Импульсные источники питания схемотехника и ремонт: Импульсные источники питания. Схемотехника и ремонт (2012) Кашкаров А.

Содержание

Импульсные источники питания. Схемотехника и ремонт

Технические издания / Электроника, электрика

Основная информация:
Название: Импульсные источники питания. Схемотехника и ремонт
Жанр: Нет
Автор: Кашкаров A.
Год выпуска: 2012
Формат: DJVU
Размер: 3 Мб
ISBN: 776949027180
Язык: Русский

СКАЧАТЬ Импульсные источники питания. Схемотехника и ремонт БЕСПЛАТНО EPUB — DOC — DJVU — RTF — PDF

Описание:
В этой книге читатель найдет промышленные и радиолюбительские электрические схемы, позволяющие разобраться в принципах действия узлов импульсных источников питания, отремонтировать современную бытовую технику (в части узлов питания) — от стиральных машин, холодильников, кулеров водоохлаждения, адаптеров, стабилизаторов и преобразователей напряжения до телевизионных панелей, радиоприемников и аппаратуры радиосвязи.Главная цель настоящего издания — помочь вам научиться модернизировать, ремонтировать, обслуживать и диагностировать импульсные источники питания, а также больше узнать о них в целом или их аппаратном обеспечении в частности. В этой книге рассматривается целая гамма источников питания — от самых «древних», занимающих много места, до современных портативных адаптеров и преобразователей.

Если вы желаете узнать все об источниках питания, будь то импульсные преобразователи для телевизоров или последняя модель встраиваемых источников питания для ПК, эта книга даст всю необходимую информацию.
В книге описаны устройства, собранные на современной элементной базе. На страницах данного издания можно найти подробное описание принципа работы импульсного источника — от работы узлов до параметров включения защиты.
Кроме того, в книге рассматривается и схемотехника отдельных узлов блоков питания; это важно, поскольку в обеспечении стабильности и производительности важную роль играет каждый элемент системы. Вы узнаете, почему подбор микросхем и стабилизаторов для ИП может быть самой важной частью блока и что произойдет при перегреве того или иного элемента. Кроме того, приводится подробное описание работы наиболее популярных микросхем и мощных транзисторов, применяемых в источниках питания в период 2009 года по настоящее время.

Куличков А.В. Импульсные блоки питания для BM PC

Куличков А.В. Импульсные блоки питания для BM PC

Предисловие

До недавнего времени в отечественной литературе уделялось недостаточное внимание публикациям, в которых описывались способы ремонта конкретных электронных устройств. Исключение составляли журнал «Радио» и книги серии «Массовая радиобиблиотека», однако даже в этих книгах и статьях основная часть материалов была посвящена работе узлов, непосредственно связанных с исполнением потребительских функций. Источники питания в большинстве таких устройств были выполнены по однотипным схемам, и принцип их действия был достаточно простым. С развитием электронной техники появилось много новых видов радиоэлектронных приборов бытового назначения, предназначенных для повседневного использования. За этот период произошла существенная модернизация отдельных узлов и, в частности, источников вторичного электропитания. Во многих моделях современного импортного и отечественного радиоэлектронного оборудования в качестве источников вторичного электропитания теперь используются экономичные импульсные преобразователи энергии первичной сети. Источники питания такого рода широко применяются и в современных персональных компьютерах.

В предлагаемой читателю книге подробно рассмотрены принципы действия импульсных источников вторичного электропитания, варианты их структурных и принципиальных схем, а также даны основные расчетные соотношения, необходимые при проектировании аппаратуры подобного типа. Кроме того, в книге детально описаны реальные импульсные источники питания, применяемые в современных компьютерах типа IBM РС ХТ/АТ и АТХ форм-факторов, а также приведены характерные неисправности источников питания компьютеров, методы их поиска и устранения.

Несмотря на постоянное совершенствование электронных устройств и повышение их надежности, техника тем не менее нуждается в ремонте, причем выполнение подобных работ требует все более квалифицированного подхода. Методика устранения возникающих неисправностей определяется характером отказа прибора и может быть произведена либо путем замены отдельных элементов, либо целых блоков (это экономит и финансы, и время). Данная книга как раз предназначена для тех, кто хочет, во-первых, квалифицированно и самостоятельно, с минимальными затратами, справиться с возникшими неполадками и, во-вторых, удовлетворить профессиональное любопытство и расширить свои знания в области схемотехники современных импульсных бестрансформаторных источников питания.

Ремонт может быть осуществлен в разных местах и различными способами:

  • в специализированных мастерских при наличии полного комплекта оригинальных запасных частей, тестирующего оборудования и стендов;
  • квалифицированными специалистами с выездом к заказчику;
  • самостоятельно, если вы обладаете необходимыми знаниями и имеете возможность приобретать комплектующие части для замены.


Импульсные источники питания, теория и простые схемы

Импульсный источник питания — это инверторная система, в которой входное переменное напряжение выпрямляется, а потом полученное постоянное напряжение преобразуется в импульсы высокой частоты и установленой скважности, которые как правило, подаются на импульсный трансформатор.

Импульсные трансформаторы изготавливаются по такому же принципу, как и низкочастотные трансформаторы, только в качестве сердечника используется не сталь (стальные пластины), а феромагнитные материалы — ферритовые сердечники.

Рис. Как работает импульсный источник питания.

Выходное напряжение импульсного источника питания стабилизировано

, это осуществляется посредством отрицательной обратной связи, что позволяет удерживать выходное напряжение на одном уровне даже при изменении входного напряжения и нагрузочной мощности на выходе блока.

Обратная отрицательная связь может быть реализована при помощи одной из дополнительных обмоток в импульсном трансформаторе, или же при помощи оптрона, который подключается к выходным цепям источника питания. Использование оптрона или же одной из обмоток трансформатора позволяет реализовать гальваническую развязку от сети переменного напряжения.

Основные плюсы импульсных источников питания (ИИП):

  • малый вес конструкции;
  • небольшие размеры;
  • большая мощность;
  • высокий КПД;
  • низкая себестоимость;
  • высокая стабильность работы;
  • широкий диапазон питающих напряжений;
  • множество готовых компонентных решений.

К недостаткам ИИП можно отнести то что такие блоки питания являются источниками помех, это связано с принципом работы схемы преобразователя. Для частичного устранения этого недостатка используют экранировку схемы. Также из-за этого недостатка в некоторых устройствах применение данного типа источников питания является невозможным.

Импульсные источники питания стали фактически непременным атрибутом любой современной бытовой техники, потребляющей от сети мощность свыше 100 Вт. В эту категорию попадают компьютеры, телевизоры, мониторы.

Для создания импульсных источников питания, примеры конкретного воплощения которых будут приведены ниже, применяются специальные схемные решения.

Так, для исключения сквозных токов через выходные транзисторы некоторых импульсных источников питания используют специальную форму импульсов, а именно, биполярные импульсы прямоугольной формы, имеющие между собой промежуток во времени.

Продолжительность этого промежутка должна быть больше времени рассасывания неосновных носителей в базе выходных транзисторов, иначе эти транзисторы будут повреждены. Ширина управляющих импульсов с целью стабилизации выходного напряжения может изменяться с помощью обратной связи.

Обычно для обеспечения надежности в импульсных источниках питания используют высоковольтные транзисторы, которые в силу технологических особенностей не отличаются в лучшую сторону (имеют низкие частоты переключения, малые коэффициенты передачи по току, значительные токи утечки, большие падения напряжения на коллекторном переходе в открытом состоянии).

Особенно это касается устаревших ныне моделей отечественных транзисторов типа КТ809, КТ812, КТ826, КТ828 и многих других. Стоит сказать, что в последние годы появилась достойная замена биполярным транзисторам, традиционно используемых в выходных каскадах импульсных источников питания.

Это специальные высоковольтные полевые транзисторы отечественного, и, главным образом, зарубежного производства. Кроме того, существуют многочисленные микросхемы для импульсных источников питания.

Схема генератора импульсов регулируемой ширины

Биполярные симметричные импульсы регулируемой ширины позволяет получить генератор импульсов по схеме на рис.1. Устройство может быть использовано в схемах авторегулирования выходной мощности импульсных источников питания. На микросхеме DD1 (К561ЛЕ5/К561 ЛАТ) собран генератор прямоугольных импульсов со скважностью, равной 2.

Симметрии генерируемых импульсов добиваются регулировкой резистора R1. Рабочую частоту генератора (44 кГц) при необходимости можно изменить подбором емкости конденсатора С1.

Рис. 1. Схема формирователя биполярных симметричных импульсов регулируемой длительности.

На элементах DA1.1, DA1.3 (К561КТЗ) собраны компараторы напряжения; на DA1.2, DA1.4 — выходные ключи. На входы компараторов-ключей DA1.1, DA1.3 в противофазе через формирующие RC-диодные цепочки (R3, С2, VD2 и R6, C3, VD5) подаются прямоугольные импульсы.

Заряд конденсаторов С2, C3 происходит по экспоненциальному закону через R3 и R5, соответственно; разряд — практически мгновенно через диоды VD2 и VD5. Когда напряжение на конденсаторе С2 или C3 достигнет порога срабатывания компараторов-ключей DA1.1 или DA1.3, соответственно, происходит их включение, и резисторы R9 и R10, а также управляющие входы ключей DA1.2 и DA1.4 подключаются к положительному полюсу источника питания.

Поскольку включение ключей производится в противофазе, такое переключение происходит строго поочередно, с паузой между импульсами, что исключает возможность протекания сквозного тока через ключи DA1.2 и DA1.4 и управляемые ими транзисторы преобразователя, если генератор двухполярных импульсов используется в схеме импульсного источника питания.

Плавное регулирование ширины импульсов осуществляется одновременной подачей стартового (начального) напряжения на входы компараторов (конденсаторы С2, C3) с потенциометра R5 через диодно-ре-зистивные цепочки VD3, R7 и VD4, R8. Предельный уровень управляющего напряжения (максимальную ширину выходных импульсов) устанавливают подбором резистора R4.

Сопротивление нагрузки можно подключить по мостовой схеме — между точкой соединения элементов DA1.2, DA1.4 и конденсаторами Са, Сb. Импульсы с генератора можно подать и на транзисторный усилитель мощности.

При использовании генератора двухполярных импульсов в схеме импульсного источника питания в состав резистивного делителя R4, R5 следует включить регулирующий элемент — полевой транзистор, фотодиод оптрона и т.д., позволяющий при уменьшении/увеличении тока нагрузки автоматически регулировать ширину генерируемого импульса, управляя тем самым выходной мощностью преобразователя.

В качестве примера практической реализации импульсных источников питания приведем описания и схемы некоторых из них.

Схема испульсного источника питания

Импульсный источник питания (рис. 2) состоит из выпрямителей сетевого напряжения, задающего генератора, формирователя прямоугольных импульсов регулируемой длительности, двухкаскадного усилителя мощности, выходных выпрямителей и схемы стабилизации выходного напряжения.

Задающий генератор выполнен на микросхеме типа К555ЛАЗ (элементы DD1 .1, DD1 .2) и вырабатывает прямоугольные импульсы частотой 150 кГц. На элементах DD1.3, DD1.4 собран RS-триггер, на выходе которого частота вдвое меньше — 75 кГц. Узел управления длительностью коммутирующих импульсов реализован на микросхеме типа К555ЛИ1 (элементы DD2.1, DD2.2), а регулировка длительности осуществляется с помощью оптрона U1.

Выходной каскад формирователя коммутирующих импульсов собран на элементах DD2.3, DD2.4. Максимальная мощность на выходе формирователя импульсов достигает 40 мВт. Предварительный усилитель мощности выполнен на транзисторах VT1, VT2 типа КТ645А, а оконечный — на транзисторах VT3, VT4 типа КТ828 или более современных. Выходная мощность каскадов — 2 и 60…65 Вт, соответственно.

На транзисторах VT5, VT6 и оптроне U1 собрана схема стабилизации выходного напряжения. Если напряжение на выходе источника питания ниже нормы (12 В), стабилитроны VD19, VD20 {КС182+КС139) закрыты, транзистор VT5 закрыт, транзистор VT6 открыт, через светодиод (U1.2) оптрона протекает ток, ограниченный сопротивлением R14; сопротивление фотодиода (U1.1) оптрона минимально.

Сигнал, снимаемый с выхода элемента DD2.1 и поступающий на входы схемы совпадения DD2.2 напрямую и через регулируемый элемент задержки (R3 — R5, С4, VD2, U1.1), в силу его малой постоянной времени поступает практически одновременно на входы схемы совпадения (элемент DD2.2).

На выходе этого элемента формируются широкие управляющие импульсы. На первичной обмотке трансформатора Т1 (выходах элементов DD2.3, DD2.4) формируются двухполярные импульсы регулируемой длительности.

Рис. 2. Схема импульсного источника питания.

Если по какой-либо причине напряжение на выходе источника питания будет увеличиваться сверх нормы, через стабилитроны VD19, VD20 начнет протекать ток, транзистор VT5 приоткроется, VT6 — закроется, уменьшая ток через светодиод оптрона U1.2.

При этом возрастает сопротивление фотодиода оптрона U1.1. Длительность управляющих импульсов уменьшается, и происходит уменьшение выходного напряжения (мощности). При коротком замыкании нагрузки светодиод оптрона гаснет, сопротивление фотодиода оптрона максимально, а длительность управляющих импульсов — минимальна. Кнопка SB1 предназначена для запуска схемы.

При максимальной длительности положительные и отрицательные управляющие импульсы не перекрываются во времени, поскольку между ними существует временная просечка, обусловленная наличием резистора R3 в формирующей цепи.

Тем самым снижается вероятность протекания сквозных токов через выходные относительно низкочастотные транзисторы оконечного каскада усиления мощности, которые имеют большое время рассасывания избыточных носителей на базовом переходе.2, вторичная обмотка имеет 3×6 витков провода ПЭВ-2 1,28 мм (параллельное включение). При подключении обмоток трансформаторов необходимо правильно их фазировать. Начала обмоток показаны на рисунке звездочками.

Источник питания работоспособен в диапазоне изменения сетевого напряжения 130…250 В. Максимальная выходная мощность при симметричной нагрузке достигает 60…65 Вт (стабилизированное напряжение положительной и отрицательной полярности 12 S и стабилизированное напряжение переменного тока частотой 75 кГц, снимаемые,со вторичной обмотки трансформатора Т3). Напряжение пульсаций на выходе источника питания не превышает 0,6 В.

При налаживании источника питания сетевое напряжение на него подают через разделительный трансформатор или фер-рорезонансный стабилизатор с изолированным от сети выходом. Все перепайки в источнике допустимо производить только при полном отключении устройства от сети.

Последовательно с выходным каскадом на время налаживания устройства рекомендуется включить лампу накаливания 60 Вт на 220 В. Эта лампа защитит выходные транзисторы в случае ошибок в монтаже. Оптрон U1 должен иметь напряжение пробоя изоляции не менее 400 В. Работа устройства без нагрузки не допускается.

Сетевой импульсный источник питания

Сетевой импульсный источник питания (рис. 3) разработан для телефонных аппаратов с автоматическим определителем номера или для других устройств с потребляемой мощностью 3…5Вт, питаемых напряжением 5…24В.

Источник питания защищен от короткого замыкания на выходе. Нестабильность выходного напряжения не превышает 5% при изменении напряжения питания от 150 до 240 В и тока нагрузки в пределах 20… 100% от номинального значения.

Управляемый генератор импульсов обеспечивает на базе транзистора VT3 сигнал частотой 25…30 кГц.

Дроссели L1, L2 и L3 намотаны на магнитопроводах типа К10x6x3 из пресспермаллоя МП140. Обмотки дросселя L1, L2 содержат по 20 витков провода ПЭТВ 0,35 мм и расположены каждая на своей половине кольца с зазором между обмотками не менее 1 мм.

Дроссель L3 наматывают проводом ПЭТВ 0,63 мм виток к витку в один слой по внутреннему периметру кольца. Трансформатор Т1 выполнен на магнитопроводе Б22 из феррита М2000НМ1.

Рис. 3. Схема сетевого импульсного источника питания.

Его обмотки наматывают на разборном каркасе виток к витку проводом ПЭТВ и пропитывают клеем. Первой наматывают в несколько слоев обмотку I, содержащую 260 витков провода 0,12 мм. Таким же проводом наматывают экранирующую обмотку с одним выводом (на рис. 3 показана пунктирной линией), затем наносят клей БФ-2 и обматывают одним слоем лакот-кани.

Обмотку III наматывают проводом 0,56 мм. Для выходного напряжения 5В она содержит 13 витков. Последней наматывают обмотку II. Она содержит 22 витка провода 0,15…0,18 мм. Между чашками обеспечивают немагнитный зазор.

Высоковольтный источник постоянного напряжения

Для создания высокого напряжения (30…35 кВ при токе нагрузки до 1 мА) для питания электроэффлювиальной люстры (люстры А. Л. Чижевского) предназначен источник питания постоянного тока на основе специализированной микросхемы типа К1182ГГЗ.

Источник питания состоит из выпрямителя сетевого напряжения на диодном мосте VD1, конденсатора фильтра С1 и высоковольтного полумостового автогенератора на микросхеме DA1 типа К1182ГГЗ. Микросхема DA1 совместно с трансформатором Т1 преобразует постоянное выпрямленное сетевое напряжение в высокочастотное (30…50 кГц) импульсное.

Выпрямленное сетевое напряжение поступает на микросхему DA1, а стартовая цепочка R2, С2 запускает автогенератор микросхемы. Цепочки R3, C3 и R4, С4 задают частоту генератора. Резисторы R3 и R4 стабилизируют длительность полупериодов генерируемых импульсов. Выходное напряжение повышается обмоткой L4 трансформатора и подается на умножитель напряжения на диодах VD2 — VD7 и конденсаторах С7 — С12. Выпрямленное напряжение подается на нагрузку через ограничительный резистор R5.

Конденсатор сетевого фильтра С1 рассчитан на рабочее напряжение 450 В (К50-29), С2 — любого типа на напряжение 30 В. Конденсаторы С5, С6 выбирают в пределах 0,022…0,22 мкФ на напряжение не менее 250 В (К71-7, К73-17). Конденсаторы умножителя С7 — С12 типа КВИ-3 на напряжение 10 кВ. Возможна замена на конденсаторы типов К15-4, К73-4, ПОВ и другие на рабочее напряжение 10кB или выше.

Рис. 4. Схема высоковольтного источника питания постоянного тока.

Высоковольтные диоды VD2 — VD7 типа КЦ106Г (КЦ105Д). Ограничительный резистор R5 типа КЭВ-1. Его можно заменить тремя резисторами типа МЛТ-2 по 10 МОм.

В качестве трансформатора используется телевизионный строчный трансформатор, например, ТВС-110ЛА. ВЬюоковольтную обмотку оставляют, остальные удаляют и на их месте размещают новые обмотки. Обмотки L1, L3 содержат по 7 витков провода ПЭЛ 0,2 мм, а обмотка L2 — 90 витков такого же провода.

Цепочку резисторов R5, ограничивающих ток короткого замыкания, рекомендуется включить в «минусовой» провод, который подводится к люстре. Этот провод должен иметь вьюоко-вольтную изоляцию.

Корректор коэффициента мощности

Устройство, именуемое корректором коэффициента мощности (рис. 5), собрано на основе специализированной микросхемы TOP202YA3 (фирма Power Integration) и обеспечивает коэффициент мощности не менее 0,95 при мощности нагрузки 65 Вт. Корректор приближает форму тока, потребляемую нагрузкой, к синусоидальной.

Рис. 5. Схема корректора коэффициента мощности на микросхеме TOP202YA3.

Максимальное напряжение на входе — 265 В. Средняя частота преобразователя — 100 кГц. КПД корректора — 0,95.

Импульсный источник питания с микросхемой

Схема источника питания с микросхемой той же фирмы Power Integration показана на рис. 6. В устройстве применен полупроводниковый ограничитель напряжения — 1,5КЕ250А.

Преобразователь обеспечивает гальваническую развязку выходного напряжения от напряжения сети. При указанных на схеме номиналах и элементах устройство позволяет подключать нагрузку, потребляющую 20 Вт при напряжении 24 В. КПД преобразователя приближается к 90%. Частота преобразования — 100 Гц. Устройство защищено от коротких замыканий в нагрузке.

Рис. 6. Схема импульсного источника питания 24В на микросхеме фирмы Power Integration.

Выходная мощность преобразователя определяется типом используемой микросхемы, основные характеристики которых приведены в таблице 1.

Таблица 1. Характеристики микросхем серии TOP221Y — TOP227Y.

Тип микросхемы Рmax, Вт Ток срабатывания защиты, А Сопротивление открытого транзистора, Ом
TOP221Y 7 0,25 31,2
T0P222Y 15 0,5 15,6
T0P223Y 30 1 7,8
T0P224Y 45 1,5 5,2
T0P225Y 60 2 3,9
T0P226Y 75 2,5 3,1
T0P227Y 90 3 2,6

Простой и высокоэффективный преобразователь напряжения

На основе одной из микросхем ТОР200/204/214 фирмы Power Integration может быть собран простой и высокоэффективный преобразователь напряжения (рис. 7) с выходной мощностью до 100 Вт.

Рис. 7. Схема импульсного Buck-Boost преобразователя на микросхеме ТОР200/204/214.

Преобразователь содержит сетевой фильтр (С1, L1, L2), мостовой выпрямитель (VD1 — VD4), собственно сам преобразователь U1, схему стабилизации выходного напряжения, выпрямители и выходной LC-фильтр.

Входной фильтр L1, L2 намотан в два провода на феррито-вом кольце М2000 (2×8 витков). Индуктивность полученной катушки — 18…40 мГн. Трансформатор Т1 выполнен на ферритовом сердечнике со стандартным каркасом ETD34 фирмы Siemens или Matsushita, хотя можно использовать и иные импортные сердечники типа ЕР, ЕС, EF или отечественные Ш-образные ферритовые сердечники М2000.

Обмотка I имеет 4×90 витков ПЭВ-2 0,15 мм; II — 3×6 того же провода; III — 2×21 витков ПЭВ-2 0,35 мм. Все обмотки наматывают виток к витку. Между слоями должна быть обеспечена надежная изоляция.

Источник: Шустов М.А. Практическая схемотехника. Преобразователи напряжения (2002).

Исправления: в схеме на рисунке 3 для катушки L2 изменена точка, указывающая начало намотки.

Тема 9. Источники питания. Схемотехника комбинаторных узлов…

Привет, сегодня поговорим про источники питания, обещаю рассказать все что знаю. Для того чтобы лучше понимать что такое источники питания,схемотехника комбинаторных узлов , настоятельно рекомендую прочитать все из категории Компьютерная схемотехника и архитектура компьютеров

Для питания электронных схем выпускается широкий спектр готовых к использованию высокоэффективных источников питания, позволяющий выбрать оптимальное решение.

Среди всего многообразия силовых преобразователей установились следующие обозначения:

– DC/DC – конвертор, преобразовывает постоянный ток в постоянный с целью получить другое напряжение, повышенную стабильность и/или гальваническую развязку одного напряжения от другого,

– AC/DC – источник питания, имеет на входе переменный ток, на выходе – постоянный ток с необходимыми параметрами,

– DC/AC – инвертор, преобразовывает постоянный ток в переменный, используется, например, в источниках резервного питания, где преобразовывает постоянное напряжение от аккумуляторов в переменный ток для питания электроприборов.

Идеальный источник питания должен обеспечивать требуемые значения напряжений питания в условиях изменения в широких пределах

параметров окружающей среды, величины нагрузки и входного напряжения. При этом он должен обладать 100%-ной эффективностью. Реальные же источники имеют нестабильность выходного напряжения и помеховые пульсации.

Стандартная схема построения источника стабильного питания предполагает использование отрицательной обратной связи для компенсации влияния дестабилизирующих факторов. При этом выходное напряжение источника сравнивается с некоторым постоянным эталонным (опорным) напряжением. Такие стабилизированные источники питания относятся к классу компенсационных. Регулирующим элементом стабилизаторов напряжения является биполярный или полевой транзистор . Если этот транзистор все время работает в активном режиме, то схему называют линейным ( непрерывным) стабилизатором напряжения (ЛСН), а если регулирующий транзистор работает в ключевом режиме – импульсным (ИСН). Соответственно используемым стабилизаторам источники питания называются линейными и импульсными.

В таблице 12.1 приведены типовые сравнительные характеристики линейных и импульсных источников питания. Стабильность по напряжению и току обычно лучше у линейных источников питания, а эффективность – у импульсных. Поэтому в импульсных источниках питания часто используют дополнительные линейные стабилизаторы, улучшающие параметры выходного напряжения.

 

Таблица 12.1. Сравнение импульсных и линейных источников питания

Параметр Линейные Импульсные
Нестабильность по входному напряжению, % 0,02 – 0,05 0,05 – 0,1
Нестабильность по току нагрузки, % 0,02 – 0,1 0,1 – 1,0
Выходные пульсации, мВ 0,5 — 2 25 — 100
КПД, % 40 — 55 60 — 95
Средняя удельная мощность, Вт/дм3    
Время восстановления, мкс    
Время удержания, мкс    

 

Кроме этого, необходимо отметить, что импульсные источники питания имеют более широкий диапазон допустимых напряжений на входе. Для линейных он обычно не превышает 10% от номинального значения и напрямую связан с КПД ( коэффициентом полезного действия). У импульсных источников изменение величины входного напряжения сказывается на КПД незначительно, что позволяет работать при сильных изменениях напряжения сети (до 40%).

 

12.1. Схемотехника линейных стабилизаторов напряжения

Линейные стабилизаторы напряжения включают в себя силовые регуляторы и более-менее сложную маломощную схему управления.

Принципиальная трудность создания интегральных стабилизаторов заключается в том, что силовые транзисторы рассеивают значительную мощность, вызывая локальный нагрев кристалла. Это резко ухудшает стабильность параметров схемы управления, в состав которой входит источник опорного напряжения , дифференциальный усилитель ошибки, цепи защиты от перегрузок по току и короткого замыкания нагрузки, от перегрева кристалла и других аварийных или нештатных режимов.

В упрощенном виде схема линейного стабилизатора напряжения приведена на рис.12.1. Схема состоит из операционного усилителя в неинвертирующем включении с отрицательной обратной связью по напряжению, источника опорного напряжения VREF и регулирующего транзистора VT1 , включенного последовательно с нагрузкой.

Рис.12.1. Базовая схема линейного стабилизатора напряжения

 

Выходное напряжение VOUT контролируется с помощью цепи отрицательной обратной святи, выполненной на резистивном делителе R1R2. ОУ играет роль усилителя ошибки, в качестве которой здесь выступает разность между опорным напряжением VREF , задаваемым источником опорного напряжения ( ИОН ), и выходным напряжением делителя R1R2.

ΔV = VREF – VOUT ( R1/( R1 + R2))

Схема работает следующим образом. Пусть по тем или иным причинам ( например, из-за уменьшения сопротивления нагрузки или входного нерегулируемого напряжения) выходное напряжение стабилизатора VOUT уменьшилось. При этом на входе ОУ появилась ошибка ΔV > 0. Выходное напряжение усилителя возрастет, что приведет к увеличению тока базы, а, следовательно, и токаэмиттера регулирующего транзистора до значения, при котором выходное напряжение возрастет практически до первоначального уровня.

В случае идеального операционного усилителя установившееся значение ошибки, совпадающее с дифференциальным входным напряжением ОУ, близко к нулю. Отсюда следует, что

 

VOUT = VREF ( 1 + R2/ R1)

 

Питание операционного усилителя осуществляется от входного нерегулируемого однополярного напряжения, в данном случае положительного. Это накладывает ограничения на допустимый диапазон входных и выходных сигналов, которые в этих условиях должны быть только положительными. Однако для схем источников питания такое ограничение не играет роли, поэтому от использования напряжения другой полярности для питания ОУ можно отказаться. Хотя операционный усилитель питается от нестабилизированного входного напряжения VIN , благодаря глубокой отрицательной обратной связи влияние этого фактора на стабильность выходного напряжения невелико.

Описанная схема предназначена, в основном, для стабилизации положительных напряжений относительно общей точки схемы. Для стабилизации отрицательных напряжений может быть использована эта же схема, если использовать гальванически изолированное от общей точки входное напряжение. В этом случае выходной вывод стабилизатора соединяется с общей точкой, а минусовым выводом схемы является точка соединения минусового вывода источника входного напряжения и общей точки стабилизатора.

Для случаев, когда требуется два симметричных относительно общей точки стабилизированных напряжения ( например, ±15 В для питания операционных усилителей) выпускаются интегральные микросхемы , содержащие два стабилизатора – на положительное и отрицательное напряжение, например, NE5554. Упрощенная схема внутренней структуры такого стабилизатора приведена на рис.12.2а, а типовая схема его включения – на рис.12.2б.

 

Рис.12.2. Стабилизатор двух разнополярных напряжений : а) принципиальная схема, б) типовая схема включения

В схемах, питающихся от батареек и аккумуляторов, желательно иметь минимальное падение напряжения на стабилизаторе. При использовании биполярных транзисторов в качестве регулирующих элементоа минимальное падение напрчжения, необходимое для нормальной работы составляет около 3 В.

Существенного уменьшения минимально допустимого падения напряжения на стабилизаторе можно достич за счет применения в качестве силового регулятора МОП-транзистора, включенного по схеме с общим истоком. Упрощенная схема такого стабилизатора приведена на рис.12.3. Для стабилизации положительных напряжений используется транзистор с p-каналом, работающий в режиме обогащения.

Рис.12.3. Стабилизатор напряжения с регулирующим МОП-транзистором

Схема работает следующим образом. При уменьшении сопротивления нагрузки выходное напряжение также уменьшается, и на выходе усилителя появится ошибка ΔV<0. Выходное напряжение усилителя будет снижаться, уменьшая напряжение на затворе регулирующего МОП-транзистора. Поскольку это p-канальный транзистор, то уменьшение напряжения на его затворе вызовет увеличение тока стока и выходное напряжение увеличится до прежнего значения.

Большое достоинство стабилизаторов с регулирующим МОП-транзистором – независимость тока потребления ( тока общего вывода) от тока нагрузки. Это связано с тем, что МОП-транзистор управляется напряжением, а ток его затвора ( а следовательно и выходной ток чсилителя) совершенно ничтожен по сравнению с током нагрузки.

Другое достоинство – падение напряжения на регулирующем элементе может быть снижено до очень малых величин, недостижимых для биполярных транзисторов. Например, двухканальный стабилизатор напряжения MAX8865 имеет минимально допустимое падение напряжения 55 мВ при токе нагрузки 50 мА и всего 1 мВ при токе нагрузки 1 мА.

Далее рассмотрим возможные схемы включения линейных стабилизаторов на примере трехвыводного стабилизатора напряжения КР142ЕН5А . Об этом говорит сайт https://intellect.icu . Он рассчитан на фиксированное напряжение 5 В, допустимый выходной ток 1А, есть внутренняя термозащита, защита выходного транзистора и внутреннее ограничение тока короткого замыкания.

На рис.12.4 Приведена типовая схема включения. Конденсаторы С1 и С2 включены для повышения устойчивости.

 

Рис.12.4. Типовая схема включения

 

При необходимости увеличения фиксированного значения стабилизации можно включить в цепь общего вывода стабилизатора стабилитрон и увеличить напряжение стабилизации на величину VCF (рис.12.5).

Рис.12.5. Увеличение фиксированного напряжения стабилизации

 

Увеличить напряжение стабилизации и сделать его регулируемым можно, если на общий вывод подать напряжение с делителя через неинвертирующий повторитель на ОУ (рис.12.6).

 

 

Рис.12.6. Стабилизатор с регулируемым выходным напряжением

 

Повысить максимальный выходной ток стабилизатора можно, включив дополнительный мощный транзистор, как показано на рис.12.7.

Рис.12.7. Схемы повышения максимального выходного тока с включением дополнительного мощного транзистора: а) с общим эммитером, б) с общим коллектором

 

Недостаток такой схемы состоит в том, что встроенные схемы ограничения тока и защиты выходного транзистора самого стабилизатора не зависят от тока нагрузки и фактически не используются по прямому назначению. Но за счет небольшого усложнения можно обеспечить защиту от короткого замыкания на выходе (рис.12.8).

 

Рис.12.8. Стабилизатор с повышенным выходным током и защитой от короткого замыкания

Схема источника стабильного тока, построенного на базе стабилизатора напряжения, приведена на рис.12.9.

Рис.12.9. Схема источника стабильного тока

Сопротивление резистора R определяется выражением

R = ( VOUT NOM/ IOUT )

На резисторе R падает напряжение, равное номинальному выходному напряжению стабилизатора. Поэтому в такой схеме желательно использование стабилизатора, рассчитанного на малое напряжение стабилизации.

При отсутствии в наличии готового двухполярного стабилизатора можно его построить на основе однополярного (рис.12.10).

Рис.12.10. Схема двухполярного стабилизатора

 

Поскольку потенциал неинвертирующего входа ОУ1 нулевой, то и потенциал инвертирующего входа этого усилителя должен быть равен нулю. При работе ОУ в линейном режиме и равенстве сопротивлений резисторов в делителе это может быть только в случае равенства по абсолютной величине разнополярных напряжений на выходе схемы.

 

12.2 Импульсные стабилизаторы напряжения

 

Принцип действия непрерывных ( линейных) стабилизаторов напряжения с последовательным регулирующим элементом состоит в том, что при изменении входного напряжения и/или тока нагрузки выходное напряжение стабилизатора ( напряжение на нагрузке) поддерживается постоянным за счет изменения падения напряжения на регулирующем элементе. Разность между входным и выходным напряжениями падает на мощном регулирующем транзисторе и, в зависимости от схемы его включения и диапазона изменения входного напряжения может достигать нескольких вольт. Как следствие, при протекании тока нагрузки на этом транзисторе рассеивается довольно большая мощность. Это предопределяет относительно невысокий коэффициент полезного действия (КПД) линейного стабилизатора, который в случае низких напряжений стабилизации может падать ниже 50%.

Существенно больших значений КПД можно достичь, если вместо непрерывного регулирующего элемента между входным напряжением и нагрузкой включить импульсный коммутатор ( ключ), который циклически

(с определенным периодом повторения Т) переключается из разомкнутого (закрытого) состояния в замкнутое ( открытое ) и обратно. В этом случае среднее значение выходного напряжения на нагрузке будет определяться отношением длительности tOPENего открытого состояния к периоду повторения. Таким образом, меняя относительную длительность открытого состояния ключа, можно в широких пределах регулировать среднее напряжение на нагрузке. Если между коммутатором и нашрузкой включить соответствующий фильтр нижних частот, можно сгладить пульсации напряжения на нагрузке до необходимой величины.

При малом сопротивлении ключа в открытом состоянии ( в идеале оно может быть близко к нулевому), потери мощности на таком регулирующем элементе весьма малы, и на практике КПД может достигать 95% и более.

Источники питания с коммутаторами называются импульсными источниками питания, а если они осуществляют стабилизацию выходного напряжения, то импульсными стабилизаторами напряжения. По сравнению с непрерывными стабилизаторами напряжения импульсные источники обладают не только существенно более высоким КПД, но дополнительно позволяют получить:

– выходное напряжение больше входного,

– выходное напряжение обратной полярности по отноршению к входному,

– стабилизацию выходного напряжения при широком ( более 50%) диапазоне изменения входного,

– при выходной мощности в десятки и более ватт – существенно меньшие массу и габариты.

Недостатками импульсных источников являются:

– импульсный характер напряжений и токов в схеме, что обуславливает интенсивные помехи в нагрузке, в первичном источнике питания и в окружающем пространстве и требует применения сложных сглаживающих фильтров, тщательного экранирования и детальной проработки конструкции,

– определенные сложности с обеспечением устойчивости импульсных устройств с обратной связью,

– относительно большая ( по сравнению с непрерывными устройствами) длительность переходных процессов.

Классификация импульсных источников питания приведена на рис.12.11.

 

Рис.12.11. Классификация импульсных источников питания

 

Импульсные источники питания отличаются большим многообразием принципов построения и схемных решений. Они разделяются на две большие группы: с промежуточным накоплением энергии и без промежуточного накопления энергии.

Для импульсных источников питания с промежуточными накопителями характерна работа в два такта, в одном из которых происходит накопление энергии в индуктивной катушке ( дросселе) или конденсаторе, а во втором – передача энергии в нагрузку. Изготовить индуктивную катушку или конденсатор сравнительно большой емкости методами интегральной технологии не удается, поэтому все импульсные интегральные источники питания имеют внешние компоненты.

На рис.12.12 приведена схема понижающего импульсного стабилизатора напряжения (ИСН). Транзистор переключается от полностью открытого в полностью закрытое состояние с частотой в десятки, сотни килогерц или даже единицы мегагерц. Когда транзистор открыт, ток от первичного источника энергии через дроссель поступает в нагрузку. При этом ток IL растет и, как следствие, происходит накопление энергии в дросселе. Когда транзистор закрыт, ток IL протекает через диод VD, продолжая питать нагрузку. При этом ток катушки уменьшается и энергия, накопленная в дросселе в предыдущем такте, расходуется на поддержание напряжения на нагрузке VOUT. Соотношение открытого и закрытого состояний ключа определяет величину напряжения VOUT.

 

Рис.12.12. Схема понижающего ИСН

 

На рис.12.13 представлена блок-схема устройства управления стабилизатором напряжения.

 

Рис.12.13. Блок-схема устройства управления

 

Устройство управления осуществляет сравнение выходного напряжения с опорным. Если Выходное напряжение уменьшается по сравнению с опорным, то модулятор устройства управления увеличивает отношение времени открытого состояния транзистора tOPEN к периоду импульсов стабилизатора T, называемое относительной длительностью импульса

γ = tOPEN/T .

При увеличении ( уменьшении VOUT ) от номинального значения модулятор уменьшает ( увеличивает) значение γ. В отечественной литературе этот параметр называют также коэффициентом заполнения, а в английском обозначают термином duti cycle ( относительный рабочий интервал).

Принцип действия модулятора определяется законом модуляции. В импульсных стабилизаторах наиболее часто применяют широтно-импульсную или частотно-импульсную модуляции. Если регулируется время открытого состояния, то есть ширина импульсов, при постоянной частоте следования импульсов f = 1/T, то имеет место широтно-импульсная модуляция (ШИМ). Если относительная длительность импульса γ регулируется путем изменения частоты следования импульсов при их неизменной длительности, то такая модуляция называется частотно-импульсной модуляцией (ЧИМ).

В схеме на рис.12.12 выходное напряжение всегда ниже входного. Изменив расположение элементов в схеме, можно, используя свойство самоиндукции, получить выходное напряжение большее, чем входное (рис.12.14).

Рис.12.14. Схема повышающего ИСН

 

Когда транзистор VT открыт, к дросселю L приложено входное напряжение VIN. В этом случае согласно закону электромагнитной индукции

 

VIN = L(dIL/dt) ,

и ток в дросселе будет расти, увеличивая запасаемую в нем энергию. К диоду VD будет приложено запирающее напряжение, и ток нагрузки будет поддерживаться за счет разряда конденсатора С. После запирания транзистора потенциал на его коллекторе поднимается до величины, превышающей выходное напряжение, за счет ЭДС самоиндукции дросселя. Диод откроется. Ток в дросселе при этом будет убывать, и его энергия, запасенная в первом такте, вместе с энергией, поступающей от первичного источника, будет питать нагрузку и заряжать конденсатор.

Регулировочная характеристика повышающего преобразователя ( при условии, что ток дросселя нигде не достигает нуля) описывается следующим соотношением

.

 

Примером интегральной микросхемы повышающего импульсного стабилизатора может служить микросхема MAX856 фирмы Maxim, преобразующая постоянное нестабилизированное напряжение от 0,8 до 6 В в постоянное напряжение 5 В при токе нагрузки до 100 мА. Кристалл, размером 2,1 х 1,5 мм в восмивыводном корпусе содержит устройство управления и коммутирующий МОП-транзистор. Диод, дроссель и конденсатор – внешние. КПД устройства при токе нагрузки в 40 мА достигает 85%. Ток, потребляемый самой микросхемой , составляет не более 25 мкА. Способ регулирования – ЧИМ, при частоте до 500 кГц. Устройство управления ограничивает входной ток величиной 0,5 А и контролирует напряжение первичного источника тока.

Схемы понижающего и повышающего преобразователей ( рис.12.12 и 12.14) являются базовыми для построения более сложных схем преобразователей. Простейшая составная схема, представляющая собой комбинацию этих двух преобразователей, представлена на рис.12.15.

 

Рис.12.15. Схема инвертирующего ИСН

 

В этой схеме регулирующий транзистор включен последовательно с первичным источником, как в схеме понижающего преобразователя, а диод, через который протекает ток при запертом транзисторе, — последовательно с нагрузкой, как у повышающего преобразователя. Когда транзистор VT открыт, диод VD закрыт, и к дросселю приложено входное напряжение VIN. В этом случае согласно закону электромагнитной индукции ток в дросселе будет расти, увеличивая запасенную в нем энергию. Нагрузка питается за счет разряда конденсатора С. Во втором такте, после запирания транзистора,

ток продолжает течь через дроссель и через открывшийся диод заряжает конденсатор в направлении, противоположном полярности входного напряжения. Получающаяся при этом регулировочная характеристика

 

 

Таким образом, на выходе инвертирующего импульсного стабилизатора напряжение не только имеет полярность, обратную полярности входного напряжения, но в зависимости от относительной длительности импульса может быть как больше, так и меньше входного.

Примером инвертирующего стабилизатора может служить микросхема MAX764 фирмы Maxim, преобразующая постоянное нестабильное напряжение 3…16 В в постоянное напряжение -5 В при токе нагрузки до 250 мА. Кристалл, размером 3,7 х 2 мм в восьмивыводном корпусе содержит устройство управления и коммутирующий МОП-транзистор. Диод, дроссель и конденсатор – внешние. КПД устройства при токе нагрузки в 200 мА достигает 80%. Ток, потребляемый самой микросхемой, составляет не более 90 мкА. Способ регулирования — ЧИМ, при частоте импульсов до 300 кГц. Устройство управления ограничивает входной ток величиной 0,75 А.

 

12.3 Инверторные схемы

 

Рассмотренные ранее преобразователи постоянного напряжения имеют ряд ограничений при практическом использовании. В частности, наличие в них гальванической связи между входом и выходом не позволяет применять такие преобразователи в тех случаях, когда требуется гальваническая развязка. Другим ограничением является то, что при заданном диапазоне изменения входного напряжения питания возможный диапазон изменения выходного напряжения имеет вполне определенные пределы. То есть, нецелесообразно пытаться получать с помощью рассмотренных ранее схем напряжения в сотни вольт из напряжений в единицы вольт, и наоборот. Эти недостатки можно устранить, если дополнить их неким устройством, играющим роль трансформатора постоянного напряжения (ТПН).

Идеальный ТПН должен обеспечивать передачу постоянного напряжения с постоянным коэффициентом трансформации, высокую степень изоляции между первичной и вторичной цепями и возможность построения системы преобразования энергии с несколькими входами или выходами.

На рис.12.16 представлена функциональная схема наиболее широко применяемого ТПН.

 

 

Рис.12.16. Функциональная схема ТПН

Функции отдельных звеньев ТПН вполне очевидны. Инвертор преобразует входное постоянное напряжение в переменное напряжение прямоугольной формы высокой частоты. Трансформатор Тр обеспечивает повышение или понижение переменного напряжения и гальваническую разделение первичной и вторияной цепей. Выпрямитель вновь преобразует переменное напряжение в постоянное.

Самым сложным узлом ТПН, во многом определяющим его свойства, является инвертор. Инверторами называются преобразователи постоянного тока в переменный. Семейство инверторов довольно обширно и включает устройства различного назначения, рассчитанные на передачу мощности от долей ватта до многих мегаватт.

Силовая часть инверторов может быть построена различным образом. На рис.12.17 приведены основные схемы силовых частей.

 

Рис.12.17. Основные схемы силовых частей инверторов: а) нулевая,

б) полумостовая, в) мостовая

 

Наименьшее количество элементов содержит нулевая схема, в которой один из выводов входного источника питания соединен с отводом от средней – нулевой – точки первичной обмотки трансформатора ( рис.12.17а). Ключи S1 и S2 поочередно замыкаются и размыкаются. При этом к соответствующим первичным полуобмоткам трансформатора прикладывается входное напряжение. Намагничивающие силы полуобмоток направлены в магнитопроводе в противоположные стороны, поэтому постоянное подмагничивание, в идеале, отсутствует. Трансформатор объединяет полуволны одного цикла коммутации и повышает или понижает их амплитуду в соответствии со своим коэффициентом трансформации. Недостатком этой схемы является повышенное напряжение на закрытом ключе. Поэтому такую схему применяют для преобразования относительно низких напряжений. Другой недостаток – менее эффективное, чем у двух других схем, использование трансформатора.

Полумостовая схема (рис.12.17б) широко применяется для построения сетевых источников питания небольшой мощности ( до сотен ватт). Входное напряжение делится пополам с помощью конденсаторов. Ключи также переключаются поочередно. При замыкании одного из ключей к первичной обмотке трансформатора прикладывается напряжение, равное VIN/2 , поэтому для передачи той же мощности, что и в предыдущей схеме, через ключи должен протекать вдвое больший ток. Напряжение на закрытых ключах не превышает входное напряжение.

Мостовая схема (рис.12.17в) применяется для источников мощностью от сотен ватт и выше. Ключи циклически меняют состояние : S1, S4 – замкнуты, S2, S3 – разомкнуты, и наоборот. К первичной обмотке трансформатора всегда прикладывается полное входное напряжение. Напряжение на закрытых ключах также не превышают входное напряжение.

Примером нерегулируемого нулевого инвертора может служить MAX845. Эта микросхема содержит задающий генератор, счетный триггер и два n-канальных МОП-транзистора (рис.12.18).

Рис.12.18. Схема включения интегрального нерегулируемого инвертора MAX845

 

Генератор в зависимости от состояния входа выбора частоты FS вырабатывает счетные импульсы частотой 400 или 700 кГц.

Счетный триггер TT делит эту частоту пополам и распределяет эти импульсы по затворам МОП-транзисторов. Допустимое напряжение сток-исток транзисторов всего 12 В, поэтому номинальное напряжение питания составляет 5В. Выходная мощность микросхемы не более 0,75 Вт. Ток собственного потребления не превышает 5 мА. Микросхема изготавливается в миниатюрных корпусах SO-8 и μMAX размером 3х5 мм.

 

Регулирование выходного напряжения инверторов, применяемых в схемах преобразователей постоянного напряжения, осуществляется, в основном, путем модуляции ширины выходных импульсов при постоянной частоте коммутации. В качестве примера регулируемого инвертора можно привести микросхему TL494 производства фирмы Texas Instruments. Функциональная схема TL494 приведена на рис.12.19, а типовая схема включения в качестве контроллера регулируемого двухтактного инвертора – на рис.12.20.

Рис.12.19. Функциональная схема TL494

 

Для стабилизации используются отрицательные обратные связи по напряжению и току.

 

 

 

Рис.12.20. Типовая схема включения TL494

 

Для уменьшения размеров, веса и стоимости магнитных элементов и фильтровых конденсаторов необходимо повышать частоту переключения. Однако реальные потери в ключевых регулирующих элементах пренебрежимо малы лишь на относительно низких частотах переключения в пределах 20…40 кГц.

Потери на переключение вызваны тем, что переход от включенного состояния транзистора к выключенному и обратно происходит не мгновенно, а в течении определенного, пусть даже и малого времени. Во время переключения рабочая точка транзистора находится в активной области выходных характеристик (рис.12.21).

В идеале переключение транзистора следовало бы проводить по траектории 1. Например, для перевода транзистора из выключенного состояния (точка В) во включенное (точка А), следует сначала при нулевом токе уменьшить напряжение сток-исток VDSтранзистора до нуля ( точка 0), а затем увеличить ток до установившегося значения. Практически же, если не приняты специальные меры, из-за наличия паразитных емкостей и индуктивностей переключение будет проходить по траектории 2. При этом на транзисторе выделяется значительная электрическая мощность, преобразующаяся в тепло.

 

 

Рис.12.21. Траектория переключения МОП-транзистора

 

Таким образом, для уменьшения потерь на переключение следует открывать транзистор, когда напряжение на нем равно нулю, а звкрывать при нулевом токе. Эти условия можно обеспечить за счет использования резонансных колебаний в цепях с ключевыми элементами.

Упрощенная схема резонансного преобразователя, работающего при нулевом токе переключения ( так называемый ПНТ-преобразователь), показана на рис.12.22.

Рис.12.22. Схема резонансного переключателя, работающего при нулевом токе переключения

 

В этой схеме простой ключ заменен резонансным ключом, состоящим из компонентов VT, LR, CR . В принципе, в качестве резонансной индуктивности может использоваться индуктивность рассеяния трансформатора.

Пусть первоначально транзистор закрыт. Выходной ток течет за счет энергии, запасенной в дросселе выходного фильтра LF , через диод VD3 в нагрузку. В некоторый момент времени, определяемый схемой управления, ключ VT открывается. Колебательный контур, образованный катушкой LR и конденсатором СR , начинает получать энергию. Заряд конденсатора CR и последующий его разряд будут происходить по закону, близкому к синусоидальному, с частотой, равной резонансной частоте контура LRCR. Одновременно ток в катушке LR также будет изменяться по синусоидальному закону – вначале увеличиваться, затем уменьшаться. Когда этот ток уменьшится до нуля, нужно закрыть ключ. При этом диод VD1 предотвращает обратный ток через паразитный диод МОП-транзистора, который мог бы быть вызван продолжающимся резонансным процессом.

Когда ток в катушке LR становится равным нулю, выходной ток течет через дроссель LF, диод VD2 и конденсатор CR, который быстро разряжается.Как только он разрядится до нуля, открывается диод VD3. На этом один резонансный цикл заканчивается, и с открывания транзистора VT начинается следующий цикл. Так как транзистор открывается и закрывается при нулевом токе, потери на переключение будут минимальны. В связи стем, что переход тока с диода VD2 к диоду VD3 и обратно замедлен присутствием индуктивности LF и емкости CR, потери энергии будут снижены и в диодах. Уменьшаются также скорости нарастания токов и напряжений, что способствует снижению уровней электромагнитных помех и перенапряжений на элементах схемы.

В рассмотренной схеме переключение силового транзистора происходит при нулевом токе через него. Существуют также схемы, в которых транзистор переключается при нулевом напряжении (ПНН-преобразователи). Схемы ПНТ лучше подходят для сетевых источников питания с повышенным питающим напряжением; схемы ПНН – для преобразователей постоянного тока с более низким напряжением питания.

В общем случае можно сформулировать следующие достоинства и недостатки резонансных преобразователей по сравнению с обычными импульсными преобразователями на ту же мощность и работающими с той же частотой переключений.

Преимущества резонансных преобразователей:

– значительно меньшие потери на переключение, в частности в режиме ПНН потери, связанные с разрядом выходной емкости транзистора через его открытый канал при отпирании;

– примерно пятикратное снижение уровня электромагнитных помех;

– более низкие требования к элементам, особенно в отношении максимально-допустимых скоростей нарастания напряжений и токов;

– для организации резонансных процессов переключения могут использоваться паразитные реактивности схемы.

Недостатки резонансных преобразователей:

– более сложная схема силовой части;

– узкий диапазон регулирования;

– в общем случае переменная частота переключения;

– более сложные схемы управления.

 

12.4 Контрольные вопросы

 

1. Поясните обозначения DC/DC , AC/DC , DC/AC и поясните использование этих устройств.

2. Опишите основные отличия характеристик импульсных и линейных источников питания.

3. Базовая схема линейного стабилизатора напряжения.

4. Принципиальная схема стабилизатора двух разнополярных напряжений и типовая схема его включения.

5. Стабилизатор напряжения с регулирующим МОП-транзистором.

6. Типовая схема включения трехвыводного стабилизатора напряжения КР142ЕН5А.

7. Увеличение фиксированного напряжения стабилизации.

8. Стабилизатор с регулируемым выходным напряжением.

9. Схемы повышения максимального выходного тока с включением дополнительного мощного транзистора.

10. Стабилизатор с повышенным выходным током и защитой от короткого замыкания.

11. Схема источника стабильного тока.

12. Схема двухполярного стабилизатора.

13. Основные преимущества импульсных стабилизаторов напряжения.

14. Схема понижающего ИСН.

15. Схема повышающего ИСН.

16. Схема инвертирующего ИСН.

17. Функциональная схема трансформатора постоянного напряжения.

18. Основные схемы силовых частей инверторов.

19. Схема резонансного переключателя, работающего при нулевом токе переключения.

 

 

Понравилась статья про источники питания? Откомментируйте её Надеюсь, что теперь ты понял что такое источники питания,схемотехника комбинаторных узлов и для чего все это нужно, а если не понял, или есть замечания, то нестесняся пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории Компьютерная схемотехника и архитектура компьютеров

Ответы на вопросы для самопроверки пишите в комментариях, мы проверим, или же задавайте свой вопрос по данной теме.

Источники питания

Сортировать:Новые и популярныеНазваниеЦенаХиты продажОценка покупателейДата добавленияВ наличии

  • Импульсные источники питания. Схемотехника и ремонт

    Ремонт и обслуживание импульсных источников электропитания невозможны без знания принципов их работы и методов диагностики неисправностей. В книге рассмотрены вопросы расчета импульсных источников питания, подробно описаны их схемотехника и принципы функционирования…

    247 ₽

    Нет в наличии
    Уведомить

  • Источники вторичного электропитания. Практикум

    Систематически изложен лабораторный курс «Источники вторичного электропитания», который охватывает основные типы линейных и импульсных однотактных источников питания. Приведено описание девяти…

  • Источники опорного напряжения и тока

    Источники тока (ИТ) и источники опорного напряжения (ИОН) являются неотъемлемыми элементами многих аналоговых схем, поскольку обеспечивают фиксированные и высокостабильные уровни токов или напряжении…

    930 ₽

    Нет в наличии
    Уведомить

  • Источники питания мониторов

    У Вас в руках первая в СНГ книга, посвященная источникам питания мониторов. В ней подробно рассмотрены электрические принципиальные схемы блоков питания широкой номенклатуры мониторов персональных компьютеров…

    95 ₽

    Нет в наличии
    Уведомить

  • Как создать источники питания своими руками

    Создание своими руками различных источников питания — большая и практически значимая область технического творчества многих радиолюбителей. Книга призвана оказать им практическую помощь в этом интересном деле…

    352 ₽

    Нет в наличии
    Уведомить

  • Основы силовой электроники

    Книга позволит начинающему радиолюбителю поэтапно с паяльником в руках пройти сквозь тернии к звездам — от постижения азов силовой электроники к горным вершинам профессионального мастерства…

    570 ₽

    Нет в наличии
    Уведомить

  • Радиомастеру-умельцу

    Эта книга, написанная простым и доступным языком о сложном мире импульсных источников питания, позволит радиолюбителям легко разобраться в их схемотехнике и самим стать конструкторами источников питания для собственных задач…

    290 ₽

    Нет в наличии
    Уведомить

  • Расчет источников вторичного питания электронных устройств

    Учебное пособие разработано в соответствии с требованиями ФГОС среднего профессионального образования по специальностям «Компьютерные сети», «Радиоприборостроение», «Радиотехнические комплексы и системы управления космических летательных аппаратов» и других смежных специальностей…

  • Силовая электроника. Расчеты и схемотехника

    Силовая электроника прочно вошла в нашу повседневную жизнь. Эта книга позволит детально с этим разделом электроники познакомиться. Начинается знакомство с расчетов, основы любого конструирования. А далее…

    685 ₽

    Нет в наличии
    Уведомить

  • Силовая электроника. Руководство разработчика

    Для специалиста в области электронной техники термин «силовая электроника» ассоциируется в первую очередь с источниками питания, схемами управления различными исполнительными механизмами с мощностью, не превышающей нескольких киловатт…

    170 ₽

    Нет в наличии
    Уведомить

  • 261 ₽

    Нет в наличии
    Уведомить

  • Силовая электроника.Профессиональны решения

    Силовая электроника — специфическая область инженерного знания, где многое определяется не столько сугубо теоретическими знаниями, сколько опытом, эрудицией, живым поиском путей проектирования надежной электронной техники. Пути решения той или иной технической проблемы силовой электроники могут быть весьма нетрадиционными, хотя существует ряд правил…

Что такое схемотехника блоков питания для светодиодных лент и прочего

Что такое схемотехника блоков питания для светодиодных лент и прочего

Схемотехника — научно-техническое направление, занимающееся проектированием, созданием и отладкой (синтезом и анализом) электронных схем и устройств различного назначения.

Светодиоды заменяют таким типы источников света, такие как люминесцентные лампы и лампы накаливания. Практически в каждом доме уже есть светодиодные лампы, они потребляют гораздо меньше двух своих предшественников (до 10 раз меньше чем лампы накаливания и от 2 до 5 раз меньше, чем КЛЛ или энергосберегающие люминесцентные лампы). В ситуациях, когда необходим длинный источник света, или нужно организовать подсветку сложной формы в ход идёт светодиодная лента.

Led лента идеальна для целого ряда ситуаций, главное её преимущество перед отдельными светодиодами и светодиодными матрицами являются источники питания. Их легче найти в продаже почти в любом магазине электротоваров, в отличие от драйверов для мощных светодиодов, к тому же подбор блока питания осуществляется только по потребляемой мощности, т.к. подавляющее большинство светодиодных лент имеют напряжение питания в 12 Вольт.

В то время как для мощных светодиодов и модулей при выборе источника питания нужно искать именно источник тока с требуемой мощностью и номинальным током, т.е. учитывать 2 параметра, что усложняет подбор.

В этой статье рассмотрены типовые схемы блоков питания и их узлы, а также советы по их ремонту для начинающих радиолюбителей и электриков.

Типы и требования к источникам питания для светодиодных лент и 12 В led ламп

Основное требование к источнику питания как для светодиодов, так и для светодиодных лент – качественная стабилизация напряжения/тока, вне зависимости от скачков сетевого напряжения, а также низкие выходные пульсации.

По типу исполнения блоки питания для LED продукции различают:

  • Герметичные. Они сложнее в ремонте, корпус не всегда поддаётся аккуратной разборке, а внутри и вовсе может быть залит герметиком или компаундом.
  • Негерметичные, для применения в помещении. Лучше поддаются ремонту, т.к. плата изымается после откручивания нескольких винтов.

По типу охлаждения:

  • Пассивное воздушное. Блок питания охлаждается за счёт естественной конвекции воздуха через перфорацию его корпуса. Недостаток – невозможность достигнуть высоких мощностей сохранив массогабаритные показатели;
  • Активное воздушное. Блок питания охлаждается с помощью кулера (небольшого вентилятора, как устанавливают на системных блоках ПК). Такой тип охлаждения позволяет достичь большей мощности при аналогичных размерах с пассивным блоком питания.

Схемы блоков питания для светодиодных лент

Стоит понимать, что нет в электронике такого понятия как «блок питания для светодиодной ленты», в принципе к любому устройству подойдёт любой блок питания с подходящим напряжением и током большим чем потребляемый прибором. Это значит, что информация описанная ниже применима к практически любым блокам питания.

Однако в обиходе проще говорить о блоке питания по его предназначению для конкретного устройства.

Общая структура импульсного блока питания

Для питания светодиодных лент и другой техники последние десятилетия применяются импульсные блоки питания (ИБП). Они отличаются от трансформаторных тем, что работают не на частоте питающего напряжения (50 Гц), а на высоких частотах (десятки и сотни килогерц).

Поэтому для его работы нужен генератор высокой частоты, в дешевых и рассчитанных на малые токи (единицы ампер) блоках питания часто встречается автогенераторная схема, она применяется в:

  • электронных трансформаторах;
  • электронных балластах для люминесцентных ламп;
  • зарядных устройствах для мобильного телефона;
  • дешевых ИБП для светодиодных лент (10-20 вт) и других устройствах.

Схему подобного блока питания можно увидеть на рисунке (для увеличения нажмите на картинку):

Его структура следующая:

1. Голубым цветом выделен диодный мост, стоящий на входе блока питания он выпрямляет входное переменное напряжение, для питания следующих узлов постоянным напряжением величиной 220*1.41=310 В. В случае поломки – проверьте наличие и величину напряжения ДО моста и ПОСЛЕ него, если оно отсутствует – потребуется замена диодов или моста, если он собран в отельном корпусе.

На схеме не указан, но по линии 220 В может присутствовать предохранитель или низкоомный резистор, прежде чем приступать к ремонту проверьте его целостность.

2. Коричневым обведен фильтр пульсаций, его главным элементом является C4 – электролитический конденсатор. Его ёмкость зависит от того, насколько сэкономил производитель, обычно до 220 мкФ на 400 Вольт. L1 – фильтр пульсаций и электромагнитных помех, которые возникают при работе импульсного блока питания. В большинстве дешевых блоков питания он отсутствует.

Частая проблема фильтра – высыхание, взрыв или вздутие электролитического конденсатора, приводит к некачественной работе всего импульсного блока питания в целом или его полной неработоспособности. Заменить его можно таким же и большей ёмкости, но подходящим по размеру.

3. Зеленым цветом выделена силовая часть VT1 силовой транзистор, в данном случае полевой, но может быть и биполярный. T1 – импульсный трансформатор с тремя обмотками: первичной, вторичной и базовой.

Третья обмотка необходима для генерации высокочастотных колебаний – если интересен принцип работы автогенераторного блока питания лучше прочитать книги Моина, Зиновьева и другие учебники по источникам питания импульсного типа.

Импульсные трансформаторы гораздо меньше по габаритам, чем сетевые, опять же из-за работы на высоких частотах и выполнены не из железа, а из феррита. Чаще всего выходит из строя силовой ключ.

Прозвоните транзистор мультиметром в режиме проверки диодов, и вы сразу обнаружите его пробой или обрыв. Остальные элементы – это обвязка этого узла, по отдельности редко выходит из строя, в основном вслед за силовым транзистором. Однако всегда стоит убедиться в соответствии номинальным значениям резисторов и конденсаторов.

Диоды в обвязке трансформатора VD7 и VD5 выполняют роль снаббера защищая цепи от всплесков противо-ЭДС, в моменты переключения транзистора. Являются тоже довольно нагруженным и ответственным узлом.

4. Красным цветом выделена цепочка обратной связи по напряжению на базе регулируемого стабилитрона TL431 и их аналогов (любые буквы в обозначении с цифрами «431»). 

 В состав ОС включена оптопара U1, с её помощью в силовую часть автогенератора поступает сигнал с выхода и поддерживается стабильное выходное напряжение. В выходной части может отсутствовать напряжение из-за обрыва диода VD8, часто это сборка Шоттки, подлежит замене. Также часто вызывает проблемы вздутый электролитический конденсатор C10.

Как вы видите всё работает с гораздо меньшим количеством элементов, надёжность соответствующая…

Более дорогие и блоки питания

Схемы, которые вы увидите ниже часто встречаются в блоках питания для светодиодных лент, DVD-проигрывателей, магнитол и других маломощных устройств (десятки Ватт).

Прежде чем перейти к рассмотрению популярных схем, ознакомьтесь со структурой импульсного блока питания с ШИМ-контроллером.

Верхняя часть схемы отвечает за фильтрацию, выпрямление и сглаживание пульсаций сетевого напряжения 220, по сути аналогична как в предыдущем типе, так и в последующих.

Самое интересное – это блок ШИМ, сердце любого достойного блока питания. ШИМ-контроллер – это устройство управляющие коэффициентом заполнения импульсов выходного сигнала на основании уставки, определенной пользователем или обратной связи по току или напряжению. ШИМ может управлять как мощностью нагрузки с помощью полевого (биполярного, IGBT) ключа, так и полупроводниковым управляемым ключом в составе преобразователя с трансформатором или дросселем.

Изменяя ширину импульсов при заданной частоте – вы изменяете и действующее значение напряжение, сохраняя при этом амплитудное, вы можете проинтегрировать его с помощью C- и LC-цепей для устранения пульсаций. Такой метод называется Широтно-Импульсное Моделирование, то есть моделирование сигнала за счёт ширины импульсов (скважности/коэффициента заполнения) при постоянной их частоте.

На английском языке это звучит, как PWM-controller, или Pulse-Width Modulation controller.

На рисунке изображен биполярный ШИМ. Прямоугольные сигналы – это сигналы управления на транзисторах с контроллера, пунктиром изображена форма напряжения в нагрузке этих ключей – действующее напряжение.

Более качественные блоки питания малой средней мощности часто построены на интегральных ШИМ-котроллерах со встроенным силовым ключом. Преимущества перед автогенераторной схемой:

  • Рабочая частота преобразователя не зависит ни от нагрузки, ни от напряжения питания;
  • Более качественная стабилизация выходных параметров;
  • Возможность более простой и надежной настройки рабочей частоты на этапе проектирования и модернизации блока.

Ниже будут расположены несколько типовых схем блоков питания (для увеличения нажмите на картинку):

Здесь RM6203 – и контроллер и ключ в одном корпусе.

В этой схеме используется внешний MOSFET ключ.

То же самое, но на другой микросхеме.

Обратная связь осуществляется с помощью резистора, иногда оптопары подключенной к входу с названием Sense (датчик) или Feedback (обратная связь). Ремонт таких блоков питания в общем аналогичен. Если все элементы исправны, и напряжение питания поступает на микросхему (ножка Vdd или Vcc), значит дело скорее всего в ней, более точно можно определить с помощью осциллографа просмотрев сигналы на выходе (ножка drain, gate).

Практически всегда заменить такой контроллер можно любым аналогом с подобной структурой, для этого нужно сверить datasheet на тот, что установлен на плате и тот, что у вас в наличии и впаять, соблюдая распиновку, как это изображено на следующих фотографиях.

Или вот схематически изображена замена подобных микросхем.

Мощные и дорогие блоки питания

Блоки питания для светодиодных лент, а также некоторые блоки питания для ноутбуков выполняются на ШИМ-контроллере UC3842.

Схема более сложная и надежная. Основным силовым компонентом является транзистор Q2 и трансформатор. При ремонте нужно проверить фильтрующие электролитические конденсаторы, силовой ключ, диоды Шоттки в выходных цепях и выходные LC-фильтры, напряжения питания микросхемы, в остальном методы диагностики аналогичны.

Однако более подробная и точная диагностика возможна лишь с использованием осциллографа, в противном случае – проверьте короткие замыкания платы, пайку элементов и обрывы дороже. Может помочь замена подозрительных узлов на заведомо рабочие.

Более совершенные модели источников питания для светодиодных лент выполнены на практически легендарной микросхеме TL494 (любые буквы с цифрами «494») или её аналоге KA7500. Кстати на этих же контроллерах построено большинство компьютерных блоков питания AT и ATX. 

Вот типовая схема блока питания на этом ШИМ-контроллере (нажмите на схему):

Такие блоки питания отличаются высокой надёжностью и стабильностью работы.

Краткий алгоритм проверки:

1. Запитываем микросхему согласно распиновки от внешнего источника питания 12-15 вольт (12 ножка – плюс, а на 7 ножку – минус).

2. На 14 ножки должно появиться напряжение 5 Вольт, которое будет оставаться стабильным при изменении питания, если оно «плавает» — микросхему под замену.

3. На 5 выводе должно быть пилообразное напряжение «увидеть» его можно только с помощью осциллографа. Если его нет или форма искажена – проверяем соответствие номинальным значениям времязадающей RC-цепи, которая подключена к 5 и 6 выводам, если нет – на схеме это R39 и C35, их под замену, если после этого ничего не изменилось – микросхема вышла из строя.

4. На выходах 8 и 11 должны быть прямоугольные импульсы, но их может не быть из-за конкретной схемы реализации обратной связи (выводы 1-2 и 15-16). Если выключить и подключить 220 В, на какое-то время они там появятся и блок снова уйдёт в защиту – это признак исправной микросхемы.

5. Проверить ШИМ можно закоротив 4 и 7 ножку, ширина импульсов увеличится, а закоротив 4 на 14 ножки – импульсы исчезнут. Если у вас получились другие результаты – проблема в МС.

Это наиболее краткая проверка данного ШИМ-контроллера, о ремонте блоков питания на их основе есть целая книга «Импульсные блоки питания для IBM PC».

Хоть и посвящена она компьютерным блоками питания, но там много полезной информации для любого радиолюбителя.

Вывод

Схемотехника блоков питания для светодиодных лент аналогична любым блокам питания с подобными характеристиками, довольно хорошо поддаётся ремонту, модернизации и перестройки на необходимые напряжения, разумеется, в разумных пределах. 

Ранее ЭлектроВести писали, что депутаты «Слуги народа» зарегистрировали в Верховной Раде законопроект №2352 «Про батареи и аккумуляторы» для создания системы их утилизации.

По материалам: electrik.info.

Предисловие. Импульсные блоки питания для IBM PC

Читайте также

Предисловие

Предисловие Более шести с половиной десятилетий прошло со времени вступления в строй эскадренного миноносца «Новик», которое ознаменовало собой подлинную революцию в развитии кораблей этого класса. На испытаниях «Новик» показал небывалую скорость – 37,3 узла! Впервые в

Предисловие

Предисловие В 2010 году исполнилось двадцать лет с тех пор, как я начал заниматься такой увлекательной областью естествознания, как альтернативная энергетика. В 1990-е годы в России произошли не только качественные изменения в политике и экономике, но появились и новые

Предисловие

Предисловие Грандиозные события почти неощутимы для непосредственных участников: каждый видит лишь одну деталь, находящуюся перед глазами, объем целого ускользает от наблюдения. Поэтому, вероятно, очень многие как-то не замечают, что человечество вошло в «эпоху

Предисловие

Предисловие Человечество находится на новом этапе освоения космоса. Основное содержание этого этапа — индустриализация космического пространства. До недавнего времени человечество осваивало три среды — земную поверхность, моря, воздушный океан. Теперь настала

Предисловие

Предисловие 1 РАЗРАБОТАН Всероссийским научно-исследовательским институтом стандартизации (ВНИИстандарт) Госстандарта РоссииВНЕСЕН Техническим комитетом по стандартизации ТК 22 «Информационная технология»2 ПРИНЯТ И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Госстандарта

Предисловие

Предисловие Фактор четыре — это нужная идея в нужное время, которая должна стать символом прогресса, результатом, который приветствовал бы Римский клуб. Удвоение богатства при двукратном уменьшении потребления ресурсов — вот суть задачи, поставленной в «Первой

предисловие

предисловие За последние годы спортивная спелеология достигла больших успехов. В Пиренеях, Альпах и ряде горных систем и карстовых районов за пределами европейского континента были открыты и пройдены ранее неизвестные подземные глубины. Болгарские спелеологи покорили

Предисловие

Предисловие Движение – это изменение места положения объекта, процесс, происходящий как в пространстве, так и во времени. Мы существуем в движении, благодаря тому, что находимся на поверхности планеты, летящей в космосе вокруг Солнца, и вместе с ним в Галактике. С другой

Предисловие

Предисловие Студентам Ленинградского Политехнического института им. М. И. Калинина свой труд посвящаетАВТОР {1}Вторая половина XIX в. была периодом бурного роста новой отрасли знания — электротехники, оказавшей в дальнейшем громадное влияние на развитие

Предисловие

Предисловие Эта книга для тех, кто со школьной скамьи интересуется техникой, кто с увлечением проводит свободное время в физическом кабинете, кто участвует в проведении экспериментов с физическими и электротехническими приборами и кто в будущем мечтает стать

Предисловие

Предисловие Настоящие Правила технической эксплуатации тепловых энергоустановок (далее – Правила) устанавливают основные организационные и технические требования к эксплуатации тепловых энергоустановок, выполнение которых обеспечивает их исправное состояние,

ПРЕДИСЛОВИЕ

ПРЕДИСЛОВИЕ Настоящие Правила учета тепловой энергии и теплоносителя (далее Правила) разработаны по заданию Главгосэнергонадзора Российской Федерации специалистами Госэнергонадзора России, энергонадзоров, ТОО «Интех», НИИ Теплоприбор, при участии филиала «Тепловые

ПРЕДИСЛОВИЕ

ПРЕДИСЛОВИЕ Электроэнергетика – важнейшая фундаментальная отрасль, обеспечивающая нормальную деятельность всех других отраслей экономики, функционирование социальных структур и необходимые условия жизни населения.Ни одно предприятие, будь то маленькая фабрика или

Предисловие

Предисловие Программа Adobe Premiere впервые появилась в 1991 году, и с тех пор быстро стала основным средством в области видеомонтажа на персональных компьютерах. Название программы – Premiere — в переводе означает «премьера», т. е. премьерный показ фильма. Новая версия Adobe Premiere 6.5,

Руководство по устранению неисправностей и ремонту импульсных источников питания

Поиск и устранение неисправностей импульсного источника питания
1. Перегоревший предохранитель
Обычно перегоревший силовой предохранитель указывает на проблемы во внутренних цепях. Блок питания работает под высоким напряжением и током. Колебания напряжения или скачки напряжения в электросети часто вызывают мгновенное увеличение тока, что может привести к перегоранию силового предохранителя. Пользователи должны проверить, нет ли пробоя, обрыва или повреждения выпрямительного диода, высоковольтного фильтрующего электролитического конденсатора и трубки переключателя инверсии мощности на входе.Если плавкий предохранитель перегорел, но при этом не было никаких признаков других проблем, пользователям необходимо проверить компоненты на печатной плате, чтобы убедиться, что они не сгорели из-за утечки электролита. Если такого состояния нет, пользователи должны проверить мультиметром, нет ли пробоя или короткого замыкания. Пользователи не должны запускать оборудование даже после обнаружения и замены поврежденной детали, поскольку неисправные компоненты высокого напряжения могут повредить недавно замененную деталь. При работе с перегоревшим силовым предохранителем пользователи должны проверить все высоковольтные компоненты на печатной плате перед запуском оборудования.

2. Отсутствует выход постоянного тока или нестабильное выходное напряжение.
Если силовой предохранитель остается в идеальном состоянии, но отсутствует выход постоянного тока на различных уровнях в нагруженном состоянии, это может быть вызвано обрывом цепи, коротким замыканием, перенапряжением, перегрузкой по току, выходом из строя вспомогательного оборудования. электропитание, выход из строя колебательного контура, перегрузка источника питания, пробой выпрямительного диода в высокочастотной цепи выпрямления и сглаживания или утечка тока сглаживающего конденсатора. Если выходное напряжение остается нулевым после проверки вторичных компонентов мультиметром и устранения пробоя, перегрузки или короткого замыкания диода высокочастотного выпрямителя, это может быть подтверждением наличия проблемы с цепью управления источником питания.Если на некоторых частях есть выходное напряжение, это означает, что бортовая схема работает нормально, и это проблема высокочастотной схемы выпрямления и сглаживания. Схема высокочастотной фильтрации в основном использует выпрямительный диод и низковольтный фильтрующий конденсатор для вывода постоянного тока. Если выпрямительный диод выйдет из строя, схема не сможет выдавать напряжение. Кроме того, утечка тока через фильтрующий конденсатор приводит к нестабильному выходному напряжению. Поврежденные компоненты можно обнаружить, проверив соответствующие детали с помощью мультиметра.

3. Низкая грузоподъемность
Низкая грузоподъемность — частая неисправность. Его часто можно увидеть в традиционных источниках питания или в тех, которые работают долгие часы. Это вызвано старением компонентов, нестабильной трубкой переключателя или плохим охлаждением. Пользователи должны проверять и подтверждать состояние регулируемого диода, выпрямительного диода, сглаживающего конденсатора высокого напряжения и т. Д.

Руководство по ремонту импульсного источника питания
Ремонт импульсного источника питания можно выполнить в два этапа:
1.В случае отключения питания пользователи могут проводить техническое обслуживание путем визуальной проверки, обоняния, запроса и измерения.

  • Визуальная проверка: Откройте корпус блока питания, чтобы проверить, не перегорел ли предохранитель. Проверить внутреннюю часть блока питания. Если компоненты на печатной плате сгорели, пользователи должны проверить окружающие компоненты и соответствующие компоненты схемы.
  • Запах: Проверьте, нет ли запаха гари внутри блока питания и нет ли перегоревшего компонента.
  • Вопрос: Спросите о повреждении источника питания и проверьте, нет ли нарушений в работе
  • Измерение: используйте мультиметр для измерения напряжения на обоих концах высоковольтного конденсатора перед включением. Если импульсный источник питания не генерирует колебания или возникает неисправность, вызванная переключающей трубкой, в большинстве случаев напряжение на обоих концах конденсатора фильтра высокого напряжения не сбрасывается. Будьте осторожны, так как напряжение действительно высокое! При измерении прямого и обратного сопротивления на обоих концах линий питания переменного тока, а также при зарядке конденсатора значение сопротивления не должно быть слишком низким, в противном случае внутренняя часть источника питания будет иметь короткое замыкание.Кроме того, должно быть подтверждено, что конденсатор выделяет и заряжает мощность. Затем пользователям необходимо измерить сопротивление заземления различных выходных концов после снятия нагрузки соответственно. Обычно индикатор мультиметра должен качаться для высвобождения мощности или зарядки конденсатора. Индикатор должен наконец отображать сопротивление кровотока.

2. Тест при включении
Проверьте, не перегорел ли предохранитель и не загорелись ли компоненты после включения.При необходимости пользователи должны отключить питание для проведения технического обслуживания.
Измерьте наличие выходного напряжения 300 В на обоих концах сглаживающего конденсатора ВН. Если это нормально, пользователи должны проверить выпрямительный диод, сглаживающий конденсатор и т. Д.
Измерьте наличие выходного напряжения на вторичной обмотке высокочастотного трансформатора. Если это нормально, пользователи должны проверить, не повреждена ли трубка переключателя, колеблется ли трубка переключателя, работает ли защитная схема и т.д. регулирующие трубки на выходных сторонах.
Если источник питания прекращается после запуска, пользователи должны проверить, остается ли источник питания в защитном состоянии, измеряя защитное напряжение микросхемы ШИМ. Если напряжение превышает указанное значение, это означает, что источник питания находится в защитном состоянии, и пользователи должны выяснить причины защитного статуса.

Как отремонтировать импульсный блок питания

Как отремонтировать импульсный блок питания

На практике обслуживания импульсных источников питания существует множество импульсных источников питания, в которых используются 8-контактные ШИМ-компоненты серии UC38 × ×.Большинство источников питания не могут работать из-за повреждения резисторов включения или ухудшения характеристик микросхемы. Когда нет VC после отключения R, компонент PWM не может работать, и необходимо заменить то же сопротивление, что и исходное сопротивление питания. Когда пусковой ток компонента ШИМ увеличивается, значение R может быть уменьшено до тех пор, пока компонент ШИМ не сможет нормально работать. При ремонте блока питания GEDR используется модуль ШИМ UC3843, и никаких других отклонений не обнаружено. После подключения резистора 220 кОм к R (220 кОм) компонент ШИМ работает и выходное напряжение в норме.Иногда из-за сбоя периферийной цепи напряжение на клемме VR 5V составляет 0 В, компонент PWM не работает. Такая ситуация возникает при ремонте блока питания камеры Kodak 8900. Внешняя цепь, подключенная к клемме VR, отключается, и VR изменяется с 0 В. 5V, компоненты PWM работают нормально, а выходное напряжение в норме.
Когда на конденсаторе фильтра нет напряжения около 380 В постоянного тока, цепь коррекции коэффициента мощности не работает нормально. Ключевой вывод обнаружения модуля PFC — это вывод питания VC, начальный вывод Vstart / control, выводы CT и RT и вывод V0.При ремонте камеры Fuji 3000 убедитесь, что на конденсаторе фильтра на плате отсутствует напряжение 380 В постоянного тока. Формы сигналов VC, Vstart / control, CT и RT и сигналов V0 являются нормальными. Измеренная лампа переключателя мощности с полевым эффектом G не имеет формы волны V0. Поскольку FA5331 (PFC) является патч-компонентом, машина появится между концом V0 и платой через долгое время. Припой, сигнал V0 не отправляется на полевой транзистор полевого транзистора. Припаяйте конец V0 к паяльному соединению на плате и измерьте конденсатор фильтра с помощью мультиметра напряжением 380 В постоянного тока.Когда на клемме Vstart / control низкий уровень, PFC не будет работать. Необходимо обнаружить соответствующие цепи, клеммы которых подключены к периферии.
Короче говоря, схема импульсного источника питания проста в использовании, мощность большая и малая, а выходное напряжение разное. Пока вы понимаете основные вещи, то есть полностью знакомы с базовой структурой импульсного источника питания и характеристиками модулей PFC и PWM, основными условиями их работы, в соответствии с вышеуказанными шагами и методами, больше рук -При обслуживании импульсного источника питания можно быстро устранить сбой питания коммутатора, добиться вдвое большего результата с половиной усилий.

Источники питания | Скамья, программируемая, 12 В

Источники питания

Что такое блоки питания? Источники питания

— это в основном компоненты, которые обеспечивают питание по крайней мере одной электрической нагрузки, и обычно они интегрированы в устройство, которое они питают. Они также обычно преобразуют один тип электроэнергии в другой — в большинстве случаев, переменный ток (переменный ток) в постоянный ток (постоянный ток). Однако некоторые модели действительно преобразуют различные формы энергии, такие как солнечная или химическая энергия, в электрическую энергию.

Источники питания также называются блоками питания, блоками питания и адаптерами питания.

Почему следует выбирать источник питания с осторожностью?

Если вы хотите, чтобы ваша система работала оптимально, вам необходимо позаботиться о фундаменте. Так сказать костяк всей операции.

Электроэнергия — это основа буквально любой электронной системы, будь то небольшое домашнее хобби или крупное промышленное использование. Электроника не может работать без какой-либо формы питания, и источники питания являются самим источником этой энергии.

Поэтому очень важно, чтобы вы понимали характеристики хорошего блока питания и элементы, которые вы должны искать, чтобы найти лучший для вашей ситуации. Посмотрите на их тип, марку и модель. Знайте разницу между источником питания переменного тока и источником питания постоянного тока и выясните, с каким из них ваша система будет работать лучше всего.

Чтобы быть более конкретным, изучите различные варианты преобразования источника питания. Ознакомьтесь с различными типами источников питания; настольные, программируемые, регулируемые, нерегулируемые, линейные, переключатели и т. д.

Есть много информации, которую нужно распечатать, это правда, но поверьте нам, когда мы говорим, что в конечном итоге это того стоит.

Сравнение источников питания

Для начала давайте рассмотрим несколько способов сравнения различных источников питания. Опять же, необходимо учесть несколько элементов. А пока мы рассмотрим три:

  • Регулируемый и нерегулируемый

  • Линейные и коммутационные

  • переменного и постоянного тока

Регулируемый vs.Нерегулируемый Источники питания переменного и постоянного тока

могут быть как регулируемыми, так и нерегулируемыми. Самая большая разница между ними — их способность подавать постоянное напряжение на нагрузку. Регулируемые блоки питания вполне на это способны. Нерегулируемые источники питания не могут.

Если вы выберете неправильный тип источника питания, вы можете нанести непоправимый ущерб системе или устройству, которое питаете. Вы также можете потратить впустую энергию и заплатить слишком много, если будете использовать более мощный отряд, чем это строго необходимо.

Мы утверждаем, что выбор между регулируемым и нерегулируемым источником питания так же важен, как и выбор возможностей напряжения.

Нерегулируемые блоки питания

Нерегулируемые источники питания способны обеспечивать ожидаемую мощность при заданном токе. Однако полученное выходное напряжение не всегда отражает фактическое выходное напряжение. Более того, напряжение в нерегулируемом источнике питания выходит, когда на выходе мощности присутствует пульсация напряжения.

Нерегулируемые источники питания — это простые и недорогие варианты, которые подходят для небольших жилых помещений.Однако имейте в виду, что они обеспечивают неравномерное напряжение.

Более того, нерегулируемые источники питания не способны к резкому увеличению или уменьшению потока без конденсатора, чтобы предотвратить резкие колебания напряжения. Это означает, что изменения в токовой нагрузке и входном напряжении приведут к непоследовательному или нечистому выходу из источника питания.

Плюсы:

Минусы:

Регулируемые блоки питания С другой стороны, регулируемые источники питания

имеют дополнительный регулятор напряжения, способный уменьшить пульсации напряжения для обеспечения чистого, равномерного выхода.Помимо этого, они имеют все те же части, что и нерегулируемый источник питания, что означает, что они также способны обеспечивать ожидаемую мощность при заданном токе.

Самая большая разница между регулируемым источником питания и нерегулируемым источником питания состоит в том, что выходной сигнал регулируемого источника питания является стабильным и неизменным. В отличие от нерегулируемой модели, подача отражает фактическое выходное напряжение независимо от входа или потребления.

Из-за этого регулируемые источники питания идеально подходят для деликатной электроники, требующей единообразия.

Плюсы:

  • Бесперебойная и стабильная доставка

  • Выход отражает фактическое выходное напряжение, указанное в списке

  • Добавлен стабилизатор напряжения

  • Согласованный

  • Эффективный

Минусы:

Линейная в сравнении с переключением

Большинство регулируемых источников питания также способны преобразовывать мощность постоянного тока в мощность переменного тока.Такие модели преобразователей бывают линейными, переключаемыми или аккумуляторными. Но источники питания на батарейках — это в значительной степени переключаемые преобразователи, поэтому вам действительно нужно сравнить линейные источники питания с переключаемыми (или переключаемыми) источниками питания.

Линейные блоки питания

Линейные источники питания намного проще и понятнее, чем импульсные или импульсные источники питания. Они также выделяют намного больше тепла.

В линейных источниках питания

также используются трансформаторы для преобразования входного переменного тока в выходной постоянный ток.Они очень тихие и менее требовательны, чем импульсные блоки питания, что делает их отличным выбором для проектов, требующих минимальной или низкой мощности. Однако они довольно тяжелые и громоздкие. Они редко бывают портативными.

Общие области применения линейных источников питания включают лабораторные работы, связь и медицинские нужды.

Плюсы:

Минусы:

Импульсные источники питания

Импульсные блоки питания или импульсные блоки питания немного сложнее, чем их аналоги.К тому же они намного шумнее. Однако они намного холоднее линейных источников питания и намного более портативны.

Для эффективного регулирования выходного напряжения в импульсных источниках питания используется процесс, называемый изменением ширины импульса (PWM). Это позволяет им работать при более низкой температуре без ущерба для эффективности или гибкости. Фактически, импульсные источники питания известны своим многоцелевым применением, способным адаптироваться к широкому спектру функций.

Однако из-за высокочастотного шума импульсные источники питания не рекомендуются для лабораторий или медицинских работ.Импульсные источники питания в основном используются в авиации, кораблях, производстве и мобильных станциях.

Плюсы:

  • Эффективный

  • Легкий и компактный

  • Охладитель, работает при низкой температуре

  • Гибкость, позволяет использовать несколько приложений

Минусы:

Переменный ток в сравнении с постоянным током

Наконец, вы должны подумать, требуется ли в вашей ситуации источник переменного тока (AC) или постоянного тока (DC).На всякий случай вы всегда можете спросить профессионала, но даже базовые знания обоих типов помогут.

Вот что вам следует знать:

Источники питания переменного тока

Как следует из названия, источники питания переменного тока характеризуются волнами переменного тока, создаваемыми генераторами переменного тока, в частности, различными областями магнитной полярности внутри генераторов переменного тока. Также стоит отметить, что питание переменного тока на самом деле является стандартным форматом электрического вывода для розеток, что делает его довольно распространенным.

Источники питания переменного тока

обеспечивают электрические токи, которые периодически меняются в зависимости от определенных параметров. Они могут двигаться как в положительном, так и в отрицательном направлении. Когда электрический ток положительный, он создает поток вверх. Когда он отрицательный, он падает.

Это создает очень отчетливое волнообразное движение, и именно это движение дает мощности переменного тока преимущество перед мощностью постоянного тока.

Мощность переменного тока

может передаваться дальше, чем мощность постоянного тока. Его также очень легко создать.Вы часто встретите этот формат в торговых точках в коммерческих зданиях, небольших устройствах, таких как настольные лампы, и бытовой технике, например холодильниках и посудомоечных машинах.

Преимущества переменного тока:

Источники питания постоянного тока

В то время как мощность переменного тока определяется его волнообразным движением, источники питания постоянного тока генерируют токи, которые движутся по прямой, непоколебимой линии — отсюда и название.

Электроны в постоянном токе фиксированы и неизменны. Они поступают от генераторов переменного тока, оборудованных коммутаторами, которые специально вырабатывают прямую энергию.Электропитание постоянного тока также может генерироваться выпрямителями, которые способны преобразовывать переменные токи в постоянные токи.

Постоянство питания постоянного тока действительно делает его лучшим выбором для портативных устройств и чувствительной электроники. Большинство батарей являются источниками постоянного тока. Конвертеры созданы специально для преобразования мощности переменного тока из розеток в полезную мощность постоянного тока.

Подумайте о зарядных устройствах для портативных компьютеров. Они часто поставляются с преобразователями питания, преобразующими переменный волновой выходной ток вашей розетки в более линейный, постоянный ток, с которым действительно может справиться ваш ноутбук.Высокие и низкие частоты переменного тока могут повредить хрупкие компоненты внутри портативных устройств, поэтому более стабильный ток предпочтительнее.

Другие приложения включают смартфоны, фонарики и некоторые электромобили нового поколения.

Преимущества постоянного тока:

  • Последовательный и стабильный

  • Легко преобразовать из AC

Но что касается преобразования, как преобразователи — и некоторые блоки питания — преобразуют мощность переменного тока в мощность постоянного тока?

Вот краткий обзор:

Преобразование переменного тока в постоянный

Рассмотрим выход переменного тока из стенной розетки.

Как мы упоминали ранее, постоянно меняющийся характер тока может быть вредным для большинства портативных электронных устройств. Допустим, вы хотите зарядить свой смартфон. Вашему смартфону требуется стабильный постоянный ток для безопасной зарядки аккумулятора.

Преобразователь или блок питания забирает переменный ток из розетки и преобразует его в нерегулируемый постоянный ток, одновременно снижая напряжение через входной силовой трансформатор. Напряжение выпрямлено, но все еще немного колеблется. Он проходит через конденсатор (обычно в импульсных источниках питания) для «сглаживания».”

Внутри конденсатора создается резервуар энергии. Этот пул затем подается на нагрузку при дальнейшем падении напряжения. Когда это происходит, поступающая энергия расходуется, эффективно сглаживая напряжение еще больше и устраняя «пики» или скачки тока. Осталась гладкая линейная линия, которая движется только в одном направлении.

Теперь, когда у вас есть хорошее представление о том, как работают разные блоки питания и для чего лучше всего подходят разные типы, вы готовы углубиться в детали! После того, как вы определили источник питания или источники питания, которые лучше всего подходят для вашего проекта, вы можете провести дальнейшее исследование, используя более конкретные и последовательные термины.

А если вы ищете источники питания самого высокого качества по выгодной цене, ознакомьтесь с полным списком источников питания для специалистов по схемам. От программируемых источников питания до линейных и импульсных источников питания — вы обязательно найдете здесь модель, которая точно соответствует вашим характеристикам.

Руководство по основам импульсного источника питания

Аннотация: Импульсные источники питания — популярный, а иногда и необходимый выбор для преобразования энергии постоянного тока в постоянный. Эти схемы предлагают явные преимущества и недостатки по сравнению с альтернативными методами преобразования энергии постоянного тока.В этой статье представлен краткий обзор преимуществ и недостатков импульсных источников питания, а также предлагается простой обзор их работы и теории.

Эта статья также была опубликована в Maxim’s Engineering Journal, vol. 61 (PDF, 440кБ).

Учитывая, что многие электронные устройства требуют нескольких уровней постоянного напряжения, разработчикам нужен способ преобразования стандартных потенциалов источника питания в напряжения, определяемые нагрузкой. Преобразование напряжения должно быть универсальным, эффективным и надежным процессом.Импульсные источники питания (SMPS) часто используются для обеспечения различных уровней выходной мощности постоянного тока, необходимых для современных приложений, и незаменимы для создания высокоэффективных и надежных систем преобразования мощности постоянного тока в постоянный.

Почему SMPS?

Большинство электронных нагрузок постоянного тока получают питание от стандартных источников питания. К сожалению, стандартные напряжения источника могут не соответствовать уровням, требуемым микропроцессорами, двигателями, светодиодами или другими нагрузками, особенно когда напряжение источника не регулируется.Устройства с батарейным питанием являются яркими примерами проблемы: типичное напряжение стандартной батареи Li + или NiMH либо слишком высокое / низкое, либо слишком сильно падает во время разряда для использования в обычных приложениях.

Универсальность

К счастью, универсальность SMPS решает проблему преобразования стандартного напряжения источника в пригодное для использования заданное выходное напряжение. Существует множество топологий SMPS, которые классифицируются по фундаментальным категориям — эти источники питания повышают, понижают, инвертируют или даже повышают и понижают входное напряжение.В отличие от линейных регуляторов, которые могут только понижать входное напряжение, SMPS привлекательны тем, что можно выбрать топологию, подходящую практически для любого выходного напряжения.

Настройка

Кроме того, современные ИС SMPS спроектированы с различными уровнями интеграции, что позволяет инженеру выбирать среди топологий с более или менее стандартными функциями SMPS, внесенными в ИС. Поступая таким образом, производители облегчают проектирование широко используемых источников питания для конкретных приложений или предлагают инженерам базовые ИС SMPS для индивидуальных проектов, тем самым повышая универсальность этих широко используемых устройств.

КПД

Инженеры также сталкиваются с другой распространенной проблемой — как эффективно преобразовать мощность постоянного тока. Например, часто требуется понизить входное напряжение для достижения более низкого выходного напряжения. Простым решением является использование линейного регулятора, поскольку для этого устройства требуется всего несколько конденсаторов и адекватное управление температурой. Однако там, где такая простота заканчивается, начинается неэффективность — даже до неприемлемых уровней, если разность напряжений велика.

КПД линейного регулятора напрямую зависит от мощности, падающей на его проходной транзистор.Это падение мощности может быть значительным, поскольку рассеиваемая мощность равна I LDO × (V IN — V OUT ). Например, при понижении нагрузки 100 мА от батареи 3,6 В до выхода 1,8 В на линейном регуляторе падает 0,18 Вт. Это падение мощности дает низкий КПД 50%, что сокращает срок службы батареи на 50% (при условии идеальной работы).

Понимая эту потерю эффективности, добросовестный инженер стремится найти улучшенное решение, и именно здесь SMPS выделяется.Хорошо спроектированный SMPS может достичь КПД 90% или более, в зависимости от уровней нагрузки и напряжения. Как и в предыдущем примере, при использовании понижающего ИИП типа Рис. 1 вместо линейного регулятора наблюдается КПД 90%. Это повышение эффективности на 40% по сравнению с линейным регулятором. Преимущество понижающего SMPS очевидно, и аналогичный или более высокий КПД наблюдается в других топологиях SMPS.


Рис. 1. MAX8640Y используется в простой понижающей цепи SMPS.

Хотя высокий КПД является основным преимуществом конструкций SMPS, другие преимущества, естественно, возникают как прямой результат минимизации потерь мощности. Например, в SMPS наблюдается уменьшенный тепловой след по сравнению с его менее эффективными аналогами. Это преимущество означает снижение требований к управлению температурным режимом. Кроме того, что более важно, срок службы увеличивается за счет повышения надежности, поскольку компоненты не подвергаются чрезмерному нагреву, как это было бы в менее эффективной системе.

Топологии и теория преобразования SMPS

Как упоминалось в предыдущем разделе, SMPS могут преобразовывать входное напряжение постоянного тока в другое выходное напряжение постоянного тока в зависимости от топологии схемы. Хотя в мире инженерии используется множество топологий SMPS, три из них являются фундаментальными и встречаются чаще всего. Эти топологии (см. , рис. 2, ) классифицируются в соответствии с их функцией преобразования: понижающие (понижающие), повышающие (повышающие) и повышающие / понижающие (понижающие-повышающие или инверторные).Пути заряда / разряда индуктора, показанные на диаграммах на Рисунке 2, обсуждаются в следующих параграфах.


Рис. 2. Понижающий, повышающий и понижающий-повышающий составляющие составляют основные топологии SMPS.

Все три основные топологии включают переключатель MOSFET, диод, выходной конденсатор и катушку индуктивности. МОП-транзистор, который является активно управляемым компонентом в схеме, подключен к контроллеру (не показан). Этот контроллер подает прямоугольный сигнал с широтно-импульсной модуляцией (ШИМ) на затвор полевого МОП-транзистора, тем самым включая и выключая устройство.Чтобы поддерживать постоянное выходное напряжение, контроллер определяет выходное напряжение SMPS и изменяет рабочий цикл (D) прямоугольного сигнала, определяя, как долго полевой МОП-транзистор остается включенным в течение каждого периода переключения (T S ). Значение D, которое представляет собой отношение времени включения прямоугольной волны к периоду ее переключения (T ON / T S ), напрямую влияет на напряжение, наблюдаемое на выходе SMPS. Эта взаимосвязь проиллюстрирована в уравнениях 4 и 5.

Состояния включения и выключения полевого МОП-транзистора делят схему SMPS на две фазы: фазу заряда и фазу разряда, каждая из которых описывает передачу энергии катушки индуктивности (см. петли на рисунке 2).Энергия, накопленная в катушке индуктивности во время фазы зарядки, передается выходной нагрузке и конденсатору во время фазы разряда. Конденсатор поддерживает нагрузку, пока индуктор заряжается, и поддерживает выходное напряжение. Эта циклическая передача энергии между элементами схемы поддерживает выходное напряжение на должном уровне в соответствии с ее топологией.

Катушка индуктивности играет центральную роль в передаче энергии от источника к нагрузке во время каждого цикла переключения. Без него SMPS не работал бы при переключении MOSFET.Энергия (E), запасенная в катушке индуктивности (L), зависит от ее тока (I):

Таким образом, изменение энергии в катушке индуктивности измеряется по изменению ее тока (ΔI L ), что связано с к напряжению, приложенному к нему (V L ) в течение определенного периода времени (ΔT):

(ΔI L ) представляет собой линейное изменение, поскольку постоянное напряжение подается на катушку индуктивности во время каждой фазы переключения ( Рисунок 3 ). Напряжение индуктора во время фазы переключения можно определить, выполнив петлю напряжения Кирхгофа, уделяя особое внимание полярности и соотношениям V IN / V OUT .Например, напряжение катушки индуктивности повышающего преобразователя во время фазы разряда составляет — (V OUT — V IN ). Поскольку V OUT > V IN , напряжение на катушке индуктивности отрицательное.


Рисунок 3. Характеристики напряжения и тока подробно описаны для установившейся катушки индуктивности.

Во время фазы заряда полевой МОП-транзистор включен, диод смещен в обратном направлении, и энергия передается от источника напряжения к катушке индуктивности (рис. 2). Ток в индукторе нарастает, потому что напряжение V L положительное.Кроме того, выходная емкость передает энергию, накопленную в предыдущем цикле, на нагрузку, чтобы поддерживать постоянное выходное напряжение. Во время фазы разряда полевой МОП-транзистор отключается, а диод становится смещенным в прямом направлении и, следовательно, проводит ток. Поскольку источник больше не заряжает катушку индуктивности, клеммы катушки индуктивности меняют полярность, поскольку она отдает энергию нагрузке и пополняет выходной конденсатор (рис. 2). Ток катушки индуктивности снижается по мере передачи энергии в соответствии с тем же соотношением передачи, указанным ранее.

Циклы заряда / разряда повторяются и поддерживают установившееся состояние переключения. Во время перехода схемы в установившееся состояние ток индуктора нарастает до своего конечного уровня, который представляет собой суперпозицию постоянного тока и нарастающего переменного тока (или пульсирующего тока индуктора), возникающего во время двух фаз схемы (рисунок 3). Уровень постоянного тока связан с выходным током, но зависит от положения катушки индуктивности в цепи SMPS.

Импульсный ток должен отфильтровываться SMPS, чтобы подавать на выход истинный постоянный ток.Это фильтрующее действие осуществляется выходным конденсатором, который мало противодействует высокочастотному переменному току. Нежелательная пульсация выходного тока проходит через выходной конденсатор и поддерживает заряд конденсатора, пока ток проходит на землю. Таким образом, выходной конденсатор также стабилизирует выходное напряжение. Однако в неидеальных приложениях эквивалентное последовательное сопротивление (ESR) выходного конденсатора вызывает пульсации выходного напряжения, пропорциональные току пульсаций, протекающему через него.

Таким образом, энергия передается между источником, катушкой индуктивности и выходным конденсатором для поддержания постоянного выходного напряжения и питания нагрузки. Но как передача энергии ИИП определяет коэффициент преобразования выходного напряжения? Это соотношение легко вычислить, если понимать установившееся состояние применительно к периодическим сигналам.

Чтобы быть в устойчивом состоянии, переменная, повторяющаяся с периодом T S , должна быть равна в начале и в конце каждого периода.Поскольку ток катушки индуктивности является периодическим из-за фаз заряда и разряда, описанных ранее, ток катушки индуктивности в начале периода ШИМ должен равняться току катушки индуктивности в конце. Это означает, что изменение тока индуктора во время фазы заряда (ΔI CHARGE ) должно соответствовать изменению тока индуктора во время фазы разряда (ΔI DISCHARGE ). Приравнивая изменение тока индуктора для фаз заряда и разряда, достигается интересный результат, который также называют правилом вольт-секунды:

Проще говоря, произведение напряжения индуктора на время во время каждой фазы цепи равно .Это означает, что, наблюдая за схемами SMPS на Рисунке 2, можно без особых усилий найти идеальные установившиеся отношения преобразования напряжения / тока. Для понижающей схемы петля напряжения Кирхгофа вокруг цепи фазы заряда показывает, что напряжение индуктора является разницей между V IN и V OUT . Аналогично, напряжение индуктора во время цепи фазы разряда составляет -V OUT . Используя правило вольт-секунды из уравнения 3, определяется следующий коэффициент преобразования напряжения:

Кроме того, входная мощность (P IN ) равна выходной мощности (P OUT ) в идеальной схеме.Таким образом, найден коэффициент преобразования тока:

Из этих результатов видно, что понижающий преобразователь снижает V IN в D раз, в то время как входной ток является D-кратным току нагрузки. Таблица 1 перечисляет коэффициенты преобразования для топологий, изображенных на рисунке 2. Как правило, все коэффициенты преобразования SMPS можно найти с помощью метода, используемого для решения уравнений 3 и 5, хотя сложные топологии могут быть более трудными для анализа.

Таблица 1.Коэффициенты преобразования SMPS

Топология Коэффициент преобразования напряжения Коэффициент преобразования тока
Понижающий В ВЫХ / V ВХОД = D I IN / I OUT = D
Повышение В ВЫХ / V ВХОД = 1 / (1 — D) I IN / I OUT = 1 / (1 — D)
Повышение / понижение В ВЫХ / V ВХОД = D / (1 — D) I ВХОД / I ВЫХ = D / (1 — D)

Недостатки и недостатки ИИП

Конечно, высокий КПД, обеспечиваемый ИИП, имеет свои недостатки.Возможно, наиболее часто упоминаемая проблема импульсных преобразователей — это их склонность к излучению электромагнитных помех (EMI) и кондуктивным шумам. Электромагнитное излучение вызывается быстрыми переходами сигналов переключения тока и напряжения, которые существуют в цепях SMPS. Быстро меняющиеся напряжения в узле индуктора вызывают излучаемые электрические поля, в то время как токи быстрого переключения в контурах заряда / разряда создают магнитные поля. Однако кондуктивный шум распространяется на входные и выходные цепи, когда входные / выходные емкости SMPS и паразитные характеристики печатной платы представляют более высокие импедансы для коммутирующих токов.К счастью, правильное размещение компонентов и компоновка печатной платы могут успешно бороться с электромагнитными помехами и снижать уровень шума. SMPS

также могут быть довольно сложными и требовать дополнительных внешних компонентов, что может привести к увеличению общей стоимости источника питания. К счастью, большинство производителей ИС SMPS предоставляют подробную литературу не только о работе устройства, но и о правильном выборе внешних компонентов. Кроме того, высокий уровень интеграции в современные ИС SMPS может уменьшить количество требуемых внешних компонентов.

Несмотря на эти проблемы, SMPS широко используются во многих приложениях. С недостатками можно справиться, а эффективность и универсальность, получаемые от их использования, очень желательны и часто требуются.

Ремонт блока питания — iFixit

Источник питания — это электронный инструмент, используемый для подачи электроэнергии на некоторые типы электрических нагрузок. Источники питания предназначены для преобразования электрического тока от источника в правильную частоту, напряжение и ток для питания требуемой нагрузки.Источники питания иногда называют преобразователями электроэнергии. В то время как некоторые блоки питания являются автономными частями оборудования, другие встроены в устройства, для питания которых они предназначены, например, в настольных компьютерах. Источники питания также могут использоваться для ограничения тока, потребляемого нагрузкой, до более безопасных уровней, коррекции коэффициента мощности, хранения энергии, отключения тока во время электрических неисправностей и регулирования мощности для предотвращения скачков напряжения или электронных шумов на входе, ведущих к нагрузка.

Все источники питания включают вход питания, который получает энергию в виде электрического тока от источника. Они также включают в себя одно или несколько выходных разъемов питания, которые подают ток на желаемую нагрузку. Источником энергии может быть электрическая сеть (электрическая розетка), устройства хранения энергии (батареи), генераторы или генераторы переменного тока или преобразователи солнечной энергии. Вход и выход источника питания, как правило, представляют собой соединения проводной схемы, хотя некоторые источники питания используют беспроводную передачу энергии на силовые нагрузки.

Широкий спектр источников питания используется для различных приложений. Источник питания постоянного тока — это источник, который обеспечивает постоянное напряжение постоянного тока (постоянного тока) для своей нагрузки. Источники питания CD включают источники переменного тока в постоянный, импульсные источники питания, емкостные (бестрансформаторные) источники питания и линейные регуляторы. Источник питания переменного тока обычно получает напряжение от сети (обычно настенной розетки) и использует трансформатор для повышения или понижения напряжения до желаемого значения напряжения. Программируемые источники питания позволяют дистанционно управлять его работой через аналоговый вход или цифровой интерфейс.Пользователи могут контролировать напряжение, ток и частоту. Другие типы источников питания включают источники бесперебойного питания, высоковольтные источники питания и биполярные источники питания.

Как отремонтировать блок питания компьютера


Если блок питания поврежден или не работает, компьютер также не сможет работать. Прежде чем приступить к ремонту блока питания компьютера, необходимо определить причину поломки. Повреждение источника питания обычно вызывается тремя факторами: нестабильным напряжением, чрезмерной нагрузкой, а также плохой системой заземления.Чтобы выяснить это, мы должны сначала провести тестирование, чтобы диагностировать повреждение источника питания, шаги следующие:

  1. Прежде всего, отключите кабель питания БП от электрических соединений.
  2. Отключите БП, выход подключен ко всем компонентам компьютера.
  3. Вставьте обратно шнур питания блока питания, который был отключен от сети.
  4. Подготовьте перемычку проводов от 10 до 20 см, чтобы оба конца были сняты.
  5. Удерживайте выходной кабель блока питания (порт с 20 контактами или 24 контакта), а затем соедините зеленый кабель с черным кабелем с помощью кабельной перемычки.
  6. Если оба кабеля были подключены, а вентилятор вращается, то состояние блока питания хорошее, а если вентилятор не работает, то блок питания неисправен.

Однако, если повреждение было вызвано поломкой одного из компонентов блока питания, выходное напряжение может стать нестабильным и повредить другие компоненты вашего компьютера. Поэтому не забывайте проверять каждый кабель по цвету. Вот список выходных напряжений блока питания.

  • Красный: + 5 В
  • Белый: — 5 В
  • Черный: 0 В на массу
  • Желтый: + 12 В
  • Синий: — 12 В
  • Пурпурный: +5 вольт в ожидании
  • Оранжевый: +3 В
  • Зеленый: постоянный ток включен
  • Коричневый: Датчик напряжения согласно MB

После диагностики повреждения блока питания компьютера следующим шагом является ремонт существующего компонента в блоке питания, если действительно есть повреждение.Перед этим, пожалуйста, обратитесь к примеру схемы блока питания компьютера на изображении выше.

Как отремонтировать блок питания компьютера

  1. Во-первых, отсоедините все входные порты источника питания, которые подключены к сети, или выходные порты, подключенные к компонентам компьютера.
  2. После этого выньте блок питания из корпуса компьютера.
  3. Откройте коробку источника питания, очистите внутреннюю часть источника питания и проверьте, есть ли горящие компоненты, горение обычно является компонентом elco.
  4. При обнаружении ослабьте компоненты и замените их новыми. Если нет, проверил ли раздел проверки предохранителя, если его состояние все еще хорошее или нет, путем измерения его с помощью омметра.
  5. Затем проверьте силовой переключающий транзистор 2SC3039 (две части), который предназначен для управления источником питания в режиме ШИМ.
  6. Снимите два транзистора печатной платы, чтобы проверить его состояние. Если все в порядке, проверьте секцию диодного моста.
  7. Проверьте состояние каждого диода с помощью мультиметра.Повреждение блока питания часто происходит из-за того, что есть один излучающий диод.
  8. После этого проверьте транзисторы генератора импульсов, конденсаторы, а также имеющийся резистор на одном блоке схем генератора импульсов. Убедитесь, что все компоненты исправны и работают нормально.
  9. Не забудьте проверить каждую точку пайки компонентов. Убедитесь, что нет пайки, учитывая высокую температуру внутри блока питания.
  10. Если все компоненты проверены и исправны, высока вероятность повреждения компонента ICTL494.Для проверки компонента микросхемы TL494 нельзя использовать мультиметр.
  11. Следовательно, вам следует попробовать заменить старые компоненты микросхемы TL494 на новые.
  12. Проведите тест еще раз.

Надеюсь, эта статья: как отремонтировать блок питания компьютера оказалась полезной

Теги: исправить блок питания компьютера исправить блок питания компьютера ремонт блока питания ATX ремонт блока питания компьютера обслуживание блока питания компьютера

Меры предосторожности для источников питания Меры предосторожности для источников питания

Пример для серии S8FS-G Серия
Работа

Два источника питания могут быть подключены последовательно.

Примечание 1. Диод подключается, как показано на рисунке. Если нагрузка закорочена, внутри источника питания будет генерироваться обратное напряжение. В этом случае источник питания может выйти из строя или выйти из строя. Всегда подключайте диод, как показано на рисунке. Выберите диод со следующими характеристиками.

Примечание 2. Хотя блоки питания с различными характеристиками могут быть подключены последовательно, ток, протекающий через подключенный последовательно, ток, протекающий через нагрузку, не должен превышать меньший номинальный выходной ток.

<Создание положительных / отрицательных выходов>

Выходы — это беспотенциальные выходы (т. Е. Первичные и вторичные цепи разделены). Таким образом, вы можете создавать положительные / отрицательные выходы, используя два источника питания. Вы можете делать положительные / отрицательные выходы с любой из моделей. Если вы используете положительный / отрицательный выходы, подключите два источника питания одной модели, как показано ниже. Вы можете комбинировать модели с разной выходной мощностью и выходным напряжением.Однако в качестве тока нагрузки следует использовать меньший из двух номинальных выходных токов.

В зависимости от модели, внутренние цепи могут быть повреждены из-за сбоя запуска при включении питания, если такие нагрузки, как серводвигатель или операционный усилитель, могут работать последовательно.
Поэтому подключите байпасные диоды (D1, D2), как показано на следующем рисунке. Если в списке моделей, поддерживающих последовательное соединение выходов, указано, что внешний диод не требуется, внешний диод также не требуется для положительных / отрицательных выходов.

Используйте следующую информацию в качестве руководства для определения типа диода, диалектической силы и силы тока.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *