. Базовая изоляция — это одно из средств защиты, а усиленная изоляция — это усиленная система изоляции, эквивалентная двойной основной изоляции.В дополнение к изоляции предусмотрено защитное заземление для отвода энергии короткого замыкания в случае случайного пробоя основной изоляции. Наличие двух типов защиты обеспечивает резервное копирование. Второй уровень защищает пользователя, если уровень напряжения становится настолько опасным, что первый уровень выходит из строя. В классе III вход подключается к цепи безопасного сверхнизкого напряжения (SELV), после чего дополнительная защита не требуется.

    Соединение защитного заземления, заземления или защитного заземления использует защитный провод для безопасного направления тока короткого замыкания в землю и вдали от человека, с которым контактирует.Он также имеет защитное устройство — предохранитель или автоматический выключатель — для прерывания электрического тока в неисправной цепи. С другой стороны, в изоляции обычно используется пластик в качестве изолирующего барьера, который помогает безопасно поддерживать электрический ток в его правильной цепи и предотвращать утечку, не требуя этого заземления.

    Успех каждой из этих систем зависит от напряжения изоляции — испытательного напряжения, используемого для оценки целостности изоляции. . Большинство изоляторов имеют очень высокий импеданс, поэтому они могут блокировать ток.Однако, когда напряжение в системе изоляции становится достаточно высоким и если напряжение сохраняется достаточно долго, это может привести к разрушению изоляции, что может вызвать поражение электрическим током человека, с которым происходит контакт. Следовательно, изоляционные системы должны обладать достаточной выдерживающей целостностью или выдерживаемым диэлектрическим напряжением, чтобы гарантировать, что они постоянно сохраняют свои изоляционные свойства.

    КЛАСС I

    IEC класс I защищает от поражения электрическим током за счет комбинации безопасного заземления и основной изоляции.Прибор класса I имеет проводящее шасси, подключенное к защитному заземлению. Эти устройства должны иметь трехжильный шнур питания, одобренный для обеспечения безопасности, который содержит провод защитного заземления. Этот заземляющий провод прикреплен к металлическому листу прибора или прикручен болтами. T Вместо того, чтобы передавать его лицу, контактирующему с устройством. Электрохирургические аппараты, катетеры артериального давления и системы электрокардиограммы (ЭКГ) часто относятся к оборудованию класса I.

    КЛАСС II

    Защита источника питания IEC Class II предотвращает поражение электрическим током за счет двух уровней изоляции: основной изоляции и дополнительной изоляции.Примером базовой изоляции является однослойная пластиковая изоляция, которая оборачивается вокруг проводника шнура питания и защищает пользователя от ударов при нормальных условиях. Примером дополнительной изоляции является второй слой, который защищает пользователей от опасных уровней напряжения, если основной слой не может этого сделать. Например, в устройстве с жестким пластиковым корпусом защитный корпус обычно является дополнительной изоляцией.

    Устройства класса II должны иметь усиленную систему изоляции, также называемую усиленной изоляцией.Система усиленной изоляции может состоять из двух слоев базовой изоляции или одного слоя толщиной и достаточной прочности, чтобы соответствовать двум основным слоям. Поскольку он равен двум слоям основной изоляции, его также называют двойной изоляцией. Устройства класса II не нуждаются в защитном заземлении. В устройствах класса II используется двухжильный шнур питания, поэтому у них нет средств для подключения корпуса устройства к защитному заземлению. Поскольку физическое защитное заземление отсутствует, приборам класса II требуется двойная или усиленная изоляция.Медицинские адаптеры питания, предназначенные для домашнего медицинского оборудования, часто являются устройствами класса II. Фактически, чтобы соответствовать стандарту IEC60601-1-11, источник питания для домашнего здравоохранения должен быть класса II и работать с двухпроводным шнуром питания.


