Эл схема подключения эл двигателя. Схема подключения электродвигателя: способы соединения обмоток и особенности подключения

Как правильно подключить электродвигатель. Какие существуют схемы соединения обмоток — звезда и треугольник. Чем отличается подключение однофазных и трехфазных двигателей. Как подобрать оптимальную схему подключения.

Содержание

Основные типы электродвигателей и их характеристики

Электродвигатели можно разделить на две основные группы:

  • Двигатели постоянного тока — применяются в приводах с высокими требованиями к регулировке скорости и момента. Используются в станках, транспорте, роботах.
  • Двигатели переменного тока — наиболее распространены благодаря простоте конструкции и надежности. Применяются в бытовой технике, промышленном оборудовании.

По числу фаз питания различают:

  • Однофазные двигатели — работают от однофазной сети 220 В. Мощность до 3-5 кВт.
  • Трехфазные двигатели — питаются от трехфазной сети 380 В. Мощность от долей до сотен кВт.

Способы соединения обмоток трехфазного двигателя

Для трехфазных двигателей существует два основных способа соединения обмоток статора:


Соединение звездой

При соединении звездой:

  • Концы обмоток соединяются в общую точку
  • На начала обмоток подается линейное напряжение 380 В
  • Фазное напряжение на обмотке составляет 220 В
  • Обеспечивается плавный пуск двигателя
  • Мощность двигателя снижается в 1.73 раза

Соединение треугольником

При соединении треугольником:

  • Обмотки соединяются последовательно в замкнутый контур
  • На соединения подается линейное напряжение 380 В
  • Фазное напряжение на обмотке равно 380 В
  • Обеспечивается полная мощность двигателя
  • Возникают большие пусковые токи

Определение схемы подключения по маркировке

Способ подключения обычно указывается на шильдике двигателя:

  • Δ/Y 380/660 В — возможно включение треугольником на 380 В или звездой на 660 В
  • Y/Δ 660/380 В — включение звездой на 660 В или треугольником на 380 В
  • Y 380 В — только включение звездой на 380 В

Количество выводов в клеммной коробке также определяет возможные схемы:

  • 3 вывода — только звезда
  • 6 выводов — возможно переключение звезда/треугольник
  • 9 выводов — двигатель с двумя скоростями

Особенности подключения однофазных двигателей

Для работы однофазного двигателя необходимо создать вращающееся магнитное поле. Это достигается несколькими способами:


  • Использование пускового конденсатора — обеспечивает сдвиг фаз между обмотками
  • Применение экранированных полюсов — создает асимметрию магнитного поля
  • Использование расщепленной фазы — часть обмотки питается через конденсатор

Наиболее распространена схема с пусковым и рабочим конденсаторами:

  • Пусковой конденсатор большой емкости для запуска
  • Рабочий конденсатор меньшей емкости для работы
  • Центробежный выключатель отключает пусковой конденсатор после разгона

Выбор оптимальной схемы подключения

При выборе схемы подключения учитывают следующие факторы:

  • Номинальное напряжение двигателя и сети
  • Требуемые пусковые характеристики
  • Режим работы — продолжительный или повторно-кратковременный
  • Условия пуска — легкий или тяжелый
  • Необходимость регулирования скорости

Оптимальные варианты для разных условий:

  • Легкий пуск, постоянная нагрузка — звезда
  • Тяжелый пуск, переменная нагрузка — треугольник
  • Частые пуски — переключение звезда-треугольник
  • Регулирование скорости — частотный преобразователь

Подключение через магнитный пускатель

Для управления мощными двигателями применяют магнитные пускатели, которые обеспечивают:


  • Коммутацию силовых цепей
  • Защиту от перегрузки и короткого замыкания
  • Реверс двигателя
  • Дистанционное управление

Схема подключения через пускатель включает:

  • Силовые контакты для подключения двигателя
  • Катушку управления на 220 или 380 В
  • Кнопки «Пуск» и «Стоп»
  • Тепловое реле для защиты

Меры безопасности при подключении

При подключении электродвигателей необходимо соблюдать следующие правила безопасности:

  • Отключить питание перед началом работ
  • Проверить отсутствие напряжения
  • Использовать провода соответствующего сечения
  • Обеспечить надежный контакт в соединениях
  • Заземлить корпус двигателя
  • Проверить сопротивление изоляции обмоток
  • Провести пробный пуск без нагрузки

Правильное подключение электродвигателя обеспечит его надежную и эффективную работу. При возникновении сложностей рекомендуется обратиться к квалифицированному электрику.


Схема подключения электродвигателя, подключение трехфазного двигателя в однофазную сеть

электрика, сигнализация, видеонаблюдение, контроль доступа (СКУД) и другие инженерно технические системы (ИТС)

Схема подключения электродвигателя во многом определяется условиями его эксплуатации.

Например, подключение «звездой» обеспечивает большую плавность работы, но дает потерю мощности по сравнению с подключением «треугольником».

Иногда бывает нужно подключить трехфазный двигатель в однофазную сеть. В любом случае рассматривать этот вопрос надо по порядку. (Здесь и далее разговор пойдет про асинхронный электродвигатель как наиболее часто встречающийся).

На рисунке 1 представлены две схемы соединения обмоток двигателя.

  1. Схема соединения «звездой». Начала (или концы) всех обмоток соединяются в одной точке, оставшиеся концы (или начала) подключаются каждый к своей фазе (L1, L2, L3).

    Эта схема не позволяет использовать электрический двигатель на полную мощность, но имеет меньший пусковой ток.

  2. Соединение обмоток электродвигателя «треугольником». При этом начало одной обмотки соединяется с концом другой. Вершины получившегося треугольника подключаются к цепи трехфазного тока.

    В отличие от соединения «звездой» эта схема позволяет использовать всю паспортную мощность двигателя, но имеет больший пусковой ток.

  3. Подключение двигателя к сети одинаково, вне зависимости от способа соединения обмоток, поэтому, рассказывая про различные его подключения я буду использовать приведенное здесь обозначение электродвигателя, чтобы лишний раз не затруднять восприятие схемы.

Подключение двигателя к сети производится через электромагнитный пускатель. Схемы таких подключений приведены здесь.

Соединение обмоток двигателя в ту или иную схему производится соответствующей установкой перемычек в клеммной коробке. (См. на соответствующих рисунках под схемами соединений). Для тех, кто привык разбираться во всем досконально на нижней части рисунка 1.с приведена схема подключения обмоток электродвигателя к соответствующим клеммам.

Следует заметить, что сказанное относится к двигателям не подвергавшимся переделкам (ремонту) и имеющим штатную маркировку обмоток.

В противном случае нужно самостоятельно найти обмотки, их начала и концы. Как это сделать поясняет рисунок 2.

  1. Прозваниваем обмотки. Для этого один измерительный щуп мультиметра в режиме измерения сопротивления подсоединяем к любой клемме (выводу), другим последовательно проверяем остальные. Точки, сопротивление между которыми составляет единицы или доли ом (близко к нулю), являются выводами одной обмотки.
  2. Отмечаем найденную обмотку, аналогичным образом прозваниваем оставшиеся выводы, находим остальные.
  3. Определяем начала и концы обмоток электродвигателя. Для этого соединяем любые две последовательно, подаем на них переменное напряжение. Для безопасности лучше ограничиться его величиной 12-36 Вольт. К оставшейся подключаем мультиметр в режиме измерения переменного напряжения. Наличие напряжения свидетельствует, что обмотки соединены синфазно, то есть конец одной подключен к началу другой.

    Этот вариант как раз изображен на рисунке. Отсутствие напряжения говорит о том, что обмотки соединены концами (или началами). Маркируем их соответствующим образом. Повторяем указанные действия для оставшейся обмотки, соединенной с любой из первых двух.

ПОДКЛЮЧЕНИЕ ТРЕХФАЗНОГО ДВИГАТЕЛЯ В ОДНОФАЗНУЮ СЕТЬ

Такая необходимость возникает достаточно часто. Сразу замечу — мощность электродвигателя при этом теряется.

Схема подключения трехфазного электродвигателя в однофазную (220 В) сеть требует наличия фазосдвигающего конденсатора Ср. Значение его емкости в микрофарадах (мкФ) для двигателей мощностью до 2,5 кВт можно определить умножив мощность двигателя в кВт на 100.

Конечно, для этого существует специальная формула, но описанным образом емкость можно получить с достаточной степенью приближения.

Наиболее простая схема приведена на рисунке 3.

В зависимости от положения переключателя SB1 будет меняться направление вращения электродвигателя. Подключение двигателя к сети производится выключателем F, в качестве которого лучше использовать автоматический выключатель.

Сразу после его включения для старта (набора оборотов) нужно подключить дополнительный конденсатор Сдоп, емкостью в 2-3 раза большей, чем Сраб. Это достигается нажатием кнопки SB2, которая должна быть отпущена сразу после набора электродвигателем оборотов.

Резистор R служит для разряда конденсатора Сдоп после его отключения. Значение этого резистора некритично и может быть порядка 100 — 500 кОм.

По этой схеме можно подключать электродвигатели с по схеме как «треугольник» так и «звезда».

Следующая схема (рис.4) использует подключение электродвигателя через пускатель. Сделано это так, чтобы включение можно было производить одним нажатием. Давайте посмотрим как эта схема работает.

При нажатии кнопки «пуск» срабатывает пускатель КМ1. Одними своими контактами он подключает дополнительный конденсатор Сдоп, другими — включает пускатель КМ2, который подает на электродвигатель напряжение (контактная группа КМ2.1) и одновременно блокирует контакты КМ1.1 первого пускателя.

После набора оборотов кнопка пуск отпускается, пускатель КМ1 отключается, отключая Cдоп. Напряжение на пускатель КМ2 подается им самим, он находится в замкнутом состоянии до нажатия кнопки «стоп», размыкающей цепь питания.

Катушки пускателей должны быть рассчитана на напряжение 220В.

© 2012-2021 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов


Подключение электродвигателя по схеме звезда и треугольник

Схемы подключения электродвигателя. Звезда, треугольник, звезда — треугольник.

Асинхронные двигатели, имея ряд таких неоспоримых достоинств, как надежность в эксплуатации, высокая производительность, способность выдерживать большие механические перегрузки, неприхотливость и невысокая стоимость обслуживания и ремонта, обусловленные простотой конструкции, имеют, конечно и свои определенные недостатки.

На практике применяются основные способы подключения к сети трёхфазных электродвигателей: «подключение звездой» и «подключение треугольником».

При соединении трёхфазного электродвигателя звездой, концы его статорных обмоток соединяются вместе, соединение происходят в одной точке, а на начала обмоток подаётся трехфазное напряжение (рис 1).

При соединении трёхфазного электродвигателя по схеме подключения «треугольником» обмотки статора электродвигателя соединяются последовательно таким образом что конец одной обмотки соединяется началом следующей и так далее (рис 2).

Не вдаваясь в технические и теоретические основы электротехники известно, что электродвигатели у которого обмотки, соединенные звездой работают плавнее и мягче, чем электродвигатели с соединенными обмотками треугольником, необходимо отметить, что при соединении обмоток звездой электродвигатель не может развить полную мощность. При соединении обмоток по схеме треугольник электродвигатель работает на полную паспортную мощность (что составляет в 1,5 раз больше по мощности, чем при соединении звездой), но при этом имеет очень большие значения пусковых токов.

 В связи с этим для снижения пусковых токов целесообразно (особенно для электродвигателей с большей мощностью) подключение по схеме звезда — треугольник; первоначально запуск осуществляется по схеме «звезда», после этого (когда электродвигатель «набрал обороты»), происходит автоматическое переключение по схеме «треугольник».

 Схема управления :

Еще вариант схемы управления двигателем

 Подключение напряжения питания через контакт NC (нормально закрытый) реле времени К1 и контакт NC К2, в цепи катушки пускателя К3.

 После включения пускателя К3, своими нормально-замкнутыми контактами размыкает цепи катушки пускателя К2 контактами К3 (блокировка случайного включения) и замыкает контакт К3, в цепи питания катушки магнитного пускателя К1, который совмещен с контактами реле времени.

 При включении пускателя К1 происходит замыкание контактов К1 в цепи катушки магнитного пускателя К1 и одновременно включается реле времени, размыкается контакт реле времени К1 в цепи катушки пускателя К3, замыкает контакт реле времени К1 в цепи катушки пускателя К2.

 Отключение обмотки пускателя К3, замыкается контакт К3 в цепи катушки магнитного пускателя К2. После включение пускателя К2, размыкает своими контактами К2 в цепи катушки питания пускателя К3.

(Начало обмоток статора: U1; V1; W1. Концы обмоток: U2; V2; W2. На клеммной доске шпильки начала и концов обмоток расположены в строгой последовательности: W2; U2; V2; под ними расположены: U1; V1; W1. При подключении двигателя в «треугольник» шпильки соединяются перемычками: W2-U1; U2-V1; V2-W1.)

На начала обмоток U1, V1 и W1 через силовые контакты магнитного пускателя К1 подаётся трехфазное напряжение. При срабатывании магнитного пускателя К3 с помощью его контактов К3, происходит замыкание, соединяя концы обмоток U2, V2 и W2 между собой обмотки двигателя соединены звездой.

 Через некоторое время срабатывает реле времени, совмещённое с пускателем К1, отключая пускатель К3 и одновременно включая К2, замыкаются силовые контакты К2 и происходит подача напряжение на концы обмоток электродвигателя U2, V2 и W2. Таким образом электродвигатель включается по схеме треугольник.

Для запуска двигателей по схеме звезда-треугольник разными производителями выпускаются так называемые пусковые реле, название они могут иметь разные «Пусковые реле времени» , реле «старт-дельта» и др., но назначение у них одно и тоже:

РВП-3, ВЛ-32М1, D6DS (Австрия) , ВЛ-163 (Украина), CRM-2T  (Чехия), TRS2D (Чехия),  1SVR630210R3300 (ABB), 80 series (Finder) и другие.

Типовая схема с пусковым реле времени (реле «звезда/треугольник») для управления запуском трехфазного асинхронного двигателя:

Вывод:  Для снижения пусковых токов запускать двигатель необходимо в следующей последовательности: сначала включенным по схеме «звезда» на пониженных оборотах, далее переключаться на «треугольник».
Запуск сначала треугольником создает максимальный момент, а уже переключение на звезду (пусковой момент в 2 раза меньше) с дальнейшей работой в номинальном режиме, когда электродвигатель «набрал обороты», происходит автоматическое переключение на схему треугольник, стоит учитывать какая нагрузка на валу перед запуском, ведь вращающий момент при звезде ослаблен, поэтому такой способ запуска вряд ли подойдет для очень загруженных двигателей, может выйти из строя.

однофазные и трёхфазные электродвигатели, возможность подключить

Принципом работы любого электрического двигателя является способность трансформировать электрическую энергию в механическую. Независимо от конструкции, каждая электрическая машина устроена одинаково: в неподвижной части (статор или индуктор) вращается подвижная часть (ротор или якорь). Для продолжительной бесперебойной эксплуатации оборудования необходимо правильное подключение электродвигателя.

Основные разновидности

Электрические двигатели обладают рядом очевидных достоинств. Они гораздо меньше по размеру, чем их тепловые аналоги идентичной мощности. Поэтому они отлично подходят для размещения в общественном электротранспорте или на заводских станках. Во время работы они не вредят окружающей среде выделением продуктов распада и паровыми испарениями.

Электрические двигатели можно разделить на две основных группы:

  1. Двигатели постоянного тока. Применяются для регулируемых электроприводов с эксплуатационными показателями высокого качества, такими как готовность к перезагрузке и вращательная равномерность. Ими оснащают вспомогательные агрегаты экскаваторов, полимерного оборудования, бурильных станков. Электродвигатели массово применяются в электротранспорте. Преобразователи постоянного тока дополнительно подразделяются на коллекторные и вентильные.
  2. Двигатели переменного тока. Являются более дешевыми и долговечными, с простым и надёжным конструкторским решением. Подавляющее большинство бытовой домашней техники укомплектовано этими электродвигателями. В промышленности они применяются в заводских станках, вентиляторах, компрессорах, насосах, лебёдках для поднятия и перемещения груза. По принципу работы эти механизмы делятся на синхронные и асинхронные.

Способы подключения

Электрические двигатели любой конструкции устроены одинаково. В статичной обмотке (статоре) осуществляется вращение ротора. В нём происходит возбуждение магнитного поля, отталкивающее его полюсы от статора. Бесперебойная работа этой конструкции обусловлена правильным подключением электродвигателя, зависящим от используемого вида.

Однофазный асинхронный

Этот двигатель получил такое название потому, что у него всего одна рабочая обмотка. Его мощность может составлять от пяти до десяти киловатт. Рабочая и пусковая обмотки располагаются между собой под прямым углом.

К цепи необходимо подключить фазовращающий элемент. Такая схема подключения однофазного электродвигателя с конденсатором отличается оптимальными пусковыми свойствами. Используя конденсатор, электрический двигатель может быть оснащен следующими видами этого двухполюсника:

  • рабочим;
  • пусковым;
  • рабочим и пусковым.

На практике чаще всего применяется пусковой конденсатор. Применить этот вариант можно, используя реле времени или замкнув электрическую цепь через пусковую кнопку.

В случае выбора схемы подключения электродвигателя 220 В через конденсатор пусковые характеристики заметно ухудшаются. Третий вариант с пусковым и рабочим двухполюсником считается промежуточным.

Коллекторный вариант

Универсальность этого двигателя заключается в том, что он имеет возможность получать энергию от преобразователей переменной или постоянной разновидности тока. Он находит применение в швейных или стиральных машинах, бытовых электрических инструментах.

Однофазные коллекторные двигатели отличаются такими недостатками:

  1. Сложность ремонтных работ, невозможность их самостоятельного проведения.
  2. Высокий уровень шума.
  3. Сложное управление.
  4. Высокая стоимость.

Сначала необходимо убедиться, что параметры электрической сети соответствуют допустимым напряжению и частоте, указанным на корпусе электродвигателя. Система должна быть предварительно обесточена.

Для подключения коллекторного двигателя следует последовательно соединить статор и якорь. Клеммы 2 и 3 необходимо соединить, а 1 и 4 замкнуть в цепь 220 В. Включение без регулятора перепада давления может спровоцировать образование пускового тока значительной мощности, что приведёт к искрению в коллекторе.

Также стоит рассмотреть схему подключения электродвигателя через магнитный пускатель:

  1. Следует удостовериться, что контактная система пускателя выдержит эксплуатационные условия электрического двигателя. Есть восемь категорий величины нагрузочного тока от 6,3 А до 250 A. Величина в этом случае обозначает силу тока, которую в состоянии пропустить через рабочие контакты электромагнитный пускатель.
  2. Катушка управления может быть рассчитана на 36 В, 220 В, 380 В. Следует выбрать вариант 220 вольт.
  3. После сбора схемы электромагнитного пускателя следует подключить силовую часть. На выходе силовых контактов происходит включение электрического двигателя, параллельно присоединяется вход на 220 вольт.
  4. Затем следует подключить кнопки «Стоп» и «Пуск».
  5. На второй вывод электромагнитного пускателя необходимо присоединить «ноль».

Подключение «звездой»

Такой способ подходит для схемы подключения трёхфазного электродвигателя на 380 В. К началу обмоток (С 1, С 2, С 3) подсоединяются фазные проводники (А, В, С) через аппарат коммутации. Концы обмоток необходимо совместить в одной точке.

Такая схема электродвигателя не позволит развить всю его мощность, потому что на каждой обмотке напряжение будет равняться 220 В. Возможность подключить электрический двигатель по схеме «звезда» подтверждается на табличке символом Y.

Эту схема подключения двигателя можно без труда различить в клеммной коробке из-за перемычки, расположенной посреди выводов обмоток.

Соединение «треугольник»

Чтобы трёхфазная электромашина смогла развить максимально предусмотренную мощность, следует применять схему подключения асинхронного двигателя способом «треугольник».

Выводы обмоток необходимо соединить в следующем порядке:

  • С 2 с С 4;
  • С 3 с С 5;
  • С 6 с С 1.

Между проводами в трёхфазных сетях линейное напряжение будет равняться 380 В. С таким вариантом подключения может не справиться проводка, потому что она способствует возникновению пусковых токов. Такое соединение возможно в случае наличия на табличке двигателя значка Δ.

Для полного понимания того, как подключить электродвигатель с 3 проводами, следует знать о комбинированном подключении. В таком случае сперва применяется схема соединения «звездой», затем в рабочем режиме обмотки переключается на «треугольник».

Всегда нужно помнить в процессе работы с электрическими приборами о строгом соблюдении правил техники безопасности. Все действия необходимо производить лишь в режиме обесточенного оборудования.

Схемы подключения асинхронных электродвигателей

Чтобы привести ротор электродвигателя в движение необходимо правильно подключить концы обмоток статора к трехфазной сети, где рабочее напряжение может быть:

  • 220 вольт
  • 380 вольт
  • 660 вольт

Заказать новый электродвигатель по телефону
Асинхронные электродвигатели АИР предполагают два способа подключения к трехфазной промышленной сети – «треугольник» и «звезда». В основном электродвигатели АИР рассчитаны на 2 номинальных напряжения 220/380 В, либо 380/660 В и имеют два способа подключения к трехфазной промышленной сети: «звезда» и «треугольник»

220/380

220 В – «треугольник»

380 В – «звезда»

380/660

380 В — «треугольник»

660 В — «звезда»

Как правильно подключить шесть проводов электродвигателя?

Как правило двигатели имеют шесть выводов для возможности выбора схемы подключения: «звезда» либо «треугольник». Но встречаются и три вывода — уже соединенных внутри двигателя по схеме «звезда».

Схема подключения «звезда»

При подключении обмоток звездой начала обмоток подключаются к фазам, а концы обмоток собираются общую точку (0 точку).

Таким образом напряжение фазной обмотки составит 220В, а линейное напряжение между обмотками 380В. Основным преимуществом подключения электродвигателя по схеме звезда является:

  1. Плавный пуск
  2. Возможность перегрузки (недлительной)
  3. Повышенная надежность

При этом данная схема подключения обеспечит более низкую мощность от заявленной.

Схема подключения «треугольник»

При подключении треугольником последовательно конец одной обмотки соединяется с началом следующей обмотки.

Главными преимуществами такого подключения являются:

  1. Максимальная мощность
  2. Повышенный вращающий момент
  3. Увеличенные тяговые способности

Однако, электродвигатели подключенные по схеме звезда больше нагреваются.

Комбинированный тип подключения

Как уже было отмечено, подключение «звездой» обеспечивает более плавный пуск, но пр этом не достигается максимальная заявленная мощность электромотора. При подключении «треугольником» достигается полная мощность, но пусковой ток может повредить изоляцию. Поэтому для мощных двигателей (начиная от АИР100L2), часто применяют комбинированную схему подключения трехфазных электродвигателей «звезда-треугольник», когда запуск двигателя происходит по схеме «звезда», в рабочем состоянии он переключается на схему «треугольник». Переключение обеспечивается магнитным пускателем или пакетным переключателем.

Наиболее популярные модели асинхронных электродвигателей:

✔ Как подключить электродвигатель, схема подключения

 

Трехфазные электродвигатели — имеют более высокую эффективностью, чем однофазные электродвигатели на 220 вольт. Поэтому подключение электродвигателя на 380 вольт обеспечивает более стабильную и экономичную работу устройства. Для запуска электродвигателя не понадобятся конденсаторы или другие пусковые устройства и обмотки, потому что вращающееся магнитное поле возникает в статоре сразу после подключения к электросети 380 Вольт.

На шильде электродвигателя должно быть видно, что обмотки электродвигателя можно соединить, как треугольником на 220 Вольт, так звездой на 380 Вольт.
В клеммной коробке электродвигателя вы увидите шесть выводов — U1, U2, V1,V2, W1, W2. Это означает что электродвигатель можно подключить на 220 или 380 Вольт.
 

Схема подключения трехфазного электродвигателя:

Подключение звездой — большинство промышленных трехфазных электродвигателей подключается по схеме — «звезда» 380В.
При подключении звездой вам нужно подключить 3 фазы на разъемы А, В, С.

При подключении треугольником на 220В — необходимо сделать три разные последовательные соединения. После чего можно подключать к 3 независимым последовательным соединениям 3 фазы на разъемы А, В и С как не рисунке.

Подключение звезда-треугольник — В очень редких случаях для получения большей отдачи по мощности, электродвигатель подключают «звезда-треугольник»

Внимание:

Указанная мощность на бирке электродвигателя, это не электрическая, а механическая мощность на валу.

Хочу заметить, что при подключении электродвигателя по схеме «звезда» запуск будет достаточно плавным, но при этом сложно будет достичь максимальной мощности работы трехфазного асинхронного электродвигателя. Поэтому для достижения максимальных показателей электродвигатель подключают «треугольником» и тогда он выдаст полную заявленную мощность, а это в 1,5 раза больше чем при подключении звездой. Но нужно знать что при запуске «треугольником» ток настолько высокий, что может повредить изоляцию проводки и сократить срок службы электродвигателя. Именно поэтому для мощных электродвигателей применяют комбинированную схему подключения по принципу «звезда-треугольник». Сначала запуск мотора происходит по схеме «звезда», но когда электродвигатель набирает достаточную мощность происходит ручное или автоматическое (через реле) переключение на схему «треугольник». После чего мощность возрастает в несколько раз.

Подключение трехфазного электродвигателя, видео:

Схемы подключения электродвигателя 380 и 220 (фото, видео)

Одним из ключевых моментов, обеспечивающих нормальную работу привода, является правильная схема подключения электродвигателя – ключевого звена цепи. Соблюдение всех соединений гарантирует отсутствие нештатных ситуаций, повреждения обмоток, долговечную работу и прогнозируемую агрегата. Важно понимать, что существуют общепринятые решения для включения эл. моторов одно- и трехфазных (220 и 380 В), с потреблением постоянного/переменного тока, с пускателем и защитой теплового реле, а также специфические схемы, например, моторы с фазным ротором, или П 41, работающие на 110/220 В, выходящие за привычные рамки.

Классические варианты подключения

Большинство эл. моторов для современных электроприводах работают от переменной трехфазной линии (каждая из трех фаз подается отдельным проводником). Соответственно, клеммная коробка содержит выводы (входной и выходной) трех обмоток. Между собой и с сетью они могут соединяться по двух классическим схемам: «звезда» и «треугольник».

Схема подключения Звездой и Треугольником

Для первой характерной особенностью является замыкание концевых выводов каждой катушки в одну точку (на практике это одну нейтраль). На входные вывода между тем подается напряжение сети. Подобная схема характеризуется более мягким ходом, но к сожалению, не позволяет развить полную мощность.

Второй вариант с треугольником характеризуется последовательным соединением выводов обмоток: конец первой соединяется с началом второй и т. д. Такой вариант пуска гарантирует достижение паспортной мощности, но во время включения возможно возникновение больших по значению токов, которые могут термически повредить обмоточные выводы.

Если снять крышку клеммной коробки, то оба варианта подключения будут выглядеть следующим образом:

Применение магнитного контактора

Для организации плавного пуска приходится внедрять в цепь питания специальное коммутирующее устройство – пускатель. Это один из вариантов коннектора, который можно дополнить опциональными элементами, например, тепловым реле. Огромным преимуществом такой схемы является возможность организации не только пуска эл. двигателя, но и его остановки, реверса, а также защиты соединений от повреждения избыточными токами. Кроме того, сердечник или катушка может иметь номинал по напряжению 380 или 220В, что позволяет включать мотор в силовую и бытовую сеть.

Классические электросхемы подключения моторов через пускатель можно разделить на два типа:

  1. Нереверсивная. Соединение агрегата и сети без необходимости/возможности организации его обратного хода. В этом случае есть возможность интеграции, как в силовую, так и бытовую (220В) сеть,

Нереверсивная схема подключения

  1. Реверсивная. Электросхема, которая объединяет два пускателя (блок) с прерывателем цепи. Менять направление вращения роторного узла можно также для силовых и бытовых (220В) сетей.

Реверсивная схема подключения

Как можно судить по иллюстрациям, отличия между «сетевыми» вариантами заключаются в точках подключения выводов контактора:

  • для 380 вольт контакты замыкаются на 2 из 3 фаз,
  • для 220 вольт один из контактов соединяется с крайней фазой, а второй – с нулем.

Тепловое реле

Кроме того, во всех четырех вариантах присутствует элемент, обозначенный, как «Р». Это не что иное, как тепловое реле. Оно подключается в цепь последовательно с катушкой контактора и служит для обеспечения защиты двигателя от превышения токовых нагрузок.

По принципу действия тепловое реле является ключом, то есть при достижении критических для работоспособности агрегата и контактора токовых значений, происходит временный разрыв цепи питания. Некоторые виды теплового реле или «теплушки» используют для цепей постоянного тока или специфических режимах (затянутый пуск, выпадение фазы и т. п).

Постоянное включение магнитного пускателя приводит к механическому износу контактов, чего лишена тиристорная или бесконтактная схема. Разрыв цепи происходит не механическим путем (разведение контактной группы), а электронным – за счет диодных мостов.

Работа устройств со специфической подвижной частью

Привычным вариантом роторного узла трехфазного асинхронного электродвигателя является короткозамкнутый типа «беличья клетка», который набирается из стальных пластин. Когда существует необходимость снизить номинал пусковых токов с возможностью регулирования частоты вращения, тогда используется фазный ротор. Характерной его особенностью являются две группы выводов:

  1. Статорная. Классический клеммный блок, на который подводится напряжение сети (380 или 220В),
  2. Роторная. Дополнительный клеммник для выводов обмоток фазного ротора, к которым подключаются контакты реостата (блока сопротивлений).

Последний необходим для плавного пуска с постепенным включением/отключением отдельных сопротивлений в обмоточной цепи фазного ротора.

Работа ДПТ типа П 41

Электрическая машина, питание которой осуществляется постоянным током 220 В, имеет более сложную конструкцию в сравнении с вышеописанными агрегатами. Специфика работы, например, модели П 41, требует наличия коллекторно-щеточного узла, катушки якоря, вспомогательных полюсов статора (индуктора). Двигатели данного типоразмера модели относятся к машинам с электромагнитным индуктором. То есть, для подключения и пуска П 41 используется не постоянный магниты, а независимая или смешанная обмотка возбуждения на 110 или 220В.

Как можно судить, работа трехфазных (380 В) и однофазных (220 В) машин переменного тока или ДПТ типа П 41 может быть организована самыми разными способами, от классических до специфических, учитывающих реальные условия эксплуатации.

Схемы подключения электродвигателей к сети переменного тока 220 вольт

Для того чтобы разобраться, как подключить электродвигатель конкретного типа, необходимо понимать принципы его работы и особенности конструкции. Существует множество электродвигателей разных типов. По способу подключения к сети переменного тока они бывают трехфазные, двухфазные или однофазные. По способу питания обмотки ротора делятся на синхронные и асинхронные.

Принцип действия

Принцип действия электродвигателя демонстрирует простейший опыт, который всем нам показывали в школе — вращение рамки с током в поле постоянного магнита.

Рамка с током — это аналог ротора, неподвижный магнит — статор. Если в рамку подать ток, она повернется перпендикулярно направлению магнитного поля и застынет в этом положении. Если заставить магнит крутиться, рамка будет вращаться с той же скоростью, то есть синхронно с магнитом. У нас получился синхронный электродвигатель. Но у нас магнит — это статор, а он по определению неподвижен. Как заставить вращаться магнитное поле неподвижного статора?

Для начала заменим постоянный магнит катушкой с током. Это обмотка нашего статора. Как известно из той же школьной физики, катушка с током создает магнитное поле. Последнее пропорционально величине тока, а полярность зависит от направления тока в катушке. Если подать в катушку переменный ток, получим переменное поле.

Магнитное поле — векторная величина. Переменный ток в питающей сети имеет синусоидальную форму.

Нам поможет очень наглядная аналогия с часами. Какие векторы вращаются постоянно перед нашими глазами? Это часовые стрелки. Представим, что в углу комнаты висят часы. Секундная стрелка вращается, делая один полный оборот в минуту. Стрелка — вектор единичной длины.

Тень, которую стрелка отбрасывает на стену, меняется как синус с периодом в 1 минуту, а тень, отбрасываемая на пол — как косинус. Или синус, сдвинутый по фазе на 90 градусов. Но вектор равен сумме своих проекций. Другими словами, стрелка равна векторной сумме своих теней.

Двухфазный синхронный электродвигатель

Расположим на статоре две обмотки под углом в 90 градусов, то есть взаимно перпендикулярно. Подадим в них синусоидальный переменный ток. Фазы токов сдвинем на 90 градусов. Имеем два вектора взаимно перпендикулярных, меняющихся по синусоидальному закону со сдвигом фаз на 90 градусов. Суммарный вектор будет вращаться подобно часовой стрелке, делая один полный оборот за период частоты переменного тока.

У нас получился двухфазный синхронный электродвигатель. Откуда взять токи, сдвинутые по фазе для питания обмоток? Наверное, не всем известно, что вначале распределительные сети переменного тока были двухфазными. И лишь позднее, не без борьбы, уступили место трехфазным. Если бы не уступили, то наш двухфазный электромотор можно было подключить напрямую к двум фазам.

Но победили трехфазные сети, для которых были разработаны трехфазные электродвигатели. А двухфазные электромоторы нашли свое применение в однофазных сетях в виде конденсаторных двигателей.

Трехфазный синхронный двигатель

Современные распределительные сети переменного тока выполнены по трехфазной схеме.

  • По сети передаются сразу три синусоиды со сдвигом фаз на треть периода или на 120 градусов относительно друг друга.
  • Трехфазный двигатель отличается от двухфазного тем, что у него не две, а три обмотки на статоре, повернутых на 120 градусов.
  • Три катушки, подключенные к трем фазам, создают в сумме вращающееся магнитное поле, которое поворачивает ротор.

Трехфазный асинхронный двигатель

Ток в ротор синхронного двигателя подается от источника питания. Но мы знаем из той же школьной физики, что ток в катушке можно создать переменным магнитным полем. Можно просто замкнуть концы катушки на роторе. Можно даже оставить всего один виток, как в рамке. А ток пусть индуцирует вращающееся магнитное поле статора.

  1. В момент старта ротор неподвижен, а поле статора вращается.
  2. Поле в контуре ротора меняется, наводя электрический ток.
  3. Ротор начнет догонять поле статора. Но никогда не догонит, так как в этом случае ток в нем перестанет наводиться.
  4. В асинхронном двигателе ротор всегда вращается медленнее магнитного поля.
  5. Разница скоростей называется скольжением. Подключение асинхронного двигателя не требует подачи тока в обмотку ротора.

У синхронных и асинхронных электродвигателей есть свои достоинства и недостатки, но факт состоит в том, что большинство двигателей, применяемых в промышленности на сегодняшний день — это асинхронные трехфазные двигатели.

Однофазный асинхронный электродвигатель

Если оставить на роторе короткозамкнутый виток, а на статоре одну катушку, то мы получим удивительную конструкцию — асинхронный однофазный двигатель.

На первый взгляд кажется, что такой двигатель работать не должен. Ведь в роторе нет тока, а магнитное поле статора не вращается. Но если ротор рукой толкнуть в любую сторону, двигатель заработает! И вращаться он будет в ту сторону, в которую его подтолкнули при пуске.

Объяснить работу этого двигателя можно, представив неподвижное переменное магнитное поле статора как сумму двух полей, вращающихся навстречу друг другу. Пока ротор неподвижен, эти поля уравновешивают друг друга, поэтому однофазный асинхронный двигатель не может стартовать самостоятельно. Если же ротор внешним усилием привести в движение, он будет вращаться попутно с одним вектором и навстречу другому.

Попутный вектор будет тянуть ротор за собой, встречный — тормозить.

Можно показать, что из-за разности встречной и попутной скоростей влияние попутного вектора будет сильнее, и двигатель будет работать в асинхронном режиме.

Схема включения

Возможно подключение нагрузок к трехфазной сети по двум схемам — звездой и треугольником. При подключении звездой начала обмоток соединяются между собой, а концы подключаются к фазам. При включении треугольником конец одной обмотки подключается к началу другой.

В схеме включения звездой обмотки оказываются под фазным напряжением 220 В., при включении треугольником — под линейным 380 В.

При включении треугольником двигатель развивает не только большую мощность, но и большие пусковые токи. Поэтому иногда используют комбинированную схему — старт звездой, затем переключение в треугольник.

Направление вращения определяется порядком подключения фаз. Для изменения направления достаточно поменять местами любые две фазы.

Подсоединение к однофазной сети

Трехфазный двигатель можно включать в однофазную сеть, хотя и с потерей мощности, если одну из обмоток подключить через фазосдвигающий конденсатор. Однако при таком включении двигатель сильно теряет в своих параметрах, поэтому этот режим использовать не рекомендуется.

Подключение на 220 вольт

В отличие от трехфазного, двухфазный мотор изначально предназначен для включения в однофазную сеть. Для получения сдвига фаз между обмотками включается рабочий конденсатор, поэтому двухфазные двигатели называют еще конденсаторными.

Емкость рабочего конденсатора рассчитывается по формулам для номинального рабочего режима. Но при отличии режима от номинального, например, при пуске баланс обмоток нарушается. Для обеспечения пускового режима на время старта и разгона параллельно рабочему подключается дополнительный пусковой конденсатор, который должен отключаться при выходе на номинальные обороты.

Как включить однофазный асинхронный двигатель

Если не нужен автоматический запуск, асинхронный однофазный двигатель имеет самую простую схему включения. Особенностью этого типа является невозможность автоматического старта.

Для автоматического пуска используется вторая пусковая обмотка как в двухфазном электромоторе. Пусковая обмотка подключается через пусковой конденсатор только для старта и после этого должна быть отключена вручную или автоматически.

Схема подключения двигателя

Маркировка проводов электродвигателя и соединения

Для конкретных подключений двигателей Leeson перейдите на их веб-сайт и введите номер каталога Leeson в поле «Обзор», вы найдете данные подключения, размеры, данные паспортной таблички и т. Д. Www.leeson.com

Однофазные соединения: (трехфазные — см. Ниже)
Однофазные соединения:

Вращение L1 L2
CCW 1,8 4,5
CW 1,5 4,8

Двойное напряжение: (только основная обмотка)

Напряжение Вращение L1 L2 Присоединиться
Высокая против часовой стрелки 1 4,5 2 и 3 и 8
CW 1 4,8 2 и 3 и 5
Низкая против часовой стрелки 1,3,8 2,4,5 ——-
CW 1,3,5 2,4,8 ——-

Двойное напряжение: (основная и вспомогательная обмотки)

Напряжение Вращение L1 L2 Присоединиться
Высокая против часовой стрелки 1,8 4,5 2 и 3,6 и 7
CW 1,5 4,8 2 и 3,6 и 7
Низкая против часовой стрелки 1,3,6,8 2,4,5,7 ———
CW 1,3,5,7 2,4,6,8 ———

Маркировка однофазных клемм по цвету: (Стандарты NEMA)
1-Синий 5-Черный P1-Цвет не назначен
2-Белый 6-Цвет не назначен P2-Коричневый
3-Оранжевый 7-Цвет не назначен
4- Желтый 8-Красный

Трехфазные соединения:

Деталь Начало намотки:
6 отведений Номенклатура NEMA:
WYE или Delta Connected

Т1 Т2 Т3 Т7 T8 T9
Выводы двигателя 1 2 3 7 8 9

9 выводов Номенклатура NEMA
WYE Connected (только низкое напряжение)

Т1 Т2 Т3 Т7 T8 Т9 Вместе
Выводы двигателя 1 2 3 7 8 9 4 и 5 и 6

12 выводов Номенклатура NEMA и IEC
Одно- или низковольтные двигатели с двойным напряжением

Т1 Т2 Т3 Т7 T8 T9
NEMA 1,6 2,4 3,5 7,12 8,10 9,11
МЭК 1 2 3 7 8 9

Трехфазные односкоростные двигатели

Номенклатура Nema — 6 выводов:

Одно напряжение — внешнее соединение WYE

L1 L2 L3 Присоединиться
1 2 3 4 и 5 и 6

Одиночное напряжение — внешнее соединение треугольником

Соединения одиночного напряжения WYE-треугольник

Режим работы Соединение L1 L2 L3 Присоединиться
Старт WYE 1 2 3 4 и 5 и 6
Бег Дельта 1,6 2,4 3,5 ——-

Соединения двойного напряжения WYE-треугольник

Напряжение Соединение L1 L2 L3 Присоединиться
Высокая WYE 1 2 3 4 и 5 и 6
Низкая Дельта 1,6 2,4 3,5 ——-

Номенклатура NEMA — 9 выводов:
Двойное напряжение, соединение WYE

Напряжение L1 L2 L3 Присоединиться
Высокая 1 2 3 4 и 7, 5 и 8, 6 и 9
Низкая 1,7 2,8 3,9 4 и 5 и 6

Двойное напряжение, соединение по треугольнику

Напряжение L1 L2 L3 Присоединиться
Высокая 1 2 3 4 и 7, 5 и 8,6 и 9
Низкая 1,6,7 2,4,8 3,5,9 ————

Номенклатура NEMA — 12 выводов:
Двойное напряжение — Внешнее соединение WYE

Напряжение L1 L2 L3 Присоединиться
Высокая 1 2 3 4 и 7, 5 и 8, 6 и 9, 10 и 11 и 12
Низкая 1,7 2,8 3,9 4 и 5 и 6, 10 и 11 и 12

Двойное напряжение
Запуск по схеме WYE
Работа по схеме треугольника

Напряжение Conn. L1 L2 L3 Присоединиться
Высокая WYE 1 2 3 4 и 7, 5 и 8, 6 и 9, 10 и 11 и 12
Дельта 1,12 2,10 3,11 4 и 7, 5 и 8, 6 и 9
Низкая WYE 1,7 2,8 3,9 4 и 5 и 6, 10 и 11 и 12
Дельта 1,6,7,12 2,4,8,10 3,5,9,11 ————

Номенклатура IEC — 6 и 12 выводов:
Соединения WYE-треугольник с одним напряжением Соединения WYE-треугольник с одним напряжением

рабочий режим
Conn. L1 L2 L3 Присоединиться
Старт WYE U1 В1 W1 U2 и V2 и W2
Бег Дельта U1, W2 В1, У2 W1, V2 —————

Соединения двойного напряжения WYE-треугольник

Вольт Conn. L1 L2 L3 Присоединиться
Высокая WYE U 1 В1 W1 U2 и V2 и W2
Низкая Дельта U1, W2 В1, У2 W1, V2 —————

Двойное напряжение, соединение по схеме «звезда», запуск
, соединение по схеме «треугольник»

Вольт Conn. L1 L2 L3 Присоединиться
Высокая WYE U 1 В1 W1 U2 и U5, V2 и V5, W2 и W5, U6 и V6 и W6
Дельта U1, W6 В1, У6 W1, V6 U2 и U5, V2 и V5,
W2 и W5
НИЗКИЙ WYE У1, У5 V1, V5 W1, W5 U2 и V2 и W2,
U6 и V6 и W6
Дельта U1, U5,
W2, W6
V1, V5
U2, U6
W1, W5
V2, V6
——————————

Номенклатура NEMA — 6 выводов:
Соединение с постоянным крутящим моментом
(низкоскоростное HP составляет половину высокоскоростного HP)

Скорость L1 L2 L3 Типовое
Подключение
Высокая 6 4 5 1, 2 и 3 Присоединиться 2 WYE
Низкая 1 2 3 4-5-6 Открыть 1 Дельта

Соединение с регулируемым крутящим моментом (низкоскоростное HP составляет 1/4 высокоскоростного HP)

Скорость L1 L2 L3 Типовое
Подключение
Высокая 6 4 5 1, 2 и 3 Присоединиться 2 WYE
Низкая 1 2 3 4-5-6 Открыть 1 WYE

Подключение постоянной мощности (л.с. одинаковы на обеих скоростях)

Скорость L1 L2 L3 Типовое
Подключение
Высокая 6 4 5 1-2-3 Открыть 1 Дельта
Низкая 1 2 3 4, 5 и 6 стыков 2 WYE

Номенклатура IEC — 6 выводов:
Соединение с постоянным крутящим моментом

Скорость L1 L2 L3 Типовое
Подключение
Высокая 2 Вт 2U 2 В 1U, 1V и 1W — ПРИСОЕДИНЯЙТЕСЬ 2 WYE
Низкая 1U 1 В 1 Вт 2U-2V-2W ОТКРЫТЬ 1 Дельта

Соединение с регулируемым крутящим моментом

Скорость L1 L2 L3 Типовое
Подключение
Высокая 2 Вт 2U 2 В 1U, 1V и 1W — ПРИСОЕДИНЯЙТЕСЬ 2 WYE
Низкая 1U 1 В 1 Вт 2U-2V-2W ОТКРЫТЬ 1 WYE

Покажи и расскажи: асинхронные двигатели переменного тока

Двигатели переменного тока просты в управлении, надежны и экономичны для общего применения.По этим причинам они являются наиболее популярным типом электродвигателей в различных отраслях промышленности. В этом посте мы кратко представим асинхронные двигатели и продемонстрируем, как ими управлять.

Немного истории

Термин «индукция» в асинхронных двигателях (также известных как асинхронные двигатели) относится к электромагнитной индукции, которая является основной теорией работы асинхронных двигателей. Я объясню это в следующем разделе. Согласно Википедии, с изобретением асинхронного двигателя переменного тока связано несколько имен.В 1824 году французский физик Франсуа Араго открыл вращающиеся магнитные поля и ввел термин «Вращения Араго» (или «Диск Араго»). В 1831 году Майкл Фарадей смог объяснить эффекты, представив теорию электромагнитной индукции. В 1879 году Уолтер Бейли продемонстрировал первый примитивный асинхронный двигатель, включив и выключив его вручную. Первые трехфазные асинхронные двигатели переменного тока без коммутатора были независимо изобретены Галилео Феррарисом в 1885 году и Николой Тесла в 1887 году.Оба опубликовали в 1888 году статьи, объясняющие эти технологии. Тесла подал заявку на патенты в США в 1887 году и получил некоторые из этих патентов в 1888 году. Джордж Вестингауз, который в то время разрабатывал систему переменного тока, лицензировал патенты Теслы в 1888 году и приобрел опцион на патент США на концепцию асинхронного двигателя Феррариса, чтобы развивать технологию дальше. General Electric (GE) начала разработку трехфазных асинхронных двигателей в 1891 году. К 1896 году General Electric и Westinghouse подписали соглашение о взаимном лицензировании на конструкцию ротора со стержневой обмоткой, позже названного ротором с короткозамкнутым ротором.Та же концепция используется и сегодня.

Асинхронные двигатели

идеальны для приложений, требующих непрерывной работы в одном направлении , таких как конвейеры, миксеры и вращающиеся знаки. Они рассчитаны на длительный режим работы и обычно служат долгое время из-за своей простой конструкции.

Конструкция и теория эксплуатации

На этом изображении показана структура асинхронного двигателя переменного тока, который является основным типом двигателей переменного тока с постоянными разделенными конденсаторами.Вращающийся элемент, ротор, поддерживается в корпусе двигателя двумя шарикоподшипниками для длительного срока службы. Статор расположен вокруг ротора с тонким воздушным зазором. Выходной вал соединен с ротором. Подводящие провода подключаются к обмоткам статора. Фланцевый кронштейн запрессован в корпус двигателя для обеспечения качества.

Поскольку переменный ток подается на медные обмотки статора, вокруг ротора создается вращающееся магнитное поле со скоростью колебаний переменного тока.Согласно правилу левой руки Флеминга, движущееся магнитное поле индуцирует ток на алюминиевых стержнях (проводнике) в стальном роторе, который генерирует свои собственные противоположные магнитные поля (закон Ленца). Магнитные поля от ротора затем взаимодействуют с вращающимся магнитным полем от статора, и ротор начинает вращаться.

Теорию работы асинхронного двигателя переменного тока можно объяснить с помощью диска Arago , который представляет собой наблюдаемое явление, включающее правило правой руки Флеминга и правило левой руки Флеминга.

Хотите узнать больше о теории работы двигателей переменного тока?

Однофазные асинхронные двигатели

Однофазные асинхронные двигатели предлагаются с разным напряжением и частотой для разных регионов мира. Для США однофазные двигатели обычно предлагаются на 110/115 вольт или 220/230 вольт, которые легко доступны. 60 Гц — типичная частота источника питания.

Вот действующие схемы подключения этих стандартных 3-проводных двигателей. FYI, направление вращения двигателя указано, если смотреть со стороны выходного вала двигателя.

Хотя принцип работы должен быть одинаковым для всех однофазных двигателей переменного тока с постоянным разделенным конденсатором, представленных на рынке, цвета выводных проводов могут быть разными для разных производителей.

Для стандартного 3-проводного двигателя цвета выводных проводов обычно белый, красный и черный. Черный всегда связан с нейтралью (N). И белый, и черный подключены к 2 клеммам специального конденсатора.Когда ток (L) подключен либо к черному, либо к красному через клемму конденсатора, двигатель начнет вращаться в заданном направлении. Для двигателей с клеммной коробкой принцип работы такой же. Однако клеммы обозначены Z2, U2 и U1.

Подключение конденсатора

Для однофазных двигателей конденсатор важен для запуска. Без пускового момента, обеспечиваемого конденсатором, вам пришлось бы помогать запускать двигатель, вручную вращая вал.Это как старые пропеллеры старинного самолета. Убедитесь, что вы не забыли правильно подключить конденсатор. Это был очень распространенный случай устранения неполадок, когда я работал инженером службы поддержки.

Вот пример подключения 4-контактного конденсатора и однофазного двигателя.

Количество выводов на конденсаторе вас не смущает. На схеме внутренней проводки ниже показано, что две ближайшие клеммы имеют внутреннее соединение. В электрическом отношении это то же самое, что и у традиционных конденсаторов с двумя выводами, которые имеют только по одному выводу с каждой стороны.

Мы также сняли видео, чтобы продемонстрировать правильный способ подключения этих двигателей, включая автоматические выключатели, переключатели и конденсатор.

Трехфазные асинхронные двигатели

Трехфазные асинхронные двигатели обычно предлагаются в США на 220/230 В и 50/60 Гц. В некоторых случаях предлагается 460 вольт. Трехфазные двигатели могут работать либо с постоянной скоростью, либо с инвертором / частотно-регулируемым приводом для приложений с регулируемой скоростью.

Вот действующие схемы подключения этих стандартных 3-проводных двигателей. FYI, направление вращения двигателя указано, если смотреть со стороны выходного вала двигателя.

Для трехпроводного трехфазного двигателя у нас такие же цвета проводов. Три фазы от источника питания обозначены L1 (R), L2 (S) и L3 (T). Подключите красный к L1 (R), белый к L2 (S) и черный к L3 (T). Для двигателей с клеммной коробкой клеммы имеют маркировку U, V и W.Теория работы такая же. Чтобы переключить направление вращения, переключите любое из 2 соединений между R, S и T.

При перегрузке или блокировке вала рекомендуется использовать либо электромагнитный переключатель, либо электронную тепловую функцию инвертора, чтобы предотвратить перегорание двигателя.

Вы, наверное, заметили, что на схеме подключения отсутствует конденсатор . Для однофазных двигателей требуется конденсатор для создания многофазного источника питания. Для трехфазных двигателей конденсатор не нужен.Мы также сняли видео, чтобы продемонстрировать правильную проводку.

И последнее, но не менее важное. Не забудьте электрически заземлить двигатели с помощью специальной клеммы защитного заземления (PE), чтобы избежать удара или травм со стороны персонала.

Это все, что нужно для подключения однофазных и трехфазных асинхронных двигателей. Следите за новостями, и я расскажу о подключении других типов двигателей переменного тока, таких как реверсивные двигатели и двигатели с электромагнитным тормозом.

Не забудьте подписаться!

Еще немного истории …

Вот видео, которое кратко объясняет историю развития двигателей переменного тока Oriental Motor с 1966 года, когда серия K считалась фактическим стандартом для всех двигателей переменного тока, до введения серий KII и KIIS.

Электропроводка двигателя на 120 и 240 В

»Помогаем правильно подключить!
»Домашняя электрическая проводка: Руководство по домашней электропроводке
» Дом »Электромонтажные работы

Должен ли я подключить двигатель к 240 вольт или 120 вольт? Плюсы разводки мотора вольт на 240 вольт.

Как подключить двигатель 120/240 к 240 вольт
[ad # block] Электрический вопрос: Должен ли я подключить двигатель к 240 вольт или 120 вольт?

При подключении двигателя 120/240 вольт есть ли существенная разница в потребляемой мощности 120 вольт и 240 вольт, и есть ли потеря или выигрыш в долговечности двигателя?

Этот вопрос по электрике пришел от: Брюса, домовладельца из Калифорнии.

Ответ Дэйва:
Спасибо за ваш вопрос по электрике, Брюс.

Электропроводка двигателя на 240 В

Применение: Электромотор.
Уровень квалификации: от среднего до продвинутого — лучше всего выполняется лицензированным электриком или сертифицированным электромехаником.
Необходимые инструменты: простые ручные инструменты в сумке для электриков и тестер напряжения.
Расчетное время: зависит от опыта работы с электродвигателями.
Меры предосторожности: Электродвигатели лучше всего обслуживать опытным электриком или квалифицированным техником. Изменения в электропроводке электродвигателя следует вносить только после того, как цепь электродвигателя будет идентифицирована, выключена и помечена.

Двигатели, рассчитанные на напряжение 120/240 В
  • Большинство электродвигателей имеют распределительную коробку проводов, обычно на задней стороне двигателя с одной стороны. Это то место, где крепится шнур или кабелепровод. В распределительной коробке есть крышка для защиты проводки и соединений. На двигателе также будет паспортная табличка с такой информацией, как марка, модель, номинальная мощность в лошадиных силах, напряжение, сила тока и т. Д.
  • Если двигатель имеет возможность двойного напряжения, то он будет иметь состояние 120/240 вольт, и будет конфигурация проводки или схема подключения проводки, которая объяснит конфигурации проводки для каждого напряжения.В некоторых случаях может потребоваться перестановка двух проводов с плоскими клеммами или кольцевыми язычковыми клеммами, а затем провода ЛИНИИ или источника питания будут подключены, как описано.
  • Для двигателей большего размера может использоваться распределительная коробка большего размера с выводами, обозначенными цифрами или буквами, которые будут обозначены на схеме подключения конкретного двигателя.

Преимущества двигателя 240 В

Электропроводка двигателя на 120/240 В на 240 В выглядит следующим образом:

  • Сбалансированная электрическая нагрузка, позволяющая сэкономить электроэнергию по сравнению с несимметричной электрической нагрузкой.
  • Более высокая пусковая мощность. Двигатели на 240 вольт будут иметь более сильный пуск по сравнению с двигателями на 120 вольт.
  • Более длительный срок службы может быть обнаружен за счет более мощного двигателя, поскольку 120-вольтовые двигатели могут нагреваться больше, что может повлиять на весь срок службы двигателя.
  • Вы определенно заметите более высокую производительность, особенно при использовании такого оборудования, как настольная пила и т. Д.
  • В некоторых приложениях можно использовать проводку меньшего размера, поскольку для двигателя на 240 В требуется меньшая сила тока на каждую ногу по сравнению с одной силовой ветвью двигателя на 120 В.

ВАЖНО

  • Не все электродвигатели можно подключить на 240 вольт. Проконсультируйтесь с информацией на паспортной табличке двигателя или обратитесь к информации производителя, чтобы узнать, можно ли подключить двигатель к более высокому напряжению.
  • В большинстве случаев необходимо будет изменить соединения проводов или концевые заделки, чтобы отразить напряжение, к которому будет подключен двигатель, как указано производителем двигателя.
Подробнее о схеме подключения 220 В

Электропроводка

Схема электрических соединений 220 В

Электропроводка Розетка 220 В
Домашняя электрическая проводка включает розетки на 110 вольт и розетки и розетки на 220 вольт, которые являются обычным местом в каждом доме.Посмотрите, как разводятся электрические розетки в доме.

Эта ссылка полезна как домовладельцу
Электрооборудование «Сделай сам»

Как подключить двигатель на 240 В



Вам также могут быть полезны следующие данные:

Сопроводительное руководство Дэйва по домашней электропроводке:
» Вы можете избежать дорогостоящих ошибок! «

Вот как это сделать:
Подключите его прямо с помощью моей иллюстрированной книги по электромонтажу

. Отлично подходит для любого проекта домашней электропроводки.

Идеально для домовладельцев, студентов,
Разнорабочих, разнорабочих женщин и электриков
Включает:
Электромонтаж розеток GFCI
Электромонтаж домашних электрических цепей
Розетки на 120 и 240 В Электропроводка выключателей света
Электропроводка 3-проводного и 4-проводного электрического диапазона
Электромонтаж 3-проводного и 4-проводного кабеля осушителя и розетки осушителя
Поиск и устранение неисправностей и ремонт электропроводки
Способы подключения для Модернизация электропроводки
Коды NEC для домашней электропроводки
….и многое другое.

Будьте осторожны и безопасны — никогда не работайте с электрическими цепями!
Проконсультируйтесь в местном строительном департаменте по поводу разрешений и проверок для всех проектов электропроводки.

Электропроводка двигателя

, Часть 2 | EC&M

Shermco Industries, Inc., поставщик услуг по испытаниям, техническому обслуживанию, вводу в эксплуатацию и ремонту электрооборудования со штаб-квартирой в Ирвинге, штат Техас, недавно объявила о приобретении двух специализированных предприятий по электротехнике, расположенных в Тихоокеанском северо-западном регионе США: Sigma Six Solutions («Sigma Six»), сертифицированная NETA компания по тестированию и обслуживанию, базирующаяся в Оберне, Вашингтон.; и

  • Innovative Electric («Innovative»), подрядное предприятие по проектированию и строительству электрических систем, базирующееся в Эверетте, Вашингтон.
  • Sigma Six (с 2015 года принадлежит Penn Power Group («PPG»)) обеспечивает запуск и приемочные испытания. на новые установки, а также на ремонт, техническое обслуживание, обучение, инженерные услуги, поддержку эксплуатации и услуги по управлению проектами для критически важного энергетического оборудования и систем.


    Innovative имеет богатый опыт в области проектирования и электромонтажа, а также предоставляет клиентам специализированные и комплексные решения коммерческих, промышленных и связанных с автоматизацией решений проблем, включая услуги проектирования и строительства и электротехника, на протяжении более 25 лет.Опыт и репутация компании сделали ее надежным поставщиком электрических услуг для некоторых из самых престижных и технически продвинутых корпораций Северной Америки.

    «Объединение Shermco, Innovative и Sigma Six является частью нашего стратегического плана по развитию нашего недавнего приобретения подразделения специализированных инженерных разработок Ready Engineering», — сказал Том Бартоломей, генеральный директор Shermco. «Мы решили головоломку, сразу же предложив нашим клиентам единственного ведущего поставщика на рынке, одновременно сделав Shermco доминирующим присутствием на Тихоокеанском Северо-Западе.Это захватывающая глава в истории Shermco, которая доказывает, что мы продолжим стратегически инвестировать в области, которые гарантируют нашим клиентам доступ к одному поставщику специализированных электрических услуг для удовлетворения всех их потребностей в энергосистеме, независимо от того, где в Северной Америке они работают ».

    Innovative и менеджмент и технические специалисты Sigma Six останутся в компании после приобретений.

    M.G.M. »Электрические схемы

    6 Вт: 6 проводов / 9 Вт: 9 проводов

    Тип тормоза

    Тормозной штуцер

    Подключение двигателя

    Диаграмма

    Номинальное напряжение двигателя

    Номинальное напряжение тормоза

    1

    AC — 3 фазы (только BA (X))

    Δ / Y (6 Вт)

    Δ / Y (6 Вт)

    Схема

    265 В / 460 В / 60 Гц, 330 В / 575 В / 60 Гц, 220 В / 380 В / 60 Гц,…

    265 В / 460 В / 60 Гц, 330 В / 575 В / 60 Гц, 220 В / 380 В / 60 Гц,…

    2

    ГГ / Г (9 недель)

    Схема

    230 В / 460 В / 60 Гц,…

    230 В / 460 В / 60 Гц,…

    3

    Однофазный выпрямленный постоянный ток (BA (X) и BM (X))

    Выпрямитель

    Δ / Y (6 Вт)

    Схема

    265 В / 460 В / 60 Гц, 330 В / 575 В / 60 Гц, 220 В / 380 В / 60 Гц,…

    1 ~ 110 В, 1 ~ 230 В,…

    4

    ГГ / Г (9 недель)

    Схема

    230 В / 460 В / 60 Гц,…

    1 ~ 110 В, 1 ~ 230 В,…

    5

    24 В постоянного тока (BA (X) и BM (X))

    Напряжение постоянного тока

    Δ / Y (6 Вт)

    Схема

    265 В / 460 В / 60 Гц, 330 В / 575 В / 60 Гц, 220 В / 380 В / 60 Гц,…

    24 В постоянного тока

    6

    ГГ / Г (9 недель)

    Схема

    230 В / 460 В / 60 Гц,…

    24 В постоянного тока

    6 Вт: 6 проводов / 9 Вт: 9 проводов

    Подключение двигателя

    Диаграмма

    Номинальное напряжение двигателя

    7

    Δ / Y (6 Вт)

    Схема

    265V / 460V / 60Hz, 330V / 575V / 60Hz, 220V / 380V / 60Hz,…

    8

    ГГ / Г (9 недель)

    Схема

    230 В / 460 В / 60 Гц,…

    Если у вас есть вопросы, обращайтесь к М.Г. технический отдел: [email protected]

    Схемы подключения

    673 Схема подключения одно- и трехфазных вентиляторов
    Схема подключения Описание
    3226 381200, 416279 Две скорости, одна обмотка, ТН или ТТ M / S, одно напряжение
    3233 Две скорости, одна обмотка, CHP M / S, одно напряжение
    3251 344139, 416282 Две скорости, две обмотки, VT / CT / CHP M / S, одно напряжение
    11658 344137, 416280 Соединение звезда-треугольник, одиночное напряжение
    108323 Однофазный, двойное напряжение, 6 выводов, вращение против часовой стрелки
    108324 Однофазный, однофазный, 4 вывода, вращение против часовой стрелки
    109144 158802, 344136 Соединение звездой, двойное напряжение
    109145 158803, 344122 Соединение треугольником, двойное напряжение
    130274 381679 Соединение звездой, двойное напряжение, PWS на низком напряжении
    137033 344138 Соединение звезда-треугольник, двойное напряжение
    159833 344133 Соединение треугольником, двойное напряжение, PWS на низком напряжении
    165975 377836, 416281, 896428 Соединение звездой или треугольником, одно напряжение, PWS
    195759 96441 6 выводов, соединение звездой или треугольником, одно напряжение с полной обмоткой — начало через линию
    356693 Однофазный, однофазный, 4 вывода, вращение против часовой стрелки
    387151 7 выводов, две скорости, две обмотки, ТН / ТТ / ТЭЦ, одно напряжение
    388299 Соединение звездой с нейтралью, одно напряжение
    3 Соединение звездой, двойное напряжение, с термозащитой
    414729 6 выводов, соединение звездой, одно напряжение, полная обмотка — начало через линию
    434839 Одиночное напряжение звезды или треугольника с одинарным трансформатором тока
    438252 438264 6 выводов, 1.Соотношение 73: 1, двойное напряжение или запуск по схеме звезда — треугольник при низком напряжении
    453698 Однофазный, одно напряжение, 4 вывода, индукционный генератор
    463452 2 скорости, 2 обмотки, одно напряжение, соединение звездой, с трансформаторами тока, грозозащитными разрядниками и конденсаторами импульсных перенапряжений; Низкоскоростная обмотка
    466703 12 выводов, пуск звезда — треугольник или одно напряжение PWS, собранный в кабельной коробке
    488075 Пуск, треугольник, звезда, соединение или подключение PWS, 12 выводов, двойное напряжение
    488076 Пуск, треугольник, звезда или подключение PWS, 2 полюса, 12 выводов, одно напряжение
    499495 (дельта) 3 Соединение треугольником, одно напряжение
    499495 (звезда) 3 Соединение звездой, одно напряжение
    587-13816 423622, 978576 Соединение треугольником, трансформаторы тока
    587-18753 423555, 958798 Соединение звездой, трансформаторы тока
    779106 Две скорости, две обмотки, CT / VT / CHP M / S, YD на обеих скоростях, одно напряжение
    845929 Соединение звездой, трансформаторы тока, LA, SC, одиночное напряжение
    872326 Две скорости, одна обмотка, яркость на высокой скорости, одно напряжение
    897847 Подключение силового блока
    1 Однофазный, одно напряжение, 3 вывода, вращение по часовой или против часовой стрелки
    3 Однофазный, 115/230 В, 7 выводов, с тепловой защитой, вращение по часовой стрелке
    Соединение звездой, двойное напряжение, с термозащитой
    0 12 выводов, двойное напряжение, Y-D ИЛИ 6 выводов, одиночное напряжение, Y-D
    0 Однофазный, двойное напряжение, 11 выводов, с тепловой защитой, вращение по часовой стрелке
    1 356692 Однофазный, однофазный, 5 выводов, с тепловой защитой, вращение по часовой стрелке
    108323 Однофазный, двойное напряжение, 6 выводов, вращение по часовой стрелке
    2 Две скорости, две обмотки, одно напряжение, PWS на обеих обмотках или полная обмотка — начало через линию
    0 Соединение треугольником, одно напряжение, с 4 трансформаторами тока, LA и SC
    Соединение звездой, двойное напряжение, PWS на оба напряжения
    957238 Пуск, треугольник, звезда, соединение или PWS, 12 выводов, одно напряжение
    965105 Соединение треугольником, 9 выводов, ТН, 2 скорости, 1 обмотка, одно напряжение
    987241 Соединение треугольником, одно напряжение, с трансформаторами тока, LA и SC
    9
    Подключение двигателя с тройным расходом
    2010950 Одно напряжение, соединение WYE, с частичной защитой трансформатора тока
    2010964 Одно напряжение, соединение WYE, с частичной защитой трансформатора тока, грозозащитными разрядниками и конденсаторами импульсных перенапряжений
    Воздуходувка,
    * Термозащита

    Как работают электродвигатели?

    Криса Вудфорда.Последнее изменение: 25 июля 2020 г.

    Щелкните выключателем и мгновенно получите власть — как наши предки любили электродвигатели! Вы можете найти их во всем, начиная с электропоезда с дистанционным управлением автомобили — и вы можете быть удивлены, насколько они распространены. Сколько электрических моторы сейчас есть в комнате с тобой? Наверное, два в вашем компьютере для начала, один круто ездить, а еще один питает охлаждающий вентилятор. Если вы сидите в спальне, вы найдете моторы в фенах и многих других игрушки; в ванной — вытяжки и электробритвы; На кухне моторы есть практически во всех устройствах, от стиральных и посудомоечных машин до кофемолок, микроволновых печей и электрических консервных ножей.Электродвигатели зарекомендовали себя среди лучших изобретения всех времен. Давайте разберемся и узнаем, как они работай!

    Фото: Даже маленькие электродвигатели на удивление тяжелые. Это потому, что они набиты туго намотанной медью и тяжелыми магнитами. Это мотор от старой электрической газонокосилки. Вещь медного цвета в сторону В передней части оси с прорезями находится коммутатор, удерживающий двигатель вращение в том же направлении (как описано ниже).

    Как электромагнетизм заставляет двигатель двигаться?

    Основная идея электродвигателя очень проста: вы помещаете в него электричество с одного конца, а ось (металлический стержень) вращается на другом конце, давая вам возможность управлять машина какая то. Как это работает на практике? Как именно ваш преобразовать электричество в движение? Чтобы найти ответ на этот вопрос, у нас есть вернуться во времени почти на 200 лет.

    Предположим, вы берете кусок обычного провода, превращаете его в большую петлю, и положите его между полюсами мощной постоянной подковы магнит.Теперь, если вы подключите два конца провода к батарее, провод будет прыгать кратко. Удивительно, когда видишь это впервые. Это прямо как по волшебству! Но есть совершенно научный объяснение. Когда электрический ток начинает течь по проводу, он создает магнитное поле вокруг него. Если разместить провод рядом с постоянным магнит, это временное магнитное поле взаимодействует с постоянным поле магнита. Вы знаете, что два магнита расположены рядом друг с другом. либо притягивать, либо отталкивать.Таким же образом временный магнетизм вокруг провода притягивает или отталкивает постоянный магнетизм от магнит, и это то, что заставляет проволоку подпрыгивать.

    Правило левой руки Флеминга

    Вы можете определить направление, в котором будет прыгать провод, используя удобная мнемоника (вспомогательная память), называемая правилом левой руки Флеминга (иногда называется Motor Rule).

    Вытяните большой, указательный и второй пальцы левой руки. рука так, чтобы все три были под прямым углом.Если вы укажете вторым пальцем в направлении Течения (который течет от положительного к положительному отрицательная клемма АКБ), а Первая палец в направление поля (которое течет с севера на южный полюс магнит), ваш thuMb будет показать направление, в котором провод Движется.

    Это …

    • Первый палец = Поле
    • Второй палец = Текущий
    • ЧтМб = Движение

    Несколько слов о текущем

    Если вас смущает то, что я говорю, что ток течет с положительного на отрицательный, это просто историческая конвенция.Такие люди, как Бенджамин Франклин, помогавший разобраться тайна электричества еще в 18 веке, считали, что это поток положительных зарядов, так что она перетекала с положительного на отрицательный. Мы называем эту идею условным током. и до сих пор используют его в таких вещах, как правило левой руки Флеминга. Теперь у нас есть лучшие идеи о том, как электричество работает, мы склонны говорить о токе как о потоке электронов от отрицательного к положительному в направлении , противоположном направлению обычного тока.Когда вы пытаетесь вычислить вращение двигателя или генератора, обязательно помните, что ток означает обычный ток , а не поток электронов.

    Как работает электродвигатель — теоретически

    Фото: Электрик ремонтирует электродвигатель. на борту авианосца. Блестящий металл, который он использует, может выглядеть как золото, но на самом деле это медь, хороший проводник, который намного дешевле. Фото Джейсона Якобовица любезно предоставлено ВМС США.

    Связь между электричеством, магнетизмом и движением изначально была открыт в 1820 году французским физиком Андре-Мари Ампер (1775–1867), и это фундаментальная наука, лежащая в основе электродвигателя. Но если мы хотим превратить это удивительное научное открытие в более практическое Немного технологий для питания наших электрических косилок и зубных щеток, мы должны пойти немного дальше. Изобретателями, которые сделали это, были англичане Майкл Фарадей (1791–1867). и Уильям Стерджен (1783–1850) и американец Джозеф Генри (1797–1878).Вот как они пришли к своему гениальному изобретению.

    Предположим, мы сгибаем нашу проволоку в квадратную U-образную петлю, так что эффективно два параллельных провода, проходящие через магнитное поле. Один из них отводит электрический ток от нас по проводам, а другой один возвращает ток обратно. Поскольку ток течет в в противоположных направлениях проводов, правило левой руки Флеминга говорит нам о том, что два провода будут двигаться в противоположных направлениях. Другими словами, когда мы включите электричество, один из проводов двинется вверх и другой будет двигаться вниз.

    Если бы катушка с проволокой могла продолжать двигаться вот так, она бы вращалась непрерывно — и мы будем на пути к созданию электрического мотор. Но этого не может произойти с нашей нынешней настройкой: провода будут быстро запутаться. Не только это, но если бы катушка могла вращаться далеко хватит, что-нибудь еще случится. Как только катушка достигла вертикали положение, он перевернется, и электрический ток будет течь через него в противоположном направлении. Теперь силы на каждого сторона катушки перевернется.Вместо непрерывного вращения в в том же направлении, он двинется назад в том же направлении, в котором только что пришел! Представьте себе электропоезд с таким двигателем: он будет держать перетасовки назад и вперед на месте, даже не идя где угодно.

    Как работает электродвигатель — на практике

    Есть два способа решить эту проблему. Один из них — использовать своего рода электрический ток, который периодически меняет направление, что известно как переменный ток (AC). В виде небольших батарейных двигатели, которые мы используем дома, лучшее решение — добавить компонент назвал коммутатором концы катушки.(Не беспокойтесь о бессмысленных технических имя: это немного старомодное слово «коммутация» немного похоже на слово «добираться до работы». Это просто означает изменение взад и вперед в одном и том же путь, который ездит на работу, означает путешествовать туда и обратно.) В своей простейшей форме Коммутатор представляет собой металлическое кольцо, разделенное на две отдельные половины и его задача — реверсировать электрический ток в катушке каждый раз, когда катушка вращается на пол-оборота. Один конец катушки прикреплен к каждая половина коммутатора. Электрический ток от аккумулятора подключается к электрическим клеммам двигателя.Они подают электроэнергию в коммутатор через пару незакрепленных разъемы, называемые щетками, сделали либо из кусочков графита (мягкий уголь, похожий на карандаш «свинец») или тонкие отрезки упругого металла, который (как название подсказывает) «задеть» коммутатор. С коммутатор на месте, когда электричество течет по цепи, катушка будет постоянно вращаться в одном и том же направлении.

    Художественное произведение: упрощенная схема деталей в электрическом мотор. Анимация: как это работает на практике.Обратите внимание, как коммутатор меняет направление тока каждый раз, когда катушка поворачивается. наполовину. Это означает, что сила на каждой стороне катушки всегда толкая в том же направлении, что позволяет катушке вращаться по часовой стрелке.

    Такой простой экспериментальный двигатель, как этот, не способен большая мощность. Мы можем увеличить усилие поворота (или крутящий момент) что двигатель может творить тремя способами: либо у нас может быть больше мощный постоянный магнит, или мы можем увеличить электрический ток протекает через провод, или мы можем сделать катушку так, чтобы в ней было много «витки» (петли) очень тонкой проволоки вместо одного «витка» толстой проволоки.На практике двигатель также имеет постоянный магнит, изогнутый в круглой формы, так что он почти касается катушки с проволокой, которая вращается внутри него. Чем ближе друг к другу магнит и катушка, тем большее усилие, которое может создать двигатель.

    Хотя мы описали несколько различных частей, вы можете представить двигатель как имеющий всего два основных компонента:

    • По краю корпуса двигателя находится постоянный магнит (или магниты), который остается статичным, поэтому его называют статором двигателя.
    • Внутри статора находится катушка, установленная на оси, которая вращается с высокой скоростью, и это называется ротором. Ротор также включает в себя коммутатор.

    Универсальные двигатели

    Такие двигатели постоянного тока

    отлично подходят для игрушек с батарейным питанием (таких как модели поездов, радиоуправляемые автомобили или электробритвы), но вы не найдете их во многих бытовых приборах. В небольших бытовых приборах (например, кофемолках или электрических блендерах) обычно используются так называемые универсальные двигатели , которые могут питаться как от переменного, так и от постоянного тока.В отличие от простого двигателя постоянного тока, универсальный двигатель имеет электромагнит вместо постоянного магнита, и он получает энергию от источника постоянного или переменного тока, который вы питаете:

    • При питании от постоянного тока электромагнит работает как обычный постоянный магнит и создает магнитное поле, которое всегда направлено в одном направлении. Коммутатор меняет направление тока катушки каждый раз, когда катушка переворачивается, как в простом двигателе постоянного тока, поэтому катушка всегда вращается в одном и том же направлении.
    • Однако, когда вы подаете переменный ток, ток, протекающий через электромагнит, и ток, протекающий через катушку , оба меняют направление, точно синхронно, поэтому сила, действующая на катушку, всегда в одном и том же направлении, а двигатель всегда вращается по часовой стрелке. или против часовой стрелки.А как насчет коммутатора? Частота тока изменяется намного быстрее, чем вращается двигатель, и, поскольку поле и ток всегда синхронизированы, на самом деле не имеет значения, в каком положении находится коммутатор в любой данный момент.

    Анимация: Как работает универсальный двигатель: Электроснабжение питает как магнитное поле, так и вращающуюся катушку. С источником постоянного тока универсальный двигатель работает так же, как и обычный двигатель постоянного тока, как указано выше. При питании от сети переменного тока и магнитное поле, и ток в катушке меняют направление каждый раз, когда ток питания меняется на противоположное.Это означает, что сила на катушке всегда направлена ​​в одну сторону.

    Фото: Внутри типичного универсального двигателя: основные части внутри среднего двигателя от кофемолки, которая может работать как от постоянного, так и от переменного тока. Серый электромагнит по краю — это статор (статическая часть), и он питается от катушек оранжевого цвета. Обратите внимание на прорези в коллекторе и прижимающиеся к нему угольные щетки, которые обеспечивают питание ротора (вращающейся части). Асинхронные двигатели в таких устройствах, как электрические железнодорожные поезда, во много раз больше и мощнее этого, и всегда работают с использованием переменного тока высокого напряжения (AC) вместо постоянного тока низкого напряжения (DC) или переменного тока умеренно низкого напряжения в домашних условиях. который приводит в действие универсальные двигатели.

    Электродвигатели прочие

    В простых двигателях постоянного тока и универсальных двигателях ротор вращается внутри статора. Ротор представляет собой катушку, подключенную к источнику электропитания, а статор представляет собой постоянный магнит или электромагнит. Большие двигатели переменного тока (используемые в таких вещах, как заводские машины) работают немного по-другому: они пропускают переменный ток через противоположные пары магнитов, чтобы создать вращающееся магнитное поле, которое «индуцирует» (создает) магнитное поле в роторе двигателя, вызывая это вращаться.Подробнее об этом вы можете прочитать в нашей статье об асинхронных двигателях переменного тока. Если вы возьмете один из этих асинхронных двигателей и «развернете» его так, чтобы статор фактически превратился в длинную непрерывную дорожку, ротор может катиться по нему по прямой. Эта гениальная конструкция известна как линейный двигатель, и вы найдете ее в таких вещах, как заводские машины и плавучие железные дороги «маглев» (магнитная левитация).

    Еще одна интересная конструкция — бесщеточный двигатель постоянного тока (BLDC). Статор и ротор эффективно меняются местами, при этом несколько железных катушек статичны в центре и постоянный магнит вращается вокруг них, а коммутатор и щетки заменяются электронной схемой.Вы можете прочитать больше в нашей основной статье о мотор-редукторах. Шаговые двигатели, которые вращаются на точно контролируемые углы, представляют собой разновидность бесщеточных двигателей постоянного тока.

    .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *