Генератор на одном транзисторе и реле схема. Генератор на одном транзисторе и реле: простая схема импульсного генератора

Как работает простой генератор импульсов на одном транзисторе. Какие детали нужны для сборки схемы генератора с реле. Каковы принципы работы и области применения таких генераторов.

Содержание

Принцип работы генератора на одном транзисторе

Генератор на одном транзисторе и реле представляет собой простейшую схему для получения импульсов. Принцип его работы основан на периодическом заряде и разряде конденсатора через обмотку реле. Рассмотрим подробнее, как это происходит:

  1. При подаче питания конденсатор начинает заряжаться через резистор и обмотку реле.
  2. По мере заряда конденсатора растет напряжение на базе транзистора.
  3. Когда напряжение достигает порогового значения, транзистор открывается.
  4. Через открытый транзистор конденсатор быстро разряжается.
  5. Напряжение падает, транзистор закрывается.
  6. Цикл повторяется, создавая импульсы тока в обмотке реле.

Таким образом, транзистор работает как ключ, периодически замыкая и размыкая цепь. Частота импульсов зависит от номиналов резистора и конденсатора.


Необходимые компоненты для сборки генератора

Для создания простейшего генератора импульсов на одном транзисторе понадобятся следующие детали:

  • Транзистор NPN (например, КТ315, 2N2222)
  • Электромагнитное реле на 12В
  • Резистор 1-10 кОм
  • Конденсатор 10-100 мкФ
  • Источник питания 9-12В

Номиналы резистора и конденсатора подбираются экспериментально для получения нужной частоты импульсов. Чем больше емкость конденсатора, тем ниже будет частота.

Области применения импульсных генераторов

Простые генераторы на одном транзисторе находят применение во многих областях:

  • Системы сигнализации и охраны
  • Мигающие светодиодные индикаторы
  • Зарядные устройства для аккумуляторов
  • Тестеры электронных компонентов
  • Учебные стенды по электронике
  • Генераторы звуковых сигналов

Благодаря простоте и надежности такие схемы часто используются радиолюбителями для создания различных самоделок и устройств.

Преимущества и недостатки генератора на одном транзисторе

Рассмотрим основные плюсы и минусы данной схемы:


Преимущества:

  • Простота конструкции
  • Низкая стоимость компонентов
  • Надежность работы
  • Возможность регулировки частоты
  • Малое энергопотребление

Недостатки:

  • Нестабильность частоты
  • Ограниченный диапазон частот
  • Невысокая мощность
  • Чувствительность к изменениям напряжения питания

Несмотря на недостатки, простота схемы делает ее отличным вариантом для начинающих радиолюбителей и учебных целей.

Модификации базовой схемы генератора

Базовую схему генератора на одном транзисторе можно модифицировать для получения дополнительных возможностей:

  • Добавление потенциометра для регулировки частоты
  • Использование переменного конденсатора вместо постоянного
  • Подключение светодиода для визуальной индикации
  • Добавление второго транзистора для увеличения мощности
  • Применение таймера 555 вместо транзистора для повышения стабильности

Экспериментируя с различными модификациями, можно создать генератор с нужными характеристиками для конкретной задачи.

Практические советы по сборке и настройке

При сборке генератора на одном транзисторе следует учитывать несколько важных моментов:


  1. Используйте макетную плату для удобства экспериментов
  2. Проверяйте полярность подключения конденсатора и транзистора
  3. Подбирайте номиналы резистора и конденсатора экспериментально
  4. Применяйте осциллограф для точной настройки частоты
  5. Обеспечьте хороший теплоотвод для транзистора при больших токах

Соблюдение этих рекомендаций поможет быстро собрать работающий генератор и избежать типичных ошибок.

Сравнение с другими типами генераторов

Генератор на одном транзисторе имеет свои особенности по сравнению с другими схемами:

Тип генератораПреимуществаНедостатки
На одном транзистореПростота, дешевизнаНестабильность частоты
МультивибраторШирокий диапазон частотСложнее в настройке
На таймере 555Стабильность, точностьВыше стоимость
LC-генераторСинусоидальный сигналГромоздкость конструкции

Выбор типа генератора зависит от конкретной задачи и требуемых характеристик сигнала.

Заключение

Генератор на одном транзисторе и реле представляет собой простейшую схему для получения импульсных сигналов. Несмотря на ограниченные возможности, такой генератор находит широкое применение благодаря простоте, надежности и низкой стоимости. Эта схема отлично подходит для обучения основам электроники и создания несложных устройств. При необходимости базовую схему можно модифицировать для улучшения характеристик и расширения функциональности.



Восемь схем на одном транзисторе

Познакомиться с работой различных электронных устройств лучше всего на примере простых транзисторных схем. В этой статье приводится описание восьми самоделок, выполненных всего на одном транзисторе.

С помощью пробника-индикатора (рис. 1) проверяют надежность соединений и целостность проводников в различных электрических цепях. Как работает такой прибор? Когда электрический контакт между щупами XI отсутствует, транзистор VT1 закрыт и тока в цепи лампочки HL1 нет. Но стоит только замкнуть контакт, как на базу транзистора поступит отрицательное напряжение, он откроется и лампочка загорится, сигнализируя о том, что проверяемая электрическая цепь не нарушена. А для чего нужен резистор R1 в цепи базы VT1? Представим себе на время, что резистор R1 отсутствует и база транзистора непосредственно соединена с одним из щупов XI. Тогда при замыкании щупов на базе окажется полное напряжение источника питания. Большая часть тока в этом случае потечет через переход «база-эмиттер», так как его сопротивление намного меньше, чем сопротивление перехода «коллектор-эмиттер», в цепь которого включена лампочка HL1, поэтому она не загорится. При включении резистора R1 на 33 Ом ток между базой и эмиттером уменьшается, транзистор открывается и лампа загорается. Таким пробником можно «прозванивать» электрические цепи с сопротивлением до 150 Ом.

Очередной прибор — сторожевое устройство, его схема приведена на рисунке 2. Проводник, включенный между клеммами ХТ1, протягивают вокруг охраняемого объекта, а к контактным пластинам К1.1 реле К1 подключают сигнализирующее устройство. При включении источника питания GB1 транзистор VT1 закрыт положительным напряжением на базе. При обрыве проводника, подключенного к клеммам ХТ1, на базу VT1 с резистора R1 поступает отрицательное напряжение, которое открывает транзистор. В цепи «коллектор-эмиттер» возникает электрический ток, приводящий к срабатыванию реле К1 и замыканию контакта K1.1 включающего сигнальное устройство.

Переменным резистором R1 устанавливают ток срабатывания реле К1. Для этого проводник отсоединяют от клемм ХТ1 и, вращая движок R1, добиваются четкого срабатывания реле.

Простейший усилитель низкой частоты (его можно использовать для прослушивания грамзаписей или применить в переговорном устройстве) представлен на следующей схеме (рис. 3). Разъем ХР1 служит для подключения усилителя к выходным гнездам проигрывателя или микрофона. В исходном состоянии на базу транзистора VT1 через резистор R1 подано начальное напряжение смещения, в результате чего сопротивление перехода «коллектор-эмиттер» в этом случае несколько меньше, чем в закрытом состоянии транзистора. Когда с источника электрических сигналов отрицательное напряжение поступает на конденсатор С1, а с него на базу VT1, транзистор полностью открывается и через головные телефоны BF1 течет ток. При изменении полярности входного сигнала положительное напряжение также поступает на базу VT1, но теперь транзистор закрывается, и ток в телефонах BF1 отсутствует. Таким образом, чередование отрицательного и положительного напряжений (а именно так ведет себя электрический сигнал, поступающий с проигрывателя или микрофона) на входе усилителя приводит к изменению напряжения на телефонах, которое приводит к колебанию мембраны, а, следовательно, к преобразованию электрических сигналов в звуковые. Оксидный конденсатор С1 предотвращает попадание прямого тока на вход усилителя через электрические цепи источника сигналов.

