Генератор схем: Генератор схем фенечек прямого плетения

Содержание

Генератор схем фенечек с именами

VN:F [1.9.22_1171]

Rating: 4.4/5 (1768 votes cast)

Текст:

Для того, чтобы работал генератор схем включите в браузере Javascript!

Чтобы плести фенечки с именами мы создали для вас генератор схем. Вводите имя в поле и нажимаете кнопку «Создать схему». Дальше готовую схему можно сохранить на компьютер. Для этого нажмите правой кнопкой на схему и выберите пункт «Сохранить изображение…».

Генератор создает схемы английских и русских букв, а также возможно использование некоторых спецсимволов (набирать без кавычек):
«.» — точка,
«_» — звездочка,
«=» — сердечко,
«+» — плюс, крестик.

Если вы не знаете как плести фенечки с именами посмотрите наш мастер класс:

А также почитайте следующие несколько абзацев. Если же вас интересуют фенечки без текста, то рекомендуем почитать как плести фенечки.

Нити могут быть любых цветов, в генераторе же используются белая основная нить и зеленые фоновые для букв. Стрелка на белой нити показывает направление вязки ряда узелков. Первый ряд узелков у нас идет слева направо, он пустой. Узелки в нем нужно завязывать так, как показано на следующем рисунке:

фенечки с именами схемы

Второй ряд идет уже справа налево, так как наша основная нить после первого ряда оказалась справа. Узелки с белой стрелочкой, которая показывает налево нужно вязать по следующей схеме:

схемы фенечки с именами

Стрелка вниз на зеленой нитке создает необходимый нам узор. Узелки немного отличаются, в зависимости от того в какую сторону идет основная нить. Вот так этот узелок выглядит, если главная нить идет справа налево:

фенечки с именами, схемы

А так выглядит, если основная нить идет слева направо.

фенечки с именами - схемы

Если вы не полностью разобрались в этом, то почитайте еще статью Как плести фенечки с именами из мулине.

Кроме того мы создали еще один Генератор, который создает схемы фенечек прямым плетением. И вы можете создать фенечку с именем, или любым узором.

Генератор схем фенечек прямым плетением

VN:F [1.9.22_1171]

Rating: 4.4/5 (1768 votes cast)

Генератор схем фенечек с именами, 4.4 out of 5 based on 1768 ratings

Генератор схем фенечек косым плетением

VN:D [1.9.22_1171]

Rating: 4.2/5 (222 votes cast)

Представляем вам наш новый генератор схем фенечек косого плетения. Предлагаем вам его версию 1.1 и ждем ваших отзывов в комментариях. В этой версии мы сделали добавление схем на сайт. Пишите в комментариях, что думаете об этом.

Давайте рассмотрим функции генератора. Некоторые очевидны, некоторые возможно не очень. Предполагается, что вы понимаете в схемах косого плетения, если это не так, то рекомендуем почитать Как плести фенечки косым плетением.

Теперь можно сохранить схему на сайт.

Добавлена новая функция. Теперь, если цикл схемы полный (верхняя последовательность цветов ниток равняется нижней), то в верхнем углу схемы появляется такой символ:

Изменение узлов.
Для того чтобы изменить какой то узел в схеме, нужно поднести мышку к нему, а на сенсорных устройствах нажать на него пальцем. Появятся 4 варианта узлов, нажмите на желаемый и схема обновится.

Изменение цвета нити.
Для того чтобы изменить цвет нитки нужно нажать на ее начало, появится редактор цвета. Двигаете ползунки и подбираете желаемый цвет. В нижней части редактора цвета есть поле с использованными цветами. Для того, чтобы не подбирать один и тот же цвет несколько раз, просто нажмите на этот цвет внизу, а затем кнопку ОК и цвет нитки на схеме поменяется. Кроме удобства, если например вы будете вручную подбирать цвет, а они будет хоть немного отличаться, то буквы идентифицирующие цвета ниток в начале и конце схемы у этих двух разных оттенков одного цвета будут разными. Поэтому подберите цвет один раз, а потом пользуйтесь использованными цветами.

Изменение количества ниток.
Для изменения количества ниток в схеме используйте кнопки со стрелками. Стрелка вправо добавляет 2 нитки, стрелка влево удаляет 2 нитки. При этом минимальное количество нитей 4, а максимальное на данный момент — 60. Новые нитки добавляются с таким же цветом как у последней нитки.

Изменение количества строчек.
0040Для изменения количества строчек используйте стрелку вниз для добавления 2 строчек и стрелку вверх для удаления строчек. Тут есть еще одна интересная функция. Если вы сделали схему и вам нравится, как она выглядит на миниатюре вверху, но цикл плетения не полный (то есть последовательность цветов верхних и нижних ниток разная), то у вас есть возможность посмотреть, добавив строчки, не станет ли цикл полным. Генератор запоминает ваш старый цикл. Для примера, у нас была схема с 4 строчками – в первых 2 строчках узлы прямые, в 3 и 4 строчке узлы обратные. После того как мы нажали на кнопку «Добавить 2 строчки» 5 и 6 строчки появились с прямыми узлами (Схема 2). Когда мы нажмем еще раз, добавятся еще 2 строчки – 7 и 8, но они как 3 и 4 с обратными узлами. Заметьте, цикл схемы сохранился – на 1 и 3 схеме миниатюры одинаковые.

00400040

Удаление схемы.
Генератор сохраняет созданную вами схему и даже после перезагрузки страницы, или перезапуска браузера ваша схема не пропадет. Для того чтобы удалить ее используйте кнопку генератора с красным крестиком и подсказкой «Удалить схему».

VN:D [1.9.22_1171]

Rating: 4.2/

5 (222 votes cast)

Генератор схем фенечек косым плетением, 4.2 out of 5 based on 222 ratings

Принцип работы автомобильного генератора, схема

Генератор — один из главных элементов электрооборудования автомобиля, обеспечивающий одновременное питание потребителей и подзаряд аккумуляторной батареи.

Принцип действия устройства построен на превращении механической энергии, которая поступает от мотора, в напряжение.

В комплексе с регулятором напряжения узел называется генераторной установкой.

В современных автомобилях предусмотрен агрегат переменного тока, в полной мере удовлетворяющий всем заявленным требованиям.

Устройство генератора

Элементы источника переменного тока спрятаны в одном корпусе, который также является основой для статорной обмотки.

В процессе изготовления кожуха применяются легкие сплавы (чаще всего алюминия и дюрали), а для охлаждения предусмотрены отверстия, обеспечивающие своевременный отвод тепла от обмотки.

В передней и задней части кожуха предусмотрены подшипники, к которым и крепится ротор — главный элемент источника питания.

В кожухе помещаются почти все элементы устройства. При этом сам корпус состоит из двух крышек, расположенных с левой и с правой стороны — около приводного вала и контрольных колец соответственно.

Две крышки объединяются между собой с помощью специальных болтов, изготовленных из алюминиевого сплава. Этот металл отличается незначительной массой и способностью рассеивать тепло.

Не менее важную роль играет щеточный узел, передающий напряжение на контактные кольца и обеспечивающий работу узла.

Изделие состоит из пары графитных щеток, двух пружин и щеткодержателя.

Также уделим внимание элементам, расположенным внутри кожуха:

  • Ротор — элемент, имеющий одну обмотку и, по сути, представляющий собой электромагнит. Ротор находится на валу, а сверху обмотки установлен сердечник диаметром на 1,5-2,0 мм больше диаметра стартера. Ток подается с помощью медных колец, которые расположены на валу и объединены с обмоткой через специальные щетки.
  • Обмотка — устройство, изготовленное из медной проволоки и закрепленное в пазы сердечника. Сам сердечник выполнен в форме окружности и изготавливается с применением специального материала, обладающего улучшенными магнитными качествами. В электротехнике металл носит название «трансформаторное железо». У статора есть три обмотки, связанные между собой и объединенные в звезду или треугольник. В точке объединения установлен диодный мост, обеспечивающий выпрямление напряжения. Обмотка изготовлена из специальной проволоки, имеющей двойную термоустойчивую изоляцию, покрытую специальным лаком.
  • Реле-регулятор — ключевой элемент установки, обеспечивающий стабильное напряжение на выходе устройства. Монтаж регулятора может производиться в кожухе генератора или снаружи. В первом случае он находится возле графитных щеток, а во втором — там, где щетки крепятся к щеткодержателю (но в разных моделях авто монтаж может осуществляться по-разному). Ниже представлены реле-регуляторы с щеточным узлом.
  • Выпрямительный мост — элемент, предназначенный для преобразования переменного тока на выходе статора в постоянное напряжение. Выпрямитель состоит из трех пар диодов, которые установлены на токопроводящем основании и попарно объединяются друг с дружкой. В среде автовладельцев и мастеров СТО диодный мост часто называется «подковой» из-за схожести с этим предметом.

Какие требования предъявляются к автомобильному генератору?

К генераторной установке автомобиля выдвигается ряд требований:

  • Напряжение на выходе устройства и, соответственно, в бортовой сети должно поддерживаться в определенном диапазоне, вне зависимости от нагрузки или частоты вращения коленвала.
  • Выходные параметры должны иметь такие показатели, чтобы в любом из режимов работы машины АКБ получала достаточное напряжение заряда.

При этом каждый автовладелец должен особое внимание уделять уровню и стабильности напряжения на выходе. Это требование вызвано тем, что аккумулятор чувствителен к подобным изменениям.

Например, в случае снижения напряжения ниже нормы АКБ не заряжается до необходимого уровня. В итоге возможны проблемы в процессе пуска мотора.

В обратной ситуации, когда установка выдает повышенное напряжение, аккумулятор перезаряжается и быстрее ломается.

Полезно почитать: Взорвался аккумулятор, причины и что делать.

Принцип работы автомобильного генератора, особенности схемы

Принцип действия генераторного узла построен на эффекте электромагнитной индукции.

В случае прохождения магнитного потока через катушку и его изменения, на выводах появляется и меняется напряжение (в зависимости от скорости изменения потока). Аналогичным образом работает и обратный процесс.

Так, для получения магнитного потока требуется подать на катушку напряжение.

Выходит, что для создания переменного напряжения требуются две составляющие:

  • Катушка (именно с нее снимается напряжение).
  • Источник магнитного поля.

Не менее важным элементом, как отмечалось выше, является ротор, выступающий в роли источника магнитного поля.

У полюсной системы узла присутствует остаточный магнитный поток (даже при отсутствии тока в обмотке).

Этот параметр небольшой, поэтому способен вызвать самовозбуждение только на повышенных оборотах. По этой причине по обмотке ротора пропускают сначала небольшой ток, обеспечивающий намагничивание устройства.

Упомянутая выше цепочка подразумевает прохождение тока от АКБ через лампочку контроля.

Главный параметр здесь — сила тока, которая быть в пределах нормы. Если ток будет завышенным, аккумулятор быстро разрядится, а если заниженным — возрастет риск возбуждения генератора на ХХ мотора (холостых оборотах).

С учетом этих параметров подбирается и мощность лампочки, которая должна составлять 2-3 Вт.

Как только напряжение достигает требуемого параметра, лампочка гаснет, а обмотки возбуждения питаются от самого автомобильного генератора. При этом источник питания переходит в режим самовозбуждения.

Снятие напряжения производится со статорной обмотки, которая выполнена в трехфазном исполнении.

Узел состоит 3-х индивидуальных (фазных) обмоток, намотанных по определенному принципу на магнитопроводе.

Токи и напряжения в обмотках смещены между собой на 120 градусов. При этом сами обмотки могут собираться в двух вариантах — «звездой» или «треугольником».

Если выбрана схема «треугольник», фазные токи в 3-х отмотках будут в 1,73 раза меньше, чем общий ток, отдаваемый генераторной установкой.

Вот почему в автомобильных генераторах большой мощности чаще всего применяется схема «треугольника».

Это как раз объясняется меньшими токами, благодаря которым удается намотать обмотку проводом меньшего сечения.

Такой же провод можно использовать и в соединениях типа «звезда».

Чтобы созданный магнитный поток шел по назначению, и направлялся к статорной обмотке, катушки находятся в специальных пазах магнитопровода.

Из-за появления магнитного поля в обмотках и в статорном магнитопроводе, появляются вихревые токи.

Действие последних приводит к нагреву статора и снижению мощности генератора. Для уменьшения этого эффекта при изготовлении магнитопровода применяются стальные пластины.

Выработанное напряжение поступает в бортовую сеть через группу диодов (выпрямительный мост), о котором упоминалось выше.

После открытия диоды не создают сопротивления, и дают току беспрепятственно проходить в бортовую сеть.

Но при обратном напряжении I не пропускается. Фактически, остается только положительная полуволна.

Некоторые производители автомобилей для защиты электроники меняют диоды на стабилитроны.

Главной особенностью деталей является способность не пропускать ток до определенного параметра напряжения (25-30 Вольт).

После прохождения этого предела стабилитрон «пробивается» и пропускает обратный ток. При этом напряжение на «плюсовом» проводе генератора остается неизменным, что не несет риски для устройства.

К слову, способность стабилитрона поддерживать на выводах постоянное U даже после «пробоя» применяется в регуляторах.

В результате после прохождения диодного моста (стабилитронов) напряжение выпрямляется, становится постоянным.

У многих типов генераторных установок обмотка возбуждения имеет свой выпрямитель, собранный из 3-х диодов.

Благодаря такому подключению, протекание тока разряда от АКБ исключено.

Диоды, относящиеся к обмотке возбуждения, работают по аналогичному принципу и питают обмотку постоянным напряжением.

Здесь выпрямительное устройство состоит из шести диодов, три их которых являются отрицательными.

В процессе работы генератора ток возбуждения ниже параметра, который отдает автомобильный генератор.

Следовательно, для выпрямления тока на обмотке возбуждения достаточно диодов с номинальным током до двух Ампер.

Для сравнения силовые выпрямители имеют номинальный ток до 20-25 Ампер. Если требуется увеличить мощность генератора, ставится еще одно плечо с диодами.

Режимы работы

Чтобы разобраться в особенностях функционирования автомобильного генератора, важно понять особенности каждого из режимов:

  • В процессе пуска двигателя главным потребителем электрической энергии выступает стартер. Особенностью режима является создание повышенной нагрузки, что приводит к уменьшению напряжения на выходе АКБ. Как следствие, потребители берут ток только с аккумулятора. Вот почему при таком режиме батарея разряжается с наибольшей активностью.
  • После завода двигателя автомобильный генератор переходит в режим источника питания. С этого момента устройство дает ток, который необходим для питания нагрузки в автомобиле и подзаряда АКБ. Как только аккумулятор набирает требуемую емкость, уровень зарядного тока снижается. При этом генератор продолжает играть роль главного источника питания.
  • После подключения мощной нагрузки, например, кондиционера, обогрева салона и прочих, скорость вращения ротора замедляется. В этом случае автомобильный генератор уже не способен покрыть потребности автомобиля в токе. Часть нагрузки перекладывается на АКБ, который работает в параллель с источником питания и начинает постепенно разряжаться.

Регулятор напряжения — функции, типы, контрольная лампа

Ключевым элементом генераторной установки является регулятор напряжения — устройство, поддерживающее безопасный уровень U на выходе статора.

Такие изделия бывают двух типов:

  • Гибридные — регуляторы, электрическая схема которых включает в себя как электронные приборы, так и радиодетали.
  • Интегральные — устройства, в основе которых лежит тонкопленочная микроэлектронная технология. В современных автомобилях наибольшее распространение получил именно этот вариант.

Не менее важный элемент — контрольная лампа, смонтированная на приборной панели, по которой можно делать вывод о наличии проблем с регулятором.

Зажигание лампочки в момент пуска мотора должно быть кратковременным. Если же она горит постоянно (когда генераторная установка в работе), это свидетельствует о поломке регулятора или самого узла, а также необходимости ремонта.

Тонкости крепления

Фиксация генераторной установки производится при помощи специального кронштейна и болтового соединения.

Сам узел крепится в передней части двигателя, благодаря специальным лапам и проушинам.

Если на автомобильном генераторе предусмотрены специальные лапы, последние находятся на крышках мотора.

В случае применения только одной фиксирующей лапы, последняя ставится только на передней крышке.

В лапе, установленной в задней части, как правило, предусмотрено отверстие с установленной в нем дистанционной втулкой.

Задача последней заключается в устранении зазора, созданного между упором и креплением.

Крепление генератора Audi A8.

А так агрегат крепиться на ВАЗ 21124.

Неисправности генератора и способы их устранения

Электрооборудование автомобиля имеет свойство ломаться. При этом наибольшие проблемы возникают с АКБ и генератором.

В случае выхода из строя любого из этих элементов эксплуатация ТС в нормальном режиме работы становится невозможной или же авто оказывается вовсе обездвиженным.

Все поломки генератора условно делятся на две категории:

  • Механические. В этом случае проблемы возникают целостностью корпуса, пружин, ременным приводом и прочими элементами, которые не связаны с электрической составляющей.
  • Электрические. Сюда относятся неисправности диодного моста, износ щеток, замыкание в обмотках, поломки реле регулятора и прочие.

Теперь рассмотрим список неисправностей и симптомы более подробно.

1. На выходе недостаточный уровень зарядного тока:

  • Пробуксовка приводного ремня. Решение — натянуть ремень и проверить подшипники на факт исправности, симптомы – свист ремня генератора.
  • Зависание щеток. Для начала стоит вычистить щеткодержатель и щетки от загрязнений и убедиться в достаточности усилия.
  • Обрыв цепочки возбуждения, подгорание контактных колес. Первая проблема решается путем поиска и устранения обрыва, а вторая — посредством зачистки и проточки контактных колец (если это требуется).
  • Выход из строя регулятора напряжения.
  • Задевание ротором статорного полюса.
  • Обрыв цепочки, объединяющий генератор и АКБ.

2. Вторая ситуация.

Когда автомобильный генератор выдает необходимый уровень тока, но АКБ все равно не заряжается.

Причины могут быть разными:

  • Низкое качество протяжки контакта «массы» между регулятором и основным узлом. В этом случае проверьте качество контактного соединения.
  • Выход из строя реле напряжения — проверьте и поменяйте его.
  • Износились или зависли щетки — замените или очистите от грязи.
  • Сработало защитное реле регулятора из-за наличия замыкания на «массу». Решение — отыскать место повреждения и убрать проблему.
  • Прочие причины — замасливание контактов, поломка регулятора напряжения, витковое замыкание в обмотках статора, плохое натяжение ремня.

3. Генератор работает, но издает повышенный шум.

Вероятные неисправности:

  • Замыкание между витками статора.
  • Износ места для посадки подшипника.
  • Послабление шкивной гайки.
  • Разрушение подшипника.

Ремонт генератора автомобиля всегда должен начинаться с точной диагностики проблемы, после чего причина устраняется путем профилактических мер или замены вышедшего из строя узла.

Рекомендации по замене

Практика эксплуатации показывает, что поменять автомобильный генератор несложно, но для решения задачи требуется соблюдать ряд правил:

  • Новое устройство должно иметь аналогичные токоскоростные параметры, как и у заводского узла.
  • Энергетические показатели должны быть идентичными.
  • Передаточные числа у старого и нового источника питания должны совпадать.
  • Устанавливаемый узел должен подходить по размерам и с легкостью крепится к мотору.
  • Схемы нового и старого автомобильного генератора должны быть одинаковыми.

Учтите, что устройства, смонтированные на автомобилях зарубежного производства, фиксируются не так, как отечественного, к примеру, как на генератор TOYOTA COROLLA и Лада Гранта .Следовательно, если менять иностранный агрегат изделием отечественного производства, придется установить новое крепление.

Полезные советы в помощь

В завершение рассказа об автомобильных генераторах стоит выделить ряд советов, что необходимо, а чего нельзя делать автовладельцам в процессе эксплуатации.

Главный момент — установка, в процессе которой важно с предельным вниманием подойти к подключению полярности.

Если ошибиться в этом вопросе, выпрямительное устройство поломается и возрастает риск возгорания.

Аналогичную опасность несет и пуск двигателя при некорректно подключенных проводах.

Чтобы избежать проблем в процессе эксплуатации, стоит придерживаться ряда правил:

  • Следите за чистотой контактов и контролируйте исправность электрической проводки автомобиля. Отдельное внимание уделите надежности соединения. В случае применения плохих контактных проводов уровень бортового напряжения выйдет за допустимый предел.
  • Следите за натяжкой генератора. В случае слабого натяжения источник питания не сможет выполнять поставленные задачи. Если же перетянуть ремень, это чревато быстрым износом подшипников.
  • Отбрасывайте провода от генератора и АКБ при выполнении электросварочных работ.
  • Если контрольная лампочка загорается и продолжает гореть после пуска мотора, выясните и устраните причину.

Отдельное внимание стоит уделить реле-регулятору, а также проверке напряжения на выходе источника питания. В режиме заряда этот параметр должен быть на уровне 13,9-14,5 Вольт.

Кроме того, время от времени проверяйте износ и достаточность усилия щеток генератора, состояние подшипников и контактных колец.

Высота щеток должна измеряться при демонтированном держателе. Если последний износился до 8-10 мм, требуется замена.

Что касается усилия пружин, удерживающих щетки, оно должно быть на уровне 4,2 Н (для ВАЗ). При этом осматривайте контактные кольца — на них не должно быть следов масла.

Также автовладелец должен запомнить и ряд запретов, а именно:

  • Не оставляйте машину с подключенной АКБ, если имеются подозрения поломки диодного моста. В противном случае аккумулятор быстро разрядится, и возрастает риск воспламенения проводки.
  • Не проверяйте правильность работы генератора путем перемыкания его выводов или отключения АКБ при работающем двигателе. В этом случае возможна поломка электронных элементов, бортового компьютера или регулятора напряжения.
  • Не допускайте попадания технических жидкостей на генератор.
  • Не оставляйте включенным узел в случае, если клеммы АКБ были сняты. В противном случае это может привести к поломке регулятора напряжения и электрооборудования авто.
  • Своевременно проводите замену ремня генератора.

Зная особенности работы генератора, нюансы его конструкции, основные неисправности и тонкости ремонта, можно избежать многих проблем с проводкой и АКБ.

Помните, что генератор — сложный узел, требующий особого подхода к эксплуатации.

Важно постоянно следить за ним, своевременно проводить профилактические мероприятия и замену деталей (при наличии такой необходимости).

При таком подходе источник питания и сам автомобиль прослужат очень долго.

Принцип работы и схема подключение генератора

Самая основная функция генераторазарядка батареи аккумулятора и питание электрического оборудования двигателя.

Схема генератора автомобиляПоэтому рассмотрим более подробнее схему генератора, как правильно его подключить, а также дадим несколько советов как проверить его своими руками.

Содержание:

Генератор – механизм, который превращает механическую энергию в электрическую. Генератор имеет вал, на который насажен шкив, через который и получает вращения от коленчатого вала двигателя.

Принципиальная электрическая схема генератора авто

  1. Аккумуляторная батарея
  2. Выход генератора "+"
  3. Включатель зажигания
  4. Лампа-индикатор исправности генератора
  5. Помехоподавляющий конденсатор
  6. Положительные диоды силового выпрямителя
  7. Отрицательные диоды силового выпрямителя
  8. «Масса» генератора
  9. Диоды обмотки возбуждения
  10. Обмотки трех фаз статора
  11. Питание обмотки возбуждения, опорное напряжение для регулятора напряжения
  12. Обмотка возбуждения (ротор)
  13. Регулятор напряжения

Автомобильный генератор используют для питания электропотребителей, таких как: система зажигания, бортовой компьютер, автомобильная светотехника, система диагностики, а также есть возможность заряжать автомобильный аккумулятор. Мощность генератора легкового автомобиля составляет приблизительно 1 кВт. Автомобильные генераторы достаточно надежные в работе, потому что обеспечивают бесперебойную работу множеству приборов в автомобиле, а поэтому и требования к ним соответствующие.

Устройство генератора

Устройство автомобильного генератора подразумевает наличие собственного выпрямителя и регулирующей схемы. Генерирующая часть генератора с помощью неподвижной обмотки (статора) вырабатывает трёхфазный переменный ток, который далее выпрямляется серией из шести больших диодов и уже постоянный ток заряжает аккумулятор. Переменный ток индуцируется вращающимся магнитным полем обмотки (вокруг обмотки возбуждения или ротора). Далее ток через щётки и кольца скольжения подаётся на электронную схему.

устройство генератора

Устройство генератора: 1.Гайка. 2.Шайба. 3.Шкив. 4.Передняя крышка. 5.Дистанционное кольцо. 6.Ротор. 7.Статор. 8.Задняя крышка. 9.Кожух. 10.Прокладка. 11.Защитная втулка. 12.Выпрямительный блок с конденсатором. 13.Щеткодержатель с регулятором напряжения.

Располагается генератор в передней части двигателя автомобиля и запускается с помощью коленчатого вала. Схема подключения и принцип работы генератора автомобиля одинаковый для любых автомобилей. Есть конечно некоторые отличия, но они, как правило, связаны с качеством изготовленного товара, мощностью и компоновкой узлов в моторе. Во всех современных автомобилях устанавливают генераторные установки переменного тока, которые включают не только сам генератор, но и регулятор напряжения. Регулятор равносильно распределяет силу тока в обмотке возбуждения, именно за счет этого и происходит колебание мощности самой генераторной установки в тот момент, когда напряжение на силовых клеммах выхода остается неизменным.

Новые автомобили чаще всего оборудованы электронным блоком на регуляторе напряжения, поэтому бортовой компьютер может контролировать величину нагрузки на генераторную установку. В свою очередь на гибридных автомобилях генератор выполняет работу стартер-генератора, аналогичная схема используется и в других конструкциях системы стоп-старт.

Принцип работы генератора авто

принцип работы генератора

Схема подключения генератора ВАЗ 2110-2115

Схема подключения генератора переменного тока включает такие составляющие:

  1. Аккумулятор.
  2. Генератор.
  3. Блок предохранителя.
  4. Ключ зажигания.
  5. Приборная панель.
  6. Выпрямительный блок и добавочные диоды.

Принцип работы достаточно простой, при включении зажигания плюс через замок зажигания идет через блок предохранителей, лампочку, диодный мост и выходит через резистор на минус. Когда лампочка на приборной панели загорелась, далее плюс идет на генератор (на обмотку возбуждения), далее в процессе запуска двигателя шкив начинает вращаться, также вращается якорь, за счет электромагнитной индукции вырабатывается электродвижущая сила и появляется переменный ток.

Наиболее опасным для генератора является замыкание пластин теплоотводов, соединенных с «массой» и выводом "+" генератора случайно попавшими между ними металлическими предметами или проводящими мостиками, образованными загрязнением.

Далее в выпрямительный блок через синусоиду в левое плечо диод пропускает плюс, а в правое минус. Добавочные диоды на лампочку отсекают минусы и получаются только плюсы, далее он идет на узел приборной панели, а диод, который там стоит он пропускает только минус, в итоге лампочка гаснет и плюс тогда идет через резистор и выходит на минус.

схема генератора

Принцип работы автомобильного генератора постоянного, можно объяснить так: через обмотку возбуждения начинает течь небольшой постоянный ток, который регулируется управляющим блоком и поддерживается им на уровне чуть больше 14 В. Большинство генераторов в автомобиле способны вырабатывать как минимум 45 ампер. Генератор работает на 3000 оборотах в минуту и выше — если посмотреть на соотношение размеров ремней вентиляторов для шкивов, то оно по отношению к частоте двигателя составит два или три к одному.

Во избежание этого пластины и другие части выпрямителя генераторов частично или полностью покрывают изоляционным слоем. В монолитную конструкцию выпрямительного блока теплоотводы объединяются в основном монтажными платами из изоляционного материала, армированными соединительными шинками.

Далее рассмотрим схему подключения автомобильного генератора на примере автомобиля ВАЗ-2107.

Схема подключения генератора на ВАЗ 2107

Схема зарядки ВАЗ 2107 зависит от того, какой применяется тип генератора. Чтобы подзарядить аккумуляторную батарею на таких авто, как: ВАЗ-2107, ВАЗ-2104, ВАЗ-2105, которые стоят на карбюраторном двигателе, будет необходим генератор типа Г-222 или его аналог с максимальным током отдачи в 55А. В свою очередь автомобили ВАЗ-2107 у которых инжекторный двигатель используют генератор 5142.3771 или его прототип, который называется генератором повышенной энергии, с максимальным током отдачи 80-90А. Также можно устанавливать более мощные генераторы с током отдачи до 100А. Абсолютно во все виды генераторов переменного тока встраиваются выпрямительные блоки и регуляторы напряжения, они, как правило, изготовлены в одном корпусе со щетками либо съемные и крепятся на самом корпусе.

Схема зарядки ВАЗ 2107 имеет незначительные отличия в зависимости от года изготовления автомобиля. Самым главным отличием есть наличие или отсутствие контрольной лампы заряда, которая расположена на панели приборов, также способ ее подключения и наличие либо отсутствие вольтметра. Такие схемы в основном используются на карбюраторных автомобилях, тогда как на авто с инжекторными двигателями схема не меняется, она идентична с теми автомобилями, которые изготовлялись ранее.

Обозначения генераторных установок:

  1. “Плюс” силового выпрямителя: “+”, В, 30, В+, ВАТ.
  2. “Масса”: “-”, D-, 31, B-, M, E, GRD.
  3. Вывод обмотки возбуждения: Ш, 67, DF, F, EXC, E, FLD.
  4. Вывод для соединения с лампой контроля исправности: D, D+, 61, L, WL, IND.
  5. Вывод фазы: ~, W, R, STА.
  6. Вывод нулевой точки обмотки статора: 0, МР.
  7. Вывод регулятора напряжения для подсоединения его в бортовую сеть, обычно к “+” аккумуляторной батареи: Б, 15, S.
  8. Вывод регулятора напряжения для питания его от выключателя зажигания: IG.
  9. Вывод регулятора напряжения для соединения его с бортовым компьютером: FR, F.
схема зарядки аккумуляторной батареи ВАЗ-2107 с генератором типа 37.3701

Схема генератора ВАЗ-2107 тип 37.3701

  1. Аккумуляторная батарея.
  2. Генератор.
  3. Регулятор напряжения.
  4. Монтажный блок.
  5. Выключатель зажигания.
  6. Вольтметр.
  7. Контрольная лампа заряда аккумуляторной батареи.

При включении зажигания плюс от замка идет к предохранителю № 10, а затем уже поступает на реле контрольной лампы заряда аккумуляторной батареи, потом идет к контакту и на вывод катушки. Второй вывод катушки взаимодействует с центральным выводом стартера, где соединяются все три обмотки. Если контакты реле замыкаются, то и контрольная лампа горит. При запуске двигателя генератор вырабатывает ток и на обмотках появляется переменное напряжение 7В. Через катушку реле проходит ток и якорь начинает притягиваться, при этом контакты размыкаются. Генератор № 15 через предохранитель № 9 пропускает ток. Аналогично через генератор напряжения щетки получает питание обмотка возбуждения.

Схема зарядки ВАЗ с инжекторными двигателями

Такая схема идентичная схемам на других моделях ВАЗов. Она отличается от предыдущих, способом возбуждения и контроля на исправность генератора. Он может быть осуществлен при помощи специальной контрольной лампы и вольтметра на панели приборов. Также через лампу заряда происходит первоначальное возбуждение генератора в момент начала работы. Во время работы генератор работает “анонимно”, то есть возбуждение идет напрямую с 30-го вывода.Когда включается зажигание, то питание через предохранитель №10 идет на лампу зарядки в панели приборов. Далее через монтажный блок поступает на 61-й вывод. Три дополнительные диода обеспечивают питание регулятору напряжения, а он в свою очередь передает его на обмотку возбуждения генератора. В этом случае контрольная лампа будет гореть. Именно в тот момент, когда генератор будет работать на обкладках выпрямительного моста напряжение будет гораздо выше, чем у аккумуляторной батареи. В этом случае контрольная лампа не будет гореть, потому что напряжение с ее стороны на дополнительных диодах будет ниже, чем со стороны статорной обмотки и диоды закроются. Если во время работы генератора контрольная лампа горит в пол накала, то это может означать, что пробиты дополнительные диоды.

Проверка работы генератора

Проверить работоспособность генератора можно несколькими способами применяя определенные методы, например: можно проверить ток отдачи генератора, падение напряжения на проводе, который соединяет токовый вывод генератора с аккумуляторной батареей или проверить регулируемое напряжение.

Для проверки будет необходим мультиметр, автомобильный аккумулятор и лампа с припаянными проводами, провода для подключения между генератором и аккумулятором, а еще можно взять дрель с подходящей головкой, так как возможно придется крутить ротор за гайку на шкиве.

Элементарная проверка лампочкой и мультиметорм

Схема подключения: выходная клемма (В+) и ротор (D+). Лампу нужно подключить между основным выходом генератора В+ и контактом D+. После этого берем силовые провода и подключаем “минус” к минусовой клемме аккумулятора и к массе генератора, “плюс” соответственно к плюсу генератора и к выходу В+ генератора. Закрепляем на тиски и подключаем.

“Массу” нужно подключать в последнюю очень, чтобы не закоротить аккумулятор.

Включаем тестер в режим (DC) постоянного тока, цепляем один щуп на аккумулятор к “плюсу”, второй также, но к “минусу”. Далее, если все в рабочем состоянии, то должна загореться лампочка, напряжение в этом случае будет 12,4В. Затем берем дрель и начинаем крутить генератор, соответственно лампочка в этом момент перестанет гореть, а напряжение уже будет 14,9В. После чего добавляем нагрузку, берем галогенную лампу h5 и вешаем ее на клемму аккумулятора, она должна загореться. После чего в аналогичном порядке подключаем дрель и напряжение на вольтметре будет показывать уже 13,9В. В пассивном режиме аккумулятор под лампочкой дает 12,2В, а когда крутим дрелью, то 13,9В.

схема проверки генератора

Схема проверки генератора

Строго не рекомендуется:

  1. Проводить проверку на работоспособность генератора путем короткого замыкания, то есть “на искру”.
  2. Допускать, чтобы генератор работал без включенных потребителей, также нежелательна работа при отключенном аккумуляторе.
  3. Соединение клеммы “30” (в некоторых случаях B+) с “массой” или клемму “67” (в некоторых случаях D+).
  4. Проводить сварочные работы кузова автомобиля при подключенных проводах генератора и аккумулятора.

Спрашивайте в комментариях. Ответим обязательно!

Генераторы, схемы

Генератор — это усилитель с такой положительной обратной связью, ко­торая обеспечивает поддержание сигнала на выходе усилителя без пода­чи внешнего входного сигнала. Генератор преобразует постоянный ток (получаемый от источника питания) в переменный сигнал. Для возник­новения устойчивых колебаний должны выполняться два основных тре­бования:

а) обратная связь должна быть положительной;

б) полный петлевой коэффициент усиления должен быть больше 1.

Существует два типа генераторов: генераторы синусоидальных сиг­налов, вырабатывающие гармонические сигналы, и генераторы несинусо­идальных сигналов, называемые также релаксационными генераторами или мультивибраторами, обычно вырабатывающие прямоугольные сиг­налы.

 

Генераторы с резонансным контуром в цепи коллектора

В схеме генератора на рис. 33.1 элементы L2 и C2 образуют резонансный контур, с которого снимается выходной сигнал.

Генератор с резонансным контуром

Рис. 33.1. Генератор с резонансным            Рис. 33.2. Генератор с резонансным контуром в       

           контуром в цепи базы.                                                    цепи  коллектора.           

 

Часть этого выходного сигнала подается обратно на вход через трансформаторную связь       L1L2 таким образом, чтобы сигнал обратной связи совпадал по фазе с сигналом на входе. Транзистор включен по схеме с ОЭ и работает в режиме класса А, который задается цепью смещения R1R2. Конденсатор C1 обеспе­чивает развязку для резистора R2 цепи смещения, а конденсатор C3развязку для обычного стабилизирующего резистора R3 в цепи эмиттера.

 

Генераторы с резонансным контуром в цепи базы

В схеме генератора на рис. 33.2 разделительный конденсатор C2 обеспечи­вает работу транзистораT1 в режиме класса С. Элементы L2 и C1 образу­ют резонансный контур. Положительная обратная связь осуществляется через конденсатор C3 и трансформатор Тр1.

Трехточечная схема генератора с индуктивной обратной связью (схема Хартли)

В этом генераторе (рис. 33.3) катушка индуктивности с отводом L1 обеспе­чивает необходимую обратную связь на эмиттер транзистора. Элементы C2 и L1 образуют резонансный контур.

Трехточечная схема генератора с емкостной обратной связью (схема Колпитца)

В этом случае используется расщепленный конденсатор C1C2 (рис. 33.4). Элементы         C1C2 и L1 образуют резонансный контур, кон­денсатор C3 обеспечивает работу транзистора в режиме класса С.

Генераторы с фазосдвигающей цепью обратной связи, или RC-генераторы

Синусоидальные колебания можно также получить с помощью специаль­но подобранных  RC-цепочек обратной связи, как показано на рис. 33.5. RC-секции R1C1, R2C2,                  R3C3 образуют фазосдвигающую цепь, которая на заданной частоте обеспечивает сдвиг фазы сигнала на 180°. Поскольку транзистор сдвигает фазу сигнала на 180°, то в петле обратной связи получается полный фазовый сдвиг 360°. Таким образом, обратная связь оказывается положительной. Обычно номиналы всех резисторов и всех конденсаторов в фазосдвигающей цепи выбираются одинаковыми, и каждая RC-секция вносит фазовый сдвиг 60°.

Схема Хартли и Колпитца

Рис. 33.3. Схема Хартли.                         Рис. 33.4. Схема Колпитца.

RC-генератор с фазосдвигающей цепью обратной связи

Рис. 33.5.RC-генератор с фазосдвигающей цепью обратной связи на элементах R1C1,

 R2C2, R3C3, обеспечивающей сдвиг фазы сигнала на 180°. 

Еще раз отметим, что вся фазосдвигающая цепь обеспечивает фазовый сдвиг 180° только на одной частоте, определяемой номиналами используемых компонентов.

Кварцевые генераторы

Одним из самых важных требований, предъявляемых к генератору, явля­ется стабильность частоты генерируемых им колебаний. Изменения частоты могут быть вызваны, например, изменением емкости или индук­тивности элементов резонансного контура или изменением параметров транзистора при колебаниях температуры. Стабильность частоты можно улучшить путем точного подбора элементов схемы, в том числе транзистора. Для обеспечения очень высокой стабильности частоты приме­няется кристалл кварца, точно задающий и стабилизирующий частоту колебаний. В небольших пределах частоту генератора с кварцевой стаби­лизацией можно изменять с помощью конденсатора переменной емкости, подключаемого параллельно кристаллу кварца. Кварцевые генераторы используются в цветных телевизорах для генерации поднесущей частоты 4,43 МГц с точностью до нескольких герц.

УВЧ-генераторы

Генераторы очень высоких и ультравысоких частот (УВЧ) по принципу работы аналогичны другим генераторам. Однако из-за очень высокой частоты емкости и индуктивности элементов настройки С и L очень ма­лы. Катушку индуктивности может заменить одна полоска проводника или простая петля из меди. В качестве конденсатора может служить варактор. Для построения резонансной схемы иногда используются от­резки длинных линий, имеющих распределенную емкость и индуктив­ность.

Генераторы несинусоидальных сигналов

Эти генераторы, называемые еще релаксационными генераторами, выра­батывают прямоугольные импульсные сигналы путем переключения од­ного или двух транзисторов из открытого состояния в закрытое и обратно. Несинхронизированный мультивибратор, описанный в предыдущей главе, является примером такого генератора. Другой разновидностью генерато­ра несинусоидальных сигналов является блокинг-генератор.

Блокинг-генератор

В генераторе этого типа применяется трансформаторная обратная связь с коллектора на базу транзистора (рис. 33.6). Работа этой схемы осно­вана на том, что в силу трансформаторной связи напряжение на базе будет наводиться только при изменении тока коллектора, то есть при его увеличении или уменьшении. В первом случае действует положитель­ная обратная связь, во втором — отрицательная. При первом включении схемы транзистор открывается, его коллекторный ток увеличивается, со­здавая напряжение обратной связи на базе, в результате чего транзистор открывается еще больше. Когда достигается насыщение, увеличение кол­лекторного тока прекращается, что вызывает появление на базе напря­жения противоположной полярности. Это напряжение закрывает тран­зистор. Транзистор удерживается в закрытом состоянии отрицательным зарядом на конденсаторе С до тех пор, пока этот конденсатор в доста­точной степени не разрядится через резистор R. После этого транзистор снова отпирается и описанный процесс повторяется.

Выходное напряжение блокинг-генератора представляет собой после­довательность узких импульсов (рис. 33.7). Ширина (длительность) импульса определяется параметрами трансформатора, а временной интер­вал между импульсами — постоянной времени RC. Поэтому частоту ко­лебаний блокинг-генератора можно изменять путем изменения номинала резистора R.

Блокинг-генератор

Рис. 33.6. Блокинг-генератор.

   Выходной сигнал блокинг-генератора

Рис. 33.7. Выходной сигнал бло­кинг-генератора.

 

Генератор на однопереходном транзисторе

Рис. 33.8. Генератор на однопереходном транзисторе.

Вторичная обмотка трансформатора является коллекторной нагруз­кой транзистора. Быстрое изменение тока через эту обмотку при закры­вании транзистора приводит к появлению большой противоЭДС и большо­го выброса коллекторного напряжения. Этот выброс напряжения может превысить максимально допустимое коллекторное напряжение и вызвать разрушение транзистора. Для защиты транзистора параллельно первич­ной обмотке трансформатора включается диод D1. В нормальном режиме этот диод смещен в обратном направлении и закрыт. Открывается он только в том случае, когда напряжение на коллекторе транзистора превышает напряжение источника питания VCC.

 

Генераторы на однопереходных транзисторах

Полупроводниковые приборы, имеющие на характеристике участок с от­рицательным сопротивлением, например одиопереходные транзисторы, могут быть использованы в генераторах. На рис. 33.8 приведена схе­ма генератора на однопереходном транзисторе. Транзистор смещен в ту область своей выходной характеристики, где выходной ток увеличивается при уменьшении входного напряжения, то есть в область отрицательного сопротивления. Он попеременно открывается и закрывается без какой-либо обратной связи. Выходное напряжение на базе 2 (b2) представля­ет собой последовательность импульсов. Еще один выходной сигнал — последовательность импульсов противоположной полярности — можно снять с базы 1 (b1). С эмиттера транзистора можно снять пилообраз­ный сигнал. Частота генерируемых импульсов определяется постоянной времени R1C1.

 

Генераторы пилообразного напряжения

На рис. 33.9 показана схема генератора, вырабатывающего пилообразный сигнал при подаче на его вход прямоугольных импульсов. На участке периода входной последовательности импульсов между точками А и В (рис. 33.10) на базе транзистора действует нулевое напряжение, и тран­зистор находится в состоянии отсечки, т. е. закрыт. Конденсатор C1 постепенно заряжается через резистор R1. Прежде чем конденсатор пол­ностью зарядится, на вход поступает положительный фронт ВС импуль­са, переключающий транзистор в проводящее состояние. В результате конденсатор C1 очень быстро разряжается через открытый транзистор. Конденсатор находится в разряженном состоянии во время действия им­пульса (вершина CD). Отрицательный фронт DE импульса переключает транзистор в состояние отсечки, конденсатор C1 снова начинает заря­жаться и т. д.

Генератор пилообразного напряжения

Рис. 33.9. Генератор пилообразно­го напряжения,

управляемый последовательностью

прямоугольных им­пульсов.

Рис. 33.10. Форма сигналов на вхо­де и

выходе генератора пилообразно­го напряжения.

Тот же принцип заряда и разряда конденсатора используется и в дру­гих генераторах пилообразного напряжения. На рис. 33.11 приведены схемы двух таких генераторов на основе несинхронизированного мульти­вибратора и блокинг-генератора соответственно, применяемых в блоках: развертки телевизоров. Потенциометр R1 управляет частотой развертки (кадровой синхронизацией), а потенциометр R2 — амплитудой сигнала развертки (размером изображения по вертикали).

Генераторы пилообразного напряжения на основе

Рис. 33.11. Генераторы пилообразного напряжения на основе (а) несинхронизированного мультивибратора и (б) блокинг-генератора, применяемые в блоках кадровой развертки телевизоров.

В этом видео рассказывается о генераторах для исследования, настройки и испытаний систем и приборов:

Добавить комментарий
устройство и принцип работы, напряжение и мощность

В стандартном исполнении в автомобиле существуют два источника питания – генератор и аккумулятор. Разница между ними заключается в том, что АКБ накапливает электроэнергию, а автомобильный генератор ее вырабатывает. То есть это устройство преобразует механическую энергию от двигателя в электрическую с целью дальнейшего питания всех потребителей и заряда аккумулятора.

Функции генератора

При запуске двигателя пусковой ток на стартер подается от аккумулятора. Но сам аккумулятор не вырабатывает энергию, а только ее накапливает и потом отдает. Если использовать для питания всех потребителей только АКБ, то она быстро разрядится. Автомобильный генератор производит электроэнергию, заряжает АКБ и питает бортовую сеть автомобиля во время работы двигателя (при достижении им определенных оборотов вращения коленчатого вала).

фото 1фото 1Автомобильный генератор

Генератор начинает вырабатывать электрический ток начиная с частоты вращения холостого хода, однако, на оптимальный режим работы он выходит при достижении двигателем 1600-1800 об/мин и более.

Виды генераторов

Выделяют два вида автомобильных генераторов:

  • постоянного тока;
  • переменного тока.

Первый вид генераторов в настоящее время уже не используется. Такие устройства устанавливались на старых моделях автомобилей (ГАЗ-51, Победа и др.). Они имеют много недостатков, такие как:

  • малая мощность и эффективность;
  • необходимость в постоянном контроле и обслуживании;
  • небольшой срок службы.

Сейчас применяются генераторы переменного тока. Главное их отличие в том, что вне зависимости от режима работы двигателя автомобильную сеть питает постоянный ток. Это достигается благодаря полупроводниковому выпрямителю.

Устройство генератора переменного тока

Работу любого генератора можно сравнить с электродвигателем, который работает в обратном режиме, то есть не потребляет, а вырабатывает ток. По типу конструкции современные генераторы делятся на два вида: компактный и традиционный. Они имеют общее устройство, но различаются в компоновке корпуса, вентилятора, выпрямительного узла и приводного шкива. Также у современных устройств имеется три фазы.

фото 2фото 2Устройство генератора

Генератор состоит из следующих основных элементов:

  • привод со шкивом, подшипниками и валом;
  • ротор с обмоткой возбуждения и контактными кольцами;
  • статор с сердечником и обмоткой;
  • корпус, состоящий из двух крышек;
  • регулятор напряжения;
  • выпрямительный блок или диодный мост;
  • щеточный узел.

Разберем каждый элемент устройства отдельно и подробно.

Корпус

В корпусе находятся все основные элементы генератора. Он состоит из двух крышек (передняя и задняя). Крышки соединяются между собой болтами. Для изготовления крышек используют легкие сплавы алюминия, которые не намагничиваются и хорошо отводят тепло. В крышках есть вентиляционные отверстия и крепежные фланцы.

В задней крышке установлен диодный мост и щеткодержатель со щетками. Также в задней крышке расположен выводной контакт, по которому ток поступает от генератора.

Привод

Вращение от коленчатого вала передается на шкив генератора и вращает ротор. Частота вращения шкива больше частоты вращения коленвала в 2-3 раза. Крутящий момент от двигателя передается посредством ременной передачи. Могут использоваться поликлиновый и клиновый ремень в зависимости от конструкции. Поликлиновый ремень считается более универсальным и современным.

Ротор

На валу ротора находится обмотка возбуждения, которая создает магнитное поле и, по сути, представляет собой обычный электромагнит. Обмотка находится между двух полюсных половин (сердечников), необходимых для регулирования и направления магнитного поля. Каждая из половин имеет по шесть треугольных выступов, называемых клювами. Также на валу ротора расположены два медных контактных кольца. Иногда они изготавливаются из стали или латуни. Через контактные кольца на обмотку возбуждения поступает питание от аккумулятора. Контакты обмотки припаяны к кольцам.

фото 3фото 3Ротор генератора

На переднем конце вала ротора находится приводной шкив, а на другом крепится крыльчатка вентилятора. Их может быть две. Они нужны для охлаждения внутренних деталей генератора. Также на обоих концах ротора установлены необслуживаемые шариковые подшипники.

Статор

фото 4фото 4Статор

Конструктивно статор имеет форму кольца. Это основная деталь, служащая для создания переменного тока от магнитного поля ротора. Состоит из обмотки и сердечника. В свою очередь, сердечник состоит из соединённых стальных пластин, в которых образуются 36 пазов. В пазы навивается три обмотки, которые образуют трехфазное соединение. Может быть две схемы соединения обмоток: «звезда» и «треугольник». По схеме «звезда» концы каждой из трех обмоток соединены в одной точке. По схеме «треугольник» концы обмоток выводятся отдельно.

Выпрямительный блок или диодный мост

Выпрямительный блок выполняет задачу по преобразованию переменного тока генератора в постоянный, который необходим для питания бортовой сети автомобиля. Другими словами, он выдает напряжение стабильной и одинаковой величины.

фото 5фото 5Диодный мост

Блок также называют диодным мостом, который состоит из двух радиаторных пластин (положительной и отрицательной) и диодов. На каждую фазу приходится по два диода. Сами диоды герметично вмонтированы в пластины. Диодный мост имеет форму подковы.

С обмотки статора ток поступает на диодный мост, затем «выпрямляется», и подается на выводной контакт на задней крышке.

Через диоды ток проходит только в одном направлении, при этом отсекаются токи обратной полярности. Диодный мост может находиться в корпусе генератора, а может быть вынесен за корпус. Но чаще всего он крепится на внутренней стороне задней крышки.

Регулятор напряжения

Регулятор поддерживает напряжение генератора в определенных пределах. В современных моделях применяются полупроводниковые электронные регуляторы напряжения. Они устанавливаются сверху блока щеткодержателей.

фото 6фото 6Регулятор напряжения и щеточный узел

Когда двигатель работает на больших оборотах, то напряжение на обмотке статора может доходить до 16В. Такое напряжение не должно поступать в бортовую сеть. Чтобы это исключить, регулятор напряжения, получая ток от АКБ, будет снижать его значение. Малый ток на обмотке ротора будет создавать такое же малое магнитное поле. Это значит, что на обмотке статора будет понижаться напряжение.

Щеточный узел

Щеточный узел в современных генераторах объединен с регулятором напряжения в один неразборный механизм. Он передает ток возбуждения на медные контактные кольца ротора. Это простая конструкция, которая состоит из щеткодержателя, двух графитовых щеток и прижимающих пружин.

Принцип работы

Теперь разберем подробнее работу генератора переменного тока в автомобиле. При включении зажигания, на щеточный узел подается ток от аккумуляторной батареи. Через щеточный узел он попадает на медные контактные кольца, а затем на обмотку возбуждения ротора. Напомним, что ротор, по сути, является электромагнитом, который создает магнитное поле. Коленчатый вал через шкив и ременную передачу начинает вращать ротор. Вокруг ротора расположен статор, который от вращения начинает вырабатывать переменный ток. Когда вращение ротора достигает определенной частоты, обмотка возбуждения питается от самого генератора.

Через диодный мост переменный ток “выпрямляется” и преобразуется в постоянный, необходимый для питания бортовой сети. Так автомобильный генератор обеспечивает питание потребителей и подзаряжает аккумулятор. Регулятор напряжения изменяет работу обмотки возбуждения при возрастании частоты вращения ротора. Таким образом поддерживается стабильная нагрузка.

В салоне автомобиля на приборной панели есть контрольная лампа генератора, которая показывает состояние устройства. Например, лампа может загореться при обрыве ремня. Тогда питание сети будет идти только через аккумулятор. Продолжительность работы в этом случае будет зависеть от уровня заряда АКБ.

Параметры генератора

Работу генератора оценивают по нескольким параметрам:

  • номинальный ток и номинальное напряжение;
  • номинальная частота возбуждения;
  • частота самовозбуждения;
  • коэффициент полезного действия (КПД).

Номинальное напряжение для бортовой сети автомобиля от генератора 12В или 24В. Токоскоростная характеристика показывает зависимость силу тока от частоты вращения генератора.

фото 7фото 7Характеристика генератора

Напряжение генератора можно измерить мультиметром. При всех выключенных потребителях без нагрузки на холостом ходу мультиметр должен показывать напряжение в пределах 14,3В – 15,5В. Если напряжение после запуска двигателя свыше 14В, то это может говорить о разряде АКБ и зарядке его генератором. При поочередном включении потребителей (фары, подогрев, кондиционер и т.д.) напряжение уменьшается примерно на 0,2 после каждого включения. Но в итоге напряжение не должно снижаться ниже 12,8В. Если значение меньше, то аккумулятор начнет разряжаться. Если напряжение, наоборот, сильно высокое (14В и выше), то это может привести к выходу АКБ из строя. При этом на выходе самого аккумулятора напряжение должно быть в пределах 12,6В – 12,7В.

Напряжение генератора под нагрузкой может отличаться от номинальных значений 12В. После включения всех потребителей тока значение должно быть в пределах 13,5В – 14В. Если ниже, то это может указывать на неисправность устройства. Допустимым пределом считается 13В.

На картинке ниже показана подробная схема подключения генератора в автомобиле.

фото 8фото 8Схема подключения генератора

Мощность автогенератора

Если включить все энергоемкие приборы в автомобиле, то генератор может не справляться с нагрузкой и часть энергии будет отдавать аккумулятор.

Чтобы рассчитать мощность генератора достаточно воспользоваться простой формулой из школьного курса P = I * U, где Р – мощность, I – сила тока, U – напряжение.

Мы узнали, что напряжение на выходе генератора должно быть в районе 13,5В – 14,2В. Сила тока у разных моделей может отличаться. В среднем это от 80А до 140А. Возьмем среднее значение в 100А.

По формуле получаем 13,5В*100А = 1 350 Вт или 1,35 КВт. Это и есть мощность генератора, которая измеряется в Ваттах. Нужно также учитывать, что это максимальное значение, которое достигается при определенных оборотах двигателя, как правило, от 3000 об/мин и выше. На холостом ходе выдаваемая мощность равняется 75% от максимально возможной. Считается, что для автомобиля хватает 80А. Если применить более мощный автогенератор, то бортовая сеть может не справиться с нагрузкой. Нужно это учитывать. Большая мощность не всегда идет на пользу.

Основные неисправности

Устройство довольно надежное и должно работать продолжительное время, но некоторые компоненты могут выходить из строя по разным причинам. Неисправности могут иметь механический или электрический характер.

Механические неисправности

Главной возможной поломкой может быть обрыв приводного ремня. В этом случае вращение от коленвала на ротор не будет передаваться. Всю нагрузку на себя берет аккумулятор, который начнет разряжаться. Это покажет контрольная лампа в салоне автомобиля. Чтобы избежать обрыва ремня, нужно периодически проверять его состояние и натяжение.

Также может случиться простой износ графитовых щеток. В этом случае надо менять весь щеточный узел.

Электрические неисправности

Неполадки с электрикой в генераторе случаются нередко, и заметить их трудно. Может возникнуть замыкание в обмотках возбуждения ротора или статора, обрыв обмотки. Может выйти из строя регулятор напряжения, что чревато большими проблемами для всей электроники и АКБ. Также случается так называемый пробой диодного моста по различным причинам. Нельзя отключать генератор или АКБ во время работы двигателя. Также нужно следить за надежностью соединений, чистить клеммы и т.д.

Каждому водителю нужно знать устройство и принцип работы автомобильного генератора. Это поможет избежать многих проблем, которые могут возникнуть с устройством. Нужно регулярно следить за компонентами генератора. Проверять натяжение и состояние приводного ремня, крепление устройства, напряжение и другое. При правильной эксплуатации устройство прослужит исправно долгие годы.

Подпишитесь на рассылку!

Раз в неделю мы отправляем дайджест с самыми интересными новостями и полезными статьями про автомобили.

простой для повторения генератор высокого напряжения / Хабр

Добрый день, уважаемые хабровчане.
Этот пост будет немного необычным.
В нём я расскажу, как сделать простой и достаточно мощный генератор высокого напряжения (280 000 вольт). За основу я взял схему Генератора Маркса. Особенность моей схемы в том, что я пересчитал её под доступные и недорогие детали. К тому же сама схема проста для повторения (у меня на её сборку ушло 15 минут), не требует настройки и запускается с первого раза. На мой взгляд намного проще чем трансформатор Теслы или умножитель напряжения Кокрофта-Уолтона.

Принцип работы

Сразу после включения начинают заряжаться конденсаторы. В моём случае до 35 киловольт. Как только напряжение достигнет порога пробоя одного из разрядников, конденсаторы через разрядник соединятся последовательно, что приведёт к удвоению напряжения на конденсаторах, подсоединённых к этому разряднику. Из-за этого практически мгновенно срабатывают остальные разрядники, и напряжение на конденсаторах складывается. Я использовал 12 ступеней, то есть напряжение должно умножиться на 12 (12 х 35 = 420). 420 киловольт — это почти полуметровые разряды. Но на практике, с учетом всех потерь, получились разряды длиной 28 см. Потери были вследствие коронных разрядов.



О деталях:

Сама схема простая, состоит из конденсаторов, резисторов и разрядников. Ещё потребуется источник питания. Так как все детали высоковольтные, возникает вопрос, где же их достать? Теперь обо всём по порядку:
1 — резисторы

Нужны резисторы на 100 кОм, 5 ватт, 50 000 вольт.
Я пробовал много заводских резисторов, но ни один не выдерживал такого напряжения — дуга пробивала поверх корпуса и ничего не работало. Тщательное загугливание дало неожиданный ответ: мастера, которые собирали генератор Маркса на напряжение более 100 000 вольт, использовали сложные жидкостные резисторы генератор Маркса на жидкостных резисторах, или же использовали очень много ступеней. Я захотел чего-то проще и сделал резисторы из дерева.

Отломал на улице две ровных веточки сырого древа (сухое ток не проводит) и включил первую ветку вместо группы резисторов справа от конденсаторов, вторую ветку вместо группы резисторов слева от конденсаторов. Получилось две веточки с множеством выводов через равные расстояния. Выводы я делал путём наматывания оголённого провода поверх веток. Как показывает опыт, такие резисторы выдерживают напряжение в десятки мегавольт (10 000 000 вольт)

2 — конденсаторы

Тут всё проще. Я взял конденсаторы, которые были самыми дешевыми на радио рынке — К15-4, 470 пкф, 30 кВ, (они же гриншиты). Их использовали в ламповых телевизорах, поэтому сейчас их можно купить на разборке или попросить бесплатно. Напряжение в 35 киловольт они выдерживают хорошо, ни один не пробило.
3 — источник питания

Собирать отдельную схему для питания моего генератора Маркса у меня просто не поднялась рука. Потому, что на днях мне соседка отдала старенький телевизор «Электрон ТЦ-451». На аноде кинескопа в цветных телевизорах используется постоянное напряжение около 27 000 вольт. Я отсоединил высоковольтный провод (присоску) с анода кинескопа и решил проверить, какая дуга получится от этого напряжения.

Вдоволь наигравшись с дугой, пришел к выводу, что схема в телевизоре достаточно стабильная, легко выдерживает перегрузки и в случае короткого замыкания срабатывает защита и ничего не сгорает. Схема в телевизоре имеет запас по мощности и мне удалось разогнать её с 27 до 35 киловольт. Для этого я покрутил подстроичник R2 в модуле питания телевизора так, что питание в строчной развертке поднялось с 125 до 150 вольт, что в свою очередь привело к повышению анодного напряжения до 35 киловольт. При попытке ещё больше увеличить напряжение, пробивает транзистор КТ838А в строчной развёртке телевизора, поэтому нужно не переборщить.

Процесс сборки

С помощью медной проволоки я прикрутил конденсаторы к веткам дерева. Между конденсаторами должно быть расстояние 37 мм, иначе может произойти нежелательный пробой. Свободные концы проволоки я загнул так, чтобы между ними получилось 30 мм — это будут разрядники.

Лучше один раз увидеть, чем 100 раз услышать. Смотрите видео, где я подробно показал процесс сборки и работу генератора:

Техника безопасности

Нужно соблюдать особую осторожность, так как схема работает на постоянном напряжении и разряд даже от одного конденсатора будет скорее всего смертельным. При включении схемы нужно находиться на достаточном удалении потому, что электричество пробивает через воздух 20 см и даже более. После каждого выключения нужно обязательно разряжать все конденсаторы (даже те, что стоят в телевизоре) хорошо заземлённым проводом.

Лучше из комнаты, где будут проводиться опыты, убрать всю электронику. Разряды создают мощные электромагнитные импульсы. Телефон, клавиатура и монитор, которые показаны у меня в видео, вышли из строя и ремонту больше не подлежат! Даже в соседней комнате у меня выключился газовый котёл.

Нужно беречь слух. Шум от разрядов похож на выстрелы, потом от него звенит в ушах.

Интересные наблюдения

Первое, что ощущаешь при включении — то, как электризуется воздух в комнате. Напряженность электрического поля настолько высока, что чувствуется каждым волоском тела.

Хорошо заметен коронный разряд. Красивое голубоватое свечение вокруг деталей и проводов.
Постоянно слегка бьет током, иногда даже не поймёшь от чего: прикоснулся к двери — проскочила искра, захотел взять ножницы — стрельнуло от ножниц. В темноте заметил, что искры проскакивают между разными металлическими предметами, не связанными с генератором: в дипломате с инструментом проскакивали искорки между отвёртками, плоскогубцами, паяльником.

Лампочки загораются сами по себе, без проводов.

Озоном пахнет по всему дому, как после грозы.

Заключение

Все детали обойдутся где-то в 50 грн (5$), это старый телевизор и конденсаторы. Сейчас я разрабатываю принципиально новую схему, с целью без особых затрат получать метровые разряды. Вы спросите: какое применение данной схемы? Отвечу, что применения есть, но обсуждать их нужно уже в другой теме.

На этом у меня всё, соблюдайте осторожность при работе с высоким напряжением.

Генератор импульсного напряжения
/ Генератор Маркса - принципиальная схема, принцип работы и применение

В электронике скачки напряжения очень важны, и это кошмар для каждого разработчика схемы. Эти скачки обычно называют импульсами, которые могут быть определены как высокое напряжение , обычно в несколько кВ, которое существует в течение короткого периода времени . Характеристики импульсного напряжения можно заметить с высоким или низким временем спада, за которым следует очень высокое время нарастания напряжения. Молния является примером естественных причин, вызывающих импульсное напряжение.Поскольку это импульсное напряжение может серьезно повредить электрическое оборудование, важно проверить наши устройства на работоспособность против импульсного напряжения. Здесь мы используем генератор импульсного напряжения, который генерирует скачки высокого напряжения или тока в контролируемой испытательной установке. В этой статье мы узнаем о работе и применении генератора импульсного напряжения . Итак, начнем.

Как говорилось ранее, импульсный генератор генерирует импульсы этой короткой длительности с очень высоким напряжением или очень высоким током.Таким образом, существует два типа импульсных генераторов: генератор импульсного напряжения и генератор импульсного тока . Однако в этой статье мы обсудим генераторы импульсного напряжения.

Импульсный сигнал напряжения

Чтобы лучше понять импульсное напряжение, давайте взглянем на форму импульса напряжения. На рисунке ниже показан единственный пик импульса высокого напряжения

Impulse Voltage Waveform

Как видите, волна достигает своего максимального 100-процентного пика в течение 2 мкс.Это очень быстро, но высокое напряжение теряет свою силу почти с размахом 40 мкс. Следовательно, импульс имеет очень короткое или быстрое время нарастания , тогда как очень медленное или длинное время спада . Длительность импульса называется волновым хвостом , который определяется разностью между 3-й отметкой времени ts3 и ts0.

Одноступенчатый импульсный генератор

Чтобы понять работу генератора импульсов , давайте взглянем на принципиальную схему одноступенчатого генератора импульсов , которая показана ниже

Single Impulse Stage Generator

Вышеуказанная схема состоит из двух конденсаторов и двух сопротивлений.Искровой разрядник (G) представляет собой электрически изолированный зазор между двумя электродами, в котором возникают электрические искры. Источник высокого напряжения также показан на изображении выше. Любая схема генератора импульсов нуждается по крайней мере в одном большом конденсаторе, который заряжается до соответствующего уровня напряжения и затем разряжается нагрузкой. В вышеупомянутой схеме CS является зарядным конденсатором . Это высоковольтный конденсатор, обычно более 2 кВ (зависит от желаемого выходного напряжения).Конденсатор CB представляет собой нагрузочную емкость , которая разряжает зарядный конденсатор. Резистор и RD и RE контролируют форму волны.

Если вышеупомянутое изображение наблюдается внимательно, мы можем обнаружить, что G или искровой разрядник не имеет электрического соединения. Тогда как емкость нагрузки получает высокое напряжение? Вот хитрость, и этим вышеупомянутая схема действует как генератор импульсов. Конденсатор заряжается до тех пор, пока зарядное напряжение конденсатора не станет достаточным для пересечения искрового промежутка.Электрический импульс, генерируемый через искровой разрядник и высокое напряжение, передается от клеммы левого электрода к клемме правого электрода искрового промежутка и, таким образом, превращает его в подключенную цепь.

Время отклика цепи можно контролировать, изменяя расстояние между двумя электродами или изменяя напряжение на конденсаторах. Расчет выходного импульсного напряжения можно выполнить путем расчета формы волны выходного напряжения с помощью

.
v (t) = [V  0  / C  b  R  d  (α - β)] (e  - α   t  - e  - β   t ) 

Где

α = 1 / R  d  C  b 
β = 1 / R  e  C  z  

Недостатки одноступенчатого импульсного генератора

Основным недостатком одноступенчатой ​​схемы импульсного генератора является физический размер .В зависимости от номинального высокого напряжения, компоненты становятся больше по размеру. Кроме того, генерация высокого импульсного напряжения требует высокого напряжения постоянного тока . Следовательно, для одноступенчатой ​​схемы генератора импульсного напряжения довольно трудно добиться оптимальной эффективности даже после использования больших источников питания постоянного тока.

Сферы, которые используются для соединения с зазором, также требуют очень больших размеров. Корона, которая разряжается при генерировании импульсного напряжения, очень трудно подавить и изменить.Срок службы электрода сокращается и требует замены после нескольких циклов повторения.

Маркс генератор

Эрвин Отто Маркс в 1924 году создал многоступенчатую схему импульсного генератора . Эта схема специально используется для генерации высокого импульсного напряжения от низковольтного источника питания. Схема мультиплексированного генератора импульсов или обычно называемая схемой Маркса можно увидеть на изображении ниже.

Marx Generator

В приведенной выше схеме используются 4 конденсатора (может быть n конденсаторов), которые заряжаются от источника высокого напряжения в состоянии параллельной зарядки с помощью зарядных резисторов R1-R8.

Marx generator

Во время состояния разряда искровой разрядник, который был разомкнутой цепью во время состояния зарядки, действует как переключатель и соединяет последовательный путь через конденсаторную батарею, а генерирует очень высокое импульсное напряжение на нагрузке. Состояние разряда показано на изображении выше фиолетовой линией. Напряжение первого конденсатора должно быть превышено в достаточной степени, чтобы сломать искровой разрядник и активировать схему генератора Маркса .

Когда это происходит, первый искровой разрядник соединяет два конденсатора (C1 и C2). Поэтому напряжение на первом конденсаторе удваивается на два напряжения С1 и С2. Впоследствии третий искровой разрядник автоматически выходит из строя, потому что напряжение на третьем искровом промежутке достаточно высоко, и он начинает добавлять напряжение третьего конденсатора С3 в стек, и это продолжается до последнего конденсатора. Наконец, когда достигнут последний и последний разрядник, напряжение достаточно велико, чтобы сломать последний разрядник поперек нагрузки, который имеет больший зазор между свечами зажигания.

Конечное выходное напряжение на последнем зазоре будет nVC (где n - количество конденсаторов, а VC - заряженное напряжение конденсатора), но это верно для идеальных цепей. В реальных сценариях выходное напряжение схемы генератора импульсов Маркса будет намного ниже, чем фактическое желаемое значение.

Однако у этой последней точки искры должны быть большие промежутки, потому что без этого конденсаторы не будут полностью заряжены.Иногда выписка делается намеренно. Существует несколько способов разрядки конденсаторной батареи в генераторе Маркса.

Техника разрядки конденсаторов в Marx Generator:

Импульсный дополнительный триггерный электрод : Импульсный дополнительный триггерный электрод - эффективный способ преднамеренного запуска генератора Маркса во время полной зарядки или в особом случае. Дополнительный триггерный электрод называется Тригатрон.Существуют различные формы и размеры Trigatron, доступные с различными характеристиками.

Ионизирующий воздух в зазоре : Ионизированный воздух - эффективный путь, который выгоден для проведения искрового промежутка. Ионизация осуществляется с помощью импульсного лазера.

Снижение давления воздуха внутри зазора : Снижение давления воздуха также эффективно, если искровой разрядник спроектирован внутри камеры.

Недостатки генератора Маркса

Длительное время зарядки: генератор Маркса использует резисторы для зарядки конденсатора.Таким образом время зарядки становится выше. Конденсатор, который находится ближе к источнику питания, заряжается быстрее, чем другие. Это связано с увеличением расстояния из-за увеличения сопротивления между конденсатором и источником питания. Это главный недостаток генераторной установки Маркса.

Потеря эффективности: По той же причине, что и описанная ранее, при прохождении тока через резисторы КПД схемы генератора Маркса низок.

Короткий срок службы искрового промежутка: Повторяющийся цикл разряда через искровой промежуток сокращает срок службы электродов искрового промежутка, который необходимо время от времени заменять.

Время повторения цикла зарядки и разрядки: Из-за большого времени зарядки время повторения импульсного генератора очень медленное. Это еще один существенный недостаток схемы генератора Маркса.

Применение схемы импульсного генератора

Основное применение схемы импульсного генератора - для испытания высоковольтных устройств . Молниеотводы, предохранители, диоды TVS, различные типы устройств защиты от перенапряжений и т. Д. Тестируются с использованием генератора импульсного напряжения.Не только в области испытаний, но и схема генератора импульсов также является важным инструментом, который используется в экспериментах по ядерной физике , а также в лазерах, термоядерных и плазменных устройствах.

Генератор Маркса используется для целей моделирования молниеносных эффектов на линии электропередач и в авиационной промышленности. Он также используется в рентгеновских и Z-машинах. Другие применения, такие как тестирование изоляции электронных устройств, также тестируются с использованием импульсных генераторов.

,
Схема генератора сигналов пилообразной формы с использованием операционного усилителя

В электронике формы сигналов в основном отображаются в зависимости от напряжения и времени. Частота и амплитуда сигнала могут варьироваться в зависимости от схемы. Существует много типов сигналов, таких как синусоида, прямоугольная волна, треугольная волна, линейная волна, пилообразная волна и т. Д. Мы уже разработали схему генератора синусоидальной и прямоугольной волны. Теперь в этом уроке мы покажем вам, , как спроектировать схему генератора пилообразных волн с регулируемым усилением и смещением волны постоянного тока, используя операционный усилитель и 555 таймер IC.

Сигнал пилообразной формы - несинусоидальная форма волны, похожая на форму треугольной формы. Эта форма волны называется пилообразной, потому что она похожа на зубцы пилы. Пилообразная форма волны отличается от треугольной формы, потому что треугольная волна имеет одинаковое время нарастания и спада, в то время как пилообразная форма волны поднимается от нуля до максимального значения и затем быстро падает до нуля.

Пилообразная форма волны используется в фильтрах, схемах усилителей, приемниках сигналов и т. Д.Он также используется для генерации тона, модуляции, дискретизации и т. Д. Идеальная форма сигнала Sawtooth показана ниже:

Sawtooth Waveform

Требуемый материал

  • ИС для операционного усилителя (LM358)
  • 555 Таймер IC
  • Осциллограф
  • Транзистор (BC557 - 1nos.)
  • Потенциометр (10k - 2nos.)
  • Резистор
    • 4.7k - 1nos.
    • 10k - 3nos.
    • 22k - 3nos.
    • 100k - 3nos.
  • Конденсатор (0,1 мкФ, 1 мкФ, 4,7 мкФ, 10 мкФ - 1nos. Каждый)
  • макет
  • 9В блок питания (аккумулятор)
  • прыгающих проводов

Схема

Sawtooth Waveform Generator Circuit Diagram

Sawtooth Waveform Generator Circuit Hardware

Работа цепи генератора Sawtooth

Для генерации пилообразного сигнала мы использовали 555 таймер IC и LM358 Dual Op-IC. В этой схеме мы используем транзистор T1 в качестве управляемого источника тока с регулируемым током эмиттера и коллектора.Здесь 555 таймер IC используется в нестабильном режиме.

Резисторы R2 и R3 устанавливают напряжение смещения для смещения базового контакта PNP-транзистора T1. И, R1 используется для установки тока эмиттера, который эффективно устанавливает ток коллектора, и этот постоянный ток заряжает конденсатор C1 линейным способом. Вот почему мы получаем линейный выход. Заменив R1 потенциометром, вы можете отрегулировать скорость рампы.

За счет короткого замыкания триггерного, разрядного и порогового выводов таймера 555 непосредственно с конденсатором C1 это позволяет конденсатору заряжаться и разряжаться.

Здесь первый операционный усилитель O1 работает как инвертирующий буфер со сдвигом уровня. Поскольку это инвертирующий буфер, нижняя часть рампы станет верхней частью перевернутой рампы.

Затем выход этого операционного усилителя подключается к POT P1, который используется для регулировки величины сигнала. Аналогично, операционный усилитель O2 используется для регулировки смещения постоянного тока сигнала. И выход берется из выходной клеммы операционного усилителя O2.

Первый датчик осциллографа подключен к этому выходу, а второй датчик подключен к импульсу запуска, который поступает с выходной клеммы таймера 555 IC.Таким образом, после подключения обоих датчиков осциллографа выходной сигнал пилообразной формы будет выглядеть как на рисунке ниже:

Sawtooth Waveform Generator Circuit Output Waveform

Чтобы отрегулировать усиление и смещение постоянного тока сигнала, переместите потенциометр P1 и P2 соответственно.

,

Разница между двигателем и генератором

Электродвигатель и генератор различаются по различным факторам, таким как основной принцип работы или функции двигателя и генератора. Потребление или производство электроэнергии, ее приводной элемент, наличие тока в обмотке. Правило Флеминга, за которым следуют мотор и генератор.

Разница между между и двигателем и генератором описана ниже в табличной форме.

ГЕНЕРАТОР Соблюдение правила Двигатель следует правилу левой руки Флеминга. Генератор
ОСНОВА МОТОР
Функция Двигатель преобразует электрическую энергию в механическую энергию Генератор преобразует механическую энергию в электрическую энергию.
Электричество Используется электричество. вырабатывает электроэнергию
Приводной элемент Вал двигателя приводится в действие магнитной силой, возникающей между якорем и полем. Вал прикреплен к ротору и приводится в действие механическим усилием.
Ток В двигателе ток подается на обмотки якоря. В генераторе ток вырабатывается в обмотках якоря.
следует правилу правой руки Флеминга.
Пример Электромобиль или велосипед является примером электродвигателя. Энергия в виде электроэнергии вырабатывается на электростанциях.

Двигатель и генератор почти одинаковы с точки зрения конструкции, так как оба имеют статор и ротор. Основное различие между ними заключается в том, что двигатель представляет собой электрическое устройство, которое преобразует электрическую энергию в механическую энергию. Генератор работает наоборот от этого двигателя. Он преобразует механическую энергию в электрическую энергию.

Разница между двигателем и генератором заключается в следующем:.

  • Мотор преобразует электрическую энергию в механическую, а генератор - наоборот.
  • Электричество используется в двигателе, но генератор производит электричество.
  • Вал двигателя приводится в действие магнитной силой, возникающей между обмоткой якоря и полем, в то время как в случае генератора вал прикрепляется к ротору и приводится в действие механическим усилием.
  • Ток должен подаваться на обмотки якоря в случае двигателя, а в генераторе ток создается в обмотках якоря.
  • Двигатель следует правилу левой руки Флеминга, а генератор следует правилу правой руки Флеминга.
  • Примером двигателя является электрический автомобиль или мотоцикл, в котором электрический ток подается на машину или устройство, и он преобразуется в механическое движение, в результате чего автомобиль или мотоцикл движется. Пример генератора - это то, что на электростанциях турбина используется в качестве устройства, которое преобразует механическую энергию силы воды, падающей с плотины, для выработки электрической энергии.
,
уравнение ЭДС генератора постоянного тока - деривация для двигателя и генератора

Когда якорь вращается, в его катушках генерируется напряжение. В случае генератора, ЭДС вращения называется Сгенерированная ЭДС или Арматура ЭДС и обозначается как Er = Eg. В случае двигателя, ЭДС вращения называется Противо-ЭДС или Счетная ЭДС и представлена ​​как Er = Eb.

Выражение для emf одинаково для обеих операций, т.е.для генератора, а также для двигателя.

Вывод уравнения ЭДС машины постоянного тока - генератор и двигатель

лет,

  • P - количество полюсов станка
  • ϕ - поток на полюс в Вебере.
  • Z - Общее количество проводников якоря.
  • N - Скорость якоря в оборотах в минуту (об / мин).
  • A - количество параллельных путей в обмотке якоря.

За один оборот якоря поток, обрезанный одним проводником, имеет вид:

EMF-EQUATION-OF-DC-GENERATOR-EQ1

Время, необходимое для завершения одного оборота, определяется как:

EMF-EQUATION-OF-DC-GENERATOR-EQ2

Следовательно, средняя индуцированная эл.м.ф в одном проводнике будет:

EMF-EQUATION-OF-DC-GENERATOR-EQ3

Положив значение (t) из уравнения (2) в уравнение (3), мы получим

EMF-EQUATION-OF-DC-GENERATOR-EQ4

Число проводников, соединенных последовательно в каждом параллельном пути = Z / A.

Следовательно, среднее значение e.m.f на каждой параллельной траектории или клеммах якоря определяется уравнением, показанным ниже:

EMF-EQUATION-OF-DC-GENERATOR-EQ5

Где n - это скорость в оборотах в секунду (об / с) и определяется как:

EMF-EQUATION-OF-DC-GENERATOR-EQ6

Для данной машины число полюсов и количество проводников на параллельном пути (Z / A) постоянны.Следовательно, уравнение (5) можно записать в виде:

EMF-EQUATION-OF-DC-GENERATOR-EQ7

, где К является постоянной величиной и определяется как:

EMF-EQUATION-OF-DC-GENERATOR-EQ8

Следовательно, уравнение средней индуцированной ЭДС также можно записать как:

EMF-EQUATION-OF-DC-GENERATOR-EQ9

, где K 1 - еще одна константа и, следовательно, уравнение индуцированной ЭДС можно записать в виде:

EMF-EQUATION-OF-DC-GENERATOR-EQ10

Где ω - угловая скорость в радианах / секунду, представленная как:

EMF-EQUATION-OF-DC-GENERATOR-EQ11

Таким образом, ясно, что индуцированная ЭДС прямо пропорциональна скорости и потоку на полюс.Полярность наведенной ЭДС зависит от направления магнитного поля и направления вращения. Если любой из двух перевернут, полярность меняется, но если два перевернуты, полярность остается неизменной.

Эта индуцированная ЭДС является фундаментальным явлением для всех машин постоянного тока, независимо от того, работают ли они в качестве генератора или двигателя.

Если машина постоянного тока работает как генератор, наведенная эдс определяется уравнением, показанным ниже:

EMF-EQUATION-OF-DC-GENERATOR-EQ12

, где E г - генерируемая ЭДС

Если машина постоянного тока работает как двигатель, наведенная эдс определяется уравнением, показанным ниже:

EMF-EQUATION-OF-DC-GENERATOR-EQ13

В двигателе индуцированная эдс называется Back Emf (E b ) , потому что она действует противоположно напряжению питания.

,

Отправить ответ

avatar
  Подписаться  
Уведомление о