    ИСПОЛЬЗОВАНИЕ ФУНКЦИОНАЛЬНОГО ЗАЗЕМЛЕНИЯ В УСТРОЙСТВАХ КЛАССА II

    В некоторых случаях устройства класса II могут иметь функциональное заземление. Хотя устройства класса II не требуют защитного заземления, иногда им требуется функциональное заземление для обеспечения электромагнитной совместимости (ЭМС).Как и в случае с защитным заземлением, трансформатор блокирует прохождение силового тока на землю, но позволяет любому переходному току или утечке течь на землю.

    ФУНКЦИОНАЛЬНОЕ ЗАЗЕМЛЕНИЕ VS. ЗАЗЕМЛЕНИЕ

    Функциональное заземление отличается от защитного заземления тем, что оно не обеспечивает защиты от поражения электрическим током от опасного напряжения. Однако это помогает уменьшить электромагнитный шум или EMI. Эта защита может иметь первостепенное значение на медицинском рынке. Функциональное заземление снижает электромагнитные помехи. Обеспечивает правильную работу устройств, не создавая помех для расположенного поблизости электронного оборудования.

    Какое значение имеет функциональное заземление по сравнению с заземлением для медицинских устройств? Хотя для медицинского оборудования может не требоваться заземление, для снижения электромагнитных помех может потребоваться функциональное заземление. Функциональное заземление помогает обеспечить высокую производительность медицинских устройств критического класса II даже в клинической среде, содержащей радиопередатчики, беспроводные радиочастотные устройства и оборудование, такое как МРТ и компьютерные томографы.

    При изоляции медицинского устройства класса II устройству не требуется безопасное соединение с заземлением, поскольку его двойная изоляция означает, что пользователи не будут соприкасаться с какими-либо токоведущими частями.Напомним, что прибор класса II не может подключаться к защитному заземлению из-за двойной изоляции, необходимой между доступными частями и частями под напряжением. Однако оборудованию класса II может потребоваться функциональное заземление для снижения электромагнитных помех, шумоподавления и замыкания цепи. Требования к заземлению медицинского устройства класса II могут требовать, чтобы устройство было привязано к функциональному заземлению по причинам ЭМС.

    ПРИЛОЖЕНИЯ ДЛЯ УСТРОЙСТВ КЛАССА II

    Многие приборы, предназначенные для домашнего использования, нуждаются в защите класса II.Медицинские клиники, но не больницы, также начинают требовать класса II для двойного слоя защитной изоляции. Больницам нужен только класс I, поскольку они имеют заземляющие вилки для дополнительной защиты.

    СВЯЗАТЬСЯ С ASTRODYNE TDI ПО ЛЮБОМУ ИСТОЧНИКУ ПИТАНИЯ

    Если вам нужна защита электронного оборудования класса I или класса II, обратитесь к специалистам Astrodyne TDI, чтобы найти идеальное решение. Мы предлагаем различные источники питания для удовлетворения ваших потребностей в заземлении и изоляции, а наши качественные фильтры электромагнитных помех могут помочь вашему предприятию достичь и поддерживать электромагнитную совместимость.

    В Astrodyne TDI мы имеем большой опыт работы с особыми требованиями сертификации клиентов, поэтому мы можем помочь вам ориентироваться в требованиях к защитному заземлению класса I, требованиям к функциональному заземлению класса II и помочь вам удовлетворить сложные требования к электрическому медицинскому оборудованию. Если вам нужно индивидуальное решение, мы будем рады работать с вами, чтобы помочь вам удовлетворить ваши потребности в электроэнергии.

    Свяжитесь с нами сегодня, чтобы узнать больше.


    Что такое заземляющий крюк?

    Что означает заземляющий крючок?

    Заземляющий крючок — это проводящее устройство, используемое для того, чтобы часть оборудования, ранее находившегося под напряжением, не удерживала дополнительную электрическую энергию, которая потенциально могла бы нанести вред рабочим.

    При использовании заземляющий крючок прикрепляется к проводящему устройству одним концом и к земле (или подходящему заземленному объекту) другим. Это приведет к тому, что любая оставшаяся энергия, удерживаемая проводником, будет разряжена в землю, что сделает работу устройства безопасной.

    Заземляющий крючок также известен под многими другими названиями, включая заземляющий кластер, временное защитное заземление и даже просто заземление.

    Safeopedia объясняет заземляющий крючок

    Использование заземляющего крюка является необходимой мерой предосторожности при работе с ранее находившимся под напряжением оборудованием, которое может представлять опасность в случае повторного включения питания.В то время как электрическое оборудование должно быть отключено от питания в рамках стандартных процедур блокировки / маркировки, существует множество способов возобновления питания электрического оборудования, таких как накопление статического заряда, индуцированные напряжения и емкостные разряды.

    Использование заземляющих крюков в первую очередь связано с работами вокруг высоковольтных систем; однако, если система может пропускать большое количество электрического тока, работа с системой с более низким напряжением может также потребовать использования заземляющего крючка.В США критерии использования индивидуального защитного заземления регулируются OSHA 1910.269 (n) и NFPA 70E, раздел 120.3.

    Ключевым вариантом использования крюков заземления является безопасное перенаправление энергии на землю в случае электрического повреждения. Национальная ассоциация противопожарной защиты (NFPA) особо требует, чтобы любой заземляющий крючок, используемый на электрическом оборудовании, мог проводить максимальное количество тока короткого замыкания, которое может протекать от данной электрической системы, и, более того, указывает, что он должен иметь возможность делать это в течение достаточно продолжительное время, чтобы работники поблизости могли устранить неисправность.

    Способность заземляющего крючка эффективно рассеивать энергию данной системы зависит от ее физических свойств. Стандарт ASTM F-855 описывает спецификации, которым должен соответствовать кабель заземляющего крючка, чтобы иметь возможность адекватно отводить заданное количество энергии. Опасно использовать заземляющий крючок, который не может справиться с количеством энергии, присутствующей в системе, поскольку избыточный ток может вызвать испарение кабеля, что приведет к потенциально смертельной вспышке дуги.

    Заземление: Понимание основ построения фундамента электрической системы здания | NFPA

    Заземление — это термин, который электрик, инженер-электрик или руководитель предприятия очень хорошо знает и часто использует, но что он означает? Первоначальная мысль заключается в том, что это просто подключение заземляющего проводника к земле.Проще говоря, это правильно, но это нечто большее. Во-первых, мы должны понять, что такое заземление, чтобы можно было установить надлежащую систему заземления.

    Заземлен или заземлен, как определено в NFPA 70® издания 2020 г., Национальных электротехнических правилах ® (NEC®), ст. 100, подключается к земле или к проводящему телу, который расширяет заземление. Итак, я уверен, что многие из вас думают, просто воткните провод в землю и назовите это хорошим, не так ли? Не совсем. Сначала должен быть создан эффективный путь тока замыкания на землю, чтобы гарантировать безопасную электрическую систему.По сути, именно создание электропроводящего пути с низким импедансом облегчает работу устройства защиты от перегрузки по току. Этот путь должен быть способен безопасно пропускать максимальный ток замыкания на землю, который может быть наложен на него из любой точки системы электропроводки, где может произойти замыкание на землю. Сама земля не считается эффективной цепью тока замыкания на землю, поэтому просто воткнуть провод в землю недостаточно.

    Заземление — это фундамент электрической системы здания или сооружения.В соответствии с 250.20 (B) NEC 2020 системы переменного тока (AC) напряжением от 50 до 1000 вольт должны быть заземлены, что означает связь с землей. Это достигается за счет правильно установленной системы заземляющих электродов. Наличие надежной системы заземляющих электродов стабилизирует напряжение и помогает устранять замыкания на землю. В разделе 250.50 NEC 2020 приводится схема системы заземляющих электродов, а в разделе 250.52 перечислены утвержденные заземляющие электроды. Вот несколько наиболее эффективных заземляющих электродов для зданий и сооружений:

    • Металлическая труба подземного водоснабжения
    • Металлические опорные конструкции в земле
    • Электрод в бетонном корпусе (также известный как «нижний колонтитул» или «Ufer-заземление»).
    • Кольцо заземления

    Система заземляющих электродов — это соединение с землей через заземляющие электроды, требуемые согласно нормам. Затем заземляющие электроды снова подключаются к электросети здания через провод заземляющего электрода (GEC). GEC, обслуживающий здание или сооружение, оканчивается на нейтральной шине внутри электрооборудования рядом с заземленным (нейтральным) проводником. Нейтральная шина соединена (подключена) к корпусу сервисного оборудования через главную перемычку, которая, в свою очередь, создает эффективный путь тока замыкания на землю для электрической системы.

    Но что тогда, когда эффективный путь тока замыкания на землю был установлен на землю? Как будет заземлено электрическое оборудование в зданиях и сооружениях? Он проходит через заземляющий проводник оборудования параллельной цепи (EGC). EGC бывают разных размеров, типов и материалов, как указано в NEC 2020, раздел 250.118. Вот некоторые из них:

    • Медные, алюминиевые или покрытые медью алюминиевые проводники
    • Жесткий металлический кабелепровод (RMC)
    • Промежуточный металлический трубопровод (IMC)
    • Электрометаллические трубки (EMT)

    Часто EGC представляют собой систему дорожек качения, RMC, IMC или EMT.Эти типы EGC соединяются вместе и с корпусом оборудования с помощью ряда перечисленных установочных винтов или компрессионных муфт и соединителей. В большинстве разъемов используются стопорные гайки или соединительные втулки для подключения к электрическому оборудованию или корпусам. Если используются соединительные втулки, для них требуется дополнительный провод, называемый перемычкой для подключения оборудования, который необходим для завершения соединения с корпусом, нейтральной шиной или шиной EGC. Это помогает завершить эффективный путь тока замыкания на землю.Использование соединительной втулки с соединительными перемычками оборудования может быть более подвержено ошибкам человека или механическим сбоям, поэтому эффективный путь тока замыкания на землю может быть не таким надежным. EGC, которые представляют собой электрические проводники, такие как медные, алюминиевые или покрытые медью алюминиевые проводники, могут быть более эффективными благодаря прямому подключению к электрическому оборудованию, корпусу, нейтральной шине или шине EGC. Вероятность отказа у этого типа EGC меньше из-за меньшего количества точек подключения.

    Как правило, при установке EGC утвержденный EGC должен находиться в том же кабельном канале, желобе, кабеле или шнуре от электрической службы или подпанели, что и проводники фидера или ответвительной цепи, которые обеспечивают питание электрооборудования.С точки зрения электробезопасности и рассмотрения NFPA 70E®, стандарта по электробезопасности на рабочем месте ® , Раздел 120.5 (8), где существует вероятность индуцированного напряжения, все проводники цепи и части цепи должны быть заземлены перед касаясь их. Это один из возможных шагов для создания электрически безопасных условий работы (ESWC), поэтому слабый или нефункционирующий EGC затруднит или сделает невозможным создание ESWC, когда возникает необходимость в замене или обслуживании электрического оборудования.

    Чтобы узнать больше о правильном склеивании, более подробно изучите Art. 250 NEC 2020 года. Наш новейший информационный бюллетень по заземлению и соединению также будет полезным ресурсом. Загрузите его здесь.

    Неспособность установить эффективный путь тока замыкания на землю посредством надлежащего заземления может помешать правильной работе устройств защиты от сверхтоков и, следовательно, неэффективному устранению замыкания на землю, что может привести к поражению электрическим током, электрошоку или вспышке дуги. Создав эффективный путь тока замыкания на землю, вы не только будете правильно выполнять свою работу, но и обезопасите себя и других при загрузке.

    NFPA 70 National Electrical Code® (NEC®) теперь доступен в NFPA LiNK ™ , платформе доставки информации ассоциации с кодами и стандартами NFPA, дополнительным контентом и наглядными пособиями для строительства, электробезопасности и безопасности жизни. профессионалы и практики. Узнайте больше на nfpa.org/LiNK .

    Защита от заземления — Устройство защиты от перенапряжения

    Метод защитной проводки, при котором металлическая часть электрического устройства (то есть металлическая конструктивная часть, изолированная от токоведущей части), которая может заряжаться после повреждения изоляционного материала или в других случаях надежно соединен проводником и заземляющим корпусом.Система защиты от заземления имеет только фазную и нейтральную линии. Трехфазная силовая нагрузка может использоваться без нейтрали. Пока оборудование хорошо заземлено, нейтральная линия в системе не должна иметь заземления, за исключением нейтральной точки источника питания. Система защиты от нулевого соединения требует, чтобы нейтральная линия была защищена в любом случае. При необходимости линия защиты нейтрали и линия защиты от нулевого соединения могут быть установлены отдельно. При этом нейтральная линия защиты в системе должна иметь многократное повторное заземление.

    Введение / Защита от заземления

    Меры по заземлению металлического корпуса электрооборудования. Это может предотвратить прохождение сильного тока через тело человека, когда металлический корпус заряжается в условиях повреждения изоляции или аварии, чтобы обеспечить личную безопасность.

    Это своего рода метод защитной проводки, который соединяет металлическую часть электрического прибора (то есть часть металлической конструкции, изолированную от токоведущей части), которая может заряжаться после повреждения изоляционного материала или в других случаях, и проводник надежно соединен с заземляющим корпусом.Заземление обычно используется в системе электропитания, где нейтральная точка распределительного трансформатора не заземлена напрямую (трехфазная трехпроводная система), чтобы гарантировать, что напряжение заземления, генерируемое при утечке электрического оборудования из-за повреждения изоляции, не превышает безопасный диапазон. Если бытовой прибор не защищен заземлением, когда изоляция определенной части повреждена или определенная фазовая линия касается внешнего кожуха, внешний кожух бытового прибора будет заряжен, и если человеческое тело касается внешнего кожуха ( каркас) электрооборудования, поврежденного изоляцией, это может привести к поражению электрическим током.Напротив, если электрическое оборудование заземлено, ток короткого замыкания однофазного заземления будет протекать через две параллельные ветви заземляющего устройства и тело человека. Вообще говоря, сопротивление человеческого тела превышает 1000 Ом, а сопротивление заземляющего тела не может превышать 4 Ом в соответствии с правилами, поэтому ток, протекающий через человеческое тело, невелик, и ток, текущий через заземление устройство большое. Это снижает риск поражения электрическим током тела человека после утечки электрического оборудования.

    Защитное заземление и меры предосторожности / Защита заземления

    Практика доказала, что использование защитного заземления является эффективной мерой безопасности в низковольтных электросетях Китая. Поскольку защитное заземление делится на защиту заземления и защиту от нулевого соединения, объективная среда, используемая двумя различными методами защиты, различается. Следовательно, неправильный выбор не только повлияет на характеристики защиты потребителя, но и повлияет на надежность электроснабжения энергосистемы.Тогда, как потребителю электроэнергии в распределительной сети общего пользования, как мы можем правильно и разумно выбрать и использовать защитное заземление?

    Защита от заземления и защита от нулевого соединения

    Чтобы понять и понять защиту от заземления и защиту от нулевого соединения, ознакомьтесь с различиями и областью использования этих двух методов защиты.

    Защита от заземления и защита от нулевого соединения вместе называются защитным заземлением. Это важная техническая мера, принимаемая для предотвращения поражения электрическим током и обеспечения нормальной работы электрического оборудования.Разница между этими двумя защитами в основном проявляется в трех аспектах: во-первых, различен принцип защиты. Основной принцип защиты заземления заключается в ограничении тока утечки устройства утечки на землю так, чтобы он не превышал определенный диапазон безопасности. Как только защитное устройство превышает определенное установленное значение, подача питания может быть автоматически отключена. Принцип защиты от нулевого соединения заключается в использовании нулевой соединительной линии. Когда устройство повреждено изоляцией и образует однофазное металлическое короткое замыкание, ток короткого замыкания используется для быстрого срабатывания защитного устройства на линии.Во-вторых, разная сфера применения. В соответствии с соответствующими факторами, такими как распределение нагрузки, плотность нагрузки и характер нагрузки, Технический регламент по низковольтному энергоснабжению в сельской местности разделяет сферу использования двух вышеупомянутых операционных систем энергосистемы. Система ТТ обычно применима к сельской низковольтной электросети общего пользования, которая относится к режиму защиты заземления в защитном заземлении; Система TN (систему TN можно разделить на TN-C, TN-CS, TN-S) в основном подходит для городских сетей низкого напряжения. Выделенная сеть низкого напряжения для потребителей электроэнергии, таких как электрические сети, фабрики и шахты.Эта система представляет собой метод защиты при нулевом подключении в защитном заземлении. В настоящее время в нынешних низковольтных распределительных сетях общего пользования Китая обычно используются системы TT или TN-C, а также реализуются однофазные и трехфазные гибридные режимы электропитания. То есть трехфазное четырехпроводное распределение мощности 380/220 В при подаче питания на осветительную нагрузку и силовую нагрузку. В-третьих, линейная структура отличается. Система защиты от заземления имеет только фазную и нейтральную линии. Трехфазная силовая нагрузка может использоваться без нейтрали.Пока оборудование хорошо заземлено, нейтральная линия в системе не должна иметь заземления, за исключением нейтральной точки источника питания. Система защиты от нулевого соединения требует, чтобы нейтральная линия была защищена в любом случае. При необходимости линия защиты нейтрали и линия защиты от нулевого соединения могут быть установлены отдельно. При этом нейтральная линия защиты в системе должна иметь многократное повторное заземление.

    Выбор методов защиты

    В зависимости от системы электроснабжения, в которой находится заказчик, следует правильно выбрать защиту от заземления и метод защиты от нулевого подключения.

    Какую защиту должен использовать потребитель электроэнергии? Во-первых, это должно зависеть от типа системы распределения электроэнергии, в которой находится система электроснабжения. Если распределительная сеть общего пользования, в которой находится заказчик, является системой TT, заказчик должен применять защиту заземления унифицированным образом; если распределительная сеть общего пользования, в которой находится заказчик, находится в системе TN-C, защита от нулевого соединения должна быть принята единообразно.

    Система TT и система TN-C — это две системы с собственными независимыми характеристиками.Хотя обе системы могут предоставить клиентам однофазные и трехфазные гибридные источники питания 220/380 В, они могут не только заменять друг друга, но и защищать их. Вышеуказанные требования совершенно другие. Это связано с тем, что в одной и той же системе распределения электроэнергии, если два режима защиты существуют одновременно, напряжение фаза-земля нейтральной линии возрастет до половины или выше фазного напряжения в случае заземления. защищенное устройство. В это время все устройства с нулевой защитой (поскольку металлический корпус устройства напрямую соединен с нейтральной линией) будут иметь одинаковый высокий потенциал, так что металлические части, такие как корпус устройства, будут иметь высокое напряжение для землю, тем самым подвергая опасности пользователя.Безопасность. Следовательно, одна и та же система распространения может использовать только один и тот же метод защиты, и эти два метода защиты нельзя смешивать. Во-вторых, заказчик должен понимать, что называется защитным заземлением, и правильно различать разницу между заземлением и защитой от обнуления. Под защитным заземлением понимается тот факт, что бытовые приборы, электрическое оборудование и т. Д. Могут быть заряжены металлическим корпусом из-за повреждения изоляции. Заземление, обеспечивающее защиту персонала от такого напряжения, называется защитным заземлением.Заземляющая защита металлического корпуса с проводом защитного заземления (PEE), непосредственно подключенным к заземляющему столбу, называется защитой заземления. Когда металлический корпус соединен с защитным проводом (PE) и защитным нейтральным проводом (PEN), это называется защитой от нулевого соединения.

    Стандартный дизайн, стандарт процесса

    В соответствии с различными требованиями к настройке двух методов защиты, стандартного проектирования и стандартов процесса строительства.

    Стандартизация стандартов процесса проектирования и строительства и требований распределительных линий в зданиях, принимающих электроэнергию, и замена внутренней части распределения электроэнергии в недавно построенных или отремонтированных зданиях заказчика на местную трехфазную пятипроводную систему или одиночную -фазная трехпроводная система. Трехфазный четырехпроводной или однофазный двухпроводной режим распределения мощности в системе TT или TN-C может эффективно реализовать защитное заземление клиента. Так называемая «локальная трехфазная пятипроводная система или однофазная трехпроводная система» означает, что после подключения низковольтной линии к заказчику заказчик должен изменить исходный традиционный режим электропроводки на основе оригинальная трехфазная четырехпроводная система и однофазная двухпроводная система разводки.Вверху каждая дополнительная линия защиты подключается к каждой клемме заземляющего провода заказчика, которая должна обеспечивать электрическую розетку для защиты от заземления. Чтобы упростить обслуживание и управление, пересечение внутреннего вывода и внешнего ввода линии защиты должно быть установлено на распределительном щите, на котором вводится источник питания, а затем метод доступа к защите. Линия должна быть установлена ​​отдельно в соответствии с системой распределения электроэнергии, в которой находится заказчик.

    1, Установка требований к линии защиты заземления системы TT (PEE)

    Если система распределения электроэнергии заказчика является системой TT, система требует, чтобы заказчик использовал метод защиты заземления. Таким образом, чтобы соответствовать значению сопротивления заземления защиты заземления, заказчик должен закопать устройство искусственного заземления на открытом воздухе в соответствии с требованиями «Технического регламента на сельское низковольтное электроснабжение». Сопротивление заземления должно соответствовать следующим требованиям:

    Re≤Ulom / Iop

    Re сопротивление заземления (Ом)

    Ulom называется пределом напряжения (В).В нормальных условиях его можно рассматривать как среднеквадратичное значение переменного тока 50 В.

    Рабочий ток устройства защиты от остаточного тока (утечки) рядом с Iop (I)

    Для среднего потребителя, если используется стальной уголок 40 × 40 × 4 × 2500 мм, его можно заглубить в землю на 0,6 м вертикально механическим приводом, который может соответствовать требованиям сопротивления заземления. Затем его приваривают к круглой стали диаметром ≥ φ8 и выводят на землю на 0.6 м, а затем подсоединяется к защитному проводу (PEE) распределительного щита с использованием того же материала и типа провода, что и фаза импортного источника питания.

    2, Установка требований к линии нулевой защиты (PE) системы TN-C

    Поскольку система требует, чтобы заказчик принял режим защиты нулевого соединения, необходимо добавить специальную линию защиты (PE) на основа оригинальной трехфазной четырехпроводной системы или однофазной двухпроводной системы, которая защищена приемным концом потребителя.Защитная нейтральная линия (PEN) распределительного щита вынимается и подключается к исходной трехфазной четырехпроводной системе или однофазной двухпроводной системе. Для обеспечения безопасности и надежности всей системы особое внимание следует уделять использованию. После того, как линия защиты (PE) отключена от линии защиты нейтрали (PEN), на стороне клиента формируются нейтральная линия N и линия защиты (PE). Два провода нельзя объединить в линию (PEN) во время использования. Для обеспечения надежности повторного заземления защитной нейтральной линии (PEN), первого и конца магистрали системы TN-C, всех клеммных стержней T ответвления, концевых стержней ответвления и т. Д.должны быть оборудованы повторяющимися линиями заземления и трехфазными. (ПЭ). Сечение провода защитной нейтрали (PEN), нейтрали (N) или защитного провода (PE) всегда выбирается в соответствии с типом провода и стандартом сечения фазовой линии.

    Защитное заземление и заземление экрана / Защита заземления

    Защитное заземление

    1, Защищенная зона:

    Все шкафы находятся внутри.Например, в шкафу обычно нет места, где нет краски, а потом подключаются провода. Это заземление корпуса шкафа. Провод заземления внутри блока питания (то есть желто-зеленая фаза) также играет роль. Его цель — предотвратить зарядку шкафа.

    2, зона защиты обычно выполняется электрическими приборами.

    3 Заземление питания:

    Эта линия, обычно через источник питания, возвращается к центральной линии трансформатора и затем входит в землю.В некоторых местах это и охраняемая территория — это одно, а некоторые места — не одно.

    Заземление экрана

    1, Также называется заземлением прибора:

    Следует отметить, что провод заземления прибора не должен касаться электрического / защитного заземления во время процесса подключения, иначе он потеряет свое значение.

    2, Внимание при экранировании:

    При использовании экранированного кабеля используйте несимметричное заземление. Не заземляйте экранированный провод в полевых условиях.Обратите внимание на уборку. В главной диспетчерской оплетите экранирующие провода нескольких кабелей и подключите их к клемме заземления экрана шкафа. (Хорошие шкафы имеют заземленные медные полосы и изолированы от шкафа)

    3, Специальный анализ

    Клемма заземления экрана шкафа соединена с заземлением экрана прибора. Это дает возможность подключить заземление прибора в целом. Он имеет аналоговое заземление, цифровое заземление, заземление низкого напряжения, источник питания высокого напряжения (220 В) и несколько типов защиты.В центре управления осуществляется точечное заземление, сопротивление заземления составляет 1 Ом, а если оно не 4 Ом, то заземляющие провода разных разных линий сначала собираются в специальную точку заземления. Затем подключите все точки заземления к общему местоположению, правила заземления для каждого объекта, аналоговое заземление, заземляющие провода низкого напряжения питания цифрового заземления соответственно сконцентрированы, а затем соединены с точкой заземления сигнала заземления и, наконец, подключены к экран кабеля, высоковольтное заземление и защита После подключения заземления сопротивление заземления составляет 4 Ом, и две точки заземления поля изолированы.Сопротивление изоляции следует указывать в соответствии с требованиями датчика, но оно должно быть более 0,5 МОм. То есть сигнальный контур заземлен на одном конце, а заземление для защиты поля имеет переднюю заземляющую защиту в качестве сигнального заземления для предотвращения пробоя заземления из-за индуцированного напряжения. Если два конца заземлены, будет сформирована индуктивная петля, которая вызовет сигнал помехи и приведет к саморазрушению. Если вы чувствуете себя не в своей тарелке, вы можете использовать варисторный поглотитель перенапряжения непрямого действия на объекте или для защиты на месте.Уровень напряжения меньше максимального напряжения, которое может выдержать датчик. Как правило, не превышайте напряжение питания 24 вольт. Экранирование имеет два значения: электромагнитное экранирование и электростатическое экранирование, которые относятся к экранированию магнитных цепей и цепей соответственно. Обычная экранирующая проволока из медной сетки не влияет на магнитную цепь, поэтому учитывается только экранирование электрических помех, то есть электростатическое экранирование. В это время необходимо заземлить экранирующий слой (магнитная цепь экранирована без заземления).Принцип в основном тот же: источник помех и приемный конец эквивалентны двум полюсам конденсатора. Одна сторона колебания напряжения будет воспринимать другой конец через конденсатор.

    Добавить комментарий

    Ваш адрес email не будет опубликован.