Проверить работоспособность любого усилителя звуковой частоты, в том числе и описанного выше, Можно с помощью генератора-пробника (рис. 4). При включении источника питания GB1 напряжение на коллекторе транзистора VT1 скачкообразно изменится от 0 до некоторого значения, определяемого сопротивлениями резисторов R3 и R4, создающих начальное напряжение смещения на базе транзистора. При этом импульс тока, возникший в цепи коллектора VT1, поступает не только на выход генератора, но и на цепочку C1R1, C2R2, C3R4. В результате происходит процесс последовательной зарядки конденсаторов, длительность его зависит от значений емкостей и сопротивлений элементов цепочки. После того как зарядится конденсатор СЗ, на базе транзистора окажется положительное напряжение, поступившее с обкладки СЗ, Это приводит к увеличению напряжения на коллекторе. Теперь происходит обратный процесс разрядки конденсаторов через резисторы, а, следовательно, и уменьшение положительного напряжения на коллекторе. Поскольку конденсатор С1 соединен с коллектором VT1, то за счет существующей обратной связи (то есть связи, при которой напряжение на коллекторе VT1 влияет на заряд конденсаторов, а заряд конденсаторов, в свою очередь, оказывает влияние на напряжение коллектора VT1) процесс зарядки и разрядки конденсаторов становится бесконечным во времени, и происходит самовозбуждение генератора. Таким образом, с конденсатора С4 на вход проверяемого устройства будет поступать сигнал звуковой частоты.

Низкочастотный генератор можно собрать, используя частотозадающую цепочку RC, состоящую всего из одного резистора и одного конденсатора. Схема такого генератора для квартирного звонка представлена на рисунке 5. В устройстве применен выходной трансформатор Т1 с отводом от середины первичной обмотки. Он подключен к отрицательному полюсу источника питания GB1. При замыкании кнопки SB1 начинает заряжаться конденсатор С1, и через верхнюю по схеме половину первичной обмотки Т1 течет ток, Когда конденсатор зарядится полностью, транзистор VT1 откроется и начнется обратный процесс — С1 разряжается через первичную обмотку трансформатора и коллекторно-эмиттерный переход VT1. Затем транзистор закроется положительным напряжением, поступающим с резистора R1 на базу, и конденсатор вновь начнет заряжаться. Таким образом, ток в первичной обмотке все время будет менять свое направление с частотой, определяемой емкостью С1 и сопротивлением R1. Звуковой сигнал поступает с вторичной обмотки Т1 на динамическую головку ВА1, тональность ее звучания изменяют переменным резистором R1. В случае необходимости звонок можно отключить тумблером SA1, тогда даже при нажатой кнопке SB1 генератор работать не будет.

Следующая схема (рис. 6) во многом схожа с предыдущей. Она представляет собой электронный метроном — прибор для развития чувства ритма у музыкантов. В этом устройстве конденсатор С1 имеет значительно большую емкость, чем у предыдущего. Причем процесс зарядки конденсатора длится достаточно долго, а разряжается он почти мгновенно. В результате в динамической головке ВА1 раздаются характерные щелчки, период следования которых зависит от сопротивления резистора R1.

Низкочастотные генераторы составляют основу всех клавишных электромузыкальных инструментов. Простейший одноголосый ЭМИ можно собрать по схеме, показанной на рисунке 7. Устройство представляет собой низкочастотный генератор с набором частотозадающих резисторов R1 — RN и клавиатурой S1 — SN. Число резисторов и клавиш выбирается произвольно, в зависимости от того, в каком диапазоне частот будет работать ЭМИ. Тембр звучания инструмента можно изменить подбором емкости конденсатора С2. Отличие этого устройства от двух предыдущих в том, что на базу транзистора VT1 подается отрицательное напряжение смещения.

И наконец, последняя схема — радиоприемник с однокаскадным усилителем звуковой частоты (рис. 8). В основе его уже хорошо знакомый низкочастотный усилитель; к его входу через диод VD1 подключена катушка связи L2 колебательного контура L1C1. Обе катушки намотаны на отрезке ферритового стержня. Настройка на различные радиостанции производится вращением движка конденсатора переменной емкости С1. Диод VD1 служит для детектирования высокочастотных колебаний. Для улучшения радиоприема к колебательному контуру подключают выносную антенну WA1 и заземление. С помощью конденсатора СЗ подбирают тембр звучания приемника.

Во всех устройствах можно применить постоянные резисторы ВС, МЛТ или ОМЛТ мощностью 0,125 Вт, переменные резисторы и конденсаторы — любых типов, важно только, чтобы оксидные конденсаторы были рассчитаны на напряжения не ниже указанных на схемах. Вместо реле РЭС47 можно применить любое другое, рассчитанное на постоянное напряжение 5…9 В и ток срабатывания не более 30 мА. Телефоны ТА-56м допустимо заменить на ТОН-1 или ТА-4, транзисторы МП26 — на МШЗ — МП16, МП20, МП21, МП25, МП39 — МП42 с любым буквенным индексом. Диод VD1 — серий Д2, Д9 или Д18. Динамическая головка ВА1 — любого типа мощностью 0,1…0,5 Вт; лампа HL1 — МН6,3 на ток 0,1…0,3 A; Т1 — любой малогабаритный выходной трансформатор с отводом от середины первичной обмотки — от транзисторного радиоприемника. Катушки L1 и L2 размещены на круглом ферритовом стержне марки 400 НН или 600 НH: L1 содержит 180 витков провода ПЭЛ или ПЭВ 0,1, намотанного внавал на бумажном каркасе с шестью секциями по 30 витков в каждой, L2 на отдельном бумажном каркасе содержит 25…30 витков того же провода Ø 0,2 мм. Катушки располагают относительно друг друга так, чтобы громкость приема была максимальной. Источник питания — батарея «Крона» или две последовательно соединенные батареи 3336Л. Антенной может служить провод длиной 1,5…2 м, заземлением — труба теплоснабжения или водопровода.

Все устройства, описанные в статье, не нуждаются в налаживании и при правильном монтаже и исправных деталях начинают работать сразу после включения.

Сторожевое устройство на одном транзисторе

Сторожевое устройство на одном транзисторе — самая простая схема, которую сможет собрать даже дошкольник.

В ваши владения часто вторгаются без спроса, а вы при этом занимаетесь важным делом?)

Пора забыть эти проблемы! Представляю вашему вниманию схему сторожевого устройства всего-то на ОДНОМ транзисторе! Благодаря этой схеме, вы сможете обезопасить свой дом и вовремя принять все необходимые меры по устранению возникших проблем!

Схема и принцип работы

А вот и схемка

Цоколевка (расположение выводов) транзистора КТ815Б выглядит вот так:

Принцип действия очень простой. При обрыве охранного провода, зуммер начинает пищать. Тонкий охранный провод можно натянуть через дверной проем.

Если точнее описать работу схемы, то это будет выглядеть так:

нарисуем схемку по ГОСТу для удобства восприятия

Пока у нас охранный провод цел, то в  цепи плюс батарейки—-резистор 100 К—-охранный провод будет течь ток. Весь ток будет течь именно через охранный провод, так как его сопротивление очень мало. Так как весь ток  будет течь через провод, этого не хватит, чтобы открыть транзистор. Транзистор открывается только тогда, когда его напряжение между базой и эмиттером будет 0,5-0,7 Вольт.

У нас на сайте есть интересная статья про автомобиль тесла.

Но… как только охранный провод обрывается, на базе сразу же резко возрастает напряжение, то есть оно стает более, чем 0,5-0,7 Вольт и начинает течь ток через базу-эмиттер.  Так как ток течет через базу-эмиттер, то следовательно, транзистор открывается. А раз он открывается, значит через цепь  плюс батарейки——зуммер—коллектор—-эмиттер начинает течь ток. Пока через зуммер течет ток, он орет, как ошпаренный.

Сборка и работа на практике

Схема состоит из транзистора КТ815 с любой буквой. Я взял вот такой:

Что за странная маркировка на транзисторе? Раньше именно так обозначали советские транзисторы. Бывалые радиолюбители сразу определят, что это транзистор КТ815Б. Для новичков советую скачать программку Транзистор v1.0 , которая позволит без труда определить советские транзисторы даже с цветовой маркировкой.

Вот пример транзистора, который я использую в схеме:

В схеме также есть  зуммер:

Зуммер — это звукоизлучатель. При подаче на него постоянного

напряжения, он начинает пищать высокочастотным неприятным монотонным звуком. Брал я его на Алиэкспрессе за 0,7 бакса по этой ссылке.

Часто путают зуммеры с пьезоизлучателями (ниже на фото):

Если разобрать зуммер, то мы увидим на платке нехитрую схему генератора частоты, выполненного в SMD исполнении, а также сам пьезоизлучатель, подпаянный медными проводами к этой платке.

Так что если будете брать в радиомагазине зуммер, смотрите, чтобы продавец вам не подсунул обыкновенный пьезоизлучатель.

Вашему вниманию, статья про STM32F103C8T6.

Вместо зуммера можно взять маломощную лампочку или какое-нибудь исполнительное устройство, которое будет включаться через реле. В этом случае не забудьте защитить транзистор, включив параллельно катушке реле защитный диод:

Схема восьмидиапазанного КВ-Трансивера » Страница 2 » Паятель.Ру


Для многих радиолюбителей основным источником радиоэлементов являются старые негодные платы от электронного оборудования оборонного назначения. В основном это транзисторы 2Т312, 2Т316, 2Т326, 2Т603, 2Т608, 2Т203, операционные усилители 140УД1, диоды Д18, Д20, Д219, 2Д503: и другие компоненты. Описываемый в этой статье трансивер построен в основном из таких компонентов, полученных в результате разборки неисправных плат.


SSB сигнал с обмотки «1» Т2 поступает на первый каскад УПЧ, затем следует фильтр на резонаторах Q1-Q4, который выделяет верхнюю боковую полосу сигнала. Далее сигнал усиливается вторым каскадом УПЧ и поступает на второй смеситель, который в данном случае выполняет роль преобразователя частоты.

Напряжение от ГПД, при передаче, подается на обмотку «1» Т4. Несущая подавляется на 50 дБ. Сигнал сформированной DSB с частотой включенного диапазона поступает с отвода вторичной обмотки трансформатора Т4 на вход усилителя мощности.

Уровень усиления DSB устанавливается путем изменения напряжения питания первого каскада УПЧ. Регулировочные элементы усиления как при приеме, так и при передаче, входят в состав платы — рисунок 3.

Как видно из схемы, переключение режимов приема и передачи (RX-TX) происходит путем изменения точек подключения опорного гетеродина и ГПД, при RX сигнал ГПД поступает на первый смеситель, а сигнал опорного генератора на второй. При ТХ точки подключения генераторов меняются.

По низкой частоте при переключении режимов выключается один из усилителей НЧ — микрофонный или УМЗЧ.

Схема платы генераторов показана на рисунке 2. Собственно генератор плавного диапазона выполнен на транзисторах VT1 и VT2. Частота генератора определяется частотой настройки контура, состоящего из катушки L1, индуктивность которой меняется при переключении диапазонов путем замыкания ненужной части витков переключателем SB1.1, и конденсаторов С2, С3 и набора конденсаторов С6-С19, которые переключаются переключателем SB 1.2, а также переменного конденсатора С5.2, который подключается к плате через её вывод 15 и служит для перестройки по диапазону. Конденсатор С21 включен последовательно с С5.2, он уменьшает его перекрытие до нужной величины.

Расстройка частоты ГПД производится подачей постоянного напряжения на варикап VD2 от резистора R2, изображенного на общей схеме трансивера.

ВЧ напряжение, действующее в гетеродинном контуре, усиливается по мощности до необходимой величины усилителем на транзисторах VT3 и N/T4. Для снижения воздействия этого усилителя на параметры контура, его первый каскад выполнен на полевом транзисторе.

Необходимый уровень ВЧ напряжения, поступающего на диодный смеситель устанавливается подстроечным резистором R6, который изменяет напряжение смещения на базе VT4.

ГПД вырабатывает частоты в диапазонах: 29 МГц— 19,95…20,45МГц, 28,5 МГц— 19,45…19,95 МГц, 28 МГц— 18,95…19,45 МГц, 21МГц— 11.95…12.4 МГц, 14 МГц— 4,95…5,3 МГц, 7 МГц— 16,05…16,150 МГц, 3,5 МГц— 12,55…13 МГц, 1,8 МГц— 10,88…10,98 МГц.

Опорный генератор выполнен на транзисторе VT5. Его частота, в основном, определяется частотой резонанса кварцевого резонатора Q1, который точно такой же как в кварцевом фильтре. В процессе настройки частота на выходе опорного генератора точно устанавливается подстройкой L6 и подбором емкости С29. Контур L4C25 в коллекторной цепи VT5 настроен на 9050 кГц.

Переключение режимов, и следовательно, переключение точек подключения опорного и плавного генераторов производится электромагнитным реле PL1, контакты которого К1.1 и К1.2 выполняют эти переключения. При передаче на реле подается напряжение 12В.

Схема низкочастотной платы показана на рисунке 3. УМЗЧ выполнен на операционном усилителе А1 и транзисторах VT1 и VT2. Резистор R1 служит для регулировки громкости. Режим усилителя устанавливается подбором номинала R6. Напряжение ЗЧ с вывода 13 этой платы поступает на громкоговоритель или головные телефоны.

Напряжение питания на этот усилитель поступает только в режиме приема (через нормально замкнутые контакты К1.1 реле PL1, на обмотку которого поступает напряжение при передаче).

Электронная схема генератора для электронного счетчика



Электронная схема генератора для электронного счетчика

Схема отмотки счетчика электроэнергии на генераторе реактивной мощности (с печатной платой)

Генератор реактивной мощности 1 Квт

Устройство предназначено для отмотки показаний индукционных электросчетчиков без изменения их схем включения. Применительно к электронным и электронно-механическим счетчикам, в конструкцию которых заложена неспособность к обратному отсчету показаний, устройство позволяет полностью остановить учет до уровня реактивной мощности генератора. При указанных на схеме элементах устройство рассчитано на номинальное напряжение сети 220 В и мощность отмотки 1 кВт. Применение других элементов позволяет соответственно увеличить мощность. Устройство, собранное по предлагаемой схеме, просто вставляется в розетку и счетчик начинает считать в обратную сторону. Вся электропроводка остается нетронутой. Заземление не нужно.

Работа устройства основана на том, что датчики тока электросчетчиков, в том числе и электронных, содержат входной индукционный преобразователь, имеющий низкую чувствительность к токам высокой частоты. Этот факт позволяет внести значительную отрицательную погрешность в учет, если потребление осуществлять импульсами высокой частоты. Другая особенность – счетчик является реле направления мощности, т.е если с помощью какого-либо источника (например дизель-генератора) питать саму электрическую сеть, то счетчик вращается в обратную сторону. Перечисленные факторы позволяют создать имитатор генератора. Основным элементом такого устройства является конденсатор соответствующей емкости. Конденсатор в течение четверти периода сетевого напряжения заражают от сети импульсами высокой частоты. При определенном значении частоты (зависит от характеристик входного преобразователя счетчика), счетчик учитывает только четверть от фактически потребленной энергии. Во вторую четверть периода конденсатор разряжают обратно в сеть напрямую, без высокочастотной коммутации. Счетчик учитывает всю энергию, питающую сеть. Фактически энергия заряда и разряда конденсатора одинакова, но полностью учитывается только вторая, создавая имитацию генератора, питающего сеть. Счетчик при этом считает в обратную сторону со скоростью, пропорциональной разности в единицу времени энергии разряда и учтенной энергии заряда. Электронный счетчик будет полностью остановлен и позволит безучетно потреблять энергию, не более значения энергии разряда. Если мощность потребителя окажется большей, то счетчик будет вычитать из нее мощность устройства. Фактически устройство приводит к циркуляции реактивной мощности в двух направлениях через счетчик, в одном из которых осуществляется полный учет, а в другом – частичный.

Принципиальная схема устройства

Щелкните по картинке для увеличения!

Принципиальная схема приведена на рис.1. Основными элементами устройства являются интегратор, представляющий собой резистивный мост R1-R4 и конденсатор С1, формирователь импульсов (стабилитроны D1, D2 и резисторы R5, R6), логический узел (элементы DD1.1, DD2.1, DD2.2), тактовый генератор (DD2.3, DD2.4), усилитель (Т1, Т2), выходной каскад (С2, Т3, Br1) и блок питания на трансформаторе Tr1. Интегратор предназначен для выделения из сетевого напряжения сигналов, синхронизирующих работу логического узла. Это прямоугольные импульсы уровня ТТЛ на входах 1 и 2 элемента DD1.1. Фронт сигнала на входе 1 DD1.1 совпадает с началом положительной полуволны сетевого напряжения, а спад – с началом отрицательной полуволны. Фронт сигнала на входе 2 DD1.1 совпадает с началом положительной полуволны интеграла сетевого напряжения, а спад — с началом отрицательной полуволны. Таким образом, эти сигналы представляют собой прямоугольные импульсы, синхронизированные сетью и смещенные по фазе относительно друг друга на угол p/2. Сигнал, соответствующий напряжению сети, снимается с резистивного делителя R1, R3, ограничивается до уровня 5 В с помощью резистора R5 и стабилитрона D2, затем через гальваническую развязку на оптроне ОС1 подается на логический узел. Аналогично формируется сигнал, соответствующий интегралу напряжения сети. Процесс интегрирования обеспечивается процессами заряда и разряда конденсатора С1. Логический узел служит для формирования сигналов управления мощным ключевым транзистором Т3 выходного каскада. Алгоритм управления синхронизирован выходными сигналами интегратора. На основе анализа этих сигналов, на выходе 4 элемента DD2.2 формируется сигнал управления выходным каскадом. В необходимые моменты времени логический узел модулирует выходной сигнал сигналом задающего генератора, обеспечивая высокочастотное энергопотребление. Для обеспечения импульсного процесса заряда накопительного конденсатора С2 служит задающий генератор на логических элементах DD2.3 и DD2.4. Он формирует импульсы частотой 2 кГц амплитудой 5 В. Частота сигнала на выходе генератора и скважность импульсов определяются параметрами времязадающих цепей С3-R20 и C4-R21. Эти параметры могут подбираться при настройке для обес-печения наибольшей погрешности учета электроэнергии, потребляемой устройством. Сигнал управления выходным каскадом через гальваническую развязку на оптроне ОС3 поступает на вход двухкаскадного усилителя на транзисторах Т1 и Т2. Основное назначение этого усилителя – полное открытие с вводом в режим насыщения транзистора Т3 выходного каскада и надежное запира-ние его в моменты времени, определяемые логическим узлом. Только ввод в насыщение и полное закрытие позволят транзистору Т3 функционировать в тяжелых условиях работы выходного каскада. Если не обеспечить надежное полное открытие и закрытие Т3, причем за минимальное время, то он выходит из строя от перегрева в течение нескольких секунд. Блок питания построен по классической схеме. Необходимость применения двух каналов питания продиктована особенностью режима выходного каскада. Обеспечить надежное открывание Т3 удается только при напряжении питания не менее 12В, а для питания микросхем необходимо стабилизиро-ванное напряжение 5В. При этом общим проводом можно лишь условно считать отрицательный полюс 5- вольтового выхода. Он не должен заземляться или иметь связь с проводами сети. Главным требованием к блоку питания является возможность обеспечить ток до 2 А на выходе 36 В. Это необходимо для ввода мощного ключевого транзистора выходного каскада в режим насыщения в открытом состоянии. В противном случае на нем будет рассеиваться большая мощность, и он выйдет из строя.

Детали и конструкция

Микросхемы могут применяться любые: 155, 133, 156 и других серий. Не рекомендуется применение микросхем на основе МОП — структур, так как они более подвержены влиянию наводок от работы мощного ключевого каскада. Ключевой транзистор Т3 обязательно устанавливается на радиаторе площадью не менее 200 см2. Для транзистора Т2 применяется радиатор площадью не менее 50 см2. Из соображений безопасности в качестве радиаторов не следует использовать металлический корпус устройства. Накопительный конденсатор С2 может быть только неполярным. Применение электролитического конденсатора не допускается. Конденсатор должен быть рассчитан на напряжение не менее 400В. Резисторы: R1 – R4, R15 типа МЛТ-2; R18, R19 — проволочные мощностью не менее 10 Вт; ос-тальные резисторы типа МЛТ-0.25. Трансформатор Tr1 – любой мощностью около 100 Вт с двумя раздельными вторичными обмотками. Напряжение обмотки 2 должно быть 24 — 26 В, напряжение обмотки 3 должно быть 4 — 5 В. Главное требование – обмотка 2 должна быть рассчитана на ток 2 – 3 А. Обмотка 3 маломощная, ток потреб-ления от нее составит не более 50 мА.

При наладке схемы соблюдайте осторожность! Помните, что не вся низковольтная часть схемы имеет гальваническую развязки от электрической сети! Не рекомендуется в качестве радиатора для выходного транзистора использовать металлический корпус устройства. Применение плавких предохранителей – обязательно! Накопительный конденсатор работает в предельном режиме, поэтому перед включением устройства его нужно разместить в прочном металлическом корпусе. Применение электролитического (оксидного) конденсатора не допускается! Низковольтный блок питания проверяют отдельно от других модулей. Он должен обеспечивать ток не менее 2 А на выходе 36 В, а также 5 В для питания системы управления. Интегратор проверяют двулучевым осциллографом. Для этого общий провод осциллографа соединяют с нулевым проводом электросети (N), провод первого канала подсоединяют к точке соединения резисторов R1 и R3, а провод второго канала – к точке соединения R2 и R4. На экране должны быть видны две синусоиды частотой 50 Гц и амплитудой около 150 В каждая, смещенные между собой по оси времени на угол p/2. Далее проверяют наличие сигналов на выходах ограничителей, подключая ос-циллограф параллельно стабилитронам D1 и D2. Для этого общий провод осциллографа соединяют с точкой N сети. Сигналы должны иметь правильную прямоугольную форму, частоту 50 Гц, амплитуду около 5 В и также должны быть смещены между собой на угол p/2 по оси времени. Допускается нарастание и спад импульсов в течение не более 1мс. Если фазосмещение сигналов отличается от p/2, то его корректируют подбирая конденсатор С1. Крутизну фронта и спада импульсов можно изменять, подбирая сопротивления резисторов R5 и R6. Эти сопротивления должны быть не менее 8 кОм, в противном случае ограничители уровня сигнала будут оказывать влияние на качество процесса интегрирования, что в итоге будет приводить к перегрузке транзистора выходного каскада. Затем налаживают генератор, отключив силовую часть схемы от электросети. Генератор должен формировать импульсы амплитудой 5 В и частотой около 2 кГц. Скважность импульсов приблизительно 1/1. При необходимости для этого подбирают конденсаторы С3, С4 или резисторы R20, R21. Логический узел при условии правильного монтажа наладки не требует. Желательно только убедиться с помощью осциллографа, что на входах 1 и 2 элемента DD1.1 есть периодические сигналы прямоугольной формы, смещенные относительно друг друга по оси времени на угол p/2. На выходе 4 DD2.2 должны периодически через каждые 10 мс формироваться пачки импульсов частотой 2 кГц, длительность каждой пачки 5 мс. Настройка выходного каскада заключается в установке тока базы транзистора Т3 на уровне не менее 1.5 -2 А. Это необходимо для насыщения этого транзистора в открытом состоянии. Для настройки рекомендуется отключить выходной каскад с усилителем от логического узла (отсоединить резистор R22 от выхода элемента DD2.2), и управлять каскадом подавая напряжение +5 В на отсоединенный кон-такт резистора R22 непосредственно с блока питания. Вместо конденсатора С1 временно включают нагрузку в виде лампы накаливания мощностью 100 Вт. Ток базы Т3 устанавливают подбирая сопротивление резистора R18. Для этого может потребоваться еще подбор R13 и R15 усилителя. После зажига-ния оптрона ОС3, ток базы транзистора Т3 должен уменьшаться почти до нуля (несколько мкА). Такая настройка обеспечивает наиболее благоприятный тепловой режим работы мощного ключевого транзистора выходного каскада. После настройки всех элементов восстанавливают все соединения в схеме и проверяют работу схемы в сборе. Первое включение рекомендуется выполнить с уменьшенным значением емкости конденсатора С2 приблизительно до 1 мкФ. После включения устройства дайте ему поработать несколько минут, обращая особое внимание на температурный режим ключевого транзистора. Если все в порядке – можете увеличивать емкость конденсатора С2. Увеличивать емкость до номинального значения реко-мендуется в несколько этапов, каждый раз проверяя температурный режим. Мощность отмотки в первую очередь зависит от емкости конденсатора С2. Для увеличения мощности нужен конденсатор большей емкости. Предельное значение емкости определяется величиной импульсного тока заряда. О его величине можно судить, подключая осциллограф параллельно резистору R19. Для транзисторов КТ848А он не должен превышать 20 А. Если требуется увеличить мощность отмотки, придется использовать более мощные транзисторы, а также диоды Br1. Но лучше для этого использовать другую схему с выходным каскадом на четырех транзисторах. Не рекомендуется использовать слишком большую мощность отмотки. Как правило, 1 кВт вполне достаточно. Если устройство работает совместно с другими потребителями, счетчик при этом вычитает из их мощности мощность устройства, но электропроводка будет загружена реактивной мощностью. Это нужно учитывать, чтобы не вывести из строя электропроводку.

Источник

Генераторы импульсов

Генераторы импульсов используют во многих радиотехнических устройствах (электронных счетчиках, реле времени), применяют при настройке цифровой техники. Диапазон частот таких генераторов может быть от единиц герц до многих мегагерц. Здесь приводятся простые схемы генераторов, в том числе на элементах цифровой «логики», которые широко используются в более сложных схемах как частотозадающие узлы, переключатели, источники образцовых сигналов и звуков.

На рис. 1 приведена схема генератора, который формирует одиночные импульсы прямоугольной формы при нажатии кнопки S1 (то есть он не является автогенератором, схемы которых приводятся далее). На логических элементах DD1.1 и DD1.2 собран RS-триггер, предотвращающий проникновение импульсов дребезга контактов кнопки на пересчетное устройство. В положении контактов кнопки S1, показанном на схеме, на выходе 1 будет напряжение высокого уровня, на выходе 2 — напряжение низкого уровня; при нажатой кнопке — наоборот. Этот генератор удобно использовать при проверке работоспособности различных счетчиков.

На рис. 2 показана схема простейшего генератора импульсов на электромагнитном реле. При подаче питания конденсатор С1 заряжается через резистор R1 и реле срабатывает, отключая источник питания контактами К 1.1. Но реле отпускает не сразу, поскольку некоторое время через его обмотку будет протекать ток за счет энергии, накопленной конденсатором С1. Когда контакты К 1.1 опять замкнутся, снова начнет заряжаться конденсатор — цикл повторяется.

Частота переключении электромагнитного реле зависит от его параметров, а также номиналов конденсатора С1 и резистора R1. При использовании реле РЭС-15 (паспорт РС4.591.004) переключение происходит примерно один раз в секунду. Такой генератор можно использовать, например, для коммутации гирлянд на новогодней елке, для получения других световых эффектов. Его недостаток — необходимость использования конденсатора значительной емкости.

На рис. 3 приведена схема еще одного генератора на электромагнитном реле, принцип работы которого аналогичен предыдущему генератору, но обеспечивает частоту импульсов 1 Гц при емкости конденсатора в 10 раз меньшей. При подаче питания конденсатор С1 заряжается через резистор R1. Спустя некоторое время откроется стабилитрон VD1 и сработает реле К1. Конденсатор начнет разряжаться через резистор R2 и входное сопротивление составного транзистора VT1VT2. Вскоре реле отпустит и начнется новый цикл работы генератора. Включение транзисторов VT1 и VT2 по схеме составного транзистора повышает входное сопротивление каскада. Реле К 1 может быть таким же, как и в предыдущем устройстве. Но можно использовать РЭС-9 (паспорт РС4.524.201) или любое другое реле, срабатывающее при напряжении 15. 17 В и токе 20. 50 мА.

В генераторе импульсов, схема которого приведена на рис. 4, использованы логические элементы микросхемы DD1 и полевой транзистор VT1. При изменении номиналов конденсатора С1 и резисторов R2 и R3 генерируются импульсы частотой от 0,1 Гц до 1 МГц. Такой широкий диапазон получен благодаря использованию полевого транзистора, что позволило применить резисторы R2 и R3 сопротивлением в несколько мегаом. С помощью этих резисторов можно изменять скважность импульсов: резистор R2 задает длительность напряжения высокого уровня на выходе генератора, а резистор R3 — длительность напряжения низкого уровня. Максимальная емкость конденсатора С1 зависит от его собственного тока утечки. В данном случае она составляет 1. 2 мкФ. Сопротивления резисторов R2, R3 — 10. 15 МОм. Транзистор VT1 может быть любым из серий КП302, КП303. Микросхема — К155ЛА3, ее питание составляет 5В стабилизированного напряжения. Можно использовать КМОП микросхемы серий К561, К564, К176, питание которых лежит в пределах 3 … 12 В, цоколевка таких микросхем другая и показана в конце статьи.

При наличии микросхемы КМОП (серия К176, К561) можно собрать широкодиапазонный генератор импульсов без применения полевого транзистора. Схема приведена на рис. 5. Для удобства установки частоты емкость конденсатора времязадающей цепи изменяют переключателем S1. Диапазон частот, формируемых генератором, составляет 1. 10 000 Гц. Микросхема — К561ЛН2.

Если нужна высокая стабильность генерируемой частоты, то такой генератор можно сделать «кварцованным» — включить кварцевый резонатор на нужную частоту. Ниже показан пример кварцованного генератора на частоту 4,3 МГц:

На рис. 6 представлена схема генератора импульсов с регулируемой скважностью.

Скважность – отношение периода следования импульсов (Т) к их длительности (t):

Скважность импульсов высокого уровня на выходе логического элемента DD1.3, резистором R1 может изменяться от 1 до нескольких тысяч. При этом частота импульсов также незначительно изменяется. Транзистор VT1, работающий в ключевом режиме, усиливает импульсы по мощности.

Генератор, схема которого приведена на рисунке ниже, вырабатывает импульсы как прямоугольной, так и пилообразной формы. Задающий генератор выполнен на логических элементах DD 1.1-DD1.3. На конденсаторе С2 и резисторе R2 собрана дифференцирующая цепь, благодаря которой на выходе логического элемента DD1.5 формируются короткие положительные импульсы (длительностью около 1 мкс). На полевом транзисторе VT2 и переменном резисторе R4 выполнен регулируемый стабилизатор тока. Этот ток заряжает конденсатор С3, и напряжение на нем линейно возрастает. В момент поступления на базу транзистора VT1 короткого положительного импульса транзистор VT1 открывается, разряжая конденсатор СЗ. На его обкладках таким образом формируется пилообразное напряжение. Резистором R4 регулируют ток зарядки конденсатора и, следовательно, крутизну нарастания пилообразного напряжения и его амплитуду. Конденсаторы С1 и СЗ подбирают исходя из требуемой частоты импульсов. Микросхема — К561ЛН2.

Цифровые микросхемы в генераторах взаимозаменяемы в большинстве случаев и можно использовать в одной и той же схеме как микросхемы с элементами «И-НЕ», так и «ИЛИ-НЕ», или же просто инверторы. Вариант таких замен показан на примере рисунка 5, где была использована микросхема с инверторами К561ЛН2. Точно такую схему с сохранением всех параметров можно собрать и на К561ЛА7, и на К561ЛЕ5 (или серий К176, К564, К164), как показано ниже. Нужно только соблюдать цоколевку микросхем, которая во многих случаях даже совпадает.

Если требуется повысить нагрузочную способность какого либо узла (чтобы, например, подключить динамик или другую нагрузку), можно применить на выходе усилитель на транзисторе, как в схеме на рис. 6, или же включить несколько элементов микросхемы параллельно, как показано на рисунке ниже:

Универсальная печатная макетная плата для двух микросхем. На таких платах удобно собирать несложные схемы с небольшим количеством деталей, как, например, приведенные в этой статье. Детали паяются к контактным площадкам и при необходимости соединятся перемычками. Размеры платы 100 х 55 мм.

На рисунке ниже приводится цоколевка некоторых широко применяемых цифровых логических микросхем КМОП — технологии с элементами «И-НЕ», «ИЛИ-НЕ» и инверторов. Микросхемы серий К564, К176 имеют аналогичную цоколевку, цоколевка же микросхем серии К155 отличается от указанной (но такие уже давно не применяются). Питание указанных микросхем, как уже говорилось выше, может быть от 3 до 15 В (кроме серии К176, которая более критична к напряжению питания и нормально работает при 9В).

Источник

Регулятор напряжения 121.3702

Регулятор напряжения 121.3702

Бесконтактный транзисторный регулятор напряжения 121.3702 (см.рис.) применяется с генератором Г221А взамен вибрационного регулятора напряжения РР380. Схема регулятора достаточно проста и типична, что позволяет использовать ее для иллюстрации принципа работы транзисторных регуляторов.
Эталонной величиной в регуляторе является напряжение стабилизации стабилитрона VD1. Характерной особенностью стабилитрона является то, что если напряжение между его катодом и анодом по величине меньше напряжения стабилизации, ток через него практически не протекает. Если напряжение между катодом и анодом достигает величины напряжения стабилизации, ток через стабилитрон резко возрастает, происходит «пробой» стабилитрона. При этом напряжение между его катодом и анодом остается практически неизменным.

Измерительным органом в регуляторе является делитель напряжения, состоящий из резистора R2 и двух параллельно включенных резисторов R1 и R3. К стабилитрону VD1 через переход эмиттер-база транзистора VT1 подводится та часть напряжения генератора, которая выделяется на параллельно включенных резисторах R1, R3. Стабилитрон является органом сравнения в регуляторе напряжения. Регулирующим органом в схеме является электронное реле на трех транзисторах VT1—VT3. Эти транзисторы при работе регулятора напряжения могут находиться в одном из двух состояний — открытом (ток в цепи эмиттер-коллектор транзистора протекает) и закрытом — ток в цепи эмиттер-коллектор отсутствует. Цепь между эмиттером и коллектором в этом смысле аналогична контактам реле. Для перехода транзистора из закрытого в открытое состояние в цепи эмиттер-база должен появиться ток, для чего к переходу эмиттер-база следует приложить напряжение соответствующей полярности, т. е. переход эмиттер-база должен быть смещен в прямом направлении. Ток, открывающий транзисторы типа P—N—P, протекает от эмиттера к базе (эмиттер имеет более высокий потенциал, чем база), а типа N—Р—N — от базы к эмиттеру (положительный потенциал на базе относительно эмиттера).
Если переход эмиттер-база смещен в обратном направлении, то транзистор закрыт.

  • Регулирование напряжения транзисторным регулятором происходит следующим образом. До пуска двигателя при включении выключателя зажигания 5 (см. рис.3а здесь) напряжение аккумуляторной батареи подводится к делителю напряжения R1—R3. При этом к стабилитрону VD1 поступает та часть этого напряжения, которая выделяется на плече делителя, образованном параллельно включенными резисторами R1, R3. Резистор R1 настройки регулятора подбирается таким образом, чтобы напряжение на резисторах R1, R3 при включении только аккумуляторной батареи было меньше, чем напряжение стабилизации стабилитрона VD1, т. е недостаточно для его пробоя. При этом стабилитрон препятствует протеканию тока в цепи базы транзистора VT1, который находится, следовательно, в закрытом состоянии. Транзисторы VT2 и VT3 открыты, так как в цепях их баз протекают токи — у транзистора VT2 через резистор R5, а у транзистора VT3 — через переход эмиттер-коллектор транзистора VT2.
  • Транзисторы VT1 и VT2 имеют тип P—N—P, а транзисторы VT3 — N—P—N. Следовательно, при включении аккумуляторной батареи электронное реле регулятора напряжения находится во включенном состоянии, его выходной транзистор VT3 открыт и ток от аккумуляторной батареи поступает в обмотку возбуждения, обеспечивая возбуждение генератора.
  • После пуска двигателя генератор вступает в работу, его напряжение возрастает до тех пор, пока напряжение на плече делителя R1, R3 не станет равным напряжению стабилизации стабилитрона VD1. При этом стабилитрон пробивается, возникает ток в базе транзистора VT1 и он открывается. Поскольку сопротивление перехода эмиттер-коллектор открытого транзистора мало, то этот переход транзистора VT1 практически накоротко соединяет базу с эмиттером транзистора VT2, шунтирует этот его переход, ток в базе транзистора VT2 прекращается и он закрывается.
  • Если закрыт транзистор VT2, то закрывается и транзистор VT3, так как ток в его базовой цепи прерывается. Электронное реле регулятора переходит в выключенное состояние, ток в обмотке возбуждения уменьшается, соответственно уменьшается и напряжение генератора. При этом уменьшается напряжение на резисторах R1, R3. Как только оно становится меньше напряжения стабилизации стабилитрона VD1, транзистор VT1 закрывается, VT2 и VT3 открываются, напряжение генератора возрастает, т. е. процесс повторяется.

Транзистор VT2 играет в схеме роль усилителя. Применение в схемах нескольких транзисторов связано с тем, что на входе регулятора обычно коммутируется ток в десятки миллиампер в то время, как на выходе ток современных регуляторов напряжения достигает 5 А. При этом коэффициент усиления схемы регулятора по току лежит в пределах 300—800. Такого усиления на одном транзисторе достичь невозможно.
Таким образом, регулирование напряжения генератора производится ступенчато. Электронное реле регулятора напряжения переходит от включенного к выключенному состоянию и обратно, то подключая обмотку возбуждения к источнику питания, то ее отключая. В зависимости от режима работы генератора меняется относительное время нахождения реле во включенном или выключенном состоянии, чем и обеспечивается автоматическое поддержание напряжения генератора на заданном уровне. Гасящий диод VD2 предотвращает появление опасных импульсов напряжения при запирании транзистора VT3 и прерывании тока в обмотке возбуждения.

  • Появление импульса высокого напряжения предотвращается тем, что при запирании транзистора VT3 ток обмотки возбуждения имеет возможность протекать через гасящий диод, обмотка возбуждения этим диодом оказывается замкнута практически накоротко и опасных последствий прерывания тока не происходит.
  • Обратные связи в схеме регулятора повышают качественные показатели его работы, увеличивают частоту переключения его электронного реле, снижают потери в транзисторах при переключении, обеспечивают разницу между напряжениями включения и выключения электронного реле регулятора и т. д.
  • Через обратные связи осуществляется воздействие сигнала на выходе элемента на вход этого же или другого элемента. В этом смысле измерительный элемент регулятора, его входной делитель напряжения, является главной обратной связью в системе автоматического регулирования напряжения генератора — он подает выходное напряжение генератора на вход регулятора напряжения.
  • Через резисторы в регуляторе осуществляется жесткая обратная связь, через цепи с конденсатором — гибкая. Жесткая обратная связь отличается от гибкой тем, что передает сигнал без задержки по времени.

В изображенной на рисунке схеме имеются два элемента обратной связи — цепь, состоящая из конденсатора С1 и резистора R4, а также конденсатор С2. Цепь R4, С1 связывает коллектор транзистора VT2 с базой транзистора VT1, т. е. выход транзистора VT2 с входом VT1. Эта цепь снижает потери в транзисторах VT1-VT3 при их переключении. До пробоя стабилитрона VD1 конденсатор С1 разряжается через переходэмиттер-коллектор транзистора VT2 и резисторы R4,R7.
С переходом транзистора VT1 в открытое состояние, а VT2 и VT3 в закрытое конденсатор С1 заряжается через эмиттер базовый переход транзистора VT1, резисторы R4R6, предохранитель. При этом переход база-эмиттер VT1 получает по цепи R4С1 дополнительный импульс тока, сокращающий время перехода транзистора VT1 в открытое состояние, а транзисторов VT2 и VT3 в закрытое состояние и, следовательно, снижающий потери мощности в транзисторах при их переключении. Конденсатор С2 связывает вход и выход транзистора VT1, что делает этот транзистор интегрирующим звеном, основной особенностью которого является подавление высокочастотных колебаний при их прохождении. Наличие интегрирующего звена исключает самовозбуждение схемы, влияние на регулятор посторонних электромагнитных помех. Резисторы R5—R7 обеспечивают нужный режим работы транзисторов в открытом и закрытом состояниях. Так, резистор R5 ограничивает на требуемом уровне ток базы транзистора VT2, резистор R6 позволяет транзистору VT3 закрыться полностью.

  • Схема имеет два элемента защиты — предохранитель FU, который разрывает цепь при токовой перегрузке выходного транзистора, и диод VD3, защищающий регулятор от импульсов напряжения обратной полярности.

Оптические датчики — Конструкции простой сложности — Схемы для начинающих

Во многих устройствах бытовой автоматики, в охранных системах, нужны датчики, реагирующие на приближение руки человека, проход человека через «невидимый порог» и т.д. Датчики, реагирующие на появление человека или препятствия, предмета, могут быть акустическими, радиолокационными, емкостными и другими. Но, с точки зрения простоты и стабильности, на мой взгляд, лучшими будут датчики, основанные на посылке и приеме инфракрасного луча. Они могут быть работающими на пересечение луча, или на отражение. На рисунке 1 показана схема простого генератора инфракрасных модулированных лучей.


РИС. 1

Генератор представляет собой инфракрасный светодиод HL1, через который посредством ключа на транзисторе VT1 пропускают импульсы тока, следующие с частотой 36 кГц. Импульсы вырабатывает мультивибратор на микросхеме D1. На первых её двух элементах (D1.1-D1.2) собран собственно мультивибратор, а на двух последних (D1.3-D1.4) — буферный усилитель мощности, согласующий выход мультивибратора с базой транзистора VT1. Мощность излучения (дальность действия датчика) устанавливается подбором сопротивления резистора R3. Схема приемника ИК-луча для датчика, работающего на пересечение луча, показана на рисунке 2.


РИС. 2

Схема выполнена на основе интегрального фотоприемника SFH506-36, применяемого в системах управления телевизоров. Фотоприемник настроен на частоту модуляции 36 кГц (об этом говорит последнее число «36» в его обозначении). При приеме ИК-луча от генератора, схема которого показана на рисунке 1, на выводе 3 фотоприемника HF1 открывается внутренний ключ, который замыкает базовую цепь транзистора VT1 на нуль. Транзистор VT1 закрыт. Соответственно, закрыт и транзистор VT2, и реле К1, обмотка которого включена в его коллекторной цепи, выключено. При перекрывании луча (или выключении генератора ИК-импульсов), выходной ключик фотоприемника HF1 закрывается и больше не шунтирует базовую цепь VT1. Через R1 на базу VT1 поступает открывающее напряжение. Транзисторы VT1 и VT2 последовательно открываются и реле К1 включается. На рисунке 3 приведена схема приемника ИК-луча, работающего на отражение.


Логика его работы обратна логике работы приемника, схема которого показана на рисунке 2. То есть, реле должно включаться при приеме луча. Это достигнуто применением транзисторов противоположной структуры. В отсутствие приема выходной ключик HF1 закрыт, поэтому, базовая цепь транзистора VT1 шунтируется резисторами R1 и R2. Транзисторы VT1 и VT2 закрыты. Реле К1 выключено. При приеме луча выходной ключ HF1 открывается и через него и резистор R2 на базу VT1 поступает открывающее напряжение. Вслед за VT1 открывается VT2. Реле включается. Схемы приемников и генератора импульсов сделаны на отдельных печатных платах, ломанных на тех же рисунках, что и принципиальные схемы. ИК-светодиод интегральные фотоприемники нужно оборудовать простейшими блендами, снижающими угол обзора. В генераторе ИК-импульсов можно использовать микросхему К561ЛЕ5, К561ЛА7, К176ЛЕ5, К176ЛА7, CD4001, CD4011. А при изменении рисунка печатных дорожек, — любую КМОП-микросхему с числом инверторов не меньше 4-х. HL1 — инфракрасный светодиод для пультов дистанционного управления. Подходит любой ИК-светодиод такого назначения. В приемных блоках (рис.2, 3) можно применить любые интегральные фотоприемники, — такие как используются в системах управления современных телевизоров. Они подходят практически все, но может быть различие в цоколевке и резонансной частоте. Нужно помнить, что мультивибратор генератора должен быть настроен на резонансную частоту интегрального фотоприемника (для SFH-506-36 это 36 кГц). Транзисторы КТ815 можно заменить на КТ817, КТ604. Транзистор КТ814 — на КТ816. Транзисторы КТ315 и КТ361, соответственно, наКТ3102 и КТ3107. Платы рассчитаны под реле BS118-1C. Такие реле (и аналогичные) применяются в импортных автомобильных сигнализациях. Конечно, можно использовать и другие реле, на соответствующее напряжение и ток, но это, в большинстве случае потребует внесения изменений в печатные платы (либо реле можно расположить за пределами платы, и подключить к ней монтажными проводами). Взаимное расположение блоков ИК-генератора и фотоприемника зависит от того как они будут применяться. Например, если нужно что-то включать при поднесении руки, нужно взять ИК-генератор (рис.1) и фотоприемник (рис.3). Расположить их так, чтобы оба были направлены на то место, куда нужно поднести руку, но так чтобы прямой свет от генератора не попадал на фотоприемник (рис.4.).


Проще всего ИК-генератор и фотоприемник расположить рядом, а между ними поместить непрозрачную перегородку. Чувствительность (дальность, с какой он начинает срабатывать) зависит от яркости излучаемого ИК-света, поэтому, при окончательном монтаже и настройке нужно будет подобрать сопротивление R3 (рис.1) так чтобы получить нужную дальность. Если в варианте установки, показанном на рис.4, использовать фотоприемник по рис.2, то реле будет включаться, если убрать отражающую поверхность. А с фотоприемником по рис.3. — реле включится, если отражающая поверхность появится. На рисунке 5 показана схема установки при работе на пересечение луча (прерывистой линией показано прохождение луча, когда нет непрозрачного предмета). В этом случае, при использовании фотоприемника по рис. 2, реле будет включаться тогда, когда предмет пересекает луч. Если использовать фотоприемник по рис.3. — реле включится, если предмет убрать и он не будет мешать ИК-лучу проходить на фотоприемник.

Радиоконструктор №1 2009г стр. 30

Схема генератора высоковольтных импульсов на мультивибраторе » Вот схема!


При сборке высоковольтных генераторов обычно используют высоковольтные умножители, которые не являются образцом надежности либо самодельные очень трудоемкие высоковольтные катушки. Существенно упростить конструкцию генератора можно если использовать готовую катушки от систем зажигания автомобилей с контактной системой.

Радиолюбителями уже предлагались подобные генераторы на основе мультивибратора и электромагнитного реле, выполняющего роль контактного прерывателя (моделировалась система зажигания автомобиля). Но их главный недостаток в высоком энергопотреблении и низкой надежности самих контактов.

В схеме показанной на рисунке эти недостатки ликвидированы. Во-первых коммутация тока в первичном обмотке катушки зажигания выполняется транзисторным ключом на транзисторах VT3 и VT4, во-вторых мультивибратор генерирует короткие импульсы (временная диаграмма показана на том же рисунке), в результате суммарный потребляемый ток не так высок.

Мультивибратор сделан на трех элементах микросхемы D1 (К155ЛА3) и одном транзисторе VT1. Благодаря цепи из диода VD1 и резистора R1 колебательный процесс происходит несимметрично и на выходе элемента D1.3 получаются короткие положительные импульсы длительностью 3 миллисекунды, повторяющиеся с периодом в 10 миллисекунд.

Эти импульсы поступают на вход мощного транзисторного ключа на VT1 и VT2. В результате в моменты действия этих импульсов ключ открывается и пропускает ток через низкоомную намотку катушки зажигания, конденсатор С4 разряжается, а катушка накапливает энергию.

После спада импульса ключ закрывается и в контуре L1C4 возникает колебательный процесс, что вызывает появление высоковольтного импульса на вторичной высокоомной катушке Амплитуда импульса достигает 20-50 КВ.

Все устройство, за исключением катушки, смонтировано в корпусе от коммутатора электронного зажигания автомобиля.

Средний ток потребления от источника 12В не более 0,4А. Частоту следования импульсов можно уменьшить, существенно повысив экономичность генератора, увеличив сопротивление R2. Откорректировать длительность импульсов можно изменив сопротивление R1.

Генератор сохраняет работоспособность при снижении напряжения питания до 6В, при этом, соответственно, уменьшается выходное напряжение.

Цепь реле переключения между сетью

и генератором

В сообщении объясняется простая конфигурация, которая может использоваться в качестве схемы автоматического переключения для переключения сети переменного тока на сеть генератора во время сбоев или отключений электроэнергии.

Объясненная схема будет эффективно переключать подключенные устройства к сети генератора во время сбоя питания, однако она не сможет включить запуск генератора автоматически, это нужно будет сделать вручную, потому что большинство генераторов связано со сложной процедурой механического срабатывания.

Как это работает

Обращаясь к данной схеме, мы можем увидеть простую схему, состоящую из реле TP (трехполюсное реле), как показано ниже, и цепи бестрансформаторного источника питания.

Вход схемы бестрансформаторного питания подключается к входу сети 220В или 120В.

При наличии сетевого питания подключенное реле активируется с этим питанием и включает нагрузку или приборы через свои замыкающие контакты.

И наоборот, при пропадании сетевого питания реле деактивируется и соединяется с замыкающими контактами, которые могут быть подключены к сети генератора.

Теперь, как только генератор запускается, сеть проходит через подключенные замыкающие контакты реле к приборам.

Третий набор контактов используется для включения и выключения блока CDI генератора, так что при восстановлении сети генератор автоматически останавливается.

Простой, но эффективный …..

Принципиальная схема

Схема переключения трехфазной сети на генератор

На следующей схеме показано, как можно реализовать переключение трехфазной сети на генератор с использованием пары трехфазных контакторов.

Как работает схема

Предположим, что сеть переменного тока недоступна, а генератор включен с помощью левого реле.

В этой ситуации центральное реле будет отключено, а его полюс будет соединен с его замыкающим контактом, так что +12 В постоянного тока от генератора проходит через замыкающий контакт и приводит в действие нижний / правый трехфазный генератор. контактор.

Верхний / правый контактор сети остается выключенным из-за отсутствия +12 В постоянного тока.

Следовательно, переменный ток генератора протекает через этот нижний / правый контактор и управляет подключенными приборами или нагрузкой.

Теперь предположим, что сеть переменного тока восстанавливается.

Левое реле активирует и выключает генератор. Также одновременно включается центральное реле через +12 В от электросети.

Теперь центральный полюс реле переключается с N / C на N / O, так что +12 В переменного тока от сети переменного тока проходит через замыкающие контакты и приводит в действие верхний / правый контактор. Одновременно выключается нижний / правый контактор генератора.

При включенном верхнем / правом контакторе переменный ток сети становится доступным для нагрузки.

Опять же, при выходе из строя сетевого переменного тока левое реле деактивируется, включая процедуры генератора, центральное реле соединяется с его замыкающими контактами, включая 3-фазные контакторы генератора и выключая сетевые контакторы.

Если вы не можете получить вышеупомянутое электромеханическое реле / ​​контактор 12 В, вы можете вместо этого выбрать трехфазный контактор SSR, как показано ниже.

Схема кодового замка с использованием транзистора

Gadgetronicx> Электроника> Принципиальные и электрические схемы> Электронные замки> Схема кодового замка на транзисторе