Диод схема. Выпрямительные диоды: параметры, схемы и применение в электронике

Что такое выпрямительный диод. Как работает выпрямительный диод. Какие основные параметры у выпрямительных диодов. Где применяются выпрямительные диоды. Какие бывают схемы включения выпрямительных диодов.

Содержание

Принцип работы и устройство выпрямительного диода

Выпрямительный диод — это полупроводниковый прибор с односторонней проводимостью, предназначенный для преобразования переменного тока в постоянный. Его конструкция состоит из двух электродов — анода и катода, между которыми находится p-n переход.

Как работает выпрямительный диод? При подаче на анод положительного потенциала относительно катода, через диод начинает протекать ток. Это называется прямым включением. При обратном включении (минус на аноде, плюс на катоде) диод закрыт и ток через него практически не течет.

Данное свойство позволяет пропускать через диод только одну полуволну переменного напряжения, преобразуя его в пульсирующее постоянное. Это и есть принцип выпрямления тока с помощью диода.


Основные параметры выпрямительных диодов

При выборе выпрямительного диода важно учитывать следующие основные параметры:

  • Максимальный прямой ток — наибольший допустимый ток через диод в прямом направлении
  • Максимальное обратное напряжение — наибольшее допустимое напряжение на диоде в обратном направлении
  • Прямое падение напряжения — напряжение на открытом диоде при протекании прямого тока
  • Обратный ток — небольшой ток утечки через закрытый диод
  • Максимальная рассеиваемая мощность — предельно допустимая мощность, которую может рассеять диод

Какие значения этих параметров выбрать? Это зависит от конкретного применения. Для маломощных схем достаточно диодов на токи до 1А и напряжения до 100В. Для силовой электроники используются диоды на десятки и сотни ампер и киловольты.

Области применения выпрямительных диодов

Где применяются выпрямительные диоды? Основные области их использования:

  • Источники питания — для преобразования переменного сетевого напряжения в постоянное
  • Зарядные устройства — для выпрямления тока зарядки аккумуляторов
  • Сварочные аппараты — в выпрямителях сварочного тока
  • Системы электропривода — для управления двигателями постоянного тока
  • Радиоприемники — в детекторах амплитудной модуляции
  • Системы защиты от обратного тока — для предотвращения разряда аккумуляторов

Таким образом, выпрямительные диоды находят широкое применение везде, где требуется преобразование переменного тока в постоянный.


Схемы включения выпрямительных диодов

Существует несколько основных схем включения выпрямительных диодов:

Однополупериодная схема

Это простейшая схема, содержащая один диод. Она пропускает только положительные полуволны переменного напряжения. Недостаток — большая пульсация выпрямленного напряжения.

Двухполупериодная со средней точкой

Содержит два диода и трансформатор со средней точкой. Выпрямляет оба полупериода, уменьшая пульсации. Требует трансформатор с отводом от середины вторичной обмотки.

Мостовая схема

Состоит из четырех диодов, соединенных в мост. Позволяет выпрямлять оба полупериода без трансформатора со средней точкой. Наиболее распространенная схема.

Выбор конкретной схемы зависит от требований к качеству выпрямленного напряжения и мощности нагрузки.

Материалы для изготовления выпрямительных диодов

Какие полупроводниковые материалы используются для производства выпрямительных диодов? Наиболее распространены:

  • Кремний — обладает высокой температурной стабильностью, малыми обратными токами. Применяется в большинстве современных диодов.
  • Германий — имеет меньшее прямое падение напряжения. Используется реже из-за худших температурных свойств.
  • Арсенид галлия — позволяет создавать сверхбыстродействующие диоды для импульсных схем.
  • Карбид кремния — для мощных высокотемпературных диодов.

Выбор материала зависит от требуемых характеристик диода и области его применения.


Маркировка и обозначение выпрямительных диодов

Как обозначаются выпрямительные диоды на схемах и в маркировке? Основные правила:

  • На принципиальных схемах диод обозначается треугольником с чертой (катодом).
  • В отечественной системе маркировки используются буквенно-цифровые коды, например КД202А.
  • В зарубежной системе применяются коды вида 1N4001.
  • На корпусе диода обычно наносится полоса со стороны катода.

Расшифровка маркировки позволяет определить основные параметры диода — максимальный ток, обратное напряжение, быстродействие и др.

Особенности выбора выпрямительных диодов

На что обратить внимание при выборе выпрямительного диода для конкретного применения?

  • Максимальный ток должен быть в 1.2-1.5 раза выше рабочего тока нагрузки.
  • Обратное напряжение — не менее чем в 2 раза выше амплитуды входного напряжения.
  • Прямое падение напряжения — чем меньше, тем лучше (меньше нагрев).
  • Быстродействие — для импульсных схем нужны быстрые диоды.
  • Рабочая температура — должна соответствовать условиям эксплуатации.

Правильный выбор диода обеспечит надежную работу устройства и длительный срок службы.


Характерные неисправности выпрямительных диодов

Какие неисправности чаще всего возникают у выпрямительных диодов и как их диагностировать?

  • Пробой — диод начинает проводить ток в обоих направлениях. Проверяется тестером.
  • Обрыв — диод не проводит ток ни в одном направлении. Также проверяется тестером.
  • Увеличение обратного тока — приводит к перегреву. Проверяется специальным прибором.
  • Снижение максимального прямого тока — вызывает перегрев. Проверяется в рабочем режиме.

При обнаружении неисправности диод подлежит замене. Ремонту выпрямительные диоды обычно не подлежат.


Выпрямительный диод: параметры и схема

Одним из электронных устройств, широко использующихся в различных схемах, является выпрямительный диод, с помощью которого переменный ток преобразуется в постоянный. Его конструкция создана в виде двухэлектродного прибора с односторонней электрической проводимостью. Выпрямление переменного тока происходит на переходах металл-полупроводник и полупроводник-металл. Точно такой же эффект достигается в электронно-дырочных переходах некоторых кристаллов – германия, кремния, селена. Эти кристаллы во многих случаях используются в качестве основных элементов приборов.

Содержание

Принцип работы выпрямительного диода

Выпрямительные диоды применение нашли в различных электронных, радиотехнических и электрических устройствах. С их помощью осуществляется замыкание и размыкание цепей, детектирование и коммутация импульсов и электрических сигналов, а также другие аналогичные преобразования.

Каждый диод оборудуется двумя выводами, то есть электродами – анодом и катодом. Анод соединяется с р-слоем, а катод – с n-слоем. В случае прямого включения диода на анод поступает плюс, а на катод – минус. В результате, через диод начинает проходить электрический ток.

Если же подачу тока выполнить наоборот – к аноду подать минус, а к катоду – плюс получится так называемое обратное включение диода. В этом случае течения тока уже не будет, на что указывает вольтамперная характеристика выпрямительного диода. Поэтому при поступлении на вход переменного напряжения, через диод будет проходить только одна полуволна.

Представленный рисунок наглядно отражает вольтамперную характеристику диода. Ее прямая ветвь расположена в первом квадранте графика. Она описывает диод в состоянии высокой проводимости, когда к нему приложено прямое напряжение. Данная ветвь выражается в виде кусочно-линейной функции u = U + RД x i, в которой u представляет собой напряжением на вентиле во время прохождения тока i. Соответственно, U и RД являются пороговым напряжением и динамическим сопротивлением.

Третий квадрант содержит обратную ветвь вольтамперной характеристики, указывающей на низкую проводимость при обратном напряжении, приложенном к диоду. В этом состоянии течение тока через полупроводниковую структуру практически отсутствует.

Данное положение будет правильным лишь до определенного значения обратного напряжения. В этом случае напряженность электрического поля в области p-n-перехода может достичь уровня 105 В/см. Такое поле сообщает электронам и дыркам – подвижным носителям заряда, кинетическую энергию, способную вызвать ионизацию нейтральных атомов кремния.

Стандартная структура выпрямительного диода предполагает наличие дырок и электронов проводимости, постоянно возникающих под действием термической генерации по всему объему структуры проводника. В дальнейшем происходит их ускорение под действием электрического поля p-n-перехода. То есть электроны и дырки также участвуют в ионизации нейтральных атомов кремния. В этом случае обратный ток нарастает лавинообразно, возникают так называемые лавинные пробои. Напряжение, при котором резко повышается обратный ток, обозначается на рисунке в виде напряжения пробоя U3.

Основные параметры выпрямительных диодов

Определяя параметры выпрямительных элементов, следует учитывать следующие факторы:

  • Разница потенциалов, максимально допустимая при выпрямлении тока, когда устройство еще не может выйти из строя.
  • Максимальное значение среднего выпрямленного тока.
  • Максимальный показатель обратного напряжения.

Выпрямительные устройства выпускаются различной формы и могут монтироваться разными способами.

В соответствии с физическими характеристиками, они разделяются на следующие группы:

  • Выпрямительные диоды большой мощности, пропускная способность которых составляет до 400 А. Они относятся к категории высоковольтных и выпускаются в двух видах корпусов. Штыревой корпус изготавливается из стекла, а таблеточный – из керамики.
  • Выпрямительные диоды средней мощности с пропускной способностью от 300 мА до 10 А.
  • Маломощные выпрямительные диоды с максимально допустимым значением тока до 300 мА.

Выбирая то или иное устройство, необходимо учитывать вольтамперные характеристики обратного и пикового максимальных токов, максимально допустимое прямое и обратное напряжение, среднюю силу выпрямленного тока, а также материал изделия и тип его монтажа. Все основные свойства выпрямительного диода и его параметры наносятся на корпус в виде условных обозначений. Маркировка элементов указывается в специальных справочниках и каталогах, ускоряя и облегчая их выбор.

Схемы с использованием выпрямительных диодов отличаются количеством фаз:

  • Однофазные нашли широкое применение в бытовых электроприборах, автомобилях и аппаратуре для электродуговой сварки.
  • Многофазные используются в промышленном оборудовании, специальном и общественном транспорте.

В зависимости от используемого материала, выпрямительные диоды и схемы с диодами могут быть германиевыми или кремниевыми. Чаще всего применяется последний вариант, благодаря физическим свойствам кремния. Данные диоды обладают значительно меньшей величиной обратных токов при одном и том же напряжении, поэтому допустимое обратное напряжение имеет очень высокую величину, в пределах 1000-1500 вольт.

Для сравнения, у германиевых диодов эта величина составляет 100-400 В. Кремниевые диоды сохраняют работоспособность в температурном диапазоне от — 60 до + 150 градусов, а германиевые – только в пределах от — 60 до + 850С. Электронно-дырочные пары при температуре, превышающей это значение, образуются с большой скоростью, что приводит к резкому увеличению обратного тока и снижению эффективности работы выпрямителя.

Схема включения выпрямительного диода

Простейший выпрямитель работает по следующей схеме. На вход подается переменное напряжение сети с положительными и отрицательными полупериодами, окрашенными соответственно в красный и синий цвета. На выходе подключается обычная нагрузка RH, а выпрямляющим элементом будет диод VD.

Когда на анод поступают положительные полупериоды напряжения, происходит открытие диода. В этот период через диод и нагрузку, запитанную от выпрямителя, будет протекать прямой ток диода Iпр. На графике, расположенном справа, эта волна обозначена красным цветом.

При поступлении на анод отрицательных полупериодов напряжения, наступает закрытие диода, и во всей цепи начинается течение незначительного обратного тока. В данном случае отрицательная полуволна переменного тока отсекается диодом. Эту отсеченную полуволну обозначает синяя прерывистая линия. На схеме условное обозначение выпрямительного диода такое же, как обычно, только поверх значка проставляются символы VD.

В результате, через нагрузку, подключенную через диод к сети, будет протекать уже не переменный, а пульсирующий ток одного направления. Фактически, это и есть выпрямленный переменный ток. Однако такое напряжение подходит лишь для нагрузок малой мощности, запитанных от сети переменного тока. Это могут быть лампы накаливания, которым не требуются особые условия питания. В этом случае напряжение будет проходить через лампу лишь во время импульсов – положительных волн. Наблюдается слабое мерцание лампы с частотой 50 Гц.

При подключении питания с таким же напряжением к приемнику или усилителю мощности, в громкоговорителе или колонках, будет слышен гул с низкой тональностью, частотой 50 Гц, известный как фон переменного тока. В этих случаях аппаратура начинает «фонить». Причиной такого состояния считается пульсирующий ток, проходящий через нагрузку и создающий в ней пульсирующее напряжение. Именно оно и создает фон.

Данный недостаток частично устраняется путем параллельного подключения к нагрузке фильтрующего электролитического конденсатора Сф с большой емкостью. В течение положительных полупериодов он заряжается импульсными токами, а во время отрицательных – разряжается с помощью нагрузки RH. Большая емкость конденсатора позволяет поддерживать на нагрузке непрерывный ток в течение всех полупериодов – положительных и отрицательных. На графике такой ток представляет собой сплошную волнистую линию красного цвета.

Подразделение защиты: TVS-диоды от Bourns

4 февраля 2015

BournsстатьяTVS

Поглощение и рассеивание энергии импульса помехи – основное назначение TVS-диодов, изделий, повсеместно применяемых в современной электронике. Компания Bourns предлагает широкую линейку TVS-диодов, – от классических до сверхмощных, – включая диоды и сборки в миниатюрных корпусах, адаптированные под высокоскоростные цифровые линии связи.

Минимизация энергопотребления и развитие коммуникационных возможностей электронных устройств остро поднимают проблематику уязвимости компонентов к воздействию наведенных импульсов помех, перенапряжений и электростатических разрядов. Импульсные микро- и наносекундные помехи, помимо всего прочего, имеют весьма неприятное свойство проникать через паразитную емкость дросселей, фильтров, трансформаторов в чувствительные узлы электронных схем и вызывать необратимые повреждения.

Разработчики 70-х и 80-х годов могут вспомнить множество историй, когда на испытательных стендах или промышленных объектах велась настоящая борьба за живучесть электроники, которая, увы, не всегда заканчивалась положительно.

Это предопределило появление новых классов устройств – ограничителей напряжения, способных за короткий промежуток времени поглотить значительную энергию импульса помехи, ограничив напряжение на электронной схеме до безопасных значений.

TVS-диоды (Transient Voltage Suppressor) – полупроводниковые устройства, основное назначение которых – ограничивать напряжение на защищаемом участке электронной схемы до безопасных значений, при этом поглощая и рассеивая энергию импульса помехи. По принципу действия TVS-диоды похожи на традиционные стабилитроны, работают на обратной ветви вольтамперной характеристики, но предназначены для значительных импульсных нагрузок. Что, впрочем, не мешает в некоторых приложениях использовать TVS-диоды в качестве мощных стабилитронов, если не нужны малый температурный дрейф или малый разброс напряжений стабилизации.

Принцип применения TVS-диода в качестве защитного элемента заключается в том, что он закрыт до момента воздействия помехи, и не участвует в работе схемы (емкостная составляющая не рассматривается, об этом – ниже). Другими словами, через него не протекают рабочие токи, температура p-n-перехода защитного диода равна температуре окружающей среды. Импульс перенапряжения вызывает лавинный пробой в структуре TVS-диода, через него протекает ток помехи, обусловленный эквивалентным сопротивлением источника помехи, при этом напряжение на диоде ограничивается в соответствие с его внутренней структурой. В результате защищаемый участок схемы не подвергается воздействию высокого напряжения, энергия помехи рассеивается. На рисунке 1 показан пример воздействия импульсной помехи на цепь, защищаемую TVS-диодом.

Рис. 1. Иллюстрация работы TVS-диода в цепи

Кроме нагрузки и ограничителя напряжения, в схеме показано также последовательное сопротивление (Rпосл.), которое почти всегда присутствует в реальных устройствах в виде предохранителя, контактного сопротивления разъема, внутриблочных соединений или специально установленного разработчиком резистора. Это сопротивление, наряду с эквивалентным сопротивлением источника помехи (в случае, когда этот параметр можно оценить, например в модели Human Body Model (рисунок 2), имитирующей заряд тела человека для электростатических разрядов), позволяет определить амплитуду тока через защитный диод и тем самым вычислить мощность, на которую следует выбирать элементы защиты.

Рис. 2. Human Body Model

Главная особенность TVS-диодов – экстремально высокое быстродействие[1], – фактически предопределила их области применения: защиту чувствительных к перенапряжению элементов схемы, где важно не допустить импульса помехи длительностью менее десятков наносекунд, при этом энергия помехи составляет сотни Вт. Это, в первую очередь, защита коммуникационных портов от статических разрядов, а также вторая или третья ступень комплексных схем защиты, как показано на рисунке 3.

Рис. 3. Трехступенчатая схема защиты чувствительного элемента

В случае, когда требуется защита от электростатических разрядов, TVS-диоды подключаются без ограничительных последовательных резисторов, что важно для функционирования некоторых устройств, например, портов USB.

В случае проектирования схем защиты от импульсных помех, вызванных аварийными ситуациями, грозовыми разрядами, переходными процессами в линиях связи и так далее, приходится прибегать к дополнительным мерам, поскольку неопределенность с эквивалентным сопротивлением источника помехи значительно более высокая, чем в случае с электростатическим разрядом или мощность источника помехи значительно превосходит допустимую мощность защитных элементов. Например, при известной максимально допустимой амплитуде импульса перенапряжения устанавливаются последовательные резисторы, которые ограничивают ток через TVS-диод. Трехступенчатая схема защиты, показанная на рисунке 3, сочетает в себе газоразрядник, варистор и TVS-диод, что позволяет эффективно распределить энергию импульса помехи между защитными элементами. Наиболее короткий фронт импульса (1 нс) вызывает срабатывание TVS-диода, далее срабатывает варистор (25…100 нс), который, как правило, имеет более высокую рассеиваемую мощность, и основная энергия поглощается в газовом разряднике (скорость срабатывания 0,1…1 мкс).

Последовательные резисторы Rmov и Rtvs обеспечивают режим работы защитных элементов и последовательность их срабатывания. TVS-диод, являющийся третьей, самой быстродействующей ступенью, осуществляет «чистовое» ограничение импульса помехи. Конструкторы данных приборов стремились подчеркнуть данный параметр наряду со стремлением увеличить его пиковую нагрузочную способность. В результате из-за значительной площади кристалла электрическая емкость TVS-диода на порядок выше емкости типового стабилитрона.

С точки зрения ограничения импульсов данная особенность идет только на пользу – фактически, параллельно с быстродействующим полупроводником существует виртуальный высококачественный конденсатор, который дополнительно интегрирует короткие импульсные помехи. Это хорошо, когда речь идет о защите низкоскоростных линий связи или цепей питания. Но в защите нуждаются также и скоростные линии связи, для которых вносимая TVS-диодами емкость становится критичной.

Для этого производители предложили серии ограничителей напряжения с пониженной емкостью, но они, как правило, имеют небольшие значения пиковой рассеиваемой мощности. Если требуется защитить высокоскоростную линию более мощным супрессором, то применяются диодные и диодно-мостовые схемы, которые позволяют минимизировать влияние высокой собственной емкости защитного элемента на линию связи. Выбор диодов для мостовой схемы – отдельная задача для разработчика, поскольку, с одной стороны, диоды должны выдерживать большие импульсные токи и не уступать в быстродействии супрессору, с другой – иметь малую емкость перехода и малые значения токов утечки. Чаще всего в таких схемах применяются диоды Шоттки, что позволяет получить нужные характеристики, но требует дополнительного места на печатной плате. У некоторых производителей подобные решения оформлены в виде диодно-супрессорных сборок, специально предназначенных для защиты высокоскоростных цепей. Компания Bourns, например, предлагает сборки серии CDSOT236 для защиты портов Ethernet или HDMI, сборки серии CDDFN для USB3.0 и так далее.

Резюмируя вышесказанное, можно сформулировать алгоритм подбора TVS-диода для конкретного приложения.

Выбор номинала рабочего напряжения супрессора по действующему напряжению защищаемой цепи. В нормальном режиме работы супрессор закрыт, через него протекает только нормированный ток утечки, который не оказывает влияния на работу электронной схемы.

Определение пикового аварийного тока или пиковой аварийной мощности супрессора. Максимальный ток рассчитывается из анализа максимального напряжения источника импульсного воздействия и эквивалентного последовательного сопротивления. Если речь идет об электростатических разрядах, то используется Human Body Model или другая модель заряженного физического тела. Если расчет ведется относительно импульсов перенапряжения, то используются или данные об источнике помехи, или, если их нет – характеристики предыдущей ступени защиты, например, как на рисунке 3.

Определение времени воздействия аварийного тока. Пиковая мощность TVS-диодов напрямую зависит от времени воздействия импульса. Как правило, для получения оценки импульса воздействия достаточно руководствоваться стандартами по ЭМС [2].

Определение максимального напряжения ограничения TVS-диода. Ток помехи, амплитуда которого может достигать десятков, сотен, а иногда и тысяч ампер, вызывает всплеск на защитном диоде, который может в разы превышать его номинальное рабочее напряжение. Максимальное напряжение ограничения должно быть безопасным для защищаемой схемы.

Определение максимальной емкости схемы защиты. Подробная методика расчета схем защиты на основе TVS приведена в [5].

Компания Bourns, как один из ведущих мировых производителей компонентов защиты цепей, предлагает широкий выбор TVS-диодов, позволяющих строить схемы защиты, удовлетворяющие требования таких стандартов как ГОСТ Р 51317.4.2-2010 (МЭК 61000-4-2:2008), ГОСТ Р 51317.4.4-2007 (МЭК 61000-4-4:2004), ГОСТ Р 51317.4.5-99 (МЭК 61000-4-5-95).

Это и диоды в корпусах SMA, SMB, SMC, которые де-факто являются индустриальным стандартом, и диоды и сборки, предназначенные для экономии площади на печатной плате, и интегрированные решения для различных применений в промышленной и бытовой электронной технике. На рисунке 4 приведена удобная диаграмма для первоначального выбора супрессора от Bourns.

Рис. 4. Диаграмма для выбора супрессора производства Bourns

Серии SMAJ, SMBJ, SMCJ

Рис. 5. Внешний вид корпуса TVS-диодов серий SMA, SMB, SMC

Дискретные защитные диоды SMAJ, SMBJ и SMCJ в корпусах для поверхностного монтажа появились одними из первых, нашли широкое применение в различных изделиях и по праву считаются промышленным стандартом. Их можно встретить на входах/выходах источников питания, в схемах защиты телекоммуникационного оборудования, в барьерах искрозащиты, в блоках грозозащиты и так далее. Внешний вид корпусов TVS-диодов серий SMAJ, SMBJ и SMCJ показан на рисунке 5.

Диоды серии SMAJ при компактных размерах позволяют рассеивать 400 Вт пиковой мощности в течение 1 миллисекунды, рассчитаны на 1 Вт статической нагрузки, соответствуют требованиям стандартов ЭМС [Р МЭК 4-2, 4-4, 4-5].

Серия SMBJ – более мощная, чем SMAJ, TVS-диоды этой серии позволяет рассеивать 600 Вт пиковой мощности в течение 1 миллисекунды, и до 5 Вт – в статическом режиме.

Серия SMCJ – еще более мощная. Она позволяет рассеивать 1500 Вт пиковой мощности в течение 1 миллисекунды, и до 5 Вт – в статическом режиме.

Усредненные характеристики этих серий приведены в таблице 1.

Таблица 1. Характеристики TVS-диодов серий SMAJ, SMBJ, SMCJ

Наименование Рабочее напряжение VRWM, В Минимальное напряжение срабатывания VBR, В Энергия рассеяния Ppk, Вт Пиковый ток перегрузки IRSM, А Рабочая
температура, °С
Однонаправленные Двунаправленные
SMAJx.xA SMAJx.xCA 5…495 6,4…522 400 43,5…0,5 -55…150
SMBJx.xA SMBJx.xCA 600 65,3…0,8
SMCJx.xA SMCJx.xCA 1500 163…2

Главное преимущество серий SMAJ, SMBJ и SMCJ – достаточно высокая пиковая мощность, позволяющая эффективно применять их для защиты от импульсов помех с высокими значениями энергии. Кроме того, значительная мощность рассеивания в статическом режиме позволяет использовать один и тот же TVS-диод еще и для защиты от «медленных» перегрузок – неисправностей источников питания, аварийных изменений напряжения питающей сети, а также применять плавкие и полимерные предохранители, время срабатывания которых может измеряться секундами. Неприятная особенность таких супрессоров – высокая электрическая емкость. Для низковольтных диодов ее значение может достигать 3000 пФ, для высоковольтных – 20 пФ. Двунаправленные версии имеют емкость примерно на 40% меньше однонаправленных аналогов.

Серия CDSOD323

С развитием мобильной и портативной техники производители начали борьбу как за снижение паразитной емкости, так и за степень интеграции полупроводниковых схем. Компания Bourns выпустила линейку TVS-диодов CDSOD323, упакованную в корпуса формата SOD-323. Это позволило значительно сэкономить место на печатной плате. Несмотря на скромные размеры, серия обладает значительной пиковой импульсной мощностью в 350 Вт (некоторые модели – до 500 Вт), и соответствует стандартам ЭМС (Р МЭК 4-2, 4-4, 4-5). Правда, по сравнению с сериями SMA, SMB и SMBJ, мощность которых нормирована на время в 1 мс, импульсная мощность CDSOD323 приведена ко времени действия стандартного импульса 8/20 мкс [6, 7].

Рис. 6. Структурная схема и внешний вид CDSOD323-TxxLC и CDSOD323-TxxC

Часть номенклатуры CDSOD323 обладает малой емкостью и специально адаптирована для линий передачи данных, например, CDSOD323-TxxLC. Типовая емкость диодов составляет примерно 1 пФ, что позволяет применять CDSOD323-TxxLC для защиты цепей HDMI 1.4, DVI, USB 3.0, микросхем памяти и портов подключения SIM-карт. Серия рассчитана на рабочие напряжения 5…24 В и воздействие статического разряда до 30 кВ. Также, с точки зрения емкости, интересна серия CDSOD323-TxxC. Этот параметр у нее составляет порядка 3 пФ, а рабочее напряжение – 3…24 В. Рассчитана данная серия на воздействие статического разряда до 30 кВ. Эти сборки с успехом применяются для защиты портов ввода-вывода, USB, мобильных устройств и тому подобного. Внутренняя структурная схема и внешний вид ограничителей напряжения серий CDSOD323-TxxLC и CDSOD323-TxxC показаны на рисунке 6, а обобщенные характеристики приведены в таблице 2.

Таблица 2. Характеристики серий CDSOD323-TxxLC и CDSOD323-TxxC

Наименование Рабочее напряжение VRWM, В Минимальное напряжение срабатывания VBR, В Энергия рассеяния Ppk, Вт Емкость на 1 МГц C, пФ ESD-защита, кВ Рабочая
темп-ра, °С
Однонаправленные Двунаправленные
CDSOD323-TxxL CDSOD323-TxxLC 5…24 6…26,7 350/250 1 до 30 -55…150
CDSOD323-Txx CDSOD323-TxxC 3,3…24 4…26,7 350 3
CDSOD323-T12C-DSL 12 13
CDSOD323-T24C-DSL 24 26,7

В линейке представлены также специализированные диоды CDSOD323-TxxC-DSL. Это серия двунаправленных диодов, состоящая всего из двух позиций – на 12 и 24 В – предназначенных для защиты линий VDSL, модемов, роутеров. Серия характеризуется малой емкостью (3 пФ) и очень малым током утечки (1 нА).

Серия CDSOT23

Дальнейшая миниатюризация современной аппаратуры явилась причиной размещения защитных диодов в другом популярном типе корпуса – SOT-23. Согласно стандарту JEDEC, данный корпус может иметь модификации на 3, 5, 6 и 8 выводов, что позволяет использовать его для широкого круга задач. Компания Bourns выпускает линейку сборок TVS-диодов в корпусах SOT-23 различной конфигурации и различного функционального назначения. Например, сборка CDSOT23-SM712 имеет всего одну модификацию, но позволяет строить схемы защиты на напряжение 7 или 12 В за счет использования несимметричных супрессоров в своей структуре.

Схема и внешний вид сборки показаны на рисунке 7.

Рис. 7. Схема и внешний вид CDSOT23-SM712

Характеристики CDSOT23-SM712 приведены в таблице 3.

Таблица 3. Характеристики TVS-диодов CDSOT23-SM712

Параметр Символ Значение
Энергия рассеяния, В Ppk 400
Рабочее напряжение, В Выводы 3-1 и 3-2 Vwm 7
Выводы 1-3 и 2-3 12
Минимальное напряжение срабатывания, В Выводы 3-1 и выводы 3-2 VBR 7,5
Выводы 1-3 и выводы 2-3 13,3
Максимальный ток утечки, мкА Выводы 3-1 и выводы 3-2 ID 20,0
Выводы 1-3 и выводы 2-3 1,1
Максимальная емкость канала на 1 МГц, пФ Выводы 3-1 и выводы 3-2 CD 75
Выводы 1-3 и выводы 2-3
ESD, согласно IEC 61000-4-2, кВ Минимальный контактный разряд ESD ±8
Максимальный контактный разряд ±30
Минимальный воздушный разряд ±15
Максимальный воздушный разряд ±30
Рабочая температура, °С Тopr -55…150

Сборка CDSOT23-SRV05-4 предназначена для защиты четырех линий ввода-вывода или цифрового интерфейса. Содержит в себе диодную схему и один супрессор, который ограничивает выбросы напряжения. За счет низкой емкости (3,5 пФ) может применяться для защиты цепей USB 2.0, Ethernet 10/100/100 Base T, DVI.

Схема и внешний вид CDSOT23-SRV05-4 приведены на рисунке 8.

Рис. 8. Схема и внешний вид CDSOT23-SRV05-4

Характеристики CDSOT23-SRV05-4 приведены в таблице 4.

Таблица 4. Характеристики TVS-диодов CDSOT23-SRV05-4

Параметр Символ Значение
Пиковый импульсный ток при tp = 8/20 мкс, А IPP 30
Пиковая импульсная мощность при tp = 8/20 мкс, Вт PPP 500
Рабочее напряжение, В VWM 5
Минимальное напряжение срабатывания, В VBR 6
Ток утечки, мкА IL 5
Емкость, пФ Cj(SD) 3,5
ЭСР, согласно IEC 61000-4-2, кВ Контактный разряд ESD 8
Воздушный разряд 15
НИП, согласно IEC 61000-4-4 5/50 мкс, А EFT 40
Рабочая температура, °С Тopr -55…150

В характеристиках сборки CDSOT23-SRV05-4 производитель указывает параметры, относящиеся к защите от наносекундных импульсных помех (НИП), что может быть полезным при проектировании устройств в соответствии со стандартами по электромагнитной совместимости.

Сборка CDSOT236-0504C имеет внутреннюю структуру, аналогичную CDSOT23-SRV05-4, и также предназначена для защиты высокоскоростных портов в соответствии с требованиями ЕСР (согласно IEC 61000-4-2), НИП (согласно IEC 61000-4-4) и МИП (согласно IEC 61000-4-5). Главная особенность данного изделия – низкие значения параллельной и межканальной емкостей. Характеристики CDSOT236-0504C приведены в таблице 5.

Таблица 5. Характеристики CDSOT236-0504C

Параметр Символ Значение
Пиковый импульсный ток при tp = 8/20 мс, А IPP 5,5
ESD, согласно IEC 61000-4-2, воздушный разряд для выводов I/O, кВ VESD_IO 15,0
ESD, согласно IEC 61000-4-2 контактный разряд для выводов I/O, кВ 8,0
ESD, согласно IEC 61000-4-2 воздушный и контактный разряды для выводов VCC to GND, кВ VESD_VCC 30,0
Максимальное рабочее напряжение, В VRWM 5,0
Минимальное напряжение срабатывания, В VBR 6,0
Максимальный ток утечки VRWM, мкА IL 2,0
Максимальный ток утечки канала VRWM, мкА ICD 1,0
Максимальная емкость канала на 1 МГц, пФ CIN 1,2
Максимальная межканальная емкость на 1 МГц, пФ CCROSS 0,12
Максимальный разброс емкости канала на 1 МГц, пФ ΔCIN 0,05
Рабочая температура, °С Тopr -55…150

 

Серия PTVS

TVS-диоды из серии PTVS (Power TVS) – это сильноточные двунаправленные ограничители напряжения, предназначенные для установки на шины питания постоянного или переменного токов большой мощности. Диоды PTVS ранжируются по мощности и имеют корпуса как для установки в отверстия, так и для поверхностного монтажа, при этом выпускаются всего на два рабочих напряжения: 58 и 76 В. Характеристики диодов серии PTVS приведены в обзорной таблице 6.

Таблица 6. Характеристики PTVS

Наименование Описание Пиковое рабочее напряжение VWM, В Максимальный пиковый ток IPPM, A
PTVS3-xxxC-TH PTVS
(высокотемпературная серия повышенной мощности)
58…76 3000
PTVS6-xxxC-TH 6000
PTVS10-xxxC-TH 10000
PTVS15-xxxC-TH 15000
PTVS3-xxxC-SH 3000
PTVS10-xxxC-SH 10000
PTVS15-xxxC-SH 15000

Линейка PTVS соответствует стандарту Р МЭК 4-5 в части требований по устойчивости к воздействию импульса тока 8/20 мкс.

 

Заключение

Сегодня сложно представить себе серьезное электронное устройство, коммуникационные порты и система питания которого не защищены ограничителями напряжения. TVS-диоды за последние два десятилетия стали обязательными элементами бытовой, промышленной, медицинской, измерительной и прочей аппаратуры.

Компания Bourns предлагает широкую линейку TVS-диодов, – от классических до сверхмощных, – включая диоды и сборки в миниатюрных корпусах, адаптированные под высокоскоростные цифровые линии связи. Продукция компании полностью соответствует стандартам ЭМС. Наиболее популярные артикулы TVS-диодов производства Bourns поддерживаются на складах официального дистрибьютора – компании КОМПЭЛ. С получением статуса официального партнера складская программа КОМПЭЛ по всем продуктам Bourns будет расширяться, что сделает технологические достижения Bourns доступнее для отечественных разработчиков.

 

Литература

  1. В.Колосов, В. Мухтарулин. Устранение недопустимых воздействий на электронную аппаратуру из сетей электропитания. СТА, №2/2001.2. ГОСТ Р 51317.4.2-2010 (МЭК 61000-4-2:2008).
  2. ГОСТ Р 51317.4.2-2010 (МЭК 61000-4-2:2008)
  3. ГОСТ Р 51317.4.4-2007 (МЭК 61000-4-4:2004).4. ГОСТ Р 51317.4.5-99 (МЭК 61000-4-5-95)
  4. ГОСТ Р 51317.4.5-99 (МЭК 61000-4-5-95)
  5. А.Кадуков. Выбор и применение полупроводниковых TVS-диодов TRANSZORB. КиТ, №3/2001.
  6. CDSOD323-TxxC. Data sheet.
  7. CDSOD323-TxxLC. Data sheet.

Получение технической информации, заказ образцов, заказ и доставка.

•••

простых схем диодов | Проекты самодельных схем

Вы здесь: Главная / Простые схемы / Объяснение простых диодных схем

Последнее обновление by Swagatam 8 комментариев

В этом посте мы узнаем, как использовать выпрямительные диоды для создания некоторых практических и полезные электронные схемы.

Диод — это самый простой полупроводниковый электронный компонент, который состоит из одного полупроводникового перехода p-n. Он имеет только два вывода, которые называются анодом и катодом.

Диоды могут быть различных типов, например, выпрямительный диод, стабилитрон, диод Шоттки, туннельный диод, варактерный диод и т.д. приложение, связанное с электронной схемой. На самом деле электронная схема может быть просто неполной и не работать, если в нее не встроен выпрямительный диод.

Основные свойства выпрямительного диода следующие:

  • Диод имеет две клеммы, а именно анод и катод.
  • В выпрямительном диоде клемма со стороны катода отмечена полосой,
  • В выпрямительном диоде ток может течь только в одном направлении, то есть от анода к катоду. Ток не может течь наоборот.
  • Это означает, что диод будет проводить только тогда, когда положительный постоянный ток подключен к аноду, а отрицательный постоянный ток приложен к катоду. Если полярность поменять местами, диод не будет проводить ток и заблокирует его.
  • Благодаря этому свойству выпрямительные диоды обычно используются для преобразования переменного тока в постоянный. Это означает, что когда переменный ток подается на анод диода, он позволяет только положительным полупериодам проходить на сторону катода и блокирует отрицательный цикл, и таким образом переменный ток выпрямляется диодом в постоянный.
  • Выпрямительный диод, являющийся полупроводниковым устройством, всегда создает падение напряжения около 0,6 В на его анодном и катодном выводах. Это означает, что когда к аноду приложено напряжение, катод будет создавать напряжение, которое может быть на 0,6 В меньше, чем напряжение, приложенное к аноду.

Содержание

Применение Схемы

Как объяснялось в предыдущих разделах, диод является незаменимым компонентом, без которого построить электронную схему практически невозможно.

Хотя в большинстве схем диод играет менее важную роль, существует множество приложений, в которых диоды являются ключевым компонентом, и мы собираемся обсудить некоторые из таких схем, использующих диоды, в следующих параграфах.

Полупериодные и двухполупериодные выпрямители

Одним из основных применений диодов являются источники питания. Блок питания от переменного тока к постоянному может быть выполнен либо с использованием базового одиночного диода для формирования полуволнового источника питания переменного тока в постоянный, либо с использованием 4 диодов в конфигурации мостовой сети для создания двухполупериодного источника питания переменного тока в постоянный. Два варианта можно увидеть на следующих диаграммах:

Из двух применений источника питания диода двухполупериодная версия является более эффективной, поскольку она преобразует оба цикла переменного тока в постоянный, в то время как версия с одним диодом преобразует только половину волны переменного тока в постоянный.

Мостовой выпрямитель, соединенный с трансформатором и без фильтрующего конденсатора, также можно использовать в качестве стабильного источника частоты 100 Гц или генератора частоты 100 Гц.

Преобразователь 110 В перем. тока в 220 В пост. тока

Этот преобразователь может быть очень удобен для работы оборудования 220 В от источников 110 В. Два диода вместе с двумя высоковольтными конденсаторами сконфигурированы как удвоитель напряжения, который быстро преобразует 110 В в выходное напряжение 220 В постоянного тока.

Однако, поскольку выход постоянного тока, это может быть схема применения диодов, которую можно использовать только для приборов, которые могут работать как с переменным, так и с постоянным током, например, электробритвы, светодиодные лампы, обогреватели, электродвигатели, электроутюги, паяльники железо и т. д.

Ионизатор воздуха

Вышеупомянутый удвоитель напряжения, если его расширить на множество ступеней с использованием диодов и конденсаторов, чтобы сформировать лестницу, в конечном итоге представляет собой очень специальное устройство, называемое схемой ионизатора воздуха.

Эта конфигурация в основном использует функцию выпрямления и блокировки диода, а также функцию умножения заряда конденсаторов для формирования цепи генератора высокого отрицательного напряжения, которую можно использовать для очистки воздуха вокруг вас!

При падении напряжения

Как обсуждалось в предыдущих разделах, выпрямительный диод падает примерно на 0,6 В, когда через него проходит напряжение. Эту функцию можно использовать для получения более низких значений напряжения от более высоких источников.

Например, если требуется 3,3 В от источника 5 В, этого можно легко добиться, добавив несколько последовательных выпрямительных диодов на выходе источника 5 В. Поскольку на каждом диоде падает около 0,6 В, это означает, что двух диодов будет достаточно для получения требуемых 3,3 В от источника питания 5 В.

Зарядное устройство солнечной батареи

Вышеупомянутая характеристика падения напряжения выпрямительного диода может быть применена для изготовления простейшего типа зарядного устройства солнечной батареи, как показано ниже:

Здесь мы видим, что многие диоды используются последовательно для управления выходом солнечная панель, чтобы соответствовать напряжению зарядки аккумулятора. Диоды понижают напряжение солнечной панели ступенчато, так что уровни напряжения можно выбирать от низкого до высокого по мере того, как падает солнечный свет, таким образом гарантируя, что более высокие характеристики панели не вызовут никаких проблем, и она будет совместима с любым желаемым батареи, просто подключив несколько выпрямительных диодов последовательно.

О компании Swagatam

Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем/печатных плат, производитель. Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными схемами и учебными пособиями.
Если у вас есть какие-либо вопросы, связанные со схемой, вы можете ответить через комментарии, я буду очень рад помочь!

Взаимодействие с читателем

Что такое диодная схема? (с картинками)

`;

Эндрю Бургер

Диодная цепь — это любая из множества электрических цепей, использующих преимущества отличительных характеристик диодов. Класс кристаллических полупроводников с двумя выводами, диоды демонстрируют сильное смещение в сторону переноса электрического заряда «вперед» в одном направлении, в то время как почти полностью подавляют его в другом. Диодные схемы обычно используются в источниках питания для преобразования переменного тока (AC) в постоянный ток (DC) и для настройки телевизионных и радиоприемников. Они также используются в качестве аналоговых и цифровых логических переключателей, в качестве конденсаторов для временного накопления и увеличения электрического заряда, в устройствах защиты от перенапряжений для предотвращения скачков напряжения, которые могут повредить оборудование, и в качестве датчиков для обнаружения и генерации света. Помимо выпрямительных диодов, другие распространенные типы включают светоизлучающие диоды (СИД), варикапы и стабилитроны.

Диоды.

Диоды были первыми изобретенными полупроводниковыми электронными устройствами. Широко используемые в электронной промышленности, они обычно изготавливаются из кремния, хотя также используется германий. Электрическое сопротивление диодной цепи минимально в прямом направлении, от анода к катоду, отсюда и термин «прямое смещение». Кремниевые диоды, например, имеют падение напряжения 0,6-0,7 В, пороговую точку, при протекании тока в прямом направлении. Чтобы ток протекал через диод в обратном направлении, должно быть достигнуто относительно высокое минимальное напряжение. Именно эти свойства делают диодные схемы очень полезными в самых разных электронных устройствах.

Светодиоды действуют как полупроводники и источники света.

В диодной цепи диод может быть подключен к любому из множества других электрических или электронных устройств — конденсаторам, резисторам, трансформаторам, источникам питания и т. д. — в зависимости от применения. Диоды в цепях могут быть расположены последовательно или параллельно. Первоначальное применение диодной схемы, которое до сих пор широко используется, — это коммутация аналоговых сигналов. На заре цифровых вычислений диодные схемы использовались для выполнения цифровых логических операций И ​​и ИЛИ.

Из многих различных типов диодов, используемых в цепях, светодиоды излучают свет видимых и невидимых частот, когда ток проходит между электродами.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *