Фм приемник своими руками схемы: ФМ приемник своими руками — Приемники

Содержание

Фм приемник сделай своими руками. Простое радио своими руками. Усовершенствуй свой самодельный радиоприемник

Радиовещание на ультракоротких волнах осуществляется с использованием частотной модуляции (ЧМ) и занимает следующие полосы частот:

  • УКВ – 65,9-74 МГц
  • FM1 – 87,5-95 МГц
  • FM2 – 98-108 МГц

УКВ диапазон использовался в советское время и применяется в России в настоящее время. В FM диапазонах работают радиостанции других стран. Сделать своими руками ламповый радиоприёмник не сложно . Основные трудности заключаются в настройке и регулировке конструкции. Если звуковую аппаратуру можно наладить на слух, так как легко проверить наличие и прохождение сигнала по цепям, то для настройки устройств радиоволнового диапазона потребуется ГСС (Генератор стандартных сигналов) и осциллограф. ГСС позволит настраивать радиоприёмные устройства, работающие во всех радиодиапазонах с амплитудной или частотной модуляцией. Если не требуется точная подгонка по диапазону и изготовление шкалы с рабочими частотами, можно обойтись без генератора.

С появлением транзисторов и интегральных микросхем ламповые конструкции были, на некоторое время, забыты. Сейчас радиолюбители всё чаще обращаются к электронным лампам в своих конструкциях. Самодельный ламповый радиоприёмник УКВ диапазона можно собрать на одной лампе. В схеме используется принцип сверхрегенератора. В таких устройствах применяется небольшое количество радиодеталей. Они обладают высокой чувствительностью. Недостатком сверхрегенеративных приёмников является шум в динамиках, при отсутствии полезного сигнала.

УКВ приёмник собран на пальчиковом пентоде 6Ж5П. В качестве источника питания используется мостовой выпрямитель, обеспечивающий 100-120 В постоянного напряжения. Все конденсаторы, кроме переходного, керамические. Катушка L содержит 4 витка медного провода диаметром 1 мм. Лучше всего использовать посеребрённый или лужёный провод. Обычно питание накалов ламп осуществляется от переменного напряжения 6,3 В, но в данном случае, для уменьшения фона переменного тока, применяется постоянное напряжение от отдельного выпрямителя.

Полная схема УКВ-ЧМ приёмника с усилителем низкой частоты. В зависимости от типа выходного трансформатора в устройстве можно использовать высокоомный наушник или динамик 4-8 Ом.

В цепи питания сеток ламп стоит электролитический конденсатор 50,0 мкф на 200 В. Переменный резистор в цепи управляющей сетки выходной лампы регулирует громкость сигнала.

Простой ламповый приёмник своими руками

Приёмник УКВ диапазона с частотной модуляцией можно выполнить по другой схеме. Это сверхрегенеративный детектор, который рассчитан на приём радиостанций в диапазоне от 36 до 75 МГц. Ламповый радиоприёмник своими руками можно собрать на одной лампе 6Ж3П или 6Ж5П.

В схеме сохранены принципиальные обозначения оригинальной схемы. Сигнал подаётся на вход усилителя низкой частоты через конденсатор 5000 пФ. Конденсатор С1 – подстроечный керамический или воздушный. Катушки L1 и L2 бескаркасные. Они наматываются на оправках диаметром 15 мм. L1 содержит 7 витков лужёного медного провода диаметром 1,5 мм, а L2 – 3 или 4 витка такого же провода.

Количество витков подбирается экспериментально. Расстояние между катушками определяется в процессе наладки схемы. Для приёма станций в FM диапазоне (88-104 МГц) число витков катушки L1 нужно уменьшить до 4.

Для этого, после включения питания, вращением ручки переменного резистора R2 нужно добиться сверхрегенерации. Это шипящий звук в динамиках. Затем, вращая подстроечный конденсатор С1 нужно убедиться, что эффект присутствует по всему диапазону. Провалы генерации устраняются подбором витков дросселя, изменением ёмкости С4 или сопротивления R1 и конденсатора С2. Затем подключается штыревая антенна (кусок провода) и производится настройка на станцию. При появлении сигнала шипение пропадает и слышна работа радиостанции. Изменить частоту принимаемого диапазона можно раздвигая и сжимая витки катушки L1.

Максимально допустимое напряжение на аноде радиолампы составляет 300 В. Для снижения фона переменного тока питание на накал лампы лучше подавать с отдельного выпрямителя. Готовую и настроенную конструкцию нужно поместить в металлический экран, как это сделано в промышленных приёмниках.



Нужна консультация специалиста?

Оставьте заявку и мы перезвоним Вам в течение 48 часов!

Вам понадобится

  • Катушка из-под ниток, обмоточный провод марки ПЭЛ, электромагнитные головные телефоны, точечный диод (детектор) типа Д9 или Д2, несколько конденсаторов постоянной емкости, зажимы или колодочки со штепсельными гнездами

Инструкция

Простейший детекторный приемник вы можете смонтировать на дощечке или панели. Но и это совсем необязательно для того, чтобы создать вполне работоспособный . Опытную модель можно собрать прямо на столе, где в развернутом виде будут лежать его детали. Такая наглядная модель позволяет вносить в приемник необходимые изменения, исправлять ошибки и производить настройку.

Возьмите обычную катушку из-под ниток, она станет каркасом. Намотайте на катушку внавалку примерно 450 витков провода. При этом каждые 80 витков сделайте отводы. В местах отводов скрутите провод в виде петель. Вы получили многослойную катушка с несколькими отводами.

Теперь необходимо зачистить концы выводов и отводов смонтированной катушки. Делайте это аккуратно, чтобы сохранить провод. Теперь можете приступать непосредственно к сборке детекторного .

Соедините начало катушки с из выводов -детектора, а ее конец с одной из контактных ножек провода головных телефонов. Свободные выводы детектора и телефонов соедините подходящим по размеру отрезком провода.

К проводнику, идущему от начала катушки к диоду, надежно прикрутите провод, которому будет назначена роль . Конец этого антенного провода следует предварительно зачистить от изоляции.

Теперь необходимо прикрепить скруткой провод заземления к проводнику, соединяющему конец катушки с головными телефонами (назовем его заземленным проводником). Во время проведения экспериментов с приемником мы будем переключать заземленный проводник с одного вывода катушки на другой его вывод.

Наденьте на голову телефоны и прислушайтесь. Очень может быть, что сразу вы ничего не услышите. Такое возможно по той причине, что детекторный приемник не настроен на радиостанцию, слышимую в районе вашего местонахождения. В этом случае постарайтесь настроить приемник, изменяя количество витков антенного контура катушки, включаемой в контур антенны. Простейший детекторный приемник может быть настроен на радиостанции средневолнового или длинноволнового диапазонов. Впрочем, в силу объективных конструктивных ограничений приемник сможет принять сигналы далеко не каждой передающей станции, в особенности, очень удаленной.

С созданным вами детекторным приемником можно проводить интересные опыты, которые помогут понять принципы его работы и получить ценные навыки практического конструирования радиоаппаратуры.

Простейшие радиоприемники непригодны ловить FM диапазон, модуляция частотная. Обыватели утверждают: отсюда повелось название. С английского литеры FM трактуем: частотная модуляция. Четко выраженный смысл, читателям важно понять: простейший радиоприемник, своими руками собранный из хлама, FM не примет. Возникает вопрос необходимости: сотовый телефон ловит вещание. В электронную аппаратуру встроена подобная возможность. Вдали от цивилизации люди по-прежнему хотят ловить вещание старым добрым способом — чуть было не сказали зубными коронками — конструировать дельные приборы прослушивания любимых передач. На халяву…

Детекторный простейший радиоприемник: основы

Зубных пломб рассказ коснулся неспроста. Сталь (металл) способна преобразовывать эфирные волны в ток, копируя простейший радиоприемник, челюсть начинает вибрировать, кости уха детектируют сигнал, зашифрованный на несущей. При амплитудной модуляции высокая частота повторяет размахом голос диктора, музыку, звук. Полезный сигнал содержит некоторый спектр, сложно пониманию непрофессионала, важно, что при сложении составляющих получается некоторый закон времени, следуя которому, динамик простейшего радиоприемника воспроизводит вещание. На провалах челюстная кость замирает, воцаряется тишина, пики ухо слышит. Простейший радиоприемник, не дай Бог, конечно, заиметь.

Обратный пьезоэлектрический эффект изменяет согласно закону электромагнитной волны геометрические размеры костей. Перспективное направление: человек-радиоприемник.

Советский Союз славился запуском космической ракеты, впереди планеты всей, научными изысканиями. Времена Союза поощряли степени. Светила принесли немало пользы здесь, – конструирование радиоприемников, – зарабатывают приличные деньги за бугром. Фильмы пропагандировали умных, не зажиточных, неудивительно, что журналы полны различными наработками. Серия современных уроков создания простейших радиоприемников, доступная на Ютубе, основывается на журналах 1970 года издания. Поостережемся отходить от традиций, опишем собственное видение ситуации сферы радиолюбительства.

Концепция персональной электронно-вычислительной машины разработана советскими инженерами.

Руководством партии идея признана неперспективной. Силы отданы построению гигантских вычислительных центров. Излишне трудящемуся осваивать дома персональный компьютер. Смешно? Сегодня ситуации позабавнее встретите. Потом жалуются — Америка окутана славой, печатает доллары. AMD, Intel — слышали? Made in USA.

Простейший радиоприемник своими руками сделает каждый. Антенна не нужна, существуй хороший устойчивый сигнал вещания. Диод припаивается к выводам высокоомных наушников (компьютерные отбросьте), остается заземлить один конец. Справедливости ради скажем, фокус пройдет со старыми добрыми Д2 советского выпуска, отводы настолько массивные, что послужат антенной. Землю получим в простейшем радиоприемнике, прислонив одну ножку радиоэлемента к батарее отопления, зачищенной от краски. В противном случае декоративный слой, являясь диэлектриком конденсатора, образованного ножкой и металлом батареи, изменит характер работы. Пробуйте.

Авторы ролика заметили: сигнал вроде есть, представлен невообразимой мешаниной шорохов, осмысленных звуков. Простейший радиоприемник лишен избирательности. Любой может понять, осознать термин. Когда настраиваем приемник, ловим нужную волну. Помните, обсуждали спектр. Эфире содержит ватагу волн одновременно, поймаете нужную, сузив диапазон поиска. Существует в простейшем радиоприемнике избирательность. На практике реализуется колебательным контуром. Известен из уроков физики, сформирован двумя элементами:

  • Конденсатор (емкость).
  • Катушка индуктивности.

Повременим изучать подробности, элементы снабжены реактивным сопротивлением. Благодаря чему волны различной частоты имеют неодинаковое затухание, проходя мимо. Однако существует некий резонанс. У конденсатора реактивное сопротивление на диаграмме направлено в одну сторону, у индуктивности – в другую, причем выведена зависимость частотная. Оба импеданса вычитаются. На некоторой частоте составляющие уравниваются, реактивное сопротивление цепочки падает до нуля. Наступает резонанс. Проходят избранная частота, примыкающие гармоники.

Курс физики показывает процесс выбора ширину полосы пропускания резонансного контура. Определяется уровнем затухания (3 дБ ниже максимума). Приведем выкладки теории, руководствуясь которыми человек может собрать простейший радиоприемник своими руками. Параллельно первому диоду добавляется второй, включенный навстречу. Впаивается последовательно наушникам. Антенна отделяется от конструкции конденсатором емкостью 100 пФ. Здесь заметим: диоды наделены емкостью p-n-перехода, умы, видимо, просчитали условия приема, какой конденсатор входит в простейший радиоприемник, наделенный избирательностью.

Полагаем, несильно отклонимся от истины, сказав: диапазон затронет области КВ или СВ. Будет приниматься несколько каналов. Простейший радиоприемник является чисто пассивной конструкцией, лишенной источника энергии, больших свершений ждать не следует.

Пара слов, почему обсуждали удаленные закутки, где радиолюбители жаждут экспериментов. В природе замечены физиками явления рефракции, дифракции, оба позволяют радиоволнам отклоняться от прямого курса. Первое назовем огибанием препятствий, горизонт отодвигается, уступая вещанию, второе — преломлением атмосферой.

ДВ, СВ и КВ ловятся на значительном удалении, сигнал будет слабым. Следовательно, простейший радиоприемник, рассмотренный выше, является пробным камнем.

Простейший радиоприемник с усилением

В рассмотренной конструкции простейшего радиоприемника нельзя применять низкоомные наушники, сопротивление нагрузки напрямую определяет уровень передаваемой мощности. Давайте сначала улучшим характеристики, пользуясь помощью резонансного контура, затем дополним простейший радиоприемник батарейкой, создав усилитель низкой частоты:

  • Избирательный контур состоит из конденсатора, индуктивности. Журнал рекомендует в простейший радиоприемник включить переменный конденсатор диапазона подстройки 25 — 150 пФ, индуктивность необходимо изготовить, руководствуясь инструкцией. Ферромагнитный стержень диаметром 8 мм обматывается равномерно 120 витками, захватывающими 5 см сердечника. Подойдет медный провод, покрытый лаковой изоляцией, диаметром 0,25 – 0,3 мм. Приводили читателям адрес ресурса, где посчитаете индуктивность, вводя цифры. Аудитории доступно самостоятельно найти, пользуясь Яндексом, вычислить, количество мГн индуктивности. Формулы подсчета резонансной частоты также общеизвестны, следовательно, можно, оставаясь у экрана, представить канал настройки простейшего радиоприемника. Обучающее видео предлагает изготовить переменную катушку. Необходимо внутри каркаса с намотанными витками проволоки выдвигать, вдвигать сердечник. Положения феррита определяет индуктивность. Диапазон посчитайте, воспользовавшись помощью программы, умельцы Ютуба предлагают, наматывая катушку, каждые 50 витков делать выводы. Поскольку отводов порядка 8-ми, делаем вывод: суммарное число оборотов превышает 400. Индуктивность меняете скачкообразно, точную подстройку ведете сердечником. Добавим к этому: антенна для радиоприемника развязывается с остальной схемой конденсатором емкостью 51 пФ.
  • Второй момент, который нужно знать, это то, что в биполярном транзисторе также имеются p-n-переходы, и даже два. Вот коллекторный как раз и уместно использовать вместо диода. Что касается эмиттерного перехода, то заземляется. Затем на коллектор прямо через наушники подается питание постоянным током. Рабочая точка не выбирается, поэтому результат несколько неожиданный, понадобится терпение, пока устройство радиоприемника будет доведено до совершенства. Батарейка тоже в немалой степени влияет на выбор. Сопротивление наушников считаем коллекторным, которое задает крутизну наклона выходной характеристики транзистора. Но это тонкости, например, резонансный контур тоже придется перестроить. Даже при простой замене диода, не то что внедрении транзистора. Вот почему рекомендуется вести опыты постепенно. А простейший радиоприемник без усиления у многих вовсе не будет работать.

А как сделать радиоприемник, который бы допускал использование простых наушников. Подключите через трансформатор, наподобие того, что стоит в абонентской точке. Ламповый радиоприемник отличается от полупроводникового тем, что в любом случае требует питания для работы (накал нитей).

Вакуумные приборы долго выходят на режим. Полупроводники готовы сразу же принимать. Не забывайте: германий не терпит температур выше 80 градусов Цельсия. При необходимости предусмотрите охлаждение конструкции. На первых порах это нужно, пока не подберете размер радиаторов. Используйте вентиляторы из персонального компьютера, процессорные кулеры.

Что такое FM-приемник? Радиоприемник — это электронное устройство, которое принимает радиоволны и преобразует информацию, переносимую ими, в полезную для восприятия человеком. Приемник использует электронные фильтры, чтобы отделить нужный сигнал радиочастоты от всех других сигналов, улавливаемых антенной, электронный усилитель для увеличения мощности сигнала для дальнейшей обработки, и, наконец, восстанавливает нужной информации посредством демодуляции.

Из радиоволн, FM является наиболее популярным. Частотная модуляция широко используется для FM-радиовещания. Преимущество частотной модуляции заключается в том, что она имеет большее отношение сигнал/шум и, следовательно, излучает радиочастотные помехи лучше, чем сигнал амплитудной модуляции равной мощности (AM). Звук из радиоприёмника мы слышим чище и насыщенней.

Частотные диапазоны FM

УКВ (УльтраКороткоВолновый) диапазон с ЧМ (Частотная Модуляция) по английски FM (Frequency Modulation) имеет длину от 10 м до 0,1 мм — это соответствует частотам от 30 МГц до 3000 ГГц.

Для приема вещательных радиостанций актуален сравнительно небольшой участок:
УКВ 64 — 75 МГц. Это наш советский диапазон. На нем много УКВ станций, но только в нашей стране.

Японский диапазон от 76 до 90МГц. В этом диапазоне ведется вещание в стране восходящего солнца.

FM — 88 — 108МГц. — это западный вариант. Большинство ныне продаваемых приемников обязательно работает именно в этом диапазоне. Часто сейчас приёмники принимают и наш совковый диапазон, и западный.

УКВ радиопередатчик имеет широкий канал — 200 кГц. Максимальная звуковая частота, передаваемая в FM, составляет 15 кГц по сравнению с 4,5 кГц в AM. Это позволяет передавать намного более широкий диапазон частот. Таким образом качество передачи FM значительно выше, чем АМ.

Теперь о приёмнике. Ниже представлена схема электроники для приемника FM вместе с его описанием работы.

Список компонентов

  • Микросхема: LM386
  • Транзисторы: T1 BF494, T2 BF495
  • Катушка L содержит 4 витка, Ф=0,7мм на оправке 4 мм.
  • Конденсаторы: C1 220nF
  • C2 2,2 нф
  • C 100 нф х 2 шт
  • C4,5 10 мкф (25 V)
  • C7 47 нФ
  • C8 220 мкф (25 В)
  • C9 100 мкф (25 V) х 2 шт
  • Сопротивления:
  • R 10 кОм х 2 шт
  • R3 1 кОм
  • R4 10 Ом
  • Переменное сопротивление 22кОм
  • Переменная емкость 22пф
  • Динамик 8 Ом
  • Выключатель
  • Антенна
  • Батарея 6-9В

Описание схемы FM приемника

Ниже, представлена схема простого FM-приемника. Минимум компонентов для приема местной FM станции.

Транзисторы (Т1,2), вместе с резистором 10к (R1), катушкой L, переменным конденсатором (VC)22pF составляют ВЧ генератор (Colpitts oscillator).

Резонансная частота этого генератора устанавливается триммером VC на частоту передающей станции, которую мы хотим принять. То есть, он должен быть настроен между 88 и 108 МГц FM диапазона.

Информационный сигнал, снимаемый с коллектора Т2 поступает на усилитель НЧ на LM386 через разделительный конденсатор (С1) 220nF и регулятор громкости VR на 22 кОма.

FM приемник принципиальная электрическая схема

Принципиальная электрическая схема FM приемника

Перестройка на другую станцию осуществляется изменением ёмкости переменного конденсатора 22 пФ. Если Вы используете какой-либо другой конденсатор, который имеет большую ёмкость, то попробуйте уменьшить количество витков катушки L чтобы настроиться на диапазон FM (88-108 МГц).

Катушка L имеет четыре витка эмалированного медного провода, диаметром 0,7 мм. Катушка наматывается на оправке диаметром 4 мм. Её можно намотать на любом цилиндрическом предмете (карандаш или ручка с диаметром 4 мм).

Если Вы хотите принимать сигнал станций УКВ диапазона (64-75 МГц), то нужно намотать 6 витков катушки или увеличить ёмкость переменного конденсатора.

Когда необходимое количество витков намотаете, катушка снимается с цилиндра и немного растягивается так, чтобы витки не касались друг друга.

Микросхема LM386 представляет собой НЧ аудио усилитель мощности. Он обеспечивает от 1 до 2 Вт, чего достаточно для любого малогабаритного динамика.

Антенна

Антенна используется, чтобы поймать высокочастотную волну. В качестве антенны Вы можете использовать телескопическую антенну любого неиспользуемого устройства. Хороший прием можно также получить с куска изолированной медной проволоки длинной около 60 см. Оптимальную длину медной проволоки можно найти экспериментально.

Приемник можно запитать от батареи 6V-9V.


П О П У Л Я Р Н О Е:

    Для анимации каких-либо игрушек, для подарка или просто для творчества можно собрать схему «бегущего огня».

    Эффект создания огней бегущих из центра к краям. Очень похоже на лучи солнышко.

    Характеристики:

    • Кол-во каналов — 3;
    • Кол-во светодиодов — 18 шт;
    • Uпит.= 3…12В.

Приветствую! В этом обзоре хочу рассказать про миниатюрный модуль приемника, работающий в диапазоне УКВ (FM) на частоте от 64 до 108 МГц. На одном из профильных ресурсов интернета попалась картинка этого модуля, мне стало любопытно изучить его и протестировать.

К радиоприемникам испытываю особый трепет, люблю собирать их еще со школы. Были схемы из журнала «Радио», были и просто конструкторы. Всякий раз хотелось собрать приемник лучше и меньше размерами. Последнее, что собирал, — конструкция на микросхеме К174ХА34. Тогда это казалось очень «крутым», когда в середине 90-х впервые увидел работающую схему в радиомагазине, был под впечатлением)) Однако прогресс идет вперед, и сегодня можно купить героя нашего обзора за «три копейки». Давайте его рассмотрим поближе.

Вид сверху.

Вид снизу.

Для масштаба рядом с монетой.

Сам модуль построен на микросхеме AR1310. Точного даташита на неё найти не смог, по всей видимости произведена в Китае и её точное функциональное устройство не известно. В интернете попадаются лишь схемы включения. Поиск через гугл выдает информацию: » Это высокоинтегрированный, однокристальный, стерео FM радиоприемник. AR1310 поддерживает частотный диапазон FM 64-108 МГц, чип включает в себя все функции FM радио: малошумящий усилитель, смеситель, генератор и стабилизатор с низким падением. Требует минимум внешних компонентов. Имеет хорошее качество аудиосигнала и отличное качество приема. AR1310 не требует управляющих микроконтроллеров и никакого дополнительного программного обеспечения, кроме 5 кнопок. Рабочее напряжение 2.2 В до 3.6 В. потребление 15 мА, в спящем режиме 16 uA «.

Описание и технические характеристики AR1310
— Прием частот FM диапазон 64 -108 МГц
— Низкое энергопотребление 15 мА, в спящем режиме 16 uA
— Поддержка четырех диапазонов настройки
— Использование недорогого кварцевого резонатора 32. 768KHz.
— Встроенная двусторонняя функция автоматического поиска
— Поддержка электронного регулятора громкости
— Поддержка стерео или моно режима (при замыкании 4 и 5 контакта отключается стерео режим)
— Встроенный усилитель для наушников 32 Ом класса AB
— Не требует управляющих микроконтроллеров
— Рабочее напряжение 2.2 В до 3.6 В
— В корпусе SOP16

Распиновка и габаритные размеры модуля.

Распиновка микросхемы AR1310.

Схема включения, взятая из интернета.

Так я составил схему подключения модуля.

Как видно, принцип проще некуда. Вам понадобится: 5 тактовых кнопок, разъем для наушников и два резистора по 100К. Конденсатор С1 можно поставить 100 нФ, можно 10 мкФ, а можно вообще не ставить. Емкости C2 и С3 от 10 до 470 мкФ. В качестве антенны — кусок провода (я взял МГТФ длиной 10 см, т.к. передающая вышка у меня в соседнем дворе). В идеальном случае можно рассчитать длину провода, например на 100 МГц, взяв четверть волны или одну восьмую. Для одной восьмой это будет 37 см.
По схеме хочу сделать замечание. AR1310 может работать в разных диапазонах (видимо, для более быстрого поиска станций). Выбирается это комбинацией 14 и 15 ножки микросхемы, подключая их к земле или питанию. В нашем случае обе ножки сидят на VCC.

Приступим к сборке. Первое, с чем столкнулся, — нестандартный межвыводной шаг модуля. Он составляет 2 мм, и засунуть его в стандартную макетку не получится. Но не беда, взяв кусочки провода, просто напаял их в виде ножек.


Выглядит неплохо)) Вместо макетной платы решил использовать кусок текстолита, собрав обычную «летучку». В итоге получилась вот такая плата. Габариты можно существенно уменьшить, применив тот же ЛУТ и компоненты меньшего размера. Но других деталей у меня не нашлось, тем более что это тестовый стенд, для обкатки.

Подав питание, нажимаем кнопку включения. Радиоприемник сразу заработал, без какой-либо отладки. Понравилось то, что поиск станций работает почти мгновенно (особенно если их много в диапазоне). Переход с одной станции на другую около 1 с. Уровень громкости очень высокий, на максимуме слушать неприятно. После выключения кнопкой (спящий режим), запоминает последнюю станцию (если полностью не отключать питание).
Тестирование качества звука (на слух) проводил наушниками Creative (32 Ом) типа «капли» и наушниками «вакуумного» типа Philips (17,5 Ом). И в тех, и в других качество звука мне понравилось. Нет писклявости, достаточное количество низких частот. Меломан из меня никудышный, но звук усилителя этой микросхемы приятно порадовал. В Филипсах максимальную громкость так и не смог выкрутить, уровень звукового давления до боли.
Так же измерил ток потребления в спящем режиме 16 мкА и в рабочем 16,9 мА (без подключения наушников).

При подключении нагрузки в 32 Ома, ток составил 65,2 мА, при нагрузке в 17,5 Ома — 97,3 мА.

В заключение скажу, что данный модуль радиоприемника вполне годен для бытового применения. Собрать готовое радио сможет даже школьник. Из «минусов» (скорей даже не минусы, а особенности) отмечу нестандартный межвыводной шаг платы и отсутствие дисплея для отображения информации.

Измерил ток потребления (при напряжении 3,3 В), как видим, результат очевиден. При нагрузке 32 Ом — 17,6 мА, при 17,5 Ом — 18,6 мА. Вот это совсем другое дело!!! Ток немного менялся в зависимости от уровня громкости (в пределах 2 — 3 мА). Схему в обзоре подправил.


Планирую купить +109 Добавить в избранное Обзор понравился +93 +177

Простейший ламповый приемник

Катушки наматываются проводом в любой изоляции. Диаметр провода у катушек L1 и L2 от 0,1 до 0,2 мм. Диаметр провода для катушки L3 от 0,1 до 0,15 мм. Намотка ведется «внавал», то есть без соблюдения какого-либо порядка расположения витков.
Начало и конец каждой катушки пропускают в маленькие отверстия, проколотые в картонных щечках. После намотки катушек желательно пропитать нх горячим парафином; это увеличит прочность обмоток и в дальнейшем предохранит их от сырости.
Отправляясь в поход, узнайте на ближайшем радиоузле, на какой волне работает местная радиостанция, и намотайте катушки приемника с учетом следующих данных.
Для приема радиостанций с длиной волны от 1 800 до 1 300 м ка катушки L1 и L2 наматывают по 190 витков провода. Для приема волн от 1 300 до 1 000 м — по 150 витков; для волн от 500 до 200 м — по 75 витков. На катушку L3 во всех случаях наматывают 50 витков. Наматывать провод надо только в одну сторону. Когда провод намотан на катушку, ее укрепляют на верхней стороне монтажной панели и соединяют со схемой. При этом конец К1 от верхней катушки пропускается через отверстие / в панели и присоединяется к штырьку 2 первой лампы; конец К2 верхней катушки соединяется с концом К3 нижней катушки. Соединение надо сделать проводом длиной около 100 мм. Конец К1 нижней катушки через отверстие 2 соединяется со штырьком 3 первой лампы. Конец К5 средней катушки через отверстие 4 припаивается к штырьку 2 второй лампы. Конец К6 через отверстие 3 припаивается к правой скобке телефона.
Для питания приемника нужно иметь 7 батареек от карманного фонарика. Пять из них соединяются между собой последовательно, то есть плюс одной батарейки соединяется с минусом второй, плюс второй с минусом третьей и т. д. и подключаются к скобкам плюс анода и минус анода. С двумя другими батареями поступают так: цинковые стаканчики всех элементов соединяют вместе и подключают к скобке минус накала, а угольные стержни, соединенные вместе, подключают к скобке плюс накала через выключатель. К скобкам «телефон» присоединяют наушники. Если будут использованы пьезонаушники, то к их концам (параллельно) присоединяют сопротивление от 10 тыс. до 20 тыс. ом.
Приемник собран. Вам остается его наладить. Вы вставляете лампы, присоединяете антенну (кусок провода 8—10 м, заброшенный на дерево) и делаете заземление (железный штырек вбиваете в землю). Теперь на время замкните концы катушки обратной связи К5 и К6 и, включив накал, передвигайте верхнюю катушку по каркасу, пока не услышите передачу. Если настроить приемник не удается, снимите верхнюю катушку с каркаса и наденьте ее другой стороной. Снова настройте. Если и в этом случае вы не услышите передачи, присоедините параллельно контуру к концам К1 и К2 конденсатор постоянной емкости, подбирая его величину от 100 до 500 ммF. При подключении конденсаторов нужно заново производить настройку.
Подключая конденсаторы различной емкости, вы можете настроить приемник на любую из радиостанций, которая хорошо слышна в данном районе. Добившись этого, разомкните концы катушки обратной связи: громкость приема должна возрасти. Передвигая среднюю катушку по каркасу, добейтесь наибольшей громкости. Если включение катушки обратной связи не дает увеличения громкости, поменяйте местами (перепаяйте) концы К5 и К6 катушки обратной связи. А если при включении катушки обратной связи появляется резкий свист, уменьшите число витков в этой катушке. После окончательной наладки закрепите катушки каплей клея и монтируйте приемник в фанерном ящике.

Из журнала «Юный техник» за май 1957 года

Радиоприемник ФМ-диапазона(FM) на одной микросхеме(CXA1238S).

Длительное время радиоприемники занимали одно из первых мест по популярности среди других радиоэлектронных конструкций. Появление новых звуковоспроизводящих устройств, CD-плееров, магнитофонов и бурное развитие компьютерной техники оттеснило с ведущих позиций радиоприемную технику, не снизив ее значимости.

Приемники подразделяются на детекторные, прямого усиления, супергетеродинного типа, прямого преобразования, с положительными обратными связями (регенеративные, сверхрегенеративные) и др.

Простой двухтранзисторный радиоприемник прямого усиления

Простой приемник прямого усиления показан на рис. 1 [МК 10/83-11]. Он содержит перестраиваемый входной колебательный контур — магнитную антенну и двухкаскадный усилитель НЧ.

Первый каскад усилителя одновременно является детектором ВЧ модулированного сигнала. Как и многие ему подобные простые приемники прямого усиления, этот приемник способен принимать сигналы мощных, не столь удаленных радиостанций.

Катушка индуктивности намотана на ферритовом стержне длиной 40 и диаметром 10 мм. Она содержит 80 витков провода ПЭВ-0,25 мм с отводом от 6-го витка снизу (по схеме).

Рис. 1. Схема простого радиоприемника на двух транзисторах.

Схема детекторного приемника — описание

Итак для того чтобы смастерить простой детекторный радиоприемник по нижеприведенной схеме нам нужно всего 2 детали: германиевый диод (Д9 или Д18) и головной телефон с большим сопротивлением (ТОН-1 или ТОН-2)

Радиоприемник не имеет в своем составе колебательного контура, вследствие этого он не способен улавливать одну конкретную радиостанцию из того количества станций, которые транслируются в данной местности. Но, не смотря на это, он со своей задачей справляется.

Для работы радиоприемника необходима хорошая антенна, в роли которой может выступать кусок провода, заброшенный на дерево и провод заземления. Заземление можно сделать, подсоединив провод к массивному металлическому предмету, например к старому ведру, и закопав его на небольшую глубину.

Рефлексный приемник Ю.

Прокопцова

Радиоприемник, сконструированный Ю. Прокопцевым (рис. 3), предназначен для приема в средневолновом диапазоне [Р 9/99-52]. Приемник собран также по рефлексной схеме.

Рис. 3. Схема рефлексного радиоприемника на СВ диапазон.

Антенна выполнена из отрезка ферритового стержня 400НН длиной 50 и диаметром 8 мм. Катушка L1 содержит 120 витков провода ПЭЛШО-0,15 мм однослойной намотки, а L2 — 15…20 витков того же провода. Налаживание приемника сводится к установке коллекторного тока транзистора VT2, равным 8… 10 мА, с помощью резистора R2. Затем настраивают коллекторный ток транзистора VT3 в пределах 0,3…0,5 мА подбором резистора R4.

Приемники супергетеродинного типа в рамках настоящего обзора рассматривать не будем. Впрочем, при желании они могут быть получены объединением приемника прямого усиления (рис. 1 — 3) и конвертера (рис. 10), либо из приемника прямого преобразования (рис. 11).

Сверхрегенеративный радиоприемник на FM диапазон

Сверхрегенеративный радиоприемник обладает высокой чувствительностью (до ед. мкВ) при достаточной простоте. На рис. 4 приведен фрагмент схемы сверхрегенеративного радиоприемника Е. Солодовникова (без УНЧ, который может быть выполнен по одной из приводимых ранее схем — Простейшие усилители низкой частоты на транзисторах) [Рл 3/99-19].

Рис. 4. Схема сверхрегенеративного радиоприемника Е. Солодовникова.

Высокая чувствительность приемника обусловлена наличием глубокой положительной обратной связи, благодаря которой коэффициент усиления каскада после включения радиоприемника довольно быстро возрастает до бесконечности, схема переходит в режим генерации.

Для того чтобы самовозбуждение не происходило, а схема могла работать как высокочувствительный усилитель высокой частоты, используют очень оригинальный прием. Как только коэффициент усиления каскада усиления возрастет выше некоторого заданного уровня, его резко снижают до минимума.

График изменения коэффициента усиления от времени напоминает пилу. Именно по этому закону изменяют коэффициент усиления усилителя. Усредненный же коэффициент усиления может доходить до миллиона. Управлять коэффициентом усиления можно при помощи специального дополнительного генератора пилообразных импульсов.

На практике поступают проще: в качестве такого генератора используется по двойному назначению сам высокочастотный усилитель. Генерация пилообразных импульсов происходит на неслышимой ухом ультразвуковой частоте, обычно десятки кГц. Для того чтобы ультразвуковые колебания не проникали на вход последующего каскада УНЧ, используют простейшие фильтры, выделяющие сигналы звуковых частот (R6C7, рис. 4).

Сверхрегенеративные приемники обычно используют для приема высокочастотных (свыше 10 МГц) сигналов с амплитудной модуляцией. Прием сигналов с частотной модуляцией возможен за счет преобразования частотной модуляции в амплитудную и последующего детектирования эмиттерным переходом транзистора полученного таким образом амплитудно-модулированного сигнала.

Преобразование частотной модуляции в амплитудную происходит в случае, если приемник, предназначенный для приема амплитудно-модулированных сигналов, настроить неточно на частоту приема частотно-модулированного сигнала.

При такой настройке изменение частоты принимаемого сигнала постоянной амплитуды вызовет изменение амплитуды сигнала, снимаемого с колебательного контура: при приближении частоты принимаемого сигнала к частоте резонанса колебательного контура амплитуда выходного сигнала растет, при удалении от резонансной — снижается.

Наряду с неоспоримыми достоинствами, схема «сверхрегенератора» обладает массой недостатков. Это — невысокая избирательность, повышенный уровень шумов, зависимость порога генерации от частоты приема, от напряжения питания и т.д.

При приеме радиовещательных ЧМ-сигналов в диапазоне FM — 100…108 МГц или сигналов звукового сопровождения телевидения, катушка L1 представляет собой полувиток диаметром 30 мм с линейной частью 20 мм. Диаметр провода — 1 мм. L2 имеет 2…3 витка диаметром 15 мм из провода диаметром 0,7 мм, расположенных внутри полувитка.

Для диапазона 66…74 МГц катушка L1 содержит 5 витков диаметром 5 мм из провода 0,7 мм с шагом 1…2 мм. L2 имеет 2…3 витка такого же провода. Обе катушки не имеют каркасов и расположены параллельно друг другу. Антенна выполнена из отрезка монтажного провода длиной 50… 100 см. Настройку устройства осуществляют потенциометром R2.

Радиоприёмник своими руками: простые конструкции

Простейшие радиоприемники непригодны ловить FM диапазон, модуляция частотная. Обыватели утверждают: отсюда повелось название. С английского литеры FM трактуем: частотная модуляция. Четко выраженный смысл, читателям важно понять: простейший радиоприемник, своими руками собранный из хлама, FM не примет. Возникает вопрос необходимости: сотовый телефон ловит вещание. В электронную аппаратуру встроена подобная возможность. Вдали от цивилизации люди по-прежнему хотят ловить вещание старым добрым способом — чуть было не сказали зубными коронками — конструировать дельные приборы прослушивания любимых передач. На халяву…

Детекторный простейший радиоприемник: основы

Зубных пломб рассказ коснулся неспроста. Сталь (металл) способна преобразовывать эфирные волны в ток, копируя простейший радиоприемник, челюсть начинает вибрировать, кости уха детектируют сигнал, зашифрованный на несущей. При амплитудной модуляции высокая частота повторяет размахом голос диктора, музыку, звук. Полезный сигнал содержит некоторый спектр, сложно пониманию непрофессионала, важно, что при сложении составляющих получается некоторый закон времени, следуя которому, динамик простейшего радиоприемника воспроизводит вещание. На провалах челюстная кость замирает, воцаряется тишина, пики ухо слышит. Простейший радиоприемник, не дай Бог, конечно, заиметь.

Обратный пьезоэлектрический эффект изменяет согласно закону электромагнитной волны геометрические размеры костей. Перспективное направление: человек-радиоприемник.

Советский Союз славился запуском космической ракеты, впереди планеты всей, научными изысканиями. Времена Союза поощряли степени. Светила принесли немало пользы здесь, – конструирование радиоприемников, – зарабатывают приличные деньги за бугром. Фильмы пропагандировали умных, не зажиточных, неудивительно, что журналы полны различными наработками. Серия современных уроков создания простейших радиоприемников, доступная на Ютубе, основывается на журналах 1970 года издания. Поостережемся отходить от традиций, опишем собственное видение ситуации сферы радиолюбительства.

Концепция персональной электронно-вычислительной машины разработана советскими инженерами. Руководством партии идея признана неперспективной. Силы отданы построению гигантских вычислительных центров. Излишне трудящемуся осваивать дома персональный компьютер. Смешно? Сегодня ситуации позабавнее встретите. Потом жалуются — Америка окутана славой, печатает доллары. AMD, Intel — слышали? Made in USA.

Простейший радиоприемник своими руками сделает каждый. Антенна не нужна, существуй хороший устойчивый сигнал вещания. Диод припаивается к выводам высокоомных наушников (компьютерные отбросьте), остается заземлить один конец. Справедливости ради скажем, фокус пройдет со старыми добрыми Д2 советского выпуска, отводы настолько массивные, что послужат антенной. Землю получим в простейшем радиоприемнике, прислонив одну ножку радиоэлемента к батарее отопления, зачищенной от краски. В противном случае декоративный слой, являясь диэлектриком конденсатора, образованного ножкой и металлом батареи, изменит характер работы. Пробуйте.

Авторы ролика заметили: сигнал вроде есть, представлен невообразимой мешаниной шорохов, осмысленных звуков. Простейший радиоприемник лишен избирательности. Любой может понять, осознать термин. Когда настраиваем приемник, ловим нужную волну. Помните, обсуждали спектр. Эфире содержит ватагу волн одновременно, поймаете нужную, сузив диапазон поиска. Существует в простейшем радиоприемнике избирательность. На практике реализуется колебательным контуром. Известен из уроков физики, сформирован двумя элементами:

  • Конденсатор (емкость).
  • Катушка индуктивности.

Повременим изучать подробности, элементы снабжены реактивным сопротивлением. Благодаря чему волны различной частоты имеют неодинаковое затухание, проходя мимо. Однако существует некий резонанс. У конденсатора реактивное сопротивление на диаграмме направлено в одну сторону, у индуктивности – в другую, причем выведена зависимость частотная. Оба импеданса вычитаются. На некоторой частоте составляющие уравниваются, реактивное сопротивление цепочки падает до нуля. Наступает резонанс. Проходят избранная частота, примыкающие гармоники.

Курс физики показывает процесс выбора ширину полосы пропускания резонансного контура. Определяется уровнем затухания (3 дБ ниже максимума). Приведем выкладки теории, руководствуясь которыми человек может собрать простейший радиоприемник своими руками. Параллельно первому диоду добавляется второй, включенный навстречу. Впаивается последовательно наушникам. Антенна отделяется от конструкции конденсатором емкостью 100 пФ. Здесь заметим: диоды наделены емкостью p-n-перехода, умы, видимо, просчитали условия приема, какой конденсатор входит в простейший радиоприемник, наделенный избирательностью.

Полагаем, несильно отклонимся от истины, сказав: диапазон затронет области КВ или СВ. Будет приниматься несколько каналов. Простейший радиоприемник является чисто пассивной конструкцией, лишенной источника энергии, больших свершений ждать не следует.

Пара слов, почему обсуждали удаленные закутки, где радиолюбители жаждут экспериментов. В природе замечены физиками явления рефракции, дифракции, оба позволяют радиоволнам отклоняться от прямого курса. Первое назовем огибанием препятствий, горизонт отодвигается, уступая вещанию, второе — преломлением атмосферой.

ДВ, СВ и КВ ловятся на значительном удалении, сигнал будет слабым. Следовательно, простейший радиоприемник, рассмотренный выше, является пробным камнем.

Простейший радиоприемник с усилением

В рассмотренной конструкции простейшего радиоприемника нельзя применять низкоомные наушники, сопротивление нагрузки напрямую определяет уровень передаваемой мощности. Давайте сначала улучшим характеристики, пользуясь помощью резонансного контура, затем дополним простейший радиоприемник батарейкой, создав усилитель низкой частоты:

  • Избирательный контур состоит из конденсатора, индуктивности. Журнал рекомендует в простейший радиоприемник включить переменный конденсатор диапазона подстройки 25 — 150 пФ, индуктивность необходимо изготовить, руководствуясь инструкцией. Ферромагнитный стержень диаметром 8 мм обматывается равномерно 120 витками, захватывающими 5 см сердечника. Подойдет медный провод, покрытый лаковой изоляцией, диаметром 0,25 – 0,3 мм. Приводили читателям адрес ресурса, где посчитаете индуктивность, вводя цифры. Аудитории доступно самостоятельно найти, пользуясь Яндексом, вычислить, количество мГн индуктивности. Формулы подсчета резонансной частоты также общеизвестны, следовательно, можно, оставаясь у экрана, представить канал настройки простейшего радиоприемника. Обучающее видео предлагает изготовить переменную катушку. Необходимо внутри каркаса с намотанными витками проволоки выдвигать, вдвигать сердечник. Положения феррита определяет индуктивность. Диапазон посчитайте, воспользовавшись помощью программы, умельцы Ютуба предлагают, наматывая катушку, каждые 50 витков делать выводы. Поскольку отводов порядка 8-ми, делаем вывод: суммарное число оборотов превышает 400. Индуктивность меняете скачкообразно, точную подстройку ведете сердечником. Добавим к этому: антенна для радиоприемника развязывается с остальной схемой конденсатором емкостью 51 пФ.
  • Второй момент, который нужно знать, это то, что в биполярном транзисторе также имеются p-n-переходы, и даже два. Вот коллекторный как раз и уместно использовать вместо диода. Что касается эмиттерного перехода, то заземляется. Затем на коллектор прямо через наушники подается питание постоянным током. Рабочая точка не выбирается, поэтому результат несколько неожиданный, понадобится терпение, пока устройство радиоприемника будет доведено до совершенства. Батарейка тоже в немалой степени влияет на выбор. Сопротивление наушников считаем коллекторным, которое задает крутизну наклона выходной характеристики транзистора. Но это тонкости, например, резонансный контур тоже придется перестроить. Даже при простой замене диода, не то что внедрении транзистора. Вот почему рекомендуется вести опыты постепенно. А простейший радиоприемник без усиления у многих вовсе не будет работать.

А как сделать радиоприемник, который бы допускал использование простых наушников. Подключите через трансформатор, наподобие того, что стоит в абонентской точке. Ламповый радиоприемник отличается от полупроводникового тем, что в любом случае требует питания для работы (накал нитей).

Вакуумные приборы долго выходят на режим. Полупроводники готовы сразу же принимать. Не забывайте: германий не терпит температур выше 80 градусов Цельсия. При необходимости предусмотрите охлаждение конструкции. На первых порах это нужно, пока не подберете размер радиаторов. Используйте вентиляторы из персонального компьютера, процессорные кулеры.

vashtehnik.ru

Регенеративные радиоприемники на транзисторах КП303

Регенеративные приемники, или приемники, использующие для увеличения чувствительности положительные обратные связи, в промышленных разработках не встречаются. Однако для освоения всевозможных вариантов реализации приемной техники можно рекомендовать ознакомиться с работой двух таких устройств конструкции И. Григорьева (рис. 5 и 6) [Рл 9/95-12; 10/95-12].

Рис. 5. Схема приемника для приема сигналов AM в диапазоне КВ, СВ и ДВ.

Приемник (рис. 5) предназначен для приема сигналов AM в диапазоне коротких, средних и длинных волн. Его чувствительность на частоте 20 МГц достигает 10 мкВ. Для сравнения: чувствительность наиболее совершенного приемника прямого усиления примерно в 100 раз ниже.

Рис. 6. Схема простого регенеративного радиоприемника на диапазоны частот 1,5…40 МГц.

Приемник (рис. 6) способен работать в диапазоне 1,5…40 МГц. Для диапазона 1,5…3,7 МГц катушка L1 имеет индуктивность 23 мкГн и содержит 39 витков провода диаметром 0,5 мм на каркасе диаметром 20 мм при ширине намотки 30 мм. Катушка L2 имеет 10 витков такого же провода и намотана на этом же каркасе.

Для диапазона 3…24 МГц катушка L1 индуктивностью 1,4 мкГн содержит 10 витков провода диаметром 2 мм, намотанного на каркасе диаметром 20 мм, при ширине намотки 40 мм. Катушка L2 имеет 3 витка с диаметром провода 1,0 мм.

В диапазоне 24…40 МГц L1 (0,5 мкГн) содержит 5 витков, ширина намотки — 30 мм, a L2 имеет 2 витка. Рабочую точку приемников (рис. 5, 6) устанавливают потенциометром R4.

Mp3-FM радиоприемник своими руками из готовых комплектующих

Mp3-FM радиоприемник своими руками

Здравствуйте друзья!

Возможно не все еще знают, что друзья китайцы продают достаточно интересные устройства по достаточно дешевой цене. Например Mp3-FM радиоприемник который можно встроить в старые магнитолы, музыкальные центры или магнитофоны, а также можно использовать в собственной разработке музыкального устройства. Существует большое количество разных моделей и ценой.

Например

«MP3 Декодер Доска Хитам Дистанционного SD Mp3-плеер Ztv-m011» (эту фразу можно использовать для поиска данного устройства).

Технические характеристики

  • Потребляемый ток до 1500 мА,
  • Подключаемая нагрузка к USB порту до 1000 мА,
  • Подерживает формат mp3,
  • Максимальный объем Flash карты до 16 Gb,
  • выходная нагрузка расчитана на сопротивление от 4 до 32 Ом,
  • Уровень сигнала на вход Aux до 650 мВ,
  • Диапазон FM приемника 87.5 ~ 108 МГц,

Подключить такое устройство очень просто, все контакты на печатной плате подписаны. Питается оно от 5 В. Если это напряжение не устраивает то можно впаять в штатное место стабилизатор L78M05A и смело запитывать его от 5 до 18 В. ВАЖНО предварительно убрать перемычку с цифрой 0.

Фото, в круге перемычка.

Стоимость данного устройства меньше 150р. Есть модели с Bluetooth, они соответственно дороже. В том случае если Вы будете собирать свое музыкальное устройство с нуля Вам потребуется оконечный усилитель, его тоже можно купить уже собранный примерно за 60р.

Например:

PAM8403 двух канальный усилитель с мощностью 2,5 Вт на канал. Есть модели с потенциометром оснащенным выключателем. Напряжение питания 5В .

PAM8610 усилитель класса D, модель по дороже и по мощнее. Напряжение питания 12В, а мощность на канал составляет 10 Вт. В данном усилителе реализована функция «Mute», достаточно замкнуть контакты подписанные как SW.

Готовое устройство может выглядеть так:

На этом все, успехов в мире электроники!

Фотографии взяты с aliexpress.com

electrongrad.ru

УКВ ЧМ радиоприемник на транзисторе ГТ311

Для приема сигналов ЧМ можно использовать УКВ приемники прямого преобразования с фазовой автоподстройкой частоты. Такие приемники содержат преобразователь частоты с совмещенным гетеродином, выполняющим одновременно функции синхродетектора.

Рис. 7. Схема УКВ ЧМ радиоприемника А. Захарова на диапазон частот 66…74 МГц.

Входной контур устройства настроен на частоту приема, контур гетеродина — на частоту приема, деленную пополам. Преобразование сигнала происходит на второй гармонике гетеродина, поэтому промежуточная частота находится в звуковом диапазоне. Схема приемника А. Захарова показана на рис. 7 [Р 12/85-28]. Для диапазона частот 66…74 МГц бескаркасные катушки с внутренним диаметром 5 мм и шагом намотки 1 мм содержат, соответственно, 6 витков с отводом от середины (И) и 20 витков (L2) провода ПЭВ-0,56 мм.

Радиолокация

Кроме телевидения и радиовещания, очень важное значение в нашей жизни имеет радиолокация. Радиолокация – это определение и обнаружение местоположения различных объектов при помощи радиоволн.

Радиолокация широко распространена в радиосвязи. Радиолокация осуществляется при помощи прибора – радиолокатора (радара) (рис. 8).

Рис. 8. Радар (Источник)

В радарах антенны передающая и приемная соединены вместе, радиолокатор – это комбинация приемника и передающего устройства. Работает радиолокатор в импульсном режиме (рис. 9).

Рис. 9. Принцип работы радиолокатора (Источник)

Импульсный режим составляет одну миллионную секунды. Посылается сигнал – и радар автоматически переключается на прием этого сигнала, свойства работы радара основаны на том, что электромагнитная волна способна отражаться от поверхности. Вот этот отраженный сигнал радар и принимает в тот момент времени, когда он работает на прием. Расстояние до цели при помощи радара определяются по формуле, которую используют

при расчетах:

S = с · Δt / 2

В этой формуле представлено расстояние до цели (S), скорость электромагнитной волны (с) – величина постоянная и соответствует скорости в 300 000 км/с, время от момента подачи сигнала до момента приема сигнала, деленное пополам, так как сигнал идет до цели и обратно. Радиолокация используется не только на земле, но и в астрономии для обеспечения взаимосвязи между различными космическими телами и Землей. Определение расстояния до Луны было осуществлено с помощью радиолокатора. Был послан сигнал, получен отраженный сигнал, в результате чего уточнили расстояние от Земли до Луны.

Сегодня в астрономии радиолокация занимает свое особое место, радиоастрономия – это один из видов очень серьезных, быстроразвивающихся частей науки.

Простой приемник прямого усиления с рамочной антенной

Простой средневолновый радиоприемник прямого усиления, собранный по традиционной схеме Г. Шульгиным (рис.

имеет рамочную антенну [Р 12/81-49]. Она наматывается на заготовке: пластине из фанеры размерами 56x56x5 мм. Катушка индуктивности L1 (350 мкГн) имеет 39 витков провода ПЭВ-0,15 мм с отводом от 4 витка снизу (по схеме).

Рис. 8. Схема радиоприемника с рамочной антенной на СВ диапазон.

Схема конвертера-преобразователя частоты FM диапазона

Конвертер-преобразователь частоты Э. Родионова, рис. 10, позволяет «переносить» сигналы из одной полосы частот в другую частотную область: с 88… 108 МГц на 66…73 МГц [Рл 4/99-24].

Рис. 10. Схема конвертера с 88… 108 МГц на 66…73 МГц.

Гетеродин (генератор) конвертора собран на транзисторе VT2 и работает на частоте примерно 30…35 МГц. Катушка И выполнена из обмоточного провода длиной 40 см, намотанного на оправку диаметром 4 мм. Настройку конвертора производят растягиванием или сжатием витков катушки L1.

Самодельный fm радиоприемник своими руками. Встраиваемый модуль укв-чм приемника. Низковольтный ламповый сверхрегенеративный FM-приемник без выходного трансформатора

УКВ-ЧМ приемник

Этот модуль можно встроить, например, в активную компьютерную акустическую систему, или старый AM-приемник, даже ламповую радиолу, чтобы можно было принимать сигналы УКВ-ЧМ радиовещания в диапазоне 87-108 МГц. Модуль сделан на микросхеме TDA7088T, главное её достоинство в том, что налаживание приемника предельно простое, даже не нужно никаких приборов. Только приблизительно уложить диапазон подстройкой гетеродинной катушки, ориентируясь по приему всех местных станций, и подогнать настройку входного контура, чтобы чувствительность была наибольшей. Еще одно преимущество TDA7088T, — это электронная настройка двумя кнопками. Недостаток — нет шкалы. Все это позволяет встроить приемник куда угодно, где есть необходимое питание и УНЧ. А так же место для платы. Кнопки могут быть как на плате, так и выносными.

Принципиальная схема модуля показана на рисунке 1.

На рисунке 2 приводится рисунок печатной платы и монтажная схема. Микросхема располагается со стороны печатных проводников, а все детали с другой стороны.

Антенна W1 может быть чем угодно, как телескопический штырь, так и кусок монтажного провода. Входной контур -катушка L1 и конденсаторы С1 и С2. Вход УРЧ симметричный высокоомный, поэтому катушка без катушки связи или отводов. Резистор R1 ограничивает входное сопротивление антенного входа. Входной контур настроен на середину диапазона и при перестройке по диапазону не настраивается.

Гетеродинный контур на катушке L2, конденсаторе С4 и варикапе VD1. Напряжение настройки на варикап поступает с вывода 15 микросхемы. Настройка производится двумя кнопками S1 и S2. При нажатии на S2 происходит автоматический поиск радиостанции. При повторном нажатии, — поиск и переход к следующей радиостанции. И так до конца диапазона. Затем можно вернуться на начало диапазона, нажав кнопку S2. И снова повторить настройку кнопкой S1. При такой настройке есть важное достоинство, — на панели аппарата нужно установить только две кнопки. Это очень просто и не уродует аппарат. Но есть и недостаток — отсутствие шкалы настройки.

Выходное напряжение НЧ всего 100 mV, для входов большинства аппаратуры это мало, поэтому в схеме установлен дополнительный каскад УНЧ на транзисторе VT1. Если выходного напряжения ЗЧ в 100mV достаточно, можно от каскада на VT1 отказаться, и НЧ сигнал снимать с вывода 2 микросхемы.

Напряжение питания от 3 до 6V. То есть от двух до четырех гальванических элементов. Если напряжение питания аппарата, куда устанавливается модуль, больше, можно его понизить интегральным стабилизатором, например, 78L05.
Катушки L1 и L2 бескаркасные. Внутренний диаметр 3 мм. L1 — 7 витков, L2 — 9 витков. Провод ПЭВ 0,43. Подстройка катушек путем растягивания — сжимания. Гетеродинную катушку после настройки желательно зафиксировать каплей парафина, иначе может микрофонить.

Привалов Ю.


Сегодня разберем ТОП-3 рабочие схемы ламповых приемников КВ, УКВ, ФМ диапазонов. Первым делом рассмотрим, как собрать простейший ламповый КВ приемник. Второй проект представляет собой УКВ ЧМ-приемник в ретро-стиле. По третьей схеме соберем низковольтный ламповый сверхрегенеративный ФМ-приемник без выходного трансформатора.

Ламповый КВ приемник своими руками

Первой рассмотрим интересную схему приёмника диапазона КВ. Этот радиоприемник очень чувствительный и достаточно селективный для приёма коротковолновых частот по всему миру. Одна половина лампы 6AN8 служит как усилитель РЧ, а другая — как регенеративный приемник. Приемник предназначен для работы с наушниками или как тюнер с последующим отдельным усилителем НЧ.

Схема лампового КВ приёмника

Для корпуса берите толстый алюминий. Шкалы напечатаны на листе толстой глянцевой бумаги, а затем приклеены к передней панели. Моточные данные катушек указаны на схеме, там же и диаметр каркаса. Толщина провода — 0,3–0,5 мм. Намотка виток к витку.


Для блока питания радио нужно найти стандартный трансформатор от любой маломощной ламповой радиолы, обеспечивающий примерно 180 вольт анодного напряжения при токе 50 мА и 6,3 В накала. Не обязательно делать выпрямитель со средней точкой — хватит обычного мостового. Разброс напряжений допустим в пределах +-15%.

Настройка и устранение неисправностей

Настройтесь на желаемую станцию с помощью переменного конденсатора С5 примерно. Теперь конденсатором C6 — для точной настройки на станцию. Если ваш ресивер не будет нормально принимать, то либо менять значения резисторов R5 и R7, формирующих через потенциометр R6 дополнительное напряжение на 7-м выводе лампы, или просто поменять местами подключение контактов 3 и 4 на катушке обратной связи L2. Минимальная длина антенны будет около 3-х метров. С обычной телескопической принимать будет слабовато.

Низковольтный ламповый сверхрегенеративный FM-приемник без выходного трансформатора — схема и монтаж


Рассмотрим ламповую конструкцию с низким анодным напряжением, очень простой схемой, распространенными элементами и отсутствуем потребности в выходном трансформаторе. Причём это не очередной усилитель для наушников или какой-нибудь овердрайв для гитары, а намного более интересное устройство.

Сверхрегенераторы — это очень интересная разновидность радиоприемников, которая отличается простотой схем и неплохими характеристиками, сравнимыми с простыми супергетеродинами. Сабжи были крайне популярны в середине прошлого века (особенно в портативной электронике) и предназначены они в первую очередь для приема станций с амплитудной модуляцией в УКВ диапазоне, но также могут принимать станции с частотной модуляцией (т.е. для приема тех самых обычных FM-станций).

Основным элементом данного типа приемников является сверхрегенеративный детектор, который является одновременно как частотным детектором, так и усилителем радиочастоты. Такой эффект достигается за счет применения регулируемой положительной обратной связи. Подробно описывать теорию процесса нет смысла, так как «все написано до нас» и без проблем осваивается по этой ссылке.

За основу была взята эта схема:


После ряда экспериментов была сформирована следующая схема на лампе 6н23п:


Данная конструкция работает сразу (при правильном монтаже и живой лампе), причем выдает неплохие результаты даже на обычные наушники-вкладыши.

Теперь подробнее пройдемся по элементам схемы и начнем с лампы 6н23п (двойной триод):


Чтобы понять правильное расположение ног лампы (информация для тех, кто раньше с лампами дел не имел), нужно повернуть ее ножками к себе и ключом вниз (сектор без ножек), тогда представший перед вами прекрасный вид будет соответствовать картинке с распиновкой лампы (работает и для большинства других ламп). Как видно по рисунку, в лампе целых два триода, но нам нужен всего один. Вы можете использовать любой, никакой разницы нет.

Теперь пойдем по схеме слева на право. Катушки индуктивности L1 и L2 лучше всего мотать на общем круглом основании (оправке), идеально для этого подходит медицинский шприц диаметром 15мм, причем L1 желательно мотать поверх картонной трубки, которая с небольшим усилием движется по корпусу шприца, чем обеспечивает регулировки связи между катушками. В качестве антенны к крайнему выводу L1 можно припаять кусок провода или же припаять антенное гнездо и использовать что-то более серьезное.

L1 и L2 желательно мотать толстым проводом для повышения добротности, например, проводом 1мм и больше с шагом 2мм (особая точность тут не нужна, так что можете особо не заморачиваться с каждым витком). Для L1 нужно намотать 2 витка, а для L2 — 4–5 витков.

Далее идут конденсаторы C1 и C2, которые представляют собой двухсекционный конденсатор переменной емкости (КПЕ) с воздушным диэлектриком, он является идеальный решением для подобных схем, КПЕ с твердым диэлектриком использоваться нежелательно. Наверное, КПЕ является самым редким элементом данной схемы, но его довольно легко найти в любой старой радиоаппаратуре или на барахолках, хотя его можно заметить и двумя обычным конденсаторами (обязательно керамическими), но тогда придется обеспечивать подстройку с помощью импровизированного вариометра (прибора для плавного изменения индуктивности). Пример КПЕ:


Нам нужно всего две секции КПЕ, они обязательно должны быть симметричны, т.е. иметь одинаковую емкость в любом положении регулировки. Их общей точной будет служить контакт подвижной части КПЕ.

Затем следуется цепочка гашения, выполненная на резисторе R1 (2.2МОм) и конденсаторе C3 (10 пФ). Их значения можно менять в небольших пределах.

Катушка L3 выполняет роль анодного дросселя, т.е. не позволяется высокой частоте пройти дальше. Подойдет любой дроссель (только не на железном магнитопроводе) с индуктивностью 100–200 мкГн, но проще намотать на корпус сточенного мощного резистора 100–200 витков тонкого медного эмалированного провода.

Конденсатор C4 служит для отделения постоянной составляющей на выходе приемника. Наушники или усилитель можно подключать непосредственно к нему. Емкость его может варьироваться в довольно больших пределах. Желательно, чтобы C4 был пленочный или бумажный, но с керамическим тоже будет работать.

Резистор R3 представляет собой обычный потенциометр на 33 кОм, который служит для регулирования анодного напряжения, чем позволяет менять режим лампы. Это необходимо для более точной подстройки режима под конкретную радиостанцию. Можно заменить на постоянный резистор, но это нежелательно.

На этом элементы закончились. Как видите схема очень простая.

И теперь немного по поводу питания и монтажа приемника.

Анодное питание можно смело использовать от 10В до 30В (можно и больше, но там уже немного опасно подключать низкоомную аппаратуру). Ток там совсем небольшой и для питания подойдет БП любой мощности с необходимым напряжением, но желательно, чтоб он был стабилизирован и имел минимум шумов.

И еще обязательным условием является питание накала лампы (на картинке с распиновкой он обозначен как нагреватели), так как без него она работать не будет. Тут уже токи нужны поболее (300–400 мА), но напряжение всего 6.3В. Подойдет как переменное 50 Гц, так и постоянное напряжение, причем оно может быть от 5 и до 7В, но лучше использовать каноничное 6.3В. Лично я не пробовал использовать 5В на накале, но скорее всего все будет нормально работать. Накал подается на ножки 4 и 5.

Теперь про монтаж. Идеальным является расположение всех элементов схемы в металлическом корпусе с подключенной к нему в одной точке землей, но будет работать и вообще без корпуса. Так как схема работает в УКВ диапазоне, все соединения в высокочастотной части схемы должны быть максимального короткими для обеспечения большей стабильности и качества работы устройства. Вот пример первого прототипа:


При таком монтаже все работало. Но с металлическим корпусом-шасси немного стабильнее:


Для таких схем идеальным является навесной монтаж, так как он дает хорошие электрические характеристики и позволяет без особых затруднений вносить поправки в схемы, что с платой уже не так просто и аккуратно получается. Хотя и мой монтаж аккуратным назвать нельзя.

Теперь по поводу наладки.

После того как вы на 100 % убедились в правильности монтажа, подали напряжение и ничего не взорвалась и не загорелось — это значит, что скорее всего схема работает, если использованы правильные номиналы элементов. И вы скорее всего услышите в наушниках шумы. Если во всех положениях КПЕ вы не слышите станции, и вы точно уверены, что у вас принимаются вещательные станции на других устройствах, то попробуйте изменить количество витков катушки L2, этим вы перестроите частоту резонанса контура и возможно попадете на нужный диапазон. И пробуйте крутить ручку переменного резистора — это тоже может помочь. Если совсем ничего не помогает, то можно поэкспериментировать с антенной. На этом наладка завершается.

Видео о сборке лампового приемника:

Чисто ламповый вариант (на макетном уровне):

Вариант с добавлением УНЧ на ИМС (уже с шасси):

Недавно собрал известную схему FM радиоприемника на специализированной микросхеме к174ха34 с простым усилителем на микросхеме TDA2003, но в качестве УНЧ можно применить и отечественный аналог — к174ун14.

Вся конструкция самодельного приёмника помещается на печатной плате, кроме переменных резисторов, антенны, динамика и источника питания. В качестве корпуса был применена коробка из под головы автомобильного магнитофона фирмы «JRC», так как она чуть больше ее аналогов в длину — примерно на сантиметр и чуть глубже, что нам и нужно. Рисунок печатной платы в формате LAY качаем тут.

FM приемник принимает весь диапазон от 88 до 108Мгц. Мне удалось настроить его на семь радиостанций, которые переключаются при плавном вращении переменного резистора «НАСТРОЙКА», но из семи радио станций лишь пять имеют хорошее качество, что тем не менее очень неплохо для такой простой схемы, особенно если учесть, что станция находится на расстоянии более 80 километров.

Приемник очень громкий, а особенно качественный звук получается при подключении больших внешних колонок. Если вас не устраиваетя схема усилителя, то микросхему УНЧ можно заменить на любую другую или вообще убрать, если будете слушать радио через наушники. Антенной служит отрезок метрового провода, но лучше к схеме добавить маленький антенный усилитель, называется УВЧ (усилитель высокой частоты).

Сопротивление резистора «ГРОМКОСТЬ» необязательно должно быть 33ком, можно любое в пределах 10-47ком. Катушки: катушка L1 — бескаркасная, 8 витков, наматывается на оправе 3мм проводом ПЭЛ 0,55мм. Ей и настраивается FM приемник. L2 — входной контур, наматывается тем же проводом, на тот же диаметр, только имеет 13 витков.

При настойке приемника необходимо растягивать или сжимать катушку L1 до тех пор, пока не поймаете весь фм диапазон. Но не спешите растягивать ее. Вначале попробуйте поймать стации полностью сжатой катушкой, как в моем случае. Например мне не пришлось настраивать её совсем.

Питанием FM радиоприёмника может служить обыкновенный китайский блок питания стационарного телефона либо другой аналогичный, с током от 0,05А (в варианте без УНЧ) или 1А (с микросхемой TDA2003). Транзистор кт315 можно заменить любым аналогичным. При сборке схемы без ошибок, приемник начинает работать сразу.

Предлагаемая схема предназначена для сборки громкоговорящего стереоприемника с цифровой шкалой, позволяющего принимать широкополосные ЧМ-станции в диапазоне 65…110 МГц. Приемник имеет пять фиксированных настроек на принимаемые станции и встроенные часы с будильником. Приемник отличается высокой чувствительностью, простотой и хорошими характеристиками, не содержит дефицитных деталей.

Технические характеристики
Диапазон принимаемых частот, МГц 65… 110
Фиксированные настройки 5
Чувствительность, мкВ 2
Потребляемый ток, мА 20
Напряжение питания, В 6
Выходная мощность, Вт 0,25
Коэффициент гармоник, % 0,2
Сопротивление нагрузки, Ом 4…8
Антенна телескопическая, см 30…60

Принцип работы стереоприемника

На рисунке приведена электрическая принципиальная схема приемника. Основу приемника составляет микросхема DA1 TDA7021, которая представляет собой супергетеродин с одним преобразованием частоты и низким значением промежуточной частоты (ПЧ). Микросхема содержит усилитель высокой частоты, смеситель, гетеродин, усилитель промежуточной частоты, усилитель-ограничитель, ЧМ-детектор, устройство бесшумной настройки (БШН) и буферный усилитель 3Ч. На микросхеме DA2 TDA7040 выполнен стереодекодер с пилот-тоном. В качестве стереоусилителя звуковой частоты применена микросхема DA3 К174УН23. Цифровая шкала и электронные часы выполнены на микросхеме DA4 SC3610 с ЖК-дисплеем.
Сигнал с антенны поступает на внешний УВЧ, выполненный на транзисторе VT2 КТ368, через конденсатор С15. Усиленный сигнал высокой частоты и сигнал гетеродина, контуром которого являются катушка индуктивности L1, варикап VD1 и конденсатор СЗ, поступают на смеситель внутри микросхемы.
Сигнал ПЧ (около 70 кГц) с выхода смесителя выделяется полосовыми фильтрами, элементами коррекции которых являются конденсаторы С5 и С6, и поступает на вход усилителя-ограничителя. Усиленный и ограниченный сигнал ПЧ поступает на ЧМ-детектор. Демодулированный сигнал, пройдя через фильтр НЧ-коррекции, внешним элементом которого является конденсатор С1, поступает на устройство БШН, режимом работы которого можно управлять, изменяя емкость конденсатора С2.
С выхода устройства БШН звуковой сигнал поступает на буферный усилитель. Подключение блокировочного конденсатора С7 способствует увеличению выходного напряжения 3Ч и более устойчивой работе буферного усилителя. Комплексный стереосигнал (КОС) с выхода буферного усилителя микросхемы DA1 TDA7021 через корректирующую цепь С12, R10, определяющую тембр звучания и качество разделения каналов, поступает на вход стереодекодера, собранного на микросхеме DA2 TDA7040.
Резистором R11 устанавливают режим работы опорного генератора, внешними элементами которого являются R12, С13, С14. При наличии КСС на выходе микросхемы DA1 TDA7021 напряжение с выхода микросхемы DA2 TDA7040 уменьшается, закрывая транзистор VT3 и зажигая светодиод VD2. Декодированные сигналы с левого и правого каналов микросхемы DA2 TDA7040 через фильтр С16…С19 поступают на соответствующие входы стререоусилителя звуковой частоты, собранного на микросхеме DA3 К174УН23. Усиленные сигналы левого и правого каналов поступают на динамические головки ВА1 и ВА2.
Сигнал гетеродина с варикапа VD1 поступает на вход ВЧ-усилителя на транзисторе VT1 и далее на вход цифрового индикатора частоты настройки на микросхеме DA4 SC3610. ZQ1, R18, R19, С24, С25, С26 — внешние элементы опорного генератора цифровой шкалы DA4 SC3610.
Когда приемник выключен, эта микросхема работает в режиме часов, а когда включен — в режиме цифровой шкалы. Это достигается подачей напряжения питания через резистор R17 на микросхему DA4 SC3610. С вывода 28 этой микросхемы сигнал будильника поступает на транзистор VT4, нагрузкой которого является дроссель L2 и пьезокерамический звукоизлучатель ZQ2.

Настройка стереоприемника

Выбор фиксированной настройки осуществляется переключателем SA1, который подключает к гетеродину микросхемы DA1 TDA7021 один из пяти переменных резисторов. Настройка в каждом канале выполняется переменным резистором, который подает управляющее напряжение на варикап. Под воздействием этого напряжения меняется емкость варикапа, что приводит к изменению резонансной частоты контура гетеродина, и приемник настраивается на радиостанцию. Настройка стереодекодера заключается в установке резистором R11 наилучшего разделения каналов при приеме радиостанции. Громкость звучания регулируют по двум каналам одним переменным резистором R14. На этом настройка приемника закончена.
Микросхему TDA7021 можно заменить на ее отечественный аналог К174ХА34. Вместо микросхемы К174УН23 подойдет любой низковольтный сереофонический усилитель мощности, но с соответствующей схемой включения. Транзистор КТ368 можно заменить на любой малошумящий ВЧ-транзистор с граничной частотой не менее 600 МГц. Транзистор КТ315 можно заменить на любой НЧ-транзистор. Варикап VD1 — КВ109, КВ132 или любой аналогичный, обеспечивающий полное перекрытие диапазона 65…110 МГц. Диоды КД503 можно заменить на КД522 и другие. Динамические головки можно использовать любые сопротивлением 4…8 Ом. Пьезоизлучатель в приемнике можно использовать ЗП-1, ЗП-3 или импортный. Для питания приемника используют стабилизированный блок питания на напряжение 6 В. Применение нестабилизированного источника питания неприемлемо, так как при этом будет «плавать» частота настройки. В качестве кварцевого резонатора ZQ1 подойдет любой часовой кварц на частоту 32768 Гц. Катушка L1 содержит 3…4 витка провода ПЭВ диаметром 0,6 мм, намотанного на каркасе диаметром 5 мм с латунным или ферритовым подстрочником. Величину индуктивности дросселя L2 подбирают по максимальной громкости звучания пьезоизлучателя. Для управления часами используют пять кнопок: SA2 — включение звонка; SA3 — настройка времени звонка; SA4 — настройка текущего времени; SA5 -подстройка минут; SA6 — подстройка часов.
Если нет в наличии микросхем цифровой шкалы DA4 SC3610 и ЖК-дисплея, то в схеме стереоприемника их можно не использовать. Но тогда он лишится таких сервисных функций, как цифровая шкала и электронные часы с будильником.

Простейшие радиоприемники непригодны ловить FM диапазон, модуляция частотная. Обыватели утверждают: отсюда повелось название. С английского литеры FM трактуем: частотная модуляция. Четко выраженный смысл, читателям важно понять: простейший радиоприемник, своими руками собранный из хлама, FM не примет. Возникает вопрос необходимости: сотовый телефон ловит вещание. В электронную аппаратуру встроена подобная возможность. Вдали от цивилизации люди по-прежнему хотят ловить вещание старым добрым способом — чуть было не сказали зубными коронками — конструировать дельные приборы прослушивания любимых передач. На халяву…

Детекторный простейший радиоприемник: основы

Зубных пломб рассказ коснулся неспроста. Сталь (металл) способна преобразовывать эфирные волны в ток, копируя простейший радиоприемник, челюсть начинает вибрировать, кости уха детектируют сигнал, зашифрованный на несущей. При амплитудной модуляции высокая частота повторяет размахом голос диктора, музыку, звук. Полезный сигнал содержит некоторый спектр, сложно пониманию непрофессионала, важно, что при сложении составляющих получается некоторый закон времени, следуя которому, динамик простейшего радиоприемника воспроизводит вещание. На провалах челюстная кость замирает, воцаряется тишина, пики ухо слышит. Простейший радиоприемник, не дай Бог, конечно, заиметь.

Обратный пьезоэлектрический эффект изменяет согласно закону электромагнитной волны геометрические размеры костей. Перспективное направление: человек-радиоприемник.

Советский Союз славился запуском космической ракеты, впереди планеты всей, научными изысканиями. Времена Союза поощряли степени. Светила принесли немало пользы здесь, – конструирование радиоприемников, – зарабатывают приличные деньги за бугром. Фильмы пропагандировали умных, не зажиточных, неудивительно, что журналы полны различными наработками. Серия современных уроков создания простейших радиоприемников, доступная на Ютубе, основывается на журналах 1970 года издания. Поостережемся отходить от традиций, опишем собственное видение ситуации сферы радиолюбительства.

Концепция персональной электронно-вычислительной машины разработана советскими инженерами. Руководством партии идея признана неперспективной. Силы отданы построению гигантских вычислительных центров. Излишне трудящемуся осваивать дома персональный компьютер. Смешно? Сегодня ситуации позабавнее встретите. Потом жалуются – Америка окутана славой, печатает доллары. AMD, Intel – слышали? Made in USA.

Простейший радиоприемник своими руками сделает каждый. Антенна не нужна, существуй хороший устойчивый сигнал вещания. Диод припаивается к выводам высокоомных наушников (компьютерные отбросьте), остается заземлить один конец. Справедливости ради скажем, фокус пройдет со старыми добрыми Д2 советского выпуска, отводы настолько массивные, что послужат антенной. Землю получим в простейшем радиоприемнике, прислонив одну ножку радиоэлемента к батарее отопления, зачищенной от краски. В противном случае декоративный слой, являясь диэлектриком конденсатора, образованного ножкой и металлом батареи, изменит характер работы. Пробуйте.

Авторы ролика заметили: сигнал вроде есть, представлен невообразимой мешаниной шорохов, осмысленных звуков. Простейший радиоприемник лишен избирательности. Любой может понять, осознать термин. Когда настраиваем приемник, ловим нужную волну. Помните, обсуждали спектр. Эфире содержит ватагу волн одновременно, поймаете нужную, сузив диапазон поиска. Существует в простейшем радиоприемнике избирательность. На практике реализуется колебательным контуром. Известен из уроков физики, сформирован двумя элементами:

  • Конденсатор (емкость).
  • Катушка индуктивности.

Повременим изучать подробности, элементы снабжены реактивным сопротивлением. Благодаря чему волны различной частоты имеют неодинаковое затухание, проходя мимо. Однако существует некий резонанс. У конденсатора реактивное сопротивление на диаграмме направлено в одну сторону, у индуктивности – в другую, причем выведена зависимость частотная. Оба импеданса вычитаются. На некоторой частоте составляющие уравниваются, реактивное сопротивление цепочки падает до нуля. Наступает резонанс. Проходят избранная частота, примыкающие гармоники.

Курс физики показывает процесс выбора ширину полосы пропускания резонансного контура. Определяется уровнем затухания (3 дБ ниже максимума). Приведем выкладки теории, руководствуясь которыми человек может собрать простейший радиоприемник своими руками. Параллельно первому диоду добавляется второй, включенный навстречу. Впаивается последовательно наушникам. Антенна отделяется от конструкции конденсатором емкостью 100 пФ. Здесь заметим: диоды наделены емкостью p-n-перехода, умы, видимо, просчитали условия приема, какой конденсатор входит в простейший радиоприемник, наделенный избирательностью.

Полагаем, несильно отклонимся от истины, сказав: диапазон затронет области КВ или СВ. Будет приниматься несколько каналов. Простейший радиоприемник является чисто пассивной конструкцией, лишенной источника энергии, больших свершений ждать не следует.

Пара слов, почему обсуждали удаленные закутки, где радиолюбители жаждут экспериментов. В природе замечены физиками явления рефракции, дифракции, оба позволяют радиоволнам отклоняться от прямого курса. Первое назовем огибанием препятствий, горизонт отодвигается, уступая вещанию, второе – преломлением атмосферой.

ДВ, СВ и КВ ловятся на значительном удалении, сигнал будет слабым. Следовательно, простейший радиоприемник, рассмотренный выше, является пробным камнем.

Простейший радиоприемник с усилением

В рассмотренной конструкции простейшего радиоприемника нельзя применять низкоомные наушники, сопротивление нагрузки напрямую определяет уровень передаваемой мощности. Давайте сначала улучшим характеристики, пользуясь помощью резонансного контура, затем дополним простейший радиоприемник батарейкой, создав усилитель низкой частоты:

  • Избирательный контур состоит из конденсатора, индуктивности. Журнал рекомендует в простейший радиоприемник включить переменный конденсатор диапазона подстройки 25 – 150 пФ, индуктивность необходимо изготовить, руководствуясь инструкцией. Ферромагнитный стержень диаметром 8 мм обматывается равномерно 120 витками, захватывающими 5 см сердечника. Подойдет медный провод, покрытый лаковой изоляцией, диаметром 0,25 – 0,3 мм. Приводили читателям адрес ресурса, где посчитаете индуктивность, вводя цифры. Аудитории доступно самостоятельно найти, пользуясь Яндексом, вычислить, количество мГн индуктивности. Формулы подсчета резонансной частоты также общеизвестны, следовательно, можно, оставаясь у экрана, представить канал настройки простейшего радиоприемника. Обучающее видео предлагает изготовить переменную катушку. Необходимо внутри каркаса с намотанными витками проволоки выдвигать, вдвигать сердечник. Положения феррита определяет индуктивность. Диапазон посчитайте, воспользовавшись помощью программы, умельцы Ютуба предлагают, наматывая катушку, каждые 50 витков делать выводы. Поскольку отводов порядка 8-ми, делаем вывод: суммарное число оборотов превышает 400. Индуктивность меняете скачкообразно, точную подстройку ведете сердечником. Добавим к этому: антенна для радиоприемника развязывается с остальной схемой конденсатором емкостью 51 пФ.
  • Второй момент, который нужно знать, это то, что в биполярном транзисторе также имеются p-n-переходы, и даже два. Вот коллекторный как раз и уместно использовать вместо диода. Что касается эмиттерного перехода, то заземляется. Затем на коллектор прямо через наушники подается питание постоянным током. Рабочая точка не выбирается, поэтому результат несколько неожиданный, понадобится терпение, пока устройство радиоприемника будет доведено до совершенства. Батарейка тоже в немалой степени влияет на выбор. Сопротивление наушников считаем коллекторным, которое задает крутизну наклона выходной характеристики транзистора. Но это тонкости, например, резонансный контур тоже придется перестроить. Даже при простой замене диода, не то что внедрении транзистора. Вот почему рекомендуется вести опыты постепенно. А простейший радиоприемник без усиления у многих вовсе не будет работать.

А как сделать радиоприемник, который бы допускал использование простых наушников. Подключите через трансформатор, наподобие того, что стоит в абонентской точке. Ламповый радиоприемник отличается от полупроводникового тем, что в любом случае требует питания для работы (накал нитей).

Вакуумные приборы долго выходят на режим. Полупроводники готовы сразу же принимать. Не забывайте: германий не терпит температур выше 80 градусов Цельсия. При необходимости предусмотрите охлаждение конструкции. На первых порах это нужно, пока не подберете размер радиаторов. Используйте вентиляторы из персонального компьютера, процессорные кулеры.

Самоделки — своими руками

Главная » Радио прием



Дорогой друг! Приветствую тебя на сайте самоделки.укоз.нет. Убежден, тебе не придется скучать и ты всегда сможешь найти то, что тебе по душе. Самоделки своими руками непременно пригодятся для повседневной жизни, а некоторые идеи смогут принести доход. Если ты любишь все делать сам своими руками — ты зашел по адресу! Для удобного пользования ресурсом все материалы объединены в категории и тебе будет не сложно ориентироваться. Счастливого время препровождения на нашем сайте, всегда ваша самодельная золотая чаша!



      

В радиолюбительской связи и в портативных связных радиостанциях диапазона 27,120.. .27,250 МГц разрешено использовать узкополосную ЧМ с девиацией 4-3 кГц. При этом возможно использование простых предатчиков с VXO с выходным каскадом в классе С, имеющ … Читать дальше »



 Просмотров: [1631] | Рейтинг: 5.0/1

      

Высокую чувствительность, 0.25-0.15мкв, при минимальном количестве каскадов усиления, позволяет получить предлагаемый смеситель. Крутизна преобразования у него намного выше, чем у любых других смесителей. Динамический диапазон не выс … Читать дальше »



 Просмотров: [1383] | Рейтинг: 0.0/0

      

“Ничего особенного — обыкновенный “сверхач”, и катушек слишком много!” В общем то — да. Правда не у всех “сверхачей” коэффициент усиления 3 400 000 раз! А отличие приемника не столько в нетрадиционном спо … Читать дальше »



 Просмотров: [1863] | Рейтинг: 5.0/1

      

В настоящее время эфирное телевизионное вещание охватывает диапазон частот от 48,5 до 790 МГц. Для приема сигналов в столь широкой полосе частот используют либо несколько отдельных антенн (каждую для своего участка частот) либо одну комбиниро … Читать дальше »



 Просмотров: [1256] | Рейтинг: 5.0/1

      

Q: Для кого предназначен этот FAQ?

A: Предназначен для начинающих пользователей не до конца забывших школьный курс физики. Все ниже сказанное относится к технике CB диапазона (27Mhz). Сознательно допущены упрощения. Для более полного ознакомле … Читать дальше »



 Просмотров: [1887] | Рейтинг: 0.0/0

      

Хотите верьте, хотите не верьте, но половина антенны у туриста всегда с собой! Давно наша промышленность начала выпускать палатки, у которых каркас состоит из составных дюралевых прутков. Чем не противовес для GP!

 

Удлините … Читать дальше »



 Просмотров: [1038] | Рейтинг: 0.0/0

      

Спиральная антенна предназначена дня установки на радиостанции личного пользования в носимом варианте. По сравнению со штыревой телескопической антенной спиральная имеет меньшие размеры по длине, что создает неоспоримые преимущества при ис … Читать дальше »



 Просмотров: [1006] | Рейтинг: 0.0/0

      

 

Как правило, у потребителя уже имеется приемник на радиовещате … Читать дальше »



 Просмотров: [2068] | Рейтинг: 0.0/0

      

УКВ конвертер к приемнику УКВ диапазоном.
У многих есть приемники с УКВ диапазоном I (65,0 мгц — 74,0 мгц), но нем мало радиостанций, в тоже время в УКВ диапазоне II (FM) (88,0 мгц — 109 мгц) работает значительное количество радиостанци … Читать дальше »



 Просмотров: [11471] | Рейтинг: 2.0/2


Самоделки — для тех кто делает сам и… своими руками

Ламповый укв приемник своими руками. Ламповый радиоприемник как сделать

Автор admin На чтение 4 мин. Просмотров 147 Опубликовано

Радиовещание на ультракоротких волнах осуществляется с использованием частотной модуляции (ЧМ) и занимает следующие полосы частот:

  • УКВ – 65,9-74 МГц
  • FM1 – 87,5-95 МГц
  • FM2 – 98-108 МГц

УКВ диапазон использовался в советское время и применяется в России в настоящее время. В FM диапазонах работают радиостанции других стран. Сделать своими руками ламповый радиоприёмник не сложно. Основные трудности заключаются в настройке и регулировке конструкции. Если звуковую аппаратуру можно наладить на слух, так как легко проверить наличие и прохождение сигнала по цепям, то для настройки устройств радиоволнового диапазона потребуется ГСС (Генератор стандартных сигналов) и осциллограф. ГСС позволит настраивать радиоприёмные устройства, работающие во всех радиодиапазонах с амплитудной или частотной модуляцией. Если не требуется точная подгонка по диапазону и изготовление шкалы с рабочими частотами, можно обойтись без генератора.

Как сделать ламповый радиоприёмник

С появлением транзисторов и интегральных микросхем ламповые конструкции были, на некоторое время, забыты. Сейчас радиолюбители всё чаще обращаются к электронным лампам в своих конструкциях. Самодельный ламповый радиоприёмник УКВ диапазона можно собрать на одной лампе. В схеме используется принцип сверхрегенератора. В таких устройствах применяется небольшое количество радиодеталей. Они обладают высокой чувствительностью. Недостатком сверхрегенеративных приёмников является шум в динамиках, при отсутствии полезного сигнала.

УКВ приёмник собран на пальчиковом пентоде 6Ж5П. В качестве источника питания используется мостовой выпрямитель, обеспечивающий 100-120 В постоянного напряжения. Все конденсаторы, кроме переходного, керамические. Катушка L содержит 4 витка медного провода диаметром 1 мм. Лучше всего использовать посеребрённый или лужёный провод. Обычно питание накалов ламп осуществляется от переменного напряжения 6,3 В, но в данном случае, для уменьшения фона переменного тока, применяется постоянное напряжение от отдельного выпрямителя.

Полная схема УКВ-ЧМ приёмника с усилителем низкой частоты. В зависимости от типа выходного трансформатора в устройстве можно использовать высокоомный наушник или динамик 4-8 Ом.

В цепи питания сеток ламп стоит электролитический конденсатор 50,0 мкф на 200 В. Переменный резистор в цепи управляющей сетки выходной лампы регулирует громкость сигнала.

Простой ламповый приёмник своими руками

Приёмник УКВ диапазона с частотной модуляцией можно выполнить по другой схеме. Это сверхрегенеративный детектор, который рассчитан на приём радиостанций в диапазоне от 36 до 75 МГц. Ламповый радиоприёмник своими руками можно собрать на одной лампе 6Ж3П или 6Ж5П.

В схеме сохранены принципиальные обозначения оригинальной схемы. Сигнал подаётся на вход усилителя низкой частоты через конденсатор 5000 пФ. Конденсатор С1 – подстроечный керамический или воздушный. Катушки L1 и L2 бескаркасные. Они наматываются на оправках диаметром 15 мм. L1 содержит 7 витков лужёного медного провода диаметром 1,5 мм, а L2 – 3 или 4 витка такого же провода. Количество витков подбирается экспериментально. Расстояние между катушками определяется в процессе наладки схемы. Для приёма станций в FM диапазоне (88-104 МГц) число витков катушки L1 нужно уменьшить до 4.

Дроссель Др выполнен из провода ПЭЛШО 0,2. Он содержит 100 витков, которые наматываются на корпусе резистора МЛТ-2. Обмотка припаивается к выводам резистора. Припаивать дискретные элементы лучше всего к ножкам ламповой панели, чтобы уменьшить паразитные связи. Все соединительные провода должны быть как можно короче. Схема обладает высокой чувствительностью по всему диапазону. После того как схема правильно собрана её настраивают.

Для этого, после включения питания, вращением ручки переменного резистора R2 нужно добиться сверхрегенерации. Это шипящий звук в динамиках. Затем, вращая подстроечный конденсатор С1 нужно убедиться, что эффект присутствует по всему диапазону. Провалы генерации устраняются подбором витков дросселя, изменением ёмкости С4 или сопротивления R1 и конденсатора С2. Затем подключается штыревая антенна (кусок провода) и производится настройка на станцию. При появлении сигнала шипение пропадает и слышна работа радиостанции. Изменить частоту принимаемого диапазона можно раздвигая и сжимая витки катушки L1.

Максимально допустимое напряжение на аноде радиолампы составляет 300 В. Для снижения фона переменного тока питание на накал лампы лучше подавать с отдельного выпрямителя. Готовую и настроенную конструкцию нужно поместить в металлический экран, как это сделано в промышленных приёмниках.

⚡️Простой УКВ конвертер | radiochipi.ru

На чтение 5 мин Опубликовано Обновлено

В статье описан простейший УКВ конвертер для приема радиостанций “европейского” диапазона 88-108 МГц на отечественные радиоприемники. Конструкция повторена более 200 раз на протяжении нескольких лет.

В схеме конвертера отсутствие дефицитных деталей, простота исполнения, настройка без приборов, стабильность работы схемы – основные черты описанного устройства. Несколько лет назад появилась острая необходимость – обеспечение приема радиостанций в европейской части УКВ диапазона (88-108 МГц). Первоначально эти станции начали появляться в странах бывшего соцлагеря, как грибы после дождя, а потом и в нашей стране.

На первых порах большой помехой на пути прогресса было отсутствие этого диапазона в советском стандарте, а значит, и массовых радиоприемников для его приема. На помощь пришел УКВ конвертер. В свое время были испытаны схемы различной степени сложности – от трех транзисторных до одно транзисторных.

При этом оказалось, что в большинстве случаев оптимальным был простейший одно транзисторный вариант.Следует сразу оговориться, что диодный смеситель в большинстве случаев значительно уступал транзисторному преобразователю частоты по коэффициенту передачи (преобразования) частоты и спектру гармоник.

По схеме рис. на сайте было изготовлено более двухсот (200!) конвертеров. Ни один дискретный элемент схемы не подбирался, а отклонения номиналов доходили до 20%. Транзисторы устанавливали без проверки коэффициента усиления. Преобразователь частоты выполнен на транзисторе VT1 типа КТ315 с любым буквенным индексом. Все контура без сердечников. Входной контур П и выходной L4 намотаны проводом ПЭВ-1- 0,8. Обмотки связи L2, L5 и гетеродинный контур 13 намотаны проводом ПЭВ-1-0,18. Количество витков катушек: L1 – 6 вит.; L2, L5- 2 вит.; L3 – 3+13 вит.; L4 – 7 вит.

Сначала на оправке 04 мм (использовали хвостовик сверла) наматывают виток к витку катушку L1. Выводы очищают от эмали, и катушку запаивают в плату. Потом наматывают катушку связи L2. Сверло из катушки пока не вынимают. Конец провода очищают от эмали и запаивают в плату. Обмотку связи наматывают между витками контурной катушки. Потом запаивают в плату второй конец катушки связи, и сверло-оправку удаляют из катушки. Крайние витки контурной катушки слегка раздвигают. Аналогично наматывают и запаивают катушки L4 и L5.

Катушку гетеродина L3 наматывают на пластмассовом прутке диаметром около 3,5 мм (использовали виниловые прутки от щеток снегоуборочной машины). После зачистки изоляции выводов катушку запаивают в плату. Потом монтируют остальные детали. Длина их выводов минимальна, поэтому высота платы получается очень небольшой.

Все конденсаторы схемы могут иметь отклонения от указанных на схеме номиналов до 20 %, резистор – более 30 %. Транзисторы КТ315 использовали с различными буквенными индексами, т.е. с разбросом коэффициентов усиления в очень широких пределах.
Емкость конденсатора С6, вообще, колебалась от нескольких тысяч пФ до 0,1 мкФ. На работе конвертера это не сказывалось.

Выводы всех элементов имели минимальную длину. Вся настройка состояла в выборе рабочего участка диапазона, именно участка. Почему-то большинство авторов статей обходят этот вопрос. А потом их последователи удивляются, почему не удается принять на конвертер радиостанции всего УКВ диапазона? Диапазон, перекрываемый исходным радиоприемником, около 1 МГц (65,9-74 МГц [1]).

Не изменяя перекрытия по частоте этого радиоприемника, а только перенося его настройку в другой участок УКВ диапазона конвертером, естественно, можно обеспечить прием только той же полосы частот (около 10 МГц). И не более. А новый диапазон УКВ по стандарту занимает полосу 20 МГц (88-108 МГц), т.е. вдвое большую. Значит, без расширения полосы приема стандартного УКВ приемника, тем более с фиксированной настройкой гетеродина конвертера, обеспечить прием станций всего “европейского” диапазона УКВ невозможно.

Этим приходится платить за простоту схемы конвертера. Остается только правильно выбрать частоту настройки гетеродина конвертера, чтобы не потерять хотя бы то, что еще осталось.
Перед настройкой конвертера витки катушек L2 и L4 слегка раздвигают. Выход конвертера соединяют с антенным гнездом УКВ радиоприемника. Величина напряжения питания конвертера не критична. Испытана работоспособность схемы при питании от источника напряжением 5-12 В, поэтому, как правило, используют напряжение питания схемы основного радиоприемника.

Настройкой основного радиоприемника добиваются приема какой-либо радиостанции нового УКВ диапазона. Слегка раздвигая витки гетеродинного контура L3 конвертера, сдвигают принимаемую часть поддиапазона. Иногда при больших отклонениях емкости конденсатора С4 может потребоваться уменьшить количество витков L3 на 1-2 витка. Добившись приема необходимой радиостанции, проверяют настройку L1 и L4. Если при введении в эти контура (поочередно) металлической спицы (сверла) сигнал принимаемой станции возрастет, то витки этих катушек надо слегка раздвинуть.

Возрастание громкости принимаемой радиостанции при введении тонкого ферритового сердечника свидетельствует о необходимости сжать витки катушки. И последнее. Вряд ли является необходимым подбор конденсатора контура гетеродина конвертера С4 по величине ТКЕ. Ведь практически все радиоприемники, к которым будут подключать конвертеры, имеют и используют АПЧГ. Соответственно практически не влияли на стабильность приема и колебания напряжения питания конвертера, также не замечено существенного влияния экранировки конвертера при встраивании его в радиоприемник, поэтому экранировка не производилась.

Естественно, после незначительных изменений схемы конвертер можно использовать с радиоприемниками, имеющими заземленный плюс источника питания. Для этого можно пойти двумя путями. Изменить тип проводимости используемого в конвертере транзистора или изменить точки подключения общих выводов катушек L2,15. Их можно соединить теперь с общим плюсом питания. Массу конвертера изолируют от корпуса радиоприемника.
Ну а самое простое решение – подключить антенну к конвертеру и сам конвертер к радиоприемнику через два небольших конденсатора.

Рисунок печатной платы показан на рис.2. В заключение хотелось бы отметить, что на стабильность работы конвертера в первую очередь влияла стабильность параметров всех контуров. Особенно в условиях вибрации (на автотранспорте), поэтому контура наматывали довольно толстым проводом, а после настройки контура заливали расплавленным (паяльником) парафином. Печатную плату покрывали несколькими слоями лака после распайки всех элементов и настройки.

Amazon.com: daier DIY Electronic Kits 76MHz-108MHz Stereo FM Radio Receiver PCB Беспроводной модуль: игрушки и игры

Экспериментальные цели набора:
1 、 Набор содержит множество типов электронных компонентов : Емкость сопротивлений , Катушка индуктивности, диод, ИС, разъем для наушников, кнопка и т. Д. Он имеет много основных типов компонентов, пользователям нужно только принести свой собственный стереофон и два AA батареи.
2 、 Изучение электронных схем。
3 、 Развитие практических навыков。
4 、 Использование особенно подходит для учеников, сваривающих двухслойные печатные платы!
Диапазон частот : FM 76 ~ 108 МГц

Преимущества использования в школьной практике: Электронное производство для любителей электроники или студентов, Этот набор FM FM Radio Kit для начинающих, особенно впервые использование сварочных инструментов для студентов или энтузиастов сварки, в частности, для оптимизации расположения различных компонентов, установки пакет прост в установке и очень успешен! Поскольку его использовали во многих школах, мы знаем его эффективность.В этот комплект входит пара качественных стереонаушников! Преимущества использования наушников в основном учитывают проблемы ученика с шумом в классе!
Особенности и методы использования: FM-радио имеет преимущества богатой программы, хорошего качества звука, вокруг запуска собственной FM-радиостанции. В комплекте карманный компьютер FM выбрал радио с использованием интегрированного блока HEX3653, 16-футовый двойной плоский корпус, рабочее напряжение 1,8 ~ 3,6 В, схема включает FM-радиоантенну, которая принимает все функции от выходного аудиосигнала дискриминатора, поиск также снабжен схемой настройки, схемой обнаружения сигнала, схемой шумоподавления и схемой сжатия с кольцом блокировки частоты смещения частоты FLL.Промежуточная частота схемы разработана как 70 кГц, и периферийная схема не требует трансформатора промежуточной частоты, а выбор частоты осуществляется RC-фильтром промежуточной частоты в схеме. В этом аппарате используется кнопка электрической настройки (SEEK +, SEEK-), кнопка регулировки громкости (VOL +, VOL-), а также кнопка выключателя питания (PSW). Схема включена, нажмите кнопку выключателя питания, схема начинает работать, в соответствии с SEEK + или от низкого до высокого уровня поиска поиск частоты радиочастоты с помощью SEEK-, автоматический поиск радиосигнала, настройка автоматически останавливается , если вы затем нажмете кнопку поиска, радиосхема продолжит поиск.Диапазон частот 76 ~ 108 МГц. Как для приема универсальной FM-станции, так и для приема радио школьного кампуса. Когда эффект приема падает или шум становится больше, чем раньше, замените батарею! Батареи или напряжения недостаточно, шум будет большим, и его будет сложно найти на Тайване. Батарея с двумя батареями АА.
Последовательность сварки : Сначала приваривается патч-элемент, затем: 1. Сопротивления 2. катушка индуктивности 3. конденсатор 4. диоды и звуковой сигнал 5. кнопки 6. разъем для наушников и переключатель и другие (обратите внимание на первую площадку IC, полярность электролитического конденсатора, Полярные светодиоды, полярные диоды D1, D2)
Электронный комплект (обо всех компонентах), Для энтузиастов электроники, которые могут работать над своей собственной сборкой, Изучение электронных знаний, Испытайте практическое удовольствие, наслаждайтесь успехом, И учителя, студенты, друзья и родственники, чтобы поделиться счастьем.

Цепь однокристального FM-радио

со схемой с использованием TDA 7000 IC

В этом проекте мы создаем однокристальное FM-радио. Сердце этой схемы — цифровая ИС — TDA7000. Конструкция предполагает правильное использование катушек индуктивности и конденсаторов с правильными номиналами. Поскольку ИС предназначена для построения радиосхем, эта схема в некоторой степени очень надежна.

Описание.

Вот компактная недорогая радиосистема FM-радио на микросхеме TDA 7000.Эта схема разработана в соответствии с техническим паспортом и дает отличный результат. Идеально подходит для всех категорий любителей электроники.

TDA7000 — это монолитная интегральная схема для моно портативных радиостанций FM, , где минимальное количество периферийных компонентов имеет решающее значение. IC TDA 7000 имеет систему частотной автоподстройки частоты с промежуточной частотой 70 кГц. Избирательность по промежуточной частоте достигается за счет активных RC-фильтров. Единственная функция, которая требует настройки, — это резонансный контур для генератора, таким образом выбирая частоту приема.Ложного приема можно избежать с помощью схемы отключения звука, которая также устраняет слишком шумные входные сигналы. Для соблюдения требований к радиации принимаются специальные меры.

Принципиальная схема FM-радио со списком деталей.

Банкноты
  • Для обмотки L1 и L2 5 витков эмалированного медного провода диаметром 0,6 мм на пластиковом каркасе диаметром 4 мм.
  • Для антенны используйте изолированный медный провод длиной 50 мм.
  • IC TDA 7000 выдерживает напряжение питания до 10 В.Но рекомендую 6В.
  • Используйте на аудиовыходе динамик с сопротивлением 8 Ом или наушники.

У нас есть другие радиосхемы, которые вы можете прочитать:

1. Цепь приемника AM

2. Недорогое AM-радио

3. FM-передатчик с использованием UPC1651

4. Простая радиосхема

5. Схема антенного тюнера

Похожие сообщения
Цепь приемника FM

с использованием TDA7021 и LM386

Частотная модуляция используется в радиостанции в диапазоне 88-108 МГц VHF.Этот диапазон полосы пропускания передачи данных отличается от диапазона частот радиоприемников как FM. А устройства, которые могут принимать такие сигналы, называются FM-приемниками.

[спонсор_1]

Здесь микросхемы аудиоусилителей LM386 и TDA7021 используются для приема звуковых сигналов. ИС усилителя сигнала 9018 дополнительно развертывается для поддержки ИС. FM-радиопередатчик работает на канале шириной 200 кГц. Самая экстремальная звуковая частота, передаваемая в FM, составляет 15 кГц, что составляет 4,5 кГц в AM. Это позволяет намного больший диапазон частот перемещается в FM и, соответственно, качество передачи FM существенно выше, чем у передачи AM.

Аппаратные компоненты
S.no Компоненты Значение Кол-во
1 IC LM386 1
2 IC TDA702IT 1
3 Транзистор 9018 1
4 Антенна 1
5 Наушники 1
6 Переменный конденсатор 25pF 1
7 Резистор 22K, 2.2К, 4,7К 1, 1, 1
10 Конденсатор 51 пФ, 220 мкФ, 10 мкФ, 4700 пФ, 220 пФ, 1000 пФ, 3,3 нФ, 100 нФ, 10 нФ, 100 пФ 1, 2, 2, 1 , 1, 1, 1, 3, 2, 1
20 Аккумулятор 3 В 1

Принципиальная схема

Работа схемы

Вот удобная высококачественная чувствительная приемная схема FM или схема FM-тюнера.Схема основана на микросхеме TDA 7021T, которая является микросхемой FM-радиоприемника. Для микросхемы почти не требуются внешние детали, а необходимое напряжение составляет всего 3 вольта. Выход звука низкий, поэтому мы дополнительно усилили его с помощью микросхемы усилителя LM386. Вы также можете использовать с ним другие мощные звуковые колонки, чтобы усилить звук. Схема антенного громкоговорителя с высокочастотной настройкой используется на антенном входном сегменте схемы для расширения возможностей воздействия. Вы можете изменить периодичность с помощью переменного конденсатора 25 пФ.Катушка L1 представляет собой катушку с воздушным сердечником, эквивалентную 5 виткам посеребренной проволоки диаметром 1 мм, намотанной на композит толщиной 4 мм.

[inaritcle_1]

Эта схема FM-радио полностью универсальна и легко помещается в маленькую коробку с батареями.

Приложения и способы использования
  • FM-приемники обычно используются в радиосвязи fin FM.
  • Он также используется в сейсморазведке, телеметрии, радиолокации и мониторинге новорожденных на предмет припадков с помощью ЭЭГ, синтеза музыки, систем двусторонней радиосвязи, некоторых систем видеопередачи и систем записи на магнитную ленту.

Цепь FM-радио с одной микросхемой

Цепь для FM-радио с одной микросхемой

Однокристальная схема FM-радио


Автор Просмотры Просмотров Сегодня Рейтинг Комментарии
160,119 3 1

Эта чрезвычайно простая схема FM-радиоприемника стала возможной благодаря специальной микросхеме TDA7000.Он объединяет почти все функции, необходимые для создания FM-приемника, для чего требуется всего несколько внешних конденсаторов и схема настройки. Используя простой активный RC-фильтр, состоящий только из одной катушки индуктивности, нескольких резисторов и варикапа, этот FM-приемник будет принимать радиопередачи в диапазоне от 88 до 108 МГц. Затем моно выходной сигнал можно использовать для управления комплектом наушников с высоким сопротивлением или для питания усилителя мощности.

9009 2 1
Деталь Общее кол-во Описание Замены
C1, C9, C12, C17 4 Керамический дисковый конденсатор 0,1 мкФ
C2, C4, C5, C6, C13 5 Керамический дисковый конденсатор 0,01 мкФ
C3 1 Керамический дисковый конденсатор 20 пФ См. Примечания
C7, C15, C16 3 0,001 мкФ Керамический дисковый конденсатор
C8, C10, C11 3 Керамический дисковый конденсатор 220 пФ
C14 1 Керамический дисковый конденсатор 100 пФ
C18 1 Керамический дисковый конденсатор 200 пФ
R1 1 900K / 4 Вт 5% Резистор
R2 1 100 кОм 1/4 Вт 5% Резистор
R3 100K Линейный конический горшок
D1 1 Motorola MV209 Varicap VHF настраивающий диод
U1 1 TDA7000 FM-радио IC См. L1 1 7-витковый индуктор (см. Примечания)
MISC 1 Плата, провод, гнездо для U1, корпус
  1. К сожалению, TDA7000 устарел несколько лет назад.Первоначальная версия сделана Signetics (ныне Philips), и в наши дни ее довольно сложно найти. Однако есть и другие варианты. Philips производит TDA7010T, версию для поверхностного монтажа. Также доступен TDA7021T со стереозвуком. Они электрически похожи, но представляют собой только 16-контактные микросхемы, поэтому вам нужно будет сравнить таблицы данных, чтобы построить схему.
  2. Значение C3 некритично и может находиться в диапазоне от 10 пФ до 20 пФ. В зависимости от значения C3 могут потребоваться незначительные корректировки L1.
  3. L1 получается путем наматывания 7 витков провода 24 AWG на карандаш. Выньте карандаш и немного разнесите витки.
  4. Выбор частоты осуществляется через R3.
FM-передатчик на 3 Вт, аудиоусилитель на 8 Вт, усилитель звука на 22 Вт, усилитель на 50 Вт, Crystal Radio, FM-передатчик, эффект гитарного фузза, аудиомикшер на полевых транзисторах, микшер для микрофона, проигрыватель мелодий на 8 нот, радио с операционным усилителем, моно-стерео синтезатор, Электронный стетоскоп, регулятор тембра, транзисторный орган, стереоламповый усилитель, цифровой регулятор громкости, измеритель уровня звука, авиационный радиоприемник, однокристальное FM-радио, однотрубное регенеративное радио, однокристальное AM-радио
Дан Однокристальное FM-радио 14 февраля 2016 г. 21:02:48
Хороший, но немного широкий диапазон и немного низкая частота, будет ли он работать с nfm и перескочить на 137 МГц?

Вернуться на страницу схем | Напишите мне | Поиск

Беспроводной стерео модуль FM-радиоприемника PCB DIY электронные комплекты 76 МГц — eElectronicParts

Преимущества:

Электронные энтузиасты или электронное производство электронных учебных классов, в частности, для оптимизации расположения элементов в соответствии с новичком, этот пакет прост в изготовлении и установке с высоким показателем успеха! Поскольку он использовался во многих школах, мы знаем его эффективность.Этот комплект не просто сварочная сборка, а также регулировка своими руками и спиральная катушка, веселее, это лучше, чем другой простой монтажный комплект. Основным преимуществом использования гарнитуры также является учет школьного шума в классе!

Характеристики и использование:

FM-радиопрограмма имеет богатое, хорошее качество звука и т. Д., По всему запускает собственную FM-радиостанцию. В комплекте FM scan radio карманные компьютеры с использованием специальных блоков, 16-контактный сдвоенный плоский корпус, рабочее напряжение 1.8-3,6 В, схема включает FM-радиоприемник от антенны к частотному дискриминатору, выводящий аудиосигналы всех функций, он также имеет схему настройки поиска, схему обнаружения сигнала, схему отключения звука и смещение частоты сжатия фиксированной частоты контурная цепь FLL. Частота ПЧ схемы рассчитана на 70 кГц, периферийные схемы без трансформатора промежуточной частоты, при этом частота выбирается внутренним фильтром ПЧ RC-цепи для завершения. Летательный аппарат, например цифровой радиотюнер, который использует кнопки электрической настройки (SEEK +, SEEK-) в дополнение к кнопкам регулировки громкости (VOL +, VOL-) и кнопке питания (PW).После включения схемы нажмите кнопку питания, схема начнет работать, нажмите SEEK + для поиска высоких или низких частот нажмите SEEK — поиск радиочастоты, автоматический поиск радиосигналов, автоматическая настройка остановится, затем нажмите на кнопке Search, если канал продолжает поиск радиостанций. Диапазон частот 76-108 МГц. Оба получают универсальную FM-станцию ​​FM можно получить радиостанцию ​​школьного городка.

Последовательность сварки:

Сначала сварка компонентов SMT, затем: 1.резистор 2. индуктор 3. конденсатор 4. диод 5. клавиши 6. разъем для наушников и кнопка переключения.

Электронный комплект (полный комплект запасных частей) для любителей электроники, соберите сами, изучите знания электроники, испытайте практическое удовольствие, наслаждайтесь весельем успеха.

Ресурсы:

Project, Reverse Eng: Hex3653 AV2B Stereo FM Receiver Kit

Размер: 5,5 х 2.8 см / 2,17 х 1,10 дюйма

В комплект входит:

1 x беспроводной стерео FM модуль приемника радио PCB DIY электронные наборы 76 МГц-108 МГц

Техническая поддержка, схема (см. Рисунок аукциона), инструкции НЕ включены в этот аукцион

Полностью цифровой FM-приемник с Arduino и TEA5767

FM-передатчики / приемники являются одними из самых любимых схем любого электронного энтузиаста. В этой статье / видео я представил полную конструкцию цифрового FM-приемника, оснащенного ЖК-экраном и тремя кнопками.Он может искать FM-сигналы в диапазоне от 76 МГц до 108 МГц вручную и автоматически (режим сканирования). Уровень сигнала также отображается в виде гистограммы на ЖК-экране. Выходной звук усиливается стереофоническим усилителем класса D мощностью 3 Вт + 3 Вт, который обеспечивает высокое качество и достаточную мощность звука. В качестве контроллера я использовал дешевую и популярную плату Arduino-Nano. Итак, приступим!

A. Анализ схемы

На рисунке 1 показана принципиальная схема устройства.Как видно, схема состоит из 3-х основных частей: Arduino-Nano (контроллер), модуля FM-приемника и аудиоусилителя.

А-1. Модуль FM-приемника

Модуль FM-приемника основан на микросхеме TEA5767 [1, 2]. Это хорошо известный модуль, которым можно управлять по шине I2C. Он охватывает диапазон частот FM от 76 МГц до 108 МГц. На выходе он обрабатывает стереофонические аудиосигналы L и R, которые необходимо усилить, в противном случае уровень звука будет слабым и его нельзя будет услышать даже в наушниках.Задачи выбора частоты и измерения уровня сигнала выполняются кодом Arduino-Nano.

R3, C7, C8 и C9 создают RC-фильтр нижних частот первого порядка, который снижает шум источника питания. R1 и R2 — обязательные подтягивающие резисторы для шины I2C, а CON1 — это разъем UFL, обеспечивающий подключение антенны. На рисунке 2 показан модуль TEA5767.

A.2 Усилитель звука

Часть усилителя звука состоит из микросхемы PAM8403 [3, 4]. Этот чип представляет собой усилитель HiFi класса D мощностью 3 Вт + 3 Вт, который может работать только от одного источника питания 5 В.Максимальная выходная мощность достигается при использовании динамиков на 4 Ом. Согласно техническому описанию: «PAM8403 — это аудиоусилитель мощностью 3 Вт класса D. Он предлагает низкий коэффициент нелинейных искажений + шум, что позволяет добиться высококачественного воспроизведения звука. Новая безфильтровая архитектура позволяет устройству напрямую управлять динамиком, не требуя выходных фильтров нижних частот, тем самым экономя системные затраты и площадь печатной платы ».

R7, C13, C14 и C15 создают RC-фильтр нижних частот для максимального уменьшения шума питания. R4, R5, C11 и C12 используются для передачи выходного звука на усилитель.Кроме того, они создают RC-фильтры нижних частот для удаления любых высокочастотных шумов. На рисунке 3 показана эталонная схема микросхемы PAM8403. P2 и P3 — это угловые 2-контактные разъемы XH, которые используются для подключения динамиков к плате.

A.3 Контроллер

Контроллер схемы состоит из платы Arduino-Nano (AR1). На рисунке 4 показана плата Arduino-Nano. Плата управляет ЖК-дисплеем 8 * 2 (LCD1), а также считывает состояние кнопок SW1, SW2 и SW3. Он также отправляет / принимает данные TEA5767 через шину I2C.R6 устанавливает уровень контрастности ЖК-дисплея, а C4, C5 и C6 используются для уменьшения механических шумов при нажатии кнопок (дребезг).

A.4 Источник питания

TS2937 [5, 6] является основным компонентом источника питания, который обеспечивает стабильное питание +5 В для схемы. C1, C2 и C3 используются для уменьшения шума, а POT1 — это двухпозиционный (двойной) потенциометр 50K с переключателем. POT1 включает и выключает устройство, а также увеличивает или уменьшает уровень звука. На рисунке 5 показано изображение POT1.

Б.Компоновка печатной платы

На рис. 6 показана компоновка печатной платы цифрового FM-приемника. Это двухслойная печатная плата последней версии. Плата Arduino-Nano монтируется на нижней стороне, а ЖК-дисплей — на верхней стороне платы, предпочтительно на разъемах для штырей. Это более наглядно на 3D-изображениях и на реальных фотографиях. На рисунке 7 показаны трехмерные изображения платы. На рисунке 8 показаны высококачественные печатные платы схемы цифрового FM-приемника.

Я использовал библиотеки компонентов SamacSys (для IC1 и IC2) в этом проекте печатной платы, как обычно.Это экономит много времени и предотвращает ошибки проектирования, что приводит к снижению стоимости продукта. Все библиотеки компонентов SamacSys (схематические символы, посадочные места печатных плат и трехмерные модели) БЕСПЛАТНЫ и соответствуют строгим промышленным стандартам IPC. Вы можете загрузить и установить библиотеки с сайта componentsearchengine.com или установить их напрямую, используя предоставленные плагины САПР. Я использовал плагин Altium, однако поддерживается почти все программное обеспечение САПР для электронного проектирования, такое как Eagle, KiCad, OrCAD, Proteus.. и т. д. [7]. На рисунке 9 показано поддерживаемое программное обеспечение САПР, а на рисунке 10 показаны выбранные библиотеки компонентов из подключаемого модуля Altium.

C. Сборка и тестирование

Самый маленький комплект компонентов — 0805. У вас не должно возникнуть проблем с пайкой платы, однако вы также можете заказать профессионально собранную плату. На Рис. 11 собранная плата PCB показана сверху, а на рис. 12 — снизу. Плата была спаяна мной вручную. Вам также понадобятся четыре 5-миллиметровых прокладки FF, чтобы закрепить ЖК-дисплей на печатной плате.

Для подключения антенны к плате следует использовать разъем UFL — SMA-F. На рисунке 13 показан этот тип разъема.

C.1 Код Arduino

Код Arduino доступен в следующем блоке кода. Просто подключите Arduino-Nano к компьютеру и скомпилируйте / загрузите код.

Загрузить код

C.2 Тестирование

Нижний предел частоты составляет 76,0 МГц, а верхний предел — 108,0 МГц. Вы можете увеличить или уменьшить частоту на 0,1 МГц, нажимая кнопки «Вверх» и «Вниз».Точно так же, если вы долго нажимаете эти кнопки, частота будет постоянно увеличиваться / уменьшаться. Так что настроить приемник на желаемую частоту (FM-станцию) довольно просто. Кроме того, кнопка Scan позволяет автоматически искать достаточно мощные FM-станции и фиксировать приемник на частотах. Для поиска следующей станции необходимо снова нажать кнопку «Сканировать».

Уровень FM-сигнала отображается на ЖК-экране в виде гистограммы. На рисунке 14 приемник настроен на мощную FM-станцию ​​на 100.Частота 0 МГц.

D. Ведомость материалов

На рисунке 15 показана ведомость материалов. Собери устройство и получай удовольствие!

Поправка: значение R7 равно 0R (1206). Для IC1 лучше использовать TS2940CW50 (SOT-223). Используйте динамики с сопротивлением 8 Ом, чтобы предотвратить возможную тепловую нагрузку на регулятор IC1 при высокой выходной мощности, или используйте более мощный регулятор.

Ссылки

Статья: https://www.pcbway.com/blog/technology/A_Digital_FM_Receiver_with_Arduino.html

[1]: TEA5767 Datasheet: https: // www.sparkfun.com/datasheets/Wireless/General/TEA5767.pdf

[2]: схематический символ TEA5767, посадочное место печатной платы и 3D-модель: https://componentsearchengine.com/part-view/TEA5767HN%2FV3%2C118/Nexperia

[3]: PAM8403 Лист данных: https://www.mouser.com/datasheet/2/115/PAM8403-247318.pdf

[4]: ​​Схема символа PAM8403, посадочное место печатной платы и 3D-модель: https: // componentsearchengine.com/part-view/PAM8403DR/LITTELFUSE

[5]: Лист данных TS2937: https://www.mouser.com/datasheet/2/395/TS2937_D13-522475.pdf

[6]: схематический символ TS2937, посадочное место печатной платы и трехмерная модель: https://componentsearchengine.com/part-view/TS2937CW-5.0%20RP/Taiwan%20Semiconductor

[7]: Плагины САПР: https: //www.samacsys.com/library-loader-help

Схема FM-радиоприемника своими руками с IC TDA7000 и Lm386

Простая схема простого в сборке самодельного FM-радиоприемника со специальной выделенной схемой TDA7000 и усилителем для Lm386 CI, хотя это относительно старый чип с моно-приемом.Сборка FM-радио всегда является чем-то интересным для энтузиастов электроники. В схему входит часть приемника на микросхеме tda7000 и усилитель для CI LM386n, скоро у нас будет наш радиоприемник FM, состоящий из нескольких компонентов. Настройка выполняется варикапом, просто активируя потенциометр для настройки станций, не требуя сложных схем с катушками и конденсаторами.

Новая схема — TDA7000, которая объединяет моно FM-радио на всем пути от антенного входа до аудиовыхода.Внешними по отношению к ИС находятся только одна настраиваемая LC-цепь для гетеродина, несколько недорогих керамических пластинчатых конденсаторов и один резистор. TDA7000 значительно снижает затраты на сборку и постпроизводственную настройку, поскольку только схема генератора нуждается в настройке во время производства, чтобы установить пределы настраиваемой полосы частот. FM-радио в сборе можно сделать достаточно маленьким, чтобы в него поместился калькулятор
, прикуриватель, брелок для ключей или даже тонкие часы. TDA7000 также может использоваться в качестве приемника в таком оборудовании, как беспроводные телефоны, радио CB, радиоуправляемые модели, системы оповещения, звуковой канал телевизора или другие системы демодуляции FM.

Схема схемы FM радио своими руками с tda7000

Схема FM-радио с Tda7000

До сих пор практически полной интеграции FM-радио препятствовала необходимость в LC-настроенных схемах в каскадах RF, IF, гетеродина и демодулятора.Очевидный способ избавиться от катушек в каскадах промежуточной частоты и демодулятора — уменьшить обычно используемую промежуточную частоту 10,7 МГц до частоты, которая может быть настроена активными RC-фильтрами, операционные усилители и резисторы которых могут быть интегрированы. Нулевое значение ПЧ считается идеальным, поскольку оно устраняет паразитные сигналы, такие как повторяющиеся пятна и отклик изображения, но не позволяет ограничивать сигнал ПЧ перед демодуляцией, что приводит к плохому соотношению сигнал / шум и отсутствию подавления AM. При ПЧ 70 кГц эти проблемы преодолеваются, и частота изображения
находится примерно на полпути между желаемым сигналом и центром соседнего канала.Однако сигнал изображения ПЧ должен быть подавлен, и, как и в случае с обычными FM-радиостанциями, также необходимо подавить межстанционные шумы и шумы при настройке
на слабый сигнал. Также необходимо устранить паразитные отклики выше и ниже центральной частоты желаемой станции (боковые настройки) и гармонические искажения в случае очень неточной настройки.
Мы разработали монофоническую систему приема FM, которая подходит практически для полной интеграции. Он использует активный фильтр ПЧ 70 кГц и уникальную схему корреляционного подавления для подавления паразитных сигналов, таких как побочные реакции, вызванные боковыми сторонами S-образной кривой демодулятора
.При такой низкой ПЧ искажение будет происходить с размахом ПЧ ± 75 кГц из-за принимаемых сигналов с максимальной модуляцией. Таким образом, максимальный размах ПЧ сжимается до ± 15 кГц за счет управления гетеродином в контуре автоподстройки частоты
(FLL). Совместное действие схемы приглушения и FLL также подавляет отклик изображения.

Получайте новые сообщения по электронной почте:

Подписаться

Следуйте за нами в социальных сетях

Печатная плата Предложение для FM-радиоприемника lm386 tda7000

Нижняя часть печатной платы Компонент печатной платы Верхняя часть печатной платы
Часть Значение Описание Quant
Резисторы 1/4 Вт 5%
R1 22к Красный, Красный, Оранжевый, Золотой 1
R2 10 К Коричневый, черный, оранжевый, золотой 1
R3 5.6K Зеленый, синий, красный, золотой 1
R4 82 Серый, красный, черный, золотой 1
R5 1,5 К Коричневый, зеленый, красный, золотой 1
R6 100 тыс. Коричневый, черный, оранжевый, золотой 1
R7 270 К Красный, фиолетовый, желтый, золотой 1
R8 4.7 Желтый, Фиолетовый, Золотой, Золотой 1
R9 150 К Коричневый, зеленый, желтый, золотой 1
R10 100 Коричневый, черный, коричневый, золотой 1
R11 560 Зеленый, синий, коричневый, золотой 1
Конденсаторы
C1 47п (47) Конденсатор керамический 1
C2 2.2н (222) Конденсатор керамический 1
C3 39п (39) Конденсатор керамический 1
C4, C17, C21, C24 100н (104) Конденсатор керамический 4
C5 220п (221) Конденсатор керамический 1
C6 150н (154) Конденсатор керамический 1
C7, C12 330п (331) Конденсатор керамический 2
C8, C13, C19 10н (103) Конденсатор керамический 3
C9 180p (181) Конденсатор керамический 1
C10, C11, C15 3.3н (332) Конденсатор керамический 3
C14 150p (151) Конденсатор керамический 1
C16 1,8н (182) Конденсатор керамический 1
C18 220н (224) Конденсатор керамический 1
C20, C25 220 мк / 16 В Конденсатор электролитический 2
C22, C23 10 мк / 16 В Конденсатор электролитический 2
C26 22н (223) Конденсатор керамический 1
C27, C28 27п (27) Конденсатор керамический 2
Полупроводники
IC1 TDA7000 CI FM — DIL18 1
IC2 78L05 Стабилизатор положительного напряжения 5В 1
IC3 LM386N-1 CI усилитель звука — DIL08 1
D1 bb105 или BB809 или эквивалент Варикап диод 1
D2 Стабилитрон 2.7 В или 3,3 В Стабилитрон 1
T1 BC558 Транзистор PNP 1
Т2 2SC3355 NPN транзистор 1
Diversos
АНТ, АНТ1 Подключите антенну 1
DC Клеммная колодка 2 контакта Источник питания 1
ВЫХОД Клеммная колодка 2 контакта Аудиовыход 1
L1 4,5 витка диаметром 10 мм.катушка 18 AWG провод 1
L2 5 витков диаметром 10 мм. катушка 18 AWG провод 1
П1 10К (103) Потенциометр 1
P2 100 КБ (104) Потенциометр 1
Блок питания или аккумулятор, припой, провод, телескопическая антенна и т. Д.

Скачать файлы
Лист данных TDA7000

Скачать файлы pcb в PDF и PNG помимо файлов Gerber для изготовления пластины.

Включает 2 версии: одну с двусторонней печатной платой и ВЧ усилителем, а другую — с односторонней печатной платой.

Теги Схемы, FM-передатчик, радио, приемник, RF, tda

Предыдущая

Скачать бесплатную программу coil32 calc. Катушка индуктивности

Скачать Multisim Blue 14 бесплатно — схематический снимок, моделирование, проектирование печатной платы и спецификации

Далее

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *