Как работают схемы выпрямителей с умножением напряжения. Какие типы схем бывают. Для чего применяются такие выпрямители. Какие преимущества и недостатки у схем с удвоением, утроением и учетверением напряжения. Как выбрать компоненты для выпрямителя с умножением напряжения.
Принцип работы выпрямителей с умножением напряжения
Выпрямители с умножением напряжения позволяют получить постоянное напряжение, в несколько раз превышающее амплитудное значение переменного напряжения на входе. Это достигается за счет последовательного заряда конденсаторов в разные полупериоды входного напряжения.
Ключевые особенности таких схем:
- Используют свойство конденсаторов накапливать и сохранять электрический заряд
- Позволяют получить высокое постоянное напряжение без использования повышающего трансформатора
- Выходное напряжение сильно зависит от тока нагрузки
- Требуют применения конденсаторов большой емкости
Основные типы схем выпрямителей с умножением напряжения
Существуют следующие базовые схемы выпрямителей с умножением напряжения:

- С удвоением напряжения
- С утроением напряжения
- С учетверением напряжения (симметричная и несимметричная схемы)
- С многократным умножением напряжения
Каждая схема имеет свои особенности работы, преимущества и недостатки.
Схема выпрямителя с удвоением напряжения
Схема с удвоением напряжения позволяет получить постоянное напряжение, примерно равное удвоенному амплитудному значению входного переменного напряжения. Существует два варианта такой схемы:
- Двухполупериодная схема
- Однополупериодная схема
Двухполупериодная схема имеет следующие преимущества:
- Более высокое выходное напряжение при той же нагрузке
- Меньший коэффициент пульсаций
- Более простая фильтрация выходного напряжения
Особенности схемы с утроением напряжения
Схема выпрямителя с утроением напряжения позволяет получить постоянное напряжение, примерно равное утроенному напряжению сети. Ее особенности:- Состоит из комбинации двух однополупериодных схем
- Позволяет получить напряжение свыше 300 В при токе около 200 мА
- Имеет коэффициент пульсаций около 7% при емкости конденсаторов 50 мкФ
- Требует применения конденсаторов с рабочим напряжением 150-300 В
Симметричная и несимметричная схемы с учетверением напряжения
Существуют два варианта схемы выпрямителя с учетверением напряжения:

- Симметричная схема
- Несимметричная схема
Симметричная схема имеет следующие преимущества:
- Более высокое выходное напряжение при той же нагрузке
- Меньший коэффициент пульсаций (около 6%)
- Более равномерное распределение напряжений на элементах
Несимметричная схема проще, но имеет худшие характеристики при больших токах нагрузки.
Применение выпрямителей с умножением напряжения
Основные области применения выпрямителей с умножением напряжения:
- Питание маломощной радиоаппаратуры (приемники, усилители)
- Питание анодов кинескопов в телевизорах
- Высоковольтные источники питания для измерительной аппаратуры
- Питание выходных каскадов любительских передатчиков
- Зарядные устройства для аккумуляторов
Выбор компонентов для выпрямителей с умножением напряжения
При разработке выпрямителя с умножением напряжения необходимо учитывать следующие факторы:
- Рабочее напряжение и емкость конденсаторов
- Допустимое обратное напряжение и прямой ток диодов
- Распределение напряжений на элементах схемы
- Зависимость выходного напряжения от тока нагрузки
Правильный выбор компонентов позволяет обеспечить надежную работу выпрямителя в заданном диапазоне токов и напряжений.

Преимущества и недостатки выпрямителей с умножением напряжения
Основные преимущества выпрямителей с умножением напряжения:
- Позволяют получить высокое постоянное напряжение без трансформатора
- Простота схемы
- Малые габариты и вес по сравнению с трансформаторными выпрямителями
Недостатки таких схем:
- Сильная зависимость выходного напряжения от тока нагрузки
- Необходимость применения конденсаторов большой емкости
- Высокий уровень пульсаций выходного напряжения
- Сложность получения больших выходных мощностей
Особенности расчета выпрямителей с умножением напряжения
При расчете выпрямителя с умножением напряжения необходимо учитывать следующие факторы:
- Требуемое выходное напряжение и ток нагрузки
- Допустимый уровень пульсаций выходного напряжения
- Распределение напряжений на элементах схемы
- Емкость и рабочее напряжение конденсаторов
- Параметры применяемых диодов (обратное напряжение, прямой ток)
Для расчета рекомендуется использовать нагрузочные характеристики, приведенные в справочной литературе для типовых схем.

Применение современных компонентов в выпрямителях с умножением напряжения
Современные электронные компоненты позволяют улучшить характеристики выпрямителей с умножением напряжения:
- Использование быстродействующих диодов Шоттки снижает потери
- Применение полимерных конденсаторов большой емкости уменьшает габариты
- Интегральные стабилизаторы напряжения улучшают выходные параметры
- Микроконтроллеры позволяют реализовать интеллектуальное управление
Это позволяет создавать компактные и эффективные источники питания на основе схем с умножением напряжения.
Схема электронного выпрямителя
Рис. .1. Структурная схема выпрямителя. |
||
Рис. 2. Однополупериодный выпрямитель: А — Схема выпрямления; Б — график токов и напряжений. |
|
|
Рис. 3. Двухполупериодный выпрямитель со средней точкой: А — Схема; Б — График токов и напряжений. |
|
|
Рис. 4. Мостовая двухполупериодная схема выпрямления.
Рис. 5 Графики напряжений и токов в мостовой схеме выпрямителя |
|
|
Рис. 6. Схемы выпрямителей с удвоением |
|
|
Рис.7. Схемы сглаживающих фильтров: А — простейший емкостный фильтр; Б И В — Фильтры типа LC; г И Д — Фильтры типа RC. Рис.8. Схема трехфазного выпрямителя (а) и графики напряжений (Б).
|
|
|
Рис.10 Структурная схема компенсационного стабилизатора постоянного напряжения Рис.9 Схема (а) и временная диаграмма выходного напряжения (б) однофазного однополупериодного управляемого выпрямителя. |
|
|
Рис.11. Однокаскадный стабилизатор напряжения Рис. 12. Компенсационный стабилизатор напряжения с усилительным каскадом |
||
Рис. 13. Преобразователь постоянного напряжения на транзисторах: А -— структурная схема; б — электрическая схема двухтактного преобразователя; ВI— форма напряжения в коллекторной обмотке трансформатора. |
Параметр |
Схема выпрямления |
|||
Однополупериодная |
Двухполупериодная со средней точкой |
Мостовая |
С удвоением напряжения |
|
Максимальное обратное напряжение на вентиле Uобр |
3,1U0 |
3.1U0 |
1.5U0 |
1.5U0 |
Максимальное значение тока вентиля Iвmax |
7I0 |
3.5 I0 |
3.5 I0 |
7 I0 |
Среднее значение тока вентиля Iср |
I0 |
0.5 I0 |
0.5 I0 |
I0 |
Схема электронного выпрямителя — 4.0 out of 5 based on 1 vote
Выпрямители с умножением напряжения
СХЕМЫ ВЫПРЯМИТЕЛЕЙ С УМНОЖЕНИЕМ НАПРЯЖЕНИЯ
ВЫПРЯМЛЯЮЩИЕ ЭЛЕМЕНТЫ
НАКАПЛИВАЮЩИЕ ЁМКОСТИ
УНИВЕРСАЛЬНЫЙ БЕСТРАНСФОРМАТОРНЫЙ ВЫПРЯМИТЕЛЬ
ВВЕДЕНИЕ
Среди различных схем выпрямляющих устройств особую труппу составляют схемы, в которых посредством соответствующего включения выпрямительных элементов .и конденсаторов осуществляется не только выпрямление, но одновременно и умножение выпрямленного напряжения.
Преимущество таких схем заключается в возможности построения высоковольтных бестрансформаторных выпрямителей и выпрямителей с трансформаторами, только для питания цепей накала кенотронов. Отсутствие в силовом трансформаторе повышающей обмотки значительно облегчает его изготовление и повышает эксплуатационные качества выпрямителя. К недостаткам этих схем относятся сравнительно сильная зависимость выпрямленного напряжения от тока в нагрузке и относительная трудность получения больших мощностей.
Схемы выпрямителей с умножением напряжения получили наиболее широкое распространение в рентгенотехнических установках. В радиотехнической практике они используются в основном для питания маломощной аппаратуры, потребляющей ток не более 50-70 мА при напряжении около 200 в. Однако и здесь область их применения можно значительно расширить, построив, например, по схеме с утроением или учетверением напряжения достаточно мощные бестрансформаторные выпрямители. Подобные выпрямители при напряжении сети переменного тока 110, 127 или 220 в позволяют получить постоянное напряжение 300- 400 в при токе до 100-150 мА, что обеспечивает питание анодных цепей приёмников, усилителей низкой частоты средней мощности.
Особенностью работы выпрямителей с умножением напряжения является использование свойств конденсаторов накапливать и в течение некоторого времени сохранять электрическую энергию. При работе выпрямителя от обычной сети 50-периодного переменного тока время, в течение которого конденсатор должен сохранять заряд, не превышает 0,02 сек. Чем больше ёмкость (входящих в схему конденсаторов, тем большее количество электрической энергии они сохраняют и тем выше при одной и той же .нагрузке получается выпрямленное напряжение. Поэтому в таких выпрямителях удобнее всего применять электролитические конденсаторы, которые, имея небольшие размеры, обладаю! значительной ёмкостью.
Ниже описывается ряд практических схем выпрямителей с умножением напряжения, причём для большинства из них приводятся нагрузочные характеристики, снятые при различных ёмкостях накопительных конденсаторов. Такие характеристики позволяют достаточно полно судить о возможных областях применения той или иной схемы, а также по заданным выпрямленному току, выпрямленному напряжению и напряжению питающей сети выбрать схему выпрямителя и определить основные данные его деталей.
СХЕМЫ ВЫПРЯМИТЕЛЕЙ С УМНОЖЕНИЕМ НАПРЯЖЕНИЯ
Схемы с удвоением напряжения. Схемы выпрямителей с удвоением напряжения, получившие наиболее широкое распространение в радиолюбительской практике, приведены на фиг. 1.
Фиг. 1. Принципиальные схемы выпрямителей с удвоением напряжения.
а — схема двухполупериодного выпрямителя; б — схема однополупериодного выпрямителя.
Для того чтобы можно было достаточно полно сравнить и оценить достоинства и недостатки обеих схем, на фиг. 2 приведены их нагрузочные характеристики. Характеристики были сняты при различных ёмкостях конденсаторов С1 и С2. В выпрямителях использовались селеновые столбики В1 и В2, собранные каждый из 13 шайб диаметром 45 мм. Напряжение питающей сети поддерживалось равным 120 в. Для ограничения пускового тока, который из-за ёмкостного характера нагрузки может достигать значительных величин, последовательно в цепь питания включалось сопротивление R, равное 20 Ом. Благодаря этому создавались более благоприятные условия для работы выпрямителей.
Фиг. 2. Нагрузочные характеристики выпрямителей с удвоением напряжения (сняты при напряжении питающей электросети, равном 120 в).
а — характеристики двухполупериодного выпрямителя; б — характеристики однополупериодного выпрямителя.
Сравнивая нагрузочные характеристики обоих выпрямителей, снятые при одних и тех (же значениях ёмкости конденсаторов С1 и С2, можно заметить, что для схемы двухполупериодного выпрямления они лежат заметно выше, чем для схемы однополупериодного. Следовательно, выпрямленное напряжение на нагрузке при одинаковом токе получается большим для первой схемы (фиг. 1, а), чем для второй (фиг. 1, б).
Приведённые характеристики позволяют также судить о реальных рабочих напряжениях, при которых работают конденсаторы схемы.
Благодаря тому, что частота пульсации при двухполупериодном выпрямлении получается в два раза большей, чем при однополупериодном, для первой схемы (фиг. 1, а) значительно облегчается дальнейшая фильтрация выпрямленного напряжения, и кроме того, коэффициент пульсации показывающий, какую часть выпрямленного напряжения на выходе выпрямителя составляет амплитуда переменной составляющей этого напряжения) для одинаковой нагрузки и одинаковых значений ёмкости конденсаторов С1 и С2 получается несколько меньшим. Так, например, при сопротивлении нагрузки 2000 Ом и ёмкости конденсаторов С1 и С2 по 48 мкФ коэффициент пульсаций для первой схемы составлял 6,5 %, а для второй — 7,6% (несмотря на то, что в первой схеме суммарная ёмкость на выходе выпрямителя в два раза меньше, чем во второй).
Следует также отметить, что рабочие напряжения на конденсаторах в первой схеме одинаковы и равны половине выпрямленного напряжения, т. е. не превышают 150 в (если только выпрямитель не работает без нагрузки), тогда как во второй схеме под таким напряжением работает только конденсатор С1 а конденсатор С2 находится под полным выпрямленным напряжением и, следовательно, должен быть рассчитан на рабочее напряжение не менее чем 300 в.
При работе выпрямителей с удвоением напряжения без нагрузки, т. е. вхолостую, выпрямленное напряжение примерно равно удвоенному амплитудному значению напряжения питающей сети, и следовательно, может превысить 350 в (если эффективное напряжение сети равно 127 в). Такое повышение напряжения может привести к пробою конденсаторов, селеновых шайб или изоляции между нитью накала и катодом в кенотронах. Поэтому, если по техническим условиям выпрямитель должен работать без нагрузки или на очень высокоомную нагрузку, то детали, применяемые в нём, должны быть рассчитаны на соответствующее рабочее напряжение. Последнее условие относится также и к схемам, приводимым в последующих разделах брошюры.
Некоторым преимуществом однополупериодной схемы является возможность весьма простого переключения её на питание от сети с напряжением 220 в. Чтобы произвести такое переключение, нужно соединить последовательно выпрямительные элементы В1 и В2 и закоротить конденсатор С1. В этом случае выпрямитель будет работать по схеме однополупериодного выпрямления без удвоения напряжения. Нагрузочные характеристики выпрямителя при этом почти не изменятся.
Область применения описанных выше схем выпрямителей — питание 4…5 ламповых приёмников (имеющих выходную мощность не более 2-3 Вт), маломощных усилителей низкой частоты и малоламповой измерительной аппаратуры.
Во всех этих случаях в качестве выпрямительного элемента удобнее всего использовать кенотрон 30Ц6С, нить накала которого соединяется последовательно с нитями накала других ламп аппарата. Выпрямитель с этим кенотроном и конденсаторами С1 и С2 ёмкостью по 20-40 мкф даёт напряжение 200-220 в при токе около 70 мА. Применяя вместо кенотрона 30Ц6С селеновые столбики, собранные из шайб диаметром 35 или 45 мм, и конденсаторы большей ёмкости, можно несколько увеличить выпрямленное напряжение и получить ток вдвое (для шайб диаметром 35 мм) и втрое (для шайб диаметром 45 мм) больший. Выпрямители в этом случае могут питать более мощные приёмники (до 4 вт выходной мощности), усилители низкой частоты, малоламповые телевизоры и т. п.
Фиг. 3. Принципиальная схема выпрямителя с утроением напряжения.
Фиг. 4. Нагрузочные характеристики выпрямителя с утроением напряжения (сняты при напряжении питающей электросети, равном 120 в).
Схема с утроением напряжения. Схема выпрямителя с утроением напряжения приведена на фиг. 3. Она представляет собой комбинацию двух схем однополупериодных выпрямителей: схемы с удвоением напряжения и схемы без умножения. К питающей сети обе схемы подключаются параллельно, а их выходы (выпрямленные напряжения) соединяются между собой последовательно. Таким образом, напряжение на выходе выпрямителя, равное сумме выпрямленных напряжений (удвоенному напряжению сети на конденсаторе С2 и одинарному — на конденсаторе С3), оказывается равным, примерно, утроенному напряжению сети.
Нагрузочные характеристики, выпрямителя, приведённые на фиг. 4, показывают, что при токе около 200 мА такой выпрямитель может отдавать напряжение свыше 300 в. Характеристики снимались при сопротивлении R = 10 Ом с выпрямителя, в котором (в качестве выпрямительных элементов В1, В2 и В3 использовались одинаковые селеновые столбики, собранные каждый в 13 шайб диаметром 45 мм.
Напряжение питающей сети поддерживалось равным 120 в, а ёмкости конденсаторов С1, С2 и С3 менялись в пределах от 32 до 100 мкф.
Характер пульсации выпрямленного напряжения этой схемы при равных значениях ёмкости всех трёх конденсаторов такой же, как и в схеме двухполупериодного выпрямления, а коэффициент пульсации при нагрузке выпрямителя сопротивлением 2000 ом и ёмкости конденсаторов по 50 мкф — порядка 7%. Рабочие напряжения на конденсаторах С1 и С3 не превышают 150 в, а на конденсаторе С2 — 300 в.
Следует иметь в виду, что в схеме с утроением напряжения при отсутствии нагрузки и напряжении питающей сети 120-127 в выпрямленное напряжение превышает 500 в.
Приведённые выше данные показывают, что выпрямитель с утроением напряжения может получить ещё более широкое применение, чем с удвоением. Вопрос о выборе выпрямительных элементов для такого выпрямителя будет рассмотрен ниже.
Схемы с учетверением напряжения. Схема выпрямителя с учетверением напряжения может быть двух видов: симметричной и несимметричной.
Симметричная схема, изображённая на фиг. 5, представляет собой комбинацию двух схем однополупериодных выпрямителей с удвоением, работающих в разные полупериоды напряжения питающей сети. Работа этой схемы происходит следующим образом- Во время полупериода одного знака заряжаются конденсаторы С1 и С4, причём напряжение на конденсаторе С1 достигает, примерно, одинарного, а на конденсаторе С4 — удвоенного эффективного значения напряжения питающей сети (конденсатор С4 заряжается, используя уже имеющийся заряд на конденсаторе С2). Во время полупериода противоположного знака таким же образом заряжаются конденсаторы С2 и С3. Выпрямленное напряжение снимается с соответствующих полюсов конденсаторов С3 и С4, соединённых между собою последовательно. Таким образом, оно удваивается вторично.
Фиг. 5. Симметричная схема выпрямителя с учетверением напряжения.
Напряжение, до которого заряжаются конденсаторы С1 и С2, оказывается тем большим, чем больше нагрузочное сопротивление или, иначе говоря, меньше отдаваемая выпрямителем мощность. Максимального значения зарядное напряжение достигает в случае отключения от выпрямителя нагрузки, становясь равным амплитудному значению напряжения сети (в 1,41 раза больше эффективного значения) на конденсаторах С1 и С2 и удвоенному амплитудному значению (в 2,82 раза больше эффективного значения) — на конденсаторах С3 и С4.
Фиг. 6. Нагрузочные характеристики выпрямителя с учетверением напряжения (сняты при напряжении питающей сети, равном 120 в).
Для того чтобы можно было быстро определить требуемые ёмкости конденсаторов C1, С2, С3 и С4, на фиг. 6 приведены нагрузочные характеристики, снятые с выпрямителя при различных значениях этих ёмкостей (во всех случаях С1 = С2 и С3 = С4). Приведённые характеристики показывают, что уже при конденсаторах С1 и С2 ёмкостью по 60 мкф и С3 и С4 — по 16 мкф напряжение на выходе выпрямителя при токе 150 мА достигает 400 в.
Конденсаторы С1 и С2 должны быть рассчитаны на рабочее напряжение не меньшее чем 150 в, а С3 и С4 — не меньшее чем 250 в.
Коэффициент пульсации выпрямленного напряжения в случае нагрузки выпрямителя сопротивлением 3000 Ом оказывается равным, примерно, 6%, а форма напряжения на нагрузке та же, что и при двухполупериодном выпрямлении.
Следует иметь в ввиду, что в симметричных схемах выпрямителей с умножением напряжения шасси находится под сравнительно высоким потенциалом относительно земли и питающего источника.
Фиг. 7. Несимметричная схема выпрямителя с учетверением напряжения.
Несимметричная схема выпрямителя с учетверением напряжения показана на фиг. 7. Работает она по несколько иному принципу, чем предыдущая. Здесь в полупериод соответствующего знака через выпрямительный элемент В1 и сопротивление R, примерно до напряжения сети, заряжается конденсатор С1. В следующий полупериод через выпрямительный элемент В2 и сопротивление R, используя заряд на конденсаторе С1, примерно до двойного напряжения сети, заряжается конденсатор С3. До такого же напряжения заряжается в последующий полупериод конденсатор С2 через выпрямительный элемент В3. В это же время вновь заряжается конденсатор С1. Затем заряд конденсатора С2 через выпрямительный элемент В4 заряжает конденсатор С4. Выпрямленное напряжение снимается с последовательно соединённых конденсаторов С3 и С4. Вся схема работает по принципу однополупериодного выпрямления.
Фиг. 8. Нагрузочные характеристики несимметричного учетверяющего выпрямителя (сняты при напряжении питающей сети, равном 120 в).
Снятые с выпрямителя нагрузочные характеристики (фиг. 8) имеют значительный наклон. Это показывает на невозможность использования таких схем для радиотехнических аппаратов повышенной мощности. Рабочее напряжение распределяется на конденсаторах весьма своеобразно, причём характер распределения зависит от величины нагрузки. В табл. 1 приведены рабочие напряжения на конденсаторах при двух различных нагрузках и без нагрузки.
Таблица 1
Конденсаторы на схеме фиг. 7 | Ёмкость, мкф | Рабочее напряжение при нагрузке 2000 Ом, в | Рабочее напряжение при нагрузке 7500 Ом, в | Напряжение без нагрузки, в |
C1 | 60 | 100 | 125 | 170 |
С2 | 48 | 125 | 220 | 340 |
С3 | 48 | 175 | 240 | 340 |
С4 | 48 | 100 | 105 | 340 |
Примечание. Напряжение питающей сети 120 в.
Такое неравномерное распределение напряжения сопровождается весьма неравномерной формой пульсации, и поэтому коэффициент пульсации на выходе выпрямителя составляет при сопротивлении нагрузки 5000 Ом около 10%, а при сопротивлении нагрузки 1700 Ом повышается до 23%. Вследствие этого несимметричную схему выпрямителя с учетверением напряжения можно использовать только при больших сопротивлениях нагрузки или, иначе говоря, при малых потребляемых токах.
Выпрямители, собранные по симметричной схеме с учетверением, в которых применяются селеновые выпрямительные элементы, могут широко использоваться для питания различных радиотехнических устройств, требующих достаточно высоких напряжений при токах 150-200 мА.
Схемы с многократным умножением напряжения. Принцип выпрямления с учетверением напряжения, изложенный выше, действителен для любой чётной кратности умножения. Для каждого последующего увеличения выпрямленного напряжения на удвоенное напряжение сети схему выпрямителя нужно дополнить лишь двумя выпрямительными элементами и двумя конденсаторами, как показано на фиг. 9.
Схема, приведённая на фиг. 9, хорошо работает только при весьма малом потребляемом токе, но зато может давать очень высокое выпрямленное напряжение. Её удобно применять в телевизорах для питания анода кинескопа и т. д. В качестве выпрямительных элементов здесь могут быть использованы селеновые шайбы самого малого диаметра, собранные в столбики с таким расчётом, чтобы допустимое обратное напряжение было равным двойной амплитуде напряжения, даваемого источником переменного напряжения. На такое же рабочее напряжение должны быть рассчитаны и все конденсаторы схемы, кроме (конденсатора С1 находящегося под одинарным амплитудным напряжением источника. Так как схема рассчитывается на малые рабочие токи,
Фиг. 9. Несимметричная схема выпрямителя с многократным умножением напряжения.
ёмкости конденсаторов могут быть небольшими, в пределах от 0,25 до 0,5 мкФ. Из-за большого сопротивления нагрузки коэффициент пульсации на выходе выпрямителя получается незначительным даже при таких малых значениях ёмкости конденсаторов. Полное напряжение, даваемое выпрямителем, подсчитывается для ненагруженного выпрямителя путём умножения амплитуды переменного напряжения на число пар элементов схемы. За одну пару элементов принимаются конденсатор и выпрямительный элемент.
На фиг. 10 показана симметричная схема многократного умножения напряжения, имеющая по сравнению со схемой
Фиг. 10. Симметричная схема выпрямителя с многократным умножением напряжения.
фиг. 9 те же преимущества, что и симметричная схема с учетверением напряжения по сравнению с несимметричной. Эту схему можно рекомендовать для выпрямителей, питающих выходные ступени любительских коротковолновых передатчиков и устройств, требующих высоких напряжений и сравнительно больших токов. При этом, конечно, должны быть соответственно подобраны выпрямительные элементы и конденсаторы выпрямителя.
Для приведённых выше схем выпрямителей характер нагрузочных характеристик определяется ёмкостями применяемых конденсаторов. Чем больше эти ёмкости, тем меньший наклон имеет характеристика, и следовательно, большим получается напряжение на данной нагрузке.
Для случая работы выпрямителя без нагрузки существуют определённые минимальные значения ёмкостей конденсаторов, при занижении которых схемы с умножением напряжения перестают работать. В тех случаях, когда от выпрямителя необходимо получить ток в несколько десятков или сотен, миллиампер, конденсаторы следует брать возможно большей ёмкости. Это способствует также и улучшению фильтрации выпрямленного напряжения. Кроме того, подбором ёмкостей конденсаторов можно эффективно устанавливать нужное по режиму питания анодное напряжение.
В промышленных и любительских телевизорах для питания анодов кинескопов нашла применение схема с умножением напряжения, изображённая на фиг. 11. Эта схема отличается от приведённых ранее наличием дополнительных сопротивлений и ёмкостей. Работает она следующим образом. Во время положительного полупериода питающего напряжения через выпрямительный элемент В1 заряжается до амплитудного значения напряжения конденсатор C1, а во время отрицательного — через сопротивление R1 конденсатор С2.
Фиг. 11. Схема умножения напряжения с сопротивлениями.
В последующий положительный полупериод напряжение на конденсаторе С2 складывается с питающим напряжением, и этот конденсатор разряжается через выпрямительный элемент В2 на последовательно соединённые конденсаторы С1 и С3, с концов которых полученное удвоенное выпрямленное напряжение и подводится к нагрузке. Наращивая в схеме звенья так, как показано пунктиром на фиг. 11, можно получить умножение напряжения любой кратности.
Преимущества такой схемы заключаются в облегчении условий работы выпрямительных элементов и ёмкостей, так как обратное напряжение на каждом выпрямительном элементе не превышает двойного, а на каждом конденсаторе — одинарного амплитудного напряжения, подводим ото к выпрямителю. Сопротивления R1, R2 и т. д. позволяют в случае использования селеновых столбиков иметь значительный разброс их обратных сопротивлений.
Рассмотренная схема пригодна только для работы выпрямителя при большом сопротивлении нагрузки. Конденсаторы могут иметь ёмкость порядка 500…1000 нФ, а сопротивления около 2…4 мОм. В качестве выпрямительных элементов могут применяться соответствующие селеновые столбики или кенотроны, однако для питания нитей накала последних на силовом трансформаторе необходимо иметь отдельные хорошо изолированные обмотки.
Продолжение. ВЫПРЯМЛЯЮЩИЕ ЭЛЕМЕНТЫBACK MAIN PAGE
Схемы простых выпрямителей для зарядки аккумуляторов
Что-то не так?
Пожалуйста, отключите Adblock.
Портал QRZ.RU существует только за счет рекламы, поэтому мы были бы Вам благодарны если Вы внесете сайт в список исключений. Мы стараемся размещать только релевантную рекламу, которая будет интересна не только рекламодателям, но и нашим читателям. Отключив Adblock, вы поможете не только нам, но и себе. Спасибо.
Как добавить наш сайт в исключения AdBlockПервая конструкция. Выпрямитель (рис. 26) собран по мостовой схеме на четырех диодах Д1—Д4 типа Д305. Сила зарядного тока регулируется при помощи мощного транзистора 77, включенного по схеме составного триода. При изменении смещения, снимаемого на базу триода с потенциометра R1, изменяется сопротивление цепи коллектор — эмиттер транзистора. Зарядный ток при этом можно изменять от 25 мА до 6 А при напряжении на выходе выпрямителя от 1,5 до 14 В.
Резистор R2 на выходе выпрямителя позволяет устанавливать выходное напряжение выпрямителя при отключенной нагрузке. Трансформатор собран на сердечнике сечением 16 см2. Первичная обмотка рассчитана на включение в сеть с напряжением 127 В (выводы 1—2) или 220 В (выводы 1—3) и содержат 350+325 витков провода ПЭВ 0,35, вторичная обмотка — 45 витков провода ПЭВ 1,5. Транзистор 77 устанавливают на металлическом радиаторе, площадь поверхности которого должна быть не менее 350 см” с обеих сторон пластины при толщине ее не менее 3 мм.
Рис, 26. Принципиальная электрическая схема выпрямителя (первая конструкция)
Рис. 27. Принципиальная электрическая схема выпрямителя (вторая конструкция)
Вторая конструкция. Схема, приведенная на рис. 27, отличается от предыдущей тем, что с целью увеличения максимального тока до 10 А транзисторы 77 и Т2 включены параллельно. Смещение на базы транзисторов, изменением которого регулируется зарядный ток, снимается с выпрямителя, выполненного на диодах Д5—Д6. При зарядке 6-вольтовых аккумуляторов переключатель устанавливается в положение /, 12-вольтовых — в положение 2. Обмотки трансформатора содержат следующее количество витков: Іа—328 витков провода ПЭВ 0,85; 16 — 233 витка провода ПЭВ 0,63; II — 41+41 виток провода ПЭВ 1,87; III — 7+7 витков провода ПЭВ 0,63. Сердечник — УШ35 X 55.
Военно-техническая подготовка
1.7. Выпрямители
Выпрямитель (электрического тока) — преобразователь электрической энергии; механическое, электровакуумное, полупроводниковое или другое устройство, предназначенное для преобразования переменного входного электрического тока в постоянный выходной электрический ток.
1.7.1. Однополупериодный выпрямитель.
Простейшая схема однополупериодного выпрямителя состоит только из одного выпрямляющего ток элемента (диода). На выходе — пульсирующий постоянный ток. На промышленных частотах (50—60 Гц) не имеет широкого применения, так как для питания аппаратуры требуются сглаживающие фильтры с большими величинами ёмкости и индуктивности, что приводит к увеличению габаритно-весовых характеристик выпрямителя. Однако схема однополупериодного выпрямления нашла очень широкое распространение в импульсных блоках питания с частотой переменного напряжения свыше 10 кГц, широко применяющихся в современной бытовой и промышленной аппаратуре. Объясняется это тем, что при более высоких частотах пульсаций выпрямленного напряжения, для получения требуемых характеристик (заданного или допустимого коэффициента пульсаций), необходимы сглаживающие элементы с меньшими значениями ёмкости (индуктивности). Вес и размеры источников питания уменьшаются с повышением частоты входного переменного напряжения.
Однополупериодный выпрямитель или четвертьмост является простейшим выпрямителем и включает в себя один вентиль (диод или тиристор).
Напряжение со вторичной обмотки трансформатора проходит через вентиль на нагрузку только в положительные полупериоды переменного напряжения. В отрицательные полупериоды вентиль закрыт, всё падение напряжения происходит на вентиле, а напряжение на нагрузке Uн равно нулю. Среднее значение переменного тока по отношению к подведенному действующему составит:
.
Эта величина вдвое меньше, чем в полномостовом. Важно отметить, что среднеквадратичное значение напряжения на выходе однополупериодного выпрямителя будет в меньше подведенного действующего, а потребляемая нагрузкой мощность в 2 раза меньше (для синусоидальной формы сигнала).
1.7.2. Двухполупериодный выпрямитель.
Двухполупериодный выпрямитель может строиться по мостовой или полумостовой схеме (когда, например, в случае выпрямления однофазного тока, используется специальный трансформатор с выводом от средней точки вторичной обмотки и вдвое меньшим количеством выпрямляющих ток элементов. Такая схема ныне применяется редко, так как более металлоёмка и имеет большее эквивалентное активное внутреннее сопротивление, то есть большие потери на нагрев обмоток трансформатора).
Рис 1. Двухполупериодный выпрямитель с сглаживающим ёмкостным фильтром.
При построении двухполупериодного выпрямителя со сглаживающим конденсатором следует всегда помнить, что переменное напряжение всегда измеряется в «действующем» значении, которое в 1,41 раза меньше его максимальной амплитуды, а выпрямленное напряжение на конденсаторе, в отсутствие нагрузки, будет всегда равно амплитудному. Это означает, что, например, при измеренном напряжении однофазного переменного тока 12 вольт до мостового однофазного выпрямителя со сглаживающим конденсатором, на конденсаторе, (в отсутствие нагрузки), будет напряжение до 17 вольт. Под нагрузкой выпрямленное напряжение будет ниже, (но не ниже величины средневыпрямленного напряжения переменного тока, если внутреннее сопротивление трансформатора — источника переменного тока — принять равным нулю) и зависеть от ёмкости сглаживающего конденсатора.
Соответственно, выбор величины переменного напряжения вторичной обмотки трансформатора, должен строиться исходя из максимальной допустимой величины подаваемого напряжения, а ёмкость сглаживающего конденсатора — должна быть достаточно большой, чтобы напряжение под нагрузкой не снизилось меньше минимально допустимого. На практике также учитывается неизбежное падение напряжения под нагрузкой — на сопротивлении проводов, обмотке трансформатора, диодах выпрямительного моста, а также возможное отклонение от номинального величины питающего трансформатор напряжения электрической сети.
Рис 2. Входное переменное напряжение (жёлтого цвета) и постоянное выходное напряжение однополупериодного выпрямителя с фильтрующей ёмкостью.
Следует отметить, что в выпрямителях с сглаживающим конденсатором диоды открываются не на весь полупериод напряжения, а на короткие промежутки времени, когда мгновенное значение переменного напряжения превышает постоянное напряжение на фильтрующем конденсаторе (т. е. в моменты вблизи максимумов синусоиды). Поэтому протекающий через диоды (и обмотку трансформатора) ток представляет собой короткие мощные импульсы сложной формы, амплитуда которых значительно превышает средний ток, потребяемый нагрузкой выпрямителя. Этот факт следует учитывать при расчёте трасформатора (вариант расчёта для работы не на активную нагрузку, а на выпрямитель с ёмкостным фильтром), и принимать меры для подавления возникающих импульсных помех.
1.7.3. Мостовая схема выпрямления переменного тока.
Диодный мост — электрическая схема, предназначенная для преобразования («выпрямления») переменного тока в пульсирующий.
На вход (Input) схемы подаётся переменное напряжение (обычно, но не обязательно синусоидальное). В каждый из полупериодов ток проходит только через 2 диода, 2 других — заперты:
Рис 3. Выпрямление положительной полуволны | Рис 4. Выпрямление отрицательной полуволны |
Рис 5. Анимация принципа работы
В результате, на выходе (DC Output) получается напряжение, пульсирующее с частотой, вдвое большей частоты питающего напряжения:
Рис 6. Красным — исходное синусоидальное напряжение , зелёным — однополупериодное выпрямление (для сравнения), синим — рассматриваемое двухполупериодное
Преимущества
- Двухполупериодное выпрямление с помощью моста (по сравнению с однополупериодным) позволяет:
- Получить на выходе напряжение с повышенной частотой пульсаций, которое проще сгладить фильтром на конденсаторе.
- Избежать постоянного тока подмагничивания в питающем мост трансформаторе.
- Увеличить его КПД, что позволяет сделать его магнитопровод меньшего сечения.
Недостатки
- Происходит двойное падение напряжения по сравнению с однополупериодным выпрямлением (прямое напряжение диода × 2 ≈ 1 В), это иногда нежелательно в низковольтных схемах. Частично этот недостаток может быть преодолен за счет использования диодов Шоттки с малым падением напряжения.
- При перегорании одного из диодов схема превращается в однополупериодную, что может быть не замечено вовремя, и в устройстве появится скрытый дефект.
Электронные схемы — двухполупериодные выпрямители
Цепь выпрямителя, которая выпрямляет как положительные, так и отрицательные полупериоды, может называться двухполупериодным выпрямителем, поскольку выпрямляет полный цикл. Конструкция двухполупериодного выпрямителя может быть двух типов. Они есть
- Двухполупериодный выпрямитель с центральным отводом
- Мостовой двухполупериодный выпрямитель
Оба из них имеют свои преимущества и недостатки. Давайте теперь рассмотрим как их построение, так и работу с их формами волны, чтобы узнать, какая из них лучше и почему.
Полноволновой выпрямитель с центральным отводом
Цепь выпрямителя, чья вторичная обмотка трансформатора подключена для получения требуемого выходного напряжения, с использованием двух диодов для альтернативного выпрямления полного цикла, называется двухполупериодной цепью выпрямителя с центральным отводом . В отличие от других случаев трансформатор здесь отводится по центру.
Особенности центрирующего трансформатора —
Постукивание осуществляется путем вытягивания провода в средней точке вторичной обмотки. При этом эта обмотка делится на две равные половины.
Напряжение в повернутой средней точке равно нулю. Это формирует нейтральную точку.
Отвод по центру обеспечивает два отдельных выходных напряжения, которые равны по величине, но противоположны по полярности друг другу.
Для получения различных уровней напряжений можно вытянуть несколько обмоток.
Постукивание осуществляется путем вытягивания провода в средней точке вторичной обмотки. При этом эта обмотка делится на две равные половины.
Напряжение в повернутой средней точке равно нулю. Это формирует нейтральную точку.
Отвод по центру обеспечивает два отдельных выходных напряжения, которые равны по величине, но противоположны по полярности друг другу.
Для получения различных уровней напряжений можно вытянуть несколько обмоток.
Трансформатор с центральным отводом и двумя выпрямительными диодами используется в конструкции двухполупериодного выпрямителя с центральным отводом . Принципиальная электрическая схема двухполупериодного выпрямителя с центральным отводом показана ниже.
Работа CT-FWR
Работу двухполупериодного выпрямителя с центральным отводом можно понять по приведенному выше рисунку. Когда прикладывается положительный полупериод входного напряжения, точка М на вторичной обмотке трансформатора становится положительной по отношению к точке N. Это делает диод D1 смещенным в прямом направлении. Следовательно, ток i1 протекает через нагрузочный резистор от A до B. Теперь у нас есть положительные полупериоды на выходе
Когда прикладывается отрицательный полупериод входного напряжения, точка М на вторичной обмотке трансформатора становится отрицательной по отношению к точке N. Это делает диод D2 смещенным в прямом направлении. Следовательно, ток i2 протекает через нагрузочный резистор от А до В. Теперь у нас есть положительные полупериоды на выходе, даже во время отрицательных полупериодов на входе.
Формы волны CT FWR
Форма входных и выходных сигналов двухполупериодного выпрямителя с центральным отводом выглядит следующим образом.
Из приведенного выше рисунка видно, что выходные данные получены как для положительных, так и для отрицательных полупериодов. Также наблюдается, что выходной сигнал через нагрузочный резистор имеет одинаковое направление для обоих полупериодов.
Пиковое обратное напряжение
Поскольку максимальное напряжение на половине вторичной обмотки составляет Vm, все вторичное напряжение появляется на непроводящем диоде. Следовательно, пиковое обратное напряжение в два раза превышает максимальное напряжение на полу-вторичной обмотке, т.е.
PIV=2Vm
Недостатки
Есть несколько недостатков для выпрямителя с центральным ответвлением, таких как —
- Расположение центра постукивания сложно
- Выходное напряжение постоянного тока мало
- PIV диодов должен быть высоким
Следующим типом двухполупериодной выпрямительной цепи является мостовая двухполупериодная выпрямительная схема .
Мостовой двухполупериодный выпрямитель
Это такая двухполупериодная схема выпрямителя, в которой используются четыре диода, соединенных в виде моста, чтобы не только создавать выходной сигнал в течение полного цикла ввода, но и устранять недостатки двухполупериодной выпрямительной схемы с центральным отводом.
В этой цепи нет необходимости в центральном постукивании трансформатора. Четыре диода, называемые D1, D2, D3 и D4, используются при построении сети мостового типа, так что два из диодов проводят один полупериод, а два — другой полупериод входного питания. Схема мостового двухполупериодного выпрямителя показана на следующем рисунке.
Работа мостового двухполупериодного выпрямителя
Двухполупериодный выпрямитель с четырьмя диодами, соединенными в мостовой схеме, используется для получения лучшего отклика на двухволновом выходе. Когда задан положительный полупериод входного питания, точка P становится положительной по отношению к точке Q. Это делает диод D1 и D3 смещенным в прямом направлении, а D2 и D4 — в обратном направлении. Эти два диода теперь будут последовательно подключены к нагрузочному резистору.
На следующем рисунке это показано вместе с обычным током в цепи.
Следовательно, диоды D1 и D3 проводят в течение положительного полупериода входного питания, чтобы создать выходной сигнал вдоль резистора нагрузки. Поскольку два диода работают для получения выходной мощности, напряжение будет вдвое превышать выходное напряжение двухполупериодного выпрямителя с центральным выводом.
Когда задан отрицательный полупериод входного питания, точка P становится отрицательной по отношению к точке Q. Это делает диод D1 и D3 смещенным в обратном направлении, тогда как D2 и D4 смещены в обратном направлении. Эти два диода теперь будут последовательно подключены к нагрузочному резистору.
На следующем рисунке это показано вместе с обычным током в цепи.
Следовательно, диоды D2 и D4 проводят во время отрицательного полупериода входного питания, создавая выход вдоль нагрузочного резистора. Здесь также два диода работают, чтобы произвести выходное напряжение. Ток течет в том же направлении, что и во время положительного полупериода входа.
Форма волны моста FWR
Форма входных и выходных сигналов двухполупериодного выпрямителя с центральным отводом выглядит следующим образом.
Из приведенного выше рисунка видно, что выходные данные получены как для положительных, так и для отрицательных полупериодов. Также наблюдается, что выходной сигнал через нагрузочный резистор имеет одинаковое направление для обоих полупериодов.
Пиковое обратное напряжение
Всякий раз, когда два из диодов параллельны вторичной обмотке трансформатора, максимальное напряжение вторичной обмотки на трансформаторе появляется в непроводящих диодах, что делает PIV цепи выпрямителя. Следовательно, пиковое обратное напряжение является максимальным напряжением на вторичной обмотке, т.е.
PIV=Vm
преимущества
Мостовой двухполупериодный выпрямитель имеет много преимуществ, таких как —
- Нет необходимости постукивать по центру.
- Выходное напряжение постоянного тока в два раза выше, чем у FWR центральных отводов.
- PIV диодов в два раза меньше, чем у FWR центрального датчика.
- Конструкция схемы проще с лучшим выходом.
Давайте теперь проанализируем характеристики двухполупериодного выпрямителя.
Анализ двухполупериодного выпрямителя
Чтобы проанализировать схему двухполупериодного выпрямителя, предположим, что входное напряжение Vi равно
Vi=Vm sin omegat
Ток i1 через нагрузочный резистор RL определяется как
i1=Im sin omegat quadдля quad0 leq omegat leq pi
i1= quad0 quad quad quadдля quad pi leq omegat leq2 pi
куда
im= гидроразрываVmRF+RL
Rf — сопротивление диода в состоянии ВКЛ.
Аналогично, ток i2, протекающий через диод D2 и нагрузочный резистор RL, определяется как
i2= quad0 quad quad quadдля quad0 leq omegat leq pi
i2=Im sin omegat quadдля quad pi leq omegat leq2 pi
Общий ток, протекающий через RL, является суммой двух токов i1 и i2, т.е.
I=i1+i2
DC или средний ток
Среднее значение выходного тока, которое показывает амперметр постоянного тока, определяется как
Idc= frac12 pi int2 pi0i1d left( omegat right)+ frac12 pi int2 pi0i2d left( omegat right)
= frac12 pi int pi0Im sin omegatd left( omegat right)+0+0+
frac12 pi int2 pi0Im sin omegatd left( omegat right)
= fracIm pi+ fracIm pi= frac2Im pi=0.636Im
Это вдвое превышает значение полуволнового выпрямителя.
Выходное напряжение постоянного тока
Выходное напряжение постоянного тока на нагрузке определяется как
Vdc=Idc timesRL= frac2ImRL pi=0.636ImRL
Таким образом, выходное напряжение постоянного тока в два раза выше, чем у полуволнового выпрямителя.
RMS Current
Среднеквадратичное значение тока определяется как
Irms= left[ frac1 pi int pi0t2d left( omegat right) right] гидроразрыва12
Поскольку ток имеет две одинаковые формы в двух половинах
= left[ fracI2m pi int pi0 sin2 omegatd left( omegat right) right] frac12
= гидроразрываim SQRT2
Эффективность выпрямителя
Эффективность выпрямителя определяется как
ета= гидроразрываР−постоянногоР−ас
Сейчас,
Pdc= left(Vdc right)2/RL= left(2Vm/ pi right)2
А также,
Pac= left(Vrms right)2/RL= left(Vm/ sqrt2 right)2
Следовательно,
eta= fracPdcPac= frac left(2Vm/ pi right)2 left(Vm/ sqrt2 right)2= гидроразрыва8 р2
=0,812=81,2%
Эффективность выпрямителя можно рассчитать следующим образом:
Выходная мощность постоянного тока,
Pdc=I2dcRL= frac4I2m pi2 timesRL
Входная мощность переменного тока,
$$ P_ {ac} = I_ {rms} ^ {2} \ left (R_f + R_L \ right) = \ frac {I_ {m} ^ {2}} {2} \ left (R_f + R_L \ right) $ $
Следовательно,
eta= frac4I2mRL/ pi2I2m left(Rf+RL right)/2= frac8 pi2 fracRL left(Rf+RL right)
= \ frac {0.812} {\ left \ {1+ \ left (R_f / R_L \ right) \ right \}}
Следовательно, процентная эффективность
= frac0.8121+ left(Rf+RL right)
=81.2% quadifRf=0
Таким образом, двухполупериодный выпрямитель имеет эффективность, в два раза превышающую эффективность полуволнового выпрямителя.
Пульсационный фактор
Форм-фактор выпрямленного выходного напряжения двухполупериодного выпрямителя задается
F= гидроразрываIэффIпостоянноготока= гидроразрываim/ SQRT22Im/ р=1,11
Коэффициент пульсации gamma определяется как (с использованием теории цепей переменного тока)
gamma= left[ left( fracIrmsIdc right)−1 right] frac12= left(F2−1 справа) frac12
= left[ left(1.11 right)2−1 right] frac12=0,48
Это значительное улучшение по сравнению с коэффициентом пульсации полуволнового выпрямителя, равным 1,21.
регулирование
Выходное напряжение постоянного тока определяется как
Vdc= frac2ImRL pi= frac2VmRL pi left(Rf+RL right)
= frac2Vm pi left[1− fracRfRf+RL right]= frac2Vm pi−IdcRf
Коэффициент использования трансформатора
TUF полуволнового выпрямителя составляет 0,287
В выпрямителе с центральным отводом имеются две вторичные обмотки, и, следовательно, TUF двухполупериодного выпрямителя с центральным выводом
left(TUF right)avg= fracPdcVAрейтингofaтрансформатор
= frac left(TUF right)p+ left(TUF right)s+ left(TUF right)s3
= гидроразрыва0,812+0,287+0,2873=0,693
Полуволна против полноволнового выпрямителя
Изучив все значения различных параметров двухполупериодного выпрямителя, давайте просто попробуем сравнить и сопоставить особенности полуволновых и двухполупериодных выпрямителей.
Ликбез КО. Лекция №1 Схемы выпрямления электрического тока.
Схемы выпрямления электрического тока.
Выпрямитель электрического тока – электронная схема, предназначенная для преобразования переменного электрического тока в постоянный (однополярный) электрический ток.
В полупроводниковой аппаратуре выпрямители исполняются на полупроводниковых диодах. В более старой и высоковольтной аппаратуре выпрямители исполняются на электровакуумных приборах – кенотронах. Раньше широко использовались – селеновые выпрямители.
Для начала вспомним, что собой представляет переменный электрический ток. Это гармонический сигнал, меняющий свою амплитуду и полярность по синусоидальному закону.
В переменном электрическом токе можно условно выделить положительные и отрицательные полупериоды. Всё то, что больше нулевого значения относится к положительным полупериодам (положительная полуволна – красным цветом), а всё, что меньше (ниже) нулевого значения – к отрицательным полупериодам (отрицательная полуволна – синим цветом).
Выпрямитель, в зависимости от его конструкции «отсекает», или «переворачивает» одну из полуволн переменного тока, делая направление тока односторонним.
Схемы построения выпрямителей сетевого напряжения можно поделить на однофазные и трёхфазные, однополупериодные и двухполупериодные.
Для удобства мы будем считать, что выпрямляемый переменный электрический ток поступает с вторичной обмотки трансформатора. Это соответствует истине и потому, что даже электрический ток в домашние розетки квартир домов приходит с трансформатора понижающей подстанции. Кроме того, поскольку сила тока – величина, напрямую зависящая от нагрузки, то при рассмотрении схем выпрямления мы будем оперировать не понятием силы тока, а понятием – напряжение, амплитуда которого напрямую не зависит от нагрузки.
На рисунке изображена схема и временная диаграмма выпрямления переменного тока однофазным однополупериодным выпрямителем.
Из рисунка видно, что диод отсекает отрицательную полуволну. Если мы перевернём диод, поменяв его выводы – анод и катод местами, то на выходе окажется, что отсечена не отрицательная, а положительная полуволна.
Среднее значение напряжения на выходе однополупериодного выпрямителя соответствует значению:
Uср = Umax / π = 0,318 Umax
где: π — константа равная 3,14.
Однополупериодные выпрямители используются в качестве выпрямителей сетевого напряжения в схемах, потребляющих слабый ток, а также в качестве выпрямителей импульсных источников питания. Они абсолютно не годятся в качестве выпрямителей сетевого напряжения синусоидальной формы для устройств, потребляющих большой ток.
Наиболее распространёнными являются однофазные двухполупериодные выпрямители. Существуют две схемы таких выпрямителей – мостовая схема и балансная.
Рассмотрим мостовую схему однофазного двухполупериодного выпрямителя и его работу.
Если ток вторичной обмотки трансформатора течёт по направлению от точки «А» к точке «В», то далее от точки «В» ток течёт через диод VD3 (диод VD1 его не пропускает), нагрузку Rн, диод VD2 и возвращается в обмотку трансформатора через точку «А». Когда направление тока вторичной обмотки трансформатора меняется на противоположное, то вышедший из точки «А», ток течёт через диод VD4, нагрузку Rн, диод VD1 и возвращается в обмотку трансформатора через точку «В».
Таким образом, практически отсутствует промежуток времени, когда напряжение на выходе выпрямителя равно нулю.
Рассмотрим балансную схему однофазного двухполупериодного выпрямителя.
По своей сути это два однополупериодных выпрямителя, подключенных параллельно в противофазе, при этом начало второй обмотки соединено с концом первой вторичной обмотки. Если в мостовой схеме во время действия обоих полупериодов сетевого напряжения используется одна вторичная обмотка трансформатора, то в балансной схеме две вторичных обмотки (2 и 3) используются поочерёдно.
Среднее значение напряжения на выходе двухполупериодного выпрямителя соответствует значению:
Uср = 2*Umax / π = 0,636 Umax
где: π — константа равная 3,14.
Представляет интерес сочетание мостовой и балансной схемы выпрямления, в результате которого, получается двухполярный мостовой выпрямитель, у которого один провод является общим для двух выходных напряжений (для первого выходного напряжения, он отрицательный, а для второго — положительный):
Трёхфазные выпрямители
Трёхфазные выпрямители обладают лучшей характеристикой выпрямления переменного тока – меньшим коэффициентом пульсаций выходного напряжения по сравнению с однофазными выпрямителями. Связано это с тем, что в трёхфазном электрическом токе синусоиды разных фаз «перекрывают» друг друга. После выпрямления такого напряжения, сложения амплитуд различных фаз не происходит, а выделяется максимальная амплитуда из значений всех трёх фаз входного напряжения.
На следующем рисунке представлена схема трёхфазного однополупериодного выпрямителя и его выходное напряжение (красным цветом), образованное на «вершинах» трёхфазного напряжения.
За счёт «перекрытия» фаз напряжения, выходное напряжение трёхфазного однополупериодного выпрямителя имеет меньшую глубину пульсации. Вторичные обмотки трансформатора могут быть использованы только по схеме подключения «звезда», с «нулевым» выводом от трансформатора.
На следующем рисунке представлена схема трёхфазного двухполупериодного мостового выпрямителя (схема Ларионова) и его выходное напряжение (красным цветом).
За счёт использования положительной и перевернутой отрицательной полуволны трёхфазного напряжения, выходное напряжение (выделено красным цветом), образованное на вершинах синусоид, имеет самую маленькую глубину пульсаций выходного напряжения по сравнению со всеми остальными схемами выпрямления. Вторичные обмотки трансформатора могут быть использованы как по схеме подключения «звезда», без «нулевого» вывода от трансформатора, так и «треугольник».
При конструировании блоков питания для выбора выпрямительных диодов используют следующие параметры, которые всегда указаны в справочниках:
— максимальное обратное напряжение диода – Uобр ;
— максимальный ток диода – Imax ;
— прямое падение напряжения на диоде – Uпр .
Необходимо выбирать все эти перечисленные параметры с запасом, для исключения выхода диодов из строя.
Максимальное обратное напряжение диода Uобр должно быть в два раза больше реального выходного напряжения трансформатора. В противном случае возможен обратный пробой p-n, который может привести к выходу из строя не только диодов выпрямителя, но и других элементов схем питания и нагрузки.
Значение максимального тока Imax выбираемых диодов должно превышать реальный ток выпрямителя в 1,5 – 2 раза. Невыполнение этого условия, также приводит к выходу из строя сначала диодов, а потом других элементов схем.
Прямое падение напряжения на диоде – Uпр, это то напряжение, которое падает на кристалле p-n перехода диода. Если по пути прохождения тока стоят два диода, значит это падение происходит на двух p-n переходах. Другими словами, напряжение, подаваемое на вход выпрямителя, на выходе уменьшается на значение падения напряжения.
Схемы выпрямителей предназначены для преобразования переменного — изменяющего полярность напряжения в однополярное — не изменяющее полярность. Но этого недостаточно для превращения переменного напряжения в постоянное. Для того, чтобы оно преобразовалось в постоянное необходимо применение сглаживающих фильтров питания, устраняющих резкие перепады выходного напряжения от нуля до максимального значения.
Порядок включения выпрямителя — Сварка металлов
Порядок включения выпрямителя
Категория:
Сварка металлов
Порядок включения выпрямителя
После нажатия пусковой кнопки срабатывает магнитный пускатель, подключающий к электрической сети вентилятор. При нормальной работе вентилятора поток воздуха воздействует на реле контроля вентиляции, и оно замыкает свой нормально разомкнутый контакт. Через этот контакт подается напряжение на катушку контактора, который подключает к электрической сети трехфазный трансформатор выпрямителя — с этого момента на выходных зажимах выпрямителя появляется напряжение. При правильном направлении вентиляции поток воздуха должен засасываться в выпрямитель со стороны лицевой панели и выбрасываться с задней стороны выпрямителя. При неисправном вентиляторе или при неправильном направлении вращения его контакт реле контроля вентиляции остается разомкнутым, и трехфазный трансформатор выпрямителя не подключается к электрической сети.
Выпрямитель ВСС-300. Предназначен для однопостовой ручной сварки. Выпрямительный блок собран из селеновых пластин прямоугольной формы размером 100X400 мм. Выпрямитель имеет плавную регулировку сварочного тока изменением расстояния между обмотками трансформатора. Рукоятка плавного регулирования тока расположена на верхней крышке выпрямителя. Для изменения диапазона тока необходимо произвести переключение перемычек на доске зажимов трехфазного трансформатора, изменив схему соединения его обмоток в «звезду» или в «треугольник».
Выпрямитель ВКС-500. Предназначен для однопостовой ручной сварки и для механизированной сварки под слоем флюса.
Выпрямительный блок собран из кремниевых вентилей. Плавное регулирование сварочного тока изменением расстояния между обмотками трансформатора осуществляется при помощи специального механизма. Этот механизм состоит из асинхронного электродвигателя, редуктора, двух магнитных пускателей, однофазного трансформатора 380/36 В для питания иепи управления механизма регулирования. Управление механизмом регулирования кнопочное.
Возможно дистанционное регулирование сварочного тока при помощи выносного пульта управления.
Выпрямитель имеет два диапазона регулирования сварочного тока, соответствующих соединению первичной и вторичной обмо-то,к трехфазного трансформатора «звездой» или «треугольником». Переключение диапазонов тока осуществляется пересоединением перемычек на доске зажимов трансформатора.
Выпрямитель имеет защиту, отключающую его от электрической сети при выходе из строя одного из вентилей или при пробое на корпус вторичной обмотки трехфазного трансформатора. Защита состоит из магнитного усилителя, вспомогательного трансформатора и электромагнитного реле.
Выпрямитель ВД-306. Предназначен для однопостовой ручной сварки. Выпрямительный блок собран из кремниевых вентилей. Выпрямитель имеет переключатель диапазонов сварочного тока, который изменяет схему соединения обмоток трехфазного трансформатора. Плавная регулировка тока осуществляется изменением расстояния между обмотками трехфазного трансформатора.
Выпрямитель имеёт блок защиты, отключающий его от сети при Выходе из строя одного из вентилей или при пробое на корпус вторичной обмотки трансформатора (аварийные режимы).
В переключатель диапазонов регулирования тока встроен мик-ровыключатель. Если переключение диапазонов производится при невыключенном выпрямителе, контакт микровыключателя обрывает цепь катушки главного контактора и выпрямитель отключается от электрической сети.
Аналогично устроены выпрямители ВД-201, ВД-301.
Принципиальная электрическая схема выпрямителя ВД-306 изображена на рис. 33. Рассмотрим на примере этого выпрямителя работу электрической схемы.
Запуск выпрямителя производится кнопкой П — «пуск». При нажатии кнопки подается напряжение на катушку Кг силового контактора, контактор срабатывает, и его контакты подключают силовой трансформатор ТС к электрической сети. Кнопку П следует удерживать в замкнутом состоянии до тех пор, пока не придет во вращение электродвигатель М вентилятора и не сработает реле ветровое РВ.
Переключение диапазонов сварочного тока производится переключателем ПД. Предварительно выпрямитель необходимо отключить от электрической сети кнопкой С — «стоп». В переключатель диапазонов встроен микровыключатель MB. Если переключение диапазонов тока производится без отключения выпрямителя от сети, микровыключатель MB обрывает цепь питания катушки Кг силового контактора, который отключает выпрямитель от сети.
Блок защиты выпрямителя от аварийного режима состоит из магнитного усилителя УМ, вспомогательного трансформатора, электромагнитного реле. При срабатывании реле его нормально замкнутый контакт обрывает цепь питания катушки Кг силового контактора, и выпрямитель отключается от электрической сети.
Рис. 1. Принципиальная электрическая схема выпрямителя ВД-309:
ТС — трансформатор силовой; В — выпрямительный блок; Кг — контактор силовой; ПД — переключатель диапазонов; М — электродвигатель вентилятора, П — кнопка «пуск», С — кнопка «стоп», УМ — усилитель магнитный, Т — трансформатор вспомогательный, К1 — реле электромагнитное, РВ — реле ветровое, MB — микровыключатель 1
Повторное включение выпрямителя после срабатывания защитных устройств производится кнопкой П после устранения причин отключения выпрямителя.
Для защиты выпрямительного блока от коммутационных перенапряжений на выходе выпрямителя имеется защитная цепочка, состоящая из активных сопротивлений R3—R4 и конденсатора.
Выпрямитель ВД-502. Предназначен для однопостовой ручной сварки и резки и для механизированной сварки под слоем флюса. Выпрямительный блок собран из кремниевых вентилей. Выпрямитель состоит из трехфазного трансформатора с неподвижными обмотками, дросселя насыщения, выпрямительного блока, сглаживающего дросселя, магнитного усилителя, блока управления.
Трансформатор имеет секционированную первичную обмотку с отпайками к переключатель для получения двух диапазонов сварочного тока. В диапазоне малых токов первичная обмотка соединяется в «треугольник» с полным числом витков. В диапазоне больших токов обмотка соединяется в «треугольник» с меньшим числом витков.
Выпрямительный блок собран из шести вентилей, соединенных в мостовую схему выпрямления переменного гока.
Дроссель насыщения, включенный между трансформатором и выпрямительным блоком, служит для формирования падающих внешних характеристик выпрямителя. Плавная регулировка сварочного тока осуществляется изменением тока подмагничивания дросселя насыщения.
Сглаживгющий (стабилизирующий) дроссель включен в сварочную цепь выпрямителя последовательно с дугой для стабилизации сварочного режима при колебаниях напряжения электрической сети.
Магнитный усилитель обеспечивает защиту, отключающую выпрямитель от электрической сети при аварийном режиме работы. Правильное направление вращения вентилятора — против часовой стрелки, если смотреть со стороны вентилятора.
Управлять выпрямителем можно с панели управления или дистанционно, при помощи выносного пульта.
Выпрямитель ВКСМ-1000. Предназначен для многопостовойруч-ной сварки и резки. Количество постов на один выпрямитель определяется по номинальному току одного поста и коэффициенту одновременности нагрузки, равному 0,6.
Выпрямитель состоит из силового понижающего трехфазного трансформатора, выпрямительного блока с вентилятором, пуско-регулирующей и защитной аппаратуры.
Трансформатор имеет неподвижные обмотки, расположенные на магнитопроводе концентрически (с нормальным магнитным рассеянием). Такой трансформатор обеспечивает выпрямителю жесткую внешнюю характеристику, необходимую для одновременного горения нескольких сварочных дуг. Первичная обмотка трансформатора соединена в «треугольник», вторичная — шестифазной «звездой».
Выпрямительный блок собран из кремниевых вентилей ВК-200. Схема выпрямления — шестифазняя кольцевая, по два вентиля параллельно в каждой фазе. В такой схеме каждый вентиль работает шестую часть периода, т. е. вдвое меньше, чем в трехфазной мостовой схеме,-Разновидности шестифазных схем широко используются в мощных сварочных выпрямителях.
Охлаждающий воздух при работе вентилятора засасывается сверху, проходя через блок вентилей и трансформатор.
К пускорегулирующей и защитной аппаратуре относятся: блок управления (амперметр, вольтметр, сигнальные лампы, кнопки, магнитные пускатели, пакетный переключатель) и блок защиты (автоматический выключатель, предохранители, конденсаторы и сопротивления, реле контроля вентиляции).
Включение выпрямителя производится на холостом ходу, при зШ отключенной нагрузке, в такой последовательности: замыкают сетевой рубильник, включают автоматический выключатель, нажатием кнопки «пуск» непосредственно подключают выпрямитель к электрической сети. Выключается выпрямитель кнопкой «стоп».
Выпрямитель способен обеспечить работу шести сварочных постов ручной сварки при номинальном токе каждого поста 315 А. Падающую вольт-амперную характеристику и регулирование сварочного тока на каждом посту обеспечивает балластный реостат.
Выпрямитель ВДМ-1001. Предназначен для многопостовой ручной сварки и резки. Может обеспечить нормальную работу семи постов ручной сварки при номинальном токе поста 315 А.
Общее устройство аналогично выпрямителю ВКСМ, отличается только внешним видом, значительно меньшими габаритами и массой. Блок вентилей состоит из двенадцати кремниевых вентилей, собранных по кольцевой схеме, в каждой фазе по два вентиля параллельно. Принципиальная электрическая схема выпрямителя изображена на рис. 2. Работает схема следующим образом:
Включить автоматический выключатель А при отключенной нагрузке (холостой ход). Включение выпрямителя производится кнопкой П — «пуск». При этом срабатывают магнитный пускатель Ki и контактор силовой Кг, подключая к электрической сети электродвигатель вентилятора М и силовой трансформатор ТС. Для исключения ложных срабатываний максимальной защиты автомата 1 А в цепь первичной обмотки силового трансформатора ТС подключены добавочные резисторы R1—R2. В момент включения эти сопротивления контактами пускателя подключаются последовательно первичной обмотке, а затем отключаются (шунтируются) главными контактами силового контактора.
Рис. 2. Принципиальная электрическая схема выпрямителя ВДМ-1001:
ТС — трансформатор силовой; В — выпрямительный блок; К2 — контактор силовой; А — автоматический выключатель; П — кнопка «пуск»; с — кнопка «стоп»; К\ — магнитный пускатель; М — электродвигатель вентилятора; Rb Rj — добавочные сопротивления
Кратковременное отключение выпрямителя без отключения автомата А производится кнопкой С — «стоп». Силовой трансформатор ТС защищен от перегрузок тепловыми реле, встроенными в силовой контактор Кг (магнитный пускатель).
Аварийное отключение выпрямителя при коротких замыканиях в электрической схеме и пробое вентилей осуществляется автоматом А.
Выпрямитель ВСУ-500. Является универсальным источником питания. Предназначен для однопостовой ручной сварки и резки, для механизированной сварки под слоем флюса и для механизированной сварки в среде защитных газов.
Выпрямитель состоит из трехфазного трансформатора е неподвижными обмотками, дросселя насыщения, выпрямительного блока из селеновых элементов, пусковой и защитной аппаратуры.
Сварочный ток при ручной сварке и напряжение при механизированной сварке регулируются изменением индуктивного сопротивления дросселя насыщения. Индуктивное сопротивление дросселя изменяется изменением тока подмагничивания его сердечннка.
Выпрямитель ВДУ-504. Является универсальным. Предназначен для нескольких способов сварки. Для ручной сварки и сварки под слоем флюса выпрямитель имеет падающую внешнюю характеристику, для сварки в среде защитных газов — жесткую. Изменение формы внешних характеристик обеспечивается использованием тиристоров (управляемых вентилей) и специальной схемы управления ими.
Выпрямитель состоит из трехфазного трансформатора с нормальным магнитным рассеянием, выпрямительного тиристорного блока, аппаратуры управления и защиты.
При ручной сварке переключатель внешних характеристик устанавливают в положение «крутопадающие». Плавное регулирование сварочного тока производят потенциометром на лицевой панели. Сварочный ток можно регулировать с места и дистанционно, при помощи выносного пульта.
ВДУМ-4Х401. Универсальный тиристорный выпрямитель. Предназначен для питания одновременно четырех сварочных постов ручной сварки и резки и при механизированной сварке в среде защитных газов. Сварочный ток каждого поста — до 400 А при коэффициенте одновременности включения постов — 0,7. Регулирование режимов на каждом посту — автономное.
Реклама:
Читать далее:
Параллельная работа сварочных выпрямителей
Статьи по теме:
Знакомство с выпрямительными схемами
Важное применение диода — это то, что имеет место в конструкции схемы выпрямителя. Проще говоря, эта схема преобразует переменный ток (AC) в постоянный (DC). Это важная схема в конструкции источника питания переменного тока в постоянный.
Схема выпрямителя
Для питания любой цепи необходим блок питания; А если вы хотите запитать электронные устройства от сети переменного тока, вам понадобится выпрямитель.
Рисунок 1.1 иллюстрирует схематическую диаграмму источника питания постоянного тока. Существует линия переменного тока 120 В (среднеквадратичное значение), 60 Гц, которая питает источник питания, который подает напряжение В O на электронную схему (блок нагрузки). В O должно быть стабильным постоянным напряжением для обеспечения правильной работы электронных схем.
Рисунок 1.1Глядя на схему, сначала мы видим трансформатор. Этот трансформатор представляет собой понижающий трансформатор, который «понижает» высокое входное напряжение переменного тока до более низкого напряжения переменного тока, которое вводится в выпрямитель.Этот трансформатор состоит из двух отдельных обмоток катушки (первичная и вторичная обмотки), которые имеют разное количество витков: N 1 для первичной обмотки и N 2 для вторичной обмотки. Таким образом, переменное напряжение v S может быть записано как 120 (N 2 / N 1 ) В (среднеквадратичное значение) и измеряется между двумя выводами вторичной обмотки.
Затем диодный выпрямитель преобразует переменное напряжение v S в постоянное напряжение. Это напряжение будет сильно колебаться и поэтому не будет подходить для электронных схем.Для сглаживания этих вариаций используется фильтр.
Однако даже после фильтрации напряжение будет показывать небольшие изменения, известные как пульсации. Следовательно, регулятор напряжения используется для значительного уменьшения пульсаций и создания надежной шины питания постоянного тока.
Схема полуволнового выпрямителя
Полупериодный выпрямитель устраняет отрицательные части входной синусоиды. На рисунке 1.2 (A) показан однополупериодный выпрямитель. В этой статье мы будем использовать модель диода с постоянным падением напряжения (CVD) из-за ее простоты.Из этой модели нам предоставляется
$$ v_ {0} = 0 $$, когда $$ v_ {S} $$ v_ {0} = v_ {S} -V_ {D} $$, когда $$ v_ {S} \ geq V_ {D} $$ , где В D ≈ 0,7 В. Приведенные выше уравнения приводят к передаточной характеристике, показанной на рисунке 1.2 (B). На рисунке 1.2 (C) показано выходное напряжение, которое обеспечивается, когда входное напряжение v S является синусоидальным. При определении того, какие диоды использовать в выпрямительной цепи, необходимо принять во внимание две вещи: 1) способность диода выдерживать ток, который следует выбирать на основе наибольшего тока, который, как ожидается, будет проводиться диодом, и 2) пиковое обратное напряжение (PIV), которое является самым высоким обратным напряжением, которому будет подвергаться диод; диод должен выдерживать PIV.Глядя на рисунок 1.2 (A), мы можем заметить, что, когда напряжение v S отрицательное, диод будет отключен, а напряжение v O будет иметь нулевое значение, что приведет к обратному напряжение на диоде величиной В S . Таким образом, PIV — это пик v S : PIV = В S , где V S (с буквой V в верхнем регистре) представляет пиковую амплитуду входной синусоиды. Стоит отметить, что схема явно не будет работать эффективно, если пиковая амплитуда входной синусоиды ненамного превышает В D . Например, синусоидальный вход с пиковой амплитудой 200 мВ вообще не будет выпрямляться, потому что диод никогда не «включится», т.е. он никогда не будет проводить значительный ток. В отличие от полуволнового выпрямителя, двухполупериодный выпрямитель может использовать как отрицательную, так и положительную часть входного переменного напряжения.Чтобы получить униполярный выходной сигнал, отрицательная часть синусоидального сигнала должна быть инвертирована. Это можно сделать, используя схему, показанную на Рисунке 1.3 (A). В этой конфигурации вторичная обмотка понижающего трансформатора называется «отводом по центру». Центральный ответвитель или CT — это электрический контакт, включенный на полпути вдоль обмотки.Этот трансформатор тока используется для обеспечения двух равных напряжений v S на двух половинах вторичной обмотки трансформатора. Когда входное напряжение положительное, оба сигнала v S также будут положительными, а когда входное напряжение станет больше V D , диод D 1 будет проводящим, а диод D 2 будет обратным смещением. Ток, протекающий через диод D 1 , также будет проходить через резистор R , а затем обратно в трансформатор тока.Схема ведет себя так же, как однополупериодный выпрямитель в течение положительного полупериода входной синусоиды. Во время отрицательного полупериода оба напряжения v S будут отрицательными. Теперь диод D 1 имеет обратное смещение, а диод D 2 является проводящим. Ток, протекающий через D 2 , затем будет протекать через резистор R и обратно к трансформатору тока. Таким образом, ток течет в течение обоих полупериодов, и, кроме того, ток через резистор всегда будет течь в одном и том же направлении.В результате получается униполярное выходное напряжение, как показано на Рисунке 1.3 (C). Если рассматривать работу схемы в течение положительного полупериода, напряжение на катоде D 2 составляет ( В S — В D ), а напряжение на аноде D 2 — v S .Таким образом, PIV будет ( V S — V D ) — (- V S ): PIV = 2 В S — В D Обратите внимание, что PIV примерно вдвое больше, чем у полуволнового выпрямителя. В этой статье мы обсудили назначение выпрямительной схемы, а также два конкретных типа выпрямителей: однополупериодный выпрямитель и двухполупериодный выпрямитель.Выпрямители — это важные схемы для источников питания, которые преобразуют входное переменное напряжение в источник постоянного напряжения, которое может использоваться для питания электронных схем. Мы видели, что полуволновой выпрямитель использует чередующиеся полупериоды входной синусоидальной волны, тогда как двухполупериодный выпрямитель использует как положительные, так и отрицательные полупериоды. Спасибо за внимание. Если у вас есть вопросы или комментарии, оставьте их ниже! Чтобы узнать больше о схемах выпрямителя, ознакомьтесь с записью учебника AAC здесь. Включают: Цепи диодного выпрямителя Мостовой выпрямитель — это электронный компонент, который широко используется для обеспечения двухполупериодного выпрямления и, возможно, является наиболее широко используемой схемой для этого приложения. Используя четыре диода в мостовом выпрямителе, схема имеет характерный формат, принципиальная схема которого основана на квадрате с одним диодом на каждой ножке. Благодаря своим характеристикам и возможностям, двухполупериодный мостовой выпрямитель используется во многих линейных источниках питания, импульсных источниках питания и других электронных схемах, где требуется выпрямление. Схема основной схемы мостового выпрямителя имеет блок мостового выпрямителя в центре.Он состоит из мостовой схемы с четырьмя диодами. Это могут быть отдельные диоды или мостовые выпрямители в виде единого электронного компонента. Мостовой выпрямитель обеспечивает двухполупериодное выпрямление и имеет преимущество перед двухполупериодным выпрямителем, использующим два диода, в том, что в трансформаторе не требуется центральный отвод. Это означает, что для обеих половин цикла используется одна обмотка. с обмоткой дороги, а наличие центрального отвода означает, что для обеспечения двухполупериодного выпрямления необходимы две идентичные обмотки, каждая из которых обеспечивает полное напряжение.Это удваивает количество витков и увеличивает стоимость трансформатора. Это может быть особенно важно при разработке линейных источников питания или других электронных устройств. Чтобы увидеть, как работает двухполупериодный выпрямитель с мостовым диодом, полезно увидеть ток, протекающий в течение полного цикла входящей формы волны. Двухполупериодный мостовой выпрямитель, показывающий протекание тока В большинстве приложений источников питания, будь то линейные регуляторы напряжения или импульсные источники питания, выход мостового выпрямителя будет подключен к сглаживающему конденсатору как часть нагрузки. Эти электронные компоненты принимают заряд во время высоковольтных частей формы волны, а затем отдают заряд на нагрузку при падении напряжения. Таким образом, они обеспечивают более постоянное напряжение, чем прямой выход мостового выпрямителя. Это позволяет другим схемам, таким как линейные регуляторы напряжения и импульсные источники питания, работать правильно. используются во многих источниках питания как для линейных регуляторов напряжения, так и для импульсных источников питания, чтобы сгладить выпрямленную форму волны, которая в противном случае варьировалась бы от пикового напряжения формы волны до нуля.Сглаживая форму волны, можно запускать из нее электронные схемы. Подробнее о Конденсаторное сглаживание. Что касается мостового выпрямителя и его диодов, включение конденсатора означает, что ток, проходящий через диоды, будет иметь значительные пики по мере заряда конденсатора. При выборе электронных компонентов для мостового выпрямителя необходимо убедиться, что они могут выдерживать пиковые уровни тока. Компоненты мостового выпрямителя могут быть разных форм. Их можно сделать с помощью дискретных диодов. Кольцо из четырех диодов можно легко изготовить как на бирке, так и в составе печатной платы. Необходимо обеспечить достаточную вентиляцию диодов, поскольку они могут рассеивать тепло под нагрузкой. В качестве альтернативы мостовые выпрямители поставляются как отдельные электронные компоненты, содержащие четыре диода в едином блоке или корпусе.Четыре соединения выведены и отмечены «+», «-» и «~». Соединение «~» используется для подключения к переменному входу. Соединения + и — очевидны. Некоторые из этих мостовых выпрямителей предназначены для монтажа на печатной плате и могут иметь провода для монтажа в сквозные отверстия. Другие могут быть устройствами для поверхностного монтажа. Некоторые мостовые выпрямители заключены в более крупные корпуса и предназначены для установки на радиаторе. Поскольку эти выпрямители рассчитаны на пропускание значительных уровней тока, они могут рассеивать значительный уровень тепла в результате падения напряжения на диодах, а также внутреннего сопротивления объемного кремния, используемого для диодов. При использовании мостового выпрямителя для обеспечения выхода постоянного тока от входа переменного тока необходимо учитывать несколько моментов: Рассчитайте количество тепла, рассеиваемого в выпрямителе: Напряжение на диодах будет падать минимум на 1,2 В (при использовании стандартного кремниевого диода), которое будет расти по мере увеличения тока. Это результат стандартного падения напряжения на диоде, а также сопротивления внутри диода.Обратите внимание, что ток проходит через два диода внутри моста в течение любого полупериода. Сначала один комплект из двух диодов, затем другой. Чтобы увидеть падение напряжения для предполагаемого уровня тока, стоит обратиться к паспорту диодов мостового выпрямителя или всего электронного компонента мостового выпрямителя. Падение напряжения и ток, протекающий через выпрямитель, вызывают нагрев, который необходимо отводить. В некоторых случаях его можно легко рассеять за счет воздушного охлаждения, но в других случаях мостовой выпрямитель может потребоваться прикрутить болтами к радиатору.Многие мостовые выпрямители для этой цели крепятся болтами к радиатору. Пиковое обратное напряжение: Очень важно следить за тем, чтобы максимальное обратное напряжение мостового выпрямителя или отдельных диодов не превышалось, в противном случае диоды могут выйти из строя. Рейтинг PIV диодов в мостовом выпрямителе меньше, чем требуется для конфигурации с двумя диодами, используемой с центральным трансформатором с ответвлениями. Если пренебречь падением напряжения на диодах, для мостового выпрямителя требуются диоды с половиной PIV-рейтинга выпрямителя с центральным отводом для того же выходного напряжения.Это может быть еще одним преимуществом использования данной конфигурации. Пиковое обратное напряжение на диодах равно пиковому вторичному напряжению V сек , потому что в течение одного полупериода диоды D1 и D4 являются проводящими, а диоды D2 и D3 имеют обратное смещение. Предположение, что диоды идеальны, и на них нет падения напряжения — хорошее предположение для этого объяснения. Используя это, можно увидеть, что точки A и B будут иметь такой же потенциал, как и точки C и D.Это означает, что пиковое напряжение трансформатора появится на нагрузке. Такое же напряжение появляется на каждом непроводящем диоде. Мостовые выпрямители — идеальный способ обеспечить выпрямленный выход на переменном входе. Мостовой выпрямитель обеспечивает двухполупериодный выпрямленный выход, что во многих случаях позволяет достичь лучшей производительности. Для многих схем, таких как операционные усилители, могут потребоваться разделенные источники питания от линейного источника питания.Можно очень легко создать разделенное питание для этих и других приложений, используя двухполупериодный мостовой выпрямитель. Хотя он возвращается к использованию разделенного трансформатора, то есть с центральным ответвлением, может быть стоит получить импульсный или линейный источник питания с комбинацией как отрицательного, так и положительного источников питания с использованием мостового выпрямителя. Схема работает эффективно и рационально, поскольку обе половины входной волны используются в каждой секции вторичной обмотки трансформатора. Мостовой выпрямитель с двойным питанием требует использования трансформатора с центральным ответвлением, но в любом случае часто требуется вторая обмотка для обеспечения двойного питания. Схема двухполупериодного выпрямителя на основе диодного моста работает хорошо и используется в большинстве приложений двухполупериодного выпрямителя. Он использует обе половины формы волны в обмотке трансформатора и, как результат, снижает тепловые потери для данного уровня выходного тока по сравнению с другими решениями.Кроме того, это решение не требует трансформатора с центральным ответвлением (за исключением версии с двумя источниками питания), и в результате снижаются затраты. Мостовой выпрямитель, вероятно, наиболее известен своим использованием в импульсных источниках питания и линейных источниках питания, но он также используется во многих других схемах. Другие схемы и схемотехника: Мостовые выпрямители В электронной промышленности одним из наиболее популярных приложений полупроводниковых диодов является преобразование сигнала переменного тока (AC) любой частоты, которая обычно составляет 60 или 50 Гц, в сигнал постоянного тока (DC). Этот сигнал постоянного тока может использоваться для питания электронных устройств, а не батарей.Схема, которая преобразует сигнал переменного тока в сигнал постоянного тока, обычно состоит из особого набора блокированных диодов и известна как выпрямитель. В схемах питания обычно используются два типа выпрямительных схем — полуволновые и двухполупериодные. Полуполупериодные выпрямители допускают только половину цикла, в то время как двухполупериодные выпрямители пропускают как верхнюю, так и нижнюю половину цикла, преобразуя нижнюю половину в ту же полярность, что и верхняя. Это различие между ними показано на рисунке 1. Рисунок 1: Разница между выходами полу- и двухполупериодных выпрямителей Между двумя типами двухполупериодный выпрямитель более эффективен, поскольку он использует полный цикл входящей формы волны. Существует два типа двухполупериодных выпрямителей: двухполупериодный выпрямитель с центральным ответвлением, для которого требуется трансформатор с центральным ответвлением, и мостовой выпрямитель, для которого не требуется трансформатор с центральным ответвлением. В этой статье будет обсуждаться мостовой выпрямитель, поскольку он является наиболее популярным и обычно поставляется в виде предварительно собранных модулей, что упрощает их использование. используются четыре диода, которые грамотно расположены для преобразования напряжения питания переменного тока в напряжение питания постоянного тока. Выходной сигнал такой схемы всегда имеет одинаковую полярность независимо от полярности входного сигнала переменного тока. На рисунке 2 изображена схема мостового выпрямителя с блокированными диодами по мостовой схеме. Сигнал переменного тока подается на входные клеммы a и b, а выходной сигнал наблюдается через нагрузочный резистор R1. Рисунок 2 Мостовой выпрямитель с нагрузочным резистором Давайте посмотрим, как эта схема выпрямителя реагирует на сигнал переменного тока с изменением полярности в каждом цикле: Тем не менее, это выходное напряжение одной полярности не является чистым постоянным напряжением, поскольку оно пульсирующее, а не прямолинейное по своей природе.Эта проблема быстро решается подключением конденсатора параллельно нагрузочному резистору, как показано на рисунке 3. В этой новой конструкции положительный полупериод заряжает конденсатор через диоды D2 и D3. А во время отрицательного полупериода конденсатор перестанет заряжаться и начнет разряжаться через нагрузочный резистор. Рисунок 3 Мостовой выпрямитель с нагрузочным резистором и фильтрующим конденсатором Этот процесс известен как фильтрация, и конденсатор действует как фильтр.Конденсатор улучшил пульсирующий характер выходного напряжения, и теперь на нем будет только пульсация. Эта форма сигнала теперь намного ближе к форме чистого напряжения постоянного тока. Форму сигнала можно дополнительно улучшить, используя другие типы фильтров, такие как L-C-фильтр и круговой фильтр. Только что обсужденный мостовой выпрямитель является однофазным, однако его также можно расширить до трехфазного выпрямителя. Эти два типа можно разделить на полностью управляемые, полууправляемые или неуправляемые мостовые выпрямители.Схема, которую мы только что обсуждали, является неконтролируемой, поскольку мы не можем контролировать смещение диода, но если все четыре диода заменить тиристором, его смещение можно контролировать, управляя его углом зажигания через его сигнал затвора. В результате получается полностью управляемый мостовой выпрямитель. В полууправляемом мостовом выпрямителе половина схемы содержит диоды, а другая половина — тиристоры. В электронике схема выпрямителя является наиболее часто используемой схемой, потому что почти каждое электронное устройство работает от постоянного тока (постоянного тока) , но доступность из источников постоянного тока ограничены, например, электрические розетки в наших домах обеспечивают переменного тока (переменного тока) .Выпрямитель — идеальный кандидат для этой работы в промышленности и дома, чтобы преобразовать переменный ток в постоянный ток . Даже в наших зарядных устройствах для сотовых телефонов используются выпрямители для преобразования AC из наших домашних розеток в DC . Различные типы выпрямителей используются для определенных приложений. В основном у нас есть два типа напряжения, которые широко используются в наши дни. Они бывают переменного и постоянного напряжения. Эти типы напряжения могут быть преобразованы из одного типа в другой с помощью специальных схем, разработанных для этого конкретного преобразования.Эти преобразования происходят повсюду. Наши основные источники питания, которые мы получаем от электросетей, имеют переменный характер, и бытовые приборы, которые мы используем в наших домах, обычно требуют небольшого постоянного напряжения. Этот процесс преобразования переменного тока в постоянный получил название выпрямления. Преобразованию переменного тока в постоянный предшествует дальнейший процесс, который может включать в себя фильтрацию, преобразование постоянного тока в постоянный и так далее. Одна из самых распространенных частей электронного блока питания — мостовой выпрямитель. Для многих электронных схем требуется выпрямленный источник питания постоянного тока для питания различных основных электронных компонентов от доступной сети переменного тока.Простой мостовой выпрямитель используется во множестве электронных силовых устройств переменного тока. Другой способ взглянуть на схему выпрямителя состоит в том, что можно сказать, что она преобразует токи, а не напряжения. Это имеет более интуитивный смысл, потому что мы более привыкли использовать ток для определения природы компонента. Вкратце, выпрямитель принимает ток, который имеет как отрицательную, так и положительную составляющие, и выпрямляет его так, чтобы осталась только положительная составляющая тока. Мостовые выпрямители широко используются в источниках питания, которые обеспечивают необходимое постоянное напряжение для электронного компонента или устройств.Наиболее эффективными коммутационными аппаратами, характеристики которых известны полностью, являются диоды. Теоретически вместо диодов можно использовать любой твердотельный переключатель, которым можно управлять или которым нельзя управлять. Обычно выпрямители s типов классифицируются в зависимости от их мощности. В этой статье мы обсудим многие типы выпрямителей, такие как: Выпрямитель — это электрическое устройство, состоящее из одного или более чем одного диода, которое преобразует переменного тока ( AC ) в постоянного тока ( DC ).Он используется для выпрямления, где процесс ниже показывает, как он преобразует переменный ток в постоянный. Выпрямление — это процесс преобразования переменного тока (который периодически меняет направление) в постоянный ток (поток в одном направлении). В основном есть два типа выпрямителей: Мостовые выпрямители бывают многих типов, и основание для классификации может быть много, чтобы назвать несколько. тип питания, конфигурации мостовой схемы, возможности управления и т. д.Мостовые выпрямители можно в целом разделить на одно- и трехфазные выпрямители в зависимости от типа входа, на котором они работают. Оба этих типа включают следующие дополнительные классификации, которые можно разделить как на однофазные, так и на трехфазные выпрямители. Дальнейшая классификация основана на коммутационных устройствах, которые использует выпрямитель, и типы: неуправляемые, полууправляемые и полностью управляемые выпрямители. Некоторые типы выпрямителей обсуждаются ниже. В зависимости от типа выпрямительной схемы выпрямители подразделяются на две категории. Полупериодный выпрямитель преобразует только половину волны переменного тока в сигнал постоянного тока, тогда как двухполупериодный выпрямитель преобразует полный сигнал переменного тока в постоянный. Мостовой выпрямитель — это наиболее часто используемый выпрямитель в электронике, и в этом отчете будет рассказано о его работе и изготовлении. Схема простого мостового выпрямителя — самый популярный метод двухполупериодного выпрямления. Мы обсудим как управляемые, так и неуправляемые (полуволновые и полнополупериодные мостовые) выпрямители более подробно со схемами и принципами работы, как показано ниже. Тип выпрямителя, выходное напряжение которого не может контролироваться , называется неуправляемым выпрямителем . Выпрямитель работает с переключателями. Переключатели могут быть различных типов, в широком смысле, управляемые переключатели и неуправляемые переключатели. Диод — это однонаправленное устройство, которое позволяет току течь только в одном направлении. Работа диода не контролируется, так как он будет работать до тех пор, пока он смещен в прямом направлении. При конфигурации диодов в любом конкретном выпрямителе выпрямитель не полностью находится под контролем оператора, поэтому выпрямители такого типа называются неуправляемыми выпрямителями. Это не позволяет изменять мощность в зависимости от требований к нагрузке. Таким образом, этот тип выпрямителя обычно используется в постоянных или фиксированных источниках питания. В неуправляемом выпрямителе используются только диоды, и они дают фиксированное выходное напряжение, зависящее только от входа AC . Типы неуправляемых выпрямителей: Неконтролируемые выпрямители подразделяются на два типа: Тип выпрямителя, который преобразует только выпрямитель типа A полупериод переменного тока (AC) в постоянный (DC) известен как полуволновой выпрямитель. Полупериодный выпрямитель, который преобразует только положительный полупериод и блокирует отрицательный полупериод. Выпрямитель отрицательной полуволны преобразует только отрицательный полупериод переменного тока в постоянный. Во всех типах выпрямителей однополупериодный выпрямитель — это простейших из них всех, поскольку он состоит только из одного диода . Диод пропускает ток только в одном направлении, известном как вперед смещение . Нагрузочный резистор RL включен последовательно с диодом. Положительный полупериод: Во время положительного полупериода вывод диода , анод станет положительным, а катод станет отрицательным, известным как прямое смещение . И это позволит протекать положительному циклу. Отрицательный полупериод: Во время отрицательного полупериода анод станет отрицательным, а катод станет положительным, что известно как обратное смещение .Таким образом, диод заблокирует отрицательный цикл. Таким образом, когда источник переменного тока подключен к однополупериодному выпрямителю, через него будет проходить только полупериод , как показано на рисунке ниже. Выход этого выпрямителя снимается через нагрузочный резистор RL . Если мы посмотрим на график «вход-выход» , он показывает пульсирующий положительный полупериод входного сигнала. На выходе полуволнового выпрямителя слишком много пульсаций , и использовать этот выход в качестве источника постоянного тока не очень практично.Чтобы сгладил этот пульсирующий выход, через резистор вводится конденсатор . Конденсатор будет заряжаться во время положительного цикла и разряжаться во время отрицательного цикла, чтобы выдать плавный выходной сигнал. Такие типы выпрямителей тратят впустую мощность полупериода входа переменного тока. Двухполупериодный выпрямитель преобразует положительных и отрицательных полупериодов переменного (переменного тока) в постоянный (постоянный ток).Он обеспечивает двойное выходное напряжение по сравнению с полуволновым выпрямителем Двухполупериодный выпрямитель состоит из более чем одного диода. Существует два типа двухполупериодных выпрямителей. Мостовой выпрямитель использует четыре диода для преобразования обоих полупериодов входного переменного тока в постоянный выходной. В этом типе выпрямителя диоды подключаются в особой форме, как указано ниже. Положительный полупериод: Во время положительного полупериода входа диод D1 и D2 становится прямым смещением, а D3 и D4 становится обратным смещением. Диод D1 и D2 образуют замкнутый контур, который обеспечивает положительное выходное напряжение на нагрузочном резисторе RL . Отрицательный полупериод: Во время отрицательного полупериода диод D3 и D4 становится прямым смещением, а D1 и D2 становится обратным смещением.Но полярность на нагрузочном резисторе RL остается прежней и обеспечивает положительный выходной сигнал на нагрузке. Выход двухполупериодного выпрямителя имеет низкие пульсации по сравнению с полуволновым выпрямителем, но, тем не менее, он не является плавным и устойчивым. Чтобы выходное напряжение было плавным и устойчивым, на выходе помещается конденсатор , как показано на рисунке ниже. Заряд и разряд конденсатора, обеспечивающий плавные переходы между полупериодами. Работа схемы мостового выпрямителя Из принципиальной схемы видно, что диоды подключены определенным образом. Это уникальное расположение и дало название конвертеру. В мостовом выпрямителе напряжение на входе может быть от любого источника. Это может быть трансформатор, который используется для повышения или понижения напряжения, или сеть нашего домашнего источника питания. В этой статье мы используем трансформатор с ответвлениями 6-0-6 для обеспечения переменного напряжения. В первой фазе работы выпрямителя, в течение положительного полупериода, диоды D3-D2 смещены в прямом направлении и проводят ток. Диоды D1-D4 имеют обратное смещение и не проводят в этом полупериоде, действуя как разомкнутые переключатели. Таким образом, мы получаем на выходе положительный полупериод. И наоборот, в отрицательном полупериоде диоды D1-D4 смещаются в прямом направлении и начинают проводить, тогда как диоды D3-D2 имеют обратное смещение и не проводят в этом полупериоде. Опять получаем на выходе положительный полупериод.В конце процесса выпрямления отрицательная часть переменного тока преобразуется в положительный цикл. Выходной сигнал выпрямителя — это два полуположительных импульса с той же частотой и величиной, что и входной. В отличие от работы полуволнового выпрямителя, полный мостовой выпрямитель имеет другую ветвь, которая позволяет ему проводить отрицательную половину формы волны напряжения, которую полумостовой выпрямитель не имел возможности сделать. Таким образом, среднее напряжение на выходе полного мостового выпрямителя вдвое больше, чем у полумостового выпрямителя. Хотя мы используем четыре отдельных силовых диода для изготовления двухполупериодного мостового выпрямителя, готовые компоненты мостового выпрямителя доступны «в готовом виде» в диапазоне различных значений напряжения и тока, которые могут использоваться непосредственно для обеспечения работоспособности. схема. Форма волны выходного напряжения после выпрямления не соответствует правильному постоянному току, поэтому мы можем попытаться превратить его в форму волны постоянного тока, используя конденсатор для целей фильтрации. Сглаживающие или накопительные конденсаторы, подключенные параллельно нагрузке на выходе схемы двухполупериодного мостового выпрямителя, увеличивают средний выходной уровень постоянного тока до требуемого среднего напряжения постоянного тока на выходе, поскольку конденсатор действует не только как фильтрующий компонент, но и также периодически заряжается и разряжается, эффективно увеличивая выходное напряжение. Конденсатор заряжается до тех пор, пока форма сигнала не достигнет своего пика, и равномерно разряжается в цепи нагрузки, когда форма сигнала начинает снижаться. Поэтому, когда выходной сигнал становится низким, конденсатор поддерживает правильное напряжение в цепи нагрузки, тем самым создавая постоянный ток. Преимущества мостового выпрямителя: Недостатки мостового выпрямителя: Этот тип двухполупериодного выпрямителя использует трансформатор с центральным отводом и два диода. Трансформатор с центральным отводом — это трансформатор с двойным напряжением, который имеет два входа ( I1 и I2 ) и три выходных клеммы ( T1, T2, T3 ). Клемма T2 подключена к центру выходной катушки, которая действует как опорная земля (опорное напряжение o вольт ).Клемма T1 выдает положительного напряжения , а клемма T3 создает отрицательное напряжение относительно T2 . Конструкция выпрямителя с центральным отводом приведена ниже: Положительный полупериод: Во время входного положительного полупериода T1 выдает положительное напряжение, а T2 — отрицательное напряжение. Диод D1 станет прямым смещением, а диод D2 станет обратным смещением.Это делает закрытый путь от T1 к T2 через нагрузочный резистор RL , как показано ниже. Отрицательный полупериод: Теперь во время входного отрицательного полупериода T1 будет генерировать отрицательный цикл, а T2 будет генерировать положительный цикл. Это переведет диод D1 в обратное смещение, а диод D2 в прямое смещение. Но полярность на нагрузочном резисторе RL все еще такая же, поскольку ток проходит от T3 к T1 , как показано на рисунке ниже. Выход DC выпрямителя с центральным отводом также имеет пульсации, и он не является плавным и устойчивым. DC . Конденсатор на выходе устранит пульсации и обеспечит устойчивый выход постоянного тока . Тип выпрямителя, выходное напряжение которого может изменяться или изменяться , называется управляемым выпрямителем . Необходимость управляемого выпрямителя становится очевидной, если мы рассмотрим недостатки неуправляемого мостового выпрямителя.Чтобы превратить неуправляемый выпрямитель в управляемый, мы используем твердотельные устройства с управляемым током, такие как SCR, MOSFET и IGBT. У нас есть полный контроль, когда тиристоры включаются или выключаются в зависимости от импульсов затвора, которые мы применяем к ним. Они обычно более предпочтительны, чем их неконтролируемые аналоги. Он состоит из одного или более одного SCR ( кремниевый управляемый выпрямитель ). SCR , также известный как тиристор , представляет собой трехконтактный диод.Эти клеммы представляют собой анод , катод и управляющий вход, известный как Gate . Точно так же, как простой диод, SCR проводит при прямом смещении и блокирует ток при обратном смещении, но он запускает прямую проводимость только при наличии импульса на входе затвора . Таким образом, выходным напряжением можно управлять с помощью входа затвора. Типы управляемого выпрямителя Есть два типа управляемого выпрямителя. Выпрямитель с полуволновым управлением состоит из одного тиристора (выпрямителя с кремниевым управлением). Полупериодный управляемый выпрямитель имеет ту же конструкцию, что и полуволновой неуправляемый выпрямитель, за исключением того, что мы заменили диод на SCR , как показано на рисунке ниже. SCR не проводит обратное смещение, поэтому он блокирует отрицательный полупериод. Во время положительного полупериода SCR будет проводить ток при одном условии, когда на вход затвора подается импульс.Вход затвора, конечно, представляет собой периодический импульсный сигнал, который предназначен для активации SCR в каждом положительном полупериоде. Таким образом, мы можем контролировать выходное напряжение этого выпрямителя. Выходной сигнал SCR также является пульсирующим напряжением / током постоянного тока, . Эти импульсы удаляются с помощью конденсатора , параллельного нагрузочному резистору RL . Тип выпрямителя, который преобразует как положительный, так и отрицательный полупериод переменного тока в постоянный, а также регулирует выходную амплитуду , известен как двухполупериодный управляемый выпрямитель. Как и неуправляемый выпрямитель, управляемый двухполупериодный выпрямитель бывает двух типов. В этом выпрямителе диодный мост заменен мостом SCR ( Thyristor ) с такой же конфигурацией, как показано на рисунке ниже. Положительный полупериод: Во время положительного цикла SCR (тиристор) T1 и T2 будет проводить при подаче импульса затвора. T3 и T4 будут иметь обратное смещение, поэтому они будут блокировать ток. Выходное напряжение будет установлено на нагрузочном резисторе RL , как показано ниже. Отрицательный полупериод: Во время отрицательного полупериода тиристоры T3 и T4 будут иметь прямое смещение с учетом входного импульса затвора, а T1 и T2 станут обратным смещением. Выходное напряжение появится на нагрузочном резисторе RL . В конце вывода используется конденсатор для удаления пульсаций и обеспечения стабильного и плавного вывода. Как и неуправляемый выпрямитель с центральным отводом, в этой конструкции используются два SCR вместо двух диодов. Оба этих переключения SCR будут синхронизированы по-разному в зависимости от входной частоты AC . Его работа такая же, как и у неуправляемого выпрямителя, и его схематическая конструкция приведена ниже. Эта классификация основана на типе входа, на котором работает выпрямитель. Именование довольно простое. Когда вход однофазный, выпрямитель называется однофазным выпрямителем, а когда вход трехфазный, он называется трехфазным выпрямителем. Однофазный мостовой выпрямитель состоит из четырех диодов, тогда как трехфазный выпрямитель использует шесть диодов, расположенных определенным образом для получения желаемого выхода.Это могут быть управляемые или неуправляемые выпрямители, в зависимости от компонентов переключения, используемых в каждом выпрямителе, таких как диоды, тиристоры и т. Д. В следующей таблице показано соответствие между различными типами выпрямителей, такими как однополупериодный выпрямитель, двухполупериодный выпрямитель и выпрямитель с центральным ответвлением. В основном почти все электронные схемы работают от постоянного напряжения.Основная цель использования выпрямителя — выпрямление, то есть преобразование переменного напряжения в постоянное. То есть выпрямители используются почти во всех выпрямительных и электронных устройствах. Ниже приведен список общих областей применения и использования различных выпрямителей. Связанные сообщения: Для нормальной работы электрической системы необходим стабильный источник питания.За исключением использования солнечных элементов или химических батарей в определенных особых случаях, постоянный ток большинства цепей преобразуется из переменного тока сети. Мостовой выпрямитель обычно используется для преобразования переменного тока в постоянный, который является наиболее часто используемой схемой, в которой для выпрямления используется однонаправленная проводимость диодов. Существует множество типов мостовых выпрямителей: плоские, круглые, квадратные, скамейки (вставные и SMD, ) и др., Имеющих конструкции GPP и O / J.Максимальный выпрямленный ток составляет от 0,5 до 100 А, а максимальное обратное пиковое напряжение — от 50 до 1600 В. Что такое мостовой выпрямитель? Каталог Мостовой выпрямитель использует четыре полупроводниковых диода , соединенных попарно. Когда положительная половина синусоидальной волны входа включается, две лампы включаются, и получается положительный выход; наоборот, когда вводится отрицательная половина синусоидальной волны, две другие лампы включаются.Поскольку две лампы соединены в обратном порядке, на выходе все еще остается положительная часть синусоидальной волны. Кроме того, эффективность использования входной синусоидальной волны мостовым выпрямителем в два раза выше, чем у полуволнового выпрямителя. Направление тока в цепи мостового выпрямителя Рисунок 1. В положительном полупериоде u2, D1 и D3 включены, D2 и D4 выключены, и ток возвращается с верхнего конца вторичного TR на нижний конец через D1 → RL → D3 , и на нагрузке RL получается полуволновое выпрямленное напряжение. (1) Используемое устройство выпрямления в два раза больше, чем у двухполупериодного выпрямителя. Рисунок 2. Однофазный мостовой выпрямитель состоит из четырех диодов, соединенных в виде моста.Его недостаток в том, что он использует только половину цикла источника питания, и при этом напряжение выпрямления имеет большие пульсации. Рисунок 3.Форма волны (однофазная) Рисунок 4. Трехфазная мостовая схема выпрямителя разработана на основе схемы неуправляемого однополупериодного выпрямителя, которая, по сути, представляет собой последовательное соединение набора общего катода и набора общего анода с тремя полупроводниковыми диодами. Закон анализа цепи Примеры анализа цепей В группе с обычным катодом потенциал в точке U самый высокий, а V1 включен. Рисунок 6. t2 ~ t3 В группе с обычным катодом потенциал в точке U самый высокий, а V1 включен. Рисунок 7. t3 ~ t4 В группе с общим катодом потенциал в точке V самый высокий, а V3 включен. Summery 1. Преобразуйте переменный ток, генерируемый генератором переменного тока, в постоянный ток для питания электрического оборудования и зарядки аккумулятора. Рисунок 8. Блок-схема мостового выпрямителя переменного тока в постоянный В схеме мостового выпрямителя устранены недостатки, связанные с тем, что для двухполупериодной схемы выпрямителя требуется, чтобы вторичная обмотка трансформатора имела центральный отвод, а диод выдерживал большое реверсирование. напряжение, но используются два диода.При быстром развитии полупроводниковых устройств и низкой стоимости сегодня этот недостаток не очевиден, поэтому на практике широко используются мостовые выпрямительные схемы. Рисунок 9. Принципиальная схема мостового выпрямителя Схема мостового выпрямителя также может рассматриваться как разновидность схемы двухполупериодного выпрямителя.Трансформатор подключается к четырем диодам в соответствии со способом, показанным на рисунке 9. D1 ~ D4 — это четыре идентичных выпрямительных диода, соединенных в виде моста, поэтому они называются мостовыми выпрямительными схемами. Используя направляющую функцию диода, вторичный выход может быть направлен на нагрузку даже в отрицательном полупериоде. Из рисунка видно, что D1 и D2 проводят ток через RL сверху вниз в течение положительного полупериода, а D3 и D4 проводят ток через RL сверху вниз в течение отрицательного полупериода.В этой структуре, если на выходе получается такое же постоянное напряжение, вторичной обмотке трансформатора требуется только половина обмотки по сравнению с двухполупериодным выпрямлением. Однако, если необходимо вывести такое же количество тока, диаметр обмотки следует соответственно увеличить. Рисунок 10. Схема мостового выпрямителя с конденсатором В этой экспериментальной схеме используется конденсаторная фильтрация, то есть конденсатор фильтра C подключен параллельно сопротивлению нагрузки RL. Схема показана на рисунке 11, а форма отфильтрованного сигнала показана на рисунке ниже. Постоянная составляющая двухполупериодного выпрямленного выходного напряжения (по сравнению с полуволновым) увеличивается, а пульсации уменьшаются, но трансформатору требуется центральный отвод, который сложно производить, а выпрямительный диод должен выдерживать высокое обратное напряжение, поэтому обычно подходит для низкого выходного напряжения. Рис. 12. Форма волны полуволнового выпрямительного фильтра Полупериодное выпрямление — это наиболее часто используемая схема, в которой для выпрямления используется однонаправленная проводимость диода. 1) Не нужен центральный отвод на вторичной стороне трансформатора мостовой выпрямительной цепи, используйте еще 2 выпрямительных диода. Часто задаваемые вопросы о схеме мостового выпрямителя 1.Что делает мостовой выпрямитель? 2. Как мостовой выпрямитель преобразует переменный ток в постоянный? 3. Что происходит при выходе из строя мостового выпрямителя? 4. Почему мы используем 4 диода в мостовом выпрямителе? 5. Почему мостовой выпрямитель предпочтительнее двухполупериодного выпрямителя? Схема выпрямителя используется для преобразования переменного тока (переменного тока) в постоянный ток.Выпрямители в основном подразделяются на три типа: полуволновые, двухполупериодные и мостовые выпрямители. Основная функция всех этих выпрямителей такая же, как преобразование тока, но они неэффективно преобразовывают ток из переменного в постоянный. Двухполупериодный выпрямитель с центральным ответвлением и мостовой выпрямитель эффективно преобразуют. Схема мостового выпрямителя — обычная часть электронных источников питания. Многие электронные схемы требуют выпрямленного источника питания постоянного тока для питания различных основных электронных компонентов от доступной сети переменного тока.Мы можем найти этот выпрямитель в большом количестве электронных устройств питания переменного тока, таких как бытовая техника, контроллеры двигателей, процесс модуляции, сварочные аппараты и т. Д. В этой статье обсуждается обзор мостового выпрямителя и его работы. Мостовой выпрямитель — это преобразователь переменного тока в постоянный (DC), который выпрямляет входной переменный ток сети в выход постоянного тока. Мостовые выпрямители широко используются в источниках питания, которые обеспечивают необходимое постоянное напряжение для электронных компонентов или устройств.Они могут быть сконструированы с четырьмя или более диодами или любыми другими управляемыми твердотельными переключателями. В зависимости от требований к току нагрузки выбирается соответствующий мостовой выпрямитель. Номинальные характеристики и характеристики компонентов, напряжение пробоя, диапазоны температур, номинальный переходный ток, номинальный прямой ток, требования к установке и другие факторы принимаются во внимание при выборе источника питания выпрямителя для соответствующей области применения электронной схемы. Конструкция мостового выпрямителя показана ниже. Эта схема может быть спроектирована с четырьмя диодами, а именно D1, D2, D3 и D4, а также с нагрузочным резистором (RL). Подключение этих диодов может быть выполнено по схеме с обратной связью для эффективного преобразования переменного (переменного тока) в постоянный (постоянный ток). Основное преимущество такой конструкции — отсутствие эксклюзивного трансформатора с центральным отводом. Таким образом, размер, как и стоимость, уменьшится. Как только входной сигнал подается на два терминала, такие как A и B, сигнал постоянного тока может быть получен через RL.Здесь нагрузочный резистор подключен между двумя клеммами, такими как C и D. Расположение двух диодов может быть выполнено таким образом, что электричество будет проводиться двумя диодами в течение каждого полупериода. Пары диодов, такие как D1 и D3, будут проводить электрический ток в течение положительного полупериода. Точно так же диоды D2 и D4 будут проводить электрический ток в течение отрицательного полупериода. Основным преимуществом мостового выпрямителя является то, что он дает почти вдвое большее выходное напряжение, чем в случае двухполупериодного выпрямителя с трансформатором с центральным отводом.Но этой схеме не нужен трансформатор с центральным отводом, поэтому она напоминает недорогой выпрямитель. Схема мостового выпрямителя состоит из различных каскадов устройств, таких как трансформатор, диодный мост, фильтрация и регуляторы. Как правило, комбинация всех этих блоков называется регулируемым источником постоянного тока, питающим различные электронные устройства. Первым каскадом схемы является трансформатор понижающего типа, который изменяет амплитуду входного напряжения.В большинстве электронных проектов используется трансформатор 230/12 В для понижения напряжения сети переменного тока с 230 В до 12 В переменного тока. Следующим этапом является диодно-мостовой выпрямитель, в котором используются четыре или более диодов в зависимости от типа мостового выпрямителя. При выборе конкретного диода или любого другого переключающего устройства для соответствующего выпрямителя необходимо учитывать некоторые особенности устройства, такие как пиковое обратное напряжение (PIV), прямой ток If, номинальное напряжение и т. Д. Оно отвечает за создание однонаправленного или постоянного тока на нагрузке путем проведения набор диодов для каждого полупериода входного сигнала. Поскольку выход после диодных мостовых выпрямителей имеет пульсирующий характер, и для его создания как чистого постоянного тока необходима фильтрация. Фильтрация обычно выполняется с одним или несколькими конденсаторами, подключенными к нагрузке, как вы можете видеть на рисунке ниже, где выполняется сглаживание волны. Этот номинал конденсатора также зависит от выходного напряжения. Последней ступенью этого регулируемого источника постоянного тока является регулятор напряжения, который поддерживает выходное напряжение на постоянном уровне.Предположим, микроконтроллер работает при 5 В постоянного тока, но выход после мостового выпрямителя составляет около 16 В, поэтому для снижения этого напряжения и поддержания постоянного уровня — независимо от изменений напряжения на входе — необходим регулятор напряжения. Как мы обсуждали выше, однофазный мостовой выпрямитель состоит из четырех диодов, и эта конфигурация подключается через нагрузку. Чтобы понять принцип работы мостового выпрямителя, мы должны рассмотреть приведенную ниже схему в демонстрационных целях. Во время положительного полупериода входного сигнала переменного тока диоды D1 и D2 смещены в прямом направлении, а D3 и D4 — в обратном направлении. Когда напряжение, превышающее пороговый уровень диодов D1 и D2, начинает проводить — ток нагрузки начинает течь через него, как показано на пути красной линии на диаграмме ниже. Во время отрицательного полупериода входного сигнала переменного тока диоды D3 и D4 смещены в прямом направлении, а D1 и D2 — в обратном направлении.Ток нагрузки начинает течь через диоды D3 и D4, когда эти диоды начинают проводить, как показано на рисунке. Мы можем заметить, что в обоих случаях направление тока нагрузки одинаковое, то есть вверх-вниз, как показано на рисунке — так однонаправлено, что означает постоянный ток. Таким образом, с помощью мостового выпрямителя входной переменный ток преобразуется в постоянный. Выходной сигнал на нагрузке с этим мостовым выпрямителем имеет пульсирующий характер, но для получения чистого постоянного тока требуется дополнительный фильтр, например конденсатор.Такая же операция применима для разных мостовых выпрямителей, но в случае управляемых выпрямителей срабатывание тиристоров необходимо для подачи тока на нагрузку. Bride подразделяются на несколько типов в зависимости от следующих факторов: тип источника питания, возможности управления, конфигурация схемы подключения и т. Д. Мостовые выпрямители в основном подразделяются на однофазные и трехфазные. Оба эти типа далее подразделяются на неуправляемые, полууправляемые и полностью управляемые выпрямители.Некоторые из этих типов выпрямителей описаны ниже. Однофазные и трехфазные выпрямители Тип питания, то есть однофазное или трехфазное питание, определяет эти выпрямители. Однофазный мостовой выпрямитель состоит из четырех диодов для преобразования переменного тока в постоянный, тогда как трехфазный выпрямитель использует шесть диодов, как показано на рисунке. Это могут быть неуправляемые или управляемые выпрямители, в зависимости от компонентов схемы, таких как диоды, тиристоры и т. Д. Неуправляемые мостовые выпрямители Этот мостовой выпрямитель использует диоды для выпрямления входа, как показано на рисунке. Поскольку диод — это однонаправленное устройство, которое позволяет току течь только в одном направлении. Такая конфигурация диодов в выпрямителе не позволяет мощности изменяться в зависимости от требований к нагрузке. Таким образом, этот тип выпрямителя используется в постоянных или фиксированных источниках питания. Управляемые мостовые выпрямители В этом типе выпрямителя, преобразователя переменного тока в постоянный или выпрямителя — вместо неуправляемых диодов используются управляемые твердотельные устройства, такие как тиристоры, полевые МОП-транзисторы, IGBT и т. Д.используются для изменения выходной мощности при разных напряжениях. Посредством срабатывания этих устройств в различные моменты времени выходная мощность на нагрузке изменяется соответствующим образом. Мостовой выпрямитель, как и конфигурация выводов IC RB-156, обсуждается ниже. Контакт-1 (фаза / линия): Это входной контакт переменного тока, где можно подключить фазный провод от источника переменного тока к этому фазовому контакту. Контакт 2 (нейтраль): Это контакт входа переменного тока, где можно подключить нейтральный провод от источника переменного тока к этому нейтральному контакту. Контакт 3 (положительный): Это выходной контакт постоянного тока, на котором положительное напряжение постоянного тока выпрямителя получается с этого положительного контакта Контакт 4 (отрицательный / заземление): Это выходной контакт постоянного тока, на котором напряжение заземления выпрямителя получается с этого отрицательного контакта Технические характеристики Подкатегории этого мостового выпрямителя RB-15 варьируются от RB15 до RB158. Из этих выпрямителей наиболее часто используется RB156.Технические характеристики мостового выпрямителя РБ-156 включают следующее. RB-156 — наиболее часто используемый компактный недорогой однофазный мостовой выпрямитель. Эта ИС имеет самое высокое напряжение переменного тока i / p, например 560 В, поэтому ее можно использовать для однофазной сети питания во всех странах.Максимальный постоянный ток этого выпрямителя — 1,5 А. Эта микросхема — лучший выбор в проектах для преобразования переменного тока в постоянный и обеспечивает до 1,5 А. Характеристики мостового выпрямителя включают следующие Измерение плавности выходного сигнала постоянного тока с использованием коэффициента называется коэффициентом пульсаций.Здесь плавный сигнал постоянного тока можно рассматривать как сигнал постоянного тока o / p, включающий небольшое количество пульсаций, тогда как сигнал постоянного тока с высокой пульсацией можно рассматривать как сигнал постоянного тока с высокой частотой, включающий высокие пульсации. Математически его можно определить как долю пульсационного напряжения и чистого постоянного напряжения. Для мостового выпрямителя коэффициент пульсации можно задать как Γ = √ (Vrms2 / VDC) -1 Коэффициент пульсаций мостового выпрямителя составляет 0,48 Пиковое обратное напряжение или PIV может быть определено как максимальное значение напряжения, которое исходит от диода, когда он подключен в состоянии обратного смещения в течение отрицательного полупериода.Мостовая схема включает четыре диода типа D1, D2, D3 и D4. В положительном полупериоде два диода, такие как D1 и D3, находятся в проводящем положении, тогда как оба диода D2 и D4 находятся в непроводящем положении. Аналогично, в отрицательном полупериоде диоды, подобные D2 и D4, находятся в проводящем положении, тогда как диоды, подобные D1 и D3, находятся в непроводящем положении. Эффективность выпрямителя в основном определяет, насколько правильно выпрямитель преобразует переменный ток (переменный ток) в постоянный (постоянный ток).КПД выпрямителя можно определить как; это соотношение мощности постоянного тока и мощности переменного тока. Максимальный КПД мостового выпрямителя составляет 81,2%. η = DC o / p Питание / AC i / p Питание Из принципиальной схемы мостового выпрямителя можно сделать вывод, что ток через резистор нагрузки одинаков на протяжении положительного и отрицательного полупериодов. Полярность сигнала постоянного тока o / p может быть либо полностью положительной, либо отрицательной.В данном случае это абсолютно положительно. Когда направление диода меняется на противоположное, может быть достигнуто полное отрицательное напряжение постоянного тока. Таким образом, этот выпрямитель позволяет протекать току в течение как положительных, так и отрицательных циклов сигнала переменного тока i / p. Формы выходных сигналов мостового выпрямителя показаны ниже. По сравнению с другими выпрямителями, это наиболее эффективный тип выпрямительной схемы. Это тип двухполупериодного выпрямителя, как следует из названия, в нем используются четыре диода, которые соединены в виде моста.Поэтому такой выпрямитель называется мостовым выпрямителем. В мостовом выпрямителе четыре диода используются для создания схемы, которая обеспечивает двухполупериодное выпрямление без использования трансформатора с центральным отводом. Этот выпрямитель в основном используется для обеспечения двухполупериодного выпрямления в большинстве приложений. Расположение четырех диодов может быть выполнено в замкнутом контуре для эффективного преобразования переменного тока в постоянный.Основным преимуществом такой схемы является отсутствие трансформатора с центральным отводом, поэтому размер и стоимость будут уменьшены. К преимуществам мостового выпрямителя можно отнести следующее. К недостаткам мостового выпрямителя можно отнести следующее. Источник питания постоянного тока часто требуется для многих электронных приложений. Один из самых надежных и удобных способов — преобразовать имеющийся источник питания переменного тока в источник постоянного тока. Это преобразование сигнала переменного тока в сигнал постоянного тока выполняется с помощью выпрямителя, который представляет собой систему диодов. Это может быть однополупериодный выпрямитель, который выпрямляет только половину сигнала переменного тока, или двухполупериодный выпрямитель, выпрямляющий оба цикла сигнала переменного тока.Двухполупериодный выпрямитель может быть выпрямителем с центральным отводом, состоящим из двух диодов, или мостовым выпрямителем, состоящим из 4 диодов. Здесь демонстрируется мостовой выпрямитель. Устройство состоит из 4 диодов, расположенных таким образом, что аноды двух соседних диодов соединены для обеспечения положительного питания на выходе, а катоды двух других соседних диодов соединены для подачи отрицательного питания на выход. Анод и катод двух других соседних диодов подключены к плюсу источника переменного тока, тогда как анод и катод двух других соседних диодов подключены к минусу источника переменного тока.Таким образом, 4 диода расположены в виде моста, так что в каждом полупериоде два чередующихся диода проводят ток, создавая постоянное напряжение с отталкиванием. Данная схема состоит из мостового выпрямителя, чей нерегулируемый выход постоянного тока подается на электролитный конденсатор через токоограничивающий резистор. Напряжение на конденсаторе контролируется с помощью вольтметра и продолжает увеличиваться по мере заряда конденсатора, пока не будет достигнут предел напряжения. Когда нагрузка подключается к конденсатору, конденсатор разряжается, обеспечивая необходимый входной ток для нагрузки.В этом случае в качестве нагрузки подключается лампа. Стабилизированный источник питания постоянного тока состоит из следующих компонентов: Понижающий трансформатор преобразует сеть переменного тока 230 В в 12 В переменного тока.Это 12 В переменного тока подается на схему мостового выпрямителя, так что чередующиеся диоды проводят каждый полупериод, создавая пульсирующее напряжение постоянного тока, состоящее из пульсаций переменного тока. Конденсатор, подключенный к выходу, позволяет сигналу переменного тока проходить через него и блокирует сигнал постоянного тока, тем самым действуя как фильтр верхних частот. Таким образом, выходной сигнал через конденсатор представляет собой нерегулируемый фильтрованный сигнал постоянного тока. Этот выход может использоваться для управления электрическими компонентами, такими как реле, двигатели и т. Д. Регулятор IC 7805 подключен к выходу фильтра.Он дает постоянный регулируемый выход 5 В, который можно использовать для ввода многих электронных схем и устройств, таких как транзисторы, микроконтроллеры и т. Д. Здесь 5 В используется для смещения светодиода через резистор. Это все о теории мостовых выпрямителей, их типах, схемах и принципах работы. Мы надеемся, что этот полезный материал по этой теме будет полезен при разработке студентами электронных или электрических проектов, а также при наблюдении за различными электронными устройствами или приборами.Благодарим вас за внимание и сосредоточенность на этой статье. Поэтому, пожалуйста, напишите нам для выбора требуемых характеристик компонентов в этом мостовом выпрямителе для вашего приложения и для получения любых других технических рекомендаций. Теперь мы надеемся, что вы получили представление о концепции мостового выпрямителя и его применениях, если какие-либо дополнительные вопросы по этой теме или концепции электрических и электронных проектов оставьте комментарии в разделе ниже. Фото: Существует еще одна, более популярная двухполупериодная конструкция выпрямителя, построенная на основе конфигурации четырехдиодного моста.Он известен как полноволновой мостовой выпрямитель или просто мостовой выпрямитель . Преимущество этого типа конструкции перед версией с центральным отводом состоит в том, что он не требует специального трансформатора с центральным отводом, что резко снижает его размер и стоимость. Также эта конструкция использует все вторичное напряжение в качестве входа для выпрямителя. Используя тот же трансформатор, мы получаем в два раза больше пикового напряжения и вдвое больше постоянного напряжения с мостовым выпрямителем, чем с двухполупериодным выпрямителем с центральным ответвлением. Вот почему мостовые выпрямители используются гораздо чаще, чем двухполупериодные. Для выпрямления обоих полупериодов синусоидальной волны в мостовом выпрямителе используются четыре диода, соединенные вместе в «мостовой» конфигурации. Вторичная обмотка трансформатора подключена с одной стороны сети диодного моста, а нагрузка — с другой. На следующем изображении показана схема мостового выпрямителя. Работа этой схемы легко понять по одному полупериоду за раз. Во время положительного полупериода источника диоды D1 и D2 проводят ток, в то время как D3 и D4 имеют обратное смещение. Это создает положительное напряжение нагрузки на нагрузочном резисторе (обратите внимание на положительную полярность нагрузочного резистора). В течение следующего полупериода полярность напряжения источника меняется на противоположную. Теперь D3 и D4 смещены в прямом направлении, а D1 и D2 — в обратном. Это также создает положительное напряжение нагрузки на нагрузочном резисторе, как и раньше. Обратите внимание, что независимо от полярности входа напряжение нагрузки имеет одинаковую полярность, а ток нагрузки — в одном направлении. Таким образом, схема преобразует входное напряжение переменного тока в пульсирующее выходное напряжение постоянного тока. Если вам неприятно помнить правильное расположение диода в схеме мостового выпрямителя, вы можете обратиться к альтернативному представлению схемы. Это точно такая же схема, за исключением того, что все диоды расположены горизонтально и направлены в одном направлении. Поскольку мостовой выпрямитель выдает двухполупериодный выходной сигнал, формула для расчета среднего значения постоянного тока такая же, как и для двухполупериодного выпрямителя: Это уравнение говорит нам, что значение постоянного тока двухполупериодного сигнала составляет около 63.6 процентов от пикового значения. Например, если пиковое напряжение двухполупериодного сигнала составляет 10 В, напряжение постоянного тока будет 6,36 В Когда вы измеряете полуволновой сигнал с помощью вольтметра постоянного тока, показание будет равно среднему значению постоянного тока. В действительности мы не можем получить идеальное двухполупериодное напряжение на нагрузочном резисторе. Из-за барьерного потенциала диод не включается, пока напряжение источника не достигнет примерно 0,7 В . И поскольку мостовой выпрямитель управляет двумя диодами одновременно, два диода выпадают (0.7 * 2 = 1,4 В) напряжения источника теряются в диоде. Таким образом, пиковое выходное напряжение определяется по формуле: Двухполупериодный выпрямитель инвертирует каждый отрицательный полупериод, удваивая количество положительных полупериодов. Из-за этого двухполупериодный выход имеет в два раза больше циклов, чем входной. Следовательно, частота двухполупериодного сигнала в два раза превышает входную частоту. Например, если частота сети 60 Гц, выходная частота будет 120 Гц. Выходной сигнал, который мы получаем от двухполупериодного выпрямителя, представляет собой пульсирующее напряжение постоянного тока, которое увеличивается до максимума, а затем уменьшается до нуля. Нам не нужно такое постоянное напряжение. Что нам нужно, так это стабильное и постоянное напряжение постоянного тока, без каких-либо колебаний или пульсаций напряжения, которые мы получаем от батареи. Чтобы получить такое напряжение, нам нужно отфильтровать двухполупериодный сигнал. Один из способов сделать это — подключить конденсатор, известный как сглаживающий конденсатор , через нагрузочный резистор, как показано ниже. Изначально конденсатор не заряжен. В течение первой четверти цикла диоды D1 и D2 смещены в прямом направлении, поэтому конденсатор начинает заряжаться. Зарядка продолжается до тех пор, пока входной сигнал не достигнет пикового значения. В этот момент напряжение на конденсаторе равно Vp. После того, как входное напряжение достигает пика, оно начинает уменьшаться. Как только входное напряжение становится меньше Vp, напряжение на конденсаторе превышает входное напряжение, что отключает диоды. Когда диоды выключены, конденсатор разряжается через нагрузочный резистор и обеспечивает ток нагрузки, пока не будет достигнут следующий пик. Когда наступает следующий пик, диоды D3 и D4 ненадолго проводят ток и заряжают конденсатор до максимального значения. Единственным недостатком мостового выпрямителя является то, что выходное напряжение на два диода (1,4 В) меньше входного. Этот недостаток является проблемой только для источников питания с очень низким напряжением. Например, если пиковое напряжение источника составляет всего 5 В, напряжение нагрузки будет иметь пик всего 3,6 В. Но если пиковое напряжение источника составляет 100 В, напряжение нагрузки будет близко к идеальному двухполупериодному напряжению (падение на диоде незначительно). Схема двухполупериодного выпрямителя
Заключение
— Детали конструкции и советы »Электроника
Мостовой выпрямитель, состоящий из четырех диодов, обеспечивает двухполупериодное выпрямление без использования трансформатора с центральным ответвлением.
Цепи диодного выпрямителя
Полупериодный выпрямитель
Двухполупериодный выпрямитель
Двухдиодный двухполупериодный выпрямитель
Двухполупериодный мостовой выпрямитель
Синхронный выпрямитель Цепи мостового выпрямителя
Примечание по сглаживанию конденсатора источника питания:
Конденсаторы Мостовые выпрямители
Рекомендации по проектированию схемы мостового выпрямителя
Мостовой выпрямитель с разделенным питанием
Основы операционных усилителей
Схемы операционных усилителей
Цепи питания
Конструкция транзистора
Транзистор Дарлингтона
Транзисторные схемы
Схемы на полевых транзисторах
Условные обозначения схем
Вернуться в меню «Конструкция схемы».. . Как работает мостовой выпрямитель — шаг за шагом
Как конденсатор работает как фильтр? Что такое выпрямитель? Типы выпрямителей, работа и применение
Различные типы выпрямителей — работа и применение
Что такое выпрямитель?
Полуволновый выпрямитель:
Мостовой выпрямитель
Выпрямитель с центральным отводом Сравнение выпрямителей
Из чего состоит схема мостового выпрямителя?
Введение
Ⅰ Схема мостового выпрямительного диода
Блок выпрямительного моста обычно используется в двухполупериодной схеме выпрямителя и делится на полный мост и полумост. Полный мост состоит из 4 выпрямительных диодов, соединенных в виде двухполупериодной мостовой схемы выпрямителя и собранных как единое целое.Полумост предназначен для соединения половин двух диодных мостовых выпрямителей. Два полумоста могут образовывать схему мостового выпрямителя, а полумост может также образовывать двухполупериодную схему выпрямителя с центральным отводом трансформатора. При выборе выпрямительного моста необходимо тщательно учитывать схему выпрямителя и рабочее напряжение.
Прямой ток полного моста имеет различные характеристики, такие как 0,5 А, 1 А, 1,5 А, 2 А, 2,5 А, 3 А, 5 А, 10 А, 20 А, 35 А, 50 А и т. Д. Выдерживаемое напряжение (максимальное обратное напряжение) составляет 25 В, 50 В, 100 В, 200 В, 300 В, 400 В, 500 В, 600 В, 800 В, 1000 В и т. д.
В этой главе выпрямительный диод рассматривается как идеальный компонент , то есть его сопротивление прямой проводимости считается равным нулю, а его обратное сопротивление бесконечно, из-за удобства анализа схемы выпрямителя . Однако в практических приложениях следует учитывать, что диод имеет внутреннее сопротивление, и выходная амплитуда сигнала, полученная после выпрямления, будет уменьшена на 0,6 ~ 1 В. Когда входное напряжение выпрямительной схемы велико, этой частью падения напряжения можно пренебречь.Напротив, если входное напряжение небольшое, например, если входное напряжение 3 В, выходное напряжение составляет всего 2 В, и необходимо учитывать влияние прямого падения напряжения на диоде.
В отрицательном полупериоде u2, D1 и D3 выключены, D2 и D4 включены, и ток возвращается от нижнего конца вторичного Tr к верхнему концу вторичного Tr через D2 → RL → D4 , и другая полуволна выпрямленного напряжения получается на нагрузке RL. Ⅱ Характеристики схемы мостового выпрямителя
(2) Направление изменения импульса выпрямленного напряжения такое же, как и при двухполупериодном выпрямлении.
(3) Обратное напряжение, которое несет каждое устройство, является пиковым значением напряжения источника питания.
(4) Коэффициент использования трансформатора выше, чем у двухполупериодной схемы выпрямителя. Ⅲ Однофазное выпрямление и трехфазное выпрямление
3.1 Схема однофазного мостового выпрямителя
На рисунке 2 (а) выше показано направление тока в схеме однофазного мостового выпрямителя. Сплошная стрелка указывает на ситуацию, когда источник питания переменного тока находится в положительном полупериоде, а пунктирная стрелка указывает на ситуацию, когда источник питания переменного тока находится в отрицательном полупериоде.
Видно, что четыре диода разделены на две части: положительный полупериод и отрицательный полупериод.Однако текущее направление нагрузки не меняется. Это двухполупериодное выпрямление. Кроме того, схема однофазного мостового выпрямителя на практике может быть реализована с помощью интегрального устройства « мостовой стек ».
На рисунке 3. показана диаграмма формы сигнала однофазной мостовой выпрямительной схемы. Согласно диаграмме, среднее напряжение составляет: Uo ≈ 0,9U2 (где U2 — эффективное значение выходного напряжения вторичной обмотки трансформатора). 3.2 Схема трехфазного мостового выпрямителя
Кроме того, трехфазная мостовая схема должна иметь два тиристора, включенных одновременно, один в общей катодной области, а другой в общей анодной области, чтобы сформировать петлю.
Включается диод с максимальным анодным потенциалом в общей катодной группе.
Включается диод с наименьшим катодным потенциалом в общей анодной группе.
Рисунок 5. t1 ~ t2
В группе с общим анодом потенциал в точке V самый низкий, а V4 включен.
Напряжение на нагрузке равно линейному напряжению Uuv.
В группе с общим анодом потенциал в точке W самый низкий, и V6 включен.
Напряжение на нагрузке равно линейному напряжению Uuw.
В общей анодной группе потенциал в точке W самый низкий, а V6 включен.
Напряжение на нагрузке равно линейному напряжению Uvw .
…
…
В полнополупериодном цикле его можно разделить на 6 интервалов, каждый из которых питается от пары фазных проводов к нагрузке.
В полнополупериодном цикле каждый диод включен на одну треть времени (угол проводимости составляет 120 °).
В течение 6 периодов цикла напряжение нагрузки можно рассматривать как периодическое изменение. Ⅳ Роль мостового выпрямления
2. Ограничьте ток батареи, чтобы течь обратно к генератору, чтобы защитить генератор от сгорания обратным током. Ⅴ Схема подключения мостового выпрямителя
Следует отметить, что диод в качестве компонента выпрямителя следует выбирать в соответствии с различными методами выпрямления и значениями нагрузки. При неправильном выборе вы не сможете безопасно работать или даже сжечь трубу, что приведет к отходам.
Потому что выходное напряжение схемы выпрямителя содержит более крупные пульсирующие компоненты. С другой стороны, чтобы максимально уменьшить составляющую пульсации, необходимо максимально поддерживать составляющую постоянного тока, чтобы выходное напряжение было близким к идеальному постоянному току.Это фильтрующая мера. Фильтрация обычно достигается за счет использования эффекта накопления энергии конденсаторов или катушек индуктивности.
Рис. 11. Форма волны двухполупериодного фильтра выпрямления Ⅵ Разница между мостовым выпрямителем и двухполупериодной схемой выпрямителя
2) В двухполупериодной схеме выпрямителя используется менее 2 выпрямительных диодов, но вторичная обмотка трансформатора должна иметь центральное ответвление.
3) Обратное выдерживаемое напряжение выпрямительного диода, используемого в двухполупериодной схеме выпрямителя, вдвое больше, чем у мостового выпрямителя.
4) Выпрямление и двухполупериодное выпрямление имеют разные требования к количеству вторичных трансформаторов. Для первого требуется только 1 набор катушек, а для второго — 2 набора.
5) Выпрямление и двухполупериодное выпрямление имеют разные требования к вторичному току трансформатора, первое в два раза больше, чем второе.
Мостовой выпрямитель обеспечивает двухполупериодное выпрямление от двухпроводного входа переменного тока, что приводит к снижению стоимости и веса по сравнению с выпрямителем с трехпроводным входом от трансформатора с вторичной обмоткой с центральным отводом. … Диоды также используются в мостовых топологиях вместе с конденсаторами в качестве умножителей напряжения.
Мостовые выпрямители преобразуют переменный ток в постоянный, используя систему диодов, изготовленных из полупроводникового материала, либо полуволновым методом, который выпрямляет одно направление сигнала переменного тока, либо полуволновым методом, который выпрямляет оба направления входного переменного тока.
Без конденсаторного сглаживания, когда 1 диод в мостовом выпрямителе выходит из строя, как напряжение, так и ток уменьшаются. При конденсаторном сглаживании, когда в мостовом выпрямителе выходит из строя 1 диод, напряжение остается довольно постоянным, но увеличивается ток.
Мостовой выпрямитель, состоящий из четырех диодов, обеспечивает двухполупериодное выпрямление без использования трансформатора с центральным ответвлением.Мостовой выпрямитель — это электронный компонент, который широко используется для обеспечения двухполупериодного выпрямления, и, возможно, это наиболее широко используемая схема для этого приложения.
Мостовой выпрямитель приводится в действие одной обмоткой, которая пропускает ток в обоих циклах нагрузки. … Полная волна лучше моста еще в одном аспекте, то есть выходное напряжение постоянного тока немного выше, чем у моста. Это потому, что он имеет только 1 диодный переход с переменного на постоянный ток. Альтернативные модели
Принципиальная схема Часть Сравнить Производителей Категория Описание Производитель.Номер детали: XC2C512-10FT256I Сравнить:
Текущая часть Производители: Xilinx Категория: CPLD Описание: Семейство CPLD CoolRunner -II 12K Gates 512 макроячеек 128 МГц 0.Технология 18um (CMOS) 1,8 В 256 контактов FTBGA Производитель Номер детали: XC2C512-7FTG256C Сравнить:
XC2C512-10FT256I VS XC2C512-7FTG256C Производители: Xilinx Категория: CPLD Описание: Семейство CPLD CoolRunner -II 12K Gates 512 макроячеек 179 МГц 0.Технология 18um (CMOS) 1,8 В 256 контактов FTBGA Производитель Номер детали: XC2C512-10FTG256I Сравнить:
XC2C512-10FT256I VS XC2C512-10FTG256I Производители: Xilinx Категория: CPLD Описание: Семейство CPLD CoolRunner -II 12K Gates 512 макроячеек 128 МГц 0.Технология 18um (CMOS) 1,8 В 256 контактов FTBGA Производитель Номер детали: XC2C512-10FT256I Сравнить:
XC2C512-10FT256I VS XC2C512-10FT256I Производители: Xilinx Категория: CPLD Описание: Семейство CPLD CoolRunner -II 12K Gates 512 макроячеек 128 МГц 0.Технология 18um (CMOS) 1,8 В 256 контактов FTBGA , типы, работа и применение
Что такое мостовой выпрямитель?
Строительство
Работа мостового выпрямителя
Типы мостовых выпрямителей
Выпрямители Мостовой выпрямитель IC
Мостовой выпрямитель Характеристики
Коэффициент пульсации
PIV (пиковое обратное напряжение)
КПД
Форма волны мостового выпрямителя
Почему он называется мостовым выпрямителем?
Почему мы используем 4 диода в мостовом выпрямителе?
Преимущества
Недостатки
Приложение — преобразование переменного тока в постоянный с помощью мостового выпрямителя
A Регулируемый источник питания постоянного тока
Полноволновой мостовой выпрямитель — инженеры в последнюю минуту
Двухполупериодный мостовой выпрямитель
Значение постоянного тока для двухполупериодного сигнала
A Приближение второго порядка
Выходная частота
Фильтрация выходного сигнала выпрямителя
Недостаток