Электрическая схема электродвигателя: принципы работы и подключение

Как устроена электрическая схема электродвигателя. Какие бывают виды электродвигателей. Как правильно подключить электродвигатель к сети 220В и 380В. Какие особенности подключения у разных типов двигателей.

Содержание

Основные виды электродвигателей и их особенности

Электродвигатели можно разделить на несколько основных типов:

  • Двигатели постоянного тока
  • Асинхронные двигатели переменного тока
  • Синхронные двигатели переменного тока
  • Шаговые двигатели
  • Вентильные (бесколлекторные) двигатели

Каждый тип имеет свои особенности конструкции и принципа работы. Рассмотрим основные характеристики наиболее распространенных видов.

Двигатели постоянного тока

Двигатели постоянного тока обладают следующими свойствами:

  • Высокий пусковой момент
  • Легкость регулирования скорости вращения
  • Компактные размеры при высокой мощности
  • Необходимость в коллекторно-щеточном узле

Применяются в электроприводах с высокими требованиями к динамике и диапазону регулирования скорости.


Асинхронные двигатели переменного тока

Асинхронные двигатели имеют такие особенности:

  • Простота конструкции и низкая стоимость
  • Высокая надежность
  • Сложность регулирования скорости без частотного преобразователя
  • Низкий пусковой момент

Это самый распространенный тип двигателей в промышленности из-за простоты и надежности.

Принцип работы электродвигателя

Принцип действия электродвигателя основан на взаимодействии магнитных полей статора и ротора. При подаче электрического тока в обмотки статора создается вращающееся магнитное поле. Оно взаимодействует с магнитным полем ротора, заставляя его вращаться.

В асинхронных двигателях магнитное поле ротора создается за счет индукции токов в его обмотке. В синхронных и двигателях постоянного тока поле ротора создается постоянными магнитами или электромагнитами.

Скорость вращения ротора зависит от частоты питающего напряжения и числа пар полюсов двигателя. Чем больше пар полюсов, тем ниже скорость вращения при той же частоте.

Схема подключения трехфазного асинхронного двигателя

Трехфазные асинхронные двигатели — самые распространенные в промышленности. Рассмотрим основные схемы их подключения.


Подключение звездой

При соединении обмоток звездой:

  • Начала обмоток соединяются в общую точку
  • Концы обмоток подключаются к трем фазам сети
  • Напряжение на обмотке равно фазному напряжению сети

Эта схема применяется при напряжении сети 380В.

Подключение треугольником

При соединении обмоток треугольником:

  • Конец каждой обмотки соединяется с началом следующей
  • Точки соединения подключаются к трем фазам сети
  • Напряжение на обмотке равно линейному напряжению сети

Эта схема применяется при напряжении сети 220В.

Подключение однофазного двигателя к сети 220В

Однофазные асинхронные двигатели имеют две обмотки — рабочую и пусковую. Для их подключения к сети 220В используют следующие схемы:

  • С пусковым конденсатором
  • С рабочим и пусковым конденсатором
  • С пусковым сопротивлением

Наиболее распространена схема с рабочим и пусковым конденсатором. Пусковой конденсатор обеспечивает высокий пусковой момент и отключается после разгона. Рабочий конденсатор остается включенным постоянно.

Особенности подключения двигателя постоянного тока

Двигатели постоянного тока имеют следующие особенности подключения:


  • Необходимо соблюдать полярность подключения обмоток якоря и возбуждения
  • Для изменения направления вращения меняют полярность питания якоря
  • Скорость регулируют изменением напряжения на якоре или ослаблением поля возбуждения
  • Требуется устройство плавного пуска для ограничения пускового тока

Часто применяют схемы с широтно-импульсным регулированием напряжения для управления скоростью.

Меры безопасности при подключении электродвигателей

При работе с электродвигателями необходимо соблюдать следующие меры безопасности:

  • Использовать средства индивидуальной защиты (диэлектрические перчатки, инструмент с изолированными ручками)
  • Отключать питание перед началом работ
  • Проверять отсутствие напряжения на клеммах двигателя
  • Заземлять корпус двигателя
  • Проверять сопротивление изоляции обмоток перед подключением
  • Не касаться токоведущих частей при работающем двигателе

Соблюдение этих мер позволит обеспечить безопасность при монтаже и обслуживании электродвигателей.

Типовые неисправности электродвигателей и их устранение

Наиболее распространенные неисправности электродвигателей:


  • Межвитковое замыкание в обмотках
  • Обрыв обмотки статора или ротора
  • Износ подшипников
  • Неисправность пускового устройства
  • Перегрев двигателя из-за перегрузки

Для диагностики используют измерение сопротивления обмоток, проверку изоляции мегаомметром, измерение вибрации и температуры. Ремонт обычно заключается в замене неисправных элементов — обмоток, подшипников, щеток.

Выбор электродвигателя для конкретного применения

При выборе электродвигателя учитывают следующие факторы:

  • Требуемую мощность и момент
  • Диапазон регулирования скорости
  • Режим работы (продолжительный, повторно-кратковременный)
  • Условия окружающей среды
  • Напряжение и род тока питающей сети
  • Конструктивное исполнение

Правильный выбор типа и мощности двигателя обеспечит оптимальную работу привода и длительный срок службы.


Принципиальная электрическая схема управления электродвигателем станков


Принципиальная электрическая схема управления электродвигателем станков

Категория:

Деревообрабатывающие станки



Принципиальная электрическая схема управления электродвигателем станков

На рис. 1 приведена схема управления электродвигателем с помощью магнитного пускателя и кнопочной станции. Предусмотрено дистанционное включение и отключение электродвигателя.

В левой части рисунка (жирные линии) дана схема главной цепи питания трехфазного электродвигателя. Для подключения его к сети предусмотрен рубльник Р. Цепь замыкается при включении магнитного пускателя ПМ. От короткого замыкания сеть защищают плавкие предохранители Пр, для автоматического отключения двигателя при небольших, но длительных перегрузках в цепь питания включены тепловые реле 1РТ и 2РТ.

В правой части рисунка (тонкие линии) приведена схема управления пуском электродвигателя. В цепь управления введены контакты 17М-1 (блок-контакты), В момент включения электродвигателя они замыкаются, образуя цепь, параллельную кнопке «Пуск». Таким образом, включением контактов ПМЛ магнитный пускатель самоблокируется (становится на «самопитание»), т. е. может работать при отпущенной кнопке «Пуск».

Рис. 1. Принципиальная электрическая схема управления электродвигателем с помощью магнитного пускателя и кнопочной станции

Пуск двигателя по данной схеме осуществляется в такой последовательности. При включении рубильника Р к сети подключаются линейные контакты ПМ главной цепи и цепь управления; контакты ПМ и цепь управления будут находиться под напряжением, но при разомкнутых контактах ПМ и кнопки «Пуск» ток в цепи не поступает (цепи разомкнуты).

При нажатии кнопки «Пуск» обмотка ПМ магнитного пускателя, через размыкающие контакты кнопки «Стоп», замыкающие контакты кнопки «Пуск» и размыкающие контакты тепловых реле 1РТ и 2РТ подключаются к фазам Л2 и Л3. Включаясь, магнитный пускатель замыкает линейные контакты ПМ, в результате чего электродвигатель подключается к сети. Одновременно замыкаются блок-контакты ПМ-1, через которые питание подается в обмотку магнитного пускателя при разомкнутых контактах кнопки «Пуск».

При нажатии кнопки «Стоп» размыкается цепь питания обмотки магнитного пускателя; линейными контактами ПМ двигатель отключается от сети, а контакты ПМ-l, размыкаясь, снимают цепь управления с самоблокировки.

В электрических схемах предусматривают нулевую защиту, которая заключается в автоматическом отключении от сети электродвигателя при недопустимом снижении напряжения, а также предотвращении возможности самопроизвольного повторного включения электродвигателя после случайного перерыва в питании. Так, если напряжение в сети понижается на 50 — 60% или исчезает, то якорь магнитного пускателя отходит от неподвижных пластин и двигатель отключается. При появлении напряжения в сети магнитный пускатель не включается до тех пор, пока не будет нажата кнопка «Пуск».


Реклама:

Читать далее:
Конечные выключатели деревообрабатывающих станков

Статьи по теме:

Электрическая схема монтажа электродвигателя — Строительство домов и бань

Toyota Tercel Франкенштейн › Бортжурнал › Схемы включения асинхронных двигателей

Простые способы включения трехфазных двигателей в однофазную сеть

Всякий асинхронный трехфазный двигатель рассчитан на два номинальных напряжения
трехфазной сети 380 /220 — 220/127 и т. д. Наиболее часто встречаются двигатели 380/220В.
Переключение двигателя с одного напряжения на другое производится подключением обмоток «на
звезду» — для 380 В или на «треугольник» — на 220 В. Если у двигателя имеется колодка
подключения, имеющая 6 выводов с установленными перемычками, следует обратить внимание в
каком порядке установлены перемычки. Если у двигателя отсутствует колодка и имеются 6 выводов
— обычно они собраны в пучки по 3 вывода. В одном пучке собраны начала обмоток, в другом концы
(начала обмоток на схеме обозначены точкой).

В данном случае «начало» и «конец» — понятия условные, важно лишь чтобы направления намоток
совпадали, т. е. на примере «звезды» нулевой точкой могут быть как начала, так и концы обмоток, а
в «треугольнике» — обмотки должны быть соединены последовательно, т. е. конец одной с началом
следующей. Для правильного подключения на «треугольник» нужно определить выводы каждой
обмотки, разложить их попарно и подключить по след. схеме:

Если развернуть эту схему, то будет видно, что катушки подключены «треугольником».
Если у двигателя имеется только 3 вывода, следует разобрать двигатель: снять крышку со
стороны колодки и в обмотках найти соединение трёх обмоточных проводов (все остальные
провода соединены по 2). Соединение трёх проводов является нулевой точкой звезды. Эти 3
провода следует разорвать, припаять к ним выводные провода и объединить их в один пучок. Таким
образом мы имеем уже 6 проводов, которые нужно соединить по схеме треугольника. Если имеется
6 выводов, но не объединены в пучки и не имеется возможности определить начала и концы.
можно посмотреть здесь.
Трехфазный двигатель вполне успешно может работать и в однофазной сети, но ждать от
него чудес при работе с конденсаторами не приходится. Мощность в самом лучшем случае будет не
более 70% от номинала, пусковой момент сильно зависит от пусковой емкости, сложность подбора
рабочей емкости при изменяющейся нагрузке. Трехфазный двигатель в однофазной сети это
компромис, но во многих случаях это является единственным выходом.
Существуют формулы для рассчета емкости рабочего конденсатора, но я считаю их не
корректными по следующим причинам:
1. Рассчет производится на номинальную мощность, а двигатель редко работает в таком
режиме и при недогрузке двигатель будет греться из-за лишней емкости рабочего конденсатора и
как следствие увеличенного тока в обмотке.
2. Номинальная емкость конденсатора указаная на его корпусе отличается от фактической +
/- 20%, что тоже указано не конденсаторе. А если измерять емкость отдельного конденсатора, она
может быть в два раза большей или на половину меньшей. Поэтому я предлагаю подбирать емкость
к конкретному двигателю и под конкретную нагрузку, измеряя ток в каждой точке треугольника,
стараясь максимально выравнять подбором емкости. Поскольку однофазная сеть имеет
напряжение 220 В, то двигатель следует подключать по схеме «треугольник». Для запуска
ненагруженного двигателя можно обойтись только рабочим конденсатором.

Направление вращения двигателя зависит от подключения конденсатора (точка а) к точке б
или в.
Практически ориентировочную ёмкость конденсатора можно определить по сл. формуле: C
мкф = P Вт /10, где C – ёмкость конденсатора в микрофарадах, P – номинальная мощность
двигателя в ваттах. Для начала достаточно, а точная подгонка должна производиться после
нагрузки двигателя конкретной работой. Рабочее напряжение конденсатора должно быть выше
напряжения сети, но практика показывает, что успешно работают старые советские бумажные
конденсаторы рассчитаные на 160В. А их найти значительно легче, даже в мусоре.
У меня мотор на сверлилке работает с такими конденсаторами, расположеными для защиты
от хлопка в заземленной коробке от пускателя не помню сколько лет и пока все цело. Но к такому
подходу я не призываю, просто информация для размышления. Кроме того, если включить 160и
Вольтовые конденсаторы последовательно, вдвое потеряем в емкости зато рабочее напряжение
увеличится вдвое 320В и из пар таких конденсаторов можно собрать батарею нужной емкости.
Включение двигателей с оборотами выше 1500 об/мин, либо нагруженных в момент пуска,
затруднено. В таких случаях следует применить пусковой конденсатор, ёмкость которого зависит от
нагрузки двигателя, подбирается экспериментально и ориентировочно может быть от равной
рабочему конденсатору до в 1,5 – 2 раза большей. В дальнейшем, для понятности, все что
относится к работе будет зеленого цвета, все что относится к пуску будет красного, что к
торможению синего.

Включать пусковой конденсатор в простейшем случае можно при помощи нефиксированной
кнопки.
Для автоматизации пуска двигателя можно применить реле тока. Для двигателей
мощностью до 500 Вт подойдёт реле тока от стиральной машины или холодильника с небольшой
переделкой. Т. к. конденсатор остаётся заряженным и в момент повторного запуска двигателя,
между контактами возникает довольно сильная дуга и серебряные контакты свариваются, не
отключая пусковой конденсатор после пуска двигателя. Чтобы этого не происходило, следует
контактную пластинку пускового реле изготовить из графитовой или угольной щётки (но не из медно-
графитовой, т. к. она тоже залипает). Также необходимо отключить тепловую защиту этого реле,
если мощность двигателя превышает номинальную мощность реле.
Если мощность двигателя выше 500 Вт, до 1,1кВт можно перемотать обмотку пускового реле
более толстым проводом и с меньшим количеством витков с таким расчётом, чтобы реле
отключалось сразу же при выходе двигателя на номинальные обороты.
Для более мощного двигателя можно изготовить самодельное реле тока, увеличив размеры
оригинального.
Большинство трехфазных двигателей мощностью до трех кВт хорошо работают и в
однофазной сети за исключением двигателей с двойной беличьей клеткой, из наших это серия МА,
с ними лучше не связываться, в однофазной сети они не работают.

Практические схемы включения

Работает схема следующим образом: при переводе переключателя в положение 3 и
нажатии на кнопку К1 происходит пуск двигателя, после отпускания кнопки остается только рабочий
конденсатор и двигатель работает на полезную нагрузку. При переводе переключателя в положение
1, на обмотку двигателя подается постоянный ток и двигатель тормозится, после остановки
необходимо перевести переключатель в положениие 2, иначе двигатель сгорит, поэтому
переключатель должен быть специальным и фиксироваться только в положении 3 и 2, а положение
1 должно быть включено только при удержании. При мощности двигателя до 300Вт и
необходимости быстрого торможения, гасяший резистор можно не применять, при большей
мощности сопротивление резистора подбирается по желаемому времени торможения, но не должно
быть меньше сопротивления обмотки двигателя.

Эта схема похожа на первую, но торможение здесь происходит за счет энергии запасенной в
электролитическом конденсаторе С1 и время торможения будет зависить от его емкости. Как и в
любой схеме пусковую кнопку можно заменить на реле тока. При включении переключателя в сеть
двигатель запускается и происходит заряд конденсатора С1 через VD1 и R1. Сопротивление R1
подбирается в зависимости от мощности диода, емкости конденсатора и времени работы двигателя
до начала торможения. Если время работы двигателя между пуском и торможением превышает 1
минуту, можно использовать диод КД226Г и резистор 7кОм не менее 4Вт. рабочее напряжение
конденсатора не менее 350В Для быстрого торможения хорошо подходит конденсатор от
фотовспышки, фотовспышек много, а нужды в них больше нет. При выключении переключатель
переходит в положение замыкающее конденсатор на обмотку двигателя и происходит торможение
постоянным током. Используется обычный переключатель на два положения.

Еще одна не совсем обычная схема автоматического включения.
Как и в других схемах здесь есть система торможения, но ее при ненадобности легко
выкинуть. В этой схеме включения две обмотки соединены паралельно, а третья через систему
пуска и вспомогательный конденсатор, емкость которого примерно в два раза меньше необходимого
при включении треугольником. Для изменения направления вращения нужно поменять местами
начало и конец вспомогательной обмотки, обозначеной красной и зеленой точками. Запуск
происходит за счет зарядки конденсатора С3 и продолжительность запуска зависит от емкости
конденсатора, а емкость должна быть достаточно велика, чтобы двигатель успел выйти на
номинальные обороты. Емкость можно брать с запасом, так как после заряда конденсатор не
оказывает заметного действия на работу двигателя. Резистор R2 нужен для разрядки конденсатора
и тем самым подготовки его для следующего пуска, подойдет 30 кОм 2Вт. Диоды Д245 — 248
подойдут любому двигателю. Для двигателей меньшей мощности соответственно уменьшится и
мощность диодов, и емкость конденсатора. Хоть и затруднительно сделать реверсивное включение
по данной схеме, но при желании и это можно. Потребуется сложный переключатель или пусковые
автоматы.

Использование электролитических конденсаторов в качестве пусковых и рабочих

Стоимость неполярных конденсаторов достаточно высока, да и не везде их можно найти.
Поэтому, если их нет, можно применить электролитические конденсаторы, включенные по схеме не
намного сложнее. Емкость их достаточно велика при небольшом объеме, они не дефицитны и не
дороги. Но нужно учесть вновь возникшие факторы. Рабочее напряжение должно быть не менее
350 Вольт, включаться они могут только парами, как указано на схеме черным цветом, а в таком
случае емкость уменьшается вдвое. И если двигателю для работы нужно 100 мкФ, то конденсаторы
С1 и С2 должны быть по 200мкФ.
У электролитических конденсаторов большой допуск по емкости, поэтому лучше собрать
батарею конденсаторов (обозначена зеленым цветом), легче будет подбирать фактическую емкость
нужную двигателю и кроме того у электролитов очень тонкие выводы, а ток при большой емкости
может достигать значительных величин и выводы могут греться, а при внутреннем обрыве вызвать
взрыв конденсатора. Поэтому вся батарея конденсаторов должна находиться в закрытой коробке,
особенно во время экспериментов. Диоды должны быть с запасом по напряжению и по току,
необходимому для работы. До 2кВт вполне подойдут Д 245 — 248. При пробое диода сгорает (
взрывается) конденсатор. Взрыв конечно сказано громко, пластмассовая коробка вполне защитит от
разлета деталей конденсатора и от блестящего серпантина тоже. Ну вот, страшилки рассказаны,
теперь немного о конструкции.
Как видно из схемы, минусы всех конденсаторов соединены вместе и, стало быть,
конденсаторы старой конструкции с минусом на корпусе можно просто плотно перемотать
изолентой и поместить в пластмассовую коробку соответствующих размеров. Диоды нужно
расположить на изоляционной пластинке и при большой мощности поставить их на небольшие
радиаторы, а если мощность не велика и диоды не греются, то их можно поместить в ту же коробку.
Включенные по такой схеме электролитические конденсаторы, вполне успешно работают как
пусковыми так и рабочими.

Включение пускового конденсатора при помощи реле тока.

Из теории известно, что пусковой ток в несколько раз превышает номинальный ток рабочего
двигателя, поэтому включение пускового конденсатора при включении трехфазного двигателя в
однофазную сеть, можно осуществить автоматически, — при помощи реле тока.
Для двигателей до 0,5 кВт подойдёт пусковое реле от холодильника, стиральной машины
типа РП-1, с небольшой переделкой. Подвижные контакты надо заменить на графитовую или
угольную пластинку, выточенную из щётки коллекторного двигателя, по размерам оригинала. Т. к.
при повторном включении, ток заряженного конденсатора даёт большую искру на контактах, и
стандартные контакты свариваются между собой. При применении графита, такого явления не
наблюдалось. (Кроме того, следует отключить термореле).
Для двигателей до 1 кВт можно перемотать РП-1 проводом Ф1,2мм до заполнения катушки
40-45 витков.

Схема подключения электродвигателя. Подключение однофазного электродвигателя

Существует несколько схем подключения электродвигателей. Всё зависит от того, какой тип машины используется. В быту каждый человек использует множество электрических приборов, около 2/3 из общего числа имеют в своей конструкции электрические двигатели различной мощности с разными характеристиками.

Обычно, когда приборы выходят из строя, двигатели могут продолжать работать. Их можно использовать в других конструкциях: изготовить самодельные станки, электронасосы, газонокосилки, вентиляторы. Но вот нужно определиться с тем, какую схему использовать для подключения к бытовой сети.

Конструкция электродвигателей и подключение

Для того чтобы использовать электрические моторы для самодельных аппаратов, нужно произвести правильно подключение обмоток. В однофазную бытовую сеть 220 В можно включить следующие машины:

  1. Асинхронные трехфазные электрические двигатели. Производится к сети подключение электродвигателей «треугольником» или «звездой».
  2. Асинхронные электромоторы, работающие от сети с одной фазой.
  3. Коллекторные двигатели, оснащенные щеточной конструкцией для питания ротора.

Все остальные электрические двигатели необходимо подключать при помощи сложных устройств, предназначенных для запуска. А вот шаговые моторы должны оснащаться специальными электронными схемами управления. Без знаний и умений, а также специальной аппаратуры, выполнить подключение невозможно. Приходится использовать сложные схемы подключения электродвигателей.

Одно- и трехфазная сеть

В бытовой сети одна фаза, напряжение в ней 220 В. Но можно подключить к ней и трехфазные электродвигатели, рассчитанные на напряжение 380 В. Для этого используются специальные схемы, вот только выжать из устройства больше 3 кВт мощности практически нереально, так как увеличивается риск привести в негодность электропроводку в доме. Поэтому если имеется необходимость установки сложного оборудования, в котором требуется применять электрические двигатели на 5 или 10 кВт, лучше провести в дом трехфазную сеть. Подключение электродвигателей «звездой» к такой сети произвести намного проще, нежели к однофазной.

Что потребуется для подключения мотора

Принцип работы любого электрического двигателя знаком каждому, основан он на вращении магнитного потока. При подключении однофазных электродвигателей вам теория не очень нужна, поэтому хватит следующих знаний:

  1. Вы должны иметь представление о конструкции электрического двигателя, с которым производятся работы.
  2. Знать, для какой цели предназначены обмотки, а также уметь по схеме подключения электродвигателя осуществить монтаж.
  3. Уметь работать со вспомогательными устройствами – балластными сопротивлениями или пусковыми конденсаторами.
  4. Знать, как подключается электродвигатель при помощи магнитного пускателя.

Запрещается включать электрический двигатель, если не знаете его модель, а также назначение выводов. Обязательно проверьте, какое допускается соединение обмоток при работе в сети 220 и 380 В. На всех электрических двигателях обязательно присутствует табличка из металла, которая прикреплена к корпусу. На ней указывается модель, тип, схема подключения, напряжение, а также другие параметры. Если нет никаких данных, то необходимо при помощи мультиметра прозвонить все обмотки, после чего правильно соединить их.

Подключение коллекторного двигателя

Такие электродвигатели используются практически во всех бытовых электроприборах. Их можно встретить в стиральных машинках, кофемолках, мясорубках, шуруповертах, обогревателях и прочих приборах. Электродвигатели рассчитаны на сравнительно небольшое время работы, включаются они на несколько секунд или минут. Но зато моторы очень компактные, высокооборотные и мощные. А схема подключения электродвигателя очень простая.

Подключить такой электродвигатель к бытовой сети 220 В можно очень просто. Напряжение поступает от фазы к щетке, затем через обмотку ротора — к противоположной ламели. А вторая щетка снимает напряжение и передаёт его на обмотку статора. Она состоит из двух половин, соединенных последовательно. Второй вывод обмотки поступает на нулевой провод питания.

Особенности включения мотора

Для того чтобы включать и отключать электрический двигатель, применяется кнопка с фиксатором (или без него), но можно использовать и простой выключатель. Если имеется необходимость, то обе обмотки разделяются и их можно подключать попеременно. Этим достигается изменение частоты вращения ротора. Но имеется один недостаток у таких двигателей — относительно низкий ресурс, который напрямую зависит от качества щёток. Именно коллекторный узел является самым уязвимым местом двигателя.

Как подключить однофазный асинхронный мотор

В любом асинхронном электродвигателе, рассчитанном на питание от однофазной сети 220 В, имеется две обмотки — пусковая и рабочая. В качестве «коллектора» используется цилиндрическая болванка из алюминия, которая насажена на валу. Можно даже отметить, что цилиндр на роторе является, по сути, короткозамкнутой обмоткой. Существует множество схем для включения асинхронного мотора, но применяется на практике немного:

  1. С использованием балластного сопротивления, подключенного к обмотке пуска.
  2. С включенным конденсатором на обмотке запуска.
  3. При помощи кнопочного или релейного пускателя, стартового конденсатора, включенного в цепь обмотки пуска.

Очень часто применяется комбинация кнопочного или релейного пускателя, а также постоянно включенного рабочего конденсатора. Вместо реле очень часто используется электронный ключ на тиристоре. При помощи этого переключателя производится подключение однофазного электродвигателя с дополнительной группой конденсаторов.

Практические схемы

Асинхронные электрические двигатели обладают довольно маленьким на старте крутящим моментом. Поэтому необходимо использовать дополнительные устройства, например, пусковые реле или балластные сопротивления, а также мощные конденсаторы для подключения однофазных электродвигателей. Обмотки в моторах изготавливаются с разделением на несколько выводов. Если три вывода, то один из них общий. Но может быть четыре или два.

Для того чтобы понять, к каким конкретно контактам подключена та или иная обмотка, необходимо изучить схему мотора. Если ее нет, потребуется осуществить прозвонку с помощью мультиметра. Для этого переведите его в режим измерения сопротивления. Если на паре выводов большое сопротивление, то это означает, что вы произвели замер одновременно двух обмоток. Обычно у рабочей обмотки асинхронных двигателей сопротивление не более 13 Ом. У пусковой же оно практически в три раза выше — примерно 35 Ом.

Для того чтобы подключить при помощи пускателя однофазный асинхронный мотор, достаточно лишь правильно соединить все контакты проводами. Для того чтобы запустить асинхронник, необходимо кратковременно включить в цепи дополнительные элементы — конденсатор или балластное сопротивление. Чтобы выключить электрическую машину, достаточно просто обесточить все обмотки.

Трехфазные электродвигатели

В трехфазных электрических двигателях существенно большая мощность, а также крутящий момент во время запуска. Подключение трехфазного электродвигателя простое только в том случае, если имеется розетка с тремя фазами 380 В. Но использовать в бытовых условиях такие моторы оказывается проблематично, так как трехфазная сеть есть далеко не у всех дома. Обмотки соединяются по схеме «звезда» или «треугольник», это зависит от того, какое межфазное напряжение в сети.

Но вот в том случае, если вам потребуется подключить такой электрический двигатель в бытовую сеть, придётся использовать маленькую хитрость. По сути, у вас имеется в розетке ноль и фаза. При этом «0» можно считать как один из выводов источника питания, то есть фазу, у которой сдвиг равен нулю.

Чтобы сделать еще одну фазу, необходимо при помощи дополнительного конденсатора осуществить сдвиг фазы питания. Всего должно быть три фазы, каждая имеет сдвиг относительно соседних на 120 градусов. Но чтобы сделать сдвиг правильно, необходимо рассчитать емкость конденсаторов. Так, на каждый киловатт мощности электродвигателя потребуется рабочая емкость около 70 мкФ, а также пусковая около 25 мкФ. При этом они должны быть рассчитаны на напряжение от 600 В и выше.

Но лучше всего производить подключение электродвигателей 380 В трехфазного типа с помощью частотных преобразователей. Существуют модели, которые подключаются к однофазной сети, а при помощи специальных инверторных схем они преобразуют напряжение, в результате чего на выходе оказывается три фазы, которые необходимы для питания асинхронного мотора.

Виды электродвигателей и схемы их подключения для 220 и 380 В

Принципом работы любого электрического двигателя является способность трансформировать электрическую энергию в механическую. Независимо от конструкции, каждая электрическая машина устроена одинаково: в неподвижной части (статор или индуктор) вращается подвижная часть (ротор или якорь). Для продолжительной бесперебойной эксплуатации оборудования необходимо правильное подключение электродвигателя.

Основные разновидности

Электрические двигатели обладают рядом очевидных достоинств. Они гораздо меньше по размеру, чем их тепловые аналоги идентичной мощности. Поэтому они отлично подходят для размещения в общественном электротранспорте или на заводских станках. Во время работы они не вредят окружающей среде выделением продуктов распада и паровыми испарениями.

Электрические двигатели можно разделить на две основных группы:

  1. Двигатели постоянного тока. Применяются для регулируемых электроприводов с эксплуатационными показателями высокого качества, такими как готовность к перезагрузке и вращательная равномерность. Ими оснащают вспомогательные агрегаты экскаваторов, полимерного оборудования, бурильных станков. Электродвигатели массово применяются в электротранспорте. Преобразователи постоянного тока дополнительно подразделяются на коллекторные и вентильные.
  2. Двигатели переменного тока. Являются более дешевыми и долговечными, с простым и надёжным конструкторским решением. Подавляющее большинство бытовой домашней техники укомплектовано этими электродвигателями. В промышленности они применяются в заводских станках, вентиляторах, компрессорах, насосах, лебёдках для поднятия и перемещения груза. По принципу работы эти механизмы делятся на синхронные и асинхронные.

Способы подключения

Электрические двигатели любой конструкции устроены одинаково. В статичной обмотке (статоре) осуществляется вращение ротора. В нём происходит возбуждение магнитного поля, отталкивающее его полюсы от статора. Бесперебойная работа этой конструкции обусловлена правильным подключением электродвигателя, зависящим от используемого вида.

Однофазный асинхронный

Этот двигатель получил такое название потому, что у него всего одна рабочая обмотка. Его мощность может составлять от пяти до десяти киловатт. Рабочая и пусковая обмотки располагаются между собой под прямым углом.

К цепи необходимо подключить фазовращающий элемент. Такая схема подключения однофазного электродвигателя с конденсатором отличается оптимальными пусковыми свойствами. Используя конденсатор, электрический двигатель может быть оснащен следующими видами этого двухполюсника:

На практике чаще всего применяется пусковой конденсатор. Применить этот вариант можно, используя реле времени или замкнув электрическую цепь через пусковую кнопку.

В случае выбора схемы подключения электродвигателя 220 В через конденсатор пусковые характеристики заметно ухудшаются. Третий вариант с пусковым и рабочим двухполюсником считается промежуточным.

Коллекторный вариант

Универсальность этого двигателя заключается в том, что он имеет возможность получать энергию от преобразователей переменной или постоянной разновидности тока. Он находит применение в швейных или стиральных машинах, бытовых электрических инструментах.

Однофазные коллекторные двигатели отличаются такими недостатками:

  1. Сложность ремонтных работ, невозможность их самостоятельного проведения.
  2. Высокий уровень шума.
  3. Сложное управление.
  4. Высокая стоимость.

Сначала необходимо убедиться, что параметры электрической сети соответствуют допустимым напряжению и частоте, указанным на корпусе электродвигателя. Система должна быть предварительно обесточена.

Для подключения коллекторного двигателя следует последовательно соединить статор и якорь. Клеммы 2 и 3 необходимо соединить, а 1 и 4 замкнуть в цепь 220 В. Включение без регулятора перепада давления может спровоцировать образование пускового тока значительной мощности, что приведёт к искрению в коллекторе.

Также стоит рассмотреть схему подключения электродвигателя через магнитный пускатель:

  1. Следует удостовериться, что контактная система пускателя выдержит эксплуатационные условия электрического двигателя. Есть восемь категорий величины нагрузочного тока от 6,3 А до 250 A. Величина в этом случае обозначает силу тока, которую в состоянии пропустить через рабочие контакты электромагнитный пускатель.
  2. Катушка управления может быть рассчитана на 36 В, 220 В, 380 В. Следует выбрать вариант 220 вольт.
  3. После сбора схемы электромагнитного пускателя следует подключить силовую часть. На выходе силовых контактов происходит включение электрического двигателя, параллельно присоединяется вход на 220 вольт.
  4. Затем следует подключить кнопки «Стоп» и «Пуск».
  5. На второй вывод электромагнитного пускателя необходимо присоединить «ноль».

Подключение «звездой»

Такой способ подходит для схемы подключения трёхфазного электродвигателя на 380 В. К началу обмоток (С 1, С 2, С 3) подсоединяются фазные проводники (А, В, С) через аппарат коммутации. Концы обмоток необходимо совместить в одной точке.

Такая схема электродвигателя не позволит развить всю его мощность, потому что на каждой обмотке напряжение будет равняться 220 В. Возможность подключить электрический двигатель по схеме «звезда» подтверждается на табличке символом Y.

Эту схема подключения двигателя можно без труда различить в клеммной коробке из-за перемычки, расположенной посреди выводов обмоток.

Соединение «треугольник»

Чтобы трёхфазная электромашина смогла развить максимально предусмотренную мощность, следует применять схему подключения асинхронного двигателя способом «треугольник».

Выводы обмоток необходимо соединить в следующем порядке:

  • С 2 с С 4;
  • С 3 с С 5;
  • С 6 с С 1.
Между проводами в трёхфазных сетях линейное напряжение будет равняться 380 В. С таким вариантом подключения может не справиться проводка, потому что она способствует возникновению пусковых токов. Такое соединение возможно в случае наличия на табличке двигателя значка Δ.

Для полного понимания того, как подключить электродвигатель с 3 проводами, следует знать о комбинированном подключении. В таком случае сперва применяется схема соединения «звездой», затем в рабочем режиме обмотки переключается на «треугольник».

Всегда нужно помнить в процессе работы с электрическими приборами о строгом соблюдении правил техники безопасности. Все действия необходимо производить лишь в режиме обесточенного оборудования.

Схема подключения электродвигателя

Нас окружает огромное количество электроприборов, почти две трети из них оборудованы электродвигателями с разными мощностными и электрическими характеристиками. После списания прибора в утиль в большинстве случаев электродвигатели сохраняют работоспособность и могут еще довольно долго послужить в виде самодельных электронасосов, точил, станков, вентиляторов и газонокосилок. Нужно только знать, какая схема подключения электродвигателя использована в данном конкретном приборе, и как правильно выполнить подключение асинхронного или коллекторного электропривода к сети.

Какие конструкции электродвигателя можно подключить своими руками


Из большого количества моделей и конструкций современных электромоторов в домашних условиях для самоделок можно выполнить подключение электродвигателя лишь нескольких схем:

  • Асинхронного трехфазного электродвигателя с обмоткой звездой и треугольником;
  • Асинхронного электродвигателя с однофазным питанием;
  • Коллекторного электромотора со щеточной схемой возбуждения потока.

Для питания бытовых приборов и электродвигателей применяется подключение к однофазной сети с напряжением в 220 В. К такой сети можно подключить и трехфазный двигатель на 380 В. Но даже в таком варианте подключения «выдавить» из электродвигателя боле 2,5-3 кВт мощности без риска сжечь электропроводку практически невозможно. Поэтому в гаражах и столярных мастерских владельцы выполняют проводку трехфазного электропитания, позволяющего использовать мощные двигатели на 5-10 кВт и более.

Что нужно знать для подключения электродвигателя своими руками


Общий принцип работы электродвигателя известен всем еще со школы. Но на практике знания о вращающихся магнитных потоках и ЭДС, индукционных процессах и эквивалентах правильно выполнить даже простейшее подключение однофазного электродвигателя явно не помогут, поэтому для работы будет достаточно:

  • Понимать суть конструкций двигателей;
  • Знать предназначение обмоток и схему подключения;
  • Ориентироваться во вспомогательных устройствах, таких как балластные сопротивления и пусковые конденсаторы.

Советская промышленность выпускала электродвигатели с обязательной металлической табличкой, приклепанной к корпусу, на которой был указан тип и модель, напряжение питания, и даже рисовалась схема подключения. Позже на табличке остались только модель, мощность, потребляемый ток и номер. Сегодня на современном электродвигателе с трудом можно найти маркировку модели, и не более.

Поэтому при выборе схемы подключения необходимо узнать из справочника тип и мощность, прозвонить мультиметром проводку относительно корпуса и между выводами на жгуте. Только после того, как будет достоверно установлено, что нет короткого замыкания на корпусе, определены контакты каждой из обмоток, можно приступать к подключению.

Типовые схемы подключения электродвигателя


Наиболее простым в подключении является коллекторный двигатель со щеточным возбуждением магнитного поля ротора. Коллекторным электродвигателем оснащаются электроинструменты, стиралки, кофемолки, электромясорубки и прочие приборы, где время работы мотора одного включения небольшое, но важно, чтобы двигатель был максимально компактным, высокооборотным и мощным.

Подключение к двигателю простейшее. От однофазной сети напряжение подается через замыкаемую кнопку «Пуск» на обмотки статора и ротора последовательного соединения. Пока кнопка в нажатом состоянии, двигатель работает. На статоре может выполняться две обмотки, в этом случае с помощью переключателя двигатель способен работать на пониженной скорости вращения.

Коллекторные двигатели имеют малый ресурс и крайне чувствительны к качеству угольно-графитовых щеток, которыми через медное кольцо подается питание на ротор.

Подключение однофазного асинхронника


Устройство асинхронного электродвигателя на 220 В приведено на схеме. По сути, это стальной корпус с уложенными внутри двумя обмотками — рабочей и пусковой. Коллектор представляет собой алюминиевую цилиндрическую болванку, насаженную на рабочий вал. Преподаватели и инженеры любят подчеркивать, что у такого прибора обмоток не две, а три, имея в виду цилиндр ротора. Но практики оперируют только пусковой и рабочей обмотками.

Из всех способов и схем подключения однофазного асинхронного электродвигателя на практике используют только три:

  1. С балластными сопротивлениями на пусковой обмотке;
  2. С кнопочным или релейным пускателем и стартовым конденсатором в цепи пусковой обмотки;
  3. С постоянно включенным рабочим конденсатором на пусковой обмотке.

Кроме того, используется комбинация последних двух, в этом случае, в дополнение к рабочему конденсатору, в схеме присутствует реле или тиристорный ключ, с помощью которых в момент пуска подключается дополнительная группа стартовых конденсаторов.

Асинхронные двигатели обладают невысоким стартовым моментом вращения, поэтому для запуска приходится прибегать к подключению по схеме дополнительных устройств в виде реле пускателя, балластного сопротивления или мощных конденсаторов.

Достаточно просто подключить однофазный асинхронный электромотор с помощью балластного сопротивления и пускателя, как на схеме.

В любых однофазных асинхронных двигателях имеется две обмотки. Они могут быть изготовлены по схеме с разделением на четыре вывода или на три вывода. В последнем случае один из выводов является общим. Чтобы определить, какие контакты к какой обмотке относятся, потребуется схема двигателя, или можно прозвонить выводы мультиметром. Пара, дающая максимальное сопротивление, означает, что измерение выполнено через две обмотки одновременно, как на схеме. Далее берем оставшийся третий вывод и через него меряем поочередно, как по схеме, сопротивления на первой и второй клемме. Рабочая обмотка асинхронного однофазного двигателя будет иметь минимальное сопротивление 10-13 Ом, сопротивление пусковой будет промежуточным 30-35 Ом.

Включение однофазных асинхронных моторов через пускатель очень простое, достаточно правильно выполнить соединение контактов с пускателем и сетевым кабелем по приведенной схеме. Управление запуском асинхронного двигателя простейшее, достаточно нажать кратковременно на кнопку пускателя, и мотор начнет работу. Выключение выполняется через обесточивание схемы. Управление асинхронными двигателями только с помощью пускателей является неэкономичным и не всегда эффективным способом раскрутить вал, особенно для высокооборотных моторов с небольшим моментом вращения.

Более экономичной является схема подключения электродвигателя 220 с конденсатором. Подключая через конденсаторы, как на приведенных схемах, получаем сдвиг фаз между двумя магнитным вращающимися потоками.

На практике отдают предпочтение схемам с одним конденсатором и комбинированной схеме с рабочим и пусковым конденсаторами. Кратковременным подключением пускового конденсатора на валу двигателя создается мощный стартовый вращающий момент, время запуска сокращается в разы.

Важно правильно подобрать емкость стартового конденсатора. Обычно для качественного запуска подключаемая к однофазному асинхроннику емкость конденсатора выбирается по схеме – на каждые 100 Вт мощности должно приходиться 7мкФ номинала.

Подключение трехфазных электродвигателей


В сравнении с однофазными трехфазные моторы обладают большей мощностью и пусковым моментом. Как правило, в домашних условиях такой электродвигатель применяется для деревообрабатывающих станков и приспособлений. При наличии трехфазной сети порядок подключения еще проще, чем у предыдущих асинхроников. Необходимо выполнить установку четырехконтактного пускателя и выполнить соединение по приведенной на корпусе схеме с контактами трехфазной сети. Такие электродвигатели допускают два вида подключений коммутацией – в виде звезды или треугольника.

Конкретные варианты соединения обмоток по схеме звезда, а чаще треугольника определяются паспортным напряжением и указаниями производителя. В случае необходимости такие электродвигатели могут также подключаться с помощью переходных конденсаторов к однофазной сети. Для этого выполняют подключение, как на схеме.

Для одного киловатта мощности необходим рабочий конденсатор емкостью в 70 мкФ и пусковой в 25 мкФ. Рабочее напряжение не менее 600 В.

Зачастую возникает проблема в определении, какие выводы относятся к обмоткам электродвигателя. Для этого можно собрать схему, приведенную на рисунке.

Ко второму зажиму подключают один из шести контактов обмоток. Вторым проводом сети, к которому подключена контрольная лампа на 220 В, поочередно касаются всех остальных контактов двигателя. При вспыхивании лампы определяют второй контакт обмотки. Проводку маркируют и убирают в сторону, а остальные контакты продолжают прозванивать по приведенной схеме. При прозвоне необходимо следить, чтобы контакты проводки не касались друг друга. Кроме того, нужно будет определить входные и выходные клеммы для каждой обмотки, прежде чем соединять их звездой или треугольником.

Заключение


Самостоятельное подключение трехфазных электродвигателей требует хороших знаний устройства и схем проверки работоспособности основных узлов. Однофазные варианты электродвигателей намного проще и не столь критичны, если допущены ошибки в определении полярности или емкости конденсатора. Но, в любом случае, при первом запуске стоит обращать внимание на нагрев корпуса и пусковых устройств, а также развиваемые электродвигателем обороты. Это поможет вовремя выявить и устранить ошибку до выхода из строя самого прибора.

Схемы подключения трехфазного асинхронного электродвигателя и сопутствующие вопросы

Трехфазный асинхронный электродвигатель и подключение его к электрической сети часто вызывает массу вопросов. Поэтому в нашей статье мы решили рассмотреть все нюансы, связанные с подготовкой к включению, определением правильного способа подключения и, конечно, разберём возможные варианты схем включения двигателя. Поэтому не будем ходить вокруг да около, а сразу приступим к разбору поставленных вопросов.

Подготовка асинхронного электродвигателя к включению

На самом первом этапе нам следует определиться с типом двигателя, который мы собрались подключать. Это может быть трехфазный асинхронный двигатель с короткозамкнутым или фазным ротором, двух- или однофазный двигатель, а может быть и вовсе синхронная машина.

Помочь в этом может бирка на электродвигателе, на которой указана нужная информация. Иногда это можно сделать чисто визуально — так как мы рассматриваем подключение трехфазных электрических машин, то двигатель с короткозамкнутым ротором не имеет коллектора, а машина с фазным ротором имеет таковой.

Определение начала и конца обмотки

Трехфазный асинхронный электродвигатель имеет шесть выводов. Это три обмотки, каждая из которых имеет начало и конец.

Для правильного подключения мы должны определить начало и конец каждой обмотки. Существует множество вариантов того, как это сделать — мы остановимся на наиболее простых из них, применимых в домашних условиях.

  • Для того чтоб определить начало и конец обмотки трехфазного двигателя своими руками, мы должны для начала определить выводы каждой отдельной обмотки, то есть определить каждую отдельную обмотку.
  • Сделать это достаточно просто. Между концом и началом одной обмотки у нас обязательно будет цепь. Определить цепь нам помогут либо двухполюсный указатель напряжения с соответствующей функцией, либо обычный мультиметр.
  • Для этого один конец мультиметра подключаем к одному из выводов и другим концом мультиметра касаемся поочередно остальных пяти выводов. Между началом и концом одной обмотки у нас будет значение близкое к нулю, в режиме измерения сопротивления. Между остальными четырьмя выводами значение будет практически бесконечным.
  • Следующим этапом будет определение их начала и конца.
  • Для того чтоб определить начало и конец обмотки, давайте немного погрузимся в теорию. В статоре электродвигателя имеется три обмотки. Если подключить конец одной обмотки к концу другой обмотки, а на начало обмоток подать напряжение, то в месте подключения ЭДС будет равен или близок к нулю. Ведь ЭДС одной обмотки компенсирует ЭДС второй обмотки. При этом в третьей обмотке ЭДС не будет наводиться.
  • Теперь рассмотрим второй вариант. Вы соединили один конец обмотки с началом второй обмотки. В этом случае ЭДС наводится в каждой из обмоток, в результате получается их сумма. За счет электромагнитной индукции ЭДС наводится в третьей обмотке.
  • Используя этот метод, мы можем найти начало и конец каждой из обмоток. Для этого к выводам одной обмотки подключаем вольтметр или лампочку. А любых два вывода других обмоток соединяем между собой. Два оставшихся вывода обмоток подключаем к электрической сети в 220В. Хотя можно использовать и меньшее напряжение.
  • Если мы соединили конец и конец двух обмоток, то вольтметр на третьей обмотке покажет значение близкое к нулю. Если же мы подключили начало и конец двух обмоток правильно, то, как говорит инструкция, на вольтметре появится напряжение от 10 до 60В (данное значение является весьма условным и зависит от конструкции электродвигателя).
  • Подобный опыт повторяем еще дважды, пока точно не определим начало и конец каждой из обмоток. Для этого обязательно подписывайте каждый полученный результат, дабы не запутаться.

Выбор схемы подключения электродвигателя

Практически любой асинхронный электродвигатель имеет два варианта подключения – это звезда или треугольник. В первом случае обмотки подключаются на фазное напряжение, во втором на линейное напряжение.

Электродвигатель асинхронный трехфазный и подключение звезда–треугольник зависит от особенностей обмотки. Обычно оно указано на бирке двигателя.

  • Прежде всего, давайте разберемся, в чем отличие этих двух вариантов. Наиболее распространенным является соединение «звезда». Оно предполагает соединение между собой всех трех концов обмоток, а напряжение подается на начала обмоток.
  • При соединении «треугольник» начало каждой обмотки соединятся с концом предыдущей обмотки. В результате каждая обмотка у нас получается стороной равностороннего треугольника – откуда и пошло название.
  • Отличие этих двух вариантов соединения состоит в мощности двигателя и условий пуска. При соединении «треугольником» двигатель способен развивать большую мощность на валу. В то же время момент пуска характеризуется большой просадкой напряжения и большими пусковыми токами.
  • В бытовых условиях выбор способа подключения обычно зависит от имеющегося класса напряжения. Исходя из этого параметра и номинальных параметров, указанных на табличке двигателя, выбирают способ подключения к сети.

Подключение асинхронного электродвигателя

Электродвигатель асинхронный трехфазный и схема подключения зависят от ваших потребностей. Наиболее распространенным вариантом является схема прямого включения, для двигателей, подключенных схемой «треугольника», возможна схема включения на «звезде» с переходом на «треугольник», при необходимости возможен вариант реверсивного включения.

В нашей статье мы рассмотрим наиболее популярные схемы прямого включения и прямого включения с возможностью реверса.

Схема прямого включения асинхронного электродвигателя

В предыдущих главах мы подключили обмотки двигателя, и вот теперь пришло время включения его в сеть. Двигатели должны включаться в сеть при помощи магнитного пускателя, который обеспечивает надежное и одновременное включение всех трех фаз электродвигателя.

Пускатель в свою очередь управляется кнопочным постом – те самые кнопки «Пуск» и «Стоп» в одном корпусе.

Обратите внимание! Вместо автомата вполне возможно применение предохранителей. Только их номинальный ток должен соответствовать номинальному току двигателя. А также должен учитывать пусковой ток, который у разных типов двигателей колеблется от 6 до 10 крат от номинального.

  1. Теперь приступаем непосредственно к подключению. Его условно можно разделить на два этапа. Первый это подключение силовой части, и второй — подключение вторичных цепей. Силовые цепи – это цепи, которые обеспечивают связь двигателя с источником электрической энергии. Вторичные цепи необходимы для удобства управления двигателем.
  2. Для подключения силовых цепей нам достаточно подключить вывода двигателя с первыми выводами пускателя, выводы пускателя с выводами автоматического выключателя, а сам автомат с источником электрической энергии.

Обратите внимание! Подключение фазных выводов к контактам пускателя и автомата не имеют значения. Если после первого пуска мы определим, что вращение неправильное, мы сможем легко его изменить. Цепь заземления двигателя подключается помимо всех коммутационных аппаратов.

Теперь рассмотрим более сложную схему вторичных цепей. Для этого нам, прежде всего, как на видео, следует определиться с номинальными параметрами катушки пускателя. Она может быть на напряжение 220В или 380В.

  • Так же следует разобраться с таким элементом, как блок-контакты пускателя. Данный элемент имеется практически на всех типах пускателей, а в некоторых случаях он может приобретаться отдельно с последующим монтажом на корпус пускателя.
  • Эти блок-контакты содержат набор контактов – нормально закрытых и нормально открытых. Сразу предупредим – не пугайтесь в этом нет нечего сложного. Нормально закрытым называется контакт, который при отключенном положении пускателя – замкнут. Соответственно нормально открытый контакт в этот момент разомкнут.
  • При включении пускателя нормально закрытые контакты размыкаются, а нормально открытые контакты замыкаются. Если мы говорим за электродвигатель трехфазный асинхронный и подключение его к электрической сети, то нам необходим нормально открытый контакт.
  • Такие контакты есть и на кнопочном посту. Кнопка «Стоп» имеет нормально закрытый контакт, а кнопка «Пуск» нормально открытый. Сначала подключаем кнопку «Стоп».
  • Для этого соединяем один провод с контактами пускателя между автоматическим выключателем и пускателем. Его подключаем к одному из контактов кнопки «Стоп». От второго контакта кнопки должно отходить сразу два провода. Один идет к контакту кнопки «Пуск», второй к блок-контактам пускателя.
  • От кнопки «Пуск» прокладываем провод к катушке пускателя, туда же подключаем провод от блок-контактов пускателя. Второй конец катушки пускателя подключаем либо ко второму фазному проводу на силовых контактах пускателя, при использовании катушки на 380В, либо он подключается к нулевому проводу, при использовании катушки на 220В.
  • Все, наша схема прямого включения асинхронного двигателя готова к использованию. После первого включения проверяем направление вращения двигателя и если вращение неправильное, то просто меняем местами два силовых провода на выводах пускателя.

Схема реверсивного включения электродвигателя

Распространенным вариантом подключения асинхронного электродвигателя является вариант с использованием реверса. Такой режим может потребоваться в случаях, когда необходимо изменять направление вращения двигателя в процессе эксплуатации.

  • Для создания такой схемы нам потребуются два пускателя из-за чего цена такого подключения несколько возрастает. Один будет включать двигатель в работу в одну сторону, а второй в другую. Тут очень важным моментом является недопустимость одновременного включения обоих пускателей. Поэтому нам необходимо во вторичной схеме предусмотреть блокировку от таких включений.
  • Но сначала давайте подключим силовую часть. Для этого, как и приведенном выше варианте, подключаем от автомата пускатель, а от пускателя — двигатель.
  • Единственным отличием будет подключение еще одного пускателя. Его подключаем к вводам первого пускателя. При этом важным моментом будет поменять местами две фазы, как на фото.
  • Вывода второго пускателя просто подключаем к выводам первого. Причем здесь уже ничего не меняем местами.
  • Ну, а теперь, переходим к подключению вторичной схемы. Начинается все опять с кнопки «Стоп». Ее подключаем к одному из приходящих контактов пускателя – неважно первого или второго. От кнопки «Стоп» у нас вновь идут два провода. Но теперь один к контакту 1 кнопки «Вперед», а второй к контакту 1 кнопки «Назад».
  • Дальнейшее подключение приводим по кнопке «Вперед» — по кнопке «Назад» оно идентично. К контакту 1 кнопки «Вперед» подключаем контакт нормально открытого контакта блок-контактов пускателя. Каламбур, но точнее не скажешь. К контакту 2 кнопки «Вперед» подключаем провод от второго контакта блок-контактов пускателя.
  • Туда же подключаем провод, который пойдет к нормально закрытому контакту блок-контактов пускателя номер два. А уже от этого блок-контакта он подключается к катушке пускателя номер 1. Второй конец катушки подключается к фазному или нулевому проводу в зависимости от класса напряжения.
  • Подключение катушки второго пускателя производится идентично, только ее мы подводим к блок-контактам первого пускателя. Именно это обеспечивает блокировку от включения одного пускателя, при подтянутом положении второго.

Вывод

Способы подключения асинхронного трехфазного электродвигателя зависят от типа двигателя, схемы его соединения и задач, которые стоят перед нами. Мы привели лишь самые распространенные схемы подключения, но существуют и еще более сложные варианты. Особенно это касается асинхронных машин с фазным ротором, которые имеют функцию торможения.

Схемы подключения трехфазных электродвигателей

ВАЖНО! Перед подключением электродвигателя необходимо убедится в правильности схемы соединения обмоток электродвигателя в соответствии с его паспортными данными.

Условные обозначения на схемах

Магнитный пускатель (далее — пускатель) — коммутационный аппарат предназначенный для пуска и остановки двигателя. Управление пускателем осуществляется через электрическую катушку, которая выступает в качестве электромагнита, при подаче на катушку напряжения она воздействует электромагнитным полем на подвижные контакты пускателя которые замыкаются и включают электрическую цепь, и наоборот, при снятии напряжения с катушки пускателя — электромагнитное поле пропадает и контакты пускателя под действием пружины возвращаются в исходное положение размыкая цепь.

У магнитного пускателя есть силовые контакты предназначенные для коммутации цепей под нагрузкой и блок-контакты которые используются в цепях управления.

Контакты делятся на нормально-разомкнутые — контакты которые в своем нормальном положении, т.е. до подачи напряжения на катушку магнитного пускателя или до механического воздействия на них, находятся в разомкнутом состоянии и нормально-замкнутые — которые в своем нормальном положении находятся в замкнутом состоянии.

В новых магнитных пускателях имеется три силовых контакта и один нормально-разомкнутый блок-контакт. При необходимости наличия большего количества блок-контактов (например при сборке реверсивной схемы пуска электродвигателя), на магнитный пускатель сверху дополнительно устанавливается приставка с дополнительными блок-контактами (блок контактов) которая, как правило, имеет четыре дополнительных блок-контакта (к примеру два нармально-замкнутых и два нормально-разомкнутых).

Кнопки для управления электродвигателем входят в состав кнопочных постов, кнопочные посты могут быть однокнопочные, двухкнопочные, трехкнопочные и т.д.

Каждая кнопка кнопочного поста имеет по два контакта — один из них нормально-разомкнутый, а второй нормально-замкнутый, т.е. каждая из кнопок может использоваться как в качестве кнопки «Пуск» так и в качестве кнопки «Стоп».

Схема прямого включения электродвигателя

Данная схема является самой простой схемой подключения электродвигателя, в ней отсутствует цепь управления, а включение и отключение электродвигателя осуществляется автоматическим выключателем.

Главными достоинствами данной схемы является дешевизна и простота сборки, к недостаткам же данной схемы можно отнести то, что автоматические выключатели не предназначены для частого коммутирования цепей это, в сочетании с пусковыми токами, приводит к значительному сокращению срока службы автомата, кроме того в данной схеме отсутствует возможность устройства дополнительной защиты электродвигателя.

Схема подключения электродвигателя через магнитный пускатель

Эту схему так же часто называют схемой простого пуска электродвигателя, в ней, в отличии от предыдущей, кроме силовой цепи появляется так же цепь управления.

При нажатии кнопки SB-2 (кнопка «ПУСК») подается напряжение на катушку магнитного пускателя KM-1, при этом пускатель замыкает свои силовые контакты KM-1 запуская электродвигатель, а так же замыкает свой блок-контакт KM-1.1, при отпускании кнопки SB-2 ее контакт снова размыкается, однако катушка магнитного пускателя при этом не обесточивается, т.к. ее питание теперь будет осуществляться через блок-контак KM-1.1 (т.е. блок-контак KM-1.1 шунтирует кнопку SB-2). Нажатие на кнопку SB-1 (кнопка «СТОП») приводит к разрыву цепи управления, обесточиванию катушки магнитного пускателя, что приводит к размыканию контактов магнитного пускателя и как следствие, к остановке электродвигателя.

Реверсивная схема подключения электродвигателя (Как изменить направление вращения электродвигателя?)

Что бы поменять направление вращения трехфазного электродвигателя необходимо поменять местами любые две питающие его фазы:

При необходимости частой смены направления вращения электродвигателя применяется реверсивная схема подключения электродвигателя:

В данной схеме применяется два магнитных пускателя (KM-1, KM-2) и трехкнопочный пост, магнитные поскатели применяемые в данной схеме кроме нормально-разомкнутого блок-контакта должны так же иметь и нормально замкнутый контакт.

При нажатии кнопки SB-2 (кнопка «ПУСК 1») подается напряжение на катушку магнитного пускателя KM-1, при этом пускатель замыкает свои силовые контакты KM-1 запуская электродвигатель, а так же замыкает свой блок-контакт KM-1.1 который шунтирует кнопку SB-2 и размыкает свой блок-контакт KM-1.2 который защищает электродвигатель от включения в обратную сторону (при нажатии кнопки SB-3) до его предварительной остановки, т.к. попытка запуска электродвигателя в обратную сторону без предварительного отключения пускателя KM-1 приведет к короткому замыканию. Что бы запустить электродвигатель в обратную сторону необходимо нажать кнопу «СТОП» (SB-1), а затем кнопку «ПУСК 2» (SB-3) которая запитает катушку магнитного пускателя KM-2 и запустит электродвигатель в обратную сторону.

Примечание: В данной статье понятия пускателя и контактора не разделяются в связи с идентичностью их схем подключения подробнее читайте статью: Контакторы и магнитные пускатели.

Была ли Вам полезна данная статья? Или может быть у Вас остались вопросы? Пишите в комментариях!

Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

Но прежде чем приступать непосредственно к подключению, давайте разберем, какое электрооборудование нам для этого необходимо. Прежде всего, это автоматический выключатель, номинальный ток которого соответствует, либо немного выше номинального тока электродвигателя.
Следующим коммутационным аппаратом является уже упоминавшийся нами пускатель. В зависимости он номинального тока пускатели разделяются на изделия 1, 2 и т. д. до 8-ой величины. Для нас важно, чтобы номинальный ток пускателя был не меньше, чем номинальный ток электродвигателя.
Пускатель управляется при помощи кнопочного поста. Он может быть двух видов. С кнопками «Пуск» и «Стоп» и с кнопками «Вперед», «Стоп» и «Назад». Если у нас не используется реверс, то нам необходим кнопочный пост на две кнопки и наоборот.
Кроме указанных аппаратов нам потребуется кабель соответствующего сечения. Так же желательно, но не обязательно, установка амперметра хотя бы на одну фазу, для контроля тока двигателя.

Подключение электродвигателя – основные составляющие узла

Стандартная схема подключения двигателя предполагает использование пяти составляющих, обеспечивающих правильную и безопасную работу оборудования.

  • Вводный автомат – элемент, через который выполняется подключение всех видов оборудования для питания, контроля и управления электрическими агрегатами.
  • Магнитный пускатель – коммутационный аппарат, задача которого – включение/отключение питания на стадии рабочего и аварийного режима.
  • Тепловое реле – подключение электрического двигателя без этого элемента крайне не рекомендуется. Реле обеспечивает защиту двигателя. Активируется при перегрузках, а также таких негативных явлениях, как обрыв фазы, повреждения механического плана и т.д.
  • Реле контроля фаз – контролирует уровень напряжения, симметрии и очередность фаз в трехфазной сети. Если реле фиксирует нарушенную работу какого-либо из объектов контроля, поступает сигнал на отключение/разрыв цепи. Этот элемент играет большую роль не только с позиции подключения двигателя, но и любого другого оборудования, которое предусматривает частую смену местоположения и критично «относится» к правильности подключения фаз.
  • Кнопки управления – подключение электродвигателя без применения кнопок в последующем вызывает ряд проблемных моментов. Кнопки позволяют удобно реализовать основное ручное управление работой привода.        

В остальном подключение двигателя зависит от типа последнего. Так, некоторые агрегаты могут быть непосредственно подсоединены к источнику питания, а для нормального функционирования других не обойтись без соединения нескольких клемм по определенной схеме.   

Если у вас есть на руках электродвигатель, как подключить его – подскажет прилагающаяся схема-инструкция с общими рекомендациями. Схема подключения во многом определяется планируемыми условиями использования привода. К примеру, подключение по типу «звезда» гарантирует плавность хода, однако это преимущество омрачается потерей мощности по сравнению с подключением по типу «треугольник» (схема выше).

Последняя схема позволяет задействовать всю мощность, указанную в паспортных данных электрического двигателя. Однако если вы решили подключить электродвигатель по схеме «треугольник», то нужно быть готовым к большим пусковым токам.

Подключение электрического двигателя имеет общие рекомендации только в том случае, если агрегат не подвергался переделкам и его штатная маркировка не изменялась.

14. Электрическая схема включения электродвигателя постоянного тока вентилятора и автоматизация его работы

Двигатель вентилятора воздуховода включается в работу выключателем Q1 одновременно с цепью управления, которая включается выключателем Q1.2 Двигатель имеет три ступени регулирования частоты вращения для изменения подачи воздуха в зависимости от температуры внутри вагона. Частота вращения двигателя изменяется путем изменения сопротивления якоря или обмотки возбуждения двигателя. При достижении t=20˚C замыкаются контакты термодатчика, что приводит к возбуждению катушки К3, при этом замыкается контакт К3.1 цепи катушки К1, которая контактом К1.1шунтирует сопротивление R4 якоря двигателя. Частота вращения двигателя возрастает. При достижении температуры t=22°C замыкается вторая цепь термодатчика, пропуская ток через катушку К4, которая замыкает контакт К4.1 в цепи катушки К2. Катушка К2 размыкает контакт К2.1 и ток возбуждения проходит через сопротивление R2. Магнитный поток уменьшается, а частота вращения ротора увеличивается. При снижении температуры воздуха в вагоне последовательно обесточиваются катушки контакторов К4 и К3, размыкаются контакты К4.1 и К3.1, что приводит к возврату контакторов К1 и К2 в исходное положение. Контакт К2.1 замыкается, а К1.1 размыкается. Двигатель переходит на низкую частоту вращения. При включении вентилятора, загорается сигнальная лампа HL7.

15. Электрические схемы включения электродвигателей постоянного тока приводов вагонных механизмов

Двигатель циркуляционного насоса включается выключателем QF2.

В вагоне предусмотрено охлаждение питьевой воды. Двигатель охладителя включается в сеть выключателем QF1. В случае увеличения температуры срабатывает термодатчик ВK1 и замыкается цепь катушки К3, которая контактом К3.1 включает электродвигатель охладителя питьевой воды.

Электродвигатель включается контактом К 1.1 контактор которого находится в блоке управления установки кондиционирования воздуха. Частота вращения двигателя компрессора изменяется путем изменения сопротивления якоря, контактом К2.1 шунтируется сопротивление R4 якоря двигателя . Частота вращения двигателя возрастает.

16. Электрическая схема включения электродвигателя переменного тока вентиля-тора и автоматизация его работы

Цепь управления двигателя системы вентилятора включается в работу выключателем SA1. Двигатель включается в сеть автоматическим выключателемQF1 и имеет две ступени регулирования частоты вращения для изменения подачи воздуха в зависимости от температуры внутри вагона.

При достижении t=18˚Cзамыкается контакт термодатчика, что приводит к возбуждению катушки К4, при этом замыкается контакт К4.1 цепи катушки К1, которая контактом К1.1-К1.3 включает двигатель. При достижении температуры в салонеt=22°Cзамыкается вторая цепь термодатчика, пропуская ток через катушку К5, которая замыкает контакт К5.2 в цепи катушек К2,К3 и размыкает контакт К5.1, обесточивая катушку К1. Контакты К1.1-К1.3 размыкаются, а контакты К2.1-К2.3 и К3.1,К3.2 замыкаются отключая малую скорость и включая большую, обмотки двигателя включены по схеме «двойная звезда». При снижении температуры воздуха в вагоне последовательно обесточиваются катушки контакторов К5 и К4, размыкаются контакты К5.2 и К4.1, что приводит к возврату контакторов К2 и К3 в исходное положение. Контакты К2.1-К2.3 и К3.1,К3.2 размыкаются, а К1.1-К1.3 замыкаются, обмотки двигателя включены по схеме “треугольник”. Двигатель переходит на низкую частоту вращения. При включении вентилятора, начинает светиться сигнальный светодиод HL1.

Принципиальная электрическая схема управления электродвигателем малогабаритной стиральной машины

 

Полезная модель относится к схемам управления электродвигателем стиральной машины и используется в малогабаритных стиральных машинах активаторного типа. Техническая задача, стоящая перед авторами — изменить направление вращения электродвигателя непосредственно через контактную группу переключения, минуя операцию (по сравнению с прототипом) включить-выключить. Технический результат достигается тем, что в известной принципиальной схеме управления электродвигателем стиральной машины, включающие токоведущие части соединенные контактами для включения, переключения направления вращения и выключения асинхронного однофазного двигателя, контакты для переключения направления вращения электродвигателя выполнены в виде двух групп контактов с возможностью изменения направления вращения электродвигателя путем перестановки местами концов выводов главной обмотки C1, C2 электродвигателя. Предложенная схема управления включает токоведущие части 1, соединенные контактами 2 для включения, выключения электродвигателя 3, контакты 4, переключения направления вращения электродвигателя 3,.выводы 5, контакт 6 паузный. Предложенная схема управления работает следующим образом. Сетевое напряжение U=220 V, 50 Гц, подается на контакты 2. При установке блока управления на заданное время включаются контакты 2. Контакт 6 производит остановку электродвигателя на определенное время перед изменением направления вращения электродвигателя. Контактные группы 4 изменяют направление вращения электродвигателя путем перестановки местами концов (перекидывания) обмоток электродвигателя. При положении контактов 4 в положении 4\1 происходит вращение электродвигателя в одну сторону, при переключении контактов 4 в положение 4/11 электродвигатель вращается в противоположную сторону.

Полезная модель относится к схемам управления электродвигателем стиральной машины и используется в малогабаритных стиральных машинах активаторного типа.

Наиболее близким аналогом — прототипом заявляемой полезной модели является схема управления электродвигателем стиральной машины известной на отечественном рынке и за рубежом /Руководство по эксплуатации. Машина стиральная бытовая, типа СМ-2. Год известности 1991 г. с.6./.(См. приложение 1). Для управления электродвигателем в ней используются контакты для включения, переключения направления вращения и выключения двигателя. Переключение направления вращения электродвигателя в прототипе происходит путем включения двух пар контактов и выключения двух пар контактов и наоборот.

Недостатком схемы управления прототипа является то, что реверс электродвигателя осуществляется путем переключения двух замыкающих и двух размыкающих контактов, что увеличивает габариты блока управления, материалоемкость и снижает надежность конструкции в целом.

Техническая задача, стоящая перед авторами — изменить направление вращения электродвигателя непосредственно через контактную группу: переключения, минуя операцию (по сравнению с прототипом) включить-выключить.

Технический результат достигается тем, что в известной принципиальной схеме управления электродвигателем стиральной машины, включающей токоведущие части соединенные контактами для включения, переключения направления вращения и выключения асинхронного однофазного двигателя, контакты для переключения направления вращения. электродвигателя выполнены в виде двух групп контактов с возможностью изменения направления вращения электродвигателя путем перестановки местами концов выводов главной обмотки электродвигателя.

На фиг.1 представлена заявляемая схема.

Предложенная схема управления включает токоведущие части 1, соединенные контактами 2 для включения, выключения электродвигателя 3, контакты 4,

переключения направления вращения электродвигателя 3, выводы 5, контакт 6 паузный.

Предложенная схема управления работает следующим образом. Сетевое напряжение U=220 V, 50 Гц, подается на контакты 2. При установке блока управления на заданное время включаются контакты 2. Контакт 6 производит остановку электродвигателя на определенное время перед изменением направления вращения электродвигателя. Контактные группы 4 изменяют направление вращения электродвигателя путем перестановки (перекидывания) местами концов выводов 5 главной обмотки электродвигателя. При положении контактов 4 в положении 4\1 происходит вращение электродвигателя в одну сторону, при переключении контактов 4 в положение 4/11 электродвигатель вращается в противоположную сторону.

Таким образом, новая совокупность предложенных признаков предложенного решения позволяет его использовать в массовом производстве стиральных машин типа СМ 2 и делает их конкурентоспособными на мировом рынке, а также стимулирует производство и развитие отечественного приборостроения.

Принципиальная электрическая схема управления электродвигателем малогабаритной стиральной машины, включающая токоведущие части, соединенные контактами для включения, переключения направления вращения и выключения асинхронного однофазного конденсаторного двигателя, отличающаяся тем, что контакты для переключения направления вращения электродвигателя выполнены в виде двух групп контактов с возможностью изменения направления вращения электродвигателя путем перестановки местами концов выводов главной обмотки электродвигателя.

Электрические схемы управления двигателем при помощи электромагнитных пускателей

Нереверсивный пуск асинхронного двигателя с короткозамкнутым ротором

Схема приведена на рисунке 1. Для работы сети необходимо включить рубильник (Q). При нажатии кнопки «пуск» (SB1) катушка контактора (KM) получает питание и замыкает главные контакты в силовой цепи, тем самым происходит подключение двигателя к сети. Одновременно замыкается блок-контакт (KM) цепи управления, которые шунтирует кнопку пуск (SB1).

Для защиты двигателя от перегрузок и от потери фазы применяют тепловые реле (KK1, KK2), которые включаются непосредственно в силовую цепь двигателя.

Если температура обмотки двигателя превысит допустимые значения, то сработает тепловое реле и разомкнет свои контакты в цепи управления (KK1, KK2), тем самым обесточит катушку контактора (KM) и двигатель остановиться.

Для отключения необходимо нажать кнопку «стоп» (SB2).

Для защиты двигателя от токов короткого замыкания служат плавкие предохранители (FU).

Реверсивный пуск асинхронного двигателя с короткозамкнутым ротором

Такая схема запуска приведена на рис. 2.

Пуск двигателя начинается с включения рубильника (Q). При нажатии кнопки «вперед» (SB1) образуется цепь тока, катушки контактора (KM1). Замыкаются силовые контакты (KM) и шунтирующий блок-контакт, а контакт (KM1) в цепи контактора (KM2) размыкается.

При нажатии кнопки «назад» (SB3) контактор (KM1) разомкнется и двигатель остановится. Контакт (KM1) в цепи катушки (KM2) замыкается, следовательно, образуется цепь включения контактора (KM2), который замыкает свои силовые контакты. Двигатель резко тормозит и по достижении скольжения равного единице (S=1) останавливается и ротор начинает вращаться в обратную сторону, то есть происходит реверс двигателя. Размыкающие контакты (KM1, KM2), которые введены в цепь разноименных катушек контакторов, выполняют защиту от одновременного включения обоих контакторов, то есть осуществляют блокировку.

Для зажиты двигателя от токов короткого замыкания установлены плавкие предохранители (FU), для защиты от перегрузок – тепловое реле (KK1, KK2).

Если статья хоть немного помогла, поставьте, пожалуйста, лайк:

…или подпишитесь на новости:

Двигатель постоянного тока: схемы включения

Электродвигатели, работающие на постоянном токе, используются не так часто, как двигатели переменного тока. Ниже приведем их достоинства и недостатки.

ДостоинстваНедостатки
частота вращения легко регулируетсявысокая стоимость
мягкий пуск и плавный разгонсложность конструкции
получение частоты вращения выше 3000 об/минсложность в эксплуатации

В быту двигатели постоянного тока нашли применение в детских игрушках, так как источниками для их питания служат батарейки. Используются они на транспорте: в метрополитене, трамваях и троллейбусах, автомобилях. На промышленных предприятиях электродвигатели постоянного тока применяются в приводах агрегатов, для бесперебойного электроснабжения которых используются аккумуляторные батареи.

Конструкция и обслуживание двигателя постоянного тока

Основной обмоткой двигателя постоянного тока является якорь, подключающийся к источнику питания через щеточный аппарат. Якорь вращается в магнитном поле, создаваемом полюсами статора (обмотками возбуждения). Торцевые части статора закрыты щитами с подшипниками, в которых вращается вал якоря двигателя. С одной стороны на этом же валу установлен вентилятор охлаждения, прогоняющий поток воздуха через внутренние полости двигателя при его работе.

Схема двигателя постоянного тока

Щеточный аппарат – уязвимый элемент в конструкции двигателя. Щетки притираются к коллектору, чтобы как можно точнее повторять его форму, прижимаются к нему с постоянным усилием. В процессе работы щетки истираются, токопроводящая пыль от них оседает на неподвижных частях, ее периодически нужно удалять. Сами щетки нужно иногда перемещать в пазах, иначе они застревают в них под действием той же пыли и «зависают» над коллектором. Характеристики двигателя зависит еще и от положения щеток в пространстве в плоскости вращения якоря.

Со временем щетки изнашиваются и заменяются. Коллектор в местах контакта со щетками тоже истирается. Периодически якорь демонтируют и протачивают коллектор на токарном станке. После протачивания изоляция между ламелями коллектора срезается на некоторую глубину, так как она прочнее материала коллектора и при дальнейшей выработке будет разрушать щетки.

Схемы включения двигателя постоянного тока

Наличие обмоток возбуждения – отличительная особенность машин постоянного тока. От способов их подключения к сети зависят электрические и механические свойства электродвигателя.

Независимое возбуждение

Обмотка возбуждения подключается к независимому источнику. Характеристики двигателя получаются такие же, как у двигателя с постоянными магнитами. Скорость вращения регулируется сопротивлением в цепи якоря. Регулируют ее и реостатом (регулировочным сопротивлением) в цепи обмотки возбуждения, но при чрезмерном уменьшении его величины или при обрыве ток якоря возрастает до опасных значений. Двигатели с независимым возбуждением нельзя запускать на холостом ходу или с малой нагрузкой на валу. Скорость вращения резко увеличится, и двигатель будет поврежден.

Схема независимого возбуждения

Остальные схемы называют схемами с самовозбуждением.

Параллельное возбуждение

Обмотки ротора и возбуждения подключаются параллельно к одному источнику питания. При таком включении ток через обмотку возбуждения в несколько раз меньше, чем через ротор. Характеристики электродвигателей получаются жесткими, позволяющие использовать их для привода станков, вентиляторов.

Регулировка скорости вращения обеспечивается включением реостатов в цепь ротора или последовательно с обмоткой возбуждения.

Схема параллельного возбуждения

Последовательное возбуждение

Обмотка возбуждения включается последовательно с якорной, по ним течет один и тот же ток. Скорость такого двигателя зависит от его нагрузки, его нельзя включать на холостом ходу. Но он обладает хорошими пусковыми характеристиками, поэтому схема с последовательным возбуждением применяется на электрифицированном транспорте.

Схема последовательного возбуждения

Смешанное возбуждение

При этой схеме используются две обмотки возбуждения, расположенные попарно на каждом из полюсов электродвигателя. Их можно подключить так, чтобы потоки их либо складывались, либо вычитались. В результате двигатель может иметь характеристики как у схемы последовательного или параллельного возбуждения.

Схема смешанного возбуждения

Для изменения направления вращения изменяют полярность одной из обмоток возбуждения. Для управления пуском электродвигателя и скоростью его вращения применяют ступенчатое переключение сопротивлений.

Оцените качество статьи:

Как работают электродвигатели?

Щелкните выключателем и мгновенно получите власть — как наши предки любили электродвигатели! Вы можете найти их во всем, начиная с электропоезда с дистанционным управлением автомобили — и вы можете быть удивлены, насколько они распространены. Сколько электрических моторы сейчас есть в комнате с тобой? Наверное, два в вашем компьютере для начала, один круто ездить, а еще один питает охлаждающий вентилятор.Если вы сидите в спальне, вы найдете моторы в фенах и многих игрушки; в ванной — вытяжки и электробритвы; На кухне моторы есть практически во всех устройствах, от стиральных и посудомоечных машин до кофемолок, микроволновых печей и электрических консервных ножей. Электродвигатели зарекомендовали себя среди лучших изобретения всех времен. Давайте разберемся и узнаем, как они Работа!

Фото: Даже маленькие электродвигатели на удивление тяжелые.Это потому, что они набиты туго намотанной медью и тяжелыми магнитами. Это мотор от старой электрической газонокосилки. Вещь медного цвета в сторону В передней части оси с прорезями находится коммутатор, удерживающий двигатель. вращение в том же направлении (как описано ниже).

Как электромагнетизм заставляет двигатель двигаться?

Основная идея электродвигателя действительно проста: вы помещаете в него электричество с одного конца, а ось (металлический стержень) вращается на другом конце, давая вам возможность управлять машина какая то.Как это работает на практике? Как именно ваш преобразовать электричество в движение? Чтобы найти ответ на этот вопрос, у нас есть вернуться во времени почти на 200 лет.

Предположим, вы берете кусок обычного провода, превращаете его в большую петлю, и положите его между полюсами мощной постоянной подковы магнит. Теперь, если вы подключите два конца провода к батарее, провод будет прыгать кратко. Удивительно, когда видишь это впервые. Это прямо как по волшебству! Но есть совершенно научный объяснение.Когда электрический ток начинает течь по проводу, он создает магнитное поле вокруг него. Если разместить провод рядом с постоянным магнит, это временное магнитное поле взаимодействует с постоянным поле магнита. Вы знаете, что два магнита расположены рядом друг с другом. либо притягивать, либо отталкивать. Таким же образом временный магнетизм вокруг провода притягивает или отталкивает постоянный магнетизм от магнит, и это то, что заставляет проволоку подпрыгивать.

Как работает электродвигатель — теоретически

Связь между электричеством, магнетизмом и движением изначально была открыт в 1820 году французским физиком Андре-Мари Ампер (1775–1867), и это фундаментальная наука, лежащая в основе электродвигателя.Но если мы хотим превратить это удивительное научное открытие в более практическое Немного технологий для питания наших электрических косилок и зубных щеток, мы должны пойти немного дальше. Изобретателями, которые сделали это, были англичане Майкл Фарадей (1791–1867). и Уильям Стерджен (1783–1850) и американец Джозеф Генри (1797–1878). Вот как они пришли к своему гениальному изобретению.

Предположим, мы сгибаем нашу проволоку в квадратную U-образную петлю, так что эффективно два параллельных провода, проходящие через магнитное поле.Один из них отводит электрический ток от нас по проводам, а другой один возвращает ток обратно. Поскольку ток течет в в противоположных направлениях проводов, правило левой руки Флеминга говорит нам о том, что два провода будут двигаться в противоположных направлениях. Другими словами, когда мы включите электричество, один из проводов двинется вверх и другой будет двигаться вниз.

Если бы катушка с проволокой могла продолжать двигаться вот так, она бы вращалась непрерывно — и мы будем на пути к созданию электрического мотор.Но этого не может произойти с нашей нынешней настройкой: провода будут быстро запутаться. Не только это, но если бы катушка могла вращаться далеко хватит, что-нибудь еще случится. Как только катушка достигла вертикали положение, он перевернется, и электрический ток будет течь через него в противоположном направлении. Теперь силы на каждого сторона катушки перевернется. Вместо непрерывного вращения в в том же направлении, он двинется назад в том же направлении, в котором только что пришел! Представьте себе электропоезд с таким двигателем: он будет держать перетасовки назад и вперед на месте, даже не идя в любом месте.

Фото: Электрик ремонтирует электродвигатель. на борту авианосца. Блестящий металл, который он использует, может выглядеть как золото, но на самом деле это медь, хороший проводник, который намного дешевле. Фото Джейсона Якобовица любезно предоставлено ВМС США.

Как работает электродвигатель — на практике

Есть два способа решить эту проблему. Один из них — использовать своего рода электрический ток, который периодически меняет направление, что известно как переменный ток (AC).В виде небольших батарейных двигатели, которые мы используем дома, лучшее решение — добавить компонент назвал коммутатором концы катушки. (Не беспокойтесь о бессмысленных технических имя: это немного старомодное слово «коммутация» немного похоже на слово «добираться до работы». Это просто означает изменение взад и вперед в одном и том же путь, который ездит на работу, означает путешествовать туда и обратно.) В простейшей форме Коммутатор представляет собой металлическое кольцо, разделенное на две отдельные половины и его задача — реверсировать электрический ток в катушке каждый раз, когда катушка вращается на пол-оборота.Один конец катушки прикреплен к каждая половина коммутатора. Электрический ток от аккумулятора подключается к электрическим клеммам двигателя. Они подают электроэнергию в коммутатор через пару незакрепленных разъемы, называемые щетками, сделал либо из кусочков графита (мягкий уголь, похожий на карандаш «свинец») или тонкие отрезки упругого металла, который (как название предполагает) «задела» коммутатор. С коммутатор на месте, когда электричество течет по цепи, катушка будет постоянно вращаться в одном и том же направлении.

Художественное произведение: упрощенная схема деталей в электрическом мотор. Анимация: как это работает на практике. Обратите внимание, как коммутатор меняет направление тока каждый раз, когда катушка поворачивается. наполовину. Это означает, что сила на каждой стороне катушки всегда толкая в том же направлении, что позволяет катушке вращаться по часовой стрелке.

Такой простой экспериментальный двигатель, как этот, не может большая мощность. Мы можем увеличить усилие поворота (или крутящий момент) что двигатель может творить тремя способами: либо у нас может быть больше мощный постоянный магнит, или мы можем увеличить электрический ток протекает через провод, или мы можем сделать катушку так, чтобы в ней было много «витки» (петли) очень тонкой проволоки вместо одного «витка» толстой проволоки.На практике двигатель также имеет постоянный магнит, изогнутый в круглой формы, так что он почти касается катушки с проволокой, которая вращается внутри него. Чем ближе друг к другу магнит и катушка, тем большее усилие, которое может создать двигатель.

Хотя мы описали несколько различных частей, вы можете представить двигатель как имеющий всего два основных компонента:

  • По краю корпуса двигателя находится постоянный магнит (или магниты), который остается статичным, поэтому его называют статором двигателя.
  • Внутри статора находится катушка, установленная на оси, которая вращается с высокой скоростью — и это называется ротором. Ротор также включает в себя коммутатор.

Универсальные двигатели

Такие двигатели постоянного тока

отлично подходят для игрушек с батарейным питанием (таких как модели поездов, радиоуправляемые автомобили или электробритвы), но вы не найдете их во многих бытовых приборах. В небольших бытовых приборах (например, кофемолках или электрических блендерах) обычно используются так называемые универсальные двигатели , которые могут питаться как от переменного, так и от постоянного тока.В отличие от простого двигателя постоянного тока, универсальный двигатель имеет электромагнит вместо постоянного магнита, и он получает энергию от источника постоянного или переменного тока, который вы питаете:

  • Когда вы питаетесь постоянным током, электромагнит работает как обычный постоянный магнит и создает магнитное поле, которое всегда направлено в одном направлении. Коммутатор меняет направление тока катушки каждый раз, когда катушка переворачивается, как в простом двигателе постоянного тока, поэтому катушка всегда вращается в одном и том же направлении.
  • Однако, когда вы подаете переменный ток, ток, протекающий через электромагнит, и ток, протекающий через катушку. или против часовой стрелки.А как насчет коммутатора? Частота тока изменяется намного быстрее, чем вращается двигатель, и, поскольку поле и ток всегда синхронизированы, на самом деле не имеет значения, в каком положении находится коммутатор в любой данный момент.

Анимация: Как работает универсальный двигатель: Электроснабжение питает как магнитное поле, так и вращающуюся катушку. С источником постоянного тока универсальный двигатель работает так же, как и обычный двигатель постоянного тока, как указано выше. При питании от сети переменного тока и магнитное поле, и ток в катушке меняют направление каждый раз, когда ток питания меняется на противоположное.Это означает, что сила на катушке всегда направлена ​​в одну сторону.

Фото: Внутри типичного универсального двигателя: основные части внутри среднего двигателя от кофемолки, которая может работать как от постоянного, так и от переменного тока. Серый электромагнит по краю — это статор (статическая часть), и он питается от катушек оранжевого цвета. Обратите внимание на прорези в коллекторе и прижимающиеся к нему угольные щетки, которые обеспечивают питание ротора (вращающейся части). Асинхронные двигатели в таких устройствах, как электрические железнодорожные поезда, во много раз больше и мощнее этого, и всегда работают с использованием переменного тока высокого напряжения (AC) вместо постоянного тока низкого напряжения (DC) или переменного тока умеренно низкого напряжения в домашних условиях. который приводит в действие универсальные двигатели.

Электродвигатели прочие

Фото: Электродвигатели бывают всех форм и размеров. В этом школьном автобусе есть заменили старый грязный дизельный двигатель большим электродвигателем (белый квадрат) для уменьшения загрязнения воздуха. Фото Денниса Шредера любезно предоставлено NREL (Национальная лаборатория возобновляемых источников энергии).

В простых двигателях постоянного тока и универсальных двигателях ротор вращается внутри статора. Ротор представляет собой катушку, подключенную к источнику электропитания, а статор представляет собой постоянный магнит или электромагнит.Большие двигатели переменного тока (используемые в таких вещах, как заводские машины) работают немного по-другому: они пропускают переменный ток через противоположные пары магнитов, чтобы создать вращающееся магнитное поле, которое «индуцирует» (создает) магнитное поле в роторе двигателя, вызывая это вращаться. Подробнее об этом вы можете прочитать в нашей статье об асинхронных двигателях переменного тока. Если вы возьмете один из этих асинхронных двигателей и «развернете» его так, чтобы статор фактически превратился в длинную непрерывную дорожку, ротор может катиться по нему по прямой.Эта гениальная конструкция известна как линейный двигатель, и вы найдете ее в таких вещах, как заводские машины и плавучие железные дороги «маглев» (магнитная левитация).

Еще одна интересная конструкция — бесщеточный двигатель постоянного тока (BLDC). Статор и ротор эффективно меняются местами, при этом несколько железных катушек статичны в центре, а постоянный магнит вращается вокруг них, а коммутатор и щетки заменяются электронной схемой. Вы можете прочитать больше в нашей основной статье о мотор-редукторах. Шаговые двигатели, которые вращаются на точно контролируемые углы, представляют собой разновидность бесщеточных двигателей постоянного тока.

Как работают электродвигатели?

Щелкните выключателем и мгновенно получите власть — как наши предки любили электродвигатели! Вы можете найти их во всем, начиная с электропоезда с дистанционным управлением автомобили — и вы можете быть удивлены, насколько они распространены. Сколько электрических моторы сейчас есть в комнате с тобой? Наверное, два в вашем компьютере для начала, один круто ездить, а еще один питает охлаждающий вентилятор.Если вы сидите в спальне, вы найдете моторы в фенах и многих игрушки; в ванной — вытяжки и электробритвы; На кухне моторы есть практически во всех устройствах, от стиральных и посудомоечных машин до кофемолок, микроволновых печей и электрических консервных ножей. Электродвигатели зарекомендовали себя среди лучших изобретения всех времен. Давайте разберемся и узнаем, как они Работа!

Фото: Даже маленькие электродвигатели на удивление тяжелые.Это потому, что они набиты туго намотанной медью и тяжелыми магнитами. Это мотор от старой электрической газонокосилки. Вещь медного цвета в сторону В передней части оси с прорезями находится коммутатор, удерживающий двигатель. вращение в том же направлении (как описано ниже).

Как электромагнетизм заставляет двигатель двигаться?

Основная идея электродвигателя действительно проста: вы помещаете в него электричество с одного конца, а ось (металлический стержень) вращается на другом конце, давая вам возможность управлять машина какая то.Как это работает на практике? Как именно ваш преобразовать электричество в движение? Чтобы найти ответ на этот вопрос, у нас есть вернуться во времени почти на 200 лет.

Предположим, вы берете кусок обычного провода, превращаете его в большую петлю, и положите его между полюсами мощной постоянной подковы магнит. Теперь, если вы подключите два конца провода к батарее, провод будет прыгать кратко. Удивительно, когда видишь это впервые. Это прямо как по волшебству! Но есть совершенно научный объяснение.Когда электрический ток начинает течь по проводу, он создает магнитное поле вокруг него. Если разместить провод рядом с постоянным магнит, это временное магнитное поле взаимодействует с постоянным поле магнита. Вы знаете, что два магнита расположены рядом друг с другом. либо притягивать, либо отталкивать. Таким же образом временный магнетизм вокруг провода притягивает или отталкивает постоянный магнетизм от магнит, и это то, что заставляет проволоку подпрыгивать.

Как работает электродвигатель — теоретически

Связь между электричеством, магнетизмом и движением изначально была открыт в 1820 году французским физиком Андре-Мари Ампер (1775–1867), и это фундаментальная наука, лежащая в основе электродвигателя.Но если мы хотим превратить это удивительное научное открытие в более практическое Немного технологий для питания наших электрических косилок и зубных щеток, мы должны пойти немного дальше. Изобретателями, которые сделали это, были англичане Майкл Фарадей (1791–1867). и Уильям Стерджен (1783–1850) и американец Джозеф Генри (1797–1878). Вот как они пришли к своему гениальному изобретению.

Предположим, мы сгибаем нашу проволоку в квадратную U-образную петлю, так что эффективно два параллельных провода, проходящие через магнитное поле.Один из них отводит электрический ток от нас по проводам, а другой один возвращает ток обратно. Поскольку ток течет в в противоположных направлениях проводов, правило левой руки Флеминга говорит нам о том, что два провода будут двигаться в противоположных направлениях. Другими словами, когда мы включите электричество, один из проводов двинется вверх и другой будет двигаться вниз.

Если бы катушка с проволокой могла продолжать двигаться вот так, она бы вращалась непрерывно — и мы будем на пути к созданию электрического мотор.Но этого не может произойти с нашей нынешней настройкой: провода будут быстро запутаться. Не только это, но если бы катушка могла вращаться далеко хватит, что-нибудь еще случится. Как только катушка достигла вертикали положение, он перевернется, и электрический ток будет течь через него в противоположном направлении. Теперь силы на каждого сторона катушки перевернется. Вместо непрерывного вращения в в том же направлении, он двинется назад в том же направлении, в котором только что пришел! Представьте себе электропоезд с таким двигателем: он будет держать перетасовки назад и вперед на месте, даже не идя в любом месте.

Фото: Электрик ремонтирует электродвигатель. на борту авианосца. Блестящий металл, который он использует, может выглядеть как золото, но на самом деле это медь, хороший проводник, который намного дешевле. Фото Джейсона Якобовица любезно предоставлено ВМС США.

Как работает электродвигатель — на практике

Есть два способа решить эту проблему. Один из них — использовать своего рода электрический ток, который периодически меняет направление, что известно как переменный ток (AC).В виде небольших батарейных двигатели, которые мы используем дома, лучшее решение — добавить компонент назвал коммутатором концы катушки. (Не беспокойтесь о бессмысленных технических имя: это немного старомодное слово «коммутация» немного похоже на слово «добираться до работы». Это просто означает изменение взад и вперед в одном и том же путь, который ездит на работу, означает путешествовать туда и обратно.) В простейшей форме Коммутатор представляет собой металлическое кольцо, разделенное на две отдельные половины и его задача — реверсировать электрический ток в катушке каждый раз, когда катушка вращается на пол-оборота.Один конец катушки прикреплен к каждая половина коммутатора. Электрический ток от аккумулятора подключается к электрическим клеммам двигателя. Они подают электроэнергию в коммутатор через пару незакрепленных разъемы, называемые щетками, сделал либо из кусочков графита (мягкий уголь, похожий на карандаш «свинец») или тонкие отрезки упругого металла, который (как название предполагает) «задела» коммутатор. С коммутатор на месте, когда электричество течет по цепи, катушка будет постоянно вращаться в одном и том же направлении.

Художественное произведение: упрощенная схема деталей в электрическом мотор. Анимация: как это работает на практике. Обратите внимание, как коммутатор меняет направление тока каждый раз, когда катушка поворачивается. наполовину. Это означает, что сила на каждой стороне катушки всегда толкая в том же направлении, что позволяет катушке вращаться по часовой стрелке.

Такой простой экспериментальный двигатель, как этот, не может большая мощность. Мы можем увеличить усилие поворота (или крутящий момент) что двигатель может творить тремя способами: либо у нас может быть больше мощный постоянный магнит, или мы можем увеличить электрический ток протекает через провод, или мы можем сделать катушку так, чтобы в ней было много «витки» (петли) очень тонкой проволоки вместо одного «витка» толстой проволоки.На практике двигатель также имеет постоянный магнит, изогнутый в круглой формы, так что он почти касается катушки с проволокой, которая вращается внутри него. Чем ближе друг к другу магнит и катушка, тем большее усилие, которое может создать двигатель.

Хотя мы описали несколько различных частей, вы можете представить двигатель как имеющий всего два основных компонента:

  • По краю корпуса двигателя находится постоянный магнит (или магниты), который остается статичным, поэтому его называют статором двигателя.
  • Внутри статора находится катушка, установленная на оси, которая вращается с высокой скоростью — и это называется ротором. Ротор также включает в себя коммутатор.

Универсальные двигатели

Такие двигатели постоянного тока

отлично подходят для игрушек с батарейным питанием (таких как модели поездов, радиоуправляемые автомобили или электробритвы), но вы не найдете их во многих бытовых приборах. В небольших бытовых приборах (например, кофемолках или электрических блендерах) обычно используются так называемые универсальные двигатели , которые могут питаться как от переменного, так и от постоянного тока.В отличие от простого двигателя постоянного тока, универсальный двигатель имеет электромагнит вместо постоянного магнита, и он получает энергию от источника постоянного или переменного тока, который вы питаете:

  • Когда вы питаетесь постоянным током, электромагнит работает как обычный постоянный магнит и создает магнитное поле, которое всегда направлено в одном направлении. Коммутатор меняет направление тока катушки каждый раз, когда катушка переворачивается, как в простом двигателе постоянного тока, поэтому катушка всегда вращается в одном и том же направлении.
  • Однако, когда вы подаете переменный ток, ток, протекающий через электромагнит, и ток, протекающий через катушку. или против часовой стрелки.А как насчет коммутатора? Частота тока изменяется намного быстрее, чем вращается двигатель, и, поскольку поле и ток всегда синхронизированы, на самом деле не имеет значения, в каком положении находится коммутатор в любой данный момент.

Анимация: Как работает универсальный двигатель: Электроснабжение питает как магнитное поле, так и вращающуюся катушку. С источником постоянного тока универсальный двигатель работает так же, как и обычный двигатель постоянного тока, как указано выше. При питании от сети переменного тока и магнитное поле, и ток в катушке меняют направление каждый раз, когда ток питания меняется на противоположное.Это означает, что сила на катушке всегда направлена ​​в одну сторону.

Фото: Внутри типичного универсального двигателя: основные части внутри среднего двигателя от кофемолки, которая может работать как от постоянного, так и от переменного тока. Серый электромагнит по краю — это статор (статическая часть), и он питается от катушек оранжевого цвета. Обратите внимание на прорези в коллекторе и прижимающиеся к нему угольные щетки, которые обеспечивают питание ротора (вращающейся части). Асинхронные двигатели в таких устройствах, как электрические железнодорожные поезда, во много раз больше и мощнее этого, и всегда работают с использованием переменного тока высокого напряжения (AC) вместо постоянного тока низкого напряжения (DC) или переменного тока умеренно низкого напряжения в домашних условиях. который приводит в действие универсальные двигатели.

Электродвигатели прочие

Фото: Электродвигатели бывают всех форм и размеров. В этом школьном автобусе есть заменили старый грязный дизельный двигатель большим электродвигателем (белый квадрат) для уменьшения загрязнения воздуха. Фото Денниса Шредера любезно предоставлено NREL (Национальная лаборатория возобновляемых источников энергии).

В простых двигателях постоянного тока и универсальных двигателях ротор вращается внутри статора. Ротор представляет собой катушку, подключенную к источнику электропитания, а статор представляет собой постоянный магнит или электромагнит.Большие двигатели переменного тока (используемые в таких вещах, как заводские машины) работают немного по-другому: они пропускают переменный ток через противоположные пары магнитов, чтобы создать вращающееся магнитное поле, которое «индуцирует» (создает) магнитное поле в роторе двигателя, вызывая это вращаться. Подробнее об этом вы можете прочитать в нашей статье об асинхронных двигателях переменного тока. Если вы возьмете один из этих асинхронных двигателей и «развернете» его так, чтобы статор фактически превратился в длинную непрерывную дорожку, ротор может катиться по нему по прямой.Эта гениальная конструкция известна как линейный двигатель, и вы найдете ее в таких вещах, как заводские машины и плавучие железные дороги «маглев» (магнитная левитация).

Еще одна интересная конструкция — бесщеточный двигатель постоянного тока (BLDC). Статор и ротор эффективно меняются местами, при этом несколько железных катушек статичны в центре, а постоянный магнит вращается вокруг них, а коммутатор и щетки заменяются электронной схемой. Вы можете прочитать больше в нашей основной статье о мотор-редукторах. Шаговые двигатели, которые вращаются на точно контролируемые углы, представляют собой разновидность бесщеточных двигателей постоянного тока.

Поиск и устранение неисправностей силовых цепей электродвигателя

Цепь питания двигателя — это часть цепи электрического двигателя, которая подает высокое напряжение или ток на электродвигатель. Цепь питания двигателя включает в себя размыкающий выключатель, управляющий трансформатор, защитные устройства (предохранители или автоматические выключатели), пускатель двигателя и двигатель (см. , рис. 1, ).

Рисунок 1. Силовая цепь двигателя включает в себя размыкающий выключатель, управляющий трансформатор, устройства защиты от перегрузки, стартер двигателя и двигатель.

Электродвигатель может быть постоянного, однофазного или трехфазного переменного тока. Входящие линии электропередач должны иметь механизм отключения, блокировки и отключения питания схемы. Они также должны включать предохранители или автоматические выключатели, рассчитанные на защиту системы. Двигатель может управляться магнитным пускателем двигателя или моторным приводом.

Пускатель двигателя включает устройства, которые используются в цепи питания двигателя, такие как нормально разомкнутые (NO) силовые контакты и контроль тока перегрузки двигателя.Пускатель двигателя также включает в себя устройства, которые используются в цепи управления двигателем, такие как вспомогательные контакты NO или нормально замкнутые (NC), катушка или цепь стартера и контакты перегрузки NC. Магнитный пускатель двигателя — это контактор, который включает в себя секцию защиты от перегрузки. Контакторы могут использоваться для управления однофазными двигателями, имеющими встроенную защиту от перегрузки. Силовые цепи двигателя классифицируются по разным разделам с целью поиска и устранения неисправностей.

Выключатели

Выключатель-разъединитель, также известный как выключатель, представляет собой выключатель, который отключает подачу электроэнергии от устройств с электрическим приводом, таких как двигатели и машины.Разъединители используются для ручного отключения питания от цепи или подачи питания на нее. Выключатель подключает нагрузку к системе распределения электроэнергии в здании (см. , рис. 2, ).

Рисунок 2. Выключатель подключает нагрузку к системе распределения электроэнергии в здании. Изображение предоставлено Industrial Electronics

Выключатели

включают в себя защиту от перегрузки по току для защиты нагрузки и системы от коротких замыканий, неисправных заземляющих соединений и чрезмерных уровней тока.Устройство защиты от перегрузки по току (OCPD) — это предохранитель или автоматический выключатель, который блокирует прохождение тока, когда величина тока превышает расчетную нагрузку. Выключатель может использоваться для выключения, блокировки и маркировки нагрузки или оборудования, находящегося под напряжением, во время технического обслуживания системы. Корпус выключателя-разъединителя обычно является отправной точкой для поиска неисправностей нагрузки или оборудования, находящегося под напряжением, поскольку он содержит предохранители и автоматические выключатели.

Обозначение клемм силовой цепи

В силовой цепи двигателя клеммы и проводники могут иметь различную маркировку в зависимости от производителя оборудования и установщика оборудования.Например, трехфазные силовые линии могут быть обозначены как L1, L2 и L3 или R, S и T. Клеммы трехфазного двигателя могут быть обозначены как T1, T2 и T3 или U, V и W. фазные силовые линии могут иметь маркировку L1 и N для цепей на 120 В переменного тока или L1 и L2 для цепей на 240 В переменного тока. Клеммы однофазного двигателя могут иметь маркировку T1 и T2 или конкретные номера производителя, такие как 1 и 2. Клеммы однофазного двигателя также могут быть помечены разными цветами, например синим или черным для T1 и белым для T2.

Линии питания постоянного тока обычно имеют маркировку DC + и DC–.Обмотки якоря двигателя постоянного тока обычно имеют маркировку A1 + и A2–. Последовательные обмотки двигателей постоянного тока обычно имеют маркировку S1 и S2. Шунтирующие обмотки электродвигателя постоянного тока обычно имеют маркировку F1 и F2. Составные двигатели постоянного тока имеют якорь, последовательное поле и шунтирующее поле (см. , рис. 3, ).

Рисунок 3. В силовой цепи двигателя клеммы и проводники могут иметь различную маркировку в зависимости от производителя оборудования и установщика оборудования.

Поиск и устранение неисправностей в цепях питания двигателя

Устранение неисправностей — это систематическое устранение различных частей системы для поиска неисправного элемента. При выполнении задач по поиску и устранению неисправностей различные части цепи в электрической системе разбиты на разделы, чтобы помочь определить, с чего начать процесс поиска и устранения неисправностей. Например, систему HVAC можно разделить на силовую цепь, схему управления и интерфейс, соединяющий силовую цепь со схемой управления.(См. Рисунок 4 ).

Рис. 4. Чтобы помочь в решении задач поиска и устранения неисправностей, различные части цепи в электрической системе разделены на разделы, такие как силовая цепь, цепь управления и интерфейс, соединяющий силовую цепь со схемой управления.

Силовая цепь — это высоковольтная часть цепи, которая включает в себя входящий источник питания, предохранители или автоматические выключатели, контакты пускателя двигателя и двигатель.В цепи HVAC производитель оригинального оборудования (OEM) может предоставить цепь запуска через линию. Поперечная пусковая схема используется, когда начальный пусковой ток двигателя компрессора не вызывает проблем, таких как падение напряжения в сети более чем на 5% при пуске.

Цепь управления управляет катушками пускателя двигателя в силовой цепи. Схема управления обычно работает при более низком напряжении, чем цепь питания. Понижающий трансформатор — это интерфейс, используемый для понижения напряжения от цепи питания к цепи управления.

При поиске неисправностей в силовой цепи электрические измерения выполняются с помощью соответствующих измерительных приборов, таких как цифровой мультиметр. Измерения напряжения — это первые измерения, позволяющие определить наличие питания. Также необходимо провести измерения тока и сравнить их с номинальными данными, указанными на паспортной табличке, для определения нагрузки двигателя.

Первое измеренное напряжение — это напряжение силовой цепи на предохранителях или автоматических выключателях. Перед выполнением каких-либо измерений необходимо убедиться, что используются надлежащие СИЗ, соблюдаются заводские процедуры и процедуры безопасности, а также проверяется надлежащее рабочее состояние цифрового мультиметра до и после измерений напряжения.

При поиске и устранении неисправностей электрическая распечатка используется в качестве справочного материала, помогающего идентифицировать компоненты и устройства, используемые в цепи, и способы их подключения к другим компонентам и устройствам. Однако электрический отпечаток не определяет фактическое расположение компонентов и устройств в проводной панели. Компоновка компонентов печати может отличаться от фактической компоновки компонентов.

Поиск и устранение неисправностей в силовой цепи начинается с измерения уровня входящего напряжения, чтобы убедиться, что напряжение находится в пределах от + 5% до –10% от номинального напряжения оборудования.Предохранители и автоматические выключатели также проверяются на правильность работы путем измерения напряжения на каждом предохранителе или автоматическом выключателе и на выходе из них. Правильно работающий предохранитель или автоматический выключатель должны иметь такое же выходное напряжение, что и входящее. Также необходимо проверить напряжение на входе и выходе управляющего трансформатора.

Когда двигатель работает, следует измерять как напряжение, так и ток. Напряжение должно находиться в диапазоне от + 5% до –10%, а ток не должен превышать максимально допустимый ток двигателя, указанный на паспортной табличке двигателя.

Основы анализа цепей двигателя

Существует довольно много путаницы по поводу анализа цепей двигателя. Путаница возникает из-за двух проблем:

  1. Само название технологии.

  2. На что способна эта технология.

Эта статья будет посвящена устранению этой путаницы путем обсуждения возможностей технологии и ее имени.

Одна из основных причин, по которой существует путаница в самом названии этой методологии тестирования, — это распространенное использование трехбуквенных сокращений (TLA) в индустрии мониторинга состояния. У нас есть TLA для всего: CBM (мониторинг на основе состояния), PdM (профилактическое обслуживание), RCA (анализ первопричин), FFT (быстрое преобразование Фурье) и т. Д.

Распространенность TLA создала путаницу в анализе моторных цепей. MCA может означать две разные вещи.Анализ цепи двигателя (MCA) часто и легко путают с анализом тока двигателя (MCA), который является сокращенной версией анализа сигнатуры тока двигателя (MCSA). Это распространенная ошибка, которая способствовала путанице вокруг второй распространенной ошибки. Для баланса в этой статье термин «анализ цепи двигателя» будет называться MCA.

Вторая распространенная ошибка заключается в непонимании возможностей этой технологии для мониторинга и тестирования состояния.Те, кто ошибочно связал MCA с анализом сигнатуры тока двигателя, полагают, что единственный выполняемый тип тестирования — это ток двигателя.

Хотя отчасти это верно, текущий анализ — это лишь часть общей массы испытаний, известной под общим названием MCA. Есть вторая группа людей, которые считают, что MCA относится только к измерению сопротивления цепи двигателя относительно земли.

Это убеждение также отражает неполное понимание спектра тестов, охватываемых MCA.Хотя MCA включает в себя вышеупомянутые методы тестирования, он также включает в себя гораздо больше.

Прежде чем мы пойдем дальше, давайте проясним конечную цель MCA. Цель MCA — убедиться в исправности двигателя. Эта оценка осуществляется путем обнаружения электрического дисбаланса в двигателе и обнаружения ухудшения изоляции.

Неуравновешенность создает паразитные циркулирующие токи в двигателе. Эти циркулирующие токи вызывают чрезмерное нагревание и приводят к ускоренному разрушению изоляции, неэффективной работе и неэффективным методам управления (в некоторых типах двигателей).Ухудшение изоляции приводит к сокращению срока службы двигателя и может привести к небезопасным условиям эксплуатации.

Для начала давайте разделим MCA на две основные категории. Первая категория — это онлайн-тестирование, названное потому, что тесты проводятся, когда двигатель работает в нормальных условиях. Вторая категория — автономное тестирование; испытания проводятся при обесточенном двигателе.

MCA online можно разделить на две категории — анализ тока и анализ напряжения.Текущий анализ в первую очередь сосредоточен на вращающихся компонентах. Ослабленные или сломанные стержни ротора, трещины на концевых кольцах, эксцентриситет ротора, несоосность и проблемы с муфтой / ремнем — вот некоторые из основных видов отказов, обнаруженных в текущей сигнатуре.

Проблемы качества электроэнергии, такие как вредные гармоники, дисбаланс напряжения и пониженное / повышенное напряжение, относятся к числу проблем, выявленных при анализе напряжения.

MCA offline наиболее известен благодаря измерению сопротивления земли.Но другие измерения позволяют легко обнаружить дефекты цепи двигателя. Измерение электрических характеристик, таких как импеданс, индуктивность и емкость, многое говорит аналитику о состоянии обмоток. Индуктивность — отличный индикатор коротких замыканий между поворотами.

Емкость относительно земли измеряет степень загрязнения обмотки (вода, грязь, пыль и т. Д.). Изменения каждого из них влияют на импеданс (общее сопротивление цепи переменного тока). Эти характеристики измеряются между фазой и фазой и землей и сравниваются друг с другом и с процентным изменением от базовой линии для выявления дефектов цепи двигателя.

Некоторые из тестов могут служить одноразовыми проверками типа «годен / запрещен». Некоторых необходимо отслеживать с течением времени, чтобы понять прогрессирование дефекта. Лучшая стратегия — это тестирование двигателей по установленному графику. Это позволяет правильно отслеживать эти характеристики и дает программе обеспечения надежности наилучшую условную вероятность обнаружения дефектов цепи двигателя.

Все перечисленные режимы отказа вполне реальны и создают незапланированные простои. Комплексная стратегия технического обслуживания электродвигателей с учетом режимов отказа включает в себя все эти методы испытаний.

Сколько вы используете для эффективного и действенного обеспечения производственной мощности вашего предприятия?

Энди Пейдж является директором учебной группы Allied Reliability, которая обеспечивает обучение по таким темам проектирования надежности, как анализ первопричин, техническое обслуживание, ориентированное на надежность, и интегрированный мониторинг состояния. Он проработал 15 лет в сфере технического обслуживания и надежности, занимая ключевые должности в Noranda Aluminium (инженер по техническому обслуживанию) и Martin Marietta Aggregates (менеджер по надежности активов).Энди имеет степень инженера в Tennessee Tech и является сертифицированным специалистом по техническому обслуживанию и надежности (CMRP) Общества специалистов по техническому обслуживанию и надежности (SMRP).

Что такое анализ цепей электродвигателей Атланта, Джорджия | Ремонт электродвигателей Knoxville, TN

Новости

Анализ цепи электродвигателя — это серия тестов, которые диагностируют общее состояние электродвигателя.Эти испытания определяют наличие электрического дисбаланса или ухудшения изоляции внутри двигателя. Когда двигатель страдает от любой из этих проблем, они могут создавать ложные электрические токи, которые циркулируют через двигатель, создавая избыточное тепло. Это избыточное тепло может повредить двигатель, вызывая более быстрое разрушение изоляции и приводя к неэффективной работе двигателя, что сокращает срок службы двигателя и, возможно, представляет угрозу безопасности.

Тесты для анализа цепей электродвигателя в режиме онлайн и офлайн

Типичный анализ цепи электродвигателя состоит из онлайн-тестирования — тестов, которые могут выполняться во время работы двигателя, и автономных тестов — тестов, которые проводятся, когда двигатель не работает.

Стандартные онлайн-тесты для анализа цепей электродвигателей ищут такие проблемы, как дефектные или ослабленные стержни ротора, трещины на концевых кольцах и перекосы, а также проблемы с дисбалансом напряжения и гармониками.

Типичные автономные тесты измеряют сопротивление относительно земли, но тесты, измеряющие другие электрические характеристики, такие как емкость — помогают определить, были ли обмотки загрязнены водой или грязью — и индуктивность, которая помогает выявить межвитковые замыкания, а также оценить общие проблемы с сопротивление двигателя в цепях переменного тока.

Tekwell Services использует MCEMAX® для анализа цепей электродвигателя

Инструмент, который мы используем в Tekwell для анализа цепей электродвигателей, — это MCEMAX® с питанием от MCEGold®. Это портативное устройство для анализа цепей электродвигателя, которое можно использовать в любом месте для двигателей, работающих в режиме онлайн или в автономном режиме, для обеспечения всестороннего анализа электродвигателя. Это устройство выявляет такие проблемы, как проблемы статора и ротора, дефектная или поврежденная изоляция, проблемы с силовой цепью, а также проблемы с качеством электроэнергии и воздушные зазоры.Все эти проблемы можно сразу диагностировать на месте.

Данные, собранные MCEMAX®, также могут быть подробно проанализированы в Tekwell, чтобы предоставить подробные описания проблем, изолировать основную причину каждой из этих проблем, чтобы применить профилактическое обслуживание для их устранения, прежде чем они приведут к дорогостоящему отказу двигателя.

Пришло время для анализа цепи электродвигателя?

Выполнение комплексного анализа цепи электродвигателя сегодня может сэкономить вам значительные средства в результате отказа электродвигателя, простоев или сокращения срока службы электродвигателей.Воспользуйтесь нашим процессом MCEMAX® и получите комплексный анализ цепи электродвигателя, позвонив по телефону 1-800-829-7454 или заполнив нашу онлайн-форму о ремонте насосов и электродвигателей, чтобы начать процесс сегодня.

23.3: Обратная ЭДС в электродвигателе

Электродвигатели и генераторы имеют много общего, и на самом деле их можно рассматривать как одно и то же устройство. В электродвигателе ток проходит через катушку в магнитном поле, так что на катушку действует крутящий момент, и она начинает вращаться.В генераторе прикладывают крутящий момент, чтобы вращать катушку, таким образом индуцируя ток.

Рассмотрим электродвигатель. Когда мы подаем ток на двигатель, катушка начинает вращаться. Но вращающаяся катушка в магнитном поле вызывает индуцированный ток. По закону Ленца индуцированный ток в катушке двигателя должен быть в направлении, противоположном току, который мы вводим, поскольку в противном случае двигатель начал бы вращаться бесконечно быстро. Мы называем этот эффект «обратной ЭДС», поскольку двигатель эффективно действует как батарея, противодействующая току, как показано на Рисунке \ (\ PageIndex {1} \)

. Рисунок \ (\ PageIndex {1} \): Простая схема, иллюстрирующая, как двигатель с сопротивлением \ (R_ {motor} \) будет генерировать «обратную ЭДС», эквивалентную батарее, которая вырабатывает напряжение в направлении для противодействия току от фактической батареи, питающей двигатель, \ (∆V \).

Если вы подключаете электродвигатель к источнику напряжения, сначала электродвигатель находится в состоянии покоя, поэтому не будет обратной ЭДС, и ток в цепи будет очень большим (электродвигатели имеют небольшое сопротивление, поэтому электрическая энергия преобразуется в работу а не на прогрев мотора). Когда двигатель начинает вращаться быстрее, обратная ЭДС двигателя растет, уменьшая ток в цепи. Если на двигатель нет нагрузки (т.е. двигатель может вращаться свободно без трения), то скорость вращения двигателя будет увеличиваться до тех пор, пока противоэдс не будет точно соответствовать напряжению, подаваемому на двигатель.Затем двигатель будет вращаться с постоянной скоростью при (почти) отсутствии тока в цепи (если двигатель замедляется, ЭДС уменьшится, а ток увеличится, чтобы ускорить двигатель). Если на двигатель есть нагрузка (потому что он заставляет что-то вращаться), то двигатель будет вращаться со скоростью, меньшей, чем та, которая привела бы к нулевому току, поскольку некоторая часть этого тока теперь используется двигателем для создания крутящий момент.

Вы можете заметить, что свет в вашем доме на короткое время приглушается, когда включается холодильник.Это связано с тем, что в вашем холодильнике используется электродвигатель, который изначально потребляет большой ток при включении, достаточно большой, чтобы вызвать падение напряжения в цепи вашего дома, чтобы наблюдать затемнение вашего света. Вы также можете заметить, что если вы подключите вход или выход фена, фен быстро выключится. В этом случае, перекрывая поток воздуха, вы предотвращаете вращение мотора фена; это приводит к сильному току через его катушку, так как нет обратной ЭДС.В большинстве фенов есть автоматический выключатель, который обнаруживает этот большой ток и размыкает цепь, чтобы предотвратить перегрев и плавление катушки в двигателе. В общем, не следует препятствовать вращению электродвигателя, так как это приведет к протеканию большого тока через электродвигатель, который может расплавить его внутренние компоненты.

Установки и проверки двигателей и защиты электродвигателей

Защита двигателей и цепей двигателей от перегрузки по току немного отличается от правил для проводов, указанных в Статье 240, потому что двигательные нагрузки имеют характеристики, отличные от характеристик общего освещения и других нагрузок.Цепи двигателя потребляют большой ток при первоначальном запуске, обычно примерно в шесть раз превышающий нормальный ток полной нагрузки (FLA) двигателя. Этот большой ток, потребляемый при запуске, обычно называется «пусковым током», хотя в Кодексе термин «ток заторможенного ротора» (LRA) (см. Рисунок 1).

Рис. 1. Это большое количество тока, потребляемого при запуске, обычно называется «пусковым током», хотя кодовый термин — «ток заторможенного ротора» (LRA)

Безопасная установка электропроводки электродвигателей и цепей двигателей зависит от правильного понимания и применения некоторых основных требований статьи 430 Национального электротехнического кодекса, в частности требований раздела 430-6 для общих установок или проверок двигателей.Вместо тока полной нагрузки, указанного на паспортной табличке, Раздел 430-6 требует, чтобы таблицы в Статье 430 использовались для определения размеров проводов цепи, устройств защиты от короткого замыкания и замыкания на землю, а также номинальных значений тока разъединителей (см. Рисунок 2 ). Фактический ток полной нагрузки для разных двигателей одного размера и типа может отличаться. Таблицы используются для того, чтобы убедиться, что в случае замены двигателя компоненты цепи двигателя также не нуждаются в замене. Это требование применяется к двигателям общего назначения.Правила для моментных двигателей и двигателей с регулируемым напряжением переменного тока различны. Фактический ток на паспортной табличке используется для определения размеров этих компонентов схемы. В этой статье рассматриваются общие области применения двигателей.

Рисунок 2. Вместо тока полной нагрузки, указанного на паспортной табличке, Раздел 430-6 требует, чтобы таблицы в статье 430 использовались для определения размеров проводов цепи, устройств защиты от короткого замыкания и замыкания на землю, а также номинального тока разъединителей.

При установке или проверке цепи двигателя на предмет надлежащей защиты от перегрузки по току обычно лучше всего работает систематический подход.Обычно исследуемые четыре элемента установки включают: (1) размер ответвленной цепи (проводников), (2) защиту от перегрузки, (3) устройство защиты от короткого замыкания и замыкания на землю в ответвленной цепи, и (4) устройство защиты от замыканий на землю. номинальное значение отключения двигателя (см. рисунок 3). Эти четыре элемента являются основными предметами, вызывающими озабоченность при установке или проверке, и, конечно же, не являются всеобъемлющими, поскольку установки различаются.

Информация на паспортной табличке двигателя важна. Номинальные значения напряжения и мощности на паспортной табличке необходимы для использования таблиц в статье 430.Номинальная мощность в лошадиных силах при приложенном напряжении используется с соответствующей таблицей для определения номинального тока двигателя при полной нагрузке. Это значение тока полной нагрузки необходимо использовать для определения размеров проводов и устройства защиты от короткого замыкания и замыкания на землю.

Рисунок 3.

Размер проводника ответвительной цепи двигателя

В качестве примера, 115-вольтовый электродвигатель мощностью 1½ лошадиных силы потребляет 20 ампер согласно таблице 430-148. Несмотря на то, что на паспортной табличке двигателя (см. Рисунки 4, 5 и 6) указано 18.6 ампер при 115 вольт, значение в таблице 430-148 должно использоваться для определения размеров, как того требует Раздел 430-6 (а).

Следующим элементом схемы двигателя является определение диаметра проводника ответвленной цепи. В части B статьи 430 изложены требования к выбору размеров проводников параллельной цепи для отдельных двигателей и групп двигателей. Это пример с одним двигателем, поэтому, глядя на Раздел 430-22 (a), отдельный двигатель, используемый в непрерывном режиме (три часа или более), должен иметь допустимую нагрузку не менее 125% от полной мощности двигателя. ток нагрузки, как определено в Разделе 430-6 (а) (1).Если взять значение 18,6 ампера и умножить его на 125%, получим значение 23,5 ампера. Минимальный размер проводника для этой цепи двигателя, после применения любых корректировок допустимой нагрузки или поправочных коэффициентов, должен быть минимум 23,5 ампер. Согласно Таблице 310-16, Кодекс разрешает использование медных проводов № 12 THWN для этой установки, что позволяет использовать некоторые кабельные сборки, такие как Тип NM и другие с размером № 12, для этого применения. Существуют и другие факторы, которые могут повлиять на размер проводников ответвленной цепи двигателя, такие как падение напряжения на длинных участках и применение коэффициентов регулировки допустимой нагрузки для любого количества проводников с током в одной и той же дорожке качения, или регулировка температуры окружающей среды, или и того, и другого. .

Фото 1. Тепловая защита двигателя

Защита от короткого замыкания и замыкания на землю в ответвленной цепи двигателя

Устройства защиты от короткого замыкания и замыкания на землю должны иметь размеры в соответствии со значениями, приведенными в таблице 430-148. Требования к параметрам устройства защиты от короткого замыкания на землю с параллельной цепью содержатся в части D статьи 430. В разделе 430-51 Кодекса говорится, что эти правила, включенные в часть D, изменяют или дополняют требования статьи 240.Несколько различных типов устройств защиты от короткого замыкания и замыкания на землю могут использоваться для защиты проводников ответвленной цепи двигателя, устройства управления двигателем и двигателя от перегрузки по току из-за короткого замыкания или заземления. Раздел 430-52 (c) требует, чтобы номинал используемого защитного устройства не превышал значения, рассчитанного в соответствии с процентными значениями, приведенными в Таблице 430-152. Таблица 430-152 для однофазного двигателя позволяет получить следующие проценты.

• Предохранитель с временной задержкой 300%

• Двухэлементный предохранитель с выдержкой времени 175%

• Автоматический выключатель с мгновенным срабатыванием 800%

• Автоматический выключатель с обратнозависимой выдержкой времени 250%

В основном это увеличение в процентах позволяет запускать двигатель, не вызывая отключения устройства при заторможенном (пусковом) токе ротора. Если значения, определенные процентным соотношением в Таблице 430-152, не соответствуют стандартным размерам или номиналам предохранителей, нерегулируемых автоматических выключателей или возможным настройкам регулируемых автоматических выключателей, допускается следующий стандартный размер, номинал или возможная настройка.Идея здесь состоит в том, чтобы предоставить устройство, которое обеспечит защиту от короткого замыкания и замыкания на землю и при этом будет достаточно большим, чтобы учесть пусковой ток (ток заторможенного ротора) при запуске двигателя. Если ток заблокированного ротора двигателя все еще достаточно велик для отключения устройства при запуске, процентные значения, приведенные в Таблице 430-152, снова могут быть увеличены до максимальных значений, указанных в Исключении № 2 (a), ( б), (в) и (г).

Рисунок 4.

При использовании плавкого предохранителя без выдержки времени в качестве устройства защиты от короткого замыкания и замыкания на землю для 115-вольтового двигателя мощностью 1,5 лошадиных силы потребовалось бы, чтобы размер устройства был максимальным с использованием значения 18.6 и умножая это значение на 300%, получаем устройство с рейтингом 55,8. Округление до следующего большего стандартного размера, как разрешено Разделом 430-52 (c) (1) Пр. № 1, устройство защиты от короткого замыкания и замыкания на землю может представлять собой предохранитель без выдержки времени на 60 ампер и соответствовать требованиям Раздела 430-52. Это может выглядеть так, как если бы проводники № 12, установленные для проводов ответвительной цепи, были бы незащищенными. Помните, что правила в Части D из 430 изменяют правила из 240 на этом этапе. Не ожидайте, что проводник будет защищен при его максимальной допустимой нагрузке, как это обычно предусмотрено статьей 240.

Существует еще один уровень защиты, который должен быть обеспечен в цепи двигателя, который завершает защиту двигателя и цепи двигателя от перегрузки по току.

Защита двигателя и параллельной цепи от перегрузки

Фото 2. Тепловые нагреватели в пускателе магнитного двигателя

Устройства защиты от перегрузки предназначены для защиты электродвигателей, аппаратуры управления электродвигателями и проводов параллельных цепей электродвигателей от чрезмерного нагрева из-за перегрузок электродвигателя и невозможности его запуска.Перегрузка в цепи электродвигателя — это рабочий ток, который, если он сохраняется в течение достаточного времени, может вызвать повреждение или опасный перегрев устройства. Защита от перегрузки не включает защиту от коротких замыканий или замыканий на землю. Комбинация устройства защиты от перегрузки и устройства защиты от короткого замыкания на землю в ответвленной цепи обеспечивает защиту от перегрузки по току для двигателя и цепи двигателя.

Защита двигателей от перегрузки может иметь несколько различных форм.Если сам двигатель является двигателем с термической защитой, он должен быть помечен словами «Thermally Protected» или сокращенной маркировкой «TP» (см. Фото 1). Если на двигателе нет маркировки, указывающей на то, что он имеет встроенную тепловую защиту, необходимо установить защиту от перегрузки. Предохранители при правильном выборе размера могут служить защитным устройством от перегрузки для двигателя и его цепи. Тепловые нагреватели в магнитном пускателе двигателя — еще один распространенный метод защиты от перегрузки (см. Фото 2).

Рисунок 5.

Часть C статьи 430 определяет требования к защите от перегрузки для двигателей, контроллеров двигателей и проводов параллельных цепей двигателя. Раздел 430-32 (a) требует, чтобы каждый двигатель, работающий в непрерывном режиме (три часа или более) мощностью более 1 лошадиных сил, был защищен устройством защиты от перегрузки, рассчитанное не более чем на следующие проценты от номинальной мощности двигателя, указанной на паспортной табличке. Используя значения, указанные на паспортной табличке двигателя на Рисунке 6, эксплуатационный коэффициент двигателя составляет 1,15. Это размер, который достигается за счет использования значения тока, указанного на паспортной табличке, вместо значения допустимой нагрузки, указанного в таблице.

• Коэффициент полезного действия не менее 1,15 125%

• Двигатель с маркировкой

Превышение температуры не более 40% 125%

• Все остальные двигатели 115%

Изменения этих значений разрешены, если процентное соотношение недостаточно для запуска двигателя или выдерживания нагрузки двигателя (см. Раздел 430-34). Этих значений в Разделе 430-32 (a) обычно достаточно для двигателей общего назначения. Используя значение тока полной нагрузки, указанное на двигателе, в соответствии с требованиями Раздела 430-32 (a) (1), устройство защиты от перегрузки будет рассчитано на 125% от значения 18.6 ампер. Значение 18,6 ампера, умноженное на 125%, дает значение 23,25 ампера. Следует выбрать устройство защиты от перегрузки, не превышающее этого значения. Производитель пускателя двигателя или контроллера двигателя предоставляет таблицу выбора теплового нагревателя с контроллером, чтобы помочь в выборе устройства защиты от перегрузки надлежащего размера.

Рисунок 6.

Раздел 430-40 Кодекса добавляет некоторые дополнительные требования, о которых следует помнить. Устройства защиты от перегрузки для защиты двигателя от перегрузки, как правило, не способны отключать короткое замыкание или замыкание на землю, и поэтому эти устройства защиты от перегрузки должны быть защищены предохранителями или автоматическими выключателями с номинальными характеристиками или настройками в соответствии с Разделом 430-52 или от короткого замыкания двигателя. -защитное устройство в соответствии с Разделом 430-52.Многие пускатели двигателей и контроллеры, в которых используются устройства тепловой перегрузки, также указывают максимальный номинал предохранителя или автоматического выключателя, чтобы должным образом защитить устройство перегрузки в пределах его возможностей короткого замыкания. Вытаскивание увеличительного стекла и прочтение крошечного отпечатка на внутренней стороне корпуса пускателя магнитного двигателя имеет решающее значение для обеспечения надлежащей защиты и соблюдения Раздела 110-10.

Средства отключения и контроллер

Разъединение. Номинальные характеристики отключающих средств для общих моторных установок должны соответствовать Части J статьи 430.В основном отключающие средства должны обеспечивать отключение двигателя и контроллера от цепи. Номинальная допустимая нагрузка отключающих средств должна составлять не менее 115% от номинального тока полной нагрузки двигателя на основании соответствующей таблицы в статье 430. Разъединяющие средства также должны иметь номинальную мощность в лошадиных силах, по крайней мере, равную номинальной мощности двигателя. двигателем или любого другого типа, перечисленного в Разделе 430-109.

Рисунок 7. Максимальная токовая защита двигателей

Контроллер. Контроллер — это устройство, которое обычно используется для запуска и остановки двигателя путем фактического отключения тока в цепи двигателя. Устройство управления, подключенное к цепи управления двигателем, не является контроллером двигателя. Пускатель двигателя и контактор с надлежащим номиналом (л.с.) — это две формы контроллеров двигателя. Другие устройства также могут служить в качестве контроллеров двигателя. Номинальные характеристики контроллера или пускателя двигателя должны соответствовать части G статьи 430. Раздел 430-82 требует, чтобы каждый контроллер был способен запускать и останавливать двигатель, которым он управляет, и иметь возможность прерывания тока заторможенного ротора двигателя. мотор.Раздел 430-83 подробно описывает требуемые характеристики контроллера.

Сводка

Полная максимальная токовая защита для двигателя, параллельной цепи двигателя и устройства управления двигателем обеспечивается комбинацией устройства защиты от короткого замыкания в параллельной цепи двигателя и защиты от замыкания на землю (предохранители, автоматические выключатели или устройства защиты цепи двигателя) в соответствии с с частью D статьи 430, используемым в сочетании с устройством защиты от перегрузки, отвечающим требованиям части C статьи 430 (см. рисунок 7).Раздел 430-55 позволяет использовать одно устройство защиты от короткого замыкания и замыкания на землю для обеспечения комбинированной защиты, когда номинальные характеристики устройства защиты от короткого замыкания и замыкания на землю устанавливаются или рассчитываются таким образом, чтобы также обеспечивать защита от перегрузки в соответствии с номинальными характеристиками или настройками, указанными в разделах 430-32 или 430-34.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *