Заземление это что: Заземление – что это простыми словами и для чего нужно, как работает

Содержание

Заземление – что это простыми словами и для чего нужно, как работает

Тело человека – хороший проводник электрического тока. Самыми высокими показателями электропроводности обладают мышцы и подкожная-жировая клетчатка, то есть как раз те места, которые первыми контактируют с внешним источником тока, будь то оголенный провод или неисправный электроприбор.

Ток проникает в тело через поры и каналы потовых желез, поэтому очевидно, что сухая кожа отличается более высоким сопротивлением, чем влажная. Так, при контакте с напряжением 220 В значение силы тока, воздействующей на мокрый кожный покров, составляет порядка 220 мА. При такой электротравме смерть наступает мгновенно, учитывая, что опасным для организма считается показатель уже в 15мА, а смертельном опасным – 100 мА.

Это доказывает необходимость разработки мер, которые предотвращают случайное поражение электрическим током во всех областях человеческой деятельности, как на производстве, так и в быту. Одна из таких мер – установка заземляющих устройств (ЗУ).

Что такое заземление

Если говорить простыми словами, это защитная система, которая предотвращает от ударов током при прикосновении к металлическим частям оборудования, находящегося под напряжением. Вся конструкция состоит из следующих частей:

  • Металлический контур
  • Заземляющая шина
  • Разводка проводов заземления

Контур представляет собой 4-6 штырей (электродов), забитых в грунт и соединенных между собой металлическими полосами. Необходимая глубина заземляющего устройства – 2,5-3 метра, то есть ниже уровня промерзания почвы. Это требуется для того, чтобы даже зимой контур получал доступ к влаге, проводящей ток.

Вверху одного вертикального электрода располагается «контактная зона» (чаще всего в виде болта с резьбой), от которой берет начало медная шина, ведущая в специальную планку в распределительном щитке.

От главной заземляющей шины, в свою очередь, расходятся медные жилы к розеткам потребителей. Эти провода, по сути, отвечают за подключение заземления – к примеру, в современных домах разводка от щитка выполняется трехжильным кабелем, где одна из жил – желто-зеленого цвета – отведена «под землю».

Рис 1. Устройство заземления. а) – заземление в линию; б) – контур заземления

Требования к заземлению

Обеспечение безопасности потребителя при работе с электрическими приборами – приоритетная задача производителей и эксплуатантов электроустановок, поэтому в этой сфере действует ряд норм и правил. Отметим основные:

  • Заземлять нужно все, что имеет металлический корпус: котлы, станки, насосы, инструменты, оборудование;
  • Штыри и соединения контура должны отличаться антикоррозионностью и износостойкостью, что обеспечивается правильным выбором материала и диаметра – например, для этих целей нередко используется нержавеющая сталь с поперечным сечением не менее 90 кв. мм;
  • Заземлители должны всегда находиться во влажной почве – для этого нужно учесть географические, климатические и геологические особенности региона и выбрать правильную глубину размещения металлических электродов.

Почему человека бьет током

Смоделируем ситуацию:

  1. В бытовом электрическом приборе, установленном без заземления (к примеру, в стиральной машине), нарушилась целостность проводки. Причины могут быть любые – естественный износ, механические повреждения, вредительство насекомых или грызунов.
  2. В результате на корпусе агрегата скапливается электрический разряд.
  3. Человек прикасается к устройству и получает удар током.

Важно понимать, что ток при этом движется по замкнутой цепи, где тело человека выступает как одно из звеньев. Если бы мы, скажем, летали по воздуху, то электрические травмы были бы нам практически не страшны – посмотрите на птиц за окном: они спокойно сидят на высоковольтных проводах, не догадываясь о смертельной опасности.

Однако мы, в отличие от птиц, ходим по земле, которая, в свою очередь, считается идеальной точкой с нулевым потенциалом. Получается, что тело человека выступает как проводник, по которому электрический ток от неисправного электроприбора или оголенного провода устремляется к земле, чтобы уравнять количество заряженных частиц в этих двух точках, как того требуют законы природы.

Как работает заземление

Ток движется по пути наименьшего сопротивления. Этот простой принцип лежит в основе работы заземления: наш кожный покров обладает более высоким сопротивлением, чем металлический провод, поэтому при касании поверхности под напряжением ток сразу уходит в землю, не причиняя человеку вреда. Это главное, что нужно понимать о работе ЗУ.

Есть и еще один фактор, который обеспечивает работу заземления – бесконечно обширное «сечение» грунта. Обратимся к физике: ток, уходя во влажную почву, запускает цепную реакцию ионов, которые передают энергию все дальше и дальше, практически до бесконечности. Чем больше электрически заряженных частиц (ионов) участвует в процессе, тем быстрее передается энергия, рассеивается ток и, следовательно, тем эффективнее работает заземление. Добавим, что здесь немаловажную роль играет и достаточный диаметр металлических электродов, входящих в контур заземляющего устройства.

Заземление и зануление – в чем отличие

Кроме установки ЗУ, существует еще один способ, защищающий человека от удара током от неисправных электроустановок. Это зануление (другое название: заземление на ноль). Его суть в том, что при возникновении неисправности возникает короткое замыкание, что приводит к отключению автомата-предохранителя. Технически это реализовано так: корпус электроустановки соединяется с нейтралью источника питания, то есть с заземленной точкой трансформатора.

Простыми словами, разница между занулением и заземлением в том, что в первом случае питающая цепь отключается из-за превышения токовой уставки автомата, а во втором – опасный ток отправляется в грунт и «растекается» в его влажной среде.

В многоквартирных высотках заземлять электроприборы технически сложно, поэтому здесь чаще всего используется зануление (наряду с УЗО). В частных домах, наоборот, удобнее всего сделать систему заземления.

Для чего применяются УЗО и дифавтоматы

Эксплуатация заземляющих устройств невозможна без дополнительных приборов. К главным из них нужно отнести устройство защитного отключения (УЗО) и дифференциальные автоматы. Несмотря на внешнюю схожесть, они используются для разных задач:

  1. УЗО отключается в момент появления в сети так называемого тока утечки, который может привести, с одной стороны, к возгоранию (при повреждении электропроводки изоляция начинает сильно греться), а с другой – к удару током, если человек дотронется до неисправного оборудования. УЗО всегда работает «в связке» с обычным автоматом.
  2. Дифференциальный автомат соединяет в себе функции устройства защитного отключения и автомата, то есть он защищает систему электропроводки от перегрузок и коротких замыканий, а человека – от электрических травм.

Таким образом, заземление представляет собой металлический провод, уходящий в почву и предназначенный для «утекания» тока в землю при возникновении неисправности в системе электроснабжения.

определение понятия, для чего нужно, как работает

Работа современного электрооборудования недопустима без грамотно организованной защиты от случайного поражения электрическим током. Для этих целей используются специальные устройства, которые называются заземляющими. Таким образом, заземление — это преднамеренно организованная система, обеспечивающая нормальные условия функционирования электрооборудования.

О заземлении простыми словами

Само понятие «заземление» происходит от слова «земля», то есть почва или грунт, назначение которых – служить отводом для опасных токов, стекающих по специально организованной цепи. Для ее образования необходимо неразрывное соединение всех частей защитной системы, которое начинается от точки контакта корпуса заземляющего элемента и заканчивается погруженным в землю элементом заземляющего устройства (ЗУ).

Внешний контур заземления частного дома (слева). Заземление внутри помещения (справа), заземляющий проводник указан пунктирной линией.

Согласно определениям, приводимым в техдокументации, заземление это есть преднамеренное электрическое соединение металлических корпусов агрегатов со специальным заземляющим контуром. Исходя из рассмотренных фактов, можно сделать вывод, что заземлением называют преднамеренный электрический контакт защищаемого оборудования с грунтом.

Требования к заземлению

После того как разобрались с тем, что является определением самого понятия заземления – можно перейти к тем категориям и нормам, которые вводятся действующими стандартами. Согласно ПУЭ к заземляющему устройству в первую очередь предъявляются следующие требования:

  • назначение ЗУ – эффективно отводить опасные токи в землю, для чего в их конструкции предусмотрен целый набор проводников и металлических прутьев;
  • заземлению подлежат все части электроустановки, включая металлические дверцы щитов;
  • суммарное переходное сопротивление контактов в системе заземления не должно превышать 4-30 Ом;
  • при ее обустройстве в распределенных нагрузках обязательно использование системы выравнивания потенциалов (ее назначение – устранить неравномерность распределения напряжений).

Дополнительная информация: Поскольку основное назначение заземления состоит в обеспечении безопасности работающего с оборудованием персонала – при его эксплуатации особое внимание уделяется надежности функционирования.

Качество его работы обеспечивается целым комплексом профилактических мероприятий и периодически организуемых испытаний.

Почему человека бьет током

Для того чтобы ответить на поставленный вопрос потребуется ознакомиться с неисправностями, периодически возникающими в действующем электрооборудовании. Дело в том, что в процессе его длительной эксплуатации возможно разрушение изоляции и появление контакта оголенного провода силового питания с корпусом электроустановки.

Если у эксплуатируемого оборудования нет заземления – это угрожает работающему с ним оператору ударом тока (фото слева). Подобный эффект возникает при случайном соприкосновении тела человека с токопроводящими частями стиральной машины или ванны, например.

Принцип работы заземления

После ознакомления с определением заземляющих систем и предъявляемым к ним требованиям следует разобраться, что такое заземление и для чего оно предназначается. Для этого, прежде всего, следует знать, что ноги человека через железобетонный пол всегда в какой-то мере контактируют с землей.

При касании человеком корпуса оборудования, находящегося под воздействием высокого потенциала, ток протекает через его тело и ноги в землю, то есть он является звеном в этой цепочке.

Обратите внимание: Опасными для человека являются даже небольшие токи, а при достижении ими величины 100 мА возможен смертельный исход.

Для того чтобы понять, как работает заземляющая система – следует учесть, что корпус электрооборудования через набор проводников и металлических штырей соединяют с грунтом (заземляют). Благодаря этому преднамеренному соединению критичный для человека потенциал снижается до безопасного уровня. При этом аварийные токи «стекают» через заземленный корпус на землю, минуя человеческое тело.

Из чего состоит конструкция заземляющего устройства

Сначала следует познакомиться с теми элементами, которые входят в состав его конструкции. Типовой заземляющий контур представляет собой сооружение из трех стальных заземлителей, вбитых в землю по углам траншеи, вырытой на глубину примерно 0,7-0,8 метра. Заземлителями могут быть стальные уголки или омедненные прутки.

Длина погруженной в почву части заземлителей должна быть не менее 2,5 метров. Точные значения этих параметров выбираются с учетом характера грунта в месте обустройства контура и климатических условий в данной местности. Подробно о заземляющем контуре и его монтаже вы можете узнать в нашей статье «Контур заземления, что собой представляет и как он работает».

Выступающие из земли на 10-15 см части стальных заготовок свариваются между собой металлическими пластинами шириной 40 мм (толщиной не менее 4-х мм). В верхней части одного из вертикальных электродов устраивается контактная зона в виде наваренного на него болта с резьбой. На ней посредством гайки крепится конец идущей от корпуса заземляемого прибора медной шины, сечение которой не должно быть менее 6 кв.мм.

Дополнительная информация: Для снижения сопротивления цепи стекания аварийного тока это соединение иногда делается сварным.

Внешний контур заземления

По завершении основных работ траншея с размещенной в ней конструкцией засыпается откинутой ранее землей, из которой удаляются камни и ненужный мусор.

Согласно требованиям ПУЭ любая заземляющая система должна соответствовать техническим нормативам в части предельно допустимого сопротивления току утечки. Его величина должна быть:

  1. менее 8 Ом в промышленных сетях с фазным напряжением 220/127 Вольт;
  2. менее 4 Ом для линейных напряжений 380 Вольт;
  3. не более 30 Ом в бытовых сетях (этот показатель считается предельно допустимым).

Прокладываемая от конструкции ЗУ медная жила вторым своим концом фиксируется на специальной планке, монтируемой на распределительном щитке объекта (дома, в частности). Ее называют главной заземляющей шиной (ГЗШ), а предназначается она для сборки всех защитных проводников в одном месте. Медные жилы расходятся от нее непосредственно к потребителям (через розетки  к корпусам приборов).

Естественное и искусственное заземление

Естественное заземление – это предмет или сооружение, которое имеет надежный контакт с землей в силу выполняемых им функций. К этой категории можно отнести:

  • водопроводные и отопительные трубы, проложенные непосредственно в земле;
  • любые металлические конструкции и их элементы, имеющие хороший контакт с почвой;
  • оболочки сварочных и подобных им кабелей;
  • металлические закладные и шпунты и т.п.

Стоит заметить! На обустройство функционального заземления в этом случае не потребуется специальных усилий, так как элементы естественного заземлителя уже готовы к подключению заземляющих проводников.

Естественные заземлители

В ситуации, когда такие системы найти не удается – приходится заниматься монтажом самодельных ЗУ.

Искусственным заземлением считается преднамеренно организованный электрический контакт двух тел, одним из которых является защищаемый прибор, а вторым – так называемый «заземляющий контур». Эта его составляющая представляет собой специальную распределенную (иногда – точечную) конструкцию на основе металлических стержней, размещаемых глубоко в земле.

Как правило, в качестве вертикально забиваемых электродов применяются стальные прутки диаметром до 12 мм, имеющие длину не менее 2,5 метра. Для обустройства горизонтальных перемычек, обеспечивающих электрический контакт двух тел, берутся металлические уголки 50x50x6 мм и длиной 2,5-3 метра (их можно заменить трубами диаметром порядка 6 мм и более).

Для чего нужно заземление Видео

Чтобы разобраться в том, зачем нужно заземление в доме – придется ознакомиться с его основным назначением. Как уже отмечалось в ранее представленном разделе, заземление служит для защиты человека от опасного потенциала, случайно оказавшегося на корпусе действующего оборудования. С порядком его работы и назначением проще всего ознакомиться на многочисленных примерах, представленных на видеороликах.

Что такое заземление?

Зачем нужен контур заземления

В заключение отметим, что понимание назначения заземления поможет сберечь здоровье работающих с электрооборудованием людей.

Нажмите, пожалуйста, на одну из кнопок, чтобы узнать помогла статья или нет.

Помогла61Не помогла1

Что такое заземление?

Заземление (earthing) — это выполнение электрического присоединения проводящих частей к локальной земле (определение согласно ГОСТ 30331.1-2013).

Защитное заземление (protective earthing) — это заземление, выполняемое с целью обеспечения электрической безопасности.

Присоединение к локальной земле может быть: преднамеренным, непреднамеренным или случайным, постоянным или временным.

Другими словами, заземление представляет собой действие, выполняемое в электроустановке. Следовательно оно не может быть, например, исправным или неисправным. Оно не может иметь сопротивления или каких-либо других характеристик. Сопротивление имеет, например, заземляющее устройство. Заземление может быть лишь только выполнено или нет. Это важный момент, который часто неправильно понимают.

Посредством выполнения заземления, а именно – присоединением открытых проводящих частей к защитным проводникам создают пути для протекания токов замыкания на землю. Защитные устройства должны отключать эти токи при выполнении заземления.

Нормативные документы устанавливают требования к двум видам заземления: защитному заземлению и функциональному заземлению. Последнее ранее называли рабочим заземлением.

Пример выполнения защитного заземления для системы TT вы можете видеть на рисунке ниже:

Рис. 1. Система TT трехфазная четырехпроводная

Согласно требованиям ГОСТ Р 58698-2019 заземление не является мерой защиты. Оно лишь элемент, например, меры защиты «автоматическое отключение питания». То есть для защиты от поражения электрическим током заземление применяют в совокупности с другими мерами предосторожности. Самостоятельно заземление не может обеспечить эту защиту.

Следует знать, что «металлические части» электрооборудования класса II запрещено заземлять. Заземлению подлежат открытые проводящие части электрооборудования класса I.

Еще частая ошибка — это утверждать, что при заземлении электрический ток «моментально уходит в землю, не причинив человеку какой-либо опасности». На самом деле, при замыкании фазного проводника на заземлённые проводящие части последние оказываются под напряжением и представляют опасность для людей. При замыканиях на землю открытые проводящие части в системах TN оказываются под напряжением, обычно равным половине фазного напряжения. В системе ТТ это напряжение может достигать фазного.

Заземление и зануление: в чем разница?

Часто эти два понятия путают. На самом деле — зануление ничем кардинально не отличается от заземления. Зануление — это лишь защитное заземление применяемое в системах TN. После введения в действие стандартов комплекса ГОСТ Р 50571 в 1995 г. о занулении следовало забыть, поскольку в них определены системы TN, в которых предписано выполнять защитное заземление. Тем не менее это понятие все еще имеет место быть в нормативной документации, создавая при этом определенную путаницу. Более подробно читайте в статье: «Что такое зануление и как его выполняют?«

что такое заземление,правильное заземление, устройство заземления,нормы заземления,теория заземления,заземление оборудования,устройство защитного заземления,системы заземления

В России основным документом, регламентирующим требования к заземлению и его устройству, являются ПРАВИЛА УСТРОЙСТВА ЭЛЕКТРОУСТАНОВОК (ПУЭ). В настоящий момент актуальны ПРАВИЛА УСТРОЙСТВА ЭЛКТРОУСТАНОВОК издание седьмое. Утверждены Приказом Минэнерго России от 08.07.2002 №204.

Пункт 1.7.28 ПУЭ Издание, 7 гласит:

Заземление – преднамеренное электрическое соединение какой-либо точки сети, электроустановки или оборудования с заземляющим устройством.


Заземляющее устройство (заземление) может быть как одним вертикальным электродом (например из модульного заземления) погруженным в землю на определенную глубину ( в зависимости от требуемого значения сопротивления), так и представлять из себя совокупность вертикальных и горизонтальных заземлителей: 

 

Из представленной картинки  видно, что заземляющее устройство (ЗУ) состоит из заземлителя и заземляющего проводника.

Заземлитель – проводящая часть или совокупность  соединенных между собой проводящих частей, находящихся в электрическом контакте с землёй. Или простыми словами – часть заземляющего устройства находящихся в земле – это могут быть стальные уголки, модульное заземление в виде стальных штырей с медным покрытием, трубы отопления, обсадные трубы скважин.

 

Допустимые материалы и формы заземлителей и заземляющих проводников согласно ПУЭ 7:


Заземлитель может быть простым металлическим стержнем (стальными или с медным покрытием) и/или совокупностью вбитых стальных уголков в форме определенной геометрической фигуры (треугольник, квадрат, линия и т.д.)

Заземлители делятся на искусственные и естественные.

·         Искусственные заземлители – это заземлители выполняемые специально в целях заземления людьми.

·         Естественные заземлители – это металлические объекты, находящиеся в контакте с землей, которые могут быть использованы в целях заземления: водопроводные трубы, обсадные трубы скважин и т.д. Использование естественных заземлителе также регламентируются Правилами Эксплуатации электроустановок (ПУЭ изд. 7).

Заземляющий проводник – проводник, соединяющий заземляемую часть с заземлителем. Это могут быть стальные пластины, оцинкованные стальные пластины, медные кабеля сечением в соответствии с нормативными документами.

Ниже представлены пункты ПУЭ издание 7 нормирующие величину площади сечения защитных проводников в зависимости от площади сечения фазных проводников и некоторые особенности:


Качество заземления определяется значением сопротивления растеканию электрического тока. Чем сопротивление заземляющего устройства ниже, тем качество лучше. Сопротивление ЗУ можно снизить, увеличивая глубину и/или количество электродов в заземляющем устройстве, тем самым увеличивая площадь растекания тока, а так же можно снизить сопротивление ЗУ повышением концентрации солей в грунте. Требуемое значение сопротивления в конкретном случае нормируется требованиями ПУЭ либо производителями оборудования, которое требует заземления в процессе эксплуатации.

Пункты ПУЭ издание 7 нормирующие сопротивление заземляющих устройств:


 

РАЗНОВИДНОСТИ СИСТЕМ ЗАЗЕМЛЕНИЯ

 

ГОСТ Р 50571.2-94 «Электроустановки зданий. Часть 3. Основные характеристики» регламентирует следующие системы заземления: TNC, TNS, TNCS, TT, IT.

 

В данном материале мы рассмотрим

TN и TT системы, как наиболее часто встречающиеся на практике в нашей стране. Система IT, в которой нейтраль источника питания изолирована от земли или заземлена  через приборы или устройства, имеющие большое сопротивление, применяется, как правило, в электроустановках зданий и сооружений специального назначения.

·         система TN – система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки присоединены к глухо заземлённой нейтари источника посредством нулевых защитных проводников. Т.е. все разновидности систем заземления с маркировкой TN подразумевают то, что на подстанции нейтраль соединена с заземляющим устройством, тем самым в нейтрали (отходящей от источника) соединены функции нулевого рабочего и нулевого защитного проводника (обозначается как PEN).

Далее систему TN можно разделить по признаку того как нулевой рабочий проводник (N) и нулевой защитный проводник (PE) доставляется потребителю на подсистемы – TN-C, TN-S, TN-C-S;

·         система TNC – система TN, в которой нулевой защитный (РЕ) и нулевой рабочий (N) совмещены в одном проводнике на всем её протяжении. Простым языком это означает, что потребителю в случае 3-х фазного подключения приходит 4-х жильный кабель (3 фазы и ноль) и 2-х жильный кабель в случае однофазного подключения (1 фаза и ноль). Основной  и опасный недостаток системы в том, что при обрыве нуля возможно появление линейного напряжения на корпусах электроустановок. До сих пор может встречаться в нашей стране;

 

·         система TNS (пришла на смену системе TN-C в 1930 гг.) – система TN, в которой нулевой защитный (РЕ) и нулевой рабочий (N) проводники разделены на всем ее протяжении. Простым языком это означает, что к потребителю от подстанции в случае трехфазного подключения приходит 5-ти жильный кабель (3 фазы, ноль и «земля»), в случае однофазного подключения 3-х жильный кабель ( фаза, ноль, «земля») – нулевой рабочий проводник (N) и нулевой защитный проводник (PE) разделялись на подстанции, а заземление на подстанции представляет сложную конструкцию из металлической арматуры. При такой системе обрыв рабочего ноля не приводит к появлению линейного напряжения на корпусах электроустановок;


·         система TNCS (можно назвать ее частным случаем системы TN-S) – трансформаторная подстанция имеет непосредственную связь  токопроводящих частей с землёй и наглухо заземленную нейтраль , на линии (участок от подстанции до потребителя) же в какой-то части нулевой рабочий (N) и защитный (PE) проводники объединены в проводнике PEN, а начиная с какой-то точки происходит их разделение на N (нулевой рабочий проводник) и РЕ (защитный проводник). Например: на участке  от подстанции до ввода в здание потребителя  применяется совмещенный нулевой рабочий (N) и защитный (PE) обозначаемый PEN, т.е применяется система TN-C, а при вводе в здание производится разделение PEN на рабочий нулевой проводник (N) и защитный (PE) далее по зданию до распределительного щита идут уже жила- фаза, жила — «чистый» ноль и жила -«чистая» земля, т.е. система TN-S. Вероятно из-за такой трансформации получилось TN-C-S. Есть случаи, когда разделение происходит в вводно распределительном устройстве (ВРУ) внутри здания.


В случае организации TN-C-S для частного дома необходимо производить разделение PEN на N и PE в щите учета (перед вводом в дом, как правило, эти щиты  расположены на столбах, если идет воздушная линия или стоят на земле около участка, в случае, если идет линия в земле) до счетчика и вводного автомата, при чем разделение PEN должно происходить без разрыва этого проводника с использованием прокалывающего зажима, либо использовать Н-образную шину разделения PEN на N и PE c надежными болтовыми соединениями проводников ( в этом случае будет разрыв PEN, но при таком соединении разрыв допустим)

 

 
Н-образная шина разделения проводника PEN

 
Схема разделения проводника PEN с помощью Н-образной шины
 перед вводом в дом


ПЭЭП!!!!

В соответствии с ПУЭ 7, система TN-C-S является основной и рекомендуемой системой. При организации системы TN-C-S, ПУЭ требуют соблюдения ряда мер по недопущению разрушения PEN, а также повторных заземлений PEN  воздушной линии по столбам через определенное расстояние (от 40 до 200 метров в зависимости от количества грозовых часов в году на определённой местности).

Достоинства: возможность обнаружения КЗ фазы на корпус оборудования простыми автоматами и практически пожаробезопасная .

Недостатки: при повреждении ноля на линии до разделения возникает ситуация, когда под фазным напряжением оказываются заземленные корпуса оборудования, что представляет опасность для человека и никакая автоматика не сможет разорвать цепь, так как PE после разделения идет в обход всех автоматических выключателей.  Внутри помещения это решается системой уравнивания потенциалов (СУП) – все металлические части объекта соединяются с главной шиной заземления (ГЗШ), на которую также заведен проводник от местного заземляющего устройства. В результате если произойдет обрыв ноля на линии и в доме все заземленные корпуса оборудования будут под фазным напряжение, то под таким же напряжением окажутся и все металлические части дома, следовательно разности потенциалов между ними не будет и при одновременном касании человека металлических частей дома и заземленных корпусов оборудования, приборов находящимся под напряжением(из-за аварии на линии)  поражения электрическим током не будет.
В случае когда нет возможности соблюсти условия организации системы TN-C-S обозначенные выше, ПУЭ рекомендуют систему заземления TT.

 

·         Система ТТ – система с трансформаторной подстанцией, которая имеет непосредственную связь токоведущих частей с землей. Все открытые проводящие части электроустановки потребителя имеют непосредственную связь с землей через заземлитель, независимый от заземлителя нейтрали трансформаторной подстанции. Т.е. к потребителю приходит, например, система TN-C (нулевой рабочий (N) и нулевой защитный (РЕ) совмещены), а электроустановка потребителя имеет свое независимое (не имеющее связи с PEN) заземление.


Достоинства:  разрушение нуля никак не влияет на

PE, т.е. при разрушении нуля на линии линейного напряжения не будет на заземленных корпусах оборудования;
Недостатки: основным недостатком системы ТТ является невозможность для обычного автомата отследить КЗ фазы на корпус оборудования.

ПУЭ рекомендуют систему заземления ТТ только как «дополнительную», только при условии того, что нет возможности соблюсти условия организации системы TN-C-S.
Тем не менее в сельской местности довольно часто встречаются системы заземления ТТ из-за низкого качества большинства воздушных линий. Если в частный дом с столба приходят пара неизолированных проводов  – это именно такой случай и сделать правильную, удовлетворяющую всем требованиям ПУЭ TN-C-S никак не удастся.

 

ВАЖНОЕ ТРЕБОВАНИЕ К ОРГАНИЗАЦИИ СИСТЕМЫ TT – ОБЯЗАТЕЛЬНОЕ ПРИМЕНЕНИЕ УЗО. Как правило устанавливают вводное УЗО с током утечки 300-100 мА, для отслеживания КЗ между фазой и PE (это необходимо для предотвращения пожара в щите, а в последствие в доме), а за ним для каждой конкретной цепи в доме с утечкой 30-10мА(для защиты людей от поражения электрическим током.

Защитное заземление. Основная и дополнительная системы уравнивания потенциалов. Сторонние проводящие части

Защитное заземление – заземление, выполняемое в целях электробезопасности.

( ПУЭ п.1.7.29 )

Защитное заземление —это преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением.

Цель защитного заземления—снизить до безопасной величины напряжение относительно земли на металлических частях оборудования, которые не находятся под напряжением, но могут оказаться под напряжением вследствие нарушения изоляции электроустановок. В результате замыкания на корпус заземленного оборудования снижается напряжение прикосновения и, как следствие,- ток, проходящий через тело человека, при его прикосновении к корпусам.

При электрическом переменном токе промышленной частоты (50 герц) берут во внимание только активное сопротивление человека (его тела) и соотносят его с величиной равной 1 кОм. При длительном прохождении тока сопротивление тела снижается до 500 – 300 Ом.

Примечание: сопротивление тела человека постоянному току от 3 до 100 кОм.

Расчеты, приведенные на рисунках, весьма приблизительны, но показывают оценить эффективность защитного заземления.

Существенное влияние на ток, проходящий через человека, оказывает величина тока короткого замыкания и сопротивление системы заземления. Наибольшее допустимое значение сопротивления заземления в установках до 1000 В: 10 Ом — при суммарной мощности генераторов и трансформаторов 100 кВА и менее, 4 Ом — во всех остальных случаях.

Указанные нормы обосновываются допустимой величиной напряжения прикосновения, которая в сетях до 1000 В не должна превышать 40 В.

Защитное заземление применяется в трехфазных трехпроводных сетях напряжением до 1000 В с изолированной нейтралью, а в сетях напряжением 1000 В и выше — с любым режимом нейтрали.

ВНИМАНИЕ!

1. Каждый корпус электроустановки должен быть присоединен к заземлителю или к заземляющей магистрали с помощью отдельного ответвления. Последовательное включение нескольких заземляемых корпусов электроустановок в заземляющий проводник запрещается.

Заземляющее устройство — это совокупность заземлителя и заземляющих проводников, соединяющих заземляемые части электроустановки с заземлителем.

Заземляющее устройство — это совокупность заземлителя и заземляющих проводников, соединяющих заземляемые части электроустановки с заземлителем.

Заземлители


1.Естественные

— водопроводные трубы, проложенные в земле (ХВ)

— металлические конструкции здания и фундаменты, надежно соединенные с землей

— металлические оболочки кабелей

— обсадные трубы артезианских скважин

Запрещено:

— газопроводы и трубопроводы с горючими жидкостями

— алюминиевые оболочки подземных кабелей

— трубы теплотрасс и горячего водоснабжения

Соединение с естественным заземлителем должно быть не менее чем в двух разных местах.

2. Искуственные

Контурные

При контурном заземлении обеспечивается выравнивание потенциалов в защищаемой зоне и уменьшается напряжение шага.
Выносные: групповые и одиночные
Позволяют выбрать место с минимальным сопротивлением грунта.

Традиционно, для искусственных заземлителей применяют угловую сталь толщиной полки не менее 4 мм, стальные полосы толщиной не менее 4 мм или прутковую сталь диаметром от 10 мм.

Широкое распространение в последнее время получили глубинные заземлители с омедненными или оцинкованными электродами, которые по долговечности и затратам на изготовление заземлителя существенно превосходят традиционные методы.

Особая проблема — создание качественного заземления в условиях вечной мерзлоты. Здесь стоит обратить внимание на системы электролитического заземления, позволяющие эффективно решить проблему.

Подробную информацию о различных схемах зазелителей, способах расчета и консультации можно получить на сайте  www.zandz.ru

Основная система уравнивания потенциалов.

Построение основной системы уравнивания потенциалов – создание эквипотенциальной зоны в пределах электроустановки с целью обеспечения безопасности персонала и самой электроустановки при срабатывании системы молниезащиты, заносе потенциала и коротких замыканиях.

Основная система уравнивания потенциаловв электроустановках до 1 кВ должна соединять между собой следующие проводящие части:

1 ) нулевой защитный РЕ- или РЕN- проводник питающей линии в системе TN;

2 ) заземляющий проводник, присоединенный к заземляющему устройству электроустановки, в системах IT и TT;

3 ) заземляющий проводник, присоединенный к заземлителю повторного заземления на вводе в здание;

4)металлические трубы коммуникаций , входящих в здание…

5 ) металлические части каркаса здания;

6 ) металлические части централизованных систем вентиляции и кондиционирования….

7 ) заземляющее устройство системы молниезащиты 2-й и 3-й категории;

8 ) заземляющий проводник функционального ( рабочего ) заземления, если таковое имеется и отсутствуют ограничения на присоединение сети рабочего заземления к заземляющему устройству защитного заземления;

9 ) металлические оболочки телекоммуникационных кабелей.

 Для соединения с основной системой уравнивания потенциалов все указанные части должны быть присоединены к главной заземляющей шине при помощи проводников системы уравнивания потенциалов. (ПУЭ п. 1.7.82)

Несоединенный с ГЗШ элемент конструкции, инженерной системы, независимой системы рабочего заземления ( FE ) и тд. – грубейшее нарушение целостности основной системы уравнивания потенциалов. Появление разности потенциалов ( возможность искры ) – угроза жизни персонала и безопасности объекта.

Примечание: разрядник, указанный на рисунке – специализированный искровой разрядник с малым напряжением срабатывания для систем уравнивания потенциалов. Например: серии «KFSU», «EXFS..» компании DEHN.

Система дополнительного уравнивания потенциалов

-должна соединять между собой все одновременно доступные прикосновению открытые проводящие части стационарного электрооборудования и сторонние проводящие части, включая доступные прикосновению металлические части строительных конструкций здания, а также нулевые защитные проводники в системе TN и защитные заземляющие проводники в системах IT и ТТ, включая защитные проводники штепсельных розеток (ПУЭ п. 1.7.83).


Система дополнительного уравнивания потенциалов значительно улучшает уровень электробезопасности в помещении. Короткие проводники защитного заземления и уравнивания потенциалов, сведенные на шину, формируют эквипотенциальную зону по принципу аналогично основной системы уравнивания потенциалов.


Как видно из рисунков, схема электропитания претерпевает существенные изменения. Чрезвычайно важно обеспечить соединение контактов заземления розеток и клемм заземления стационарных приборов на шину дополнительного уравнивания потенциалов. При этом, даже если не будет выполнено соединение корпусов приборов с шиной ( безалаберная эксплуатация, особенно переносных приборов ) система сохранит свою эффективность по безопасности. Ситуация, когда земли розеток и приборов не подключены к шине, а сторонние проводящие части гарантированно соединены с шиной уравнивания потенциалов, в разы ухудшает электробезопасность в помещении даже по сравнению с классической схемой питания.

Сторонняя проводящая часть — проводящая часть, не являющаяся частью электроустановки.

Если формально подходить к определению, то и металлическая дверная ручка и петли на деревянной двери в деревянном доме являются сторонними проводящими частями.

При формировании дополнительной системы уравнивания потенциалов возникает вопрос, что подключать, а что не подключать на шину дополнительного уравнивания потенциалов, чтобы добиться необходимого уровня электробезопасности и не делать систему слишком громоздкой. Здесь, с точки зрения здравой логики, можно руководствоваться двумя принципами:

  1. Фактическая ( потенциальная ) возможность связи с «землей».
  2. Возможность появления потенциала на сторонней проводящей части при аварии электрооборудования в процессе эксплуатации.

Примеры сторонних проводящих частей подключаемых / не подключаемых к шине дополнительного уравнивания потенциалов:

    Сторонняя проводящая часть

    Рисунок

    Необходимость подключения

     

    Металлическая полка, закрепленная на стене из непроводящего материала.

     
     

    НЕТ

     

    Металлическая полка, закрепленная на стене из железобетона.

       

    ДА

    (потенциальная связь с «землей» за счет крепежа к стене)

     

    Металлическая полка, закрепленная на стене из непроводящего материала.

    На полке расположен электроприбор.

       

    ДА

    (возможность появления потенциала при аварии прибора с классом изоляции I)

     

    Металлическая тумбочка с резиновыми (пластиковыми) колесиками на бетонном полу.

       

    НЕТ

     

    Металлическая тумбочка с резиновыми колесиками на бетонном полу.

    В помещении грязь и пыль в сочетании с повышенной влажностью.

       

    ДА

    (потенциальная связь с «землей» за счет загрязнения и повышенной влажности)

    Некоторое количество вопросов с уравниванием потенциалов возникает по ванным и душевым помещениям. Современные требования и рекомендации по устройству системы дополнительного уравнивания потенциалов изложены в циркуляре № 23/2009.

    Широкое применение пластиковых труб породило закономерный вопрос: является ли водопроводная вода сторонней проводящей частью и возможен ли занос потенциала через воду….

    Ответ, содержащийся в циркуляре, несколько настораживает:«…Водопроводная вода нормального качества …не рассматривается как сторонняя проводящая часть.»

    К сожалению, вода нормального качества из наших кранов течет не всегда и лучше перестраховаться, используя токопроводящие вставки на отводах от стояков водопровода подключив их к шине дополнительного уравнивания потенциалов, чтобы не подключать отдельно каждый кран. Этот метод в качестве рекомендуемого описан в этом же циркуляре.

    Практика выполнения дополнительной системы уравнивания потенциалов.

    Фактически наиболее распространены пять вариантов выполнения шин системы дополнительного уравнивания потенциалов:

    Вариант 1. С использованием стандартных коробок уравнивания потенциалов ( КУП ).

    Вариант 2. Стальная шина 4х40 ( 4х50 ) с приварными болтами опоясывающая помещение.

    Вариант 3. Стальная шина, уложенная в стандартный пластиковый короб.

    Вариант 4. Использование шины заземления в РЩ ( для небольших помещений ).

    Вариант 5. С использованием специализированного щитка типа ЩРМ – ЩЗ

                       ( встроенный щиток с шиной 100 мм2 ( Cu ) со степенью защиты IP54 ).

    Главные требования нормативов по устройству шины дополнительного уравнивания потенциалов содержат два требования:

    —       возможность осмотра соединения

    —       возможность индивидуального отключения

    1. Длина проводников дополнительной системы уравнивания потенциалов, соединяющих контакты штепсельных розеток, сторонние проводящие части и корпуса электрооборудования не должна превышать 2,5 м.( ? ). Сечение 4 мм2 Сu ( ПВ-1, ПВ-3 ). См. ПУЭ 1.7.82 рис. 1.7.7.
    2. Для электроустановки здания, где применяются негорючие ( ВВГ нг –FRLS…) кабеля, следует с осторожностью использовать кабеля марки ПВ-1, ПВ-3 ( проводники уравнивания потенциалов от дополнительной системы уравнивания потенциалов до ГЗШ или щитовой шины заземления ). Данный тип кабеля, будучи уложенным вместе с негорючими кабелями, формально превращает всю систему в распространяющую горение. В большинстве случаев контролирующие органы относятся к этому спокойно, но в некоторых случаях стоит применить негорючие одножильные кабеля той же марки с нанесением соответствующей маркировки.
    3. Для зданий детских дошкольных учреждений, больниц, специальных домах престарелых и тд. применяемые пластиковые короба должны иметь сертификат о не выделении токсичных веществ при горении. Тоже касается линолеума. Поставляемые в Россию короба Legrand, ABB … таких сертификатов не имеют. Как вариант — короба фирмы DKC в которых в качестве отбеливающего вещества используется мел и есть все необходимые сертификаты.

    МЕД. ГОСТ Р 50571.28 п. 710.413.1.6.3 « Шина уравнивания потенциалов должны быть расположены в самом медицинском помещении или в непосредственной близости от него. В каждом распределительном шкафу или в непосредственной близости от него должны быть расположена шина системы дополнительного уравнивания потенциалов, к которой должны быть подключены проводники…»

    Для учреждений здравоохранения в помещениях гр.1 и особенно в помещениях гр.2 (чистые помещения) удобно воспользоваться вариантом № 5, схема которого представлена на рисунке.

      Что такое заземление и зачем оно нужно, заходите на сайт

      Что такое заземление и зачем оно нужно? В кругу специалистов вопрос покажется абсолютно тривиальным, однако для большинства среднестатистических граждан – это загадка то ли природы, то ли техники.
      А тем временем в основе лежат не слишком уж и таинственные физические явления; зато правильно выполненное заземление способно спасти жизнь и здоровье человека при возникновении электроЧП.

      Содержание:

      Риски
      Заземление как панацея
      «Физика и химия»
      Идеал заземления

      Немного физики

      Электрический ток протекает между точками, которые имеют разный электрический потенциал – в первом приближении, разную величину электрического заряда. Чтобы ток побежал, эти точки нужно соединить проводящей средой – к примеру, медной проволокой. Такая ситуация в электрической розетке: в одном из её гнёзд ±220 В, а в другом — ровным счётом 0 В. Когда эти гнёзда замыкаются через включённый в розетку прибор, между ними начинает течь ток, который, собственно, и вдыхает жизнь в холодильник, фен, утюг, компьютер и т.д.

      Земля считается абсолютным нулём – её заряд всегда 0 В. Это ключевой факт. А тело человека проводит ток – иногда не хуже, чем медный кабель.

      Риски

      А теперь – нередкая ситуация в квартире.

      Представим обычную стиральную машину в обычной среднестатистической квартире. Ничто в мире не совершенно, а потому в стиральном приборе может повредиться изоляция в одном из многочисленных внутренних проводов. С огромной вероятностью повреждённый проводок, несущий напряжение 220В, коснётся внутренних металлических частей, которые соединены с корпусом машины. Корпус прибора мгновенно окажется под напряжением. Если к этому корпусу прикоснётся человек, то он получит удар током.

      Дело в том, что потенциал корпуса машины равен 220 В, а потенциал поверхности, на которой находится человек – 0 В. Вспомним, что тело человека — среда очень даже проводящая. Потому-то ток ринется с корпуса машины на пол через тело прикоснувшегося – вот и вся схема удара током.

      Говоря по правде, что если человек будет в резиновой обуви на абсолютно сухом полу с абсолютно сухими руками, касание 220-ти вольт не особо повредит ему, поскольку сухость и соотвтетствующая обувь воспрепятствуют движеную тока – но часто ли могут быть выполнены все эти «абсолютно»?

      Конечно, при наличии УЗО электроснабжение будет оперативно отключено… Однако это произойдет уже после удара током, последвствия которого могут быть плачевными.

      Что самое интересное — напряжение может накопиться на корпусе прибора и не по причине неисправности, а из-за статического электричества. Это очень распространенная офисная проблема. Конечно, удар током не будет смертельным, однако вполне способен навредить здоровью. Уже начинаете понимать что такое заземление? Ну во всяком случае, мы продолжаем

      Заземление как панацея

      Казалось бы, явление неизбежно…, и ударят ли током наши любимые электроприборы, решать только им. Ан нет! Серьёзную помощь может оказать заземление, будь оно правильно смонтированным… и вообще будь оно. В описанной ситуации система заземления взяла бы удар током на себя, а человек ощутил бы лишь лёгкое покалывание.

      «Физика и химия»

      Заземление представляет собой процесс соединения металлических частей электроприборов с землёй. Выводятся «на землю» те части, которые могут прямым или косвенным образом грозить ударом током в случае, если по причине мини-ЧП окажутся под напряжением. Цель у заземления одна, но зато какая – обезопасить жизнь и здоровье человека.

      Схема самодельного заземления могла бы выглядеть так. К корпусу электроприбора надёжно прикреплен провод, который выведен на улицу через дверь, окно и любой другой проём или отверстие. В землю вбит металлический штырь (уголок, прут, труба). К этому-то изделию и крепится провод, идущий от корпуса стиральной машины.

      Почему такая схема работает? Начнём с того, что потенциал земли всегда 0 В, а на нашем корпусе может оказаться все 220 В – потому ток потечёт в землю, которая совершенно от этого не пострадает. Зато человек, коснувшийся корпуса, окажется в безопасности, поскольку ток выбирает для своего пути на землю лучший проводник и течёт через него. Если есть заземление, то оно и есть лучшим проводником электричества.

      Идеал заземления

      Но самое надёжное и грамотное заземление – то, которое предусмотрено в устройстве электрической проводки дома или квартиры. В таком случае в проводке помимо двух проводов (фаза и нуль) имеется и провод заземления – то есть кабель получается трехжильным. Третья жила и соединяется с землёй по всем правилам ПУЭ.

      Заземляющая жила ветвится, подходя к каждой розетке. Розетка, в свою очередь, имеет дополнительный контакт – те самые «усики» по бокам гнезда, которые есть у многих современных розеток. Электроприбор, в котором предусмотрено заземление, имеет вилку с дополнительными боковыми контактами и трехпроводный шнур. Третий провод – заземляющий, он соединён с корпусом прибора и другими металлическими элементами, которые могут оказаться под напряжением и быть опасными для человека. Заземляющий провод выводится на боковые контакты вилки, которые, в свою очередь, через «усики» розетки уведут невесть откуда возникшее напряжение в землю. Однако следует иметь в виду, что розетка, имеющая заземляющие контакты, по-настоящему заземлена лишь в случае, если заземление есть и в схеме электропроводки.

      К сожалению, в многоквартирных домах старой постройки подобное явление – большая редкость, как, впрочем, и в частных домах среднего возраста. Однако на первых этажах есть какая-никакая возможность восполнить электрический пробел и смонтировать заземление.

      Заметим, что крайне желателен профессиональный монтаж заземления согласно правилам ПУЭ.

      Нельзя вместо заземления использовать зануление – соединение заземляющего провода с нулевым. Также делают неграмотное заземление на трубы, радиаторы, а это запрещено так же строго, как и курение на бензоколонке.

      Итак, учитывая увеличение количества электроприборов в наших жилищах, следует задуматься о профессиональном монтаже системы заземления в электропроводке жилища. Тем более, что некоторые современные приборы и вовсе строго запрещено эксплуатировать без профессионального заземления. Надеемся эта статья была полезна и вас больше не возникнет вопроса «Что такое заземление?»

      Вам также может быть интересно:

      Что такое заземление — определение

      Электричество служит на благо людям уже не первое десятилетие, и без него невозможно представить себе жизнь современного человека. Однако, электрический ток может подарить нам не только комфорт, но и быть весьма опасным, поэтому инженеры используют множество систем, предохраняющих человека от поражения им. Одной из таких систем является заземление

      Заземление – электрическое соединение элементов электрических машин, аппаратов, приборов и т.п. с землей с целью защиты людей от поражения электрическим током или защиты электроприборов. Основным показателем качества заземления является его сопротивление. Чем ниже значение напряжения на заземляющем устройстве по отношению к напряжению, стекающему в землю, тем лучше.

      Виды заземления.

      • Рабочее, которое также называют функциональным, служит для обеспечения нормальной работы электроприбора, на корпусе которого не должно быть даже минимального электрического потенциала. Оно направлено лишь на обеспечение бесперебойной работы электроустановок или иного оборудования в их обычном режиме, и не преследует целей электробезопасности.
      • Защитное служит для обеспечения электробезопасности. Благодаря защитному заземлению электроустановки или электрические сети становятся устойчивыми к воздействию повышенных напряжений и токов. Также это защищает и людей, работающих с подобными объектами.

      Заземление и заземляющее устройство.

      • Процесс заземления – это соединение специального устройства (заземляющее устройство или ЗУ) с любой точкой электроустановки, сварочного оборудования или электрической сети.
      • Заземляющее устройство (ЗУ) – это совокупность одного или нескольких заземлителей с заземляющими проводниками.
      • Заземлитель – токопроводящая часть (или совокупность нескольких частей, соединенных между собой), находящихся в электрическом контакте с землёй непосредственно или через промежуточную проводящую среду. Изготавливают их из стали, реже используется медь.
      • Заземляющий электрод – проводящая часть или совокупность частей, которая служит для соединения заземлителя с заземляемой частью электрооборудования или электросети. Заземляющий электрод практически не имеет отличий от заземлителя, и также изготавливается из стали.

      Для обеспечения безопасной работы сварочных агрегатов Shindaiwa предусмотрены система защиты от поражения электрическим током и специальные клеммы заземления (см. системы безопасности для DGW310, DGW400, DGW500). Все клеммы заземления должны быть заземлены, как указано в инструкции по эксплуатации. Даже если один из всех зажимов останется разъединенным по ошибке или случайно, это намного опаснее для человека травмами или ожогами, чем реле с замыкающими контактами, так как ток утечки неизбежно проходит через тело. Даже если все зажимы нагрузок замкнуты на землю, зажим заземления кожуха (крышки) должен быть также заземлен.

      Дата публикации: 01 01 1970 г. ✎ 
      Дата последнего изменения: 01 01 1970 г.

      Введение в заземление для обеспечения электромагнитной совместимости

      Правильное заземление — важный аспект проектирования электронной системы как с точки зрения безопасности, так и с точки зрения электромагнитной совместимости. Земля играет решающую роль в определении того, что происходит в случае непреднамеренных неисправностей, электрических переходных процессов или электромагнитных помех. Правильные стратегии заземления также позволяют инженерам более эффективно контролировать нежелательные излучаемые излучения.

      С другой стороны, неправильное заземление может подорвать безопасность и электромагнитную совместимость продукта или системы.В последние несколько десятилетий плохое заземление стало основной причиной сбоев системы, связанных с электромагнитной совместимостью.

      Разработка хорошей стратегии заземления — довольно простой процесс. Итак, можно задаться вопросом, почему так много систем неправильно заземлены. Ответ прост: инженеры часто путают понятие заземления с другим важным понятием — текущей отдачей. Тот факт, что возвратные токопроводы в цифровой электронике часто обозначаются как заземление или GND, может сбивать с толку. Когда токопроводящие обратные токопроводы рассматриваются как заземляющие (или когда заземляющие проводники используются для обратных токов), результатом часто становится конструкция со значительными проблемами ЭМС.

      Определение земли

      Хорошая стратегия заземления начинается с четкого понимания цели заземления. Прежде всего, заземление служит опорным нулевым напряжением цепи или системы. Это хорошо понимали несколько десятилетий назад. В 1992 году Американский национальный институт стандартов (ANSI) определил такое заземление [1],

      4.152 — заземление. (1) Крепление корпуса оборудования, рамы или шасси к объекту или конструкции транспортного средства для обеспечения общего потенциала.(2) Подключение электрической цепи или оборудования к земле или к некоторому проводящему телу относительно большой протяженности, которое служит вместо земли.

      Было хорошо известно, что земля является опорным потенциалом, а заземляющие проводники обычно не токоведущие.

      Рисунок 1: Розетка на 110 В в США

      В США заземленные 110-вольтовые розетки имеют три клеммы, как показано на Рисунке 1. Горячая клемма имеет номинальный потенциал 110 В среднеквадратического значения и обеспечивает ток питания.Клемма нейтрали имеет номинальный потенциал 0 В среднеквадратического значения и действует как возврат силового тока. Клемма заземления также имеет номинальный потенциал 0 Vrms, но не пропускает ток при нормальных условиях. Клеммы нейтрали и заземления подключены к проводам, идущим обратно к одной и той же точке в электрической сервисной коробке (точке, которая электрически соединена с землей вне здания).

      Поскольку нейтральный и заземляющий провода идут в одно и то же место, они электрически взаимозаменяемы.Фактически, если бы они были электрически закорочены в розетке с однопроводным подключением обратно к сервисной коробке, было бы трудно обнаружить какую-либо разницу. Так зачем же прокладывать два провода вместо одного? Простой ответ заключается в том, что заземление и возврат тока — это две отдельные функции, которые обычно несовместимы. Значительные токи, протекающие в проводнике, могут помешать тому, чтобы он был надежным опорным потенциалом.

      Возможно, наиболее важным моментом, который следует учитывать при заземлении в целях безопасности и ЭМС, является то, что заземление не является током возврата.Земля и ток — это очень важные концепции, но это не одно и то же. Земля НЕ ЯВЛЯЕТСЯ путем для возврата токов к их источнику. Земля — ​​это, по сути, эталон нулевого напряжения для цепей и систем продукта. Концепция заземления играет решающую роль при проектировании с точки зрения безопасности и электромагнитной совместимости.

      Важность заземления для безопасности

      Важной частью разработки безопасных электрических продуктов и систем является знание того, где и когда небезопасные напряжения могут появляться на различных проводящих поверхностях.С точки зрения безопасности, заземление является опорным нулевым напряжением, а напряжение на каждом другом проводе — это разница между его напряжением и землей. Для зданий ориентиром на землю обычно является земля под зданием (или буквально «земля» под зданием). Это удобно, потому что земля относительно велика, и все большие металлические конструкции (например, водопровод и кабели, проходящие через границу здания) легко соединяются или соотносятся с землей.

      Строительная площадка — это обычно металлические прутья, вбитые в землю возле входа в электроснабжение.Эти стержни подключены к коробке выключателя, от которой заземление распределяется на все электрические розетки через нетоковедущие провода. Они также соединяются с любым металлом, который распространяется по всему зданию, например с водопроводными трубами или строительной сталью.

      Приборы или электрические изделия со значительной открытой металлической поверхностью обычно требуются для заземления металла на провод заземления, чтобы гарантировать, что он не может достичь опасного потенциала по сравнению с любым другим заземленным металлом в здании.Если происходит неисправность, которая вызывает короткое замыкание между силовым проводом и оголенным металлом, заземление коробки выключателя обеспечивает протекание большого количества тока. Это заставляет выключатель размыкаться и обесточивает прибор.

      Рисунок 2. Схема, иллюстрирующая базовую работу GFCI.

      Важно отметить, что этот метод обеспечения безопасности продуктов основан на хорошем соединении заземления розетки с блоком выключателя.В старых розетках может отсутствовать клемма заземления, и даже в новых розетках с неправильной проводкой может отсутствовать заземление. По этой причине во многих продуктах используются конструкции, в которых для безопасной работы не требуется заземление. Изделия с двойной изоляцией спроектированы таким образом, чтобы исключить возможность короткого замыкания силового соединения на оголенный металл, за счет исключения оголенного металла и / или обеспечения срабатывания автоматического выключателя в случае короткого замыкания.

      Также растет количество электротехнической продукции со встроенными устройствами прерывания цепи замыкания на землю (GFCI).GFCI работают, обнаруживая дисбаланс тока между проводами подачи и возврата питания. При первом признаке того, что дисбаланс тока превышает безопасный порог, GFCI отключает питание.

      Заземление безопасности может быть или не совпадать с заземлением ЭМС, но заземление для обеспечения безопасности может быть важным фактором, который следует учитывать при проектировании с учетом ЭМС. Например, в медицинских изделиях и промышленных средствах управления заземление цепи часто требуется изолировать от заземления шасси по соображениям безопасности.Это представляет собой уникальную конструктивную проблему для инженеров EMC, которые обычно хотят видеть все большие металлические объекты, хорошо соединенные на высоких частотах.

      Важность заземления для ЭМС

      Проблемы ЭМС часто возникают из-за того, что два больших металлических объекта находятся под разным потенциалом. Потенциальная разница всего в несколько сотен микровольт между любыми двумя резонансными проводниками может привести к превышению допустимого уровня излучаемого излучения. Точно так же напряжения, индуцированные между двумя плохо соединенными проводниками, могут привести к проблемам с помехоустойчивостью.

      Заземление — это, по сути, искусство определения нулевого опорного напряжения и соединения металлических предметов или цепей с этим опорным сигналом через низкоомное нетоковедущее соединение. Правильная стратегия заземления ЭМС гарантирует, что большие металлические конструкции не могут двигаться относительно друг друга, что приведет к непреднамеренным излучениям или проблемам с защитой. Склеивание металлических предметов для поддержания на них одинакового потенциала и привязка всех внешних соединений к одному и тому же нулевому заземлению — это ключевой шаг к обеспечению электромагнитной совместимости большинства продуктов.

      Наземные сооружения

      Практически все электронные устройства и системы имеют наземную структуру. В зданиях это заземляющие провода, водопровод и металлоконструкции. В автомобилях и самолетах это металлический каркас или шасси. В большинстве компьютеров это металлическая опорная конструкция и / или корпус.

      Конструкция заземления служит местной опорной точкой нулевого напряжения. Нельзя допускать, чтобы что-либо крупное и металлическое приобретало потенциал, значительно отличающийся от потенциала земли.Обычно это достигается путем прикрепления всех крупных металлических объектов к заземляющей конструкции на интересующих частотах. Этого также можно достичь, достаточно изолировав большие металлические предметы и убедившись, что нет возможных источников, которые могут вызвать развитие потенциала между ними.

      Рисунок 3. Спутник с двумя солнечными батареями.

      Например, рассмотрим спутник, показанный на рисунке 3. Его наземная структура представляет собой металлический корпус, в котором находится большая часть электроники.Чтобы передать значительную электромагнитную мощность на спутник или из него, необходимо установить напряжение между наземной структурой и чем-то еще значительного электрического размера. На частотах ниже нескольких сотен мегагерц единственными проводниками значительного электрического размера (кроме наземной конструкции) являются две группы солнечных панелей и, возможно, любые провода, соединяющие эти массивы с цепями внутри спутника.

      Прикрепление массивов солнечных панелей к корпусу в точках, где они находятся в непосредственной близости, гарантирует, что между большими проводниками не возникнет значительного напряжения, которое может служить непреднамеренно передающими или приемными антеннами для шума.Соединительные провода также необходимо прикрепить к заземляющей конструкции. Обычно это достигается с помощью шунтирующих конденсаторов, чтобы установить связь на частотах шума, в то же время позволяя токам мощности и сигнала течь без ослабления.

      Стратегия заземления, примененная к спутнику в этом примере, может использоваться практически с любым другим устройством или системой, имеющей наземную структуру. Основная философия заключается в том, что сама наземная конструкция представляет собой половину непреднамеренной антенны.Излучаемая связь может возникать только в том случае, если между заземляющей структурой и другим проводящим объектом значительных электрических размеров возникает напряжение. Прикрепление всех объектов значительного электрического размера к заземляющей конструкции предотвращает их превращение в другую половину непреднамеренной антенны.

      Эта стратегия заземления важна не только для удовлетворения требований к излучению и помехоустойчивости, она также играет ключевую роль в соблюдении требований к кондуктивным помехам и помехоустойчивости, когда конструкция заземления является как опорным нулевым напряжением, так и предпочтительным путем для потенциально мешающих шумовых токов.

      Три важных момента в отношении наземных сооружений:

      1. Конструкция заземления должна быть хорошим проводником на интересующих частотах, но не должна быть электрически малогабаритной. Иногда вы можете услышать, как кто-то утверждает, что земли не существует на высоких частотах, потому что земля является эквипотенциальной поверхностью, а потенциал в двух точках на расстоянии четверти длины волны на поверхности неодинаков. Этот аргумент необоснован, потому что наземные конструкции не обязательно являются эквипотенциальными поверхностями в этом смысле.Фактически, вся концепция однозначно определяемой разности потенциалов между двумя удаленными точками разваливается на высоких частотах.

        Земля служит защитным заземлением для большинства систем распределения электроэнергии, даже если земля определенно не является электрически малой при 50 или 60 Гц. Неважно, что потенциал Земли в Лос-Анджелесе не такой, как в Нью-Йорке. Наземные конструкции служат в качестве местных источников нулевого напряжения. Они не должны быть электрически маленькими.

      2. Конструкция заземления не должна закрывать электронику.Наземная конструкция не является защитным ограждением. Это просто что-то большое и металлическое, которое служит локальным источником нулевого напряжения для всего остального, большого и металлического.

      3. Конструкция заземления не может пропускать преднамеренные токи (по крайней мере, с интересующими амплитудами и частотами). Токи, протекающие по проводнику или внутри него, заставляют магнитный поток наматывать проводник. Магнитный поток, охватывающий проводник, индуцирует на нем напряжение. На высоких частотах это напряжение потенциально может приводить в движение одну часть конструкции заземления относительно другой части.

      Наземные конструкции могут проводить токи с частотами и амплитудами, которые не влияют на их эффективность как наземные конструкции. Например, в большинстве автомобилей рама используется в качестве пути обратного тока для огней и некритичных датчиков, работающих на очень низких частотах. Это не ухудшает способность рамы служить заземляющей структурой на более высоких частотах.

      Важно отметить, что, хотя конструкция заземления не может пропускать преднамеренные токи, ожидается, что она будет пропускать токи короткого замыкания и токи индуцированного шума.Фактически, правильное использование конструкции заземления зависит от ее способности переносить непреднамеренные токи с достаточно низким импедансом, чтобы контролировать непреднамеренные напряжения.

      Заземляющие провода

      Заземляющие проводники — это соединения (например, винты, болты, прокладки, провода или металлические ленты), которые крепят большие металлические предметы к заземляющей конструкции. Как и заземляющие конструкции, заземляющие проводники не пропускают преднамеренные токи. Их функция — поддерживать напряжение между двумя металлическими конструкциями ниже критического значения.

      Заземляющие проводники должны иметь достаточно низкий импеданс (т. Е. Сопротивление плюс индуктивное реактивное сопротивление), чтобы их полное сопротивление, умноженное на максимальный ток, который они могут нести, ниже минимального напряжения, которое может привести к проблеме ЭМС. Например, предположим, что экран экранированной витой пары проводов подключен к заземляющей конструкции через 1-сантиметровый контактный штырь, как показано на рисунке 4. Витая пара проводов передает псевдодифференциальный сигнал 100 Мбит / с с синфазным шумом. ток 0.3 мА при 100 МГц. Напряжение, управляющее экраном кабеля относительно платы, приблизительно равно току, возвращающемуся в экран, умноженному на эффективную индуктивность соединения экрана. Предполагая, что эффективная индуктивность контакта разъема составляет приблизительно 10 нГн (т.е. 1 нГн / мм), напряжение, управляющее экраном кабеля относительно заземляющей конструкции, составляет приблизительно 2 милливольта. Во многих ситуациях этого достаточно, чтобы превысить предел излучаемых излучений на частоте 100 МГц, и потребуется предпринять шаги для уменьшения синфазного шума или уменьшения индуктивности соединения заземляющего проводника.

      Рисунок 4. Витая пара с экраном, подключенным к заземляющей конструкции.

      Гальваническая коррозия

      Когда заземляющее соединение выполняется путем соединения болтами двух плоских металлических поверхностей, сопротивление соединения может быть более важным, чем индуктивность. Это особенно верно, когда поверхность раздела между ними подвергается коррозии.

      Потенциал гальванической коррозии — это мера того, насколько быстро разнородные металлы будут корродировать при контакте.Коррозия зависит от наличия электролита, например воды; а скорость коррозии зависит от многих факторов, включая свойства электролита.

      Рисунок 5. Анодные индексы для обычных металлов.

      На диаграмме на Рисунке 5 указаны анодные индексы нескольких распространенных металлов рядом с их названиями. Этот параметр является мерой электрохимического напряжения, которое возникает между металлом и золотом. Чтобы найти относительное напряжение пары металлов, их анодные индексы вычитаются, как указано в таблице.В зависимости от окружающей среды соединения между материалами с разницей напряжений более 0,95 В обычно требуют покрытия или прокладок для сохранения целостности соединения с течением времени.

      Земля против обратного тока

      Как указано в начале этой главы, заземление и возврат тока — это две очень разные функции. К сожалению, в реальных изделиях многие токопроводы имеют маркировку «заземление». Это создает большую путаницу, поскольку правила, относящиеся к земле, применяются к текущим доходам и наоборот.

      Например, схематическая часть платы на рисунке 6 имеет четыре разных заземления. Один компонент работает с сигналами или мощностью, которые относятся к трем из этих заземлений. Маловероятно, что разработчик этой схемы хотел четыре разных источника нулевого напряжения. Фактически, четыре заземления соединены перемычками, что указывает на то, что разработчик намеревался иметь одну опорную цепь нулевого напряжения.

      Рисунок 6. Частичная схема с четырьмя заземлениями.

      Схема платы, показанная на Рисунке 7, показывает слой с двумя изолированными цепями, помеченными «GND» и «AGND».Изоляция заземления затрудняет поддержание одинакового потенциала всех крупных металлических объектов в системе. Как правило, это следует делать только в случае необходимости из соображений безопасности. Так почему же эти «земли» изолированы?

      Рисунок 7. Один слой разводки платы с двумя основаниями.

      В двух приведенных выше примерах причина того, что «наземные» сети были изолированы, заключается в том, что они на самом деле не были заземлением. Они были обратными проводниками для силовых или сигнальных токов.Разработчикам не нужны были изолированные источники нулевого напряжения. Они изолируют обратные токопроводы, пытаясь избежать связи по общему сопротивлению.

      Около 50 лет назад, когда цифровые схемы только начинали внедряться в такие продукты, как радиоприемники и высококачественное аудиооборудование, разработчики электроники быстро поняли, что цифровой шум может быть связан с аудиосхемами, если они используют одни и те же возвратные проводники. . Например, рассмотрим простую доску, показанную на рисунке 8a.Он имеет два цифровых компонента: цифро-аналоговый (ЦАП) преобразователь и усилитель для усиления аналогового сигнала перед его отправкой с платы через разъем. Несимметричный цифровой сигнал между двумя цифровыми компонентами использует землю в качестве обратного пути. На частотах килогерц и ниже возвратный по плоскости ток распространяется с распределением, примерно представленным зелеными линиями на рисунке 8b. Низкочастотный ток, возвращающийся от усилителя к цифро-аналоговому преобразователю, следует по пути, примерно представленному синими линиями на рисунке 8b.

      Рис. 8. Простая плата смешанного сигнала слева (а) и примерное распределение обратного тока на заземляющем слое (b).

      В текущем распределении явно много совпадений. Это приводит к общему сопротивлению, поскольку токи в одной цепи имеют общее сопротивление заземляющей поверхности с токами в другой цепи. Если бы общее сопротивление заземляющей поверхности было порядка 1 мОм, а цифровые токи были порядка 100 мА, то индуцированное напряжение в аналоговых цепях было бы порядка 100 мкВ.

      Пятьдесят лет назад инженеры, проектирующие аудиосхемы, заметили, что напряжения, наведенные в аудиосхемах из-за связи общего импеданса с цифровыми схемами, часто были неприемлемыми. В акустическом сигнале люди слышали цифровой шум.

      Очевидным решением было изолировать обратные токи цифрового сигнала от обратных токов аналогового сигнала. Платы с более чем двумя слоями не были распространены в то время, поэтому популярным подходом было разделение текущей возвратной плоскости.Пример этого показан на рисунке 9.

      Рис. 9. Плата смешанного сигнала с зазором в плоскости обратного тока слева (а) и приблизительным распределением обратного тока на плоскости заземления (b).

      Поскольку токи низкой частоты не могут проходить через зазор, токи перенаправляются по обе стороны от зазора. Это снижает плотность цифрового обратного тока в области плоскости, используемой в основном для аналоговых токов, и значительно снижает связь по общему импедансу.

      На относительно простых двухслойных платах 1960-х и 1970-х годов зазоры между аналоговыми и цифровыми схемами часто были эффективным способом устранения недопустимых перекрестных помех из-за связи общего импеданса. К сожалению, это сработало настолько хорошо, что люди в конце концов пришли к мысли, что между цифровыми и аналоговыми цепями всегда должен быть промежуток между заземляющими плоскостями. Так родилось правило дизайна, и дизайнеры досок любят правила дизайна. Пятьдесят лет спустя многие дизайнеры плат по-прежнему придерживаются этого правила дизайна, хотя оно больше не имеет смысла.Фактически, лучшее правило проектирования современных плат — никогда не допускать зазора между аналоговыми и цифровыми схемами заземления.

      Чтобы проиллюстрировать, почему это так, рассмотрим схему платы на рисунке 10. Она имеет те же компоненты, что и в предыдущем примере, и, как и в предыдущем примере, имеет зазор между аналоговой и цифровой схемами. Однако в этом случае зазор окружает аналоговую схему с трех сторон.

      Рис. 10. Ужасно смешанная компоновка сигнальной платы слева (а) и гораздо лучшая альтернативная компоновка справа (b).

      График обратных токов, как это было сделано в предыдущем примере, проиллюстрирует отличную развязку между цифровым и аналоговым обратным токами. Но предыдущие графики обратного тока не учитывали все токи в плоскости. Обратите внимание, что есть четыре цифровых дорожки, соединяющих цифро-аналоговый преобразователь с одним из цифровых компонентов. Для этих сигналов также требуются обратные токи. Эти токи должны поступать от контакта заземления ЦАП на контакт заземления цифрового компонента.Раньше этот путь был коротким и несущественным, но теперь зазор заставляет эти токи делить ту же область плоскости, что и аналоговые токи. Вместо того, чтобы улучшить ситуацию, этот пробел потенциально усугубляет ситуацию.

      Правильное определение зазора между аналоговой и цифровой цепями имеет решающее значение. Пятьдесят лет назад часто было трудно определить правильное место для разрыва. В современных платах с высокой плотностью зазоры между плоскостями, как правило, нереально и совершенно ненужно для решения несуществующей проблемы.

      Существует по крайней мере три причины, по которым в современных конструкциях плат нет необходимости в зазоре в заземляющем слое:

      1. Цифровые и аналоговые сигналы, как правило, работают на гораздо более высоких частотах, чем 50 лет назад. На частотах выше примерно 100 кГц обратные токи на заземляющем слое ограничиваются областями непосредственно под дорожками сигнала. Поскольку они не распространяются по плоскости, зазоры между плоскостями не улучшают изоляцию между цепями.

      2. Даже на частотах кГц и ниже сопротивление заземляющих поверхностей печатной платы составляет менее 1 мОм / квадрат . Это означает, что «шумные» схемы, сбрасывающие ток в амперах на заземляющую пластину, способны вызывать только милливольты (наихудший случай) напряжения в других схемах, находящихся в той же плоскости. Существует относительно немного ситуаций, когда такой уровень шумовой связи может стать проблемой.

      3. В тех ситуациях, когда миллиом соединения недопустим, гораздо лучше изолировать возврат на другом слое .Например, лучшим решением проблемы сцепления в нашем предыдущем примере было отсутствие зазора между плоскостью. На рисунке 10b показано, как возврат аналогового тока с помощью дорожки на верхнем слое полностью позволяет избежать общей проблемы связи импеданса. В платах, которые имеют много аналоговых и цифровых возвратов, которые должны быть изолированы на низких частотах, обычно будет необходимо соединить их на высоких частотах, чтобы предотвратить проблемы излучаемого излучения. Маршрутизация изолированных возвратных сигналов на соседних слоях значительно упрощает установление между ними хорошего высокочастотного соединения.

      Обратите внимание, что аналоговая линия возврата тока на рис. 10b подключена к плоскости цифрового возврата тока с помощью одного переходного отверстия, расположенного рядом с выводом заземления ЦАП. Переходное отверстие не несет аналоговых или цифровых обратных токов. Его единственная функция — гарантировать, что аналоговая и цифровая схемы имеют одинаковое опорное напряжение нулевого напряжения. Другими словами, переходное отверстие является заземляющим проводом, тогда как плоскость и дорожка являются токопроводящими проводниками.

      Одноточечное и многоточечное заземление

      Предположим, что аналоговая трасса возврата тока на рисунке 10b имеет два сквозных соединения с цифровой плоскостью возврата тока, как показано на рисунке 11.Теперь аналоговый обратный ток имеет два возможных пути. Он может вернуться по следу или может вернуться в самолете. Ток будет разделен в соответствии с сопротивлением каждого пути, позволяя значительному количеству аналогового тока возвращаться в плоскость. Аналогичным образом, некоторый цифровой ток будет течь по аналоговой обратной линии тока. Изоляция разрушается, и снова вводится связь по общему сопротивлению.

      Рис. 11. Добавление второго соединения между двумя изолированными возвратными токами может означать, что они больше не изолированы на низких частотах.

      Вообще говоря, два пути возврата тока не изолированы на низких частотах, если они соединены более чем в одной точке. Сквозное соединение на рисунке 10b является примером одноточечного заземления. Одноточечное заземление — важная концепция в ЭМС, хотя ее часто неправильно понимают проектировщики, не проводившие должного различия между проводниками с возвратным током и заземляющими проводниками.

      Рисунок 12. Одноточечное заземление.

      Рисунок 12 иллюстрирует концепцию одноточечного заземления.Изолированные цепи или системы связаны с одной точкой через нетоковедущие заземляющие проводники. На рисунке 13 показана другая реализация, в которой заземляющие проводники подключаются более чем в одной точке, но все они по-прежнему привязаны к одной точке. Одним из примеров этого является заземление в зданиях. Каждое заземленное устройство имеет выделенный проводной путь к электросети здания, но параллельные пути создаются водопроводными соединениями или изделиями, внешние металлические поверхности которых находятся в электрическом контакте.Подключение заземляющих проводов более чем в одной точке не снижает эффективности схемы заземления.

      Рис. 13. Еще одна реализация с одноточечным заземлением.

      Хотя одноточечное заземление является важной концепцией для обеспечения того, чтобы изолированные цепи имели одинаковое опорное напряжение нулевого напряжения, оно не работает, если по заземляющим проводникам проходят сигнальные или силовые токи. Например, на рисунке 14 средняя и правая цепи не изолированы.Токи, возвращающиеся от нагрузки к источнику средней цепи, теперь имеют возможность вернуться через намеченный синий провод или пройти по дополнительному соединению в правую цепь и обратно в среднюю цепь через «одноточечную» землю.

      Рисунок 14. Это НЕ одноточечное заземление.

      Путь на рисунке 14 от одноточечного соединения к средней цепи к правой цепи и обратно к одноточечному соединению иногда называют контуром заземления.Контуры заземления часто считаются несовместимыми с одноточечным заземлением и часто упоминаются как источник связи общего сопротивления; но это неверно. На рисунке 13 показан контур заземления, и он по-прежнему является хорошей реализацией одноточечного заземления. Контур заземления на Рисунке 14 включает в себя сегмент, который вообще не заземлен. Синий провод в средней цепи может называться «землей» на схеме платы, но это проводник обратного тока.

      Как правило, с контурами заземления все в порядке, если все проводники в контуре действительно являются проводниками заземления.Если один или несколько проводников в петле представляют собой низкочастотный обратный проводник, то все проводники в петле будут нести часть этого обратного тока. Это может облегчить связь по общему сопротивлению.

      На рисунке 15 показан еще один пример неправильного применения концепции единой точки заземления. Этот пример взят из инструкции производителя по применению, в которой покупателям рассказывается, как расположить драйвер трехфазного двигателя. Идея заключалась в том, чтобы гарантировать, что все три фазы имеют такое же опорное напряжение нулевого напряжения, что и двигатель.Реализация призвала вернуть все токи переключения и ток двигателя в одну и ту же точку.

      Рисунок 15. Одноточечный возврат по току (плохая идея).

      Конечно, это не одноточечное заземление. Это одноточечный текущий возврат. Хотя все проводники помечены как заземление на схеме и на плате, они не являются заземлением. Это токопроводы с обратным током.

      Отправка всех коммутируемых токов в одну точку схемы в основном гарантирует, что индуктивность соединения будет выше, чем в противном случае.Это обеспечивает высокий общий импеданс, а также взаимную индуктивность между фазами. Это также гарантирует, что ни одна из фаз или двигателя не будет иметь одинакового опорного нулевого напряжения.

      По сути, важно помнить, что одноточечное заземление является важной стратегией для обеспечения того, чтобы изолированные цепи и устройства имели одинаковое опорное напряжение нулевого напряжения. С другой стороны, одноточечные возвратные токи часто являются основной причиной серьезных проблем электромагнитной связи.

      Рисунок 16.Многоточечная земля.

      Альтернативой стратегии одноточечного заземления является стратегия многоточечного заземления. Пример этого показан на рисунке 16. Вместо одной точки земля определяется локально. По сути, это концепция наземной конструкции, описанная ранее.

      Обычно системы, использующие структуру заземления, подключают цепи и модули, которые не изолированы от конструкции заземления более чем в одной точке. Простой пример этого показан на рисунке 17.

      Рисунок 17. Гибридная стратегия заземления.

      В этом случае соединение между средней и правой цепями позволяет низкочастотным обратным токам течь по заземляющей конструкции. На этих частотах структуру правильнее было бы описать как структуру с обратным током. При разработке стратегии заземления важно понимать, что проводящая конструкция может выполнять функцию заземления на одних частотах и ​​функцию возврата тока на других.

      Например, в автомобиле средняя и правая цепи на рисунке 17 могут представлять модуль управления тормозами и датчик скорости вращения колеса соответственно. Каждый из них заземлен на раму автомобиля, чтобы соответствовать требованиям по излучению и эмиссии на высоких частотах, но ни один модуль не позволяет токам высокой частоты возвращаться на раму. Таким образом, на высоких частотах рама представляет собой многоточечную наземную структуру.

      На более низких частотах критическая связь будет осуществляться с использованием дифференциальных сигналов, чтобы токи сигналов не попадали в кадр (и токи кадра не попадали в сигналы).Тем не менее, основания власти не обязательно будут изолированы. Силовые токи, поступающие в модули по 12-вольтовым проводам питания, возвращаются к батарее по всем доступным путям. Таким образом, на низких частотах (например, постоянный ток — кГц) рама не является наземной структурой, это структура с возвратным током. Силовой ток, протекающий по корпусу от одного модуля, может вызвать сотню милливольт на заземляющих соединениях других модулей, но большинство модулей не будут подвержены влиянию сотен милливольт на очень низких частотах.

      Предположим, что схема слева на рисунке 17 представляет распределение мощности на стартер для двигателя внутреннего сгорания. Эта схема может потреблять сотни ампер тока при запуске двигателя. Если позволить этим токам вернуться на раму транспортного средства, это может привести к недопустимому уровню шума в модулях, использующих раму в качестве обратного проводника силового тока. В этом случае можно было бы принять решение изолировать возврат от стартера и подключить его к раме в одной точке.

      Стратегии заземления

      Возможно, наиболее важным моментом, который следует отметить в отношении стратегий заземления, будь то для электромагнитной совместимости или безопасности, является то, что разрабатываемый продукт должен иметь его. Проблемы обычно возникают, когда с заземляющим проводником обращаются как с токоотводящим проводом или с токоотводящими проводниками как с заземляющими проводниками.

      Правильные стратегии возврата тока обычно сосредоточены на обеспечении путей с низкой индуктивностью для высокочастотных токов и поддержании контроля над путями низкочастотных токов.

      Правильные стратегии заземления направлены на определение и защиту опорного нулевого напряжения для каждой цепи и системы.

      Один из способов отследить, выполняют ли проводники в первую очередь функцию заземления или функцию возврата тока, — это соответствующим образом пометить их. Например, назовите соединение с заземляющей структурой «заземление шасси» или «шасси-GND», но используйте термин «цифровой возврат» или «D-RTN» для обозначения плоскости на печатной плате, основная функция которой — возврат цифровых токов. к их источнику.Половина успеха при разработке хорошей стратегии заземления — это правильное признание и сохранение целостности истинных оснований.

      Еще одним важным аспектом любой стратегии заземления является определение конструкции грунта. На уровне системы наземная конструкция всегда представляет собой металлический корпус или каркас, если таковой имеется. На уровне платы, если плата подключается к раме, то заземление платы должно быть там, где это соединение происходит. Если нет рамы или нет близости к раме, заземление платы обычно должно быть определено на одном из контактов разъема (часто вход питания 0 В).

      Вообще говоря, все крупные металлические предметы (например, кабели, большие радиаторы, металлические опоры и т. Д.) Должны быть прикреплены к заземляющей конструкции. Если это невозможно, они должны быть достаточно изолированы от наземной конструкции, чтобы гарантировать отсутствие значительного нежелательного сцепления. Медицинские изделия и многие высоковольтные системы требуют строгой изоляции между корпусом или шасси и любыми токоведущими цепями. К сожалению, для близлежащих высокочастотных цепей относительно легко навести в этих структурах ток в микроамперах, которого достаточно, чтобы вызвать проблемы излучаемого излучения.Предотвращение этого без привязки к корпусу обычно требует ограничения полосы пропускания схемы, экранирования схемы и / или увеличения расстояния между схемой и корпусом.

      Список литературы

      [1] Американский национальный стандартный словарь технологий электромагнитной совместимости (EMC), электромагнитного импульса (EMP) и электростатического разряда (ESD), ANSI C63.14-1992.

      Заземление (физика): как оно работает и почему это важно?

      Обновлено 28 декабря 2020 г.

      Кевин Бек

      Электричество является незаменимым фактором в современной жизни, и хотя основные виды топлива, которые человечество использует для его производства, вызывают большую озабоченность, само электричество будет требоваться еще долго. поскольку цивилизация в ее нынешнем виде сохраняется.В то же время среди первых фактов безопасности, которым учат практически каждого ребенка, является то, что электричество является или может быть чрезвычайно опасным.

      Кроме того, электричество, которое люди вырабатывают и поэтому могут в значительной степени контролировать, — это только часть истории. Явление молнии знакомо и очень маленьким детям, и одновременно оно вызывает трепет и беспокойство даже у взрослых. Но его «удары» на уровне Земли почти так же непредсказуемы, как и потенциально смертельны, и пристальный взгляд на надстройки к зданиям и другим сооружениям по всему миру подчеркивает безотлагательность этого соображения безопасности.

      Электрическое заземление , также называемое заземлением , обеспечивает путь для прохождения тока в землю и рассеивания избыточного электрического заряда вместо накопления и создания потенциальной опасности. Это работает, потому что Земля, будучи электрически нейтральной, но также огромной, может принимать и обеспечивать большое количество электронов (по стандартам человеческой промышленности) без заметных изменений в этом состоянии «нулевого напряжения».

      Заряд, напряжение и ток

      Электрический заряд в физике измеряется в кулонах .Элементарный (неделимый) заряд — это заряд одиночного электрона (е-) или протона с величиной 1,60 10 -19 Кл и отрицательным знаком для электронов. Разделение противоположно заряженных частиц создает напряжение или разность электрических потенциалов, которая измеряется в джоулях на кулон (Дж / Кл), и побуждает электроны течь в направлении чистого положительного заряда, движение, называемое электрический ток .

      • Электроны «хотят» течь к положительному выводу или другой области чистого положительного напряжения по той же основной причине, по которой вода «хочет» течь вниз: разность потенциалов, но устанавливается электрической силой, а не силой тяжести.

      Этот поток электронов, измеряемый в Кл / с или ампер («ампер»), возникает только в том случае, если между источниками напряжения проходит провод и легко пропускается ток, как у большинства металлы. Непроводящие материалы называются изоляторами , и они включают пластик, дерево и резину (обилие изоляторов среди повседневных товаров — это явно хорошо). В предыдущей аналогии дамба, сдерживающая естественный поток речного течения, похожа на изолятор или диэлектрик .

      Все материалы, даже хорошие проводники, имеют некоторое электрическое сопротивление , обозначенное R и измеренное в омах (Ом). Эта величина позволяет установить формальную взаимосвязь между напряжением и током, называемую законом Ома :

      I = \ frac {V} {R}

      Как работает заземление?

      Электрический ток определяется как протекающий от более высокого потенциала к более низкому потенциалу (что соответствует результату , как и электроны, текущие в отрицательном-положительном направлении — будьте осторожны, чтобы не перепутать этот момент!) При условии, что подходящий путь между ними существует.Например, когда две клеммы батареи соединены проводом, ток свободно течет по петле с минимальным сопротивлением.

      Однако, если нет высокопроводящих путей, соединяющих разность потенциалов, ток все равно может протекать в результате пробоя диэлектрика , если напряжение достаточно высокое — во многом аналогично тому, что произошло бы при разрушении конструкции дамбы. беспрецедентным объемом в верхнем резервуаре.

      • Вот почему «ударяет» молния; ток «не должен» протекать в диэлектрическом материале, таком как воздух, но сильное напряжение молнии подавляет этот фактор.

      Самый популярный электрический путь … или искомый

      Электрический ток, как вода, спускающийся по пологому каменистому склону, всегда пытается выбрать путь наименьшего сопротивления. Если этому препятствует ряд различных изоляционных материалов, он захочет протекать через наименее изолирующий (то есть наиболее проводящий) материал. Если существует проводящий путь, он всегда будет выбирать этот путь среди всех остальных.

      Воздух — изолятор, а человеческое тело относительно проводящее.Поэтому, если вы стоите в поле во время грозы, вы подвергаетесь высокому риску поражения электрическим током. Громоотводы обеспечивают путь заземления, являясь легкой мишенью с низким сопротивлением для ударов молнии. Молния скорее протечет сквозь металл, чем через вас, так что вот оно.

      Путь от громоотвода в землю сам по себе имеет одну важную особенность всех устройств заземления: никаких объездов по пути! Электричество течет прямо в саму Землю, потому что у нее нет других вариантов.Вот почему «провода» заземления не обязательно должны быть одиночными; они могут быть металлическими каркасами, , если путь к Земле полностью автономен, , то есть это простая цепь.

      • Как уже говорилось, Земля также может служить «донором электронов» по ​​мере необходимости из-за ее способности рассеивать заряд — как положительный, так и отрицательный в огромном объеме — а не только как «акцептор электронов», как в корпус громоотвода.

      Почему важно заземление?

      Хотя громоотводы жизненно важны, они не используются каждый момент и каждый день, как бесчисленные электрические цепи в домах, офисах и производственных предприятиях по всему миру.

      В электрической цепи заземляющий провод создает дополнительный путь для тока в случае короткого замыкания или другой неисправности. Вместо того чтобы шокировать вас при прикосновении к компонентам схемы, ток будет протекать через более проводящий заземляющий провод. Заземление не только предохраняет вас от поражения электрическим током, но и защищает ваше оборудование от скачков тока, которые в противном случае могли бы «шокировать» его.

      Примечание. Высокое напряжение само по себе не вредит. Однако большая разница напряжений делает более желательным скачок заряда и при этом создает больший ток.Думайте об этом, как о том, чтобы стоять на краю высокой скалы. Проблема не в том, чтобы оказаться на высокой скале. Это то, что происходит после того, как вы сойдете с места в результате того, что камень под ногами больше не «изолирует» вас от влияния гравитации и позволяет воздуху легко «вести» вас (надеюсь, в защитную сетку!).

      Трехконтактная вилка

      В домашних условиях заземление лечит как «симптом», так и «болезнь» в случае непредвиденного накопления зарядов на поверхности приборов.Это не только позволяет несанкционированным зарядам получить немедленный «односторонний» выход, чтобы они могли рассредоточиться в другом месте, но также предотвращает проникновение дополнительных нежелательных зарядов, прерывая цепь «вверх по потоку».

      Типичная современная розетка имеет три отверстия: две расположенные рядом прорези и почти круглое отверстие внизу. Меньшая вертикальная щель предназначена для «горячего» провода (или буквально компонента вилки) для входящего тока; его более длинный партнер предназначен для нейтрального (выходного) провода. Круглая вилка — это заземляющий провод, подключенный прямо к выходу из цепи, поэтому опасные заряды, которые в противном случае текли бы по поверхности устройства, могут улететь на землю.Этот провод настроен таким образом, что выше заданного уровня тока вся цепь разрывается, и весь входящий ток прекращается.

      Примеры заземления

      Заземление обеспечивает безопасную стабилизацию напряжения в больших цепях и системах. Стабилизатор напряжения гарантирует, что входящее напряжение, которое может значительно колебаться вокруг желаемого значения внутри сложных и чувствительных схем, таких как компьютерный микропроцессор, нормализуется до строго ограниченного значения путем увеличения или уменьшения V по мере необходимости.

      Электроскоп — это проводник, который использует индукцию заряда, чтобы сигнализировать о наличии внешних зарядов. При этом используется принцип, согласно которому электроны отталкиваются друг от друга. Если источник электронов, такой как заряженный стеклянный стержень (пример статического электричества; электроны просто «сидят» там, потому что стекло является изолирующим), держать близко к стороне проводящего (но нейтрального!) Электроскопа, это «толкает» электрод электроны в шаре так далеко, как только могут. Он находится в центре устройства, где металлические «листы» раздвигаются, чтобы сигнализировать об электронах, собранных около стороны шара на поверхности кончика стержня.

      Когда это происходит, скопление электронов внутри должно каким-то образом уравновешиваться, поскольку сфера является проводящей. Как следствие, положительные заряды собираются, как и следовало ожидать, возле кончика стержня.

      • Применение заземляющего провода вокруг изолирующего основания электроскопа явно изменило бы эту картину. Как?

      Как узнать, правильно ли заземлен ваш дом

      Правильно ли заземлен ваш дом, чтобы обеспечить безопасность вашей семьи? Заземление — один из важнейших аспектов домашнего хозяйства. электрическая система.Вы можете не думать об этом постоянно, но хранит вашу технику, электронику и все остальное в Ваш дом, который требует электричества, безопасен.

      Вот все, о чем вы даже не подозревали. заземление.

      Что такое заземление?

      Вы могли вспомнить из уроков естествознания, что электричество путешествует путь наименьшего сопротивления. Например, если ваш тостер сломался, электричество потечет к металлу за пределами прибора. Потрогай это когда он подключен, вы испытаете серьезный шок или худший.Но если тостер подключен к заземленной розетке, электричество не будет выходить наружу, но будет следовать за третьим обратно в провода и в землю или землю.

      Почему заземление важно для вашего дома?

      Заземление защищает людей и чувствительную электронику от повреждения, которые могут возникнуть из-за электрических зарядов, которые накапливаются в проводка. Результат часто сокращается в прямом эфире для телефонов, компьютеров, и любой другой электроприбор с умным компоненты.

      Общие проблемы с заземлением

      Электросистема вашего дома представляет собой сложную сеть проводов, магазины, цепи и автоматические выключатели, все создано, чтобы укротить природу электричества. Когда что-то пойдет не так, может возникнуть неисправное заземление. в большую опасность. В более старых домах, как правило, возникают проблемы с заземлением. чаще, чем более новые. Старые системы электропроводки, установленные до 1965 г. часто заземляются через металлический кабелепровод или кабель, а не через медь заземляющие провода. У некоторых вообще нет заземления. Если есть несколько двухконтактных розеток в вашем доме, скорее всего, они не обоснованы и подлежат обновлению.

      Как узнать, заземлены ли ваши розетки

      Самый простой способ узнать это — посмотреть на разбросанные розетки. по всему дому, в том числе в гараже, подвале и на чердаке. У них есть две дырочки или три? Те, у кого три, скорее всего заземлен. При наличии проблемы с заземлением люди могут испытывают легкое потрясение при прикосновении к металлическому предмету в дом.

      Риски неправильного заземления

      Жить в ненадлежащем доме может быть опасно. заземлен или вообще не заземлен.Наибольший риск исходит от огня и поражение электрическим током, которое может привести к серьезным травмам или смерти, особенно в таких местах, как кухня и ванная, где вода настоящее время. Всегда разумно иметь Ваша электрическая система регулярно проверяется квалифицированным, местный электрик, особенно если вы живете в более старом доме, или думаете, что у вас незаземленная или плохо заземленная система.

      Когда звонить профессионалу

      Не рискуйте излишним риском с электрической системой вашего дома.Независимо от того, сколько лет вашему дому в районе Джексонвилля, подумайте о том, чтобы оценка электробезопасности, проводимая для выявления потенциальных или существующие проблемы, которые могут привести к небезопасным ситуациям. Это важный шаг, который вы можете сделать сегодня, чтобы обезопасить себя и свою семью на долгие годы.

      Когда вы в последний раз проверяли дом на предмет наличия электричества? вопросы? Чтобы узнать больше о правильном домашнем заземлении или запланировать осмотр всего дома, свяжитесь с Дэвидом Греем Электрические службы онлайн или позвоните нам по телефону (904) 724-7211.

      Что такое заземление?

      Что такое заземление в электрическом смысле? Любой, кто хоть немного разбирается в электронике, скажет вам, что заземление — это то, что вам нужно для защиты вашей схемы, и оно предохраняет электрические части вашей схемы от взрыва. Но что именно?
      Символ заземления мы видим постоянно, но что он на самом деле означает?
      Заземление — это соединение между электрической цепью и произвольной контрольной точкой.
      Заземление — это метод защиты вашей электрической системы и людей, использующих ее, от вреда путем установки известной «контрольной» точки для напряжения.Когда вы слышите, как кто-то упоминает землю, вы должны попросить их уточнить: это опорное напряжение или сама земля? Или и то, и другое? Чтобы объяснить заземление, нам нужно немного узнать о напряжении и токе. Прежде чем продолжить, прочтите нашу статью «Что такое электричество?» У него есть набор базовых знаний, которые, как я предполагаю, вы знаете, когда я говорю о заземлении.

      Самый ранний пример заземления, о котором я могу вспомнить, — это когда Бенджамин Франклин изобрел громоотвод.
      Громоотвод в действии
      Громоотвод — это металлический стержень, прикрепленный к верхней части дома и соединенный проволокой с другим стержнем, воткнутым в землю. Когда ударит молния, она будет искать стержень (поскольку стержень имеет меньшее сопротивление, чем остальная часть дома), и электричество потечет в землю. Это предотвращало сгорание домов при ударе молнии, что в целом можно считать хорошим делом.
      Если молниеотвод можно рассматривать как первый реальный пример заземления, то мы можем рассматривать заземление как часть общей системы электрической защиты вашей цепи.Таким образом, чтобы обеспечить безопасность, вам нужно найти способ создать путь для движения электричества, который будет иметь меньшее сопротивление, чем ваше тело, хрупкие компоненты цепи и строительные материалы.
      В случае, если что-то пойдет не так в вашей цепи по какой-либо причине, вам необходимо направить электрический ток по пути с очень низким сопротивлением. Мы уже говорили о том, как определить, что такое сопротивление, но какой провод будет иметь достаточно низкое сопротивление, чтобы пропустить весь ток?

      Подумайте об этом: используйте планету Земля как проводник.Мало того, что электричество не очень далеко, чтобы попасть в землю, у него также есть HUUUUUUUUGE площадь поперечного сечения, что означает, что оно имеет очень и очень маленькое сопротивление. Электроны всегда стремятся попасть в место наименьшего сопротивления, а это делает их любимым местом залезть в землю.
      Громоотвод использовал эту концепцию с большим успехом, и современные энергетические компании делают то же самое. Это также удваивается как полезный способ завершить вашу схему: используя саму землю в качестве заземляющего провода, вы можете быть уверены, что каждая точка в вашей цепи (которая в данном случае является всей энергосистемой) подключена к одной и той же контрольной точке. .Это означает, что, когда мы сейчас говорим о напряжении (например, провода 120 В в вашем доме), мы знаем, что мы говорим об этом со ссылкой на напряжение самой земли. Между проводами в вашем доме и землей, на которой вы стоите, 120 В, между воздушными линиями электропередач и землей 1000 кВ и т. Д. Это также означает, что ток в вашей цепи теперь имеет четкий и легкий возврат. путь к своему источнику: ток может просто течь в землю рядом, например, с вашим домом, и возвращаться через землю к генераторам на электростанции.

      В этом вы можете увидеть новую проблему: если электроны хотят попасть в землю, как мы можем безопасно доставить их туда? Если вы стоите на земле и касаетесь провода, через который проходит электрический ток, не будет ли ток просто проходить через вас и в землю, вместо того, чтобы проходить через провод?
      Ток течет сразу по всем доступным путям. Это означает, что даже если путь заземляющего провода является наименее резистивным путем для прохождения тока, вы все равно можете навредить себе, добавив себя в цепь при прикосновении к ней (прокладывая путь от проводов через вас к земле).Изначально я сказал, что заземление должно обеспечивать безопасность вашей цепи, и я не лгал вам. Причина, по которой заземление обеспечивает безопасность цепи, заключается в том, что заземление составляет часть системы защиты вашей цепи.
      Большинство цепей спроектированы таким образом, что при замыкании на землю в цепи большая часть тока будет проходить через это замыкание в провод заземления и в землю. Поскольку мы знаем, где будет течь ток, мы можем установить защитные устройства вдоль пути заземления таким образом, чтобы при возникновении неисправности защитные устройства (например, предохранитель или прерыватель) срабатывали очень резко.Когда это происходит, весь путь цепи прерывается, и ток не может течь. Если ток не может течь, у нас нет разницы напряжений, а если у нас нет разницы напряжений, у нас нет реальной опасности. Это наиболее распространенный способ защиты цепей с помощью заземления: оно заставляет защитные устройства отключать цепь как можно скорее.
      Предохранитель — это защитное устройство, которое разрушается, когда через него проходит слишком большой ток, и отключает питание путем размыкания цепи
      Для того, чтобы заземление работало в тандеме с вашей системой защиты, вам необходимо знать, какой ожидаемый ток протекать через заземляющие провода в случае неисправности.Вы можете определить ожидаемую величину тока, выполнив исследование защиты и координации. Это позволит вам выбрать предохранители или прерыватели соответствующего размера.

      Таким образом, мы можем рассматривать заземление как метод защиты цепи, который одновременно является простым способом измерения напряжений. Электрическое заземление может быть:

      • Общая точка отсчета в вашей цепи, которая используется для измерения всех напряжений
      • Сама земля, когда общая точка отсчета застряла в земле, по которой вы идете по
      • Метод, используемый для направления тока короткого замыкания по пути с низким сопротивлением к защитным устройствам, которые немедленно отключат вашу цепь
      • Все вышеперечисленное

      Надеюсь, вам понравилась эта статья, и теперь вы знаете немного больше о заземлении.
      Чтобы получить дополнительную информацию, но иметь возможность ответить, ознакомьтесь с нашим информационным бюллетенем. Еженедельная проверка с отличной информацией, чтобы вы могли узнать больше об энергосистемах, электробезопасности и мнении о последних новостях.

      Связанные

      Проблема заземления символа — Scholarpedia

      Проблема заземления символа связана с проблемой того, как слова (символы) получают свое значение, и, следовательно, с проблемой того, что такое значение на самом деле.Проблема значения, в свою очередь, связана с проблемой сознания или с тем, насколько значимы ментальные состояния. Согласно широко распространенной теории познания, «вычислительной технике», познание (то есть мышление) — это просто форма вычислений. Но вычисления, в свою очередь, представляют собой всего лишь формальное манипулирование символами: символы обрабатываются в соответствии с правилами, основанными на формах символов, а не на их значениях. Как эти символы (например, слова в нашей голове) связаны с вещами, к которым они относятся? Это не может происходить через голову внешнего интерпретатора, потому что это привело бы к бесконечному регрессу, так же как поиск значений слов в (одноязычном) словаре языка, который я не понимаю, приведет к бесконечному регрессу. .Символы в автономной гибридной символьной + сенсомоторной системе — роботе в масштабе Тьюринга, состоящем как из системы символов, так и из сенсомоторной системы, которая надежно связывает свои внутренние символы с внешними объектами, к которым они относятся, поэтому он может взаимодействовать с ними неразличимо по Тьюрингу. от того, как это делает человек — было бы заземлено. Но будут ли его символы иметь значение, а не просто основание, — это то, что даже роботизированный тест Тьюринга, а следовательно, и сама когнитивная наука, не может определить или объяснить.

      слов и значений

      Мы знаем со времен Фреге, что вещь, к которой относится слово (т.е. его референт), не совпадает с его значением (или «смыслом»). Это наиболее ярко иллюстрируется использованием собственных имен конкретных людей, но это также верно и для названий видов вещей и абстрактных свойств: (1) «Тони Блэр», (2) «бывший премьер-министр Великобритании» и ( 3) «Муж Чери Блэр» имеет один и тот же референт, но не одно и то же значение.

      Некоторые предположили, что значение (ссылающегося) слова — это правило или особенности, которые нужно использовать, чтобы успешно выбрать его референт.В этом отношении (2) и (3) приближаются к тому, чтобы носить свои значения на рукавах, потому что они явно устанавливают правило для выбора своих референтов: «Найдите того, кто является бывшим премьер-министром Великобритании или нынешним мужем Чери». . Но это не решает вопрос, потому что все еще остается проблема значения компонентов этого правила («Великобритания», «бывший», «нынешний», «премьер-министр», «Чери», «муж») и как выбрать из них .

      Возможно, «Тони Блэр» (или, еще лучше, просто «Тони») не имеет этой проблемы с рекурсивным компонентом, потому что он указывает прямо на свой референт, но как? Если значение — это правило выбора референта, то что это за правило, когда мы переходим к неразложимым компонентам, таким как собственные имена людей (или имена видов. , как в слове «неженатый мужчина» — это «холостяк»). «)?

      Вероятно, неразумно ожидать, что мы узнаем правило выбора предполагаемых референтов наших слов, — по крайней мере, знать его явно.Нашему мозгу действительно нужно обладать «ноу-хау», чтобы выполнить правило , каким бы оно ни было: им нужно уметь на самом деле выбирать предполагаемые референты наших слов, такие как «Тони Блэр» или «холостяк». . » Но нам, , не нужно сознательно знать , как наш мозг это делает; нам не нужно знать правила. Мы можем предоставить когнитивной науке и нейробиологии выяснить, как наш мозг это делает, а затем подробно объяснить нам правило.

      Средства выбора референтов

      Итак, если мы принимаем значение слова как средство выделения его референта, тогда значения находятся в нашем мозгу.Это означает в узком смысле . Если мы используем «значение» в более широком смысле , тогда мы можем сказать, что значения включают как сами референты, так и средства их выделения. Итак, если слово (скажем, «Тони-Блэр») находится внутри сущности (например, меня), которая может использовать это слово и выбирать его референт, то широкое значение слова состоит из обоих средств, которые эта сущность использует для выбора из референта и самого референта: широкая причинно-следственная связь между (1) головой, (2) словом внутри нее, (3) объектом за ее пределами и (4) любой «обработкой», необходимой для успешного соедините внутреннее слово с внешним объектом.

      Но что, если «сущность», в которой находится слово, — это не голова, а лист бумаги (или экран)? В чем тогда его смысл? Конечно, все (ссылающиеся) слова на этой странице, например, имеют значения, так же как и у них есть ссылки.

      Сознание

      Вот где поднимается проблема сознания. Ибо не было бы никакой связи между царапинами на бумаге и любыми предполагаемыми референтами, если бы не было разумов, опосредующих эти намерения через свои собственные внутренние средства выбора этих предполагаемых референтов.

      Значит, значение слова на странице «необоснованно». Поиск в словаре также не помог бы: если бы я попытался найти значение слова, которое я не понимаю, в (одноязычном) словаре языка, которого я еще не понимал, я бы просто бесконечно циклически переходил от одного бессмысленного определения к Другая. Мои поиски смысла были бы необоснованными. Напротив, значения слов в моей голове — те, которые я до понимаю — «обоснованы» (посредством средства, которое когнитивная нейробиология в конечном итоге откроет нам).И это обоснование значений слов в моей голове является посредником между словами на любой внешней странице, которую я читаю (и понимаю), и внешними объектами, к которым эти слова относятся.

      Расчет

      Как насчет значения слова в компьютере? Это похоже на слово на странице или на слово в моей голове? Вот где возникает проблема заземления символов. Является ли динамический процесс, происходящий в компьютере, больше похожим на статическую бумажную страницу или больше на другую динамическую систему, мозг?

      Существует школа мысли, согласно которой компьютер больше похож на мозг — или, скорее, мозг больше похож на компьютер: согласно этой точке зрения (называемой «вычислительной техникой», разновидностью функционализма), теория будущего объяснение того, как мозг выбирает своих референтов (теория, к которой в конечном итоге придет когнитивная нейробиология), будет чисто вычислительным (Пилишин, 1984).Вычислительная теория — это теория на уровне программного обеспечения. По сути, это компьютерная программа: набор правил манипулирования символами. А программное обеспечение «не зависит от реализации». Это означает, что что бы ни делала программа, она будет делать то же самое, независимо от того, на каком оборудовании она выполняется. Физические детали динамической системы, реализующей вычисление, не имеют отношения к самому вычислению, которое является чисто формальным; подойдет любое оборудование, которое может выполнять вычисления, и все физические реализации этой конкретной компьютерной программы эквивалентны в вычислительном отношении.

      Тест Тьюринга

      Компьютер может выполнять любые вычисления. Следовательно, как только вычислительная система найдет правильную компьютерную программу, ту же самую, что работает в нашем мозгу, когда в наших головах возникает смысл, это означает, что это также будет происходить в этом компьютере, когда он выполняет эту программу.

      Как мы узнаем, что у нас есть правильная компьютерная программа? Он должен будет пройти тест Тьюринга (ТТ) (Turing 1950). Это означает, что он должен будет уметь переписываться с любым человеком по переписке на всю жизнь, при этом никоим образом не отличаясь от настоящего человеческого друга по переписке.

      Именно для того, чтобы показать, что вычислительный подход неверен, Сёрл (1980) сформулировал свой знаменитый «аргумент о китайской комнате», в котором он указал, что если тест Тьюринга проводился на китайском языке, то он сам, Сирл (который не понимает Китайский), мог выполнять ту же программу, что и компьютер, не зная, что означают слова, которыми он манипулировал. Так что, если в голове Сирла, когда он реализует программу, не происходит никакого смысла, тогда нет смысла происходить и внутри компьютера, когда он реализует программу, поскольку вычисления не зависят от реализации.

      Откуда Сирл знает, что в его голове нет смысла, когда он выполняет программу передачи TT? Точно так же он узнает, есть ли смысл в его голове при любых других условиях: он понимает слова английского языка, тогда как китайские символы, которыми он манипулирует в соответствии с правилами программы, для него ничего не значат. (и в его голове нет никого, для кого они значили бы что-нибудь). Символы, которые поступают, управляются и затем отправляются любой реализацией компьютерной программы, передающей TT, будь то Сирл или компьютер, похожи на необоснованные слова на странице, а не на обоснованные слова в голове.

      Обратите внимание: указав на то, что китайские слова были бы для него бессмысленными в этих условиях, Сирл обратился к сознанию. В противном случае можно было бы утверждать, что означало бы, что происходит в голове Сирла в этих условиях, но что сам Сирл просто не осознавал бы этого. Это называется «системным ответом» на аргумент Сирла о китайской комнате, и Сирл справедливо отвергает системный ответ как просто повторение перед лицом отрицательных доказательств того самого тезиса (вычислительного подхода), который подвергается испытанию в его мысленном эксперименте. : «Являются ли слова в текущих вычислениях такими же, как необоснованные слова на странице, бессмысленными без посредничества мозга, или они подобны заземленным словам в мозгу?»

      В этом вопросе «или / или» (все еще не определено) слово «необоснованный» неявно опирается на разницу между инертными словами на странице и сознательно значимыми словами в нашей голове.И Сирл напоминает нам, что в этих условиях (китайский TT) слова в его голове не будут иметь сознательного значения, следовательно, они все равно будут такими же необоснованными, как инертные слова на странице.

      Итак, если Сирл прав, то (1) как слова на странице, так и слова в любой работающей компьютерной программе (включая компьютерную программу, передающую TT) сами по себе бессмысленны, и, следовательно, (2) что бы это ни было что мозг делает для генерации смысла, это не может быть просто вычисление, не зависящее от реализации, тогда что такое , что мозг делает для генерации смысла (Harnad 2001a)?

      Формальные символы

      Чтобы ответить на этот вопрос, мы должны сформулировать саму проблему заземления символа (Harnad 1990):

      Сначала мы должны определить «символ»: символ — это любой объект, который является частью системы символов . (Понятие единственного символа в отдельности бесполезно.) Символы могут быть произвольными по своей форме. Система символов — это набор символов и синтаксических правил для управления ими на основе их форм (а не их значений). Символы систематически интерпретируются как имеющие значение и референты, но их форма произвольна по отношению к их значениям и форме их референтов.

      Цифра — такой же хороший пример, как и любой другой: Цифры (например, «1», «2», «3,») являются частью системы символов (арифметики), состоящей из основанных на форме правил для объединения символов в струны.«2» означает то, что мы подразумеваем под «двумя», но его форма никоим образом не похожа на «двойственность» и не связана с ней. Тем не менее, систему символов можно систематически интерпретировать как верные утверждения о числах (например, «1 + 1 = 2»).

      Крайне важно понимать то свойство, что правила манипулирования символами основаны на форме, а не на значении (символы рассматриваются как примитивные и неопределенные, насколько это касается правил), но все символы и их правильные комбинации имеют смысл интерпретируемый.В случае формальной арифметики должно быть очевидно, что, хотя символы имеют смысл, этот смысл находится в наших головах, а не в системе символов. Цифры в настольном калькуляторе так же бессмысленны, как и цифры на странице ручных вычислений. Только в нашем сознании они обретают смысл (Harnad 1994).

      Это не умаляет свойства систематической интерпретируемости: мы выбираем и разрабатываем формальные символьные системы (алгоритмы) именно потому, что мы хотим знать и использовать их систематические свойства; систематическое соответствие между царапинами на бумаге и величинами во Вселенной — замечательное и чрезвычайно мощное свойство.Но это не то же самое, что значение, которое является свойством определенных вещей, происходящих в наших головах.

      Естественный язык и язык мысли

      Другая система символов — естественный язык (Fodor 1975). На бумаге или в компьютере язык также представляет собой формальную систему символов, которой можно манипулировать с помощью правил, основанных на произвольных формах слов. Но в мозгу бессмысленные завитки превращаются в осмысленные мысли. Я не буду в состоянии сказать, что нужно было добавить в мозг, чтобы символы стали значимыми, но я предложу одно свойство и укажу на второе.

      Одно свойство, которым символы на статической бумаге или даже в динамическом компьютере не обладают, чем символы в мозгу, — это способность выбирать их референты. Это то, что мы обсуждали ранее, и это то, что относится к до сих пор не определенному термину «заземление». Сама по себе символьная система, статическая или динамическая, не может обладать этой способностью (как и книга), потому что выбор референтов — это не просто вычислительное (не зависящее от реализации) свойство; это динамическое (зависящее от реализации) свойство.

      Чтобы быть обоснованным, система символов должна быть дополнена несимволическими сенсомоторными способностями — способностью автономно взаимодействовать с этим миром объектов, событий, действий, свойств и утверждать, что его символы систематически интерпретируются (нами) как ссылаясь на. Он должен быть в состоянии выбрать референты своих символов, а его сенсомоторные взаимодействия с миром должны согласованно согласовываться с интерпретациями символов.

      Другими словами, символы должны быть напрямую связаны с (т.д., обоснованные) их референтами; связь не должна зависеть только от связей, созданных мозгами внешних интерпретаторов, таких как мы. Сама по себе система символов без этой способности к прямому обоснованию не является жизнеспособным кандидатом на то, чтобы быть тем, что действительно происходит в нашем мозгу, когда мы думаем осмысленно (Cangelosi & Harnad 2001).

      Робототехника и категоризация

      Другими словами, необходимость заземления ведет нас от уровня теста Тьюринга по переписке, который является чисто символическим (вычислительным), к роботизированному тесту Тьюринга, который является гибридным символическим / сенсомоторным (Harnad 2000, 2007).Смысл основан на способности роботов обнаруживать, классифицировать, идентифицировать и действовать в соответствии с вещами, к которым относятся слова и предложения (см. Раздел «Категориальное восприятие»).

      Классифицировать — значит делать правильные вещи с правильными видами вещей. Классификатор должен уметь обнаруживать сенсомоторные особенности членов группы. категории, которые надежно отличают их от нечленов. Эти детекторы признаков должны быть врожденными или усвоенными. Обучение может быть основано на индукции проб и ошибок, руководствуясь обратной связью с последствиями правильной и неправильной категоризации; или, у наших лингвистических видов, обучение может также основываться на словесных описаниях или определениях.Однако описание или определение новой категории может передавать категорию и обосновывать ее название только в том случае, если слова в определении сами по себе уже являются обоснованными названиями категорий. Так что в конечном итоге заземление должно быть сенсомоторным, чтобы избежать бесконечного регресса (Harnad 2005).

      Но если заземленность — необходимое условие для смысла, достаточно ли она? Не обязательно, поскольку возможно, что даже робот, который мог бы пройти тест Тьюринга, «живущий» среди всех нас неотличимо всю жизнь, не смог бы иметь в своей голове то, что есть у Сирла: это может быть зомби, без дома, чувствуя чувства, имея смысл смысла (Harnad 1995).

      И это второе свойство, сознание, на которое я хочу просто указать, а не на то, каков мог бы быть его основной механизм и причинная роль. Проблема обнаружения причинного механизма для успешного выбора референта названия категории в принципе может быть решена когнитивной наукой. Но проблема объяснения того, как сознание может играть независимую роль в этом, вероятно, неразрешима, кроме как под угрозой телекинетического дуализма. Возможно заземление символа (т.е., способность роботизированного ТТ) достаточно, чтобы убедиться, что сознательный смысл тоже присутствует, возможно, нет. Но в любом случае мы никак не можем надеяться стать мудрее — и в этом заключается методологическая точка зрения Тьюринга (Harnad 2001b, 2003, 2006).

      Примечание: [эта запись была опубликована в энциклопедии когнитивной науки Nature / Macmillan; он был переработан и обновлен для Scholarpedia]

      Список литературы

      Cangelosi, A. & Harnad, S. (2001) Адаптивное преимущество символической кражи над сенсомоторным трудом: обоснование языка в категориях восприятия. Эволюция коммуникации 4 (1) 117-142.

      Cangelosi, A .; Греко, А .; Харнад, С. От роботов до символического воровства: переход от начального уровня к более высокоуровневым категориям. Connection Science 12 (2) 143-62.

      Фодор, Дж. А. (1975) Язык мысли . Нью-Йорк: Томас И. Кроуэлл

      Фреге, Г. (1952/1892). По смыслу и ссылке. В П. Гич и М. Блэк, ред., Переводы философских сочинений Готтлоба Фреге .Оксфорд: Блэквелл

      Харнад С. (1990) Проблема заземления символа. Physica D 42: 335-346.

      Харнад, С. (1994) Вычисления — это просто интерпретируемые манипуляции с символами: познание — нет. Minds and Machines 4: 379-390 (специальный выпуск «Что такое вычисления»)

      Харнад С. (1995) Почему и как мы не зомби. Журнал исследований сознания 1: 164-167.

      Харнад, С. (2000) Умы, машины и Тьюринг: неразличимость неразличимых.J журнал логики, языка и информации 9 (4): 425-445. (Специальный выпуск «Алан Тьюринг и искусственный интеллект»)

      Harnad, S. (2001a) Minds, Machines and Searle II: Что не так и правильно в аргументе Сирла о китайской комнате? В: М. Бишоп и Дж. Престон (ред.) Очерки аргумента Сирла о китайской комнате . Издательство Оксфордского университета.

      Харнад, С. (2001b) Нет простого выхода. Наук 41 (2) 36-42.

      Харнад С. (2003) Может ли машина быть сознательной? Как?. Журнал исследований сознания 10 (4-5): 69-75.

      Harnad, S. (2005) Познать — значит распределить по категориям: Познание — это категоризация. в Lefebvre, C. и Cohen, H., Eds. Справочник по категоризации . Эльзевир.

      Харнад, С. (2007) Игра с аннотациями: О Тьюринге (1950) о вычислениях, машинах и интеллекте. В: Эпштейн, Роберт и Петерс, Грейс (ред.) Справочник по тесту Тьюринга: философские и методологические вопросы в поисках мыслящего компьютера .Kluwer

      Харнад, С. (2006) Сожительство: вычисление при 70 познании в 20 лет. In Dedrick, D., Eds. Очерки в честь Зенона Пилишина .

      Пилишин, З. В. (1984) Вычисление и познание . Кембридж, Массачусетс: Массачусетский технологический институт / Брэдфорд

      Сирл, Джон. Р. (1980) Умы, мозги и программы. Поведенческие науки и науки о мозге 3 (3): 417-457

      Тьюринг, А. (1950) Вычислительная техника и интеллект. Mind 49 433-460 [Перепечатано в Mind and machines .А. Андерсон (редактор), Engelwood Cliffs NJ: Prentice Hall, 1964.]

      Внутренние ссылки

      • Валентино Брайтенберг (2007) Мозг. Академия наук, 2 (11): 2918.
      • Джеймс Мейсс (2007) Динамические системы. Scholarpedia, 2 (2): 1629.
      • Уолтер Дж. Фриман (2007) Намерение. Академия наук, 2 (2): 1337.
      • Марк Аронофф (2007) Язык. Академия наук, 2 (5): 3175.

      Приложение 1

      Брентано и проблема «интенциональности». Всякий раз, когда есть реальная проблема, но нет решения, есть тенденция затушевывать ее избытком терминологии: синонимы маскируются под важные различия, варианты помечаются, как если бы они были частичными победами.

      Проблема «разум / тело» — это такая проблема. Это концептуальная трудность, с которой мы сталкиваемся при отождествлении и объяснении «ментальных» состояний с «физическими» состояниями. (Здесь уже есть первый намек на умножение терминологии на «разум / тело» и «ментальное / физическое».) «Ментальные» состояния также принимают вид: «сознание», «осознание», «субъективность», qualia, «интенциональность», «состояния от первого лица» и многие другие синонимы и параонимы.

      «Интенциональность» была названа «признаком ментальности» из-за некоторых наблюдений философа Брентано о том, что ментальные состояния всегда имеют врожденный, предполагаемый (ментальный) объект или содержание, на которое они «направлены»: I что-то видеть, чего-то хотеть, во что-то верить, чего-то желать, что-то понимать, что-то значить и т. д .; и что-то всегда что-то я имею в виду . Наличие ментального объекта — это часть того, что нужно иметь в виду. Следовательно, это признак ментального.Не существует «свободно плавающих» ментальных состояний, у которых также нет ментального объекта. Даже у галлюцинаций и воображений есть объект, и даже чувство депрессии похоже на что-то. Также объект не является «внешним» физическим объектом, когда он есть. Я могу видеть настоящий стул, но «интенциональный» объект моего «интенционального состояния» — это ментальный стул, который я имею в виду. (Еще одним термином для интенциональности был «предметность» или «репрезентация»: мысли всегда о чем-то; они (ментальные) «репрезентации» чего-то; но это что-то есть то, что мыслитель имеет в виду. , а не какой-либо внешний объект, который может ему соответствовать, а может и не соответствовать.)

      Если все это звучит как бег по поверхности проблемы, а не реальный прорыв, то предыдущее описание имело ожидаемый эффект: нет, проблема преднамеренности — это не проблема заземления символа; и заземляющие символы не являются решением проблемы интенциональности. Символы внутри автономной динамической символьной системы, которая может пройти роботизированный тест Тьюринга, обоснованы тем, что, в отличие от случая незаземленной символьной системы, они не зависят от посредничества разума внешнего интерпретатора, чтобы связать их. к внешним объектам, что они интерпретируются (интерпретатором) как «около»; связь является автономной, прямой и неопосредованной.Но заземление не означает . Заземление — это функция производительности ввода / вывода. Заземление связывает сенсорные входы от внешних объектов с внутренними символами и состояниями, происходящими в автономной сенсомоторной системе, управляя результирующей обработкой и выводом системы.

      Смысл, напротив, есть нечто ментальное. Но чтобы попытаться положить конец игре в имена, в которой увеличиваются необъяснимые синонимы для проблемы разума / тела, не решая ее (или, что еще хуже, подразумевая, что существует более одной проблемы разума / тела), позвольте нам процитировать еще одну вещь. что не требует дальнейших объяснений: чувство .Единственное, что отличает внутреннее состояние, которое просто имеет заземление, от того, которое имеет значение, — это то, что оно ощущается как что-то , находящееся в значимом состоянии, тогда как оно не похоже на что-либо, находящееся в просто заземленном функциональном состоянии. Заземление — дело функциональное; чувство — дело войлочное. И это реальный источник раздражающих взглядов Брентано между «интенциональностью» и ее внутренним «интенциональным объектом»: все ментальные состояния, помимо того, что являются функциональными состояниями автономной динамической системы, также являются состояниями чувств: чувства — это не просто » функционирует, как и все другие физические состояния; чувства тоже ощущаются.

      Следовательно, чувство — настоящий признак ментального. Но проблема заземления символа — это не то же самое, что проблема разума / тела, не говоря уже о ее решении. Проблема разума / тела на самом деле является проблемой чувства / функции: заземление символа касается только его функционального компонента.

      Дополнительные ссылки

      Харнад, С. (1992) Есть только одна проблема разума / тела. Симпозиум по восприятию интенциональности, XXV Всемирный психологический конгресс, Брюссель, Бельгия, июль 1992 г. International Journal of Psychology 27: 521

      Харнад, Стеван (2001a) Объясняя разум: проблемы, проблемы. Науки 41: 36-42.

      Харнад, Стеван (2001b) Проблема разума / тела — это проблема чувств / функций: Харнад о Деннете на Чалмерсе. Технический отчет. Кафедра электроники и компьютерных наук. Саутгемптонский университет.

      См. Также

      Категориальное восприятие, Аргумент китайской комнаты, Сознание

      Заземление — Энергетическое образование

      Рис. 1. Концептуальная иллюстрация заземления, действующего как обратный путь. [1]

      Электрическое заземление , также известное как заземление, в первую очередь обеспечивает защиту от поражения электрическим током, действуя как линия безопасности для перенаправления электрического тока в случае короткого замыкания.Для бытовых приборов это достигается с помощью трехконтактной электрической розетки со специальным заземляющим контактом. [2]

      Заземление также является способом обеспечения пути возврата тока в некоторых системах электропередачи. Поскольку земля является электрически нейтральным телом, говорят, что земля или земля имеет нулевой электрический потенциал, а все другие напряжения определяются относительно этого потенциала земли. Это позволяет заземлению функционировать как протяженная нейтральная линия, замыкая электрическую цепь передачи, действуя как источник электронов для электрического генератора и как конечная точка для электронов после электрической нагрузки.Это означает, что вместо провода, который обеспечивает обратный путь тока от нагрузки обратно к источнику напряжения, как это видно в большинстве простых схем, земля действует как обратный путь. [3]

      Однако такое использование заземления используется только в системе передачи с однопроводным заземлением, которая в основном используется в некоторых сельских районах таких стран, как Канада и Австралия. [4] В большинстве современных систем передачи используется трехфазная электроэнергия, в которой заземление не используется в качестве обратного пути.

      Основная проблема с использованием земли в качестве электрического проводника заключается в том, что она имеет высокое электрическое сопротивление, что делает ее очень неэффективным средством передачи энергии. Однако эта проблема частично решается путем вставки заземляющих стержней (расположенных у генератора и после нагрузки) достаточно глубоко в землю. Поскольку сопротивление проводника обратно пропорционально его площади поперечного сечения, увеличение глубины стержней снижает общее сопротивление за счет увеличения площади, через которую проходит ток между стержнями.Для получения дополнительной информации о факторах, определяющих сопротивление, см. Сопротивление.

      в жилых системах

      Непрерывный путь заземления с низким сопротивлением в электрических системах жилых помещений обеспечивает стабильные уровни напряжения в проводке и делает устройства защиты от перегрузки (автоматические выключатели, предохранители) максимально эффективными. В типичной цепи заземления нейтральная линия подключается к нейтральной шине (на сервисной панели), которая подключается к зажиму заземления на водопроводных или газовых трубах.Эти трубы уходят под землю и обеспечивают прямое заземление. В качестве альтернативы, нейтральный стержень можно подключить к подземному заземляющему стержню, расположенному за пределами дома, чтобы установить прямое заземление. На линии заземления не должно быть разрывов, поэтому необходимо выполнить параллельное соединение с чем-либо, что может нарушить заземление, например счетчиком воды. [5]

      В присутствии воды электрическая розетка может быть опасной, поскольку вода часто обеспечивает прямое заземление для тока, проходящего через розетку, что создает серьезную опасность поражения электрическим током.Прерыватели цепи замыкания на землю используются в качестве меры безопасности для защиты от такой возможности.

      Список литературы

      1. ↑ EECS, Калифорнийский университет в Беркли. (30 июля 2015 г.). Lab Logistics [Online], доступно: http://www-inst.eecs.berkeley.edu/~ee100/su04/lab/lab1/new_intro_lab_guide_report.pdf
      2. ↑ Гиперфизика. (30 июля 2015 г.). Прерыватели и провода заземления [Онлайн]. Доступно: http://hyperphysics.phy-astr.gsu.edu/hbase/electric/bregnd.html
      3. ↑ Г.Хунка. (30 июля 2015 г.). Заземление цепей и способы заземления [Online]. Доступно: http://www.ese.upenn.edu/detkin/instruments/misctutorials/Ground/grd.html
      4. ↑ П. Армстронг. (30 июля 2015 г.). Однопроводное заземление (SWER) [Online]. Доступно: http://www.stonepower.se/Images/SWER.pdf
      5. ↑ R.T. Пэйнтер, «Основные электрические компоненты и счетчики», в Введение в электричество , 1-е изд. Нью-Джерси: Прентис-Холл, 2011, гл. 8, сек. 8.1, стр.331-340.

      Электрооборудование — Заземление | Управление охраны труда

      Заземление

      Термин «земля» относится к проводящему телу, обычно к земле. «Заземление» инструмента или электрической системы означает намеренное создание пути к земле с низким сопротивлением. При правильном выполнении ток от короткого замыкания или молнии следует по этому пути, предотвращая накопление напряжения, которое в противном случае могло бы привести к поражению электрическим током, травмам и даже смерти.

      Есть два типа оснований; оба требуются строительным стандартом OSHA:

      • Системное или служебное заземление: В этом типе заземления провод, называемый «нейтральный проводник», заземляется на трансформаторе и снова на служебном входе в здание. Это в первую очередь предназначено для защиты машин, инструментов и изоляции от повреждений.
      • Заземление оборудования: оно предназначено для повышения защиты самих рабочих. Если из-за неисправности металлический каркас инструмента оказывается под напряжением, заземление оборудования обеспечивает другой путь для прохождения тока через инструмент к земле.

      У заземления есть один недостаток: обрыв системы заземления может произойти без ведома пользователя. Использование прерывателя цепи замыкания на землю (GFCI) является одним из способов устранения недостатков заземления.

      Сводка требований к заземлению
      • Заземлите все электрические системы. [ для исключений см. 29 CFR 1926.404 (f) (1) (v)]
      • Путь к земле от цепей, оборудования и корпусов должен быть постоянным и непрерывным.
      • Заземлите все опоры и корпуса для проводов. [ для исключений см. 29 CFR 1926.404 (f) (7) (i)]
      • Заземлите все металлические корпуса для сервисного оборудования.
      • Заземлите все открытые нетоковедущие металлические части стационарного оборудования. [ для исключений см. 29 CFR 1926.404 (f) (7) (iii)]
      • Незаземленные нетоковедущие металлические части инструментов и оборудования, соединенные шнуром и вилкой. [ для исключений см. 29 CFR 1926.404 (f) (7) (iv)]
      • Заземлите металлические части следующего неэлектрического оборудования:
        • Рамы и гусеницы кранов с электроприводом.
        • Каркасы лифтов без электрического привода, к которым прикреплены электрические провода.
        • Тросы или тросы электрические подъемные электрические ручные.
        • Металлические перегородки, решетки и аналогичные металлические ограждения вокруг оборудования напряжением более 1 кВ между проводниками.
      Способы заземления оборудования
      • Заземлите все стационарное оборудование с помощью заземляющего проводника оборудования, который находится в том же кабельном канале, кабеле или шнуре, или который проходит вместе с проводниками цепи или закрывает их (за исключением только цепей постоянного тока).
      • Проводники, используемые для заземления стационарного или передвижного оборудования, включая заземляющие проводники для обеспечения непрерывности электрической цепи, должны быть способны безопасно пропускать любой ток короткого замыкания, который может быть на них наложен.
      • Электроды не должны иметь непроводящих покрытий, таких как краска или эмаль, и, если это практически возможно, должны быть заделаны ниже постоянного уровня влажности.
      • Одиночные электроды, сопротивление которых относительно земли превышает 25 Ом, должны быть усилены одним дополнительным электродом, установленным не ближе 6 футов от первого электрода.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *